CoupledConvectiveHeatFluxBC

Convective heat transfer boundary condition with temperature and heat transfer coefficent given by auxiliary variables.

This boundary condition computes convective heat flux , where is convective heat transfer coefficient, is the temperature solved for, and is far field temperature. Both and are spatially varying variables.

A typical use case for this boundary condition are coupled multi-apps exchanging heat flux.

It is possible to use vector coupling to compute the heat flux for multi-phase fluids. In this case, users need to supply alpha parameter, which represents the volume fraction for each phase. Similarly, multiple components have to be supplied for htc and T_infinity. The number of components for alpha, Hw and T_infinity must match. The heat flux is then computed as .

Parameter can be used to scale the total heat flux. By default, it is (i.e. no scaling). Note that is actually a field variable, so spatially dependent scaling is possible. This can be used to locally turn the BC on or off.

[./right]
  type = CoupledConvectiveHeatFluxBC
  variable = u
  boundary = right
  alpha = 'alpha_liquid alpha_vapor'
  htc = 'Hw_liquid Hw_vapor'
  T_infinity = 'T_infinity_liquid T_infinity_vapor'
[../]
(modules/heat_transfer/test/tests/heat_conduction/coupled_convective_heat_flux/coupled_convective_heat_flux_two_phase.i)

Input Parameters

  • T_infinityField holding far-field temperature

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Field holding far-field temperature

  • boundaryThe list of boundary IDs from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this object applies

  • htcHeat transfer coefficient

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Heat transfer coefficient

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • alpha1.0Volume fraction of components

    Default:1.0

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Volume fraction of components

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The displacements

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • scale_factor1.0Scale factor to multiply the heat flux with

    Default:1.0

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Scale factor to multiply the heat flux with

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Controllable:No

    Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Controllable:No

    Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files