Complete TMAP8 Input File Syntax

Listed below are all the reference pages for both TMAP8 specific code and the MOOSE code that can be used in the TMAP8 input file. To limit this output to only available TMAP8 objects, please see this page.

Click the blue links in the class names shown below to view the detailed description, the class purpose, theoretical models, input file examples, and references.

Click the blue icon link shown to the right of each main class type heading (e.g. Adaptivity) to see a more detailed description of the class type purpose within TMAP8 and the MOOSE framework.

commentnote:Physical constants

Many TMAP8 objects and models use defined physical constants. In TMAP8, these are defined in the PhysicalConstants C++ namespace. A summary of these constants and how they can be used in TMAP8 code can be found in the PhysicalConstants documentation.

ActionComponents

Adaptivity

Adaptivity/Indicators

Adaptivity/Markers

  • Moose App
  • AddElementalFieldActionAdds elemental auxiliary variable for adaptivity system.
  • AddMarkerActionAdd a Marker object to a simulation.
  • ArrayMooseVariableUsed for grouping standard field variables with the same finite element family and order
  • BoundaryMarkerMarks all elements with sides on a given boundary for refinement/coarsening
  • BoundaryPreservedMarkerMarks elements for refinement or coarsening based on the provided marker value, while preserving the given boundary.
  • BoxMarkerMarks the region inside and outside of a 'box' domain for refinement or coarsening.
  • ComboMarkerA marker that converts many markers into a single marker by considering the maximum value of the listed markers (i.e., refinement takes precedent).
  • ErrorFractionMarkerMarks elements for refinement or coarsening based on the fraction of the min/max error from the supplied indicator.
  • ErrorToleranceMarkerCoarsen or refine elements based on an absolute tolerance allowed from the supplied indicator.
  • MooseLinearVariableFVRealBase class for Moose variables. This should never be the terminal object type
  • MooseVariableRepresents standard field variables, e.g. Lagrange, Hermite, or non-constant Monomials
  • MooseVariableBaseBase class for Moose variables. This should never be the terminal object type
  • MooseVariableConstMonomialSpecialization for constant monomials that avoids unnecessary loops
  • MooseVariableFVRealBase class for Moose variables. This should never be the terminal object type
  • MooseVariableScalarMoose wrapper class around scalar variables
  • OrientedBoxMarkerMarks inside and outside a box that can have arbitrary orientation and center point.
  • ReporterPointMarkerMarks the region inside or empty if it contains a reporter defined point for refinement or coarsening.
  • UniformMarkerUniformly mark all elements for refinement or coarsening.
  • ValueRangeMarkerMark elements for adaptivity based on the supplied upper and lower bounds and the specified variable.
  • ValueThresholdMarkerThe refinement state based on a threshold value compared to the specified variable.
  • VectorMooseVariableRepresents vector field variables, e.g. Vector Lagrange, Nedelec or Raviart-Thomas
  • Navier Stokes App
  • BernoulliPressureVariableBase class for Moose variables. This should never be the terminal object type
  • INSFVEnergyVariableBase class for Moose variables. This should never be the terminal object type
  • INSFVPressureVariableBase class for Moose variables. This should never be the terminal object type
  • INSFVScalarFieldVariableBase class for Moose variables. This should never be the terminal object type
  • INSFVVelocityVariableBase class for Moose variables. This should never be the terminal object type
  • PINSFVSuperficialVelocityVariableBase class for Moose variables. This should never be the terminal object type
  • PiecewiseConstantVariableBase class for Moose variables. This should never be the terminal object type
  • Phase Field App
  • DiscreteNucleationMarkerMark new nucleation sites for refinement

Application

AuxKernels

AuxKernels/MatVecRealGradAuxKernel

AuxKernels/MaterialVectorAuxKernel

AuxKernels/MaterialVectorGradAuxKernel

AuxScalarKernels

AuxVariables

AuxVariables/MultiAuxVariables

BCs

  • Moose App
  • AddBCActionAdd a BoundaryCondition object to the simulation.
  • ADConservativeAdvectionBCBoundary condition for advection when it is integrated by parts. Supports Dirichlet (inlet-like) and implicit (outlet-like) conditions.
  • ADCoupledVarNeumannBCImposes the integrated boundary condition , where is a variable.
  • ADDirichletBCImposes the essential boundary condition , where is a constant, controllable value.
  • ADFunctionDirichletBCImposes the essential boundary condition , where is calculated by a function.
  • ADFunctionNeumannBCImposes the integrated boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
  • ADFunctionPenaltyDirichletBCEnforces a (possibly) time and space-dependent MOOSE Function Dirichlet boundary condition in a weak sense by penalizing differences between the current solution and the Dirichlet data.
  • ADMatNeumannBCImposes the integrated boundary condition , where is a constant, is a material property, and is a coefficient defined by the kernel for .
  • ADMatchedValueBCImplements a NodalBC which equates two different Variables' values on a specified boundary.
  • ADNeumannBCImposes the integrated boundary condition , where is a constant, controllable value.
  • ADPenaltyDirichletBCEnforces a Dirichlet boundary condition in a weak sense by penalizing differences between the current solution and the Dirichlet data.
  • ADRobinBCImposes the Robin integrated boundary condition .
  • ADVectorFunctionDirichletBCImposes the essential boundary condition , where components are calculated with functions.
  • ADVectorFunctionNeumannBCImposes the integrated boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
  • ADVectorMatchedValueBCImplements a ADVectorNodalBC which equates two different Variables' values on a specified boundary.
  • ADVectorRobinBCImposes the Robin integrated boundary condition .
  • AdvectionIPHDGDirichletBCWeakly imposes Dirichlet boundary conditions for a hybridized discretization of an advection equation
  • AdvectionIPHDGOutflowBCImplements an outflow boundary condition for use with a hybridized discretization of the advection equation
  • ArrayDirichletBCImposes the essential boundary condition , where are constant, controllable values.
  • ArrayHFEMDirichletBCImposes the Dirichlet BC with HFEM.
  • ArrayNeumannBCImposes the integrated boundary condition , where is a constant, controllable value.
  • ArrayPenaltyDirichletBCEnforces a Dirichlet boundary condition in a weak sense with , where is the constant scalar penalty; is the test functions and is the differences between the current solution and the Dirichlet data.
  • ArrayVacuumBCImposes the Robin boundary condition .
  • ConvectiveFluxBCDetermines boundary values via the initial and final values, flux, and exposure duration
  • CoupledVarNeumannBCImposes the integrated boundary condition , where is a variable.
  • DGFunctionDiffusionDirichletBCDiffusion Dirichlet boundary condition for discontinuous Galerkin method.
  • DiffusionFluxBCComputes a boundary residual contribution consistent with the Diffusion Kernel. Does not impose a boundary condition; instead computes the boundary contribution corresponding to the current value of grad(u) and accumulates it in the residual vector.
  • DiffusionIPHDGDirichletBCWeakly imposes Dirichlet boundary conditions for a hybridized discretization of a diffusion equation
  • DiffusionIPHDGPrescribedFluxBCImplements a flux boundary condition for use with a hybridized discretization of the diffusion equation
  • DiffusionLHDGDirichletBCWeakly imposes Dirichlet boundary conditions for a hybridized discretization of a diffusion equation
  • DiffusionLHDGPrescribedGradientBCImplements a flux boundary condition for use with a hybridized discretization of the diffusion equation
  • DirectionalNeumannBCImposes the integrated boundary condition , where is a user-defined, constant vector.
  • DirichletBCImposes the essential boundary condition , where is a constant, controllable value.
  • EigenArrayDirichletBCArray Dirichlet BC for eigenvalue solvers
  • EigenDirichletBCDirichlet BC for eigenvalue solvers
  • FunctionDirichletBCImposes the essential boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
  • FunctionGradientNeumannBCImposes the integrated boundary condition arising from integration by parts of a diffusion/heat conduction operator, and where the exact solution can be specified.
  • FunctionNeumannBCImposes the integrated boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
  • FunctionPenaltyDirichletBCEnforces a (possibly) time and space-dependent MOOSE Function Dirichlet boundary condition in a weak sense by penalizing differences between the current solution and the Dirichlet data.
  • FunctorDirichletBCImposes the Dirichlet boundary condition , where is a functor and can have complex dependencies.
  • FunctorNeumannBCImposes the integrated boundary condition , where is a functor.
  • HFEMDirichletBCImposes the Dirichlet BC with HFEM.
  • LagrangeVecDirichletBCImposes the essential boundary condition , where are constant, controllable values.
  • LagrangeVecFunctionDirichletBCImposes the essential boundary condition , where components are calculated with functions.
  • MatNeumannBCImposes the integrated boundary condition , where is a constant, is a material property, and is a coefficient defined by the kernel for .
  • MatchedValueBCImplements a NodalBC which equates two different Variables' values on a specified boundary.
  • NeumannBCImposes the integrated boundary condition , where is a constant, controllable value.
  • OneDEqualValueConstraintBCComputes the integral of lambda times dg term from the mortar method (for two 1D domains only).
  • PenaltyDirichletBCEnforces a Dirichlet boundary condition in a weak sense by penalizing differences between the current solution and the Dirichlet data.
  • PostprocessorDirichletBCDirichlet boundary condition with value prescribed by a Postprocessor value.
  • PostprocessorNeumannBCNeumann boundary condition with value prescribed by a Postprocessor value.
  • SinDirichletBCImposes a time-varying essential boundary condition , where varies from an given initial value at time to a given final value over a specified duration.
  • SinNeumannBCImposes a time-varying flux boundary condition , where varies from an given initial value at time to a given final value over a specified duration.
  • VacuumBCVacuum boundary condition for diffusion.
  • VectorCurlPenaltyDirichletBCEnforces a Dirichlet boundary condition for the curl of vector nonlinear variables in a weak sense by applying a penalty to the difference in the current solution and the Dirichlet data.
  • VectorDirichletBCImposes the essential boundary condition , where are constant, controllable values.
  • VectorDivPenaltyDirichletBCEnforces, in a weak sense, a Dirichlet boundary condition on the divergence of a nonlinear vector variable by applying a penalty to the difference between the current solution and the Dirichlet data.
  • VectorFunctionDirichletBCImposes the essential boundary condition , where components are calculated with functions.
  • VectorNeumannBCImposes the integrated boundary condition , where is a user-defined, constant vector.
  • VectorPenaltyDirichletBCEnforces a Dirichlet boundary condition for vector nonlinear variables in a weak sense by applying a penalty to the difference in the current solution and the Dirichlet data.
  • WeakGradientBCComputes a boundary residual contribution consistent with the Diffusion Kernel. Does not impose a boundary condition; instead computes the boundary contribution corresponding to the current value of grad(u) and accumulates it in the residual vector.
  • Periodic
  • Heat Transfer App
  • ADConvectiveHeatFluxBCConvective heat transfer boundary condition with temperature and heat transfer coefficient given by material properties.
  • ADFunctionRadiativeBCBoundary condition for radiative heat exchange where the emissivity function is supplied by a Function.
  • ADInfiniteCylinderRadiativeBCBoundary condition for radiative heat exchange with a cylinderwhere the boundary is approximated as a cylinder as well.
  • ConvectiveFluxFunctionDetermines boundary value by fluid heat transfer coefficient and far-field temperature
  • ConvectiveHeatFluxBCConvective heat transfer boundary condition with temperature and heat transfer coefficent given by material properties.
  • CoupledConvectiveFlux
  • CoupledConvectiveHeatFluxBCConvective heat transfer boundary condition with temperature and heat transfer coefficent given by auxiliary variables.
  • DirectionalFluxBCApplies a directional flux multiplied by the surface normal vector. Can utilize the self shadowing calculation from a SelfShadowSideUserObject.
  • FunctionRadiativeBCBoundary condition for radiative heat exchange where the emissivity function is supplied by a Function.
  • GapHeatTransferTransfers heat across a gap between two surfaces dependent on the gap geometry specified.
  • GapPerfectConductanceEnforces equal temperatures across the gap.
  • GaussianEnergyFluxBCDescribes an incoming heat flux beam with a Gaussian profile
  • GrayLambertNeumannBCThis BC imposes a heat flux density that is computed from the GrayLambertSurfaceRadiationBase userobject.
  • HeatConductionBC
  • InfiniteCylinderRadiativeBCBoundary condition for radiative heat exchange with a cylinderwhere the boundary is approximated as a cylinder as well.
  • Navier Stokes App
  • AdvectionBCBoundary conditions for outflow/outflow of advected quantities: phi * velocity * normal, where phi is the advected quantitiy
  • AdvectionIPHDGPrescribedFluxBCImplements a prescribed flux condition for use with a hybridized discretization of the advection equation
  • EnergyFreeBCImplements free advective flow boundary conditions for the energy equation.
  • FluidWallMomentumBCImplicitly sets normal component of velocity to zero if the advection term of the momentum equation is integrated by parts
  • INSADDisplaceBoundaryBCBoundary condition for displacing a boundary
  • INSADDummyDisplaceBoundaryIntegratedBCThis object adds Jacobian entries for the boundary displacement dependence on the velocity
  • INSADMomentumNoBCBCThis class implements the 'No BC' boundary condition based on the 'Laplace' form of the viscous stress tensor.
  • INSADSurfaceTensionBCSurface tension stresses.
  • INSADVaporRecoilPressureMomentumFluxBCVapor recoil pressure momentum flux
  • INSFEFluidEnergyBCSpecifies flow of energy through a boundary
  • INSFEFluidEnergyDirichletBCImposes a Dirichlet condition on temperature at inlets. Is not applied at outlets
  • INSFEFluidMassBCSpecifies flow of mass through a boundary given a velocity function or postprocessor
  • INSFEFluidMomentumBCSpecifies flow of momentum through a boundary
  • INSFEFluidWallMomentumBCImplicitly sets normal component of velocity to zero if the advection term of the momentum equation is integrated by parts
  • INSFEMomentumFreeSlipBCImplements free slip boundary conditions for the Navier Stokesmomentum equation.
  • INSMomentumNoBCBCLaplaceFormThis class implements the 'No BC' boundary condition based on the 'Laplace' form of the viscous stress tensor.
  • INSMomentumNoBCBCTractionFormThis class implements the 'No BC' boundary condition based on the 'traction' form of the viscous stress tensor.
  • INSTemperatureNoBCBCThis class implements the 'No BC' boundary condition discussed by Griffiths, Papanastiou, and others.
  • ImplicitNeumannBCThis class implements a form of the Neumann boundary condition in which the boundary term is treated 'implicitly'.
  • MDFluidEnergyBCSpecifies flow of energy through a boundary
  • MDFluidEnergyDirichletBCImposes a Dirichlet condition on temperature at inlets. Is not applied at outlets
  • MDFluidMassBCSpecifies flow of mass through a boundary given a velocity function or postprocessor
  • MDFluidMomentumBCSpecifies flow of momentum through a boundary
  • MDMomentumFreeSlipBCImplements free slip boundary conditions for the Navier Stokesmomentum equation.
  • MassFluxPenaltyBCAdds the exterior boundary contribution of penalized jumps in the velocity variable in one component of the momentum equations.
  • MassFreeBCImplements free advective flow boundary conditions for the mass equation.
  • MassMatrixIntegratedBCComputes a finite element mass matrix meant for use in preconditioning schemes which require one
  • MomentumFreeBCImplements free flow boundary conditions for one of the momentum equations.
  • MomentumFreeSlipBCImplements free slip boundary conditions for the Navier Stokesmomentum equation.
  • NSEnergyInviscidSpecifiedBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
  • NSEnergyInviscidSpecifiedDensityAndVelocityBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
  • NSEnergyInviscidSpecifiedNormalFlowBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
  • NSEnergyInviscidSpecifiedPressureBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
  • NSEnergyInviscidUnspecifiedBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
  • NSEnergyViscousBCThis class couples together all the variables for the compressible Navier-Stokes equations to allow them to be used in derived IntegratedBC classes.
  • NSEnergyWeakStagnationBCThe inviscid energy BC term with specified normal flow.
  • NSImposedVelocityBCImpose Velocity BC.
  • NSImposedVelocityDirectionBCThis class imposes a velocity direction component as a Dirichlet condition on the appropriate momentum equation.
  • NSInflowThermalBCThis class is used on a boundary where the incoming flow values (rho, u, v, T) are all completely specified.
  • NSMassSpecifiedNormalFlowBCThis class implements the mass equation boundary term with a specified value of rho*(u.n) imposed weakly.
  • NSMassUnspecifiedNormalFlowBCThis class implements the mass equation boundary term with the rho*(u.n) boundary integral computed implicitly.
  • NSMassWeakStagnationBCThe inviscid energy BC term with specified normal flow.
  • NSMomentumConvectiveWeakStagnationBCThe convective part (sans pressure term) of the momentum equation boundary integral evaluated at specified stagnation temperature, stagnation pressure, and flow direction values.
  • NSMomentumInviscidNoPressureImplicitFlowBCMomentum equation boundary condition used when pressure is not integrated by parts.
  • NSMomentumInviscidSpecifiedNormalFlowBCMomentum equation boundary condition in which pressure is specified (given) and the value of the convective part is allowed to vary (is computed implicitly).
  • NSMomentumInviscidSpecifiedPressureBCMomentum equation boundary condition in which pressure is specified (given) and the value of the convective part is allowed to vary (is computed implicitly).
  • NSMomentumPressureWeakStagnationBCThis class implements the pressure term of the momentum equation boundary integral for use in weak stagnation boundary conditions.
  • NSMomentumViscousBCThis class corresponds to the viscous part of the 'natural' boundary condition for the momentum equations.
  • NSPenalizedNormalFlowBCThis class penalizes the the value of u.n on the boundary so that it matches some desired value.
  • NSPressureNeumannBCThis kernel is appropriate for use with a 'zero normal flow' boundary condition in the context of the Euler equations.
  • NSStagnationPressureBCThis Dirichlet condition imposes the condition p_0 = p_0_desired.
  • NSStagnationTemperatureBCThis Dirichlet condition imposes the condition T_0 = T_0_desired.
  • NSThermalBCNS thermal BC.
  • NavierStokesLHDGOutflowBCImplements an outflow boundary condition for use with a hybridized discretization of the incompressible Navier-Stokes equations
  • NavierStokesLHDGVelocityDirichletBCWeakly imposes Dirichlet boundary conditions for the velocity for a hybridized discretization of the Navier-Stokes equations
  • NavierStokesStressIPHDGDirichletBCWeakly imposes Dirichlet boundary conditions for a hybridized discretization of a Navier-Stokes equation stress term
  • Scalar Transport App
  • BinaryRecombinationBCModels recombination of the variable with a coupled species at boundaries, resulting in loss
  • DissociationFluxBCModels creation of the variable at boundaries due to dissociation of a coupled variable, e.g. B -> A
  • Chemical Reactions App
  • ChemicalOutFlowBCChemical flux boundary condition
  • TMAP8App
  • EquilibriumBCEnforces a species equilibrium condition between an enclosure and an adjacent diffusion structure.
  • Solid Mechanics App
  • ADPenaltyInclinedNoDisplacementBCPenalty Enforcement of an inclined boundary condition
  • ADPressureApplies a pressure on a given boundary in a given direction
  • ADTorqueApply a moment as tractions distributed over a surface around a pivot point. This should operate on the displaced mesh for large deformations.
  • CoupledPressureBCApplies a pressure from a variable on a given boundary in a given direction
  • DashpotBCModel a dashpot boundary condition where the traction is proportional to the normal velocity.
  • DirectDirichletBCImposes the essential boundary condition , where is a constant, controllable value.
  • DirectFunctionDirichletBCImposes the essential boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
  • DisplacementAboutAxisImplements a boundary condition that enforces rotationaldisplacement around an axis on a boundary
  • ExplicitDirichletBCImposes the essential boundary condition , where is a constant, controllable value.
  • ExplicitFunctionDirichletBCImposes the essential boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
  • InteractionIntegralBenchmarkBCImplements a boundary condition that enforces a displacement field around a crack tip based on applied stress intensity factors.
  • PenaltyInclinedNoDisplacementBCPenalty Enforcement of an inclined boundary condition
  • PresetAccelerationPrescribe acceleration on a given boundary in a given direction
  • PresetDisplacementPrescribe the displacement on a given boundary in a given direction.
  • PresetVelocitySets the boundary displacements through time from an imposed velocity
  • PressureApplies a pressure on a given boundary in a given direction
  • StickyBCImposes the boundary condition if exceeds the bounds provided
  • TorqueApply a moment as tractions distributed over a surface around a pivot point. This should operate on the displaced mesh for large deformations.
  • CavityPressure
  • CoupledPressure
  • InclinedNoDisplacementBC
  • Pressure
  • Rdg App
  • AEFVBCA boundary condition kernel for the advection equation using a cell-centered finite volume method.
  • Thermal Hydraulics App
  • ADBoundaryFlux3EqnBCBoundary conditions for the 1-D, 1-phase, variable-area Euler equations
  • ADConvectionHeatTransfer3DBCAdds a convective heat flux boundary condition between the local component heat structure and a 3D heat structure
  • ADConvectionHeatTransferBCAdds a convective heat flux boundary condition with user-specified ambient temperature and heat transfer coefficient functions
  • ADConvectionHeatTransferRZBCConvection BC for RZ domain in XY coordinate system
  • ADExternalAppConvectionHeatTransferBCConvection BC from an external application
  • ADExternalAppConvectionHeatTransferRZBCConvection BC from an external application for RZ domain in XY coordinate system
  • ADGateValve1PhaseBCAdds boundary fluxes for flow channels connected to a 1-phase gate valve
  • ADHSHeatFluxBCApplies a specified heat flux to the side of a plate heat structure
  • ADHSHeatFluxRZBCApplies a specified heat flux to the side of a cylindrical heat structure in XY coordinates
  • ADHeatFlux3EqnBCWall heat flux boundary condition for the energy equation
  • ADJunctionOneToOne1PhaseBCAdds boundary fluxes for flow channels connected to a 1-phase one-to-one junction
  • ADRadiativeHeatFluxBCRadiative heat transfer boundary condition for a plate heat structure
  • ADRadiativeHeatFluxRZBCRadiative heat transfer boundary condition for a cylindrical heat structure
  • ADVolumeJunction1PhaseBCAdds boundary fluxes for flow channels connected to a 1-phase volume junction
  • BoundaryFlux3EqnBCBoundary conditions for the 1-D, 1-phase, variable-area Euler equations
  • BoundaryFluxGasMixBCBoundary conditions for a FlowChannelGasMix using a boundary flux object.
  • ConvectionHeatTransferBCAdds a convective heat flux boundary condition with user-specified ambient temperature and heat transfer coefficient functions
  • ConvectionHeatTransferRZBCConvection BC for RZ domain in XY coordinate system
  • ExternalAppConvectionHeatTransferBCConvection BC from an external application
  • ExternalAppConvectionHeatTransferRZBCConvection BC from an external application for RZ domain in XY coordinate system
  • HSCoupler2D2DRadiationRZBCAdds boundary heat flux terms for HSCoupler2D2DRadiation
  • HSCoupler2D3DBCAdds boundary heat flux terms for HSCoupler2D3D
  • HeatStructure2DCouplerBCApplies BC for HeatStructure2DCoupler for plate heat structure
  • HeatStructure2DCouplerRZBCApplies BC for HeatStructure2DCoupler for cylindrical heat structure in a XY coordinate system
  • HeatStructure2DRadiationCouplerRZBCApplies BC for HeatStructure2DRadiationCouplerRZ
  • RadiativeHeatFluxBCRadiative heat transfer boundary condition for a plate heat structure
  • RadiativeHeatFluxRZBCRadiative heat transfer boundary condition for a cylindrical heat structure in a XY coordinate system

BCs/CavityPressure

BCs/CoupledPressure

  • Solid Mechanics App
  • CoupledPressureActionSet up pressure boundary condition using the CoupledPressureBC object.

BCs/InclinedNoDisplacementBC

BCs/Periodic

BCs/Pressure

  • Solid Mechanics App
  • PressureActionSet up pressure boundary condition using the Pressure object.

Bounds

ChainControls

ChemicalComposition

Closures

Components

Constraints

  • Moose App
  • AddConstraintActionAdd a Constraint object to the simulation.
  • ADEqualValueEmbeddedConstraintThis is a constraint enforcing overlapping portions of two blocks to have the same variable value
  • ADPenaltyEqualValueConstraintPenaltyEqualValueConstraint enforces solution continuity between secondary and primary sides of a mortar interface using a penalty approach (no Lagrange multipliers needed)
  • ADPenaltyPeriodicSegmentalConstraintADPenaltyPeriodicSegmentalConstraint enforces macro-micro periodic conditions between secondary and primary sides of a mortar interface using a penalty approach (no Lagrange multipliers needed). Must be used alongside PenaltyEqualValueConstraint.
  • ADPeriodicSegmentalConstraintADPeriodicSegmentalConstraint enforces macro-micro periodic conditions between secondary and primary sides of a mortar interface using Lagrange multipliers.Must be used alongside EqualValueConstraint.
  • CoupledTiedValueConstraintRequires the value of two variables to be the consistent on both sides of an interface.
  • EqualGradientConstraintEqualGradientConstraint enforces continuity of a gradient component between secondary and primary sides of a mortar interface using lagrange multipliers
  • EqualValueBoundaryConstraintConstraint for enforcing that variables on each side of a boundary are equivalent.
  • EqualValueConstraintEqualValueConstraint enforces solution continuity between secondary and primary sides of a mortar interface using lagrange multipliers
  • EqualValueEmbeddedConstraintThis is a constraint enforcing overlapping portions of two blocks to have the same variable value
  • LinearNodalConstraintConstrains secondary node to move as a linear combination of primary nodes.
  • OldEqualValueConstraintOldEqualValueConstraint enforces solution continuity between secondary and primary sides of a mortar interface using lagrange multipliers
  • PenaltyEqualValueConstraintPenaltyEqualValueConstraint enforces solution continuity between secondary and primary sides of a mortar interface using a penalty approach (no Lagrange multipliers needed)
  • PenaltyPeriodicSegmentalConstraintPenaltyPeriodicSegmentalConstraint enforces macro-micro periodic conditions between secondary and primary sides of a mortar interface using a penalty approach (no Lagrange multipliers needed). Must be used alongside PenaltyEqualValueConstraint.
  • PeriodicSegmentalConstraintPeriodicSegmentalConstraint enforces macro-micro periodic conditions between secondary and primary sides of a mortar interface using Lagrange multipliers.Must be used alongside EqualValueConstraint.
  • TiedValueConstraintConstraint that forces the value of a variable to be the same on both sides of an interface.
  • Heat Transfer App
  • ADInterfaceJouleHeatingConstraintJoule heating model, for the case of a closed gap interface, to calculate the heat flux contribution created when an electric potential difference occurs across that interface.
  • GapConductanceConstraintComputes the residual and Jacobian contributions for the 'Lagrange Multiplier' implementation of the thermal contact problem. For more information, see the detailed description here: http://tinyurl.com/gmmhbe9
  • ModularGapConductanceConstraintComputes the residual and Jacobian contributions for the 'Lagrange Multiplier' implementation of the thermal contact problem. For more information, see the detailed description here: http://tinyurl.com/gmmhbe9
  • Thermal Hydraulics App
  • MassFreeConstraintConstrains the momentum at the user-specified nodes along the user-specified normals
  • Solid Mechanics App
  • NodalFrictionalConstraintFrictional nodal constraint for contact
  • NodalStickConstraintSticky nodal constraint for contact

ControlLogic

  • Thermal Hydraulics App
  • THMAddControlActionAdds Controls from the ControlLogic block.
  • CopyPostprocessorValueControlForwards the value of a postprocessor to a ControlData named with the name of the postprocessor.
  • DelayControlTime delay control
  • GetFunctionValueControlSets a ControlData named 'value' with the value of a function
  • PIDControlDeclares a control data named 'output' and uses Proportional Integral Derivative logic on the 'value' control data to set it.
  • ParsedFunctionControlControl that evaluates a parsed function
  • SetBoolValueControlControl object that reads a boolean value computed by the control logic system and sets it into a specified MOOSE object parameter(s)
  • SetComponentBoolValueControlControl to set a boolean value of a component parameter with control data boolean
  • SetComponentRealValueControlControl to set a floating point (Real) value of a component parameter with control data boolean
  • SetRealValueControlControl object that reads a Real value computed by the control logic system and sets it into a specified MOOSE object parameter(s)
  • SmootherControlComputes a moving average value of the input control with a user-specified number of points to average. The output control value is named 'name:value', where 'name' is the name of the control object.
  • THMSolvePostprocessorControlControl the solve based on a postprocessor value
  • TerminateControlTerminates the simulation when a THMControl boolean data becomes true
  • TimeFunctionComponentControlControls a parameter in a Component using a function
  • UnitTripControlTrips a boolean based on the evaluation of a parsed condition expression

Controls

  • Moose App
  • AddControlActionAdd a Control object to the simulation.
  • BoolFunctionControlSets the value of a 'bool' input parameters to the value of a provided function.
  • ConditionalFunctionEnableControlControl for enabling/disabling objects when a function value is true
  • PIDTransientControlSets the value of a 'Real' input parameter (or postprocessor) based on a Proportional Integral Derivative control of a postprocessor to match a target a target value.
  • RealFunctionControlSets the value of a 'Real' input parameters to the value of a provided function.
  • TimePeriodControl the enabled/disabled state of objects with time.
  • TimesEnableControlControl for enabling/disabling objects when a certain time is reached.
  • WebServerControlStarts a webserver for sending/receiving JSON messages to get data and control a running MOOSE calculation
  • Solid Mechanics App
  • AnalysisStepPeriodControl the enabled/disabled state of objects with user-provided analysis steps.
  • Stochastic Tools App
  • MultiAppCommandLineControlControl for modifying the command line arguments of MultiApps.
  • MultiAppSamplerControlControl for modifying the command line arguments of MultiApps.
  • SamplerReceiverControl for receiving data from a Sampler via SamplerParameterTransfer.

Convergence

Correctors

CoupledHeatTransfers

  • Thermal Hydraulics App
  • CoupledHeatTransferActionAction that creates the necessary objects, for the solid side, to couple a solid heat conduction region to a 1-D flow channel via convective heat transfer

Covariance

DGKernels

Dampers

Debug

Debug/MaterialDerivativeTest

DeprecatedBlock

DiracKernels

Distributions

  • Moose App
  • AddDistributionActionAdd a Distribution object to the simulation.
  • Stochastic Tools App
  • BetaBeta distribution
  • FDistributionF-distribution or Fisher-Snedecor distribution
  • GammaGamma distribution
  • JohnsonSBJohnson Special Bounded (SB) distribution.
  • JohnsonSBDistributionJohnson Special Bounded (SB) distribution.
  • KernelDensity1DKernelDensity1D distribution
  • LogisticLogistic distribution.
  • LogisticDistributionLogistic distribution.
  • LognormalLognormal distribution
  • NormalNormal distribution
  • NormalDistributionNormal distribution
  • StudentTStudent t-distribution
  • TruncatedNormalTruncated normal distribution
  • TruncatedNormalDistributionTruncated normal distribution
  • UniformContinuous uniform distribution.
  • UniformDistributionContinuous uniform distribution.
  • WeibullThree-parameter Weibull distribution.
  • WeibullDistributionThree-parameter Weibull distribution.

DomainIntegral

  • Solid Mechanics App
  • DomainIntegralActionCreates the MOOSE objects needed to compute fraction domain integrals

Executioner

Executioner/Adaptivity

  • Moose App
  • AdaptivityActionAdd libMesh based adaptation schemes via the Executioner/Adaptivity input syntax.

Executioner/Predictor

  • Moose App
  • SetupPredictorActionAdd a Predictor object to the simulation.
  • AdamsPredictorImplements an explicit Adams predictor based on two old solution vectors.
  • SimplePredictorAlgorithm that will predict the next solution based on previous solutions.

Executioner/Quadrature

Executioner/TimeIntegrator

  • Moose App
  • SetupTimeIntegratorActionAdd a TimeIntegrator object to the simulation.
  • AStableDirk4Fourth-order diagonally implicit Runge Kutta method (Dirk) with three stages plus an update.
  • ActuallyExplicitEulerImplementation of Explicit/Forward Euler without invoking any of the nonlinear solver
  • BDF2Second order backward differentiation formula time integration scheme.
  • CentralDifferenceImplementation of explicit, Central Difference integration without invoking any of the nonlinear solver
  • CrankNicolsonCrank-Nicolson time integrator.
  • ExplicitEulerTime integration using the explicit Euler method.
  • ExplicitMidpointTime integration using the explicit midpoint method.
  • ExplicitSSPRungeKuttaExplicit strong stability preserving Runge-Kutta methods
  • ExplicitTVDRK2Explicit TVD (total-variation-diminishing) second-order Runge-Kutta time integration method.
  • HeunHeun's (aka improved Euler) time integration method.
  • ImplicitEulerTime integration using the implicit Euler method.
  • ImplicitMidpointSecond-order Runge-Kutta (implicit midpoint) time integration.
  • LStableDirk2Second order diagonally implicit Runge Kutta method (Dirk) with two stages.
  • LStableDirk3Third order diagonally implicit Runge Kutta method (Dirk) with three stages.
  • LStableDirk4Fourth-order diagonally implicit Runge Kutta method (Dirk) with five stages.
  • NewmarkBetaComputes the first and second time derivative of variable using Newmark-Beta method.
  • RalstonRalston's time integration method.
  • Solid Mechanics App
  • DirectCentralDifferenceImplementation of explicit time integration without invoking any of the nonlinear solver.
  • ExplicitMixedOrderImplementation of explicit time integration without invoking any of the nonlinear solver.

Executioner/TimeIntegrators

  • Moose App
  • SetupTimeIntegratorActionAdd a TimeIntegrator object to the simulation.
  • AStableDirk4Fourth-order diagonally implicit Runge Kutta method (Dirk) with three stages plus an update.
  • ActuallyExplicitEulerImplementation of Explicit/Forward Euler without invoking any of the nonlinear solver
  • BDF2Second order backward differentiation formula time integration scheme.
  • CentralDifferenceImplementation of explicit, Central Difference integration without invoking any of the nonlinear solver
  • CrankNicolsonCrank-Nicolson time integrator.
  • ExplicitEulerTime integration using the explicit Euler method.
  • ExplicitMidpointTime integration using the explicit midpoint method.
  • ExplicitSSPRungeKuttaExplicit strong stability preserving Runge-Kutta methods
  • ExplicitTVDRK2Explicit TVD (total-variation-diminishing) second-order Runge-Kutta time integration method.
  • HeunHeun's (aka improved Euler) time integration method.
  • ImplicitEulerTime integration using the implicit Euler method.
  • ImplicitMidpointSecond-order Runge-Kutta (implicit midpoint) time integration.
  • LStableDirk2Second order diagonally implicit Runge Kutta method (Dirk) with two stages.
  • LStableDirk3Third order diagonally implicit Runge Kutta method (Dirk) with three stages.
  • LStableDirk4Fourth-order diagonally implicit Runge Kutta method (Dirk) with five stages.
  • NewmarkBetaComputes the first and second time derivative of variable using Newmark-Beta method.
  • RalstonRalston's time integration method.
  • Solid Mechanics App
  • DirectCentralDifferenceImplementation of explicit time integration without invoking any of the nonlinear solver.
  • ExplicitMixedOrderImplementation of explicit time integration without invoking any of the nonlinear solver.

Executioner/TimeStepper

Executioner/TimeSteppers

Executors

FVBCs

FVICs

  • Moose App
  • AddFVInitialConditionActionAdd an FVInitialCondition object to the simulation.
  • FVConstantICSets a constant field value.
  • FVFunctionICAn initial condition that uses a normal function of x, y, z to produce values (and optionally gradients) for a field variable.

FVInterfaceKernels

FVKernels

  • Moose App
  • AddFVKernelActionAdd a FVKernel object to the simulation.
  • FVAdvectionResidual contribution from advection operator for finite volume method.
  • FVAnisotropicDiffusionComputes residual for anisotropic diffusion operator for finite volume method.
  • FVBodyForceDemonstrates the multiple ways that scalar values can be introduced into finite volume kernels, e.g. (controllable) constants, functions, and postprocessors.
  • FVBoundedValueConstraintThis class is used to enforce a min or max value for a finite volume variable
  • FVCoupledForceImplements a source term proportional to the value of a coupled variable.
  • FVDiffusionComputes residual for diffusion operator for finite volume method.
  • FVDivergenceComputes the residual coming from the divergence of a vector fieldthat can be represented as a functor.
  • FVFunctorTimeKernelResidual contribution from time derivative of an AD functor (default is the variable this kernel is acting upon if the 'functor' parameter is not supplied) for the finite volume method.
  • FVIntegralValueConstraintThis class is used to enforce integral of phi = volume * phi_0 with a Lagrange multiplier approach.
  • FVMassMatrixComputes a 'mass matrix', which will just be a diagonal matrix for the finite volume method, meant for use in preconditioning schemes which require one
  • FVMatAdvectionComputes the residual of advective term using finite volume method.
  • FVOrthogonalDiffusionImposes an orthogonal diffusion term.
  • FVPointValueConstraintThis class is used to enforce integral of phi = volume * phi_0 with a Lagrange multiplier approach.
  • FVReactionSimple consuming reaction term
  • FVScalarLagrangeMultiplierThis class is used to enforce integral of phi = volume * phi_0 with a Lagrange multiplier approach.
  • FVTimeKernelResidual contribution from time derivative of a variable for the finite volume method.
  • Heat Transfer App
  • FVFunctorHeatConductionTimeDerivativeAD Time derivative term of the heat equation for quasi-constant specific heat and the density .
  • FVHeatConductionTimeDerivativeAD Time derivative term of the heat equation for quasi-constant specific heat and the density .
  • FVThermalRadiationSourceSinkImplements the source and the sink terms for radiation heat transfer.
  • Navier Stokes App
  • CNSFVFluidEnergyHLLCImplements the fluid energy flux portion of the free-flow HLLC discretization.
  • CNSFVMassHLLCImplements the mass flux portion of the free-flow HLLC discretization.
  • CNSFVMomentumHLLCImplements the momentum flux portion of the free-flow HLLC discretization.
  • FVMatPropTimeKernelReturns a material property which should correspond to a time derivative.
  • FVPorosityTimeDerivativeA time derivative multiplied by a porosity material property
  • INSFVBodyForceBody force that contributes to the Rhie-Chow interpolation
  • INSFVEnergyAdvectionAdvects energy, e.g. rho*cp*T. A user may still override what quantity is advected, but the default is rho*cp*T
  • INSFVEnergyTimeDerivativeAdds the time derivative term to the incompressible Navier-Stokes energy equation.
  • INSFVMassAdvectionObject for advecting mass, e.g. rho
  • INSFVMeshAdvectionImplements a source/sink term for this object's variable/advected-quantity proportional to the divergence of the mesh velocity
  • INSFVMixingLengthReynoldsStressComputes the force due to the Reynolds stress term in the incompressible Reynolds-averaged Navier-Stokes equations.
  • INSFVMixingLengthScalarDiffusionComputes the turbulent diffusive flux that appears in Reynolds-averaged fluid conservation equations.
  • INSFVMomentumAdvectionObject for advecting momentum, e.g. rho*u
  • INSFVMomentumBoussinesqComputes a body force for natural convection buoyancy.
  • INSFVMomentumDiffusionImplements the Laplace form of the viscous stress in the Navier-Stokes equation.
  • INSFVMomentumGravityComputes a body force due to gravity in Rhie-Chow based simulations.
  • INSFVMomentumMeshAdvectionImplements a momentum source/sink term proportional to the divergence of the mesh velocity
  • INSFVMomentumPressureIntroduces the coupled pressure term into the Navier-Stokes momentum equation.
  • INSFVMomentumPressureFluxMomentum pressure term eps grad_P, as a flux kernel using the divergence theoreom, in the incompressible Navier-Stokes momentum equation.
  • INSFVMomentumTimeDerivativeAdds the time derivative term to the incompressible Navier-Stokes momentum equation.
  • INSFVPumpEffective body force for a pump that contributes to the Rhie-Chow interpolation
  • INSFVScalarFieldAdvectionAdvects an arbitrary quantity, the associated nonlinear 'variable'.
  • INSFVTKEDSourceSinkElemental kernel to compute the production and destruction terms of turbulent kinetic energy dissipation (TKED).
  • INSFVTKESourceSinkElemental kernel to compute the production and destruction terms of turbulent kinetic energy (TKE).
  • INSFVTurbulentAdvectionAdvects an arbitrary turbulent quantity, the associated nonlinear 'variable'.
  • INSFVTurbulentDiffusionComputes residual for the turbulent scaled diffusion operator for finite volume method.
  • NSFVEnergyAmbientConvectionImplements a solid-fluid ambient convection volumetric term proportional to the difference between the fluid and ambient temperatures : .
  • NSFVMixturePhaseInterfaceImplements a phase-to-phase volumetric exchange.
  • NSFVPhaseChangeSourceComputes the energy source due to solidification/melting.
  • PCNSFVDensityTimeDerivativeA time derivative kernel for which the form is eps * ddt(rho*var).
  • PCNSFVFluidEnergyHLLCImplements the fluid energy flux portion of the porous HLLC discretization.
  • PCNSFVKTComputes the residual of advective term using finite volume method.
  • PCNSFVKTDCComputes the residual of advective term using finite volume method using a deferred correction approach.
  • PCNSFVMassHLLCImplements the mass flux portion of the porous HLLC discretization.
  • PCNSFVMomentumFrictionComputes a friction force term on fluid in porous media in the Navier Stokes i-th momentum equation.
  • PCNSFVMomentumHLLCImplements the momentum flux portion of the porous HLLC discretization.
  • PINSFVEnergyAdvectionAdvects energy, e.g. rho*cp*T. A user may still override what quantity is advected, but the default is rho*cp*T
  • PINSFVEnergyAmbientConvectionImplements the solid-fluid ambient convection term in the porous media Navier Stokes energy equation.
  • PINSFVEnergyAnisotropicDiffusionAnisotropic diffusion term in the porous media incompressible Navier-Stokes equations : -div(kappa grad(T))
  • PINSFVEnergyDiffusionDiffusion term in the porous media incompressible Navier-Stokes fluid energy equations :
  • PINSFVEnergyTimeDerivativeAdds the time derivative term to the Navier-Stokes energy equation: for fluids: d(eps * rho * cp * T)/dt, for solids: (1 - eps) * d(rho * cp * T)/dtMaterial property derivatives are ignored if not provided.
  • PINSFVMassAdvectionObject for advecting mass in porous media mass equation
  • PINSFVMomentumAdvectionObject for advecting superficial momentum, e.g. rho*u_d, in the porous media momentum equation
  • PINSFVMomentumBoussinesqComputes a body force for natural convection buoyancy in porous media: eps alpha (T-T_0)
  • PINSFVMomentumDiffusionViscous diffusion term, div(mu eps grad(u_d / eps)), in the porous media incompressible Navier-Stokes momentum equation.
  • PINSFVMomentumFrictionComputes a friction force term on fluid in porous media in the Navier Stokes i-th momentum equation in Rhie-Chow (incompressible) contexts.
  • PINSFVMomentumFrictionCorrectionComputes a correction term to avoid oscillations from average pressure interpolation in regions of high changes in friction coefficients.
  • PINSFVMomentumGravityComputes a body force, due to gravity on fluid in porous media in Rhie-Chow (incompressible) contexts.
  • PINSFVMomentumPressureIntroduces the coupled pressure term into the Navier-Stokes porous media momentum equation.
  • PINSFVMomentumPressureFluxMomentum pressure term eps grad_P, as a flux kernel using the divergence theoreom, in the porous media incompressible Navier-Stokes momentum equation. This kernel is also executed on boundaries.
  • PINSFVMomentumPressurePorosityGradientIntroduces the coupled pressure times porosity gradient term into the Navier-Stokes porous media momentum equation.
  • PINSFVMomentumTimeDerivativeAdds the time derivative term: d(rho u_d) / dt to the porous media incompressible Navier-Stokes momentum equation.
  • PINSFVScalarFieldAdvectionAdvects an arbitrary quantity, the associated nonlinear 'variable' in porous medium.
  • PNSFVMomentumPressureFluxRZAdds the porous term into the radial component of the Navier-Stokes momentum equation for the problems in the RZ coordinate system when integrating by parts.
  • PNSFVMomentumPressureRZAdds the porous term into the radial component of the Navier-Stokes momentum equation for the problems in the RZ coordinate system when integrating by parts.
  • PNSFVPGradEpsilonIntroduces a -p * grad_eps term.
  • PWCNSFVMassAdvectionObject for advecting mass in porous media mass equation
  • PWCNSFVMassTimeDerivativeAdds the time derivative term to the porous weakly-compressible Navier-Stokes continuity equation.
  • WCNSFV2PInterfaceAreaSourceSinkSource and sink of interfacial area for two-phase flow mixture model.
  • WCNSFV2PMomentumAdvectionSlipComputes the slip velocity advection kernel for two-phase mixture model.
  • WCNSFV2PMomentumDriftFluxImplements the drift momentum flux source.
  • WCNSFVEnergyTimeDerivativeAdds the time derivative term to the incompressible Navier-Stokes momentum equation.
  • WCNSFVMassAdvectionObject for advecting mass, e.g. rho
  • WCNSFVMassTimeDerivativeAdds the time derivative term to the weakly-compressible Navier-Stokes continuity equation.
  • WCNSFVMixingLengthEnergyDiffusionComputes the turbulent diffusive flux that appears in Reynolds-averaged fluid energy conservation equations.
  • WCNSFVMomentumTimeDerivativeAdds the time derivative term to the incompressible Navier-Stokes momentum equation.

FluidProperties

FluidPropertiesInterrogator

Functions

FunctorMaterials

GlobalParams

  • Moose App
  • GlobalParamsActionAction used to aid in the application of parameters defined in the GlobalParams input block.

GrayDiffuseRadiation

  • Heat Transfer App
  • RadiationTransferActionThis action sets up the net radiation calculation between specified sidesets.

HDGKernels

  • Moose App
  • AddHDGKernelActionAdd a hybridized kernel object to the simulation.
  • AdvectionIPHDGKernelAdds element and interior face integrals for a hybridized interior penalty discontinuous Galerkin discretization of an advection term.
  • DiffusionIPHDGKernelAdds the element and interior face weak forms for a hybridized interior penalty discontinuous Galerkin discretization of a diffusion term.
  • DiffusionLHDGKernelAdds the element and interior face weak forms for a hybridized local discontinuous Galerkin discretization of a diffusion term.
  • Navier Stokes App
  • NavierStokesLHDGKernelImplements the steady incompressible Navier-Stokes equations for a hybridized discretization
  • NavierStokesStressIPHDGKernelAdds viscous and pressure stress terms for element interiors and interior faces

HeatStructureMaterials

ICs

ICs/PolycrystalICs

ICs/PolycrystalICs/BicrystalBoundingBoxIC

  • Phase Field App
  • BicrystalBoundingBoxICActionConstructs a bicrystal, where one grain is on the inside of the box and the other grain is the outside of the box

ICs/PolycrystalICs/BicrystalCircleGrainIC

ICs/PolycrystalICs/PolycrystalColoringIC

ICs/PolycrystalICs/PolycrystalRandomIC

ICs/PolycrystalICs/PolycrystalVoronoiVoidIC

ICs/PolycrystalICs/Tricrystal2CircleGrainsIC

InterfaceKernels

  • Moose App
  • AddInterfaceKernelActionAdd an InterfaceKernel object to the simulation.
  • ADMatInterfaceReactionImplements a reaction to establish ReactionRate=k_f*u-k_b*v at interface.
  • ADPenaltyInterfaceDiffusionA penalty-based interface condition that forcesthe continuity of variables and the flux equivalence across an interface.
  • ADVectorPenaltyInterfaceDiffusionA penalty-based interface condition that forcesthe continuity of variables and the flux equivalence across an interface.
  • InterfaceDiffusionThe kernel is utilized to establish flux equivalence on an interface for variables.
  • InterfaceReactionImplements a reaction to establish ReactionRate=k_f*u-k_b*v at interface.
  • PenaltyInterfaceDiffusionA penalty-based interface condition that forcesthe continuity of variables and the flux equivalence across an interface.
  • VectorPenaltyInterfaceDiffusionA penalty-based interface condition that forcesthe continuity of variables and the flux equivalence across an interface.
  • Heat Transfer App
  • ConjugateHeatTransferThis InterfaceKernel models conjugate heat transfer. Fluid side must be primary side and solid side must be secondary side. T_fluid is provided in case that variable ( fluid energy variable) is not temperature but e.g. internal energy.
  • SideSetHeatTransferKernelModeling conduction, convection, and radiation across internal side set.
  • ThinLayerHeatTransferModel heat transfer across a thin domain with an interface.
  • TMAP8App
  • ADInterfaceSorptionComputes a sorption law at interface between solid and gas in isothermal conditions.
  • ADInterfaceSorptionSievertComputes a sorption law at interface between solid and gas in isothermal conditions.
  • ADMatInterfaceReactionYHxPCTImplements a reaction to establish ReactionRate=k_f*u-k_b*v to compute the surface H concentration in YHx from the temperature and partial pressure based on the PCT curves with u the concentration in the solid and v (neighbor) the concentration in the gas in mol/m^3.
  • InterfaceSorptionComputes a sorption law at interface between solid and gas in isothermal conditions.
  • InterfaceSorptionSievertComputes a sorption law at interface between solid and gas in isothermal conditions.
  • Solid Mechanics App
  • ADCZMInterfaceKernelSmallStrainCZM Interface kernel to use when using the small strain kinematic formulation.
  • ADCZMInterfaceKernelTotalLagrangianCZM Interface kernel to use when using the total Lagrangian formulation.
  • CZMInterfaceKernelSmallStrainCZM Interface kernel to use when using the Small Strain kinematic formulation.
  • CZMInterfaceKernelTotalLagrangianCalculate residual contribution for balancing the traction across an interface (used in the cohesive zone method).
  • Phase Field App
  • EqualGradientLagrangeInterfaceEnforce componentwise gradient continuity between two different variables across a subdomain boundary using a Lagrange multiplier
  • EqualGradientLagrangeMultiplierLagrange multiplier kernel for EqualGradientLagrangeInterface.
  • InterfaceDiffusionBoundaryTermAdd weak form surface terms of the Diffusion equation for two different variables across a subdomain boundary
  • InterfaceDiffusionFluxMatchEnforce flux continuity between two different variables across a subdomain boundary

Kernels

  • Moose App
  • AddKernelActionAdd a Kernel object to the simulation.
  • ADBodyForceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
  • ADCoefReactionImplements the residual term (p*u, test)
  • ADConservativeAdvectionConservative form of which in its weak form is given by: .
  • ADCoupledForceImplements a source term proportional to the value of a coupled variable. Weak form: .
  • ADCoupledTimeDerivativeTime derivative Kernel that acts on a coupled variable. Weak form: .
  • ADDiffusionSame as Diffusion in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation
  • ADMatBodyForceKernel that defines a body force modified by a material property
  • ADMatCoupledForceKernel representing the contribution of the PDE term , where is a material property coefficient, is a coupled scalar field variable, and Jacobian derivatives are calculated using automatic differentiation.
  • ADMatDiffusionDiffusion equation kernel that takes an isotropic diffusivity from a material property
  • ADMatReactionKernel representing the contribution of the PDE term , where is a reaction rate material property, is a scalar variable (nonlinear or coupled), and whose Jacobian contribution is calculated using automatic differentiation.
  • ADMaterialPropertyValueResidual term (u - prop) to set variable u equal to a given material property prop
  • ADReactionImplements a simple consuming reaction term with weak form .
  • ADScalarLMKernelThis class is used to enforce integral of phi = V_0 with a Lagrange multiplier approach.
  • ADTimeDerivativeThe time derivative operator with the weak form of .
  • ADVectorDiffusionThe Laplacian operator (), with the weak form of . The Jacobian is computed using automatic differentiation
  • ADVectorTimeDerivativeThe time derivative operator with the weak form of .
  • AnisotropicDiffusionAnisotropic diffusion kernel with weak form given by .
  • ArrayBodyForceApplies body forces specified with functions to an array variable.
  • ArrayCoupledTimeDerivativeTime derivative Array Kernel that acts on a coupled variable. Weak form: . The coupled variable and the variable must have the same dimensionality
  • ArrayDiffusionThe array Laplacian operator (), with the weak form of .
  • ArrayReactionThe array reaction operator with the weak form of .
  • ArrayTimeDerivativeArray time derivative operator with the weak form of .
  • BodyForceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
  • CoefReactionImplements the residual term (p*u, test)
  • CoefTimeDerivativeThe time derivative operator with the weak form of .
  • ConservativeAdvectionConservative form of which in its weak form is given by: .
  • CoupledForceImplements a source term proportional to the value of a coupled variable. Weak form: .
  • CoupledTimeDerivativeTime derivative Kernel that acts on a coupled variable. Weak form: .
  • DiffusionThe Laplacian operator (), with the weak form of .
  • DivFieldThe divergence operator optionally scaled by a constant scalar coefficient. Weak form: .
  • FunctionDiffusionDiffusion with a function coefficient.
  • FunctorKernelAdds a term from a functor.
  • GradFieldThe gradient operator optionally scaled by a constant scalar coefficient. Weak form: .
  • MassEigenKernelAn eigenkernel with weak form where is the eigenvalue.
  • MassLumpedTimeDerivativeLumped formulation of the time derivative . Its corresponding weak form is where denotes the time derivative of the solution coefficient associated with node .
  • MassMatrixComputes a finite element mass matrix
  • MatBodyForceKernel that defines a body force modified by a material property
  • MatCoupledForceImplements a forcing term RHS of the form PDE = RHS, where RHS = Sum_j c_j * m_j * v_j. c_j, m_j, and v_j are provided as real coefficients, material properties, and coupled variables, respectively.
  • MatDiffusionDiffusion equation Kernel that takes an isotropic Diffusivity from a material property
  • MatReactionKernel to add -L*v, where L=reaction rate, v=variable
  • MaterialDerivativeRankFourTestKernelClass used for testing derivatives of a rank four tensor material property.
  • MaterialDerivativeRankTwoTestKernelClass used for testing derivatives of a rank two tensor material property.
  • MaterialDerivativeTestKernelClass used for testing derivatives of a scalar material property.
  • MaterialPropertyValueResidual term (u - prop) to set variable u equal to a given material property prop
  • NullKernelKernel that sets a zero residual.
  • ReactionImplements a simple consuming reaction term with weak form .
  • ScalarLMKernelThis class is used to enforce integral of phi = V_0 with a Lagrange multiplier approach.
  • ScalarLagrangeMultiplierThis class is used to enforce integral of phi = V_0 with a Lagrange multiplier approach.
  • TimeDerivativeThe time derivative operator with the weak form of .
  • UserForcingFunctionDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
  • VectorBodyForceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
  • VectorCoupledTimeDerivativeTime derivative Kernel that acts on a coupled vector variable. Weak form: .
  • VectorDiffusionThe Laplacian operator (), with the weak form of .
  • VectorFunctionReactionKernel representing the contribution of the PDE term , where is a function coefficient and is a vector variable.
  • VectorTimeDerivativeThe time derivative operator with the weak form of .
  • Heat Transfer App
  • ADHeatConductionSame as Diffusion in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation
  • ADHeatConductionTimeDerivativeAD Time derivative term of the heat equation for quasi-constant specific heat and the density .
  • ADJouleHeatingSourceCalculates the heat source term corresponding to electrostatic or electromagnetic Joule heating, with Jacobian contributions calculated using the automatic differentiation system.
  • ADMatHeatSourceForce term in thermal transport to represent a heat source
  • AnisoHeatConductionAnisotropic diffusive heat conduction term of the thermal energy conservation equation
  • AnisoHomogenizedHeatConductionKernel for asymptotic expansion homogenization for thermal conductivity when anisotropic thermal conductivities are used
  • HeatCapacityConductionTimeDerivativeTime derivative term of the heat equation with the heat capacity as an argument.
  • HeatConductionDiffusive heat conduction term of the thermal energy conservation equation
  • HeatConductionTimeDerivativeTime derivative term of the thermal energy conservation equation.
  • HeatSourceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
  • HomogenizedHeatConductionKernel for asymptotic expansion homogenization for thermal conductivity
  • JouleHeatingSourceCalculates the heat source term corresponding to electrostatic Joule heating.
  • SpecificHeatConductionTimeDerivativeTime derivative term of the heat equation with the specific heat and the density as arguments.
  • TrussHeatConductionComputes conduction term in heat equation for truss elements, taking cross-sectional area into account
  • TrussHeatConductionTimeDerivativeComputes time derivative term in heat equation for truss elements, taking cross-sectional area into account
  • Navier Stokes App
  • DistributedForceImplements a force term in the Navier Stokes momentum equation.
  • DistributedPowerImplements the power term of a specified force in the Navier Stokes energy equation.
  • GradDivAdds grad-div stabilization for scalar field velocity component Navier-Stokes implementations.
  • INSADBoussinesqBodyForceComputes a body force for natural convection buoyancy.
  • INSADEnergyAdvectionThis class computes the residual and Jacobian contributions for temperature advection for a divergence free velocity field.
  • INSADEnergyAmbientConvectionComputes a heat source/sink due to convection from ambient surroundings.
  • INSADEnergyMeshAdvectionThis class computes the residual and Jacobian contributions for temperature advection from mesh velocity in an ALE simulation.
  • INSADEnergySUPGAdds the supg stabilization to the INS temperature/energy equation
  • INSADEnergySourceComputes an arbitrary volumetric heat source (or sink).
  • INSADGravityForceComputes a body force due to gravity.
  • INSADHeatConductionTimeDerivativeAD Time derivative term of the heat equation for quasi-constant specific heat and the density .
  • INSADMassThis class computes the mass equation residual and Jacobian contributions (the latter using automatic differentiation) for the incompressible Navier-Stokes equations.
  • INSADMassPSPGThis class adds PSPG stabilization to the mass equation, enabling use of equal order shape functions for pressure and velocity variables
  • INSADMomentumAdvectionAdds the advective term to the INS momentum equation
  • INSADMomentumCoupledForceComputes a body force due to a coupled vector variable or a vector function
  • INSADMomentumGradDivAdds grad-div stabilization to the INS momentum equation
  • INSADMomentumMeshAdvectionCorrects the convective derivative for situations in which the fluid mesh is dynamic.
  • INSADMomentumPressureAdds the pressure term to the INS momentum equation
  • INSADMomentumSUPGAdds the supg stabilization to the INS momentum equation
  • INSADMomentumTimeDerivativeThis class computes the time derivative for the incompressible Navier-Stokes momentum equation.
  • INSADMomentumViscousAdds the viscous term to the INS momentum equation
  • INSADSmagorinskyEddyViscosityComputes eddy viscosity term using Smagorinky's LES model
  • INSChorinCorrectorThis class computes the 'Chorin' Corrector equation in fully-discrete (both time and space) form.
  • INSChorinPredictorThis class computes the 'Chorin' Predictor equation in fully-discrete (both time and space) form.
  • INSChorinPressurePoissonThis class computes the pressure Poisson solve which is part of the 'split' scheme used for solving the incompressible Navier-Stokes equations.
  • INSCompressibilityPenaltyThe penalty term may be used when Dirichlet boundary condition is applied to the entire boundary.
  • INSFEFluidEnergyKernelAdds advection, diffusion, and heat source terms to energy equation, potentially with stabilization
  • INSFEFluidMassKernelAdds advective term of mass conservation equation along with pressure-stabilized Petrov-Galerkin terms
  • INSFEFluidMomentumKernelAdds advection, viscous, pressure, friction, and gravity terms to the Navier-Stokes momentum equation, potentially with stabilization
  • INSMassThis class computes the mass equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation.
  • INSMassRZThis class computes the mass equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation in RZ coordinates.
  • INSMomentumLaplaceFormThis class computes momentum equation residual and Jacobian viscous contributions for the 'Laplacian' form of the governing equations.
  • INSMomentumLaplaceFormRZThis class computes additional momentum equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation in RZ (axisymmetric cylindrical) coordinates, using the 'Laplace' form of the governing equations.
  • INSMomentumTimeDerivativeThis class computes the time derivative for the incompressible Navier-Stokes momentum equation.
  • INSMomentumTractionFormThis class computes momentum equation residual and Jacobian viscous contributions for the 'traction' form of the governing equations.
  • INSMomentumTractionFormRZThis class computes additional momentum equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation in RZ (axisymmetric cylindrical) coordinates.
  • INSPressurePoissonThis class computes the pressure Poisson solve which is part of the 'split' scheme used for solving the incompressible Navier-Stokes equations.
  • INSProjectionThis class computes the 'projection' part of the 'split' method for solving incompressible Navier-Stokes.
  • INSSplitMomentumThis class computes the 'split' momentum equation residual.
  • INSTemperatureThis class computes the residual and Jacobian contributions for the incompressible Navier-Stokes temperature (energy) equation.
  • INSTemperatureTimeDerivativeThis class computes the time derivative for the incompressible Navier-Stokes momentum equation.
  • MDFluidEnergyKernelAdds advection, diffusion, and heat source terms to energy equation, potentially with stabilization
  • MDFluidMassKernelAdds advective term of mass conservation equation along with pressure-stabilized Petrov-Galerkin terms
  • MDFluidMomentumKernelAdds advection, viscous, pressure, friction, and gravity terms to the Navier-Stokes momentum equation, potentially with stabilization
  • MassConvectiveFluxImplements the advection term for the Navier Stokes mass equation.
  • MomentumConvectiveFluxImplements the advective term of the Navier Stokes momentum equation.
  • NSEnergyInviscidFluxThis class computes the inviscid part of the energy flux.
  • NSEnergyThermalFluxThis class is responsible for computing residuals and Jacobian terms for the k * grad(T) * grad(phi) term in the Navier-Stokes energy equation.
  • NSEnergyViscousFluxViscous flux terms in energy equation.
  • NSGravityForceThis class computes the gravity force contribution.
  • NSGravityPowerThis class computes the momentum contributed by gravity.
  • NSMassInviscidFluxThis class computes the inviscid flux in the mass equation.
  • NSMomentumInviscidFluxThe inviscid flux (convective + pressure terms) for the momentum conservation equations.
  • NSMomentumInviscidFluxWithGradPThis class computes the inviscid flux with pressure gradient in the momentum equation.
  • NSMomentumViscousFluxDerived instance of the NSViscousFluxBase class for the momentum equations.
  • NSSUPGEnergyCompute residual and Jacobian terms form the SUPG terms in the energy equation.
  • NSSUPGMassCompute residual and Jacobian terms form the SUPG terms in the mass equation.
  • NSSUPGMomentumCompute residual and Jacobian terms form the SUPG terms in the momentum equation.
  • NSTemperatureL2This class was originally used to solve for the temperature using an L2-projection.
  • PINSFEFluidPressureTimeDerivativeAdds the transient term of the porous-media mass conservation equation
  • PINSFEFluidTemperatureTimeDerivativeAdds the transient term of the porous media energy conservation equation
  • PINSFEFluidVelocityTimeDerivativeAdd the transient term for one component of the porous media momentum conservation equation
  • PMFluidPressureTimeDerivativeAdds the transient term of the porous-media mass conservation equation
  • PMFluidTemperatureTimeDerivativeAdds the transient term of the porous media energy conservation equation
  • PMFluidVelocityTimeDerivativeAdd the transient term for one component of the porous media momentum conservation equation
  • PressureGradientImplements the pressure gradient term for one of the Navier Stokes momentum equations.
  • TotalEnergyConvectiveFluxImplements the advection term for the Navier Stokes energy equation.
  • VectorMassMatrixComputes a finite element mass matrix meant for use in preconditioning schemes which require one
  • Scalar Transport App
  • BodyForceLMImposes a body force onto a Lagrange multiplier constrained primal equation
  • CoupledForceLMAdds a coupled force term to a Lagrange multiplier constrained primal equation
  • LMDiffusionAdds a diffusion term to a Lagrange multiplier constrained primal equation
  • TimeDerivativeLMAdds a time derivative term to a Lagrange multiplier constrained primal equation
  • Chemical Reactions App
  • CoupledBEEquilibriumSubDerivative of equilibrium species concentration wrt time
  • CoupledBEKineticDerivative of kinetic species concentration wrt time
  • CoupledConvectionReactionSubConvection of equilibrium species
  • CoupledDiffusionReactionSubDiffusion of equilibrium species
  • DarcyFluxPressureDarcy flux: - cond * (Grad P - rho * g) where cond is the hydraulic conductivity, P is fluid pressure, rho is fluid density and g is gravity
  • DesorptionFromMatrixMass flow rate from the matrix to the porespace. Add this to TimeDerivative kernel to get complete DE for the fluid adsorbed in the matrix
  • DesorptionToPorespaceMass flow rate to the porespace from the matrix. Add this to the other kernels for the porepressure variable to form the complete DE
  • PrimaryConvectionConvection of primary species
  • PrimaryDiffusionDiffusion of primary species
  • PrimaryTimeDerivativeDerivative of primary species concentration wrt time
  • TMAP8App
  • ADMatCoupledDefectAnnihilationKernel to add K*v*(u0-u), where K=annihilation rate, u=variable, u0=equilibrium, v=coupled variable
  • ADMatReactionFlexibleKernel to add -coeff*K*vs, where coeff=coefficient, K=reaction rate, vs=variables product
  • ScaledCoupledTimeDerivativeTime derivative Kernel that acts on a coupled variable. Weak form: .
  • Solid Mechanics App
  • ADDistributedLoadShellApplies a distributed load (specified in units of force per area) on the shell plane in a given direction (e.g. self_weight, wind load) or normal to the shell plan (e.g. pressure loads)
  • ADDynamicStressDivergenceTensorsResidual due to stress related Rayleigh damping and HHT time integration terms
  • ADGravityApply gravity. Value is in units of acceleration.
  • ADInertialForceCalculates the residual for the inertial force () and the contribution of mass dependent Rayleigh damping and HHT time integration scheme ($\eta \cdot M \cdot ((1+\alpha)velq2-\alpha \cdot vel-old) $)
  • ADInertialForceShellCalculates the residual for the inertial force/moment and the contribution of mass dependent Rayleigh damping and HHT time integration scheme.
  • ADStressDivergenceRSphericalTensorsCalculate stress divergence for a spherically symmetric 1D problem in polar coordinates.
  • ADStressDivergenceRZTensorsCalculate stress divergence for an axisymmetric problem in cylindrical coordinates.
  • ADStressDivergenceShellQuasi-static stress divergence kernel for Shell element
  • ADStressDivergenceTensorsStress divergence kernel with automatic differentiation for the Cartesian coordinate system
  • ADSymmetricStressDivergenceTensorsStress divergence kernel with automatic differentiation for the Cartesian coordinate system
  • ADWeakPlaneStressPlane stress kernel to provide out-of-plane strain contribution.
  • AsymptoticExpansionHomogenizationKernelKernel for asymptotic expansion homogenization for elasticity
  • CosseratStressDivergenceTensorsStress divergence tensor with the additional Jacobian terms for the Cosserat rotation variables.
  • DynamicStressDivergenceTensorsResidual due to stress related Rayleigh damping and HHT time integration terms
  • GeneralizedPlaneStrainOffDiagGeneralized Plane Strain kernel to provide contribution of the out-of-plane strain to other kernels
  • GravityApply gravity. Value is in units of acceleration.
  • HomogenizedTotalLagrangianStressDivergenceTotal Lagrangian stress equilibrium kernel with homogenization constraint Jacobian terms
  • InertialForceCalculates the residual for the inertial force () and the contribution of mass dependent Rayleigh damping and HHT time integration scheme ($\eta \cdot M \cdot ((1+\alpha)velq2-\alpha \cdot vel-old) $)
  • InertialForceBeamCalculates the residual for the inertial force/moment and the contribution of mass dependent Rayleigh damping and HHT time integration scheme.
  • InertialTorqueKernel for inertial torque: density * displacement x acceleration
  • MaterialVectorBodyForceApply a body force vector to the coupled displacement component.
  • MomentBalancingBalance of momentum for three-dimensional Cosserat media, notably in a Cosserat layered elasticity model.
  • OutOfPlanePressureApply pressure in the out-of-plane direction in 2D plane stress or generalized plane strain models
  • PhaseFieldFractureMechanicsOffDiagStress divergence kernel for phase-field fracture: Computes off diagonal damage dependent Jacobian components. To be used with StressDivergenceTensors or DynamicStressDivergenceTensors.
  • PlasticHeatEnergyPlastic heat energy density = coeff * stress * plastic_strain_rate
  • PoroMechanicsCouplingAdds , where the subscript is the component.
  • StressDivergenceBeamQuasi-static and dynamic stress divergence kernel for Beam element
  • StressDivergenceRSphericalTensorsCalculate stress divergence for a spherically symmetric 1D problem in polar coordinates.
  • StressDivergenceRZTensorsCalculate stress divergence for an axisymmetric problem in cylindrical coordinates.
  • StressDivergenceTensorsStress divergence kernel for the Cartesian coordinate system
  • StressDivergenceTensorsTrussKernel for truss element
  • TotalLagrangianStressDivergenceEnforce equilibrium with a total Lagrangian formulation in Cartesian coordinates.
  • TotalLagrangianStressDivergenceAxisymmetricCylindricalEnforce equilibrium with a total Lagrangian formulation in axisymmetric cylindrical coordinates.
  • TotalLagrangianStressDivergenceCentrosymmetricSphericalEnforce equilibrium with a total Lagrangian formulation in centrosymmetric spherical coordinates.
  • TotalLagrangianWeakPlaneStressPlane stress kernel to provide out-of-plane strain contribution.
  • UpdatedLagrangianStressDivergenceEnforce equilibrium with an updated Lagrangian formulation in Cartesian coordinates.
  • WeakPlaneStressPlane stress kernel to provide out-of-plane strain contribution.
  • DynamicSolidMechanics
  • DynamicTensorMechanics
  • PoroMechanics
  • SolidMechanics
  • TensorMechanics
  • Phase Field App
  • ACBarrierFunctionAllen-Cahn kernel used when 'mu' is a function of variables
  • ACGBPolyGrain-Boundary model concentration dependent residual
  • ACGrGrElasticDrivingForceAdds elastic energy contribution to the Allen-Cahn equation
  • ACGrGrMultiMulti-phase poly-crystalline Allen-Cahn Kernel
  • ACGrGrPolyGrain-Boundary model poly-crystalline interface Allen-Cahn Kernel
  • ACGrGrPolyLinearizedInterfaceGrain growth model Allen-Cahn Kernel with linearized interface variable transformation
  • ACInterfaceGradient energy Allen-Cahn Kernel
  • ACInterface2DMultiPhase1Gradient energy Allen-Cahn Kernel where the derivative of interface parameter kappa wrt the gradient of order parameter is considered.
  • ACInterface2DMultiPhase2Gradient energy Allen-Cahn Kernel where the interface parameter kappa is considered.
  • ACInterfaceChangedVariableGradient energy Allen-Cahn Kernel using a change of variable
  • ACInterfaceCleavageFractureGradient energy Allen-Cahn Kernel where crack propagation along weakcleavage plane is preferred
  • ACInterfaceKobayashi1Anisotropic gradient energy Allen-Cahn Kernel Part 1
  • ACInterfaceKobayashi2Anisotropic Gradient energy Allen-Cahn Kernel Part 2
  • ACInterfaceStressInterface stress driving force Allen-Cahn Kernel
  • ACKappaFunctionGradient energy term for when kappa as a function of the variable
  • ACMultiInterfaceGradient energy Allen-Cahn Kernel with cross terms
  • ACSEDGPolyStored Energy contribution to grain growth
  • ACSwitchingKernel for Allen-Cahn equation that adds derivatives of switching functions and energies
  • ADACBarrierFunctionAllen-Cahn kernel used when 'mu' is a function of variables
  • ADACGrGrMultiMulti-phase poly-crystalline Allen-Cahn Kernel
  • ADACInterfaceGradient energy Allen-Cahn Kernel
  • ADACInterfaceKobayashi1Anisotropic gradient energy Allen-Cahn Kernel Part 1
  • ADACInterfaceKobayashi2Anisotropic Gradient energy Allen-Cahn Kernel Part 2
  • ADACKappaFunctionGradient energy term for when kappa as a function of the variable
  • ADACSwitchingKernel for Allen-Cahn equation that adds derivatives of switching functions and energies
  • ADAllenCahnAllen-Cahn Kernel that uses a DerivativeMaterial Free Energy
  • ADCHSoretMobilityAdds contribution due to thermo-migration to the Cahn-Hilliard equation using a concentration 'u', temperature 'T', and thermal mobility 'mobility' (in units of length squared per time).
  • ADCHSplitChemicalPotentialChemical potential kernel in Split Cahn-Hilliard that solves chemical potential in a weak form
  • ADCHSplitConcentrationConcentration kernel in Split Cahn-Hilliard that solves chemical potential in a weak form
  • ADCoefCoupledTimeDerivativeScaled time derivative Kernel that acts on a coupled variable
  • ADCoupledSwitchingTimeDerivativeCoupled time derivative Kernel that multiplies the time derivative by
  • ADGrainGrowthGrain-Boundary model poly-crystalline interface Allen-Cahn Kernel
  • ADMatAnisoDiffusionDiffusion equation kernel that takes an anisotropic diffusivity from a material property
  • ADSplitCHParsedSplit formulation Cahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy
  • ADSplitCHWResSplit formulation Cahn-Hilliard Kernel for the chemical potential variable with a scalar (isotropic) mobility
  • ADSplitCHWResAnisoSplit formulation Cahn-Hilliard Kernel for the chemical potential variable with a scalar (isotropic) mobility
  • ADSusceptibilityTimeDerivativeA modified time derivative Kernel that multiplies the time derivative of a variable by a generalized susceptibility
  • AllenCahnAllen-Cahn Kernel that uses a DerivativeMaterial Free Energy
  • AllenCahnElasticEnergyOffDiagThis kernel calculates off-diagonal Jacobian of elastic energy in AllenCahn with respect to displacements
  • AntitrappingCurrentKernel that provides antitrapping current at the interface for alloy solidification
  • CHBulkPFCTradCahn-Hilliard kernel for a polynomial phase field crystal free energy.
  • CHInterfaceGradient energy Cahn-Hilliard Kernel with a scalar (isotropic) mobility
  • CHInterfaceAnisoGradient energy Cahn-Hilliard Kernel with a tensor (anisotropic) mobility
  • CHMathSimple demonstration Cahn-Hilliard Kernel using an algebraic double-well potential
  • CHPFCRFFCahn-Hilliard residual for the RFF form of the phase field crystal model
  • CHSplitChemicalPotentialChemical potential kernel in Split Cahn-Hilliard that solves chemical potential in a weak form
  • CHSplitConcentrationConcentration kernel in Split Cahn-Hilliard that solves chemical potential in a weak form
  • CHSplitFluxComputes flux as nodal variable
  • CahnHilliardCahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy and a scalar (isotropic) mobility
  • CahnHilliardAnisoCahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy and a tensor (anisotropic) mobility
  • ChangedVariableTimeDerivativeA modified time derivative Kernel that multiplies the time derivative bythe derivative of the nonlinear preconditioning function
  • CoefCoupledTimeDerivativeScaled time derivative Kernel that acts on a coupled variable
  • ConservedLangevinNoiseSource term for noise from a ConservedNoise userobject
  • CoupledAllenCahnCoupled Allen-Cahn Kernel that uses a DerivativeMaterial Free Energy
  • CoupledMaterialDerivativeKernel that implements the first derivative of a function material property with respect to a coupled variable.
  • CoupledSusceptibilityTimeDerivativeA modified coupled time derivative Kernel that multiplies the time derivative of a coupled variable by a generalized susceptibility
  • CoupledSwitchingTimeDerivativeCoupled time derivative Kernel that multiplies the time derivative by
  • DiscreteNucleationForceTerm for inserting grain nuclei or phases in non-conserved order parameter fields
  • GradientComponentSet the kernel variable to a specified component of the gradient of a coupled variable.
  • HHPFCRFFReaction type kernel for the RFF phase fit crystal model
  • KKSACBulkCKKS model kernel (part 2 of 2) for the Bulk Allen-Cahn. This includes all terms dependent on chemical potential.
  • KKSACBulkFKKS model kernel (part 1 of 2) for the Bulk Allen-Cahn. This includes all terms NOT dependent on chemical potential.
  • KKSCHBulkKKS model kernel for the Bulk Cahn-Hilliard term. This operates on the concentration 'c' as the non-linear variable
  • KKSMultiACBulkCMulti-phase KKS model kernel (part 2 of 2) for the Bulk Allen-Cahn. This includes all terms dependent on chemical potential.
  • KKSMultiACBulkFKKS model kernel (part 1 of 2) for the Bulk Allen-Cahn. This includes all terms NOT dependent on chemical potential.
  • KKSMultiPhaseConcentrationKKS multi-phase model kernel to enforce . The non-linear variable of this kernel is , the final phase concentration in the list.
  • KKSPhaseChemicalPotentialKKS model kernel to enforce the pointwise equality of phase chemical potentials . The non-linear variable of this kernel is .
  • KKSPhaseConcentrationKKS model kernel to enforce the decomposition of concentration into phase concentration . The non-linear variable of this kernel is .
  • KKSSplitCHCResKKS model kernel for the split Bulk Cahn-Hilliard term. This kernel operates on the physical concentration 'c' as the non-linear variable
  • LangevinNoiseSource term for non-conserved Langevin noise
  • LaplacianSplitSplit with a variable that holds the Laplacian of a phase field variable.
  • MaskedBodyForceCustomization of MatBodForce which uses a material property, scalar, and/or postprocessor to provide a source term PDE contribution.
  • MaskedExponentialKernel to add dilute solution term to Poisson's equation for electrochemical sintering
  • MatAnisoDiffusionDiffusion equation Kernel that takes an anisotropic Diffusivity from a material property
  • MatGradSquareCoupledGradient square of a coupled variable.
  • MultiGrainRigidBodyMotionAdds rigid body motion to grains
  • NestedKKSACBulkCKKS model kernel (part 2 of 2) for the Bulk Allen-Cahn. This includes all terms dependent on chemical potential.
  • NestedKKSACBulkFKKS model kernel (part 1 of 2) for the Bulk Allen-Cahn. This includes all terms NOT dependent on chemical potential.
  • NestedKKSMultiACBulkCMulti-phase KKS model kernel (part 2 of 2) for the Bulk Allen-Cahn. This includes all terms dependent on chemical potential.
  • NestedKKSMultiACBulkFKKS model kernel (part 1 of 2) for the Bulk Allen-Cahn. This includes all terms NOT dependent on chemical potential.
  • NestedKKSMultiSplitCHCResKKS model kernel for the split Bulk Cahn-Hilliard term. This kernel operates on the physical concentration 'c' as the non-linear variable.
  • NestedKKSSplitCHCResKKS model kernel for the split Bulk Cahn-Hilliard term. This kernel operates on the physical concentration 'c' as the non-linear variable.
  • SLKKSChemicalPotentialSLKKS model kernel to enforce the pointwise equality of sublattice chemical potentials in the same phase.
  • SLKKSMultiACBulkCMulti-phase SLKKS model kernel for the bulk Allen-Cahn. This includes all terms dependent on chemical potential.
  • SLKKSMultiPhaseConcentrationSLKKS multi-phase model kernel to enforce . The non-linear variable of this kernel is a phase's sublattice concentration
  • SLKKSPhaseConcentrationSublattice KKS model kernel to enforce the decomposition of concentration into phase and sublattice concentrations The non-linear variable of this kernel is a sublattice concentration of phase b.
  • SLKKSSumEnforce the sum of sublattice concentrations to a given phase concentration.
  • SimpleACInterfaceGradient energy for Allen-Cahn Kernel with constant Mobility and Interfacial parameter
  • SimpleCHInterfaceGradient energy for Cahn-Hilliard equation with constant Mobility and Interfacial parameter
  • SimpleCoupledACInterfaceGradient energy for Allen-Cahn Kernel with constant Mobility and Interfacial parameter for a coupled order parameter variable.
  • SimpleSplitCHWResGradient energy for split Cahn-Hilliard equation with constant Mobility for a coupled order parameter variable.
  • SingleGrainRigidBodyMotionAdds rigid mody motion to a single grain
  • SoretDiffusionAdd Soret effect to Split formulation Cahn-Hilliard Kernel
  • SplitCHMathSimple demonstration split formulation Cahn-Hilliard Kernel using an algebraic double-well potential
  • SplitCHParsedSplit formulation Cahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy
  • SplitCHWResSplit formulation Cahn-Hilliard Kernel for the chemical potential variable with a scalar (isotropic) mobility
  • SplitCHWResAnisoSplit formulation Cahn-Hilliard Kernel for the chemical potential variable with a tensor (anisotropic) mobility
  • SusceptibilityTimeDerivativeA modified time derivative Kernel that multiplies the time derivative of a variable by a generalized susceptibility
  • SwitchingFunctionConstraintEtaLagrange multiplier kernel to constrain the sum of all switching functions in a multiphase system. This kernel acts on a non-conserved order parameter eta_i.
  • SwitchingFunctionConstraintLagrangeLagrange multiplier kernel to constrain the sum of all switching functions in a multiphase system. This kernel acts on the Lagrange multiplier variable.
  • SwitchingFunctionPenaltyPenalty kernel to constrain the sum of all switching functions in a multiphase system.
  • CHPFCRFFSplitKernel
  • HHPFCRFFSplitKernel
  • PFCRFFKernel
  • PolycrystalElasticDrivingForce
  • PolycrystalKernel
  • PolycrystalStoredEnergy
  • RigidBodyMultiKernel
  • Thermal Hydraulics App
  • ADHeatConductionRZAdds a heat conduction term in XY coordinates interpreted as cylindrical coordinates
  • ADHeatConductionTimeDerivativeRZAdds a time derivative term for the energy equation in XY coordinates interpreted as cylindrical coordinates
  • ADHeatStructureHeatSourceAdds a heat source term for the energy equation
  • ADHeatStructureHeatSourceRZAdds a heat source term in XY coordinates interpreted as cylindrical coordinates
  • ADOneD3EqnEnergyGravityComputes the gravity term for the energy equation in 1-phase flow
  • ADOneD3EqnEnergyHeatFluxComputes a heat flux term for the energy equation in a flow channel
  • ADOneD3EqnEnergyHeatFluxFromHeatStructure3DComputes a heat flux term from a 3D heat structure in the energy equation for 1-phase flow
  • ADOneD3EqnMomentumAreaGradientComputes the area gradient term in the momentum equation for single phase flow.
  • ADOneD3EqnMomentumFormLossComputes a volumetric form loss for the momentum equation for 1-phase flow
  • ADOneD3EqnMomentumFrictionComputes wall friction term for single phase flow.
  • ADOneD3EqnMomentumGravityComputes gravity term for the momentum equation for 1-phase flow
  • ADOneDEnergyWallHeatFluxComputes a heat flux term for the energy equation
  • ADOneDEnergyWallHeatingComputes a convective heat flux term for the energy equation for 1-phase flow
  • ADVolumeJunctionAdvectionKernelAdds advective fluxes for the junction variables for a volume junction
  • CoupledForceRZAdds a coupled force term in XY coordinates interpreted as cylindrical coordinates
  • OneD3EqnEnergyFluxComputes an energy flux for single phase flow
  • OneD3EqnEnergyGravityComputes a gravity term for the energy equation in 1-phase flow
  • OneD3EqnEnergyHeatSourceComputes a volumetric heat source for 1-phase flow channel
  • OneD3EqnMomentumAreaGradientComputes the area gradient term in the momentum equation for single phase flow.
  • OneD3EqnMomentumFluxComputes a momentum flux term for 1-phase flow
  • OneD3EqnMomentumFormLossComputes a form loss term for the momentum equation for 1-phase flow
  • OneD3EqnMomentumFrictionComputes wall friction term for single phase flow.
  • OneD3EqnMomentumGravityComputes gravity term for the momentum equation for 1-phase flow
  • OneDEnergyWallHeatFluxAdds a heat flux along the local heated perimeter
  • OneDEnergyWallHeatingAdds a convective heat flux term from a wall temperature
  • Misc App
  • ADThermoDiffusionCalculates diffusion due to temperature gradient and Soret Coefficient
  • CoefDiffusionKernel for diffusion with diffusivity = coef + function
  • ThermoDiffusionKernel for thermo-diffusion (Soret effect, thermophoresis, etc.)

Kernels/CHPFCRFFSplitKernel

  • Phase Field App
  • CHPFCRFFSplitKernelActionCreates the kernels for the transient Cahn-Hilliard equation for the RFF form of the phase field crystal model

Kernels/DynamicSolidMechanics

Kernels/DynamicTensorMechanics

Kernels/HHPFCRFFSplitKernel

Kernels/PFCRFFKernel

  • Phase Field App
  • PFCRFFKernelActionSet up kernels for the rational function fit (RFF) phase field crystal model

Kernels/PolycrystalElasticDrivingForce

Kernels/PolycrystalKernel

Kernels/PolycrystalStoredEnergy

  • Phase Field App
  • PolycrystalStoredEnergyActionAction that adds the contribution of stored energy associated with dislocations to grain growth models

Kernels/PoroMechanics

Kernels/RigidBodyMultiKernel

Kernels/SolidMechanics

Kernels/TensorMechanics

Likelihood

  • Stochastic Tools App
  • AddLikelihoodActionAdds Likelihood objects.
  • ExtremeValueGeneralized extreme value likelihood function evaluating the model goodness against experiments.
  • GaussianGaussian likelihood function evaluating the model goodness against experiments.
  • TruncatedGaussianTruncatedGaussian likelihood function evaluating the model goodness against experiments.

LinearFVBCs

  • Moose App
  • AddLinearFVBCActionAdd a LinearFVBoundaryCondition object to the simulation.
  • LinearFVAdvectionDiffusionExtrapolatedBCAdds a boundary condition which calculates the face values and face gradients assuming one or two term expansions from the cell centroid. This kernel is only compatible with advection-diffusion problems.
  • LinearFVAdvectionDiffusionFunctorDirichletBCAdds a dirichlet BC which can be used for the assembly of linear finite volume system and whose face values are determined using a functor. This kernel is only designed to work with advection-diffusion problems.
  • LinearFVAdvectionDiffusionFunctorNeumannBCAdds a fixed diffusive flux BC which can be used for the assembly of linear finite volume system and whose normal face gradient values are determined using a functor. This kernel is only designed to work with advection-diffusion problems.
  • LinearFVAdvectionDiffusionOutflowBCAdds a boundary condition which represents a surface with outflowing material with a constant velocity. This kernel is only compatible with advection-diffusion problems.
  • Navier Stokes App
  • LinearFVConvectiveHeatTransferBCClass describing a convective heat transfer between two domains.
  • LinearFVExtrapolatedPressureBCAdds a boundary condition which can be used to extrapolate pressure values to the boundary using either a two-term or a one-term expansion.

LinearFVKernels

  • Moose App
  • AddLinearFVKernelActionAdd a LinearFVKernel object to the simulation.
  • LinearFVAdvectionRepresents the matrix and right hand side contributions of an advection term in a partial differential equation.
  • LinearFVAnisotropicDiffusionRepresents the matrix and right hand side contributions of a diffusion term in a partial differential equation.
  • LinearFVDiffusionRepresents the matrix and right hand side contributions of a diffusion term in a partial differential equation.
  • LinearFVReactionRepresents the matrix and right hand side contributions of a reaction term () in a partial differential equation.
  • LinearFVSourceRepresents the matrix and right hand side contributions of a solution-independent source term in a partial differential equation.
  • LinearFVTimeDerivativeRepresents the matrix and right hand side contributions of a time derivative term in a partial differential equation.
  • Navier Stokes App
  • LinearFVDivergenceRepresents a divergence term. Note, this term does not contribute to the system matrix, only takes the divergence of a face flux field and adds it to the right hand side of the linear system.
  • LinearFVEnergyAdvectionRepresents the matrix and right hand side contributions of an advection term for the energy e.g. h=int(cp dT). A user may still override what quantity is advected, but the default is temperature.
  • LinearFVMomentumBoussinesqRepresents the Boussinesq term in the Navier Stokes momentum equations, added to the right hand side.
  • LinearFVMomentumFrictionComputes a Darcy friction force term on fluid in the Navier Stokes i-th momentum equation.
  • LinearFVMomentumPressureRepresents the pressure gradient term in the Navier Stokes momentum equations, added to the right hand side.
  • LinearFVScalarAdvectionRepresents the matrix and right hand side contributions of an advection term for a passive scalar.
  • LinearFVVolumetricHeatTransferRepresents a heat transfer term between the fluid and a homogenized structure.
  • LinearWCNSFV2PMomentumDriftFluxImplements the drift momentum flux source.
  • LinearWCNSFVMomentumFluxRepresents the matrix and right hand side contributions of the stress and advection terms of the momentum equation.

Materials

Mesh

  • Moose App
  • CreateDisplacedProblemActionCreate a Problem object that utilizes displacements.
  • DisplayGhostingActionAction to setup AuxVariables and AuxKernels to display ghosting when running in parallel
  • ElementIDOutputActionAction for copying extra element IDs into auxiliary variables for output.
  • SetupMeshActionAdd or create Mesh object to the simulation.
  • SetupMeshCompleteActionPerform operations on the mesh in preparation for a simulation.
  • AddMeshGeneratorActionAdd a MeshGenerator object to the simulation.
  • AddMetaDataGeneratorThis mesh generator assigns extraneous mesh metadata to the input mesh
  • AdvancedExtruderGeneratorExtrudes a 1D mesh into 2D, or a 2D mesh into 3D, can have a variable height for each elevation, variable number of layers within each elevation, variable growth factors of axial element sizes within each elevation and remap subdomain_ids, boundary_ids and element extra integers within each elevation as well as interface boundaries between neighboring elevation layers.
  • AllSideSetsByNormalsGeneratorAdds sidesets to the entire mesh based on unique normals.
  • AnnularMeshGeneratorFor rmin>0: creates an annular mesh of QUAD4 elements. For rmin=0: creates a disc mesh of QUAD4 and TRI3 elements. Boundary sidesets are created at rmax and rmin, and given these names. If dmin!0 and dmax!360, a sector of an annulus or disc is created. In this case boundary sidesets are also created at dmin and dmax, and given these names
  • BlockDeletionGeneratorMesh generator which removes elements from the specified subdomains
  • BlockToMeshConverterGeneratorConverts one or more blocks (subdomains) from a mesh into a stand-alone mesh with a single block in it.
  • BoundaryDeletionGeneratorMesh generator which removes side sets
  • BoundaryLayerSubdomainGeneratorChanges the subdomain ID of elements near the specified boundary(ies).
  • BoundingBoxNodeSetGeneratorAssigns all of the nodes either inside or outside of a bounding box to a new nodeset.
  • BreakBoundaryOnSubdomainGeneratorBreak boundaries based on the subdomains to which their sides are attached. Naming convention for the new boundaries will be the old boundary name plus "_to_" plus the subdomain name
  • BreakMeshByBlockGeneratorBreak the mesh at interfaces between blocks. New nodes will be generated so elements on each side of the break are no longer connected. At the moment, this only works on a REPLICATED mesh
  • BreakMeshByElementGeneratorBreak all element-element interfaces in the specified subdomains.
  • CartesianMeshGeneratorThis CartesianMeshGenerator creates a non-uniform Cartesian mesh.
  • CircularBoundaryCorrectionGeneratorThis CircularBoundaryCorrectionGenerator object is designed to correct full or partial circular boundaries in a 2D mesh to preserve areas.
  • CoarsenBlockGeneratorMesh generator which coarsens one or more blocks in an existing mesh. The coarsening algorithm works best for regular meshes.
  • CombinerGeneratorCombine multiple meshes (or copies of one mesh) together into one (disjoint) mesh. Can optionally translate those meshes before combining them.
  • ConcentricCircleMeshGeneratorThis ConcentricCircleMeshGenerator source code is to generate concentric circle meshes.
  • CutMeshByLevelSetGeneratorThis CutMeshByLevelSetGenerator object is designed to trim the input mesh by removing all the elements on outside the give level set with special processing on the elements crossed by the cutting surface to ensure a smooth cross-section. The output mesh only consists of TET4 elements.
  • CutMeshByPlaneGeneratorThis CutMeshByPlaneGenerator object is designed to trim the input mesh by removing all the elements on one side of a given plane with special processing on the elements crossed by the cutting plane to ensure a smooth cross-section. The output mesh only consists of TET4 elements.
  • DistributedRectilinearMeshGeneratorCreate a line, square, or cube mesh with uniformly spaced or biased elements.
  • ElementGeneratorGenerates individual elements given a list of nodal positions.
  • ElementOrderConversionGeneratorMesh generator which converts orders of elements
  • ElementSubdomainIDGeneratorAllows the user to assign each element the subdomain ID of their choice
  • ElementsToSimplicesConverterSplits all non-simplex elements in a mesh into simplices.
  • ElementsToTetrahedronsConverterThis ElementsToTetrahedronsConverter object is designed to convert all the elements in a 3D mesh consisting only linear elements into TET4 elements.
  • ExamplePatchMeshGeneratorCreates 2D or 3D patch meshes.
  • ExplodeMeshGeneratorBreak all element-element interfaces in the specified subdomains.
  • ExtraNodesetGeneratorCreates a new node set and a new boundary made with the nodes the user provides.
  • FancyExtruderGeneratorExtrudes a 1D mesh into 2D, or a 2D mesh into 3D, can have a variable height for each elevation, variable number of layers within each elevation, variable growth factors of axial element sizes within each elevation and remap subdomain_ids, boundary_ids and element extra integers within each elevation as well as interface boundaries between neighboring elevation layers.
  • FileMeshGeneratorRead a mesh from a file.
  • FillBetweenCurvesGeneratorThis FillBetweenCurvesGenerator object is designed to generate a transition layer to connect two boundaries of two input meshes.
  • FillBetweenPointVectorsGeneratorThis FillBetweenPointVectorsGenerator object is designed to generate a transition layer with two sides containing different numbers of nodes.
  • FillBetweenSidesetsGeneratorThis FillBetweenSidesetsGenerator object is designed to generate a transition layer to connect two boundaries of two input meshes.
  • FlipSidesetGeneratorA Mesh Generator which flips a given sideset
  • GeneratedMeshGeneratorCreate a line, square, or cube mesh with uniformly spaced or biased elements.
  • ImageMeshGeneratorGenerated mesh with the aspect ratio of a given image stack.
  • ImageSubdomainGeneratorSamples an image at the coordinates of each element centroid, using the resulting pixel color value as each element's subdomain ID
  • LowerDBlockFromSidesetGeneratorAdds lower dimensional elements on the specified sidesets.
  • MeshCollectionGeneratorCollects multiple meshes into a single (unconnected) mesh.
  • MeshDiagnosticsGeneratorRuns a series of diagnostics on the mesh to detect potential issues such as unsupported features
  • MeshExtruderGeneratorTakes a 1D or 2D mesh and extrudes the entire structure along the specified axis increasing the dimensionality of the mesh.
  • MeshRepairGeneratorMesh generator to perform various improvement / fixing operations on an input mesh
  • MoveNodeGeneratorModifies the position of one or more nodes
  • NodeSetsFromSideSetsGeneratorMesh generator which constructs node sets from side sets
  • OrientedSubdomainBoundingBoxGeneratorDefines a subdomain inside or outside of a bounding box with arbitrary orientation.
  • OverlayMeshGeneratorCreates a Cartesian mesh overlaying the input mesh region.
  • ParsedCurveGeneratorThis ParsedCurveGenerator object is designed to generate a mesh of a curve that consists of EDGE2, EDGE3, or EDGE4 elements.
  • ParsedElementDeletionGeneratorRemoves elements such that the parsed expression is evaluated as strictly positive. The parameters of the parsed expression can be the X,Y,Z coordinates of the element vertex average (must be 'x','y','z' in the expression), the element volume (must be 'volume' in the expression) and the element id ('id' in the expression).
  • ParsedExtraElementIDGeneratorUses a parsed expression to set an extra element id for elements (via their centroids).
  • ParsedGenerateNodesetA MeshGenerator that adds nodes to a nodeset if the node satisfies the expression expression.
  • ParsedGenerateSidesetA MeshGenerator that adds element sides to a sideset if the centroid of the side satisfies the combinatorial_geometry expression.
  • ParsedNodeTransformGeneratorApplies a transform to a the x,y,z coordinates of a Mesh
  • ParsedSubdomainIDsGeneratorUses a parsed expression to determine the subdomain ids of included elements.
  • ParsedSubdomainMeshGeneratorUses a parsed expression (combinatorial_geometry) to determine if an element (via its centroid) is inside the region defined by the expression and assigns a new block ID.
  • PatchMeshGeneratorCreates 2D or 3D patch meshes.
  • PatternedMeshGeneratorCreates a 2D mesh from a specified set of unique 'tiles' meshes and a two-dimensional pattern.
  • PlaneDeletionGeneratorRemoves elements lying 'above' the plane (in the direction of the normal).
  • PlaneIDMeshGeneratorAdds an extra element integer that identifies planes in a mesh.
  • PolyLineMeshGeneratorGenerates meshes from edges connecting a list of points.
  • RefineBlockGeneratorMesh generator which refines one or more blocks in an existing mesh
  • RefineSidesetGeneratorMesh generator which refines one or more sidesets
  • RenameBlockGeneratorChanges the block IDs and/or block names for a given set of blocks defined by either block ID or block name. The changes are independent of ordering. The merging of blocks is supported.
  • RenameBoundaryGeneratorChanges the boundary IDs and/or boundary names for a given set of boundaries defined by either boundary ID or boundary name. The changes are independent of ordering. The merging of boundaries is supported.
  • RinglebMeshGeneratorCreates a mesh for the Ringleb problem.
  • SideSetExtruderGeneratorTakes a 1D or 2D mesh and extrudes a selected sideset along the specified axis.
  • SideSetsAroundSubdomainGeneratorAdds element faces that are on the exterior of the given block to the sidesets specified
  • SideSetsBetweenSubdomainsGeneratorMeshGenerator that creates a sideset composed of the nodes located between two or more subdomains.
  • SideSetsFromBoundingBoxGeneratorDefines new sidesets using currently-defined sideset IDs inside or outside of a bounding box.
  • SideSetsFromNodeSetsGeneratorMesh generator which constructs side sets from node sets
  • SideSetsFromNormalsGeneratorAdds a new named sideset to the mesh for all faces matching the specified normal.
  • SideSetsFromPointsGeneratorAdds a new sideset starting at the specified point containing all connected element faces with the same normal.
  • SmoothMeshGeneratorUtilizes a simple Laplacian based smoother to attempt to improve mesh quality. Will not move boundary nodes or nodes along block/subdomain boundaries
  • SphereMeshGeneratorGenerate a 3-D sphere mesh centered on the origin
  • SpiralAnnularMeshGeneratorCreates an annular mesh based on TRI3 or TRI6 elements on several rings.
  • StackGeneratorUse the supplied meshes and stitch them on top of each other
  • StitchBoundaryMeshGeneratorAllows a pair of boundaries to be stitched together.
  • StitchedMeshGeneratorAllows multiple mesh files to be stitched together to form a single mesh.
  • SubdomainBoundingBoxGeneratorChanges the subdomain ID of elements either (XOR) inside or outside the specified box to the specified ID.
  • SubdomainIDGeneratorSets all the elements of the input mesh to a unique subdomain ID.
  • SubdomainPerElementGeneratorAllows the user to assign each element the subdomain ID of their choice
  • SymmetryTransformGeneratorApplies a symmetry transformation to the entire mesh.
  • TiledMeshGeneratorUse the supplied mesh and create a tiled grid by repeating this mesh in the x, y, and z directions.
  • TransfiniteMeshGeneratorCreates a QUAD4 mesh given a set of corner vertices and edge types. The edge type can be either LINE, CIRCARC, DISCRETE or PARSED, with LINE as the default option. For the non-default options the user needs to specify additional parameters via the edge_parameter option as follows: for CIRCARC the deviation of the midpoint from an arccircle, for DISCRETE a set of points, or a paramterization via the PARSED option. Opposite edges may have different distributions s long as the number of points is identical. Along opposite edges a different point distribution can be prescribed via the options bias_x or bias_y for opposing edges.
  • TransformGeneratorApplies a linear transform to the entire mesh.
  • UniqueExtraIDMeshGeneratorAdd a new extra element integer ID by finding unique combinations of the existing extra element integer ID values
  • XYDelaunayGeneratorTriangulates meshes within boundaries defined by input meshes.
  • XYMeshLineCutterThis XYMeshLineCutter object is designed to trim the input mesh by removing all the elements on one side of a given straight line with special processing on the elements crossed by the cutting line to ensure a smooth cross-section.
  • XYZDelaunayGeneratorCreates tetrahedral 3D meshes within boundaries defined by input meshes.
  • AnnularMeshFor rmin>0: creates an annular mesh of QUAD4 elements. For rmin=0: creates a disc mesh of QUAD4 and TRI3 elements. Boundary sidesets are created at rmax and rmin, and given these names. If dmin!0 and dmax!360, a sector of an annulus or disc is created. In this case boundary sidesets are also created a dmin and dmax, and given these names
  • ConcentricCircleMeshThis ConcentricCircleMesh source code is to generate concentric circle meshes.
  • FileMeshRead a mesh from a file.
  • GeneratedMeshCreate a line, square, or cube mesh with uniformly spaced or biased elements.
  • ImageMeshGenerated mesh with the aspect ratio of a given image stack.
  • MeshGeneratorMeshMesh generated using mesh generators
  • PatternedMeshCreates a 2D mesh from a specified set of unique 'tiles' meshes and a two-dimensional pattern.
  • RinglebMeshCreates a mesh for the Ringleb problem.
  • SpiralAnnularMeshCreates an annual mesh based on TRI3 elements (it can also be TRI6 elements) on several rings.
  • StitchedMeshReads in all of the given meshes and stitches them all together into one mesh.
  • TiledMeshUse the supplied mesh and create a tiled grid by repeating this mesh in the x,y, and z directions.
  • BatchMeshGeneratorAction
  • Partitioner
  • Heat Transfer App
  • PatchSidesetGeneratorDivides the given sideset into smaller patches of roughly equal size.
  • Phase Field App
  • EBSDMeshGeneratorMesh generated from a specified DREAM.3D EBSD data file.
  • SphereSurfaceMeshGeneratorGenerated sphere mesh - a two dimensional manifold embedded in three dimensional space
  • EBSDMeshMesh generated from a specified DREAM.3D EBSD data file.
  • Thermal Hydraulics App
  • THMMeshCreates a mesh (nodes and elements) for the Components

Mesh/BatchMeshGeneratorAction

Mesh/Partitioner

  • Moose App
  • PartitionerActionAdd a Partitioner object to the simulation.
  • BlockWeightedPartitionerPartition mesh by weighting blocks
  • CopyMeshPartitionerAssigns element to match the partitioning of another mesh. If in a child application, defaults to the parent app mesh if the other mesh is not specified programmatically.
  • GridPartitionerCreate a uniform grid that overlays the mesh to be partitioned. Assign all elements within each cell of the grid to the same processor.
  • HierarchicalGridPartitionerPartitions a mesh into sub-partitions for each computational node then into partitions within that node. All partitions are made using a regular grid.
  • LibmeshPartitionerMesh partitioning using capabilities defined in libMesh.
  • PetscExternalPartitionerPartition mesh using external packages via PETSc MatPartitioning interface
  • RandomPartitionerAssigns element processor ids randomly with a given seed.
  • SingleRankPartitionerAssigns element processor ids to a single MPI rank.

MeshDivisions

  • Moose App
  • AddMeshDivisionActionAdd a MeshDivision object to the simulation.
  • CartesianGridDivisionDivide the mesh along a Cartesian grid. Numbering increases from bottom to top and from left to right and from back to front. The inner ordering is X, then Y, then Z
  • CylindricalGridDivisionDivide the mesh along a cylindrical grid. The innermost numbering of divisions is the radial bins, then comes the azimuthal bins, then the axial bins
  • ExtraElementIntegerDivisionDivide the mesh by increasing extra element IDs. The division will be contiguously numbered even if the extra element ids are not
  • FunctorBinnedValuesDivisionDivide the mesh along based on uniformly binned values of a functor.
  • NearestPositionsDivisionDivide the mesh using a nearest-point / voronoi algorithm, with the points coming from a Positions object
  • NestedDivisionDivide the mesh using nested divisions objects
  • SphericalGridDivisionDivide the mesh along a spherical grid.
  • SubdomainsDivisionDivide the mesh by increasing subdomain ids. The division will be contiguously numbered even if the subdomain ids are not

MeshModifiers

Modules

Modules/CompressibleNavierStokes

  • Navier Stokes App
  • CNSActionThis class allows us to have a section of the input file like the following which automatically adds Kernels and AuxKernels for all the required nonlinear and auxiliary variables.

Modules/FluidProperties

Modules/HeatTransfer

Modules/HeatTransfer/ThermalContact

Modules/HeatTransfer/ThermalContact/BC
  • Heat Transfer App
  • ThermalContactActionAction that controls the creation of all of the necessary objects for calculation of Thermal Contact

Modules/IncompressibleNavierStokes

  • Navier Stokes App
  • INSActionThis class allows us to have a section of the input file for setting up incompressible Navier-Stokes equations.

Modules/NavierStokesFV

Modules/PhaseField

Modules/PhaseField/Conserved

  • Phase Field App
  • ConservedActionSet up the variable(s) and the kernels needed for a conserved phase field variable. Note that for a direct solve, the element family and order are overwritten with hermite and third.

Modules/PhaseField/DisplacementGradients

  • Phase Field App
  • DisplacementGradientsActionSet up variables, kernels, and materials for a the displacement gradients and their elastic free energy derivatives for non-split Cahn-Hilliard problems.

Modules/PhaseField/EulerAngles2RGB

  • Phase Field App
  • EulerAngle2RGBActionSet up auxvariables and auxkernels to output Euler angles as RGB values interpolated across inverse pole figure

Modules/PhaseField/GrainGrowth

  • Phase Field App
  • GrainGrowthActionSet up the variable and the kernels needed for a grain growth simulation

Modules/PhaseField/GrainGrowthLinearizedInterface

Modules/PhaseField/GrandPotential

Modules/PhaseField/Nonconserved

  • Phase Field App
  • NonconservedActionSet up the variable and the kernels needed for a non-conserved phase field variable

Modules/SolidProperties

Modules/TensorMechanics

Modules/TensorMechanics/CohesiveZoneMaster

Modules/TensorMechanics/DynamicMaster

Modules/TensorMechanics/GeneralizedPlaneStrain

Modules/TensorMechanics/GlobalStrain

Modules/TensorMechanics/LineElementMaster

  • Solid Mechanics App
  • CommonLineElementActionSets up variables, stress divergence kernels and materials required for a static analysis with beam or truss elements. Also sets up aux variables, aux kernels, and consistent or nodal inertia kernels for dynamic analysis with beam elements.
  • LineElementActionSets up variables, stress divergence kernels and materials required for a static analysis with beam or truss elements. Also sets up aux variables, aux kernels, and consistent or nodal inertia kernels for dynamic analysis with beam elements.

Modules/TensorMechanics/Master

Modules/TensorMechanics/MaterialVectorBodyForce

MortarGapHeatTransfer

  • Heat Transfer App
  • MortarGapHeatTransferActionAction that controls the creation of all of the necessary objects for calculation of heat transfer through an open/closed gap using a mortar formulation and a modular design approach

MultiApps

  • Moose App
  • AddMultiAppActionAdd a MultiApp object to the simulation.
  • CentroidMultiAppAutomatically generates Sub-App positions from centroids of elements in the parent app mesh.
  • FullSolveMultiAppPerforms a complete simulation during each execution.
  • QuadraturePointMultiAppAutomatically generates sub-App positions from the elemental quadrature points, with the default quadrature, in the parent mesh.
  • TransientMultiAppMultiApp for performing coupled simulations with the parent and sub-application both progressing in time.
  • Stochastic Tools App
  • PODFullSolveMultiAppCreates a full-solve type sub-application for each row of a Sampler matrix. On second call, this object creates residuals for a PODReducedBasisTrainer with given basis functions.
  • SamplerFullSolveMultiAppCreates a full-solve type sub-application for each row of each Sampler matrix.
  • SamplerTransientMultiAppCreates a sub-application for each row of each Sampler matrix.

NEML2

  • Moose App
  • NEML2ActionCommonThe NEML2 library is required but not enabled. Refer to the documentation for guidance on how to enable it. (Original description: Parse a NEML2 input file)
  • NEML2ActionThe NEML2 library is required but not enabled. Refer to the documentation for guidance on how to enable it. (Original description: Set up the NEML2 material model)

NodalKernels

NodalNormals

  • Moose App
  • AddNodalNormalsActionCreates Auxiliary variables and objects for computing the outward facing normal from a node.

Outputs

  • Moose App
  • AutoCheckpointActionAction to create shortcut syntax-specified checkpoints and automatic checkpoints.
  • CommonOutputActionAdds short-cut syntax and common parameters to the Outputs block.
  • MaterialOutputActionOutputs material properties to various Outputs objects, based on the parameters set in each Material
  • AddOutputActionAction responsible for creating Output objects.
  • BlockRestrictionDebugOutputDebug output object for displaying information regarding block-restriction of objects.
  • CSVOutput for postprocessors, vector postprocessors, and scalar variables using comma seperated values (CSV).
  • CheckpointOutput for MOOSE recovery checkpoint files.
  • ConsoleObject for screen output.
  • ControlOutputOutput for displaying objects and parameters associated with the Control system.
  • DOFMapOutput degree-of-freedom (DOF) map.
  • ExodusObject for output data in the Exodus format
  • GMVObject for outputting data in the GMV format
  • GnuplotOutput for postprocessors and scalar variables in GNU plot format.
  • JSONOutput for Reporter values using JSON format.
  • MaterialPropertyDebugOutputDebug output object for displaying material property information.
  • NemesisObject for output data in the Nemesis (parallel ExodusII) format.
  • PerfGraphOutputControls output of the PerfGraph: the performance log for MOOSE
  • ProgressOutput a simulation time progress bar on the console.
  • ReporterDebugOutputDebug output object for displaying Reporter information.
  • SolutionHistoryOutputs the non-linear and linear iteration solve history.
  • SolutionInvalidityOutputControls output of the time history of solution invalidity object
  • TecplotObject for outputting data in the Tecplot format
  • TopResidualDebugOutputDebug output object for displaying the top contributing residuals.
  • VTKOutput data using the Visualization Toolkit (VTK).
  • VariableResidualNormsDebugOutputReports the residual norm for each variable.
  • XDAObject for outputting data in the XDA/XDR format.
  • XDRObject for outputting data in the XDA/XDR format.
  • XMLOutputOutput for VectorPostprocessor using XML format.
  • Ray Tracing App
  • RayTracingExodusOutputs ray segments and data as segments using the Exodus format.
  • RayTracingNemesisOutputs ray segments and data as segments using the Nemesis format.
  • Thermal Hydraulics App
  • THMOutputVectorVelocityActionLets the user specify the variable type for the velocity output
  • THMSetupOutputActionSets up output for THM.
  • ParaviewComponentAnnotationMapBase class for all file-based output
  • Stochastic Tools App
  • MappingOutputOutput for mapping model data.
  • SurrogateTrainerOutputOutput for trained surrogate model data.

ParameterStudy

Physics

Physics/Diffusion

Physics/Diffusion/ContinuousGalerkin

  • Moose App
  • DiffusionCGDiscretizes a diffusion equation with the continuous Galerkin finite element method

Physics/Diffusion/FiniteVolume

  • Moose App
  • DiffusionFVAdd diffusion physics discretized with cell-centered finite volume

Physics/HeatConduction

Physics/HeatConduction/FiniteElement

  • Heat Transfer App
  • HeatConductionCGCreates the heat conduction equation discretized with CG

Physics/HeatConduction/FiniteVolume

  • Heat Transfer App
  • HeatConductionFVCreates the heat conduction equation discretized with nonlinear finite volume

Physics/MultiSpeciesDiffusion

Physics/MultiSpeciesDiffusion/ContinuousGalerkin

  • Scalar Transport App
  • MultiSpeciesDiffusionCGDiscretizes diffusion equations for several species with the continuous Galerkin finite element method

Physics/NavierStokes

Physics/NavierStokes/Flow

  • Navier Stokes App
  • WCNSFVFlowPhysicsDefine the Navier Stokes weakly-compressible mass and momentum equations

Physics/NavierStokes/FlowSegregated

  • Navier Stokes App
  • WCNSLinearFVFlowPhysicsDefine the Navier Stokes weakly-compressible equations with the linear solver implementation of the SIMPLE scheme

Physics/NavierStokes/FluidHeatTransfer

Physics/NavierStokes/FluidHeatTransferSegregated

Physics/NavierStokes/ScalarTransport

  • Navier Stokes App
  • WCNSFVScalarTransportPhysicsDefine the Navier Stokes weakly-compressible scalar field transport equation(s) using the nonlinear finite volume discretization

Physics/NavierStokes/ScalarTransportSegregated

  • Navier Stokes App
  • WCNSLinearFVScalarTransportPhysicsDefine the Navier Stokes weakly-compressible scalar field transport equation(s) using the linear finite volume discretization

Physics/NavierStokes/SolidHeatTransfer

Physics/NavierStokes/Turbulence

  • Navier Stokes App
  • WCNSFVTurbulencePhysicsDefine a turbulence model for a incompressible or weakly-compressible Navier Stokes flow with a finite volume discretization

Physics/NavierStokes/TwoPhaseMixture

  • Navier Stokes App
  • WCNSFVTwoPhaseMixturePhysicsDefine the additional terms for a mixture model for the two phase weakly-compressible Navier Stokes equations

Physics/NavierStokes/TwoPhaseMixtureSegregated

  • Navier Stokes App
  • WCNSLinearFVTwoPhaseMixturePhysicsDefine the additional terms for a mixture model for the two phase weakly-compressible Navier Stokes equations using the linearized segregated finite volume discretization

Physics/SolidMechanics

Physics/SolidMechanics/CohesiveZone

Physics/SolidMechanics/Dynamic

Physics/SolidMechanics/GeneralizedPlaneStrain

Physics/SolidMechanics/GlobalStrain

Physics/SolidMechanics/LineElement

Physics/SolidMechanics/LineElement/QuasiStatic
  • Solid Mechanics App
  • CommonLineElementActionSets up variables, stress divergence kernels and materials required for a static analysis with beam or truss elements. Also sets up aux variables, aux kernels, and consistent or nodal inertia kernels for dynamic analysis with beam elements.
  • LineElementActionSets up variables, stress divergence kernels and materials required for a static analysis with beam or truss elements. Also sets up aux variables, aux kernels, and consistent or nodal inertia kernels for dynamic analysis with beam elements.

Physics/SolidMechanics/MaterialVectorBodyForce

Physics/SolidMechanics/QuasiStatic

Positions

Postprocessors

Preconditioning

  • Moose App
  • SetupPreconditionerActionAdd a Preconditioner object to the simulation.
  • AddFieldSplitActionAdd a Split object to the simulation.
  • SplitField split based preconditioner for nonlinear solver.
  • FDPFinite difference preconditioner (FDP) builds a numerical Jacobian for preconditioning, only use for testing and verification.
  • FSPPreconditioner designed to map onto PETSc's PCFieldSplit.
  • PBPPhysics-based preconditioner (PBP) allows individual physics to have their own preconditioner.
  • SMPSingle matrix preconditioner (SMP) builds a preconditioner using user defined off-diagonal parts of the Jacobian.
  • StaticCondensationStatic condensation preconditioner
  • VCPVariable condensation preconditioner (VCP) condenses out specified variable(s) from the Jacobian matrix and produces a system of equations with less unkowns to be solved by the underlying preconditioners.

Problem

  • Moose App
  • CreateProblemActionAdd a Problem object to the simulation.
  • DynamicObjectRegistrationActionRegister MooseObjects from other applications dynamically.
  • DisplacedProblemA Problem object for providing access to the displaced finite element mesh and associated variables.
  • DumpObjectsProblemSingle purpose problem object that does not run the given input but allows deconstructing actions into their series of underlying Moose objects and variables.
  • EigenProblemProblem object for solving an eigenvalue problem.
  • FEProblemA normal (default) Problem object that contains a single NonlinearSystem and a single AuxiliarySystem object.
  • ReferenceResidualProblemProblem that checks for convergence relative to a user-supplied reference quantity rather than the initial residual
  • Navier Stokes App
  • NavierStokesProblemA problem that handles Schur complement preconditioning of the incompressible Navier-Stokes equations
  • Thermal Hydraulics App
  • THMProblemSpecialization of FEProblem to run with component subsystem

ProjectedStatefulMaterialStorage

RayBCs

  • Heat Transfer App
  • ViewFactorRayBCThis ray boundary condition is applied on all sidesets bounding a radiation cavity except symmetry sidesets. It kills rays that hit the sideset and scores the ray for computation of view factors.
  • Ray Tracing App
  • AddRayBCActionAdds a RayBC for use in ray tracing to the simulation.
  • KillRayBCA RayBC that kills a Ray on a boundary.
  • NullRayBCA RayBC that does nothing to a Ray on a boundary.
  • ReflectRayBCA RayBC that reflects a Ray in a specular manner on a boundary.

RayKernels

  • Ray Tracing App
  • AddRayKernelActionAdds a RayKernel for use in ray tracing to the simulation.
  • ADLineSourceRayKernelDemonstrates the multiple ways that scalar values can be introduced into RayKernels, e.g. (controllable) constants, functions, postprocessors, and data on rays. Implements the weak form along a line.
  • FunctionIntegralRayKernelIntegrates a function along a Ray.
  • KillRayKernelA RayKernel that kills a Ray.
  • LineSourceRayKernelDemonstrates the multiple ways that scalar values can be introduced into RayKernels, e.g. (controllable) constants, functions, postprocessors, and data on rays. Implements the weak form along a line.
  • MaterialIntegralRayKernelIntegrates a Material property along a Ray.
  • NullRayKernelA RayKernel that does nothing.
  • RayDistanceAuxAccumulates the distance traversed by each Ray segment into an aux variable for the element that the segments are in.
  • VariableIntegralRayKernelIntegrates a Variable or AuxVariable along a Ray.

ReactionNetwork

ReactionNetwork/AqueousEquilibriumReactions

ReactionNetwork/SolidKineticReactions

Reporters

  • Moose App
  • AddReporterActionAdd a Reporter object to the simulation.
  • AccumulateReporterReporter which accumulates the value of a inputted reporter value over time into a vector reporter value of the same type.
  • ConstantReporterReporter with constant values to be accessed by other objects, can be modified using transfers.
  • ElementVariableStatisticsElement reporter to get statistics for a coupled variable. This can be transfered to other apps.
  • ExtraIDIntegralReporterThis ExtraIDIntegralReporter source code is to integrate variables based on parsed extra IDs based on reporter system.
  • IterationInfoReport the time and iteration information for the simulation.
  • MeshInfoReport mesh information, such as the number of elements, nodes, and degrees of freedom.
  • MeshMetaDataReporterReports the mesh meta data.
  • NodalVariableStatisticsNodal reporter to get statistics for a coupled variable. This can be transfered to other apps.
  • PerfGraphReporterReports the full performance graph from the PerfGraph.
  • RestartableDataReporterReports restartable data and restartable meta data.
  • SolutionInvalidityReporterReports the Summary Table of Solution Invalid Counts.
  • Stochastic Tools App
  • ActiveLearningGPDecisionEvaluates a GP surrogate model, determines its prediction quality, launches full model if GP prediction is inadequate, and retrains GP.
  • AdaptiveImportanceStatsReporter to compute statistics corresponding to the AdaptiveImportanceSampler.
  • AdaptiveMonteCarloDecisionGeneric reporter which decides whether or not to accept a proposed sample in Adaptive Monte Carlo type of algorithms.
  • AffineInvariantDifferentialDecisionPerform decision making for Affine Invariant differential MCMC.
  • AffineInvariantStretchDecisionPerform decision making for Affine Invariant stretch MCMC.
  • BiFidelityActiveLearningGPDecisionPerform active learning decision making in bi-fidelity modeling.
  • ConditionalSampleReporterEvaluates parsed function to determine if sample needs to be evaluated, otherwise data is set to a default value.
  • CrossValidationScoresTool for extracting cross-validation scores and storing them in a reporter for output.
  • DirectPerturbationReporterCompute local sensitivities using the direct perturbation method.
  • EvaluateSurrogateTool for sampling surrogate models.
  • IndependentMHDecisionPerform decision making for independent Metropolis-Hastings MCMC.
  • MappingReporterA reporter which can map full solution fields to a latent space for given variables.
  • MorrisReporterCompute global sensitivities using the Morris method.
  • PMCMCDecisionGeneric reporter which decides whether or not to accept a proposed sample in parallel Markov chain Monte Carlo type of algorithms.
  • ParallelSolutionStorageParallel container to store serialized solution fields from simulations on sub-applications.
  • PolynomialChaosReporterTool for extracting data from PolynomialChaos surrogates and computing statistics.
  • SingularTripletReporterTool for accessing and outputting the singular triplets of a singular value decomposition in PODMapping.
  • SobolReporterCompute SOBOL statistics values of a given VectorPostprocessor or Reporter objects and vectors.
  • SolutionContainerClass responsible for collecting distributed solution vectors into a container. We append a new distributed solution vector (containing all variables) at every execution.
  • StatisticsReporterCompute statistical values of a given VectorPostprocessor objects and vectors.
  • StochasticMatrixTool for extracting Sampler object data and storing data from stochastic simulations.
  • StochasticReporterStorage container for stochastic simulation results coming from Reporters.

Samplers

ScalarKernels

SolidProperties

StochasticTools

  • Stochastic Tools App
  • StochasticToolsActionAction for performing some common functions for running stochastic simulations.

Surrogates

ThermalContact

  • Heat Transfer App
  • ThermalContactActionAction that controls the creation of all of the necessary objects for calculation of Thermal Contact

Times

Trainers

Transfers

UserObjects

VariableMappings

  • Stochastic Tools App
  • AddVariableMappingActionAdds Mapping objects from a VariableMappings block.
  • PODMappingClass which provides a Proper Orthogonal Decomposition-based mapping between full-order and reduced-order spaces.

Variables

Variables/CHPFCRFFSplitVariables

  • Phase Field App
  • CHPFCRFFSplitVariablesActionCreates the L auxiliary variables, as well as a MultiApp along with transfers to set the variables, for the Cahn-Hilliard equation for the RFF form of the phase field crystal model

Variables/HHPFCRFFSplitVariables

  • Phase Field App
  • HHPFCRFFSplitVariablesActionCreates the L nonlinear variables for the Cahn-Hilliard equation for the RFF form of the phase field crystal model, when using a split approach

Variables/PFCRFFVariables

  • Phase Field App
  • PFCRFFVariablesActionCreates the L nonlinear variables for the Cahn-Hilliard equation for the RFF form of the phase field crystal model

Variables/PolycrystalVariables

VectorPostprocessors

  • Moose App
  • AddVectorPostprocessorActionAdd a VectorPostprocessor object to the simulation.
  • CSVReaderConverts columns of a CSV file into vectors of a VectorPostprocessor.
  • CSVReaderVectorPostprocessorConverts columns of a CSV file into vectors of a VectorPostprocessor.
  • ConstantVectorPostprocessorPopulate constant VectorPostprocessorValue directly from input file.
  • CylindricalAverageCompute a cylindrical average of a variableas a function of radius throughout the simulation domain.
  • EigenvaluesReturns the Eigen values from the nonlinear Eigen system.
  • ElementMaterialSamplerRecords all Real-valued material properties of a material object, or Real-valued material properties of the supplied property names on quadrature points on elements at the indicated execution points.
  • ElementValueSamplerSamples values of variables on elements.
  • ElementVariablesDifferenceMaxComputes the largest difference between two variable fields.
  • ElementsAlongLineOutputs the IDs of every element intersected by a user-defined line
  • ElementsAlongPlaneOutputs the IDs of every element intersected by a user-defined plane
  • ExtraIDIntegralVectorPostprocessorIntegrates or averages variables based on extra element IDs
  • HistogramVectorPostprocessorCompute a histogram for each column of a VectorPostprocessor
  • IntersectionPointsAlongLineGet the intersection points for all of the elements that are intersected by a line.
  • LeastSquaresFitPerforms a polynomial least squares fit on the data contained in another VectorPostprocessor
  • LeastSquaresFitHistoryPerforms a polynomial least squares fit on the data contained in another VectorPostprocessor and stores the full time history of the coefficients
  • LineFunctionSamplerSample one or more functions along a line.
  • LineMaterialRealSamplerSamples real-valued material properties for all quadrature points in all elements that are intersected by a specified line
  • LineValueSamplerSamples variable(s) along a specified line
  • MaterialVectorPostprocessorRecords all Real-valued material properties of a material object, or Real-valued material properties of the supplied property names on quadrature points on elements at the indicated execution points.
  • MeshDivisionFunctorReductionVectorPostprocessorPerform reductions on functors based on a per-mesh-division basis
  • NearestPointIntegralVariablePostprocessorCompute element variable integrals for nearest-point based subdomains
  • NodalValueSamplerSamples values of nodal variable(s).
  • PointValueSamplerSample a variable at specific points.
  • PositionsFunctorValueSamplerSample one or more functors at points specified by a Positions object.
  • SideValueSamplerSample variable(s) along a sideset, internal or external.
  • SidesetInfoVectorPostprocessorThis VectorPostprocessor collects meta data for provided sidesets.
  • SpatialUserObjectVectorPostprocessorOutputs the values of a spatial user object in the order of the specified spatial points
  • SphericalAverageCompute a spherical average of a variable as a function of radius throughout the simulation domain.
  • VariableValueVolumeHistogramCompute a histogram of volume fractions binned according to variable values.
  • VectorMemoryUsageGet memory stats for all ranks in the simulation
  • VectorOfPostprocessorsOutputs the values of an arbitrary user-specified set of postprocessors as a vector in the order specified by the user
  • VolumeHistogramCompute a histogram of volume fractions binned according to variable values.
  • WorkBalanceComputes several metrics for workload balance per processor
  • Heat Transfer App
  • SurfaceRadiationVectorPostprocessorVectorPostprocessor for accessing information stored in surface radiation user object
  • ViewfactorVectorPostprocessorVectorPostprocessor for accessing view factors from GrayLambertSurfaceRadiationBase UO
  • Navier Stokes App
  • WaveSpeedVPPExtracts wave speeds from HLLC userobject for a given face
  • Stochastic Tools App
  • GaussianProcessDataTool for extracting hyperparameter data from gaussian process user object and storing in VectorPostprocessor vectors.
  • SamplerDataTool for extracting Sampler object data and storing in VectorPostprocessor vectors.
  • SobolStatisticsCompute SOBOL statistics values of a given VectorPostprocessor objects and vectors.
  • StatisticsCompute statistical values of a given VectorPostprocessor objects and vectors.
  • StochasticResultsStorage container for stochastic simulation results coming from a Postprocessor.
  • Ray Tracing App
  • PerProcessorRayTracingResultsVectorPostprocessorAccumulates ray tracing results (information about the trace) on a per-processor basis.
  • Solid Mechanics App
  • ADInteractionIntegralComputes the interaction integral, which is used to compute various fracture mechanics parameters at a crack tip, including KI, KII, KIII, and the T stress.
  • AverageSectionValueSamplerCompute the section's variable average in three-dimensions given a user-defined definition of the cross section.
  • CrackFrontNonlocalScalarMaterialComputes the average material at points provided by the crack_front_definition vectorpostprocessor.
  • CrackFrontNonlocalStressComputes the average stress normal to the crack face.
  • InteractionIntegralComputes the interaction integral, which is used to compute various fracture mechanics parameters at a crack tip, including KI, KII, KIII, and the T stress.
  • JIntegralComputes the J-Integral, a measure of the strain energy release rate at a crack tip, which can be used as a criterion for fracture growth. It can, alternatively, compute the C(t) integral
  • LineMaterialRankTwoSamplerAccess a component of a RankTwoTensor
  • LineMaterialRankTwoScalarSamplerCompute a scalar property of a RankTwoTensor
  • MixedModeEquivalentKComputes the mixed-mode stress intensity factor given the , , and stress intensity factors
  • Phase Field App
  • EulerAngleUpdaterCheckProvide updated Euler angles after rigid body rotation of the grains.
  • FeatureVolumeVectorPostprocessorThis object is designed to pull information from the data structures of a "FeatureFloodCount" or derived object (e.g. individual feature volumes)
  • GrainForcesPostprocessorOutputs the values from GrainForcesPostprocessor
  • GrainTextureVectorPostprocessorGives out info on the grain boundary properties
  • Thermal Hydraulics App
  • ADSampler1DRealSamples material properties at all quadrature points in mesh block(s)
  • Sampler1DRealSamples material properties at all quadrature points in mesh block(s)
  • Sampler1DVectorSamples a single component of array material properties at all quadrature points in mesh block(s)