- displacementsThe displacement componentsC++ Type:std::vector<VariableName> Unit:(no unit assumed) Controllable:No Description:The displacement components 
- variableThe name of the variable that this residual object operates onC++ Type:NonlinearVariableName Unit:(no unit assumed) Controllable:No Description:The name of the variable that this residual object operates on 
TotalLagrangianWeakPlaneStress
Plane stress kernel to provide out-of-plane strain contribution.
Description
The TotalLagrangianWeakPlaneStress kernel weakly enforces the out-of-plane stress to be zero.
Input Parameters
- base_nameMaterial property base nameC++ Type:std::string Controllable:No Description:Material property base name 
- blockThe list of blocks (ids or names) that this object will be appliedC++ Type:std::vector<SubdomainName> Controllable:No Description:The list of blocks (ids or names) that this object will be applied 
- compute_field_residualsTrueWhether to compute residuals for the field variable.Default:True C++ Type:bool Controllable:No Description:Whether to compute residuals for the field variable. 
- compute_scalar_residualsTrueWhether to compute scalar residualsDefault:True C++ Type:bool Controllable:No Description:Whether to compute scalar residuals 
- large_kinematicsFalseUse large displacement kinematicsDefault:False C++ Type:bool Controllable:No Description:Use large displacement kinematics 
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)Default:False C++ Type:bool Controllable:No Description:Whether this object is only doing assembly to matrices (no vectors) 
- scalar_variablePrimary coupled scalar variableC++ Type:std::vector<VariableName> Unit:(no unit assumed) Controllable:No Description:Primary coupled scalar variable 
- stabilize_strainFalseAverage the volumetric strainsDefault:False C++ Type:bool Controllable:No Description:Average the volumetric strains 
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contributionC++ Type:std::vector<TagName> Controllable:No Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution 
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fillC++ Type:std::vector<TagName> Controllable:No Description:The extra tags for the matrices this Kernel should fill 
- extra_vector_tagsThe extra tags for the vectors this Kernel should fillC++ Type:std::vector<TagName> Controllable:No Description:The extra tags for the vectors this Kernel should fill 
- matrix_tagssystemThe tag for the matrices this Kernel should fillDefault:system C++ Type:MultiMooseEnum Controllable:No Description:The tag for the matrices this Kernel should fill 
- vector_tagsnontimeThe tag for the vectors this Kernel should fillDefault:nontime C++ Type:MultiMooseEnum Controllable:No Description:The tag for the vectors this Kernel should fill 
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.C++ Type:std::vector<std::string> Controllable:No Description:Adds user-defined labels for accessing object parameters via control logic. 
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)C++ Type:std::vector<AuxVariableName> Unit:(no unit assumed) Controllable:No Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.) 
- enableTrueSet the enabled status of the MooseObject.Default:True C++ Type:bool Controllable:Yes Description:Set the enabled status of the MooseObject. 
- implicitTrueDetermines whether this object is calculated using an implicit or explicit formDefault:True C++ Type:bool Controllable:No Description:Determines whether this object is calculated using an implicit or explicit form 
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)C++ Type:std::vector<AuxVariableName> Unit:(no unit assumed) Controllable:No Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.) 
- search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).Default:nearest_node_connected_sides C++ Type:MooseEnum Controllable:No Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes). 
- seed0The seed for the master random number generatorDefault:0 C++ Type:unsigned int Controllable:No Description:The seed for the master random number generator 
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.C++ Type:MaterialPropertyName Unit:(no unit assumed) Controllable:No Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character. 
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.Default:False C++ Type:bool Controllable:No Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.