- coeffdiffusion coefficient. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:diffusion coefficient. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
FVDiffusion
Computes residual for diffusion operator for finite volume method.
The steady-state diffusion equation on a domain is defined as
with the diffusion coefficient or diffusivity. has to be supplied as material property to this kernel.
The diffusion term is integrated using the divergence theorem, turning it from a volumetric second order derivative term into a first order derivative integrated over a surface.
where is the surface normal on each side of the element considered.
The diffusion coefficient can be interpolated to the surface using two approaches:
Simple arithmetic average: (with , being the diffusion coefficient in the neighboring cells respectively)
Simple harmonic average: , which yields better results if the diffusion coefficients are positive and discontinuous. This is due to the fact that this scheme preserves flux continuity in the face-normal direction on orthogonal grids.
The interpolation method can be set using the "coeff_interp_method" parameter, and is defaulted to harmonic
due to its superior accuracy for discontinuous diffusion coefficients. Simple tests cases with discontinuous diffusion coefficients (see below) indicate that using harmonic interpolation yields a second-order accurate scheme for orthogonal and 1D meshes and close to second-order accurate scheme for slightly non-orthogonal meshes. At the same time, using a simple arithmetic average for the interpolation of discontinuous diffusion coefficients yields a first order scheme.
This kernel leverages the automatic differentiation system, so the Jacobian is computed at the same time as the residual and need not be defined separately.
Example input syntax
This example shows a simple 1D diffusion problem with two variables defined on two subdomains. Because of the limits of the legacy material system, the two material properties have to have different names, otherwise it is not clear what the boundary value of the diffusion coefficient should be.
[Mesh<<<{"href": "../../syntax/Mesh/index.html"}>>>]
[gen]
type = GeneratedMeshGenerator<<<{"description": "Create a line, square, or cube mesh with uniformly spaced or biased elements.", "href": "../meshgenerators/GeneratedMeshGenerator.html"}>>>
dim<<<{"description": "The dimension of the mesh to be generated"}>>> = 1
nx<<<{"description": "Number of elements in the X direction"}>>> = 20
xmax<<<{"description": "Upper X Coordinate of the generated mesh"}>>> = 2
[]
[subdomain1]
input<<<{"description": "The mesh we want to modify"}>>> = gen
type = SubdomainBoundingBoxGenerator<<<{"description": "Changes the subdomain ID of elements either (XOR) inside or outside the specified box to the specified ID.", "href": "../meshgenerators/SubdomainBoundingBoxGenerator.html"}>>>
bottom_left<<<{"description": "The bottom left point (in x,y,z with spaces in-between)."}>>> = '1.0 0 0'
block_id<<<{"description": "Subdomain id to set for inside/outside the bounding box"}>>> = 1
top_right<<<{"description": "The bottom left point (in x,y,z with spaces in-between)."}>>> = '2.0 1.0 0'
[]
[left_right]
input<<<{"description": "The mesh we want to modify"}>>> = subdomain1
type = SideSetsBetweenSubdomainsGenerator<<<{"description": "MeshGenerator that creates a sideset composed of the nodes located between two or more subdomains.", "href": "../meshgenerators/SideSetsBetweenSubdomainsGenerator.html"}>>>
primary_block<<<{"description": "The primary set of blocks for which to draw a sideset between"}>>> = '0'
paired_block<<<{"description": "The paired set of blocks for which to draw a sideset between"}>>> = '1'
new_boundary<<<{"description": "The list of boundary names to create on the supplied subdomain"}>>> = 'left_right'
[]
[right_left]
input<<<{"description": "The mesh we want to modify"}>>> = left_right
type = SideSetsBetweenSubdomainsGenerator<<<{"description": "MeshGenerator that creates a sideset composed of the nodes located between two or more subdomains.", "href": "../meshgenerators/SideSetsBetweenSubdomainsGenerator.html"}>>>
primary_block<<<{"description": "The primary set of blocks for which to draw a sideset between"}>>> = '1'
paired_block<<<{"description": "The paired set of blocks for which to draw a sideset between"}>>> = '0'
new_boundary<<<{"description": "The list of boundary names to create on the supplied subdomain"}>>> = 'right_left'
[]
[]
[Variables<<<{"href": "../../syntax/Variables/index.html"}>>>]
[left]
family<<<{"description": "Specifies the family of FE shape functions to use for this variable"}>>> = MONOMIAL
order<<<{"description": "Specifies the order of the FE shape function to use for this variable (additional orders not listed are allowed)"}>>> = CONSTANT
fv = true
block = 0
[]
[right]
family<<<{"description": "Specifies the family of FE shape functions to use for this variable"}>>> = MONOMIAL
order<<<{"description": "Specifies the order of the FE shape function to use for this variable (additional orders not listed are allowed)"}>>> = CONSTANT
fv = true
block = 1
[]
[]
[FVKernels<<<{"href": "../../syntax/FVKernels/index.html"}>>>]
[left]
type = FVDiffusion<<<{"description": "Computes residual for diffusion operator for finite volume method.", "href": "FVDiffusion.html"}>>>
variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = left
coeff<<<{"description": "diffusion coefficient. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = coeff_left
block<<<{"description": "The list of blocks (ids or names) that this object will be applied"}>>> = 0
coeff_interp_method<<<{"description": "Switch that can select face interpolation method for diffusion coefficients."}>>> = average
[]
[right]
type = FVDiffusion<<<{"description": "Computes residual for diffusion operator for finite volume method.", "href": "FVDiffusion.html"}>>>
variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = right
coeff<<<{"description": "diffusion coefficient. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = coeff_right
block<<<{"description": "The list of blocks (ids or names) that this object will be applied"}>>> = 1
coeff_interp_method<<<{"description": "Switch that can select face interpolation method for diffusion coefficients."}>>> = average
[]
[]
[FVBCs<<<{"href": "../../syntax/FVBCs/index.html"}>>>]
[left]
type = FVDirichletBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "../fvbcs/FVDirichletBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = left
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = left
value<<<{"description": "value to enforce at the boundary face"}>>> = 0
[]
[left_right]
type = FVDirichletBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "../fvbcs/FVDirichletBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = left
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = left_right
value<<<{"description": "value to enforce at the boundary face"}>>> = 1
[]
[right_left]
type = FVDirichletBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "../fvbcs/FVDirichletBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = right
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = right_left
value<<<{"description": "value to enforce at the boundary face"}>>> = 0
[]
[right]
type = FVDirichletBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "../fvbcs/FVDirichletBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = right
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = right
value<<<{"description": "value to enforce at the boundary face"}>>> = 1
[]
[]
[Materials<<<{"href": "../../syntax/Materials/index.html"}>>>]
[left]
type = ADGenericFunctorMaterial
prop_names = 'coeff_left'
prop_values = '1'
block = 0
[]
[right]
type = ADGenericFunctorMaterial
prop_names = 'coeff_right'
prop_values = '1'
block = 1
[]
[]
[Executioner<<<{"href": "../../syntax/Executioner/index.html"}>>>]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs<<<{"href": "../../syntax/Outputs/index.html"}>>>]
exodus<<<{"description": "Output the results using the default settings for Exodus output."}>>> = true
[]
(test/tests/fvkernels/block-restriction/1d.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- coeff_interp_methodharmonicSwitch that can select face interpolation method for diffusion coefficients.
Default:harmonic
C++ Type:MooseEnum
Options:average, harmonic
Controllable:No
Description:Switch that can select face interpolation method for diffusion coefficients.
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- variable_interp_methodaverageSwitch that can select between face interpolation methods for the variable.
Default:average
C++ Type:MooseEnum
Options:average, skewness-corrected
Controllable:No
Description:Switch that can select between face interpolation methods for the variable.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- boundaries_to_avoidThe set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
- boundaries_to_forceThe set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
- force_boundary_executionFalseWhether to force execution of this object on all external boundaries.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to force execution of this object on all external boundaries.
Boundary Execution Modification Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers2The number of layers of elements to ghost.
Default:2
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
- (test/tests/outputs/debug/show_functors.i)
- (test/tests/markers/error_fraction_marker/error_fraction_marker_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/with-direction/errors/flux_bcs.i)
- (test/tests/fvkernels/fv_adapt/transient-adapt.i)
- (test/tests/fvkernels/block-restriction/1d.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_radiative_heat_flux/test.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/fv_modular_gap_heat_transfer_mortar_radiation_conduction.i)
- (test/tests/fvkernels/fv_adapt/steady-adapt.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/free-flow-hllc.i)
- (test/tests/fviks/continuity/test.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
- (test/tests/fvkernels/fv-to-fe-coupling/1d.i)
- (test/tests/auxkernels/divergence_aux/test_fv.i)
- (test/tests/fvkernels/mms/skewness-correction/adv-diff-react/skewed.i)
- (modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
- (test/tests/fviks/one-var-diffusion/test.i)
- (test/tests/materials/functor_properties/1d_dirichlet.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
- (test/tests/fvkernels/block-restriction/fv-and-fe-block-restriction.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
- (test/tests/fvkernels/mms/cylindrical/advection-diffusion-reaction.i)
- (test/tests/fvkernels/fv_coupled_var/coupled.i)
- (test/tests/functors/previous-nl-it/test.i)
- (test/tests/fvkernels/block-restriction/just-mat-blk-restriction.i)
- (test/tests/indicators/gradient_jump_indicator/gradient_jump_indicator_fv_test.i)
- (test/tests/variables/caching_fv_variables/fv_caching.i)
- (test/tests/multiapps/linearfv_nonlinearfv/nonlinearfv.i)
- (test/tests/scaling/scalar-field-grouping/test.i)
- (test/tests/functors/layered-integral/test.i)
- (modules/heat_transfer/test/tests/ad_convective_heat_flux/fe_fv_coupled.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
- (test/tests/fvkernels/mms/grad-reconstruction/mat-cartesian.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
- (test/tests/fvkernels/constraints/integral_transient.i)
- (test/tests/fvkernels/mms/grad-reconstruction/mat-rz.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-steady-wall-balance.i)
- (modules/navier_stokes/examples/laser-welding/2d-fv.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/1d_test_cpT.i)
- (test/tests/functors/fe-var-for-fv-neumann/test.i)
- (modules/navier_stokes/examples/solidification/gallium_melting.i)
- (test/tests/postprocessors/side_integral/side_integral_functor.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/scalar-transport.i)
- (test/tests/fvkernels/fv_simple_diffusion/1d_dirichlet.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/iks/flow-around-square/flow-around-square.i)
- (test/tests/postprocessors/element_integral_var_pps/pps_old_value_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
- (test/tests/fvkernels/fv_simple_diffusion/fv_only_refined.i)
- (test/tests/userobjects/layered_side_integral/layered_side_integral_fv.i)
- (test/tests/fviks/diffusion/test.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy-wall.i)
- (test/tests/fviks/one-var-diffusion/no-ik.i)
- (test/tests/misc/check_error/incomplete_fvkernel_block_coverage_test.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-action.i)
- (modules/heat_transfer/test/tests/fvkernels/radiation_istothermal_medium_1d.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
- (test/tests/auxkernels/time_derivative_aux/test_fv.i)
- (test/tests/fvkernels/mms/mat-advection-diffusion.i)
- (test/tests/fvbcs/fv_functor_dirichlet/fv_other_side.i)
- (test/tests/fvkernels/fv_simple_diffusion/dirichlet_rz.i)
- (test/tests/fvbcs/fv_functor_dirichlet/fv_functor_dirichlet.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test_functor.i)
- (test/tests/materials/functor_properties/ad_conversion/1d_dirichlet.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/solidification/solidification_no_advection.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
- (test/tests/materials/piecewise_by_block_material/discontinuous_functor.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/linear-segregated/2d-heated/solid.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-action.i)
- (test/tests/fviks/diffusion/multisystem.i)
- (test/tests/fvkernels/mms/harmonic_interpolation/diffusion.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
- (test/tests/fvkernels/split-mesh/diffusion.i)
- (test/tests/postprocessors/side_average_value/side_average_functor_test.i)
- (test/tests/fvkernels/mms/non-orthogonal/advection-diffusion-reaction.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient-action.i)
- (test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_fv.i)
- (test/tests/misc/check_error/incomplete_fvkernel_variable_coverage_test.i)
- (test/tests/fvbcs/fv_functor_neumannbc/fv_functor_neumann.i)
- (test/tests/fvkernels/mms/mass-mom-mat-advection-diffusion/input.i)
- (test/tests/multisystem/picard/linearfv_nonlinearfv/same_input.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
- (modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/fv_simple_diffusion_line_source.i)
- (test/tests/tag/mass-matrix.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
- (test/tests/fvkernels/mms/broken-domain/diffusion.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
- (test/tests/fvkernels/mms/skewness-correction/two_term_extrapol/advection-outflow.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy.i)
- (test/tests/fvkernels/fv_simple_diffusion/3d_dirichlet.i)
- (test/tests/fvkernels/mms/grad-reconstruction/cartesian.i)
- (test/tests/fvkernels/mms/cylindrical/diffusion.i)
- (test/tests/postprocessors/interface_diffusive_flux/interface_diffusive_flux_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
- (test/tests/transfers/multiapp_copy_transfer/linear_sys_to_aux/nonlinear_main.i)
- (test/tests/indicators/analytical_indicator/analytical_indicator_fv.i)
- (test/tests/fvkernels/mms/skewness-correction/diffusion/skewed.i)
- (test/tests/materials/functor_properties/vector-magnitude/test.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
- (test/tests/postprocessors/fvfluxbc_integral/fvfluxbc_integral.i)
- (test/tests/fvkernels/fv_simple_diffusion/grad-adaptive.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/physics/diffusion_interfaces/three_zones.i)
- (test/tests/userobjects/layered_integral/layered_integral_fv_test.i)
- (test/tests/fvkernels/fv_simple_diffusion/neumann.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/parent_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
- (test/tests/fvkernels/scaling/auto-scaling.i)
- (test/tests/fvkernels/fv_simple_diffusion/dirichlet.i)
- (modules/navier_stokes/test/tests/finite_volume/fvbcs/FVFunctorHeatFluxBC/wall_heat_transfer.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_reversal.i)
- (test/tests/fvkernels/fv_simple_diffusion/dirichlet-constrained-average-value.i)
- (test/tests/fvkernels/fv_simple_diffusion/transient.i)
- (tutorials/shield_multiphysics/inputs/step10_finite_volume/step10.i)
- (test/tests/materials/piecewise_by_block_material/discontinuous.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
- (test/tests/fvkernels/mms/advection-diffusion.i)
- (test/tests/fvkernels/boundary_execution/2d.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test.i)
- (test/tests/fvbcs/fv_pp_dirichlet/fv_pp_dirichlet.i)
- (modules/ray_tracing/test/tests/raykernels/variable_integral_ray_kernel/fv_simple_diffusion_line_integral.i)
- (test/tests/postprocessors/pseudotimestep/fv_burgers_pseudo.i)
- (test/tests/indicators/value_jump_indicator/value_jump_indicator_fv.i)
- (test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
- (test/tests/misc/multiple-nl-systems/test-fv.i)
- (test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
- (test/tests/mortar/convergence-studies/fv-gap-conductance/gap-conductance.i)
- (test/tests/fvkernels/mms/grad-reconstruction/rz.i)
- (test/tests/dirackernels/constant_point_source/1d_point_source_fv.i)
- (test/tests/fvkernels/mms/diffusion.i)
- (test/tests/fvkernels/mms/advective-outflow/advection-diffusion.i)
- (test/tests/bounds/constant_bounds_fv.i)
- (test/tests/vectorpostprocessors/point_value_sampler/point_value_sampler_fv.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_2d.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
- (test/tests/postprocessors/element_variable_value/elemental_variable_value_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
- (test/tests/fvkernels/fv_simple_diffusion/fv_only.i)
- (test/tests/tag/tag-fv.i)
- (test/tests/auxkernels/build_array_variable_aux/build_array_variable_aux.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_1d.i)
- (test/tests/fvkernels/constraints/bounded_value.i)
- (test/tests/fvkernels/two-var-flux-and-kernel/input.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-physics.i)
- (test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
- (test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average_fv.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
- (test/tests/postprocessors/internal_side_integral/internal_side_integral_fv_test.i)
- (modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
- (test/tests/fvkernels/fv_dotdot/fv_dotdot.i)
- (test/tests/fvkernels/fv_simple_diffusion/unstructured-rz.i)
- (test/tests/materials/functor_properties/gradients/functor-gradients.i)
- (test/tests/materials/boundary_material/fv_material_quadrature.i)
- (modules/navier_stokes/test/tests/finite_volume/controls/switch-pressure-bc/switch_vel_pres_bc.i)
- (test/tests/postprocessors/side_integral/side_integral_fv_test.i)
- (test/tests/fvkernels/constraints/integral.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_functor_convective_heat_flux/fv_functor_convective_heat_flux.i)
- (modules/navier_stokes/test/tests/finite_volume/fvbcs/FVHeatFluxBC/wall_heat_transfer.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
- (test/tests/fviks/auxiliary_variables/fv_reaction_1D.i)
- (test/tests/executioners/nl_forced_its/nl_forced_its.i)
- (tutorials/shield_multiphysics/inputs/step11_multiapps/step11_2d_fluid.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
- (test/tests/postprocessors/interface_value/interface_fv_variable_value_postprocessor.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
- (test/tests/fvkernels/constraints/point_value.i)
- (test/tests/fvkernels/mms/non-orthogonal/extended-adr.i)
- (test/tests/userobjects/layered_side_integral/layered_side_diffusive_flux_average_fv.i)
Child Objects
coeff_interp_method
Default:harmonic
C++ Type:MooseEnum
Options:average, harmonic
Controllable:No
Description:Switch that can select face interpolation method for diffusion coefficients.
(test/tests/fvkernels/block-restriction/1d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 20
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[left_right]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'left_right'
[]
[right_left]
input = left_right
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'right_left'
[]
[]
[Variables]
[left]
family = MONOMIAL
order = CONSTANT
fv = true
block = 0
[]
[right]
family = MONOMIAL
order = CONSTANT
fv = true
block = 1
[]
[]
[FVKernels]
[left]
type = FVDiffusion
variable = left
coeff = coeff_left
block = 0
coeff_interp_method = average
[]
[right]
type = FVDiffusion
variable = right
coeff = coeff_right
block = 1
coeff_interp_method = average
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = left
boundary = left
value = 0
[]
[left_right]
type = FVDirichletBC
variable = left
boundary = left_right
value = 1
[]
[right_left]
type = FVDirichletBC
variable = right
boundary = right_left
value = 0
[]
[right]
type = FVDirichletBC
variable = right
boundary = right
value = 1
[]
[]
[Materials]
[left]
type = ADGenericFunctorMaterial
prop_names = 'coeff_left'
prop_values = '1'
block = 0
[]
[right]
type = ADGenericFunctorMaterial
prop_names = 'coeff_right'
prop_values = '1'
block = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
velocity_pp = 0
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'left'
velocity_pp = 'inlet_u'
temperature_pp = 'inlet_T'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
velocity_pp = 'inlet_u'
vel_x = vel_x
vel_y = vel_y
rho = rho
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(test/tests/outputs/debug/show_functors.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmax = 2
[]
[]
[Debug]
show_functors = true
[]
[Variables]
[fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[fe]
initial_condition = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = fv
coeff = fv_prop
coeff_interp_method = average
[]
[coupled]
type = FVCoupledForce
v = fv
variable = fv
[]
[]
[Kernels]
[diff]
type = ADFunctorMatDiffusion
variable = fe
diffusivity = fe_prop
[]
[coupled]
type = CoupledForce
v = fv
variable = fe
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = fv
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = fv
boundary = right
value = 1
[]
[]
[BCs]
[left]
type = DirichletBC
variable = fe
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = fe
boundary = right
value = 1
[]
[]
[Materials]
active = 'fe_mat fv_mat'
[bad_mat]
type = FEFVCouplingMaterial
fe_var = fe
fv_var = fv
execute_on = 'linear nonlinear'
[]
[fe_mat]
type = FEFVCouplingMaterial
fe_var = fe
execute_on = 'linear nonlinear'
[]
[fv_mat]
type = FEFVCouplingMaterial
fv_var = fv
[]
[fe_mat_bad_dep]
type = FEFVCouplingMaterial
fe_var = fe
declared_prop_name = bad
[]
[fv_mat_bad_dep]
type = FEFVCouplingMaterial
fv_var = fv
retrieved_prop_name = bad
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(test/tests/markers/error_fraction_marker/error_fraction_marker_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[Functions]
[solution]
type = ParsedFunction
expression = (exp(x)-1)/(exp(1)-1)
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = coeff
[]
[conv]
type = FVAdvection
variable = u
velocity = '1 0 0'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Adaptivity]
[Indicators]
[error]
type = AnalyticalIndicator
variable = u
function = solution
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = error
refine = 0.3
[]
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/with-direction/errors/flux_bcs.i)
l = 5
inlet_area = 2
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
rho = 1000
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${l} ${l}'
dy = '${inlet_area}'
ix = '5 5'
iy = '2'
subdomain_id = '1 2'
[]
[side_set]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = '1'
paired_block = '2'
new_boundary = 'mid-inlet'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
block = 2
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
block = 2
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
block = 2
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
block = 2
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
block = 2
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
block = 2
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
# Mass equation
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
# X component momentum equation
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
# Solid temperature
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_solid
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'mid-inlet'
velocity_pp = 'inlet_velocity'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'mid-inlet'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'mid-inlet'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'mid-inlet'
temperature_pp = 'inlet_T'
velocity_pp = 'inlet_velocity'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'mid-inlet'
scalar_value_pp = 'inlet_scalar_value'
velocity_pp = 'inlet_velocity'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = '${fparse 1980 * inlet_velocity * inlet_area}'
[]
[inlet_velocity]
type = Receiver
default = ${inlet_velocity}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k rho'
prop_values = '${cp} ${k} ${rho}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
(test/tests/fvkernels/fv_adapt/transient-adapt.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
elem_type = QUAD4
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
[]
[v][]
[]
[Functions]
[force]
type = ParsedFunction
expression = t
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = BodyForce
variable = v
function = force
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = coeff
[]
[force]
type = FVBodyForce
variable = u
function = force
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = 'NEWTON'
[]
[Adaptivity]
marker = box
initial_steps = 1
[Markers]
[box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[]
[]
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/block-restriction/1d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 20
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[left_right]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'left_right'
[]
[right_left]
input = left_right
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'right_left'
[]
[]
[Variables]
[left]
family = MONOMIAL
order = CONSTANT
fv = true
block = 0
[]
[right]
family = MONOMIAL
order = CONSTANT
fv = true
block = 1
[]
[]
[FVKernels]
[left]
type = FVDiffusion
variable = left
coeff = coeff_left
block = 0
coeff_interp_method = average
[]
[right]
type = FVDiffusion
variable = right
coeff = coeff_right
block = 1
coeff_interp_method = average
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = left
boundary = left
value = 0
[]
[left_right]
type = FVDirichletBC
variable = left
boundary = left_right
value = 1
[]
[right_left]
type = FVDirichletBC
variable = right
boundary = right_left
value = 0
[]
[right]
type = FVDirichletBC
variable = right
boundary = right
value = 1
[]
[]
[Materials]
[left]
type = ADGenericFunctorMaterial
prop_names = 'coeff_left'
prop_values = '1'
block = 0
[]
[right]
type = ADGenericFunctorMaterial
prop_names = 'coeff_right'
prop_values = '1'
block = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
rho = 'rho'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[velocity_norm]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = 'rho'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = 'rho'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = 'rho'
[]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T'
speed = 'velocity_norm'
# even though we provide rho from the parameters, we
# want to get rho from the fluid properties
force_define_density = true
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 1
[]
[]
[AuxKernels]
[speed]
type = VectorMagnitudeAux
variable = 'velocity_norm'
x = u
y = v
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-12
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_radiative_heat_flux/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 2
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 4
[]
[gradient_creating]
type = FVBodyForce
variable = u
[]
[]
[FVBCs]
[left]
type = FVInfiniteCylinderRadiativeBC
variable = u
boundary = 'left'
boundary_radius = 1
cylinder_radius = 12
cylinder_emissivity = 0.4
# Using previous defaults
boundary_emissivity = 1
Tinfinity = 0
[]
[top]
type = FVInfiniteCylinderRadiativeBC
variable = u
# Test setting it separately
temperature = 'u'
boundary = 'top'
boundary_radius = 1
cylinder_radius = 12
cylinder_emissivity = 0.4
# Using previous defaults
boundary_emissivity = 1
Tinfinity = 0
[]
[other]
type = FVDirichletBC
variable = u
boundary = 'right bottom'
value = 0
[]
[]
[Materials]
[cht]
type = ADGenericConstantMaterial
prop_names = 'htc'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/fv_modular_gap_heat_transfer_mortar_radiation_conduction.i)
[Mesh]
inactive = 'translate'
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
[translate]
type = TransformGenerator
transform = translate
input = primary
vector_value = '1 0 0'
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
type = MooseVariableFVReal
block = '1 2'
[]
[lm]
order = CONSTANT
family = MONOMIAL
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADGenericFunctorMaterial
block = 1
prop_names = 'thermal_conductivity'
prop_values = '0.01'
[]
[right]
type = ADGenericFunctorMaterial
block = 2
prop_names = 'thermal_conductivity'
prop_values = '0.005'
[]
[]
[FVKernels]
[hc]
type = FVDiffusion
variable = temp
block = '1 2'
coeff = 'thermal_conductivity'
[]
[]
[UserObjects]
[radiation]
type = FunctorGapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
[]
[conduction]
type = FunctorGapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
ghost_higher_d_neighbors = true
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = FVDirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv_adapt/steady-adapt.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 1
elem_type = QUAD4
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
type = MooseVariableFVReal
[]
[]
[Functions]
[exact-quadratic]
type = ParsedFunction
expression = '-(x-1)^2+1'
[]
[exact-linear]
type = ParsedFunction
expression = 'x'
[]
[]
[FVKernels]
inactive = 'source'
[diff]
type = FVDiffusion
variable = u
coeff = coeff
use_point_neighbors = true
[]
[source]
type = FVBodyForce
variable = u
function = 2
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'hypre'
[]
[Adaptivity]
marker = box
initial_steps = 1
[Markers]
[box]
bottom_left = '0.5 0 0'
inside = refine
top_right = '1 1 0'
outside = do_nothing
type = BoxMarker
[]
[]
[]
[Outputs]
exodus = true
csv = true
[console]
type = Console
system_info = 'framework mesh aux nonlinear relationship execution'
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = u
function = exact-linear
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/free-flow-hllc.i)
diff_coeff = 0.1
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = 1.1
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_u]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[rho]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[rho_u]
type = FunctionIC
variable = rho_u
function = 'exact_rho_u'
[]
[rho_et]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
[momentum_fn]
type = FVBodyForce
variable = rho_u
function = 'forcing_rho_u'
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_et
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[mass_diff]
type = FVDiffusion
variable = rho
coeff = ${diff_coeff}
[]
[momentum_diff]
type = FVDiffusion
variable = rho_u
coeff = ${diff_coeff}
[]
[energy_diff]
type = FVDiffusion
variable = rho_et
coeff = ${diff_coeff}
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
[]
[momentum_in]
variable = rho_u
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
[]
[mass_out]
variable = rho
type = CNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 'exact_p'
[]
[momentum_out]
variable = rho_u
type = CNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 'exact_p'
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = CNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 'exact_p'
[]
[left_mass_diffusion]
type = FVFunctionNeumannBC
variable = rho
function = minus_rho_bc
boundary = 'left'
[]
[left_momentum_diffusion]
type = FVFunctionNeumannBC
variable = rho_u
function = minus_rho_u_bc
boundary = 'left'
[]
[left_energy_diffusion]
type = FVFunctionNeumannBC
variable = rho_et
function = minus_rho_et_bc
boundary = 'left'
[]
[right_mass_diffusion]
type = FVFunctionNeumannBC
variable = rho
function = rho_bc
boundary = 'right'
[]
[right_momentum_diffusion]
type = FVFunctionNeumannBC
variable = rho_u
function = rho_u_bc
boundary = 'right'
[]
[right_energy_diffusion]
type = FVFunctionNeumannBC
variable = rho_et
function = rho_et_bc
boundary = 'right'
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_et
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[rho_bc]
type = ParsedFunction
value = '-diff_coeff*3.48788261470924*sin(x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[minus_rho_bc]
type = ParsedFunction
value = 'diff_coeff*3.48788261470924*sin(x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.83667087618017*sin(1.1*x) + 0.348788261470924*cos(x)'
[]
[exact_rho_u]
type = ParsedFunction
expression = '3.48788261470924*cos(1.1*x)'
[]
[rho_u_bc]
type = ParsedFunction
value = '-diff_coeff*3.48788261470924*1.1*sin(1.1*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[minus_rho_u_bc]
type = ParsedFunction
value = 'diff_coeff*3.48788261470924*1.1*sin(1.1*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[forcing_rho_u]
type = ParsedFunction
expression = '-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.48788261470924*sin(x)*cos(1.1*x)^2/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)/cos(x) + 0.422033796379819*cos(1.1*x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.2*x)'
[]
[rho_et_bc]
type = ParsedFunction
value = '-diff_coeff*26.7439413073546*1.2*sin(1.2*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[minus_rho_et_bc]
type = ParsedFunction
value = 'diff_coeff*26.7439413073546*1.2*sin(1.2*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '1.0*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x) + 3.85112754825907*cos(1.2*x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_u]
variable = rho_u
function = exact_rho_u
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fviks/continuity/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 20
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface_primary_side]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary_interface'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 0
initial_condition = 0.5
[]
[v]
type = MooseVariableFVReal
block = 1
initial_condition = 0.5
[]
[lambda]
type = MooseVariableScalar
[]
[]
[Problem]
kernel_coverage_check = false
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 'left'
block = 0
[]
[diff_right]
type = FVDiffusion
variable = v
coeff = 'right'
block = 1
[]
[]
[FVInterfaceKernels]
[interface]
type = FVTwoVarContinuityConstraint
variable1 = u
variable2 = v
boundary = 'primary_interface'
subdomain1 = '0'
subdomain2 = '1'
lambda = 'lambda'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[v_left]
type = FVDirichletBC
variable = v
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'left'
prop_values = '1'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'right'
prop_values = '1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 0
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv-to-fe-coupling/1d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmax = 2
[]
[]
[Variables]
[fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[fe]
initial_condition = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = fv
coeff = fv_prop
coeff_interp_method = average
[]
[coupled]
type = FVCoupledForce
v = fv
variable = fv
[]
[]
[Kernels]
[diff]
type = ADFunctorMatDiffusion
variable = fe
diffusivity = fe_prop
[]
[coupled]
type = CoupledForce
v = fv
variable = fe
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = fv
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = fv
boundary = right
value = 1
[]
[]
[BCs]
[left]
type = DirichletBC
variable = fe
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = fe
boundary = right
value = 1
[]
[]
[Materials]
active = 'fe_mat fv_mat'
[bad_mat]
type = FEFVCouplingMaterial
fe_var = fe
fv_var = fv
execute_on = 'linear nonlinear'
[]
[fe_mat]
type = FEFVCouplingMaterial
fe_var = fe
execute_on = 'linear nonlinear'
[]
[fv_mat]
type = FEFVCouplingMaterial
fv_var = fv
[]
[fe_mat_bad_dep]
type = FEFVCouplingMaterial
fe_var = fe
declared_prop_name = bad
[]
[fv_mat_bad_dep]
type = FEFVCouplingMaterial
fv_var = fv
retrieved_prop_name = bad
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/divergence_aux/test_fv.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1.5 1 0.1'
dy = '1.3 1 0.9'
ix = '2 4 1'
iy = '2 3 3'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[]
[add_inner_boundaries_top]
type = SideSetsAroundSubdomainGenerator
input = cmg
new_boundary = 'block_2_top'
block = 2
normal = '0 1 0'
[]
[add_inner_boundaries_bot]
type = SideSetsAroundSubdomainGenerator
input = add_inner_boundaries_top
new_boundary = 'block_2_bot'
block = 2
normal = '0 -1 0'
[]
[add_inner_boundaries_right]
type = SideSetsAroundSubdomainGenerator
input = add_inner_boundaries_bot
new_boundary = 'block_2_right'
block = 2
normal = '1 0 0'
[]
[add_inner_boundaries_left]
type = SideSetsAroundSubdomainGenerator
input = add_inner_boundaries_right
new_boundary = 'block_2_left'
block = 2
normal = '-1 0 0'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[v]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 1
[]
[reaction_u]
type = FVReaction
variable = u
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 2
[]
[reaction_v]
type = FVReaction
variable = v
[]
[]
[AuxVariables]
[div]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[divergence]
type = ADDivergenceAux
variable = div
u = 'u'
v = 'v'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 2
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[top]
type = FVDirichletBC
variable = v
boundary = top
value = 2
[]
[bottom]
type = FVDirichletBC
variable = v
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[int_divergence]
type = ElementL1Error
block = 2
variable = div
function = 0
[]
[sum_surface_current]
type = ParsedPostprocessor
expression = 's1 - s2 + s3 - s4'
pp_names = 's1 s2 s3 s4'
[]
[s1]
type = ADSideIntegralFunctorPostprocessor
boundary = 'block_2_right'
functor = 'u'
[]
[s2]
type = ADSideIntegralFunctorPostprocessor
boundary = 'block_2_left'
functor = 'u'
[]
[s3]
type = ADSideIntegralFunctorPostprocessor
boundary = 'block_2_top'
functor = 'v'
[]
[s4]
type = ADSideIntegralFunctorPostprocessor
boundary = 'block_2_bot'
functor = 'v'
[]
[]
[Outputs]
csv = true
hide = 's1 s2 s3 s4'
[]
(test/tests/fvkernels/mms/skewness-correction/adv-diff-react/skewed.i)
a=1.1
diff=1.1
[Mesh]
[gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[]
[]
[Variables]
[v]
initial_condition = 1
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[advection]
type = FVAdvection
variable = v
velocity = '${a} ${fparse 2*a} 0'
advected_interp_method = 'average'
[]
[reaction]
type = FVReaction
variable = v
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
mu = 1
rho = 1
k = 1
cp = 1
[GlobalParams]
velocity_interp_method = 'rc'
# Maximum cell Peclet number is ~.1 so energy transport is stable without upwinding
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[Pe]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[Pe]
type = PecletNumberFunctorAux
variable = Pe
speed = speed
thermal_diffusivity = 'thermal_diffusivity'
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = u
y_functor = v
vector_magnitude_name = speed
[]
[thermal_diffusivity]
type = ThermalDiffusivityFunctorMaterial
k = ${k}
rho = ${rho}
cp = ${cp}
[]
[enthalpy]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = T
cp = ${cp}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
mu = 2.6
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 350
alpha = 'alpha'
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 300
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-11
pressure_l_abs_tol = 1e-11
energy_l_abs_tol = 1e-11
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.999
num_iterations = 100
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
energy_absolute_tolerance = 1e-10
print_fields = false
continue_on_max_its = true
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
mu = 2.6
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'left'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'left'
variable = scalar_2
value = 2
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.9 0.9'
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = FINAL
[]
[]
[Postprocessors]
inactive = "out1 out2 in1 in2"
[out1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = left
execute_on = FINAL
outputs = csv
[]
[out2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = left
execute_on = FINAL
outputs = csv
[]
[]
(test/tests/fviks/one-var-diffusion/test.i)
L = 2
l = 1
q1 = 1
q2 = 2
uR = 1
D1 = 1
D2 = 2
ul = '${fparse 1/D2*(D2*uR+q2*L*L/2-q2*l*l/2-l*(q2-q1)*L+l*l*(q2-q1))}'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = ${L}
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '${l} 0 0'
block_id = 1
top_right = '${L} 1.0 0'
[]
[interface_primary_side]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary_interface'
[]
[interface_secondary_side]
input = interface_primary_side
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'secondary_interface'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[v]
type = MooseVariableFVReal
block = 0
[]
[w]
type = MooseVariableFVReal
block = 1
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 'left'
block = 0
[]
[diff_right]
type = FVDiffusion
variable = u
coeff = 'right'
block = 1
[]
[source_left]
type = FVBodyForce
variable = u
function = ${q1}
block = 0
[]
[source_right]
type = FVBodyForce
variable = u
function = ${q2}
block = 1
[]
[diff_v]
type = FVDiffusion
variable = v
block = 0
coeff = 'left'
[]
[diff_w]
type = FVDiffusion
variable = w
block = 1
coeff = 'right'
[]
[]
[FVInterfaceKernels]
active = 'interface'
[interface]
type = FVOneVarDiffusionInterface
variable1 = u
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[bad1]
type = FVOneVarDiffusionInterface
variable1 = w
variable2 = u
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[bad2]
type = FVOneVarDiffusionInterface
variable1 = u
variable2 = v
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[bad3]
type = FVOneVarDiffusionInterface
variable1 = v
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = ${uR}
[]
[v_left]
type = FVDirichletBC
variable = v
boundary = 'left'
value = 1
[]
[v_right]
type = FVDirichletBC
variable = v
boundary = 'primary_interface'
value = 0
[]
[w_left]
type = FVDirichletBC
variable = w
boundary = 'secondary_interface'
value = 1
[]
[w_right]
type = FVDirichletBC
variable = w
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'left'
prop_values = '${D1}'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'right'
prop_values = '${D2}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
csv = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'if(x<${l}, 1/${D1}*(${fparse D1*ul+q1*l*l/2}-${fparse q1/2}*x*x),-1/${D2}*(${fparse -D2*ul-q2*l*l/2}+${fparse q2/2}*x*x-${fparse l*(q2-q1)}*x+${fparse l*l*(q2-q1)}))'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/materials/functor_properties/1d_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 2
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[sink]
type = MooseVariableFVReal
[]
[]
[ICs]
[sink]
type = FunctionIC
variable = sink
function = 'x^3'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = 1
[]
[sink]
type = FVFunctorElementalKernel
variable = v
functor_name = 'sink_mat'
[]
[]
[FVBCs]
[bounds]
type = FVDirichletBC
variable = v
boundary = 'left right'
value = 0
[]
[]
[Materials]
active = 'functor'
[functor]
type = ADGenericFunctorMaterial
prop_names = sink_mat
prop_values = sink
[]
[overlapping_functor]
type = ADGenericFunctorMaterial
prop_names = 'sink_mat'
prop_values = v
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
# Fluid properties
mu = 1.1
rho = 1.1
cp = 1.1
k = 1e-3
# Operating conditions
u_inlet = 1
T_inlet = 200
T_solid = 190
p_outlet = 10
h_fs = 0.01
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 20
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${u_inlet}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-12
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_time]
type = INSFVEnergyTimeDerivative
variable = T_fluid
rho = ${rho}
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
variable = T_fluid
coeff = ${k}
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_x
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_y
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${p_outlet}'
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv T_solid'
prop_values = '${h_fs} ${T_solid}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 7e-13
dt = 0.4
end_time = 0.8
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/fvkernels/block-restriction/fv-and-fe-block-restriction.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 80
xmax = 4
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '2.0 0 0'
block_id = 1
top_right = '4.0 1.0 0'
[]
[left_right]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'left_right'
[]
[right_left]
input = left_right
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'right_left'
[]
[]
[Variables]
[left_fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
block = 0
[]
[left_fe]
initial_condition = 1
block = 0
[]
[right_fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
block = 1
[]
[right_fe]
initial_condition = 1
block = 1
[]
[]
[FVKernels]
active = 'bad_left_diff left_coupled bad_right_diff right_coupled'
[bad_left_diff]
type = FVDiffusion
variable = left_fv
coeff = fv_prop
block = 0
coeff_interp_method = average
[]
[good_left_diff]
type = FVDiffusion
variable = left_fv
coeff = left_fv_prop
block = 0
coeff_interp_method = average
[]
[left_coupled]
type = FVCoupledForce
v = left_fv
variable = left_fv
block = 0
[]
[bad_right_diff]
type = FVDiffusion
variable = right_fv
coeff = fv_prop
block = 1
coeff_interp_method = average
[]
[good_right_diff]
type = FVDiffusion
variable = right_fv
coeff = right_fv_prop
block = 1
coeff_interp_method = average
[]
[right_coupled]
type = FVCoupledForce
v = right_fv
variable = right_fv
block = 1
[]
[]
[Kernels]
[left_diff]
type = ADFunctorMatDiffusion
variable = left_fe
diffusivity = fe_prop
[]
[left_coupled]
type = CoupledForce
v = left_fv
variable = left_fe
[]
[right_diff]
type = ADFunctorMatDiffusion
variable = right_fe
diffusivity = fe_prop
[]
[right_coupled]
type = CoupledForce
v = right_fv
variable = right_fe
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = left_fv
boundary = left
value = 0
[]
[left_right]
type = FVDirichletBC
variable = left_fv
boundary = left_right
value = 1
[]
[right_left]
type = FVDirichletBC
variable = right_fv
boundary = right_left
value = 0
[]
[right]
type = FVDirichletBC
variable = right_fv
boundary = right
value = 1
[]
[]
[BCs]
[left]
type = DirichletBC
variable = left_fe
boundary = left
value = 0
[]
[left_right]
type = DirichletBC
variable = left_fe
boundary = left_right
value = 1
[]
[right_left]
type = DirichletBC
variable = right_fe
boundary = right_left
value = 0
[]
[right]
type = DirichletBC
variable = right_fe
boundary = right
value = 1
[]
[]
[Materials]
active = 'fe_mat_left bad_fv_mat_left fe_mat_right bad_fv_mat_right'
[fe_mat_left]
type = FEFVCouplingMaterial
fe_var = left_fe
block = 0
[]
[bad_fv_mat_left]
type = FEFVCouplingMaterial
fv_var = left_fv
block = 0
[]
[good_fv_mat_left]
type = FEFVCouplingMaterial
fv_var = left_fv
fv_prop_name = 'left_fv_prop'
block = 0
[]
[fe_mat_right]
type = FEFVCouplingMaterial
fe_var = right_fe
block = 1
[]
[bad_fv_mat_right]
type = FEFVCouplingMaterial
fv_var = right_fv
block = 1
[]
[good_fv_mat_right]
type = FEFVCouplingMaterial
fv_var = right_fv
fv_prop_name = 'right_fv_prop'
block = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
vel_x = u
vel_y = v
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'x'
vel_x = u
vel_y = v
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'y'
vel_x = u
vel_y = v
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T
T_fluid = T
boundary = 'left'
energy_pp = 'inlet_Edot'
area_pp = 'surface_inlet'
vel_x = u
vel_y = v
rho = 'rho'
cp = cp
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_flux_pp = 'inlet_scalar_flux'
area_pp = 'surface_inlet'
vel_x = u
vel_y = v
rho = 'rho'
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_Edot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * 2530 * inlet_temp * inlet_area}
[]
[inlet_scalar_flux]
type = Receiver
default = ${fparse inlet_velocity * 0.2 * inlet_area}
[]
[]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = 1980
cp = 2530
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(test/tests/fvkernels/mms/cylindrical/advection-diffusion-reaction.i)
a=1.1
diff=1.1
[Mesh]
coord_type = 'RZ'
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} ${a} 0'
advected_interp_method = 'average'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + diff*sin(x)*cos(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x - (-x*diff*sin(x)*cos(y) + diff*cos(x)*cos(y))/x'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/fv_coupled_var/coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 2
[]
[Variables]
[u][]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[w]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[s][]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[rxn]
type = Reaction
variable = u
rate = 2.0
[]
[diffs]
type = Diffusion
variable = s
[]
[prod]
type = CoupledForce
variable = s
v = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[rxn]
type = FVReaction
variable = v
rate = 2.0
[]
[diffw]
type = FVDiffusion
variable = w
coeff = coeff
[]
[prod]
type = FVCoupledForce
variable = w
v = 'v'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[leftw]
type = FVDirichletBC
variable = w
boundary = left
value = 0
[]
[rightw]
type = FVDirichletBC
variable = w
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[lefts]
type = DirichletBC
variable = s
boundary = left
value = 0
[]
[rights]
type = DirichletBC
variable = s
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/functors/previous-nl-it/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Problem]
previous_nl_solution_required = true
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[rxn]
type = FVSecondOrderRxnLagged
variable = u
lag = false
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/block-restriction/just-mat-blk-restriction.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 50
xmax = 4
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '2.0 0 0'
block_id = 1
top_right = '4.0 1.0 0'
[]
[left_right]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'left_right'
[]
[right_left]
input = left_right
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'right_left'
[]
[]
[Variables]
[fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = fv
coeff = diff
coeff_interp_method = average
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = fv
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = fv
boundary = right
value = 1
[]
[]
[Materials]
[left]
type = ADGenericFunctorMaterial
prop_names = 'diff'
prop_values = '1'
block = 0
[]
[right]
type = ADGenericFunctorMaterial
prop_names = 'diff'
prop_values = '2'
block = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(test/tests/indicators/gradient_jump_indicator/gradient_jump_indicator_fv_test.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 2
nx = 2
ny = 1
subdomain_ids = '0 1'
[]
[interface_mesh]
type = SideSetsBetweenSubdomainsGenerator
input = gmg
primary_block = 0
paired_block = 1
new_boundary = interface
[]
# This creates enough elements to have defined gradients
[refine]
type = RefineBlockGenerator
input = interface_mesh
block = '0 1'
refinement = '3 3'
[]
[]
[Adaptivity]
marker = error_frac
max_h_level = 5
[Indicators]
[u0_jump]
type = GradientJumpIndicator
variable = u0
scale_by_flux_faces = false
[]
[]
[Markers]
[error_frac]
type = ErrorFractionMarker
coarsen = 0.15
indicator = u0_jump
refine = 0.7
[]
[]
[]
[Variables]
[u0]
family = MONOMIAL
order = CONSTANT
fv = true
block = 0
initial_condition = 0
[]
[u1]
family = MONOMIAL
order = CONSTANT
fv = true
block = 1
initial_condition = 0
[]
[]
[FVKernels]
[time0]
type = FVTimeKernel
variable = u0
[]
[diff0]
type = FVDiffusion
variable = u0
coeff = 1
block = 0
[]
[time1]
type = FVTimeKernel
variable = u1
[]
[diff1]
type = FVDiffusion
variable = u1
coeff = 1
block = 1
[]
[]
[FVInterfaceKernels]
[diffusion]
type = FVDiffusionInterface
variable1 = u0
variable2 = u1
boundary = interface
subdomain1 = 0
subdomain2 = 1
coeff1 = 1
coeff2 = 1
[]
[]
[FVBCs]
[left] # arbitrary user-chosen name
type = FVDirichletBC
variable = u0
boundary = 'left' # This must match a named boundary in the mesh file
value = 1
[]
[right] # arbitrary user-chosen name
type = FVNeumannBC
variable = u1
boundary = 'right' # This must match a named boundary in the mesh file
value = 0
[]
[]
[Executioner]
type = Transient
solve_type = 'Newton'
end_time = 0.5
dt = 0.1
[]
[VectorPostprocessors]
[samples]
type = LineValueSampler
variable = u0
# Avoiding element faces
start_point = '0.0001 1e-6 0'
end_point = '0.999999 1e-6 0'
num_points = 10
sort_by = 'x'
[]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(test/tests/variables/caching_fv_variables/fv_caching.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1.5 2.4 0.1'
dy = '1.3 0.9'
ix = '2 1 1'
iy = '2 3'
subdomain_id = '0 1 1 2 2 2'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[adv]
type = FVMatAdvection
variable = u
vel = v_mat
[]
[body_force]
type = FVBodyForce
variable = u
value = 10
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = 1
[]
[top]
type = FVNeumannBC
variable = u
value = 1
boundary = 'top'
[]
[]
[Materials]
[v_mat]
type = ADGenericVectorFunctorMaterial
prop_names = 'v_mat'
prop_values = '4 0 0'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/linearfv_nonlinearfv/nonlinearfv.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 6
[]
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 2.0
[]
[]
[AuxVariables]
[diff_var]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[]
[FVKernels]
[diffusion]
type = FVDiffusion
variable = v
coeff = diff_var
[]
[source]
type = FVBodyForce
variable = v
function = 3
[]
[]
[MultiApps]
inactive = 'linear'
[linear]
type = FullSolveMultiApp
input_files = linearfv.i
execute_on = timestep_begin
no_restore = true
[]
[]
[Transfers]
inactive = 'from_linear to_linear'
[from_linear]
type = MultiAppCopyTransfer
from_multi_app = linear
source_variable = 'u'
variable = 'diff_var'
execute_on = timestep_begin
[]
[to_linear]
type = MultiAppCopyTransfer
to_multi_app = linear
source_variable = 'v'
variable = 'diff_var'
execute_on = timestep_begin
[]
[]
[FVBCs]
[dir]
type = FVFunctorDirichletBC
variable = v
boundary = "left right"
functor = 2
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
fixed_point_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = timestep_end
[]
(test/tests/scaling/scalar-field-grouping/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 20
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface_primary_side]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary_interface'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 0
initial_condition = 0.5
[]
[v]
type = MooseVariableFVReal
block = 1
initial_condition = 0.5
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 'left'
block = 0
[]
[diff_right]
type = FVDiffusion
variable = v
coeff = 'right'
block = 1
[]
[]
[FVInterfaceKernels]
[interface]
type = FVTwoVarContinuityConstraint
variable1 = u
variable2 = v
boundary = 'primary_interface'
subdomain1 = '0'
subdomain2 = '1'
lambda = 'lambda'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[v_left]
type = FVDirichletBC
variable = v
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'left'
prop_values = '1'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'right'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu NONZERO'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
scaling_group_variables = 'u v lambda'
verbose = true
[]
[Outputs]
exodus = true
[]
(test/tests/functors/layered-integral/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diffusion]
type = FVDiffusion
coeff = 1
variable = u
[]
[source]
type = FVBodyForce
variable = u
value = 1
[]
# We don't add matrix entries for the aggregate-based BC so add this to make the PC nonsingular
[rxn]
type = FVReaction
variable = u
[]
[]
[FVBCs]
[flux_out]
type = FVFunctorNeumannBC
boundary = 'left right'
functor = layered_average
variable = u
factor = '-1'
[]
[]
[UserObjects]
[layered_average]
execute_on = 'linear nonlinear'
type = LayeredAverage
direction = 'y'
variable = u
num_layers = 5
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/ad_convective_heat_flux/fe_fv_coupled.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.5 0.5'
dy = '0.5 0.5'
ix = '5 5'
iy = '5 5'
subdomain_id = '0 1
0 1'
[]
[add_sideset0]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
new_boundary = middle01
primary_block = 0
paired_block = 1
[]
[add_sideset1]
type = SideSetsBetweenSubdomainsGenerator
input = add_sideset0
new_boundary = middle10
primary_block = 1
paired_block = 0
[]
[]
[Variables]
[u_fe]
block = 0
[]
[u_fv]
type = MooseVariableFVReal
block = 1
[]
[]
[Kernels]
[u_fe_diff]
type = ADDiffusion
variable = u_fe
[]
[]
[BCs]
[u_fe_left]
type = ADDirichletBC
boundary = left
variable = u_fe
value = 0
[]
[u_fe_middle]
type = ADConvectiveHeatFluxBC
boundary = middle01
variable = u_fe
T_infinity_functor = u_fv
heat_transfer_coefficient_functor = 1.0
[]
[]
[FVKernels]
[u_fv_diff]
type = FVDiffusion
variable = u_fv
coeff = 1.0
[]
[]
[FVBCs]
[u_fv_right]
type = FVDirichletBC
boundary = right
variable = u_fv
value = 1.0
[]
[u_fv_middle]
type = FVFunctorConvectiveHeatFluxBC
boundary = middle10
variable = u_fv
T_bulk = u_fv
T_solid = u_fe
heat_transfer_coefficient = 1.0
is_solid = false
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
previous_nl_solution_required = true
kernel_coverage_check = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
block = ${restricted_blocks}
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1.0
solver_sys = u_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
solver_sys = scalar_system
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = T_fluid
[]
[energy_loss]
type = FVBodyForce
variable = T_fluid
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1.0
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
energy_l_abs_tol = 1e-12
passive_scalar_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
passive_scalar_systems = 'scalar_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.99
passive_scalar_equation_relaxation = 0.99
num_iterations = 100
pressure_absolute_tolerance = 1e-9
momentum_absolute_tolerance = 1e-9
energy_absolute_tolerance = 1e-9
passive_scalar_absolute_tolerance = 1e-9
print_fields = false
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
block = ${restricted_blocks}
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[mixing_length]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
inactive = 'u_turb v_turb temp_turb'
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
[temp_turb]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
rho = rho
cp = cp
mixing_length = 'mixing_length'
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T_fluid
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[AuxKernels]
inactive = 'mixing_len'
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
delta = 0.5
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/grad-reconstruction/mat-cartesian.i)
a=1.1
diff=1.1
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${fparse 2 * a} 0'
advected_quantity = 'mat_u'
grad_advected_quantity = 'mat_grad_u'
[]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Materials]
[mat_grad_u]
type = ADCoupledGradientMaterial
grad_mat_prop = 'mat_grad_u'
u = v
[]
[mat_u]
type = ADParsedMaterial
property_name = mat_u
coupled_variables = v
expression = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
mu = 0.002
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.2'
dy = '0.2'
dz = '0.8'
ix = '3'
iy = '3'
iz = '12'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system w_system pressure_system energy_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[vel_z]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = w_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[w_advection]
type = INSFVMomentumAdvection
variable = vel_z
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = vel_z
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = vel_z
momentum_component = 'z'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 350
alpha = 'alpha'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_x
function = '0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_y
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_z
function = '1.1'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom '
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0.0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_z
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'front'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'back left right top bottom'
function = 0.0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'back'
variable = T_fluid
value = 300
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
# petsc_options_iname = '-pc_type -pc_hypre_type -pc_factor_shift_type'
# petsc_options_value = 'hypre boomeramg NONZERO'
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.95
num_iterations = 150
pressure_absolute_tolerance = 1e-11
momentum_absolute_tolerance = 1e-11
energy_absolute_tolerance = 1e-11
print_fields = false
momentum_l_abs_tol = 1e-13
pressure_l_abs_tol = 1e-13
energy_l_abs_tol = 1e-13
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(test/tests/fvkernels/constraints/integral_transient.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVIntegralValueConstraint
variable = v
phi0 = phi0_pp
lambda = lambda
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Postprocessors]
[phi0_pp]
type = FunctionValuePostprocessor
function = 't + 13'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/grad-reconstruction/mat-rz.i)
a=1.1
diff=1.1
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${a} 0'
advected_quantity = 'mat_u'
grad_advected_quantity = 'mat_grad_u'
[]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Materials]
[mat_grad_u]
type = ADCoupledGradientMaterial
grad_mat_prop = 'mat_grad_u'
u = v
[]
[mat_u]
type = ADParsedMaterial
property_name = mat_u
coupled_variables = v
expression = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + diff*sin(x)*cos(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x - (-x*diff*sin(x)*cos(y) + diff*cos(x)*cos(y))/x'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-steady-wall-balance.i)
L = 30
bulk_u = 0.01
p_ref = 101325.0
T_in = 860
q_source = 50000
q2_wall = 10000
A_cp = 976.78
B_cp = 1.0634
rho = 2000
advected_interp_method = 'upwind'
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 1
ymax = 2.5
nx = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_ref}
two_term_boundary_expansion = false
[]
[T]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
initial_condition = ${T_in}
[]
[]
[FVKernels]
[mass]
type = WCNSFVMassAdvection
variable = pressure
rho = 'rho'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[source]
type = FVBodyForce
variable = T
function = source_func
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = ${bulk_u}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'left'
value = ${T_in}
[]
[incoming_heat]
type = FVNeumannBC
variable = T
value = ${q2_wall}
boundary = 'top'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_ref}
[]
[]
[Functions]
[source_func]
type = ParsedFunction
expression = '${q_source}'
[]
[]
[FunctorMaterials]
[converter_to_regular_T]
type = FunctorADConverter
ad_props_in = 'T'
reg_props_out = 'T_nAD'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = 'rho'
cp = 'cp'
assumed_constant_cp = false
h_in = 'h'
# fp = 'fp'
# pressure = 'pressure'
[]
[rho]
type = ADParsedFunctorMaterial
property_name = 'rho'
expression = '${rho}'
[]
[mu]
type = ADParsedFunctorMaterial
property_name = 'mu'
expression = '4.5e-3'
[]
[k]
type = ADParsedFunctorMaterial
property_name = 'k'
expression = '0.7'
[]
[h]
type = ADParsedFunctorMaterial
property_name = 'h'
functor_names = 'T ${A_cp} ${B_cp}'
functor_symbols = 'T A_cp B_cp'
expression = 'A_cp * T + B_cp * T * T / 2'
[]
[cp]
type = ADParsedFunctorMaterial
property_name = 'cp'
functor_names = 'T ${A_cp} ${B_cp}'
functor_symbols = 'T A_cp B_cp'
expression = 'A_cp+B_cp*T'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
[]
[Postprocessors]
[H_in]
type = VolumetricFlowRate
vel_x = 'vel_x'
advected_quantity = 'rho_h'
boundary = 'left'
[]
[H_out]
type = VolumetricFlowRate
vel_x = 'vel_x'
advected_quantity = 'rho_h'
boundary = 'right'
[]
[Q]
type = FunctionElementIntegral
function = 'source_func'
execute_on = 'initial'
[]
[Q_wall]
type = FunctionSideIntegral
function = ${q2_wall}
boundary = 'top'
[]
[balance_in_percent]
type = ParsedPostprocessor
expression = '(H_out + H_in - Q - Q_wall) / H_in * 100'
pp_names = 'H_in H_out Q Q_wall'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/examples/laser-welding/2d-fv.i)
period=.2e-4 # s
endtime=${fparse 3 * period} # s
timestep=${fparse period / 100} # s
surfacetemp=2700 # K
bottomtemp=2700 # K
sb=5.67e-8 # W/(m^2 K^4)
advected_interp_method='upwind'
velocity_interp_method='rc'
rho='rho'
mu='mu'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -.7e-3 # m
xmax = 0.7e-3 # m
ymin = -.35e-3 # m
ymax = 0
nx = 75
ny = 20
displacements = 'disp_x disp_y'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
use_displaced_mesh = true
disp_x = disp_x
disp_y = disp_y
[]
[]
[Problem]
extra_tag_vectors = 'e_time e_advection e_conduction e_laser e_radiation e_mesh_advection'
[]
[AuxVariables]
[mu_out]
type = MooseVariableFVReal
[]
[e_time]
type = MooseVariableFVReal
[]
[e_advection]
type = MooseVariableFVReal
[]
[e_mesh_advection]
type = MooseVariableFVReal
[]
[e_conduction]
type = MooseVariableFVReal
[]
[e_laser]
type = MooseVariableFVReal
[]
[e_radiation]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mu_out]
type = FunctorAux
functor = mu
variable = mu_out
execute_on = timestep_end
[]
[e_time]
type = TagVectorAux
variable = e_time
vector_tag = e_time
v = T
[]
[e_advection]
type = TagVectorAux
variable = e_advection
vector_tag = e_advection
v = T
[]
[e_mesh_advection]
type = TagVectorAux
variable = e_mesh_advection
vector_tag = e_mesh_advection
v = T
[]
[e_conduction]
type = TagVectorAux
variable = e_conduction
vector_tag = e_conduction
v = T
[]
[e_laser]
type = TagVectorAux
variable = e_laser
vector_tag = e_laser
v = T
[]
[e_radiation]
type = TagVectorAux
variable = e_radiation
vector_tag = e_radiation
v = T
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[T]
type = INSFVEnergyVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[disp_x]
[]
[disp_y]
[]
[]
[ICs]
[T]
type = FunctionIC
variable = T
function = '${surfacetemp} + ((${surfacetemp} - ${bottomtemp}) / .35e-3) * y'
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
diffusivity = 1e6
[]
[disp_y]
type = MatDiffusion
variable = disp_y
diffusivity = 1e6
[]
[]
[FVKernels]
# pressure equation
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
use_displaced_mesh = true
boundaries_to_force = top
[]
# momentum equations
# u equation
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
use_displaced_mesh = true
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
use_displaced_mesh = true
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
use_displaced_mesh = true
[]
[u_pressure]
type = INSFVMomentumPressureFlux
variable = vel_x
momentum_component = 'x'
pressure = pressure
use_displaced_mesh = true
[]
[u_mesh_advection_volumetric]
type = INSFVMomentumMeshAdvection
variable = vel_x
momentum_component = 'x'
rho = ${rho}
disp_x = disp_x
disp_y = disp_y
add_to_a = false
use_displaced_mesh = true
[]
# v equation
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
use_displaced_mesh = true
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
use_displaced_mesh = true
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
use_displaced_mesh = true
[]
[v_pressure]
type = INSFVMomentumPressureFlux
variable = vel_y
momentum_component = 'y'
pressure = pressure
use_displaced_mesh = true
[]
[v_mesh_advection_volumetric]
type = INSFVMomentumMeshAdvection
variable = vel_y
momentum_component = 'y'
rho = ${rho}
disp_x = disp_x
disp_y = disp_y
add_to_a = false
use_displaced_mesh = true
[]
# energy equation
[temperature_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho}
dh_dt = dh_dt
use_displaced_mesh = true
extra_vector_tags = 'e_time'
[]
[temperature_advection]
type = INSFVEnergyAdvection
variable = T
use_displaced_mesh = true
extra_vector_tags = 'e_advection'
[]
[temperature_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
use_displaced_mesh = true
extra_vector_tags = 'e_conduction'
[]
[temperature_mesh_advection_volumetric]
type = INSFVMeshAdvection
variable = T
rho = ${rho}
disp_x = disp_x
disp_y = disp_y
advected_quantity = 'h'
use_displaced_mesh = true
extra_vector_tags = 'e_mesh_advection'
[]
[]
[FVBCs]
# momentum boundary conditions
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'bottom right left'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'bottom right left'
function = 0
[]
[vapor_recoil_x]
type = INSFVVaporRecoilPressureMomentumFluxBC
variable = vel_x
boundary = 'top'
momentum_component = 'x'
rc_pressure = rc_pressure
use_displaced_mesh = true
[]
[vapor_recoil_y]
type = INSFVVaporRecoilPressureMomentumFluxBC
variable = vel_y
boundary = 'top'
momentum_component = 'y'
rc_pressure = rc_pressure
use_displaced_mesh = true
[]
# energy boundary conditions
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = '${bottomtemp}'
[]
[radiation_flux]
type = FVFunctorRadiativeBC
variable = T
boundary = 'top'
emissivity = '1'
Tinfinity = 300
stefan_boltzmann_constant = ${sb}
use_displaced_mesh = true
extra_vector_tags = 'e_radiation'
[]
[weld_flux]
type = FVGaussianEnergyFluxBC
variable = T
boundary = 'top'
P0 = 159.96989792079225
R = 1.25e-4
x_beam_coord = '2e-4 * sin(t * 2 * pi / ${period})'
y_beam_coord = 0
z_beam_coord = 0
use_displaced_mesh = true
extra_vector_tags = 'e_laser'
[]
[]
[BCs]
# displacement boundary conditions
[x_no_disp]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0
[]
[y_no_disp]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[displace_x_top]
type = INSADDisplaceBoundaryBC
boundary = 'top'
variable = 'disp_x'
velocity = 'vel'
component = 0
associated_subdomain = 0
[]
[displace_y_top]
type = INSADDisplaceBoundaryBC
boundary = 'top'
variable = 'disp_y'
velocity = 'vel'
component = 1
associated_subdomain = 0
[]
[displace_x_top_dummy]
type = INSADDummyDisplaceBoundaryIntegratedBC
boundary = 'top'
variable = 'disp_x'
velocity = 'vel'
component = 0
[]
[displace_y_top_dummy]
type = INSADDummyDisplaceBoundaryIntegratedBC
boundary = 'top'
variable = 'disp_y'
velocity = 'vel'
component = 1
[]
[]
[FunctorMaterials]
[steel]
type = AriaLaserWeld304LStainlessSteelFunctorMaterial
temperature = T
beta = 1e7
[]
[disp_vec_value_and_dot]
type = ADGenericVectorFunctorMaterial
prop_names = 'disp_vec'
prop_values = 'disp_x disp_y 0'
[]
[vel]
type = ADGenericVectorFunctorMaterial
prop_names = 'vel'
prop_values = 'vel_x vel_y 0'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type -mat_mffd_err'
petsc_options_value = 'lu NONZERO strumpack 1e-6'
[]
[]
[Executioner]
type = Transient
end_time = ${endtime}
dtmin = 1e-8
dtmax = ${timestep}
petsc_options = '-snes_converged_reason -ksp_converged_reason -options_left'
solve_type = 'PJFNK'
line_search = 'none'
nl_max_its = 12
l_max_its = 100
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
dt = ${timestep}
linear_iteration_ratio = 1e6
growth_factor = 1.1
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[laser_flux]
type = TagVectorSum
vector = 'e_laser'
[]
[volume_rho_cp_dT]
type = TagVectorSum
vector = 'e_time'
[]
[conduction]
type = TagVectorSum
vector = 'e_conduction'
[]
[advection]
type = TagVectorSum
vector = 'e_advection'
[]
[mesh_advection]
type = TagVectorSum
vector = 'e_mesh_advection'
[]
[radiation]
type = TagVectorSum
vector = 'e_radiation'
[]
[total_sum]
type = ParsedPostprocessor
expression = 'laser_flux + volume_rho_cp_dT + advection + mesh_advection + conduction + radiation'
pp_names = 'laser_flux volume_rho_cp_dT advection mesh_advection conduction radiation'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/1d_test_cpT.i)
L = 30
bulk_u = 0.01
p_ref = 101325.0
T_in = 860
q_source = 50000
A_cp = 976.78
B_cp = 1.0634
rho = 2000
advected_interp_method = 'upwind'
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = ${L}
nx = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_ref}
two_term_boundary_expansion = false
[]
[T]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
initial_condition = ${T_in}
[]
[]
[FVKernels]
[mass]
type = WCNSFVMassAdvection
variable = pressure
rho = 'rho'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[source]
type = FVBodyForce
variable = T
function = source_func
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = ${bulk_u}
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'left'
value = ${T_in}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_ref}
[]
[]
[Functions]
[source_func]
type = ParsedFunction
expression = '${q_source}'
[]
[]
[FunctorMaterials]
[converter_to_regular_T]
type = FunctorADConverter
ad_props_in = 'T'
reg_props_out = 'T_nAD'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = 'rho'
cp = 'cp'
assumed_constant_cp = false
h_in = 'h'
# Alternative to providing 'h': set the fluid property and the pressure parameter
# fp = 'fp'
# pressure = 'pressure'
[]
[rho]
type = ADParsedFunctorMaterial
property_name = 'rho'
expression = '${rho}'
[]
[mu]
type = ADParsedFunctorMaterial
property_name = 'mu'
expression = '4.5e-3'
[]
[k]
type = ADParsedFunctorMaterial
property_name = 'k'
expression = '0.7'
[]
[h]
type = ADParsedFunctorMaterial
property_name = 'h'
functor_names = 'T ${A_cp} ${B_cp}'
functor_symbols = 'T A_cp B_cp'
expression = 'A_cp * T + B_cp * T * T / 2'
[]
[cp]
type = ADParsedFunctorMaterial
property_name = 'cp'
functor_names = 'T ${A_cp} ${B_cp}'
functor_symbols = 'T A_cp B_cp'
expression = 'A_cp+B_cp*T'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
[]
[Postprocessors]
[H_in]
type = VolumetricFlowRate
vel_x = 'vel_x'
advected_quantity = 'rho_h'
boundary = 'left'
[]
[H_out]
type = VolumetricFlowRate
vel_x = 'vel_x'
advected_quantity = 'rho_h'
boundary = 'right'
[]
[Q]
type = FunctionElementIntegral
function = 'source_func'
execute_on = 'initial'
[]
[balance_in_percent]
type = ParsedPostprocessor
expression = '(H_out + H_in - Q) / H_in * 100'
pp_names = 'H_in H_out Q'
[]
[T_out]
type = SideAverageValue
variable = T
boundary = 'right'
[]
[T_analytical_outlet]
type = Receiver
default = ${fparse (-A_cp+sqrt(A_cp^2-2*B_cp*(-q_source/rho/bulk_u*L-A_cp*T_in-B_cp/2*T_in*T_in)))/B_cp}
[]
[error_T]
type = ParsedPostprocessor
expression = 'T_out - T_analytical_outlet'
pp_names = 'T_out T_analytical_outlet'
[]
[]
[Outputs]
csv = true
[]
(test/tests/functors/fe-var-for-fv-neumann/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 20
[]
[]
[Variables]
[fe][]
[fv]
type = MooseVariableFVReal
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = fe
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = fv
coeff = 1
[]
[]
[BCs]
[left]
type = DirichletBC
variable = fe
value = 0
boundary = left
[]
[right]
type = DirichletBC
variable = fe
value = 1
boundary = right
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = fv
value = 0
boundary = left
[]
[right]
type = FVFunctorNeumannBC
variable = fv
functor = fe
boundary = right
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/examples/solidification/gallium_melting.i)
##########################################################
# Simulation of Gallium Melting Experiment
# Ref: Gau, C., & Viskanta, R. (1986). Melting and solidification of a pure metal on a vertical wall.
# Key physics: melting/solidification, convective heat transfer, natural convection
##########################################################
mu = 1.81e-3
rho_solid = 6093
rho_liquid = 6093
k_solid = 32
k_liquid = 32
cp_solid = 381.5
cp_liquid = 381.5
L = 80160
alpha_b = 1.2e-4
T_solidus = 302.93
T_liquidus = '${fparse T_solidus + 0.1}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
T_cold = 301.15
T_hot = 311.15
Nx = 100
Ny = 50
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 88.9e-3
ymin = 0
ymax = 63.5e-3
nx = ${Nx}
ny = ${Ny}
[]
[]
[AuxVariables]
[U]
type = MooseVariableFVReal
[]
[fl]
type = MooseVariableFVReal
initial_condition = 0.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[darcy_coef]
type = MooseVariableFVReal
[]
[fch_coef]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = FunctorAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = FunctorAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = FunctorAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[darcy_out]
type = FunctorAux
functor = 'Darcy_coefficient'
variable = 'darcy_coef'
[]
[fch_out]
type = FunctorAux
functor = 'Forchheimer_coefficient'
variable = 'fch_coef'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_cold}'
scaling = 1e-4
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = rho_mixture
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
momentum_component = 'x'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
ref_temperature = ${T_cold}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
momentum_component = 'x'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = rho_mixture
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
momentum_component = 'y'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
ref_temperature = ${T_cold}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
momentum_component = 'y'
[]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = rho_mixture
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = k_mixture
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0
[]
[hot_wall]
type = FVDirichletBC
variable = T
value = '${T_hot}'
boundary = 'left'
[]
[cold_wall]
type = FVDirichletBC
variable = T
value = '${T_cold}'
boundary = 'right'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = rho_mixture
cp = cp_mixture
temperature = 'T'
[]
[eff_cp]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[mushy_zone_resistance]
type = INSFVMushyPorousFrictionFunctorMaterial
liquid_fraction = 'fl'
mu = '${mu}'
rho_l = '${rho_liquid}'
dendrite_spacing_scaling = 1e-1
[]
[friction]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coeff Forchheimer_coeff'
prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b'
prop_values = '${alpha_b}'
[]
[]
[Executioner]
type = Transient
# Time-stepping parameters
start_time = 0.0
end_time = 200.0
num_steps = 2
[TimeStepper]
type = IterationAdaptiveDT
# Raise time step often but not by as much
# There's a rough spot for convergence near 10% fluid fraction
optimal_iterations = 15
growth_factor = 1.5
dt = 0.1
[]
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-6
nl_max_its = 30
line_search = 'none'
[]
[Postprocessors]
[ave_p]
type = ElementAverageValue
variable = 'pressure'
execute_on = 'INITIAL TIMESTEP_END'
[]
[ave_fl]
type = ElementAverageValue
variable = 'fl'
execute_on = 'INITIAL TIMESTEP_END'
[]
[ave_T]
type = ElementAverageValue
variable = 'T'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[VectorPostprocessors]
[vel_x]
type = ElementValueSampler
variable = 'vel_x fl'
sort_by = 'x'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/postprocessors/side_integral/side_integral_functor.i)
[Mesh]
inactive = 'refine'
# U-shaped domains to have internal boundaries in
# a variety of directions
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1 1'
dy = '3 1'
ix = '4 5 3'
iy = '12 4'
subdomain_id = '1 2 1
1 1 1'
[]
[internal_boundary_dir1]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 1
paired_block = 2
new_boundary = 'inside_1'
[]
[internal_boundary_dir2]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_dir1
primary_block = 2
paired_block = 1
new_boundary = 'inside_2'
[]
[refine]
type = RefineBlockGenerator
input = internal_boundary_dir2
block = '1 2'
refinement = '2 1'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 1
[]
[]
[AuxVariables]
[v1]
type = MooseVariableFVReal
block = 1
[FVInitialCondition]
type = FVFunctionIC
function = 'x + y'
[]
[]
[v2]
type = MooseVariableFVReal
block = 2
[FVInitialCondition]
type = FVFunctionIC
function = '2*x*x - y'
[]
[]
[]
[Functions]
[f1]
type = ParsedFunction
expression = 'exp(x - y)'
[]
[]
[Materials]
[m1]
type = ADGenericFunctorMaterial
prop_names = 'm1'
prop_values = 'f1'
[]
[m2]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'm2'
subdomain_to_prop_value = '1 12
2 4'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = '1'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
# Mesh external boundaries integration
[ext_u]
type = ADSideIntegralFunctorPostprocessor
boundary = 'left top right'
functor = u
restrict_to_functors_domain = true
[]
[ext_v1]
type = ADSideIntegralFunctorPostprocessor
boundary = 'left right'
functor = v1
[]
[ext_v2]
type = ADSideIntegralFunctorPostprocessor
boundary = 'top'
functor = v2
restrict_to_functors_domain = true
[]
[ext_f1]
type = ADSideIntegralFunctorPostprocessor
boundary = 'left top right'
functor = f1
prefactor = f1
[]
[ext_m1]
type = ADSideIntegralFunctorPostprocessor
boundary = 'left top right'
functor = m1
restrict_to_functors_domain = true
[]
[ext_m2]
type = ADSideIntegralFunctorPostprocessor
boundary = 'left top right'
functor = m2
restrict_to_functors_domain = true
[]
# Internal to the mesh, but a side to the variables
# With orientation of normal 1->2
[int_s1_u]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_1
functor = u
[]
[int_s1_v1]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_1
functor = v1
[]
[int_s1_f1]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_1
functor = f1
[]
[int_s1_m1]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_1
functor = m1
[]
[int_s1_m2]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_1
functor = m2
[]
# With orientation of normal 2->1
[int_s2_v2]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_2
functor = v2
[]
[int_s2_f1]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_2
functor = f1
[]
[int_s2_m1]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_2
functor = m1
[]
[int_s2_m2]
type = ADSideIntegralFunctorPostprocessor
boundary = inside_2
functor = m2
[]
[]
[Outputs]
csv = true
exodus = true
[]
[Problem]
kernel_coverage_check = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/scalar-transport.i)
diff=1e-3
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
active = 'rc'
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
a_u = ax
a_v = ay
[]
[rc_bad]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Variables]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[AuxVariables]
[ax]
type = MooseVariableFVReal
[]
[ay]
type = MooseVariableFVReal
[]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/1d_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC
variable = u
boundary = 'left'
velocity_pp = 'inlet_u'
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
velocity_pp = 0
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
line_search = 'none'
automatic_scaling = true
compute_scaling_once = false
off_diagonals_in_auto_scaling = true
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/iks/flow-around-square/flow-around-square.i)
# Water properties
mu = 1.0E-3
rho = 1000.0
k = 0.598
cp = 4186
# Solid properties
cp_s = 830
rho_s = 1680
k_s = 3.5
# Other parameters
p_outlet = 0
u_inlet = -1e-4
h_conv = 50
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
ymin = 0
ymax = 0.1
xmax = 0.1
[]
[subdomain1]
input = generated_mesh
type = SubdomainBoundingBoxGenerator
block_name = subdomain1
bottom_left = '0.04 0.04 0'
block_id = 1
top_right = '0.06 0.06 0'
[]
[interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = 0
paired_block = 1
new_boundary = interface
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
block = 0
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-4
block = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-4
block = 0
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
initial_condition = 283.15
scaling = 1e-5
block = 0
[]
[Ts]
type = INSFVEnergyVariable
initial_condition = 333.15
scaling = 1e-5
block = 1
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
block = 0
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
block = 0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
block = 0
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
block = 0
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
block = 0
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
block = 0
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
block = 0
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
block = 0
[]
[energy_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho}
dh_dt = dh_dt
block = 0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
block = 0
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
block = 0
[]
[solid_energy_time]
type = INSFVEnergyTimeDerivative
variable = Ts
rho = ${rho_s}
dh_dt = dh_solid_dt
block = 1
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k_s'
variable = Ts
block = 1
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
subdomain1 = 0
subdomain2 = 1
boundary = interface
h = ${h_conv}
T_solid = Ts
T_fluid = T
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'top'
variable = vel_x
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'top'
variable = vel_y
function = ${u_inlet}
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 283.15
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'left right interface'
variable = vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'left right interface'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'bottom'
variable = pressure
function = '${p_outlet}'
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
block = 0
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[solid_functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp_s k_s'
prop_values = '${cp_s} ${k_s}'
block = 1
[]
[solid_ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'Ts'
rho = ${rho_s}
cp = ${cp_s}
block = 1
h = h_solid
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-8
dt = 10
end_time = 10
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/element_integral_var_pps/pps_old_value_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 1
[../]
[]
[Functions]
[./force_fn]
type = ParsedFunction
expression = '1'
[../]
[./exact_fn]
type = ParsedFunction
expression = 't'
[../]
[]
[FVKernels]
[./diff_u]
type = FVDiffusion
variable = u
coeff = '1'
block = '0'
[../]
[./ffn_u]
type = FVBodyForce
variable = u
function = force_fn
[../]
[]
[FVBCs]
[./all_u]
type = FVFunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./a]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./total_a]
type = TimeIntegratedPostprocessor
value = a
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 20
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_outlet}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[mass_time]
type = PWCNSFVMassTimeDerivative
variable = pressure
porosity = 'porosity'
drho_dt = 'drho_dt'
[]
[mass]
type = PWCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = superficial_vel_x
rho = ${rho}
drho_dt = 'drho_dt'
momentum_component = 'x'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = superficial_vel_y
rho = ${rho}
drho_dt = 'drho_dt'
momentum_component = 'y'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_fluid
h = 'h'
dh_dt = 'dh_dt'
rho = ${rho}
drho_dt = 'drho_dt'
is_solid = false
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
variable = T_fluid
k = ${k}
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVDirichletBC
variable = T_fluid
value = ${T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_outlet}
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[FunctorMaterials]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T_fluid'
speed = 'speed'
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 'porosity'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
porosity = 'porosity'
superficial_vel_x = 'superficial_vel_x'
superficial_vel_y = 'superficial_vel_y'
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
automatic_scaling = true
end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = VolumetricFlowRate
boundary = 'right'
advected_quantity = '1'
advected_interp_method = ${advected_interp_method}
vel_x = 'superficial_vel_x'
vel_y = 'superficial_vel_y'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[pin]
type = ExtraNodesetGenerator
input = gen
new_boundary = 'pin'
nodes = '0'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = 'u'
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho}
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/fv_only_refined.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
uniform_refine = 1
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_side_integral/layered_side_integral_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[AuxVariables]
[./layered_integral]
order = CONSTANT
family = MONOMIAL
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[]
[FVBCs]
[./bottom]
type = FVDirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = FVDirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[AuxKernels]
[./liaux]
type = SpatialUserObjectAux
variable = layered_integral
boundary = right
user_object = layered_integral
[../]
[]
[UserObjects]
[./layered_integral]
type = LayeredSideIntegral
direction = y
num_layers = 3
variable = u
execute_on = linear
boundary = right
[../]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
l_abs_tol = 1e-14
l_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(test/tests/fviks/diffusion/test.i)
L = 2
l = 1
q1 = 1
q2 = 2
uR = 1
D1 = 1
D2 = 2
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = ${L}
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '${l} 0 0'
block_id = 1
top_right = '${L} 1.0 0'
[]
[interface_primary]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary_interface'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 0
initial_condition = 0.5
[]
[v]
type = MooseVariableFVReal
block = 1
initial_condition = 0.5
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 'left'
block = 0
coeff_interp_method = average
[]
[source_left]
type = FVBodyForce
variable = u
function = ${q1}
block = 0
[]
[diff_right]
type = FVDiffusion
variable = v
coeff = 'right'
block = 1
coeff_interp_method = average
[]
[source_right]
type = FVBodyForce
variable = v
function = ${q2}
block = 1
[]
[]
[FVInterfaceKernels]
[interface]
type = FVDiffusionInterface
variable1 = u
variable2 = v
boundary = 'primary_interface'
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[]
[FVBCs]
[v_left]
type = FVDirichletBC
variable = v
boundary = 'right'
value = ${uR}
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'left'
prop_values = '${D1}'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'right'
prop_values = '${D2}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions with temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment_v = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_T = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
initial_condition = 1.0
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_turb_conduction]
type = FVDiffusion
coeff = 'k_t'
variable = T_fluid
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment_v}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment_v}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = INSFVTurbulentTemperatureWallFunction
variable = T_fluid
boundary = 'top'
T_w = 1
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
cp = ${cp}
kappa = ${k}
k = TKE
wall_treatment = ${wall_treatment_T}
[]
[T_cold]
type = INSFVTurbulentTemperatureWallFunction
variable = T_fluid
boundary = 'bottom'
T_w = 0
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
cp = ${cp}
kappa = ${k}
k = TKE
wall_treatment = ${wall_treatment_T}
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment_v}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[k_t]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment_v}
execute_on = 'NONLINEAR'
[]
[compute_k_t]
type = TurbulentConductivityAux
variable = k_t
Pr_t = ${Pr_t}
cp = ${cp}
mu_t = 'mu_t'
execute_on = 'NONLINEAR'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
energy_equation_relaxation = 0.9
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
continue_on_max_its = true
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(test/tests/fviks/one-var-diffusion/no-ik.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 'coeff'
coeff_interp_method = average
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'coeff'
prop_values = '4'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'coeff'
prop_values = '2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
csv = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'if(x<1, 1 - x/3, 4/3 - 2*x/3)'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/misc/check_error/incomplete_fvkernel_block_coverage_test.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[FVKernels]
active = 'diff body_force'
[./diff]
type = FVDiffusion
variable = u
block = 1
coeff = 1
[../]
[./body_force]
type = FVBodyForce
variable = u
block = 1
value = 10
[../]
[]
[FVBCs]
active = 'right'
[./left]
type = FVDirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-action.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
h_cv = 1.0
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '50 50'
iy = '20'
subdomain_id = '1 2'
[]
[]
[Variables]
[T_solid]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'incompressible'
porous_medium_treatment = true
add_energy_equation = true
density = ${rho}
dynamic_viscosity = ${mu}
thermal_conductivity = ${k}
specific_heat = ${cp}
porosity = 'porosity'
# Reference file sets effective_conductivity by default that way
# so the conductivity is multiplied by the porosity in the kernel
effective_conductivity = false
initial_velocity = '${u_inlet} 1e-6 0'
initial_pressure = 0.0
initial_temperature = 0.0
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '${u_inlet} 0'
energy_inlet_types = 'heatflux'
energy_inlet_function = '${fparse u_inlet * rho * cp * T_inlet}'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip symmetry'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '0.1'
ambient_convection_alpha = ${h_cv}
ambient_temperature = 'T_solid'
mass_advection_interpolation = 'average'
momentum_advection_interpolation = 'average'
energy_advection_interpolation = 'average'
[]
[]
[FVKernels]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = 'T_solid'
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = ${h_cv}
[]
[]
[FVBCs]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 150
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/heat_transfer/test/tests/fvkernels/radiation_istothermal_medium_1d.i)
diffusion_coef = 1.0
opacity = 1.0
temperature_radiation = 100.0
G_bc = 1.0
sigma = 5.670374419e-8
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 50
[]
[]
[Variables]
[G]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[G_diffusion]
type = FVDiffusion
variable = G
coeff = ${diffusion_coef}
[]
[source_and_sink]
type = FVThermalRadiationSourceSink
variable = G
temperature_radiation = ${temperature_radiation}
opacity = ${opacity}
[]
[]
[FVBCs]
[right_bc]
type = FVDirichletBC
boundary = 'right'
variable = G
value = ${G_bc}
[]
[]
[Functions]
[analytical_sol]
type = ParsedFunction
symbol_names = 'a'
symbol_values = '${fparse sqrt(opacity / diffusion_coef)}'
expression = '${G_bc} * cosh(a*x) / cosh(a) + ${sigma} * ${temperature_radiation}^4 * (1.0 - cosh(a*x) / cosh(a))'
[]
[]
[Postprocessors]
[value_solution]
type = ElementIntegralFunctorPostprocessor
functor = G
[]
[value_analytic]
type = ElementIntegralFunctorPostprocessor
functor = analytical_sol
[]
[relative_difference]
type = RelativeDifferencePostprocessor
value1 = value_solution
value2 = value_analytic
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[secondary_interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'interface'
primary_block = 1
paired_block = 0
new_boundary = 'secondary_interface'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
[]
[v]
type = INSFVVelocityVariable
block = 0
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
block = 0
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
block = 0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
block = 0
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
block = 0
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
block = 0
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
block = 0
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
block = 0
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
block = 0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
block = 0
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
block = 0
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
block = 1
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
bulk_distance = 0.3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left interface bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left interface top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = Ts
boundary = 'right'
value = 0
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
l_max_its = 200
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/time_derivative_aux/test_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 6
ny = 6
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 2
[]
[]
[FVKernels]
[time]
type = FVTimeKernel
variable = u
[]
[reaction]
type = FVReaction
variable = u
rate = 2.0
[]
[diffusion]
type = FVDiffusion
variable = u
coeff = 0.1
[]
[]
[FVBCs]
[left]
type = FVNeumannBC
variable = u
value = 5
boundary = 'left'
[]
[]
[AuxVariables]
inactive = 'variable_derivative'
[variable_derivative]
family = MONOMIAL
order = CONSTANT
[]
[variable_derivative_fv]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[AuxKernels]
# Time derivative of a FV variable using the functor system
[function_derivative_element]
type = TimeDerivativeAux
variable = variable_derivative_fv
functor = 'u'
factor = 2
[]
# this places the derivative of a FV variable in a FE one
# let's output a warning
inactive = 'function_derivative_element_fv_fe'
[function_derivative_element_fv_fe]
type = TimeDerivativeAux
variable = variable_derivative
functor = 'u'
factor = 2
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/mat-advection-diffusion.i)
diff=1.1
a=1.1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -0.6
xmax = 0.6
nx = 64
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./advection]
type = FVMatAdvection
variable = v
vel = 'fv_velocity'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[adv_material]
type = ADCoupledVelocityMaterial
vel_x = '${a}'
rho = 'v'
velocity = 'fv_velocity'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-${diff}*6 + ${a} * (6*x + 2)'
# expression = '-${diff}*6'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvbcs/fv_functor_dirichlet/fv_other_side.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 2'
dy = '1.3'
ix = '5 10'
iy = '3'
subdomain_id = '0 1'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = '0'
paired_block = '1'
new_boundary = 'mid'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 0
[]
[v]
type = MooseVariableFVReal
block = 1
[]
[]
[FVKernels]
[diffu]
type = FVDiffusion
variable = u
coeff = 1
[]
[diffv]
type = FVDiffusion
variable = v
coeff = 2
block = 1
[]
[source]
type = FVBodyForce
variable = v
value = 1
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 4
[]
[mid]
type = FVADFunctorDirichletBC
variable = u
functor = v
functor_only_defined_on_other_side = true
ghost_layers = 3
boundary = mid
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 0.5
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-12
[]
[VectorPostprocessors]
[u_sample]
type = LineValueSampler
variable = 'u'
start_point = '0.01 0.3 0'
end_point = '0.99 0.3 0'
num_points = 4
sort_by = x
[]
[v_sample]
type = LineValueSampler
variable = 'v'
start_point = '1.01 0.3 0'
end_point = '1.99 0.3 0'
num_points = 4
sort_by = x
[]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet_rz.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# x can't start at zero because FV's weak dirichlet BCs need a non-zero area
# on the left so their numerical flux contribution isn't zero'd out -
# causing there to basically be no BC on the left.
xmin = .1
xmax = 1
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 7
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/fvbcs/fv_functor_dirichlet/fv_functor_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 4
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVFunctorDirichletBC
variable = u
boundary = left
functor = bc_value
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Materials]
[bc_value]
type = GenericFunctorMaterial
prop_names = bc_value
prop_values = 10
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test_functor.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 2
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 4
[]
[gradient_creating]
type = FVBodyForce
variable = u
[]
[]
[FVBCs]
[left]
type = FunctorThermalResistanceBC
geometry = 'cartesian'
variable = u
T_ambient = 10
htc = 'htc'
emissivity = 0.2
thermal_conductivities = '0.1 0.2 0.3'
conduction_thicknesses = '1 0.7 0.2'
boundary = 'left'
# Test setting iteration parameters
step_size = 0.02
max_iterations = 120
tolerance = 1e-4
[]
[top]
type = FunctorThermalResistanceBC
geometry = 'cartesian'
variable = u
# Test setting the temperature separately from the variable
temperature = 'u'
T_ambient = 14
htc = 'htc'
emissivity = 0
thermal_conductivities = '0.1 0.2 0.3'
conduction_thicknesses = '1 0.7 0.4'
boundary = 'top'
[]
[other]
type = FVDirichletBC
variable = u
boundary = 'right bottom'
value = 0
[]
[]
[Materials]
[cht]
type = ADGenericFunctorMaterial
prop_names = 'htc'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/materials/functor_properties/ad_conversion/1d_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 2
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[sink]
type = MooseVariableFVReal
[]
[]
[ICs]
[sink]
type = FunctionIC
variable = sink
function = 'x^3'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = 1
[]
[sink]
type = FVFunctorElementalKernel
variable = v
functor_name = 'ad_sink'
[]
[]
[FVBCs]
[bounds]
type = FVDirichletBC
variable = v
boundary = 'left right'
value = 0
[]
[]
[Materials]
[converter_to_regular]
type = FunctorADConverter
ad_props_in = 'sink'
reg_props_out = 'regular_sink_0'
[]
# Just to change the name
[functor]
type = GenericFunctorMaterial
prop_names = 'regular_sink_1'
prop_values = 'regular_sink_0'
[]
[converter_to_ad]
type = FunctorADConverter
reg_props_in = 'regular_sink_1'
ad_props_out = 'ad_sink'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/solidification_no_advection.i)
rho_solid = 1.0
rho_liquid = 1.0
k_solid = 0.03
k_liquid = 0.1
cp_solid = 1.0
cp_liquid = 1.0
T_liquidus = 260
T_solidus = 240
L = 1.0
T_hot = 300.0
T_cold = 200.0
N = 10
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = ${N}
ny = ${N}
[]
[]
[AuxVariables]
[fl]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = FunctorAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = FunctorAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = FunctorAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[]
[Variables]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_hot}'
[]
[]
[FVKernels]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho_liquid}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 'k_mixture'
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[heated_wall]
type = FVDirichletBC
variable = T
value = '${T_hot}'
boundary = 'top'
[]
[cooled_wall]
type = FVDirichletBC
variable = T
value = '${T_cold}'
boundary = 'bottom'
[]
[]
[FunctorMaterials]
[eff_cp]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[h]
type = INSFVEnthalpyFunctorMaterial
cp = ${cp_liquid}
temperature = T
rho = ${rho_liquid}
[]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 50.0
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-12
nl_max_its = 50
steady_state_detection = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
# ========================================================================
# The purpose of this MOOSE scripts is to solve a 2-D axisymmetric
# problem with the following details:
# ------------------------------------------------------------------
# Physics: natural convection through a fluid and heat conduction
# in a solid and there is convective heat transfer from the
# solid to the liquid.
# ------------------------------------------------------------------
# Materials: the fluid is water and the solid is not specified.
# ------------------------------------------------------------------
# BCS: Inlet and outlet pressure with value of 0
# noslip conditions on the walls.
# Heat flux on the left wall with value of 40000 W/m^2
# ========================================================================
# ========================================================================
# Dimensions & Physical properties
# ========================================================================
Domain_length = 121.92e-2 # m
Solid_width = 0.7112e-3 # m
Liquid_width = 0.56261e-2 # m
mu = 0.00053157
rho = 987.27
k = 0.64247
k_solid = 15.0
cp = 4181.8
alpha_b = 210e-6
T_init = 300.0
input_heat_flux = 40000.0
# ========================================================================
# The main body of the script
# ========================================================================
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
#dx = '0.7032625e-4 0.7112e-5'
dx = '${Liquid_width} ${Solid_width}'
ix = '10 3'
dy = '${fparse 1./5.*Domain_length} ${fparse 4./5.*Domain_length}'
iy = '30 10'
subdomain_id = '0 1
0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
block = 0
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = ${T_init}
scaling = 1e-5
[]
[Ts]
type = INSFVEnergyVariable
block = 1
initial_condition = ${T_init}
scaling = 1e-3
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T
gravity = '0 -9.81 0'
rho = ${rho}
ref_temperature = ${T_init}
momentum_component = 'x'
#alpha_name = ${alpha_b}
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
#alpha_name = ${alpha_b}
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T
gravity = '0 -9.81 0'
rho = ${rho}
ref_temperature = ${T_init}
momentum_component = 'y'
[]
[temp_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = '${rho}'
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[Ts_time]
type = INSFVEnergyTimeDerivative
variable = Ts
rho = '${rho}'
dh_dt = dh_solid_dt
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k_solid'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = htc
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'interface left bottom_to_0'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'interface left bottom_to_0'
function = 0
[]
[outlet]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'top_to_0'
function = 0.0
[]
[outlet_T]
type = NSFVOutflowTemperatureBC
variable = T
boundary = 'top_to_0'
u = vel_x
v = vel_y
rho = ${rho}
cp = '${cp}'
backflow_T = ${T_init}
[]
[Insulator]
type = FVNeumannBC
variable = 'T'
boundary = 'left'
value = 0.0
[]
[heater]
type = FVNeumannBC
variable = 'Ts'
boundary = 'right'
value = '${fparse input_heat_flux}'
[]
[Insulator_solid]
type = FVNeumannBC
variable = 'Ts'
boundary = 'top_to_1'
value = 0.0
[]
[inlet_T_1]
type = FVDirichletBC
variable = Ts
boundary = 'bottom_to_1'
value = ${T_init}
[]
[]
[AuxVariables]
[Ra]
type = INSFVScalarFieldVariable
initial_condition = 1000.0
[]
[htc]
type = INSFVScalarFieldVariable
initial_condition = 0.0
[]
[]
[AuxKernels]
[compute_Ra]
type = ParsedAux
variable = Ra
coupled_variables = 'T'
constant_names = 'g beta T_init width nu alpha'
constant_expressions = '9.81 ${alpha_b} ${T_init} ${Liquid_width} ${fparse mu/rho} ${fparse k/(rho*cp)}'
expression = 'g * beta * (T - T_init) * pow(width, 3) / (nu*alpha) + 1.0'
block = 0
[]
[htc]
type = ParsedAux
variable = htc
coupled_variables = 'Ra'
constant_names = 'Pr'
constant_expressions = '${fparse cp*mu/k}'
expression = '${k}* (0.68 + 0.67 * pow(Ra, 0.25)/pow(1 + pow(0.437/Pr, 9/16) ,4/9) )/ ${Liquid_width} '
block = 0
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k k_solid'
prop_values = '${cp} ${k} ${k_solid}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[ins_fv_solid]
type = INSFVEnthalpyFunctorMaterial
temperature = 'Ts'
rho = ${rho}
cp = ${cp}
h = h_solid
rho_h = rho_h_solid
block = 1
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b'
prop_values = '${alpha_b}'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = ' lu NONZERO 200'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 20
iteration_window = 2
[]
nl_max_its = 30
nl_abs_tol = 1e-10
steady_state_detection = true
steady_state_tolerance = 1e-09
[]
[Postprocessors]
[max_T]
type = ADElementExtremeFunctorValue
functor = T
block = 0
[]
[max_Ts]
type = ADElementExtremeFunctorValue
functor = Ts
block = 1
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/materials/piecewise_by_block_material/discontinuous_functor.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 'coeff'
coeff_interp_method = average
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[coeff_mat]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'coeff'
subdomain_to_prop_value = '0 4
1 2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
# Mass equation
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
# X component momentum equation
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/linear-segregated/2d-heated/solid.i)
k = 2
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.25 0.25'
dy = '0.2'
ix = '5 5'
iy = '5'
subdomain_id = '0 1'
[]
[delete]
type = BlockDeletionGenerator
input = mesh
block = '0'
[]
[]
[Variables]
[T_solid]
type = MooseVariableFVReal
initial_condition = 300
[]
[]
[AuxVariables]
[T_fluid]
type = MooseVariableFVReal
initial_condition = 300
[]
[]
[MultiApps]
inactive = 'fluid'
[fluid]
type = FullSolveMultiApp
input_files = fluid.i
execute_on = timestep_begin
no_restore = true
[]
[]
[Transfers]
inactive = 'from_fluid to_fluid'
[from_fluid]
type = MultiAppGeneralFieldShapeEvaluationTransfer
from_multi_app = fluid
source_variable = 'T_fluid'
variable = 'T_fluid'
execute_on = timestep_begin
from_blocks = 1
[]
[to_fluid]
type = MultiAppGeneralFieldShapeEvaluationTransfer
to_multi_app = fluid
source_variable = 'T_solid'
variable = 'T_solid'
execute_on = timestep_begin
to_blocks = 1
[]
[]
[FVKernels]
[conduction]
type = FVDiffusion
variable = T_solid
coeff = ${k}
[]
[source]
type = FVBodyForce
variable = T_solid
function = 25000
[]
[heat_exchange]
type = PINSFVEnergyAmbientConvection
variable = T_solid
h_solid_fluid = 100
T_fluid = T_fluid
T_solid = T_solid
is_solid = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = timestep_end
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
mu = 1
rho = 1
k = 1e-3
diff = 1e-3
cp = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[scalar_coupled_source]
type = FVCoupledForce
variable = scalar
v = U
coef = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 60}'
ymin = 0
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_phase_2}
[]
[interface_area]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_interface_area}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_x'
v_slip = 'vel_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = ${fparse l/2}
rho = 'rho_mixture'
rho_d = 'rho'
pressure = 'pressure'
k_c = '${fparse mass_exchange_coeff}'
fd = 'phase_2'
sigma = 1e-3
cutoff_fraction = 0.0
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${outlet_pressure}'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = ${inlet_interface_area}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry-phase-2]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = phase_2
[]
[symmetry-interface-area]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = interface_area
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[bubble_properties]
type = GeneralFunctorFluidProps
fp = 'fp'
pressure = 'pressure'
T_fluid = 300.0
speed = 1.0
characteristic_length = 1.0
porosity = 1.0
output_properties = 'rho'
outputs = 'out'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = 'rho ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = 'FINAL'
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-action.i)
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 20
ny = 5
[]
[]
[Variables]
[T_solid]
type = INSFVEnergyVariable
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[velocity_norm]
type = MooseVariableFVReal
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'weakly-compressible'
add_energy_equation = true
porous_medium_treatment = true
density = 'rho'
dynamic_viscosity = 'mu'
thermal_conductivity = 'k'
specific_heat = 'cp'
initial_velocity = '${u_inlet} 1e-6 0'
initial_pressure = '${p_outlet}'
initial_temperature = '${T_inlet}'
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '${u_inlet} 0'
energy_inlet_types = 'fixed-temperature'
energy_inlet_function = '${T_inlet}'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip symmetry'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '${p_outlet}'
ambient_convection_alpha = 'h_cv'
ambient_temperature = 'T_solid'
mass_advection_interpolation = 'average'
momentum_advection_interpolation = 'average'
energy_advection_interpolation = 'average'
[]
[]
[FVKernels]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = 'porosity'
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
# this should use eps * k instead of k
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T_fluid'
speed = 'velocity_norm'
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 'porosity'
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[AuxKernels]
[speed]
type = ParsedAux
variable = 'velocity_norm'
coupled_variables = 'superficial_vel_x superficial_vel_y porosity'
expression = 'sqrt(superficial_vel_x*superficial_vel_x + superficial_vel_y*superficial_vel_y) / porosity'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/fviks/diffusion/multisystem.i)
[Mesh]
[gmg]
type = CartesianMeshGenerator
dim = 1
ix = '50 50'
dx = '1 1'
subdomain_id = '0 1'
[]
[sds]
type = SideSetsBetweenSubdomainsGenerator
input = gmg
new_boundary = 'between'
paired_block = '1'
primary_block = '0'
[]
[]
[Problem]
nl_sys_names = 'u v'
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = MooseVariableFVReal
solver_sys = 'u'
block = 0
[]
[v]
type = MooseVariableFVReal
solver_sys = 'v'
block = 1
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 3.0
[]
[force_u]
type = FVBodyForce
variable = u
function = 5
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 1.0
[]
[force_v]
type = FVBodyForce
variable = v
function = 5
[]
[]
[FVInterfaceKernels]
[diff_ik]
type = FVDiffusionInterface
variable1 = u
variable2 = v
boundary = 'between'
coeff1 = 3
coeff2 = 1
subdomain1 = 0
subdomain2 = 1
[]
[diff_ik_v]
type = FVDiffusionInterface
variable1 = v
variable2 = u
boundary = 'between'
coeff1 = 1
coeff2 = 3
subdomain1 = 1
subdomain2 = 0
[]
[]
[FVBCs]
[left_u]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right_v]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Preconditioning]
[u]
type = SMP
nl_sys = u
petsc_options = '-snes_monitor'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[v]
type = SMP
nl_sys = v
petsc_options = '-snes_monitor'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[]
[Executioner]
type = SteadySolve2
solve_type = 'NEWTON'
first_nl_sys_to_solve = 'u'
second_nl_sys_to_solve = 'v'
number_of_iterations = 200
nl_abs_tol = 1e-10
[]
[Outputs]
print_nonlinear_residuals = false
print_linear_residuals = false
exodus = true
[]
(test/tests/fvkernels/mms/harmonic_interpolation/diffusion.i)
d1 = 1
d2 = 10
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
elem_type = TRI3
[]
[subdomain]
type = ParsedSubdomainMeshGenerator
input = gen_mesh
combinatorial_geometry = 'y > 0.5'
block_id = 1
[]
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = 'diff_coeff'
coeff_interp_method = average
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'if (y < 0.5, 1 + x + 3*y*y*y, (11*d2-3*d1)/ (8*d2) + x + 3*d1/d2*y*y*y)'
symbol_names = 'd1 d2'
symbol_values = '${d1} ${d2}'
[]
[forcing]
type = ParsedFunction
expression = '-d1*18*y'
symbol_names = 'd1'
symbol_values = '${d1}'
[]
[]
[Materials]
[diff_coeff]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'diff_coeff'
subdomain_to_prop_value = '0 ${d1}
1 ${d2}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
exodus = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '10 10'
iy = '5'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system solid_energy_system'
previous_nl_solution_required = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
solver_sys = pressure_system
[]
[T_fluid]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
solver_sys = energy_system
initial_condition = 200
[]
[T_solid]
type = MooseVariableFVReal
two_term_boundary_expansion = false
solver_sys = solid_energy_system
initial_condition = 200
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = bottom
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVDirichletBC
variable = T_fluid
value = ${T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 250
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv cp'
prop_values = '0.1 ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
solid_energy_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
solid_energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
solid_energy_system = 'solid_energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.4
energy_equation_relaxation = 1.0
num_iterations = 160
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
solid_energy_absolute_tolerance = 1e-12
print_fields = false
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/fvkernels/split-mesh/diffusion.i)
[Variables]
[v]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = 1
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctorDirichletBC
boundary = 'left right top bottom'
functor = 0.0
variable = v
[]
[]
[Functions]
[forcing]
type = ParsedFunction
expression = '-d1*18*y'
symbol_names = 'd1'
symbol_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/side_average_value/side_average_functor_test.i)
[Mesh]
inactive = 'refine'
# U-shaped domains to have internal boundaries in
# a variety of directions
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1 1'
dy = '3 1'
ix = '4 5 3'
iy = '12 4'
subdomain_id = '1 2 1
1 1 1'
[]
[internal_boundary_dir1]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 1
paired_block = 2
new_boundary = 'inside_1'
[]
[internal_boundary_dir2]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_dir1
primary_block = 2
paired_block = 1
new_boundary = 'inside_2'
[]
[refine]
type = RefineBlockGenerator
input = internal_boundary_dir2
block = '1 2'
refinement = '2 1'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 1
[]
[]
[AuxVariables]
[v1]
type = MooseVariableFVReal
block = 1
[FVInitialCondition]
type = FVFunctionIC
function = 'x + y'
[]
[]
[v2]
type = MooseVariableFVReal
block = 2
[FVInitialCondition]
type = FVFunctionIC
function = '2*x*x - y'
[]
[]
[]
[Functions]
[f1]
type = ParsedFunction
expression = 'exp(x - y)'
[]
[]
[FunctorMaterials]
[m1]
type = ADGenericFunctorMaterial
prop_names = 'm1'
prop_values = 'f1'
[]
[m2]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'm2'
subdomain_to_prop_value = '1 12
2 4'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = '1'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
# Mesh external boundaries integration
[ext_u]
type = SideAverageFunctorPostprocessor
boundary = 'left top right'
functor = u
restrict_to_functors_domain = true
[]
[ext_u_int]
type = ADSideIntegralFunctorPostprocessor
boundary = 'left top right'
functor = u
restrict_to_functors_domain = true
[]
[ext_u_area]
type = AreaPostprocessor
boundary = 'left top right'
[]
[ext_u_diff]
type = ParsedPostprocessor
pp_names = 'ext_u ext_u_int ext_u_area'
function = 'ext_u - ext_u_int/ext_u_area'
[]
[ext_v1]
type = SideAverageFunctorPostprocessor
boundary = 'left right'
functor = v1
[]
[ext_v2]
type = SideAverageFunctorPostprocessor
boundary = 'top'
functor = v2
restrict_to_functors_domain = true
[]
[ext_f1]
type = SideAverageFunctorPostprocessor
boundary = 'left top right'
functor = f1
prefactor = f1
[]
[ext_m1]
type = SideAverageFunctorPostprocessor
boundary = 'left top right'
functor = m1
restrict_to_functors_domain = true
[]
[ext_m2]
type = SideAverageFunctorPostprocessor
boundary = 'left top right'
functor = m2
restrict_to_functors_domain = true
[]
# Internal to the mesh, but a side to the variables
# With orientation of normal 1->2
[int_s1_u]
type = SideAverageFunctorPostprocessor
boundary = inside_1
functor = u
[]
[int_s1_v1]
type = SideAverageFunctorPostprocessor
boundary = inside_1
functor = v1
[]
[int_s1_f1]
type = SideAverageFunctorPostprocessor
boundary = inside_1
functor = f1
[]
[int_s1_m1]
type = SideAverageFunctorPostprocessor
boundary = inside_1
functor = m1
[]
[int_s1_m2]
type = SideAverageFunctorPostprocessor
boundary = inside_1
functor = m2
[]
# With orientation of normal 2->1
[int_s2_v2]
type = SideAverageFunctorPostprocessor
boundary = inside_2
functor = v2
[]
[int_s2_f1]
type = SideAverageFunctorPostprocessor
boundary = inside_2
functor = f1
[]
[int_s2_m1]
type = SideAverageFunctorPostprocessor
boundary = inside_2
functor = m1
[]
[int_s2_m2]
type = SideAverageFunctorPostprocessor
boundary = inside_2
functor = m2
[]
[]
[Outputs]
csv = true
exodus = true
[]
[Problem]
kernel_coverage_check = false
[]
(test/tests/fvkernels/mms/non-orthogonal/advection-diffusion-reaction.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = TRI3
[../]
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVAdvection
variable = v
velocity = '${a} ${fparse 2*a} 0'
advected_interp_method = 'average'
[]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=1e-4
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.25 1.0 0.25'
dy = '0.25 0.25 0.25'
ix = '4 20 4'
iy = '5 5 5'
subdomain_id = '1 2 5 1 3 5 1 4 5'
[]
[separator-1]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
primary_block = '2'
paired_block = '3'
new_boundary = 'separator-1'
[]
[separator-2]
type = SideSetsBetweenSubdomainsGenerator
input = separator-1
primary_block = '3'
paired_block = '4'
new_boundary = 'separator-2'
[]
[jump-1]
type = SideSetsBetweenSubdomainsGenerator
input = separator-2
primary_block = '1'
paired_block = '2'
new_boundary = jump-1
[]
[jump-2]
type = SideSetsBetweenSubdomainsGenerator
input = jump-1
primary_block = '1'
paired_block = '3'
new_boundary = jump-2
[]
[jump-3]
type = SideSetsBetweenSubdomainsGenerator
input = jump-2
primary_block = '1'
paired_block = '4'
new_boundary = jump-3
[]
[outlet-1]
type = SideSetsBetweenSubdomainsGenerator
input = jump-3
primary_block = '2'
paired_block = '5'
new_boundary = outlet-1
[]
[outlet-2]
type = SideSetsBetweenSubdomainsGenerator
input = outlet-1
primary_block = '3'
paired_block = '5'
new_boundary = outlet-2
[]
[outlet-3]
type = SideSetsBetweenSubdomainsGenerator
input = outlet-2
primary_block = '4'
paired_block = '5'
new_boundary = outlet-3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0.1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
[]
[pressure]
type = BernoulliPressureVariable
u = superficial_vel_x
v = superficial_vel_y
rho = ${rho}
pressure_drop_sidesets = 'jump-1 jump-2 jump-3 outlet-1 outlet-2 outlet-3'
pressure_drop_form_factors = '0.1 0.2 0.3 0.1 0.2 0.3'
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
momentum_component = 'x'
mu = ${mu}
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
pressure = pressure
momentum_component = 'x'
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'x'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
pressure = pressure
momentum_component = 'y'
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_source]
type = FVBodyForce
variable = T_fluid
function = heating
block = '2 3 4'
[]
[]
[Functions]
[heating]
type = ParsedFunction
expression = 'if(y<0.25, 10, if(y<0.5, 20, 30))'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '0.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVDirichletBC
variable = T_fluid
boundary = 'left'
value = 300
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-u]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator-1 separator-2'
variable = superficial_vel_x
momentum_component = 'x'
[]
[separator-v]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator-1 separator-2'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-p]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator-1 separator-2'
variable = pressure
[]
[separator-T]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator-1 separator-2'
variable = T_fluid
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
[]
[FunctorMaterials]
[porosity]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = porosity
subdomain_to_prop_value = '1 0.8
2 0.7
3 0.6
4 0.5
5 0.8'
[]
[darcy-1]
type = ADGenericVectorFunctorMaterial
prop_names = 'Forchheimer_coefficient'
prop_values = '1.0 1.0 1.0'
block = '1 5'
[]
[darcy-2]
type = ADGenericVectorFunctorMaterial
prop_names = 'Forchheimer_coefficient'
prop_values = '3.0 3.0 3.0'
block = 2
[]
[darcy-3]
type = ADGenericVectorFunctorMaterial
prop_names = 'Forchheimer_coefficient'
prop_values = '1.5 1.5 1.5'
block = 3
[]
[darcy-4]
type = ADGenericVectorFunctorMaterial
prop_names = 'Forchheimer_coefficient'
prop_values = '0.75 0.75 0.75'
block = 4
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
line_search = 'none'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[outlet_T1]
type = SideAverageValue
variable = 'T_fluid'
boundary = 'right'
[]
[]
[Outputs]
csv = true
execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient-action.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[]
[Variables]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'incompressible'
porous_medium_treatment = true
add_energy_equation = true
density = 'rho'
dynamic_viscosity = 'mu'
thermal_conductivity = 'k'
specific_heat = 'cp'
porosity = 'porosity'
# Reference file sets effective_conductivity by default that way
# so the conductivity is multiplied by the porosity in the kernel
effective_conductivity = false
initial_velocity = '${u_inlet} 1e-6 0'
initial_pressure = ${p_outlet}
initial_temperature = 0.0
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '${u_inlet} 0'
energy_inlet_types = 'heatflux'
energy_inlet_function = '${fparse u_inlet * rho * cp * T_inlet}'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip symmetry'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '${p_outlet}'
ambient_convection_alpha = 'h_cv'
ambient_temperature = 'T_solid'
mass_advection_interpolation = 'average'
momentum_advection_interpolation = 'average'
energy_advection_interpolation = 'average'
[]
[]
[FVKernels]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv cp rho mu k'
prop_values = '${h_fs} ${cp} ${rho} ${mu} ${k}'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[FunctorMaterials]
[mat_props]
type = GenericFunctorMaterial
prop_names = diffusivity
prop_values = 1
[]
[mat_props_vector]
type = GenericVectorFunctorMaterial
prop_names = diffusivity_vec
prop_values = '1 1.5 1'
[]
[]
[Postprocessors]
inactive = 'avg_flux_top'
[avg_flux_right]
# Computes flux integral on the boundary, which should be -1
type = SideDiffusiveFluxAverage
variable = u
boundary = right
functor_diffusivity = diffusivity
[]
[avg_flux_top]
type = SideVectorDiffusivityFluxIntegral
variable = u
boundary = top
functor_diffusivity = diffusivity_vec
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
l_abs_tol = 1e-14
l_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/incomplete_fvkernel_variable_coverage_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./v]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[FVKernels]
active = 'diff body_force'
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[./body_force]
type = FVBodyForce
variable = u
value = 10
[../]
[]
[FVBCs]
active = 'right'
[./left]
type = FVDirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = out
[]
(test/tests/fvbcs/fv_functor_neumannbc/fv_functor_neumann.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 2
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 4
[]
[]
[AuxVariables]
[qdot]
type = MooseVariableFVReal
[]
[]
[ICs]
[set_qdot]
type = FunctionIC
variable = qdot
function = 'y'
[]
[]
[FVBCs]
[left]
type = FVFunctorNeumannBC
variable = u
functor = qdot
boundary = left
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/mass-mom-mat-advection-diffusion/input.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmin = -.6
xmax = .6
[]
[]
[GlobalParams]
advected_interp_method = 'average'
[]
[Variables]
[fv_rho]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 2
[]
[fv_vel]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 2
[]
[]
[FVKernels]
[adv_rho]
type = FVMatAdvection
variable = fv_rho
vel = 'fv_velocity'
[]
[diff_rho]
type = FVDiffusion
variable = fv_rho
coeff = coeff
[]
[forcing_rho]
type = FVBodyForce
variable = fv_rho
function = 'forcing_rho'
[]
[adv_rho_u]
type = FVMatAdvection
variable = fv_vel
vel = 'fv_velocity'
advected_quantity = 'rho_u'
[]
[diff_vel]
type = FVDiffusion
variable = fv_vel
coeff = coeff
[]
[forcing_vel]
type = FVBodyForce
variable = fv_vel
function = 'forcing_vel'
[]
[]
[FVBCs]
[boundary_rho]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact_rho'
variable = fv_rho
[]
[boundary_vel]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact_vel'
variable = fv_vel
[]
[]
[Materials]
[euler_material]
type = ADCoupledVelocityMaterial
vel_x = fv_vel
rho = fv_rho
velocity = 'fv_velocity'
[]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
csv = true
[]
[Functions]
[forcing_rho]
type = ParsedFunction
expression = '-1.331*sin(1.1*x)^2 + 1.331*sin(1.1*x) + 1.331*cos(1.1*x)^2'
[]
[exact_rho]
type = ParsedFunction
expression = '1.1*sin(1.1*x)'
[]
[forcing_vel]
type = ParsedFunction
expression = '-2.9282*sin(1.1*x)^2*cos(1.1*x) + 1.4641*cos(1.1*x)^3 + 1.331*cos(1.1*x)'
[]
[exact_vel]
type = ParsedFunction
expression = '1.1*cos(1.1*x)'
[]
[]
[Postprocessors]
[./l2_rho]
type = ElementL2Error
variable = fv_rho
function = exact_rho
execute_on = timestep_end
[../]
[./l2_vel]
type = ElementL2Error
variable = fv_vel
function = exact_vel
execute_on = timestep_end
[../]
[h]
type = AverageElementSize
execute_on = timestep_end
[]
[]
(test/tests/multisystem/picard/linearfv_nonlinearfv/same_input.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 6
[]
[]
[Problem]
nl_sys_names = 'v_sys'
linear_sys_names = 'u_sys'
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 2.0
solver_sys = v_sys
[]
[u]
type = MooseLinearVariableFVReal
solver_sys = 'u_sys'
initial_condition = 1.0
[]
[]
[FVKernels]
[diffusion]
type = FVDiffusion
variable = v
coeff = u
[]
[source]
type = FVBodyForce
variable = v
function = 3
[]
[]
[LinearFVKernels]
[diffusion]
type = LinearFVDiffusion
variable = u
diffusion_coeff = v
[]
[source]
type = LinearFVSource
variable = u
source_density = 1
[]
[]
[FVBCs]
[dir]
type = FVFunctorDirichletBC
variable = v
boundary = "left right"
functor = 2
[]
[]
[LinearFVBCs]
[dir]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = u
boundary = "left right"
functor = 1
[]
[]
[Convergence]
[linear]
type = IterationCountConvergence
max_iterations = 6
converge_at_max_iterations = true
[]
[]
[Executioner]
type = Steady
system_names = 'v_sys u_sys'
l_abs_tol = 1e-12
l_tol = 1e-10
nl_abs_tol = 1e-10
multi_system_fixed_point=true
multi_system_fixed_point_convergence=linear
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
execute_on = timestep_end
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_outlet}
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = superficial_vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = superficial_vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
rho = ${rho}
is_solid = false
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
variable = T_fluid
k = ${k}
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_outlet}
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/fv_simple_diffusion_line_source.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 5
ymax = 5
[]
[]
[Variables/v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[FVKernels/diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[top_bottom]
type = FVDirichletBC
variable = v
boundary = 'top bottom'
value = 2
[]
[]
[Materials/diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
[]
[UserObjects/study]
type = RepeatableRayStudy
names = 'line_source_ray'
start_points = '1 1 0'
end_points = '5 2 0'
execute_on = PRE_KERNELS # must be set for line sources!
[]
[RayKernels/line_source]
type = ADLineSourceRayKernel
variable = v
value = 5
[]
(test/tests/tag/mass-matrix.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[mass]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[mass]
type = FVMassMatrix
variable = u
matrix_tags = 'mass'
[]
[]
[AuxKernels]
[TagMatrixAux1]
type = TagMatrixAux
variable = mass
v = u
matrix_tag = mass
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Problem]
type = FEProblem
extra_tag_matrices = 'mass'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
mu = 1
rho = 1
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
scaling = 1e-4
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = right
value = 0
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k'
prop_values = '${alpha} ${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/broken-domain/diffusion.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface_primary_side]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary_interface'
[]
[interface_secondary_side]
input = interface_primary_side
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'secondary_interface'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 0
initial_condition = 0.5
[]
[v]
type = MooseVariableFVReal
block = 1
initial_condition = 0.5
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 'left'
block = 0
[]
[diff_right]
type = FVDiffusion
variable = v
coeff = 'right'
block = 1
[]
[body_left]
type = FVBodyForce
variable = u
function = 'forcing'
block = 0
[]
[body_right]
type = FVBodyForce
variable = v
function = 'forcing'
block = 1
[]
[]
[FVInterfaceKernels]
# This will add a flux term for variable1, e.g. u
[interface]
type = FVOnlyAddDiffusionToOneSideOfInterface
variable1 = u
variable2 = v
boundary = 'primary_interface'
subdomain1 = '0'
subdomain2 = '1'
coeff2 = 'right'
[]
[]
[FVBCs]
[left]
type = FVFunctionDirichletBC
variable = u
boundary = 'left'
function = 'exact'
[]
[right]
type = FVFunctionDirichletBC
variable = v
boundary = 'right'
function = 'exact'
[]
[middle]
# by adding a dirichlet BC we ensure that flux kernels will run for variable v
type = FVADUseFunctorSideForSsfDirichletBC
variable = v
functor = u
boundary = 'secondary_interface'
[]
[]
[FunctorMaterials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'left'
prop_values = '1'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'right'
prop_values = '1'
[]
[composite]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'composite'
subdomain_to_prop_value = '0 u 1 v'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu NONZERO'
[]
[Outputs]
exodus = true
csv = true
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-6'
[]
[]
[Postprocessors]
[error]
type = ElementL2FunctorError
approximate = composite
exact = exact
outputs = 'console csv'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = ${restricted_blocks}
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/skewness-correction/two_term_extrapol/advection-outflow.i)
diff=1
a=1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[../]
[]
[Variables]
[./v]
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[./body]
type = FVBodyForce
variable = v
function = 'forcing'
[../]
[]
[FVBCs]
[left]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[top]
type = FVNeumannBC
boundary = 'top'
value = 0
variable = v
[]
[bottom]
type = FVNeumannBC
boundary = 'bottom'
value = 0
variable = v
[]
[right]
type = FVConstantScalarOutflowBC
variable = v
velocity = '${a} 0 0'
boundary = 'right'
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = 'cos(x) - sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -snes_linesearch_minlambda'
petsc_options_value = 'hypre boomeramg 1e-9'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-scalar.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
alpha=0.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.0'
dy = '0.25 0.25 0.25'
ix = '5'
iy = '2 2 2'
subdomain_id = '1 2 3'
[]
[separator-1]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
primary_block = '1'
paired_block = '2'
new_boundary = 'separator-1'
[]
[separator-2]
type = SideSetsBetweenSubdomainsGenerator
input = separator-1
primary_block = '2'
paired_block = '3'
new_boundary = 'separator-2'
[]
[inlet-1]
type = ParsedGenerateSideset
input = separator-2
combinatorial_geometry = 'y < 0.25 & x < 0.00001'
replace = true
new_sideset_name = inlet-1
[]
[inlet-2]
type = ParsedGenerateSideset
input = inlet-1
combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
replace = true
new_sideset_name = inlet-2
[]
[inlet-3]
type = ParsedGenerateSideset
input = inlet-2
combinatorial_geometry = 'y > 0.5 & x < 0.00001'
replace = true
new_sideset_name = inlet-3
[]
[outlet-1]
type = ParsedGenerateSideset
input = inlet-3
combinatorial_geometry = 'y < 0.25 & x > 0.999999'
replace = false
new_sideset_name = outlet-1
[]
[outlet-2]
type = ParsedGenerateSideset
input = outlet-1
combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
replace = false
new_sideset_name = outlet-2
[]
[outlet-3]
type = ParsedGenerateSideset
input = outlet-2
combinatorial_geometry = 'y > 0.5 & x > 0.999999'
replace = false
new_sideset_name = outlet-3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0.1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
[]
[pressure]
type = BernoulliPressureVariable
u = superficial_vel_x
v = superficial_vel_y
rho = ${rho}
[]
[scalar]
type = INSFVEnergyVariable
initial_condition = 50
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
momentum_component = 'x'
mu = ${mu}
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
pressure = pressure
momentum_component = 'y'
[]
[scalar_conduction]
type = FVDiffusion
coeff = ${alpha}
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
[]
[]
[FVBCs]
[inlet-u-1]
type = INSFVInletVelocityBC
boundary = 'inlet-1'
variable = superficial_vel_x
function = '0.1'
[]
[inlet-u-2]
type = INSFVInletVelocityBC
boundary = 'inlet-2'
variable = superficial_vel_x
function = '0.2'
[]
[inlet-u-3]
type = INSFVInletVelocityBC
boundary = 'inlet-3'
variable = superficial_vel_x
function = '0.3'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet-1 inlet-2 inlet-3'
variable = superficial_vel_y
function = 0
[]
[inlet-scalar-1]
type = FVDirichletBC
variable = scalar
boundary = 'inlet-1'
value = 10
[]
[inlet-scalar-2]
type = FVDirichletBC
variable = scalar
boundary = 'inlet-2'
value = 20
[]
[inlet-scalar-3]
type = FVDirichletBC
variable = scalar
boundary = 'inlet-3'
value = 30
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-u]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator-1 separator-2'
variable = superficial_vel_x
momentum_component = 'x'
[]
[separator-v]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator-1 separator-2'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-p]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator-1 separator-2'
variable = pressure
[]
[separator-scalar]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator-1 separator-2'
variable = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
[]
[FunctorMaterials]
[porosity-1]
type = ADGenericFunctorMaterial
prop_names = 'porosity'
prop_values = '1.0'
block = '1 3'
[]
[porosity-2]
type = ADGenericFunctorMaterial
prop_names = 'porosity'
prop_values = '0.5'
block = '2'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
line_search = 'none'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[outlet_scalar1]
type = SideAverageValue
variable = 'scalar'
boundary = 'outlet-1'
[]
[outlet_scalar2]
type = SideAverageValue
variable = 'scalar'
boundary = 'outlet-2'
[]
[outlet_scalar3]
type = SideAverageValue
variable = 'scalar'
boundary = 'outlet-3'
[]
[]
[Outputs]
csv = true
execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
initial_condition = 1.0
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_turb_conduction]
type = FVDiffusion
coeff = 'k_t'
variable = T_fluid
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[k_t]
type = ADParsedFunctorMaterial
expression = 'mu_t * cp / Pr_t'
functor_names = 'mu_t ${cp} ${Pr_t}'
functor_symbols = 'mu_t cp Pr_t'
property_name = 'k_t'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
energy_equation_relaxation = 0.9
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
continue_on_max_its = true
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(test/tests/fvkernels/fv_simple_diffusion/3d_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/grad-reconstruction/cartesian.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[../]
[]
[FVKernels]
[./advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${fparse 2 * a} 0'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/mms/cylindrical/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
coord_type = 'RZ'
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = coeff
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '1.1*sin(0.9*x)*cos(1.2*y)'
[]
[forcing]
type = ParsedFunction
expression = '1.584*sin(0.9*x)*cos(1.2*y) - (-0.891*x*sin(0.9*x)*cos(1.2*y) + 0.99*cos(0.9*x)*cos(1.2*y))/x'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/postprocessors/interface_diffusive_flux/interface_diffusive_flux_fv.i)
postprocessor_type = InterfaceDiffusiveFluxAverage
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 6
xmax = 3
ny = 9
ymax = 3
elem_type = QUAD4
[]
[subdomain_id]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '2 1 0'
block_id = 1
[]
[interface]
input = subdomain_id
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'interface'
[]
[]
[Functions]
[fn_exact]
type = ParsedFunction
expression = 'x*x+y*y'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = 0
[]
[v]
type = MooseVariableFVReal
block = 1
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 1
[]
[body_u]
type = FVBodyForce
variable = u
function = 1
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 1
[]
[body_v]
type = FVBodyForce
variable = v
function = -1
[]
[]
[FVInterfaceKernels]
[reaction]
type = FVDiffusionInterface
variable1 = u
variable2 = v
coeff1 = 1
coeff2 = 2
boundary = 'interface'
subdomain1 = '0'
subdomain2 = '1'
coeff_interp_method = average
[]
[]
[FVBCs]
[all]
type = FVFunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = fn_exact
[]
[]
[Postprocessors]
[diffusive_flux]
type = ${postprocessor_type}
variable = v
neighbor_variable = u
diffusivity = 1
execute_on = TIMESTEP_END
boundary = 'interface'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
file_base = '${raw ${postprocessor_type} _fv}'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
mu = 8.8871e-4
rho_solid = 997.561
rho_liquid = 997.561
k_solid = 0.6203
k_liquid = 0.6203
cp_solid = 4181.72
cp_liquid = 4181.72
L = 3e5
T_liquidus = 285
T_solidus = 280
advected_interp_method = 'average'
velocity_interp_method = 'rc'
U_inlet = '${fparse 0.5 * mu / rho_liquid / 0.5}'
T_inlet = 300.0
T_cold = 200.0
Nx = 30
Ny = 5
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = '${fparse 0.5 * 1.0}'
nx = ${Nx}
ny = ${Ny}
bias_y = '${fparse 1 / 1.2}'
[]
[rename1]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'inlet'
[]
[rename2]
type = RenameBoundaryGenerator
input = rename1
old_boundary = 'right'
new_boundary = 'outlet'
[]
[rename3]
type = RenameBoundaryGenerator
input = rename2
old_boundary = 'bottom'
new_boundary = 'symmetry'
[]
[rename4]
type = RenameBoundaryGenerator
input = rename3
old_boundary = 'top'
new_boundary = 'wall'
[]
[rename5]
type = ParsedGenerateSideset
input = rename4
normal = '0 1 0'
combinatorial_geometry = 'x>2.0 & x<8.0 & y>0.49999'
new_sideset_name = 'cooled_wall'
[]
[]
[AuxVariables]
[U]
type = MooseVariableFVReal
[]
[fl]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[darcy_coef]
type = MooseVariableFVReal
[]
[fch_coef]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = FunctorAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = FunctorAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = FunctorAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[darcy_out]
type = FunctorAux
functor = 'Darcy_coefficient'
variable = 'darcy_coef'
[]
[fch_out]
type = FunctorAux
functor = 'Forchheimer_coefficient'
variable = 'fch_coef'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_inlet}'
scaling = 1.0
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = rho_mixture
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
momentum_component = 'x'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = rho_mixture
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
momentum_component = 'y'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = rho_mixture
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = k_mixture
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_x
function = '${U_inlet}'
[]
[sym_u]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = vel_y
function = 0
[]
[sym_v]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = 0
[]
[sym_p]
type = INSFVSymmetryPressureBC
boundary = 'symmetry'
variable = pressure
[]
[sym_T]
type = INSFVSymmetryScalarBC
variable = T
boundary = 'symmetry'
[]
[cooled_wall]
type = FVFunctorDirichletBC
variable = T
functor = '${T_cold}'
boundary = 'cooled_wall'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = rho_mixture
cp = cp_mixture
temperature = 'T'
[]
[eff_cp]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[mushy_zone_resistance]
type = INSFVMushyPorousFrictionFunctorMaterial
liquid_fraction = 'fl'
mu = '${mu}'
rho_l = '${rho_liquid}'
[]
[friction]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coeff Forchheimer_coeff'
prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
[]
[]
[Executioner]
type = Transient
dt = 5e3
end_time = 1e4
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-8
nl_max_its = 12
[]
[Postprocessors]
[average_T]
type = ElementAverageValue
variable = T
outputs = csv
execute_on = FINAL
[]
[]
[VectorPostprocessors]
[sat]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.0 0 0'
end_point = '10.0 0 0'
num_points = '${Nx}'
sort_by = x
variable = 'T'
execute_on = FINAL
[]
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
mu = 1.1
rho = 1.1
k = 1.1
cp = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[temperature]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = temperature
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[temp_forcing]
type = FVBodyForce
variable = temperature
function = forcing_t
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[inlet-and-walls-t]
type = FVFunctionDirichletBC
boundary = 'left top bottom'
variable = temperature
function = 'exact_t'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[FunctorMaterials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'k cp'
prop_values = '${k} ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin((1/2)*y*pi)*cos((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - '
'1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + '
'(1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - '
'pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - '
'1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - '
'pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
'1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
'(1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
'(3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - '
'1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[exact_t]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_t]
type = ParsedFunction
expression = '-pi*cp*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
'1/2*pi*cp*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
'(1/4)*pi*cp*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
'(5/16)*pi^2*k*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
symbol_names = 'k rho cp'
symbol_values = '${k} ${rho} ${cp}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2t]
variable = temperature
function = exact_t
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
mu=1.1
rho=1.1
k=1.1
cp=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[temperature]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = temperature
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[temp_forcing]
type = FVBodyForce
variable = temperature
function = forcing_t
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[axis-inlet-wall-t]
type = FVFunctionDirichletBC
boundary = 'left bottom right'
variable = temperature
function = 'exact_t'
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*cos(x*pi)*cos(y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[exact_t]
type = ParsedFunction
expression = 'sin(x*pi)*sin((1/2)*y*pi)'
[]
[forcing_t]
type = ParsedFunction
expression = '(1/4)*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) - (-x*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) + pi*k*sin((1/2)*y*pi)*cos(x*pi))/x + (3*x*pi*cp*rho*sin(x*pi)^2*sin((1/2)*y*pi)^2*cos(x*pi) + cp*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2)/x + (-x*pi*cp*rho*sin(x*pi)*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*cp*rho*sin(x*pi)*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x'
symbol_names = 'k rho cp'
symbol_values = '${k} ${rho} ${cp}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2t]
approximate = temperature
exact = exact_t
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(test/tests/transfers/multiapp_copy_transfer/linear_sys_to_aux/nonlinear_main.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Variables]
[u_main]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[transferred]
type = MooseLinearVariableFVReal
[]
[]
[Transfers]
[copy]
type = MultiAppCopyTransfer
from_multi_app = linear_sub
source_variable = u
variable = transferred
[]
[]
[MultiApps]
[linear_sub]
type = FullSolveMultiApp
input_files = 'linear_sub.i'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u_main
coeff = 2
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u_main
boundary = left
value = 0
[]
[./right]
type = FVDirichletBC
variable = u_main
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/indicators/analytical_indicator/analytical_indicator_fv.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 1
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[Functions]
[solution]
type = ParsedFunction
expression = (exp(x)-1)/(exp(1)-1)
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = coeff
[]
[conv]
type = FVAdvection
variable = u
velocity = '1 0 0'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Adaptivity]
[Indicators]
[error]
type = AnalyticalIndicator
variable = u
function = solution
[]
[]
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/skewness-correction/diffusion/skewed.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[../]
[]
[Variables]
[./v]
initial_condition = 1
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[../]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '2*diff*sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(test/tests/materials/functor_properties/vector-magnitude/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[v]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[mag]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = FunctorAux
variable = mag
functor = mat_mag
[]
[]
[FVKernels]
[v_diff]
type = FVDiffusion
variable = v
coeff = 1
[]
[u_diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[v_left]
type = FVDirichletBC
variable = v
boundary = 'left'
value = 0
[]
[v_right]
type = FVDirichletBC
variable = v
boundary = 'right'
value = 1
[]
[u_bottom]
type = FVDirichletBC
variable = u
boundary = 'bottom'
value = 0
[]
[u_top]
type = FVDirichletBC
variable = u
boundary = 'top'
value = 1
[]
[]
[Materials]
[functor]
type = ADVectorMagnitudeFunctorMaterial
x_functor = u
y_functor = v
vector_magnitude_name = mat_mag
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e6
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 60}'
ymin = 0
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_phase_2}
[]
[interface_area]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_interface_area}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
functor = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_x'
v_slip = 'vel_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_time]
type = FVFunctorTimeKernel
variable = interface_area
functor = interface_area
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = ${fparse l/2}
rho = 'rho_mixture'
rho_d = 'rho'
pressure = 'pressure'
k_c = '${fparse mass_exchange_coeff}'
fd = 'phase_2'
sigma = 1e-3
cutoff_fraction = 0.0
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${outlet_pressure}'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = ${inlet_interface_area}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry-phase-2]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = phase_2
[]
[symmetry-interface-area]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = interface_area
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[bubble_properties]
type = GeneralFunctorFluidProps
fp = 'fp'
pressure = 'pressure'
T_fluid = 300.0
speed = 1.0
characteristic_length = 1.0
porosity = 1.0
output_properties = 'rho'
outputs = 'out'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = 'rho ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-7
dt = 0.1
end_time = 1.0
nl_max_its = 10
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(test/tests/postprocessors/fvfluxbc_integral/fvfluxbc_integral.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVNeumannBC
variable = u
boundary = left
value = 18
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[flux_left]
type = SideFVFluxBCIntegral
boundary = left
fvbcs = 'left'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-9
l_abs_tol = 1e-9
l_tol = 1e-6
[]
[Outputs]
csv = true
execute_on = final
[]
(test/tests/fvkernels/fv_simple_diffusion/grad-adaptive.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 0
[]
[]
[AuxVariables]
[dummy]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[time]
type = FVTimeKernel
variable = v
[]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = v
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-6
optimal_iterations = 6
[]
end_time = 1000
nl_abs_tol = 1e-8
[]
[Outputs]
exodus = false
[csv]
type = CSV
execute_on = 'final'
[]
[]
[Adaptivity]
steps = 1
marker = error
[Indicators]
[jump]
type = GradientJumpIndicator
variable = v
[]
[]
[Markers]
[error]
type = ErrorFractionMarker
coarsen = 0.1
refine = 0.7
indicator = jump
[]
[]
max_h_level = 1
[]
(modules/navier_stokes/test/tests/finite_volume/pins/physics/diffusion_interfaces/three_zones.i)
D0 = 1
D1 = 2
D2 = 6
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 1
dx = '1.5 3 2'
ix = '3 3 4'
subdomain_id = '0 1 2'
[]
[add_01]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = '0'
paired_block = '1'
new_boundary = '0to1'
[]
[add_12]
type = SideSetsBetweenSubdomainsGenerator
input = 'add_01'
primary_block = '1'
paired_block = '2'
new_boundary = '1to2'
[]
[]
[Variables]
[T_solid]
type = MooseVariableFVReal
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = T_solid
boundary = 'right'
value = 1
[]
[]
[FVKernels]
[diff1]
type = FVDiffusion
variable = T_solid
coeff = ${D0}
block = 0
[]
[diff2]
type = FVDiffusion
variable = T_solid
coeff = ${D1}
block = 1
[]
[diff3]
type = FVDiffusion
variable = T_solid
coeff = ${D2}
block = 2
[]
[source]
type = FVBodyForce
variable = T_solid
value = 1
block = 1
[]
[]
[FVInterfaceKernels]
[01]
type = FVOneVarDiffusionInterface
variable1 = T_solid
subdomain1 = '0'
subdomain2 = '1'
coeff1 = ${D0}
coeff2 = ${D1}
boundary = '0to1'
[]
[12]
type = FVOneVarDiffusionInterface
variable1 = T_solid
subdomain1 = '1'
subdomain2 = '2'
coeff1 = ${D1}
coeff2 = ${D2}
boundary = '1to2'
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[all_values]
type = ElementValueSampler
variable = T_solid
sort_by = 'x'
[]
[]
(test/tests/userobjects/layered_integral/layered_integral_fv_test.i)
###########################################################
# This is a test of the UserObject System. The
# LayeredIntegral UserObject executes independently during
# the solve to compute a user-defined value. In this case
# an integral value in discrete layers along a vector
# in the domain. (Type: ElementalUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[AuxVariables]
[./layered_integral]
order = CONSTANT
family = MONOMIAL
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[]
[AuxKernels]
[./liaux]
type = SpatialUserObjectAux
variable = layered_integral
execute_on = timestep_end
user_object = layered_integral
[../]
[]
[FVBCs]
[./bottom]
type = FVDirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = FVDirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[UserObjects]
[./layered_integral]
type = LayeredIntegral
direction = y
num_layers = 3
variable = u
execute_on = linear
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = fv_out
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVNeumannBC
variable = v
boundary = left
value = 5
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[FunctorMaterials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = ADNeumannBC
variable = u
boundary = left
value = 5
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
# This test is designed to check for energy conservation
# in separated channels which are described using a nonorthogonal mesh.
# The two inlet temperatures should be preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[file]
type = FileMeshGenerator
file = diverging.msh
[]
[mirror]
type = SymmetryTransformGenerator
input = file
mirror_point = "0 0 0"
mirror_normal_vector = "1 0 0"
[]
[stitch]
type = StitchedMeshGenerator
inputs = 'file mirror'
stitch_boundaries_pairs = 'left left'
[]
[subdomain1]
type = ParsedSubdomainMeshGenerator
input = stitch
combinatorial_geometry = 'x > 0'
block_id = 1
[]
[subdomain2]
type = ParsedSubdomainMeshGenerator
input = subdomain1
combinatorial_geometry = 'x < 0'
block_id = 2
[]
[separator]
type = ParsedGenerateSideset
input = subdomain2
combinatorial_geometry = 'x > -0.00001 & x < 0.00001'
replace = true
new_sideset_name = separator
[]
[inlet-1]
type = ParsedGenerateSideset
input = separator
combinatorial_geometry = 'y < 0.00001 & x < 0'
replace = true
new_sideset_name = inlet-1
[]
[inlet-2]
type = ParsedGenerateSideset
input = inlet-1
combinatorial_geometry = 'y < 0.00001 & x > 0'
replace = true
new_sideset_name = inlet-2
[]
[outlet-1]
type = ParsedGenerateSideset
input = inlet-2
combinatorial_geometry = 'y > 20.999999 & x < 0'
replace = true
new_sideset_name = outlet-1
[]
[outlet-2]
type = ParsedGenerateSideset
input = outlet-1
combinatorial_geometry = 'y > 20.999999 & x > 0'
replace = true
new_sideset_name = outlet-2
[]
uniform_refine = 1
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0.1
[]
[pressure]
type = BernoulliPressureVariable
u = superficial_vel_x
v = superficial_vel_y
rho = ${rho}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
momentum_component = 'x'
mu = ${mu}
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
pressure = pressure
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'inlet-1 inlet-2'
variable = superficial_vel_x
function = '0.0'
[]
[inlet-v-1]
type = INSFVInletVelocityBC
boundary = 'inlet-1'
variable = superficial_vel_y
function = 0.1
[]
[inlet-v-2]
type = INSFVInletVelocityBC
boundary = 'inlet-2'
variable = superficial_vel_y
function = 0.2
[]
[inlet-T-1]
type = FVDirichletBC
variable = T_fluid
boundary = 'inlet-1'
value = 310
[]
[inlet-T-2]
type = FVDirichletBC
variable = T_fluid
boundary = 'inlet-2'
value = 350
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = superficial_vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-u]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator'
variable = superficial_vel_x
momentum_component = 'x'
[]
[separator-v]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-p]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator'
variable = pressure
[]
[separator-T]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator'
variable = T_fluid
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet-2 outlet-1'
variable = pressure
function = 0.4
[]
[]
[FunctorMaterials]
[porosity-1]
type = ADGenericFunctorMaterial
prop_names = 'porosity'
prop_values = '1.0'
block = '1'
[]
[porosity-2]
type = ADGenericFunctorMaterial
prop_names = 'porosity'
prop_values = '0.5'
block = '2'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
line_search = 'none'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[outlet_T1]
type = SideAverageValue
variable = 'T_fluid'
boundary = 'outlet-1'
[]
[outlet_T2]
type = SideAverageValue
variable = 'T_fluid'
boundary = 'outlet-2'
[]
[]
[Outputs]
csv = true
execute_on = final
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/parent_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
# Yes we want a slightly irregular grid
nx = 11
ny = 11
# We will transfer data to the sub app, and that is currently only
# supported from a replicated mesh
parallel_type = replicated
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub.i
[]
[pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = pp_sub.i
[]
[]
[Transfers]
[sample_transfer]
source_variable = u
variable = from_parent
type = MultiAppVariableValueSampleTransfer
to_multi_app = sub
[]
[sample_pp_transfer]
source_variable = u
postprocessor = from_parent
type = MultiAppVariableValueSamplePostprocessorTransfer
to_multi_app = pp_sub
[]
[]
[Problem]
parallel_barrier_messaging = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 64
ny = 64
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[rho_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
expression = 'u'
execute_on = 'initial timestep_end'
coupled_variables = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
expression = 'v'
execute_on = 'initial timestep_end'
coupled_variables = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
expression = 'T'
execute_on = 'initial timestep_end'
coupled_variables = 'T'
[]
[rho_out]
type = FunctorAux
functor = 'rho'
variable = 'rho_out'
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 1e5
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'alpha'
prop_values = '${alpha}'
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/scaling/auto-scaling.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = coeff_u
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = coeff_v
[]
[]
[FVBCs]
[left_u]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right_v]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff_u coeff_v'
prop_values = '1 1e-20'
[]
[]
[Executioner]
type = Steady
petsc_options = '-pc_svd_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'svd'
automatic_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = u
boundary = left
value = 7
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/FVFunctorHeatFluxBC/wall_heat_transfer.i)
flux=10
[GlobalParams]
porosity = 'porosity'
splitting = 'porosity'
locality = 'global'
average_porosity = 'average_eps'
average_k_fluid='average_k_fluid'
average_k_solid='average_k_solid'
average_kappa='average_k_fluid' # because of vector matprop, should be kappa
average_kappa_solid='average_kappa_solid'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 20
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[Tf]
type = MooseVariableFVReal
[]
[Ts]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[k]
type = MooseVariableFVReal
[]
[kappa]
type = MooseVariableFVReal
[]
[k_s]
type = MooseVariableFVReal
[]
[kappa_s]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.2
[]
[]
[Functions]
[k_function]
type = ParsedFunction
expression = 0.1*(100*y+1)
[]
[kappa_function]
type = ParsedFunction
expression = 0.2*(200*y+1)
[]
[kappa_s_function]
type = ParsedFunction
expression = 0.4*(200*y+1)
[]
[k_s_function]
type = ParsedFunction
expression = 0.2*(200*y+1)+2*x
[]
[]
[FVKernels]
[Tf_diffusion]
type = FVDiffusion
variable = Tf
coeff = 1
[]
[Ts_diffusion]
type = FVDiffusion
variable = Ts
coeff = 1
[]
[]
[FVBCs]
[left_Ts]
type = NSFVFunctorHeatFluxBC
variable = Ts
boundary = 'left'
phase = 'solid'
value = ${flux}
k = 'k_mat'
k_s = 'k_s_mat'
kappa = 'kappa_mat'
kappa_s = 'kappa_s_mat'
[]
[right_Ts]
type = FVDirichletBC
variable = Ts
boundary = 'right'
value = 1000.0
[]
[left_Tf]
type = NSFVFunctorHeatFluxBC
variable = Tf
boundary = 'left'
phase = 'fluid'
value = ${flux}
k = 'k_mat'
k_s = 'k_s_mat'
kappa = 'kappa_mat'
kappa_s = 'kappa_s_mat'
[]
[right_Tf]
type = FVDirichletBC
variable = Tf
boundary = 'right'
value = 1000.0
[]
[]
[AuxKernels]
[k]
type = FunctorAux
variable = k
functor = 'k_mat'
[]
[k_s]
type = FunctorAux
variable = k_s
functor = 'k_s_mat'
[]
[kappa_s]
type = FunctorAux
variable = kappa_s
functor = 'kappa_s_mat'
[]
[]
[FunctorMaterials]
[thermal_conductivities_k]
type = ADGenericFunctorMaterial
prop_names = 'k_mat'
prop_values = 'k_function'
[]
[thermal_conductivities_k_s]
type = ADGenericFunctorMaterial
prop_names = 'k_s_mat'
prop_values = 'k_s_function'
[]
[thermal_conductivities_kappa]
type = ADGenericVectorFunctorMaterial
prop_names = 'kappa_mat'
prop_values = '0.1 0.2 .03'
[]
[thermal_conductivities_kappa_s]
type = ADGenericFunctorMaterial
prop_names = 'kappa_s_mat'
prop_values = 'kappa_s_function'
[]
[]
[Postprocessors]
[average_eps]
type = ElementAverageValue
variable = porosity
# because porosity is constant in time, we evaluate this only once
execute_on = 'initial'
[]
[average_k_fluid]
type = ElementAverageValue
variable = k
[]
[average_k_solid]
type = ElementAverageValue
variable = k_s
[]
[average_kappa_solid]
type = ElementAverageValue
variable = kappa_s
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
hide = 'porosity average_eps'
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 5
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of
# bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 5.031429
dp = 0.005
inlet_phase_2 = 0.442
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 60}'
ymin = 0
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_phase_2}
[]
[interface_area]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_interface_area}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_x'
v_slip = 'vel_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = ${fparse l/2}
rho = 'rho_mixture'
rho_d = 'rho'
pressure = 'pressure'
k_c = '${fparse mass_exchange_coeff}'
fd = 'phase_2'
sigma = 1e-3
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${outlet_pressure}'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = ${inlet_interface_area}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry-phase-2]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = phase_2
[]
[symmetry-interface-area]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = interface_area
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[bubble_properties]
type = GeneralFunctorFluidProps
fp = 'fp'
pressure = 'pressure'
T_fluid = 300.0
speed = 1.0
characteristic_length = 1.0
porosity = 1.0
output_properties = 'rho'
outputs = 'out'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = 'rho ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_reversal.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 6
ny = 3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e6
[]
[]
[FVKernels]
# Mass equation
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
# X component momentum equation
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
dh_dt = dh_dt
h = h
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
[outlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'right'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'right'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'right'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'right'
temperature_pp = 'inlet_T'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'right'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
# Walls
[no_slip_x]
type = INSFVNaturalFreeSlipBC
variable = vel_x
momentum_component = x
boundary = 'top bottom'
[]
[no_slip_y]
type = INSFVNaturalFreeSlipBC
variable = vel_y
momentum_component = y
boundary = 'top bottom'
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
#outputs = none
[]
[outlet_mdot]
type = Receiver
default = ${fparse -1980 * inlet_velocity * inlet_area}
outputs = none
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
outputs = none
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
outputs = none
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
outputs = none
[]
[left_mdot]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = rho
boundary = left
#advected_interp_method = ${advected_interp_method}
[]
[right_mdot]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = rho
boundary = right
advected_interp_method = upwind #${advected_interp_method}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k rho'
prop_values = '${cp} ${k} 1980'
[]
#[rho]
# type = RhoFromPTFunctorMaterial
# fp = fp
# temperature = T_fluid
# pressure = pressure
#[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-1
optimal_iterations = 6
growth_factor = 4
[]
end_time = 500000
nl_abs_tol = 1e-7
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet-constrained-average-value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVBoundaryIntegralValueConstraint
variable = v
boundary = right
phi0 = 42
lambda = lambda
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = u
boundary = left
value = 7
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
hide = lambda
[]
(test/tests/fvkernels/fv_simple_diffusion/transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 7
[]
[]
[Kernels]
[]
[FVKernels]
[./time]
type = FVFunctorTimeKernel
variable = v
[../]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '.2'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
num_steps = 20
dt = 0.1
[]
[Outputs]
exodus = true
[]
(tutorials/shield_multiphysics/inputs/step10_finite_volume/step10.i)
cp_water_multiplier = 5e-2
mu_multiplier = 1
power = '${fparse 5e4 / 144}'
[Mesh]
[fmg]
type = FileMeshGenerator
file = 'mesh2d_in.e'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[vel_y]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[pressure]
type = INSFVPressureVariable
block = 'water'
initial_condition = 1e5
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
block = 'water'
scaling = 1e-05
[]
[lambda]
type = MooseVariableScalar
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
# This isn't used in simulation, but useful for visualization
[vel_z]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 0
[]
[mixing_length]
block = 'water'
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[GlobalParams]
velocity_interp_method = rc
rhie_chow_user_object = ins_rhie_chow_interpolator
rho = rho
[]
[FVKernels]
[water_ins_mass_advection]
type = INSFVMassAdvection
advected_interp_method = upwind
block = water
variable = pressure
[]
[water_ins_mass_pressure_pin]
type = FVPointValueConstraint
lambda = lambda
phi0 = 1e5
point = '1 3 0'
variable = pressure
[]
[water_ins_momentum_time_vel_x]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = x
variable = vel_x
[]
[water_ins_momentum_time_vel_y]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_advection_x]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = x
variable = vel_x
characteristic_speed = 0.01
[]
[water_ins_momentum_advection_y]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = y
variable = vel_y
characteristic_speed = 0.1
[]
[water_ins_momentum_diffusion_x]
type = INSFVMomentumDiffusion
block = water
momentum_component = x
mu = mu
variable = vel_x
[]
[water_ins_momentum_diffusion_y]
type = INSFVMomentumDiffusion
block = water
momentum_component = y
mu = mu
variable = vel_y
[]
[water_ins_momentum_pressure_x]
type = INSFVMomentumPressure
block = water
momentum_component = x
pressure = pressure
variable = vel_x
[]
[water_ins_momentum_pressure_y]
type = INSFVMomentumPressure
block = water
momentum_component = y
pressure = pressure
variable = vel_y
[]
[water_ins_momentum_gravity_z]
type = INSFVMomentumGravity
block = water
gravity = '0 -9.81 0'
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_boussinesq_z]
type = INSFVMomentumBoussinesq
T_fluid = T_fluid
alpha_name = alpha
block = water
gravity = '0 -9.81 0'
momentum_component = y
ref_temperature = 300
rho = 955.7
variable = vel_y
[]
# Energy conservation equation
[water_ins_energy_time]
type = INSFVEnergyTimeDerivative
block = water
dh_dt = dh_dt
rho = rho
variable = T_fluid
[]
[water_ins_energy_advection]
type = INSFVEnergyAdvection
advected_interp_method = upwind
block = water
variable = T_fluid
[]
[water_ins_energy_diffusion_all]
type = FVDiffusion
block = water
coeff = k
variable = T_fluid
[]
# Turbulence
[water_ins_viscosity_rans_x]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[water_ins_viscosity_rans_y]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[water_ins_energy_rans]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
cp = cp
mixing_length = mixing_length
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
variable = mixing_length
walls = 'water_boundary inner_cavity_water'
execute_on = 'initial'
[]
[]
[FunctorMaterials]
[water]
type = ADGenericFunctorMaterial
block = 'water'
prop_names = 'rho k cp mu alpha_wall'
prop_values = '955.7 0.6 ${fparse cp_water_multiplier * 4181} ${fparse 7.98e-4 * mu_multiplier} 30'
[]
[boussinesq_params]
type = ADGenericFunctorMaterial
prop_names = 'alpha '
prop_values = '2.9e-3'
[]
[water_ins_enthalpy_material]
type = INSFVEnthalpyFunctorMaterial
block = water
cp = cp
execute_on = ALWAYS
outputs = none
temperature = T_fluid
[]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x'
v = 'vel_y'
mixing_length = mixing_length
mu = mu
[]
[]
[FVBCs]
[vel_x_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_x
[]
[vel_y_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_y
[]
[T_fluid_inner_cavity]
type = FVFunctorNeumannBC
boundary = inner_cavity_water
functor = ${power}
variable = T_fluid
[]
[T_fluid_water_boundary]
type = FVFunctorConvectiveHeatFluxBC
boundary = water_boundary
variable = T_fluid
T_bulk = T_fluid
T_solid = 300
heat_transfer_coefficient = 600
is_solid = false
[]
[]
[UserObjects]
[ins_rhie_chow_interpolator]
type = INSFVRhieChowInterpolator
pressure = 'pressure'
u = 'vel_x'
v = 'vel_y'
block = 'water'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
off_diagonals_in_auto_scaling = true
line_search = none
# Direct solve works for everything small enough
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
nl_abs_tol = 1e-8
nl_max_its = 10
l_max_its = 3
steady_state_tolerance = 1e-12
steady_state_detection = true
normalize_solution_diff_norm_by_dt = false
start_time = -1
dtmax = 100
[TimeStepper]
type = FunctionDT
function = 'if(t < 1, 0.1, t / 10)'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/piecewise_by_block_material/discontinuous.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[middle]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
new_boundary = middle
paired_block = 1
primary_block = 0
[]
[]
[Variables]
[dummy]
type = MooseVariableFVReal
[]
[]
# This is added to have sufficient ghosting layers, see #19534
[FVKernels]
[diff]
type = FVDiffusion
variable = 'dummy'
coeff = 1
[]
[]
[AuxVariables]
[u]
type = MooseVariableFVReal
[]
[v]
type = MooseVariableFVReal
[FVInitialCondition]
type = FVFunctionIC
function = '4 * (x - 7) * (x - 8)'
[]
[]
[]
[AuxKernels]
# to trigger off-boundary element computations
[to_var]
type = ADMaterialRealAux
variable = 'u'
property = coeff
[]
[]
[Materials]
[coeff_mat]
type = ADPiecewiseConstantByBlockMaterial
prop_name = 'coeff'
subdomain_to_prop_value = '0 4
1 2'
[]
[]
[Postprocessors]
# to trigger on boundary element computations
[flux]
type = ADNonFunctorSideDiffusiveFluxIntegral
boundary = left
variable = v
diffusivity = 'coeff'
[]
# to trigger ghost evaluations
[flux_mid]
type = ADInterfaceDiffusiveFluxIntegral
boundary = middle
variable = v
diffusivity = 'coeff'
coeff_interp_method = average
[]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[Outputs]
exodus = true
# To get level of ghosting
[console]
type = Console
system_info = 'framework mesh aux nonlinear execution relationship'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.0'
dy = '0.25 0.25 0.25'
ix = '5'
iy = '2 2 2'
subdomain_id = '1 2 3'
[]
[separator-1]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
primary_block = '1'
paired_block = '2'
new_boundary = 'separator-1'
[]
[separator-2]
type = SideSetsBetweenSubdomainsGenerator
input = separator-1
primary_block = '2'
paired_block = '3'
new_boundary = 'separator-2'
[]
[inlet-1]
type = ParsedGenerateSideset
input = separator-2
combinatorial_geometry = 'y < 0.25 & x < 0.00001'
replace = true
new_sideset_name = inlet-1
[]
[inlet-2]
type = ParsedGenerateSideset
input = inlet-1
combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
replace = true
new_sideset_name = inlet-2
[]
[inlet-3]
type = ParsedGenerateSideset
input = inlet-2
combinatorial_geometry = 'y > 0.5 & x < 0.00001'
replace = true
new_sideset_name = inlet-3
[]
[outlet-1]
type = ParsedGenerateSideset
input = inlet-3
combinatorial_geometry = 'y < 0.25 & x > 0.999999'
replace = false
new_sideset_name = outlet-1
[]
[outlet-2]
type = ParsedGenerateSideset
input = outlet-1
combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
replace = false
new_sideset_name = outlet-2
[]
[outlet-3]
type = ParsedGenerateSideset
input = outlet-2
combinatorial_geometry = 'y > 0.5 & x > 0.999999'
replace = false
new_sideset_name = outlet-3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0.1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
[]
[pressure]
type = BernoulliPressureVariable
u = superficial_vel_x
v = superficial_vel_y
rho = ${rho}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
momentum_component = 'x'
mu = ${mu}
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
pressure = pressure
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[]
[FVBCs]
[inlet-u-1]
type = INSFVInletVelocityBC
boundary = 'inlet-1'
variable = superficial_vel_x
function = '0.1'
[]
[inlet-u-2]
type = INSFVInletVelocityBC
boundary = 'inlet-2'
variable = superficial_vel_x
function = '0.2'
[]
[inlet-u-3]
type = INSFVInletVelocityBC
boundary = 'inlet-3'
variable = superficial_vel_x
function = '0.3'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet-1 inlet-2 inlet-3'
variable = superficial_vel_y
function = 0
[]
[inlet-T-1]
type = FVDirichletBC
variable = T_fluid
boundary = 'inlet-1'
value = 310
[]
[inlet-T-2]
type = FVDirichletBC
variable = T_fluid
boundary = 'inlet-2'
value = 320
[]
[inlet-T-3]
type = FVDirichletBC
variable = T_fluid
boundary = 'inlet-3'
value = 330
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-u]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator-1 separator-2'
variable = superficial_vel_x
momentum_component = 'x'
[]
[separator-v]
type = INSFVVelocityHydraulicSeparatorBC
boundary = 'separator-1 separator-2'
variable = superficial_vel_y
momentum_component = 'y'
[]
[separator-p]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator-1 separator-2'
variable = pressure
[]
[separator-T]
type = INSFVScalarFieldSeparatorBC
boundary = 'separator-1 separator-2'
variable = T_fluid
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
[]
[FunctorMaterials]
[porosity-1]
type = ADGenericFunctorMaterial
prop_names = 'porosity'
prop_values = '1.0'
block = '1 3'
[]
[porosity-2]
type = ADGenericFunctorMaterial
prop_names = 'porosity'
prop_values = '0.5'
block = '2'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
line_search = 'none'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[outlet_T1]
type = SideAverageValue
variable = 'T_fluid'
boundary = 'outlet-1'
[]
[outlet_T2]
type = SideAverageValue
variable = 'T_fluid'
boundary = 'outlet-2'
[]
[outlet_T3]
type = SideAverageValue
variable = 'T_fluid'
boundary = 'outlet-3'
[]
[]
[Outputs]
csv = true
execute_on = final
[]
(test/tests/fvkernels/mms/advection-diffusion.i)
diff=1.1
a=1.1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -0.6
xmax = 0.6
nx = 64
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-${diff}*6 + ${a} * (6*x + 2)'
# expression = '-${diff}*6'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/boundary_execution/2d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 2
ymax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.0 0 0'
top_right = '1.0 1.0 0'
block_id = 1
[]
[corner_inward]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'corner_inward'
[]
[corner_outward]
input = corner_inward
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'corner_outward'
[]
[]
[Variables]
[all_domain]
type = MooseVariableFVReal
[]
[part_domain]
type = MooseVariableFVReal
block = 1
[]
[]
[FVKernels]
[diff_all]
type = FVDiffusion
variable = all_domain
coeff = coeff
[]
[diff_part]
type = FVDiffusion
variable = part_domain
coeff = coeff
[]
[]
[FVBCs]
# The boundaries where the flux kernels are executed are
# the dirichlet BCs: left, right and corner_inward
# On top and bottom, not executed because 0 flux is assumed
[left]
type = FVDirichletBC
variable = all_domain
boundary = left
value = 2
[]
[corner_inward]
type = FVDirichletBC
variable = all_domain
boundary = right
value = 1
[]
[corner_outward]
type = FVDirichletBC
variable = part_domain
boundary = corner_inward
value = 2
[]
[right]
type = FVDirichletBC
variable = part_domain
boundary = left
value = 1
[]
[]
[Materials]
[diffusion]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = 1
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'interface left'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'interface left'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'bottom_to_0'
function = 0
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'bottom_to_0'
function = 1
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'bottom_to_0'
value = 0.5
[]
[outlet]
type = INSFVMassAdvectionOutflowBC
variable = pressure
boundary = 'top_to_0'
u = u
v = v
rho = ${rho}
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'y'
rho = ${rho}
[]
[heater]
type = FVDirichletBC
variable = 'Ts'
boundary = 'right'
value = 10
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[max_T]
type = ADElementExtremeFunctorValue
functor = T
block = 0
[]
[max_Ts]
type = ADElementExtremeFunctorValue
functor = Ts
block = 1
[]
[mdot_out]
type = VolumetricFlowRate
boundary = 'top_to_0'
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 2
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 4
[]
[gradient_creating]
type = FVBodyForce
variable = u
[]
[]
[FVBCs]
[left]
type = FVThermalResistanceBC
geometry = 'cartesian'
variable = u
T_ambient = 10
htc = 'htc'
emissivity = 0.2
thermal_conductivities = '0.1 0.2 0.3'
conduction_thicknesses = '1 0.7 0.2'
boundary = 'left'
# Test setting iteration parameters
step_size = 0.02
max_iterations = 120
tolerance = 1e-4
[]
[top]
type = FVThermalResistanceBC
geometry = 'cartesian'
variable = u
# Test setting the temperature separately from the variable
temperature = 'u'
T_ambient = 14
htc = 'htc'
emissivity = 0
thermal_conductivities = '0.1 0.2 0.3'
conduction_thicknesses = '1 0.7 0.4'
boundary = 'top'
[]
[other]
type = FVDirichletBC
variable = u
boundary = 'right bottom'
value = 0
[]
[]
[Materials]
[cht]
type = ADGenericConstantMaterial
prop_names = 'htc'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/fvbcs/fv_pp_dirichlet/fv_pp_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVPostprocessorDirichletBC
variable = u
boundary = left
postprocessor = bc_val
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Postprocessors]
[bc_val]
type = Receiver
default = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/ray_tracing/test/tests/raykernels/variable_integral_ray_kernel/fv_simple_diffusion_line_integral.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 10
ymax = 10
[]
[Variables/v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[FVKernels/diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[top_bottom]
type = FVDirichletBC
variable = v
boundary = 'top bottom'
value = 1
[]
[]
[Materials/diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[UserObjects/study]
type = RepeatableRayStudy
names = 'diag
right_up'
start_points = '0 0 0
10 0 0'
end_points = '10 10 0
10 10 0'
[]
[RayKernels/v_integral]
type = VariableIntegralRayKernel
study = study
variable = v
[]
[Postprocessors]
[diag_line_integral]
type = RayIntegralValue
ray_kernel = v_integral
ray = diag
[]
[right_up_line_integral]
type = RayIntegralValue
ray_kernel = v_integral
ray = right_up
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/postprocessors/pseudotimestep/fv_burgers_pseudo.i)
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -1
xmax = 1
nx = 500
[]
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
[v_ic]
type = FunctionIC
variable = v
function = '-1/(1+exp(-(x-z)/2/0.0005))'
[]
[]
[FVKernels]
[burgers]
type = FVBurgers1D
variable = v
[]
[difussion]
type = FVDiffusion
coeff= 0.0005
variable = v
[]
[time]
type = FVTimeKernel
variable = v
[]
[]
[FVBCs]
[fv_burgers_outflow]
type = FVBurgersOutflowBC
variable = v
boundary = 'left right'
[]
[]
[Postprocessors]
[pseudotimestep]
type = PseudoTimestep
method = 'SER'
initial_dt = 1
alpha = 1.5
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
petsc_options = '-snes_converged_reason'
num_steps = 5
[TimeStepper]
type = PostprocessorDT
postprocessor = pseudotimestep
[]
[]
[Outputs]
print_linear_residuals = false
csv = true
[]
(test/tests/indicators/value_jump_indicator/value_jump_indicator_fv.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Adaptivity]
[Indicators]
[error]
type = ValueJumpIndicator
variable = something
[]
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[ICs]
[leftright]
type = BoundingBoxIC
variable = something
inside = 1
y2 = 1
y1 = 0
x2 = 0.5
x1 = 0
[]
[]
[AuxVariables]
[something]
order = CONSTANT
family = MONOMIAL
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = coeff
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[./u]
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[force]
type = FVCoupledForce
v = v
variable = u
[]
[]
[FunctorMaterials]
[parsed]
type = ADParsedFunctorMaterial
property_name = 'v'
functor_names = 'u'
expression = 'if(u>0.1,1e6,0)'
[]
[]
[FVBCs]
[./left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
line_search = 'none'
solve_type = NEWTON
nl_max_its = 5
nl_div_tol = 10
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/misc/multiple-nl-systems/test-fv.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Problem]
nl_sys_names = 'u v'
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = MooseVariableFVReal
solver_sys = 'u'
[]
[v]
type = MooseVariableFVReal
solver_sys = 'v'
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 1.0
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 1.0
[]
[force]
type = FVCoupledForce
variable = v
v = u
[]
[]
[FVBCs]
[left_u]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right_v]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Preconditioning]
[u]
nl_sys = 'u'
type = SMP
petsc_options = '-snes_monitor'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[v]
nl_sys = 'v'
type = SMP
petsc_options = '-snes_monitor'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[]
[Executioner]
type = SteadySolve2
solve_type = 'NEWTON'
first_nl_sys_to_solve = 'u'
second_nl_sys_to_solve = 'v'
[]
[Functions]
[exact]
type = ParsedFunction
value = '-1/6*x*x*x +7/6*x'
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
function = exact
variable = v
execute_on = FINAL
outputs = 'csv'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = FINAL
[]
[]
[Outputs]
print_nonlinear_residuals = false
print_linear_residuals = false
exodus = true
[csv]
type = CSV
execute_on = 'FINAL'
[]
[]
(test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[./u]
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[force]
type = FVCoupledForce
v = v
variable = u
[]
[]
[FunctorMaterials]
[parsed]
type = ADParsedFunctorMaterial
property_name = 'v'
functor_names = 'u'
expression = 'if(u>0.1,1e6,0)'
[]
[]
[FVBCs]
[./left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
line_search = 'none'
solve_type = NEWTON
nl_max_its = 5
nl_abs_div_tol = 1e+5
nl_div_tol = 1e+50
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
mu = 0.002
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.2'
dy = '0.2'
dz = '0.8'
ix = '3'
iy = '3'
iz = '6'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system w_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[vel_z]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = w_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[w_advection]
type = INSFVMomentumAdvection
variable = vel_z
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = vel_z
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = vel_z
momentum_component = 'z'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_x
function = '0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_y
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_z
function = '1.1'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom '
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0.0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_z
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'front'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'back left right top bottom'
function = 0.0
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'back'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'back'
variable = scalar_2
value = 2
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.98 0.98'
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(test/tests/mortar/convergence-studies/fv-gap-conductance/gap-conductance.i)
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = 'lb_bottom lb_right lb_top lb_left'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[]
[right_block_change_boundary_id]
type = RenameBoundaryGenerator
input = right_block_id
old_boundary = '0 1 2 3'
new_boundary = '100 101 102 103'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[]
[right_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = rb_right
included_subdomains = right_block
normal = '1 0 0'
[]
[right_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_right_sideset
new_boundary = rb_left
included_subdomains = right_block
normal = '-1 0 0'
[]
[right_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_left_sideset
new_boundary = rb_top
included_subdomains = right_block
normal = '0 1 0'
[]
[right_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_top_sideset
new_boundary = rb_bottom
included_subdomains = right_block
normal = '0 -1 0'
[]
[secondary]
input = right_bottom_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'lb_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'rb_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[T]
block = 'left_block right_block'
type = MooseVariableFVReal
[]
[lambda]
block = 'secondary_lower'
family = MONOMIAL
order = CONSTANT
[]
[]
[FVBCs]
[neumann]
type = FVFunctionDirichletBC
function = exact_soln_primal
variable = T
boundary = 'lb_bottom lb_top lb_left rb_bottom rb_right rb_top'
[]
[]
[FVKernels]
[conduction]
type = FVDiffusion
variable = T
block = 'left_block right_block'
coeff = 1
[]
[sink]
type = FVReaction
variable = T
block = 'left_block right_block'
[]
[forcing_function]
type = FVBodyForce
variable = T
function = forcing_function
block = 'left_block right_block'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = ''
[]
[exact_soln_primal]
type = ParsedFunction
expression = ''
[]
[exact_soln_lambda]
type = ParsedFunction
expression = ''
[]
[mms_secondary]
type = ParsedFunction
expression = ''
[]
[mms_primary]
type = ParsedFunction
expression = ''
[]
[]
[Constraints]
[mortar]
type = GapHeatConductanceTest
primary_boundary = rb_left
secondary_boundary = lb_right
primary_subdomain = primary_lower
secondary_subdomain = secondary_lower
secondary_variable = T
variable = lambda
secondary_gap_conductance = 1
primary_gap_conductance = 1
secondary_mms_function = mms_secondary
primary_mms_function = mms_primary
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary_lower'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = 'left_block right_block'
[]
[h]
type = AverageElementSize
block = 'left_block right_block'
[]
[]
(test/tests/fvkernels/mms/grad-reconstruction/rz.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[../]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[../]
[]
[FVKernels]
[./advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${a} 0'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + diff*sin(x)*cos(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x - (-x*diff*sin(x)*cos(y) + diff*cos(x)*cos(y))/x'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/dirackernels/constant_point_source/1d_point_source_fv.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = coeff
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[DiracKernels]
[point_source1]
type = ConstantPointSource
variable = u
value = 1.0
point = '0.15 0 0'
[]
[point_source2]
type = ConstantPointSource
variable = u
value = -0.5
point = '0.65 0 0'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
file_base = 1d_fv_out
exodus = true
[]
(test/tests/fvkernels/mms/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
# [u]
# []
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = coeff
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-6'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
# [./L2u]
# type = ElementL2Error
# variable = u
# function = exact
# outputs = 'console'
# execute_on = 'timestep_end'
# [../]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/mms/advective-outflow/advection-diffusion.i)
diff=1
a=1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -1
xmax = 0
nx = 2
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
force_boundary_execution = true
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[left]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = 'cos(x) - sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/bounds/constant_bounds_fv.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[v]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[bounds_dummy]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 4
[]
[reaction_u]
type = FVReaction
variable = u
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 2
[]
[reaction_v]
type = FVReaction
variable = v
[]
[]
[FVBCs]
[left_u]
type = FVDirichletBC
variable = u
boundary = '0'
value = -0.5
[]
[right_u]
type = FVNeumannBC
variable = u
boundary = 1
value = 30
[]
[left_v]
type = FVDirichletBC
variable = v
boundary = '0'
value = 4
[]
[right_v]
type = FVNeumannBC
variable = v
boundary = 1
value = -40
[]
[]
[Bounds]
[u_upper_bound]
type = ConstantBounds
variable = bounds_dummy
bounded_variable = u
bound_type = upper
bound_value = 1
[]
[u_lower_bound]
type = ConstantBounds
variable = bounds_dummy
bounded_variable = u
bound_type = lower
bound_value = 0
[]
[v_upper_bound]
type = ConstantBounds
variable = bounds_dummy
bounded_variable = v
bound_type = upper
bound_value = 3
[]
[v_lower_bound]
type = ConstantBounds
variable = bounds_dummy
bounded_variable = v
bound_type = lower
bound_value = -1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-snes_type'
petsc_options_value = 'vinewtonrsls'
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/point_value_sampler/point_value_sampler_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[./diff_v]
type = FVDiffusion
variable = v
coeff = 1
[../]
[]
[FVBCs]
[./left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = FVDirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = FVDirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
warn_discontinuous_face_values = false
variable = 'u v'
points = '0.09 0.09 0 0.23 0.4 0 0.78 0.2 0'
sort_by = x
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_2d.i)
# The test gurantees that Marshak BCs yield the expected constant 2D solution
diffusion_coef = 1e-12
opacity = 1.0
temperature_radiation = 100.0
wall_temperature = ${fparse temperature_radiation / (4^(1/4))}
G_bc = 1.0
sigma = 5.670374419e-8
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 20
[]
[]
[Variables]
[G]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[G_diffusion]
type = FVDiffusion
variable = G
coeff = ${diffusion_coef}
[]
[source_and_sink]
type = FVThermalRadiationSourceSink
variable = G
temperature_radiation = ${temperature_radiation}
opacity = ${opacity}
[]
[]
[FVBCs]
[boundaries_bc]
type = FVMarshakRadiativeBC
boundary = 'left right'
variable = G
temperature_radiation = ${wall_temperature}
coeff_diffusion = ${diffusion_coef}
boundary_emissivity = 0.5
[]
[]
[Functions]
[analytical_sol]
type = ParsedFunction
symbol_names = 'a'
symbol_values = '${fparse sqrt(opacity / diffusion_coef)}'
expression = '${G_bc} * cosh(a*x) / cosh(a) + ${sigma} * ${temperature_radiation}^4 * (1.0 - cosh(a*x) / cosh(a))'
[]
[]
[Postprocessors]
[mean_value]
type = ElementIntegralFunctorPostprocessor
functor = G
[]
[max_value]
type = ElementExtremeFunctorValue
functor = G
[]
[relative_difference]
type = ParsedPostprocessor
pp_names = 'mean_value max_value'
expression = '(max_value / mean_value - 1.0) / mean_value'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 5
ny = 5
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = 'rho_mixture'
[]
[mean_zero_pressure]
type = FVPointValueConstraint
variable = pressure
lambda = lambda
point = '0 0 0'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyant]
type = INSFVMomentumGravity
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
gravity = '0 ${g} 0'
[]
# NOTE: the friction terms for u and v are missing
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyant]
type = INSFVMomentumGravity
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
gravity = '0 ${g} 0'
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1e-3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
gravity = '0 ${g} 0'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
gravity = '0 ${g} 0'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_1_names = '${rho_d} ${mu_d}'
phase_2_names = '${rho} ${mu}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 2
growth_factor = 2.0
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 20
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
line_search=none
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
execute_scalars_on = NONE
[]
[]
(test/tests/postprocessors/element_variable_value/elemental_variable_value_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 1
ymax = 0.1
[]
[Variables]
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 0.1
[../]
[]
[FVBCs]
[./left]
type = FVDirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = right
value = 10
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./elem_left]
type = ElementalVariableValue
variable = u
elementid = 0
[]
[./elem_right]
type = ElementalVariableValue
variable = u
elementid = 9
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = '1 2'
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
(test/tests/fvkernels/fv_simple_diffusion/fv_only.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(test/tests/tag/tag-fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 7
[]
[]
[AuxVariables]
[soln_dof]
type = MooseVariableFVReal
[]
[soln_old_dof]
type = MooseVariableFVReal
[]
[soln_older_dof]
type = MooseVariableFVReal
[]
[resid_nontime_dof]
type = MooseVariableFVReal
[]
[soln]
type = MooseVariableFVReal
[]
[soln_old]
type = MooseVariableFVReal
[]
[soln_older]
type = MooseVariableFVReal
[]
[resid_nontime]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[soln_dof]
type = TagVectorDofValueAux
variable = soln_dof
v = v
vector_tag = 'solution'
[]
[soln_old_dof]
type = TagVectorDofValueAux
variable = soln_old_dof
v = v
vector_tag = 'solution_state_1'
[]
[soln_older_dof]
type = TagVectorDofValueAux
variable = soln_older_dof
v = v
vector_tag = 'solution_state_2'
[]
[nontime_dof]
type = TagVectorDofValueAux
variable = resid_nontime_dof
v = v
vector_tag = 'nontime'
[]
[soln]
type = TagVectorAux
variable = soln
v = v
vector_tag = 'solution'
[]
[soln_old]
type = TagVectorAux
variable = soln_old
v = v
vector_tag = 'solution_state_1'
[]
[soln_older]
type = TagVectorAux
variable = soln_older
v = v
vector_tag = 'solution_state_2'
[]
[nontime]
type = TagVectorAux
variable = resid_nontime
v = v
vector_tag = 'nontime'
[]
[]
[FVKernels]
[time]
type = FVTimeKernel
variable = v
[]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '.2'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_steps = 5
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/build_array_variable_aux/build_array_variable_aux.i)
[Mesh]
[meshgen]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[a]
order = FIRST
family = LAGRANGE
[]
[b]
order = FIRST
family = LAGRANGE
[]
[c]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[d]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[Kernels]
[diff_a]
type = Diffusion
variable = a
[]
[diff_b]
type = Diffusion
variable = b
[]
[]
[FVKernels]
[diff_c]
type = FVDiffusion
variable = c
coeff = 1
[]
[diff_d]
type = FVDiffusion
variable = d
coeff = 1
[]
[]
[BCs]
[a1]
type = DirichletBC
variable = a
boundary = left
value = 0
[]
[a2]
type = DirichletBC
variable = a
boundary = right
value = 1
[]
[b1]
type = DirichletBC
variable = b
boundary = bottom
value = 0
[]
[b2]
type = DirichletBC
variable = b
boundary = top
value = 1
[]
[]
[FVBCs]
[c1]
type = FVDirichletBC
variable = c
boundary = left
value = 0
[]
[c2]
type = FVDirichletBC
variable = c
boundary = right
value = 1
[]
[d1]
type = FVDirichletBC
variable = d
boundary = bottom
value = 0
[]
[d2]
type = FVDirichletBC
variable = d
boundary = top
value = 1
[]
[]
[Problem]
kernel_coverage_check = off
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[AuxVariables]
[ab]
order = FIRST
family = LAGRANGE
components = 2
[]
[cd]
order = CONSTANT
family = MONOMIAL
components = 2
[]
[]
[AuxKernels]
[build_ab]
type = BuildArrayVariableAux
variable = ab
component_variables = 'a b'
[]
[build_cd]
type = BuildArrayVariableAux
variable = cd
component_variables = 'c d'
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_1d.i)
# The test gurantees that Marshak BCs yield the expected constant 1D solution
diffusion_coef = 1e-12
opacity = 1.0
temperature_radiation = 100.0
wall_temperature = ${fparse temperature_radiation / (4^(1/4))}
G_bc = 1.0
sigma = 5.670374419e-8
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 50
[]
[]
[Variables]
[G]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[G_diffusion]
type = FVDiffusion
variable = G
coeff = ${diffusion_coef}
[]
[source_and_sink]
type = FVThermalRadiationSourceSink
variable = G
temperature_radiation = ${temperature_radiation}
opacity = ${opacity}
[]
[]
[FVBCs]
[right_bc]
type = FVMarshakRadiativeBC
boundary = 'right'
variable = G
temperature_radiation = ${wall_temperature}
coeff_diffusion = ${diffusion_coef}
boundary_emissivity = 1.0
[]
[]
[Functions]
[analytical_sol]
type = ParsedFunction
symbol_names = 'a'
symbol_values = '${fparse sqrt(opacity / diffusion_coef)}'
expression = '${G_bc} * cosh(a*x) / cosh(a) + ${sigma} * ${temperature_radiation}^4 * (1.0 - cosh(a*x) / cosh(a))'
[]
[]
[Postprocessors]
[mean_value]
type = ElementIntegralFunctorPostprocessor
functor = G
[]
[max_value]
type = ElementExtremeFunctorValue
functor = G
[]
[relative_difference]
type = ParsedPostprocessor
pp_names = 'mean_value max_value'
expression = '(max_value / mean_value - 1.0) / mean_value'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/fvkernels/constraints/bounded_value.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[v]
type = MooseVariableFVReal
# breaks the constraint
initial_condition = -1
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[time]
type = FVTimeKernel
variable = v
[]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVBoundedValueConstraint
variable = v
phi0 = 0
lambda = lambda
bound_type = 'HIGHER_THAN'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Transient
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
num_steps = 2
dt = 0.001
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/two-var-flux-and-kernel/input.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = coeff
[]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left_u]
type = FVNeumannBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = FVDirichletBC
variable = u
boundary = right
value = 42
[]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-physics.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
h_cv = 1.0
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '50 50'
iy = '20'
subdomain_id = '1 2'
[]
[]
[Variables]
[T_solid]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[Physics]
[NavierStokes]
[Flow]
[flow]
compressibility = 'incompressible'
porous_medium_treatment = true
density = ${rho}
dynamic_viscosity = ${mu}
porosity = 'porosity'
initial_velocity = '${u_inlet} 1e-6 0'
initial_pressure = 0.0
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '${u_inlet} 0'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip symmetry'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '0.1'
mass_advection_interpolation = 'average'
momentum_advection_interpolation = 'average'
[]
[]
[FluidHeatTransfer]
[heat]
thermal_conductivity = ${k}
specific_heat = ${cp}
# Reference file sets effective_conductivity by default that way
# so the conductivity is multiplied by the porosity in the kernel
effective_conductivity = false
initial_temperature = 0.0
energy_inlet_types = 'heatflux'
energy_inlet_function = '${fparse u_inlet * rho * cp * T_inlet}'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
ambient_convection_alpha = ${h_cv}
ambient_temperature = 'T_solid'
energy_advection_interpolation = 'average'
[]
[]
[]
[]
[FVKernels]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = 'T_solid'
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = ${h_cv}
[]
[]
[FVBCs]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 150
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '5 5'
iy = '5'
subdomain_id = '1 1'
[]
[internal_sideset]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.01 & x>0.99'
included_subdomains = 1
new_sideset_name = 'center'
input = 'mesh'
[]
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
block = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
inactive = 'center'
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = FVNeumannBC
variable = u
boundary = right
value = 4
[]
# Internal center sideset, should cause erroring out
[center]
type = FVNeumannBC
variable = u
boundary = center
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
cp = 'cp'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 20
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_outlet}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = 100
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[velocity_norm]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[mass_time]
type = PWCNSFVMassTimeDerivative
variable = pressure
porosity = 'porosity'
drho_dt = 'drho_dt'
[]
[mass]
type = PWCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = superficial_vel_x
rho = ${rho}
drho_dt = 'drho_dt'
momentum_component = 'x'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = superficial_vel_y
rho = ${rho}
drho_dt = 'drho_dt'
momentum_component = 'y'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_fluid
cp = ${cp}
rho = ${rho}
drho_dt = 'drho_dt'
is_solid = false
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
variable = T_fluid
k = ${k}
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[solid_energy_time]
type = PINSFVEnergyTimeDerivative
variable = T_solid
cp = ${cp_s}
rho = ${rho_s}
is_solid = true
porosity = porosity
[]
[solid_energy_diffusion]
type = FVDiffusion
variable = T_solid
coeff = ${k_s}
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = T_fluid
T_solid = T_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVDirichletBC
variable = T_fluid
value = ${T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = ${top_side_temperature}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = ${p_outlet}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T_fluid'
speed = 'velocity_norm'
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 'porosity'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '${h_fs}'
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[AuxKernels]
[speed]
type = ParsedAux
variable = 'velocity_norm'
coupled_variables = 'superficial_vel_x superficial_vel_y porosity'
expression = 'sqrt(superficial_vel_x*superficial_vel_x + superficial_vel_y*superficial_vel_y) / '
'porosity'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
alpha = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 16
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 100
alpha = 'alpha'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Postprocessors]
[temp]
type = ElementAverageValue
variable = T_fluid
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[mat_props]
type = GenericFunctorMaterial
prop_names = diffusivity
prop_values = 1
[]
[]
[Postprocessors]
[avg_flux_right]
# Computes flux integral on the boundary, which should be -1
type = SideDiffusiveFluxAverage
variable = u
boundary = right
functor_diffusivity = diffusivity
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
l_abs_tol = 1e-14
l_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '50 50'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'T_solid'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
[]
[]
[AuxVariables]
[T_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'solid_energy_diffusion solid_energy_convection'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'heated-side'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 150
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv'
prop_values = '1'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = superficial_vel_x
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = T_fluid
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = T_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/postprocessors/internal_side_integral/internal_side_integral_fv_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 4
ymin = 0
ymax = 1
[]
[Variables]
active = 'u'
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
active = 'diff'
[./diff]
type = FVDiffusion
variable = u
coeff = '1'
[../]
[]
[FVBCs]
active = 'left right'
[./left]
type = FVDirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./integral]
type = InternalSideIntegralVariablePostprocessor
variable = u
[../]
[]
[Outputs]
file_base = fv_out
exodus = true
[]
(modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
mu = 1
rho = 1.1
beta = 1e-4
k = .01
cp = 1000
velocity_interp_method = 'rc'
advected_interp_method = 'average'
l = 4
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = ${l}
nx = 8
ny = 8
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rhie_chow_user_object = 'rc'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom top'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = ${rho}
thermal_expansion = ${beta}
[]
[]
[FunctorMaterials]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_abs_tol = 1e-11
automatic_scaling = true
[]
[Postprocessors]
[rayleigh_1]
type = RayleighNumber
rho_min = rho_min
rho_max = rho_max
rho_ave = ${rho}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rayleigh_2]
type = RayleighNumber
T_cold = T_min
T_hot = T_max
rho_ave = ${rho}
beta = ${beta}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rho_min]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'min'
[]
[rho_max]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'max'
[]
[T_min]
type = ADElementExtremeFunctorValue
functor = 'T'
value_type = 'min'
[]
[T_max]
type = ADElementExtremeFunctorValue
functor = 'T'
value_type = 'max'
[]
[]
[Outputs]
csv = true
[]
(test/tests/fvkernels/fv_dotdot/fv_dotdot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 7
[]
[]
[Kernels]
[]
[FVKernels]
[./time]
type = FVTimeKernel
variable = v
[../]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '.2'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
scheme = newmark-beta
num_steps = 20
dt = 0.1
[]
[Postprocessors]
[vdotdot]
type = ADElementAverageSecondTimeDerivative
variable = v
[]
[]
[Outputs]
csv = true
[]
(test/tests/fvkernels/fv_simple_diffusion/unstructured-rz.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
elem_type = TRI3
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
boundary = right
value = 1
variable = v
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
residual_and_jacobian_together = true
[]
[Outputs]
exodus = true
[]
(test/tests/materials/functor_properties/gradients/functor-gradients.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 4
xmax = 2
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[sink]
type = MooseVariableFVReal
[]
[diffusive_flux_x]
type = MooseVariableFVReal
[]
[diffusive_flux_y]
type = MooseVariableFVReal
[]
[diffusive_flux_magnitude]
type = MooseVariableFVReal
[]
[]
[ICs]
[sink]
type = FunctionIC
variable = sink
function = 'x^3'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1.1
[]
[sink]
type = FVFunctorElementalKernel
variable = u
functor_name = 'sink_mat'
[]
[]
[FVBCs]
[bounds]
type = FVDirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Materials]
[functor_properties]
type = ADGenericFunctorMaterial
prop_names = 'sink_mat diffusive_coef'
prop_values = 'sink 4.5'
[]
[gradient_of_u]
type = ADGenericFunctorGradientMaterial
prop_names = 'grad_u'
prop_values = 'u'
[]
[]
# Compute the diffusive flux magnitude
[AuxKernels]
[diffusive_flux_x]
type = ADFunctorVectorElementalAux
variable = 'diffusive_flux_x'
functor = 'grad_u'
factor = 'diffusive_coef'
component = 0
[]
[diffusive_flux_y]
type = ADFunctorVectorElementalAux
variable = 'diffusive_flux_y'
functor = 'grad_u'
factor = 'diffusive_coef'
component = 1
[]
[diffusive_flux_magnitude]
type = VectorMagnitudeAux
variable = 'diffusive_flux_magnitude'
x = 'diffusive_flux_x'
y = 'diffusive_flux_y'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/boundary_material/fv_material_quadrature.i)
# Parsed material properties depend on the physical location of the element
# This requires the initialization of the quadrature in the FVFlux loop
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Functions]
[linear_x]
type = ParsedFunction
expression = 'x'
[]
[piecewise_linear_x]
type = PiecewiseLinear
x = '-1 2'
y = '-1 2'
axis = 'x'
[]
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = k1
coeff_interp_method = average
[]
[r]
type = FVReaction
variable = u
[]
[]
[FVBCs]
[all]
type = FVDirichletBC
variable = u
boundary = 'left right bottom top'
value = 1
[]
[]
[Materials]
active = 'k1'
[k1]
type = ADGenericFunctorMaterial
prop_names = 'k1'
prop_values = linear_x
block = 0
[]
[k1_piecewise]
type = ADGenericFunctorMaterial
prop_names = 'k1'
prop_values = piecewise_linear_x
block = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/controls/switch-pressure-bc/switch_vel_pres_bc.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
end_time = 3.0
switch_time = 1.0
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
# Inlet
[inlet_u]
type = WCNSFVSwitchableInletVelocityBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
switch_bc = true
face_limiter = 1.0
[]
[outlet_u]
type = WCNSFVSwitchableInletVelocityBC
variable = u
boundary = 'right'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
switch_bc = false
scaling_factor = -1.0
face_limiter = 1.0
[]
[inlet_v]
type = WCNSFVInletVelocityBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
[]
[inlet_T]
type = WCNSFVInletTemperatureBC
variable = T
boundary = 'left'
temperature_pp = 'inlet_T'
[]
[outlet_T]
type = NSFVOutflowTemperatureBC
variable = T
boundary = 'right'
u = u
v = v
rho = 'rho'
cp = 'cp'
backflow_T = ${inlet_temp}
[]
[outlet_p]
type = INSFVSwitchableOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
switch_bc = true
face_limiter = 1.0
[]
[inlet_p]
type = INSFVSwitchableOutletPressureBC
variable = pressure
boundary = 'left'
function = ${outlet_pressure}
switch_bc = false
face_limiter = 1.0
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
[Functions]
[func_coef]
type = ParsedFunction
expression = 'if(t<${switch_time} | t>2.0*${switch_time}, 1, 0)'
[]
[func_coef_comp]
type = ParsedFunction
expression = 'if(t<${switch_time} | t>2.0*${switch_time}, 0, 1)'
[]
[mass_flux_and_pressure_test_scaling]
type = ParsedFunction
expression = 'if(t<${switch_time} | t>2.0*${switch_time}, 0.1, 0.2)'
[]
[]
[Controls]
[func_control_u_inlet]
type = BoolFunctionControl
parameter = 'FVBCs/inlet_u/switch_bc'
function = 'func_coef'
execute_on = 'initial timestep_begin'
[]
[func_control_u_outlet]
type = BoolFunctionControl
parameter = 'FVBCs/outlet_u/switch_bc'
function = 'func_coef_comp'
execute_on = 'initial timestep_begin'
[]
[func_control_p_outlet]
type = BoolFunctionControl
parameter = 'FVBCs/outlet_p/switch_bc'
function = 'func_coef'
execute_on = 'initial timestep_begin'
[]
[func_control_p_inlet]
type = BoolFunctionControl
parameter = 'FVBCs/inlet_p/switch_bc'
function = 'func_coef_comp'
execute_on = 'initial timestep_begin'
[]
[func_control_limiter_u_inlet]
type = RealFunctionControl
parameter = 'FVBCs/inlet_u/face_limiter'
function = 'mass_flux_and_pressure_test_scaling'
execute_on = 'initial timestep_begin'
[]
[func_control_limiter_u_outlet]
type = RealFunctionControl
parameter = 'FVBCs/outlet_u/face_limiter'
function = 'mass_flux_and_pressure_test_scaling'
execute_on = 'initial timestep_begin'
[]
[func_control_limiter_p_outlet]
type = RealFunctionControl
parameter = 'FVBCs/outlet_p/face_limiter'
function = 'mass_flux_and_pressure_test_scaling'
execute_on = 'initial timestep_begin'
[]
[func_control_limiter_p_inlet]
type = RealFunctionControl
parameter = 'FVBCs/inlet_p/face_limiter'
function = 'mass_flux_and_pressure_test_scaling'
execute_on = 'initial timestep_begin'
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = '${fparse 1980 * inlet_velocity * inlet_area}'
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[outlet_mfr]
type = VolumetricFlowRate
boundary = 'right'
advected_quantity = 1.0
vel_x = u
vel_y = v
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
dt = 0.1
end_time = ${end_time}
nl_abs_tol = 1e-12
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
csv = true
execute_on = 'TIMESTEP_END'
[]
(test/tests/postprocessors/side_integral/side_integral_fv_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 4
ymin = 0
ymax = 1
[]
[Variables]
active = 'u'
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
active = 'diff'
[./diff]
type = FVDiffusion
variable = u
coeff = '1'
[../]
[]
[FVBCs]
active = 'left right'
[./left]
type = FVDirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./integral]
type = SideIntegralVariablePostprocessor
boundary = 0
variable = u
[../]
[]
[Outputs]
file_base = fv_out
exodus = true
[]
(test/tests/fvkernels/constraints/integral.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVIntegralValueConstraint
variable = v
phi0 = 13
lambda = lambda
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_functor_convective_heat_flux/fv_functor_convective_heat_flux.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 5
xmax = 2
subdomain_ids = '0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = 0
paired_block = 1
new_boundary = interface
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[T_solid]
type = MooseVariableFVReal
initial_condition = 1
block = 0
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = 0
block = 1
[]
[]
[FVKernels]
[diff_wall]
type = FVDiffusion
variable = T_solid
block = 0
coeff = 2
[]
[diff_fluid]
type = FVDiffusion
variable = T_fluid
block = 1
coeff = 4
[]
[gradient_creating]
type = FVBodyForce
variable = T_fluid
[]
[]
[FVBCs]
[interface_fluid_to_solid]
type = FVFunctorConvectiveHeatFluxBC
boundary = 'interface'
variable = T_solid
T_bulk = T_fluid
T_solid = T_solid
is_solid = true
heat_transfer_coefficient = 'htc'
[]
[left]
type = FVDirichletBC
boundary = 'left'
variable = T_solid
value = 1
[]
[interface_solid_to_fluid]
type = FVFunctorConvectiveHeatFluxBC
boundary = 'interface'
variable = T_fluid
T_bulk = T_fluid
T_solid = T_solid
is_solid = false
heat_transfer_coefficient = 'htc'
[]
[right]
type = FVDirichletBC
boundary = 'right'
variable = T_fluid
value = 0
[]
[]
[Materials]
[cht]
type = ADGenericFunctorMaterial
prop_names = 'htc'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/FVHeatFluxBC/wall_heat_transfer.i)
flux=10
[GlobalParams]
porosity = 'porosity'
splitting = 'porosity'
locality = 'global'
average_porosity = 'average_eps'
average_k_fluid='average_k_fluid'
average_k_solid='average_k_solid'
average_kappa='average_k_fluid' # because of vector matprop, should be kappa
average_kappa_solid='average_kappa_solid'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 20
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[Tf]
type = MooseVariableFVReal
[]
[Ts]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[k]
type = MooseVariableFVReal
[]
[kappa]
type = MooseVariableFVReal
[]
[k_s]
type = MooseVariableFVReal
[]
[kappa_s]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.2
[]
[]
[Functions]
[k]
type = ParsedFunction
expression = 0.1*(100*y+1)
[]
[kappa]
type = ParsedFunction
expression = 0.2*(200*y+1)
[]
[kappa_s]
type = ParsedFunction
expression = 0.4*(200*y+1)
[]
[k_s]
type = ParsedFunction
expression = 0.2*(200*y+1)+2*x
[]
[]
[FVKernels]
[Tf_diffusion]
type = FVDiffusion
variable = Tf
coeff = 1
[]
[Ts_diffusion]
type = FVDiffusion
variable = Ts
coeff = 1
[]
[]
[FVBCs]
[left_Ts]
type = NSFVHeatFluxBC
variable = Ts
boundary = 'left'
phase = 'solid'
value = ${flux}
[]
[right_Ts]
type = FVDirichletBC
variable = Ts
boundary = 'right'
value = 1000.0
[]
[left_Tf]
type = NSFVHeatFluxBC
variable = Tf
boundary = 'left'
phase = 'fluid'
value = ${flux}
[]
[right_Tf]
type = FVDirichletBC
variable = Tf
boundary = 'right'
value = 1000.0
[]
[]
[AuxKernels]
[k]
type = ADMaterialRealAux
variable = k
property = 'k'
[]
[k_s]
type = ADMaterialRealAux
variable = k_s
property = 'k_s'
[]
[kappa_s]
type = ADMaterialRealAux
variable = kappa_s
property = 'kappa_s'
[]
[]
[Materials]
[thermal_conductivities_k]
type = ADGenericFunctionMaterial
prop_names = 'k'
prop_values = 'k'
[]
[thermal_conductivities_k_s]
type = ADGenericFunctionMaterial
prop_names = 'k_s'
prop_values = 'k_s'
[]
[thermal_conductivities_kappa]
type = ADGenericConstantVectorMaterial
prop_names = 'kappa'
prop_values = '0.1 0.2 .03'
[]
[thermal_conductivities_kappa_s]
type = ADGenericFunctionMaterial
prop_names = 'kappa_s'
prop_values = 'kappa_s'
[]
[]
[Postprocessors]
[average_eps]
type = ElementAverageValue
variable = porosity
# because porosity is constant in time, we evaluate this only once
execute_on = 'initial'
[]
[average_k_fluid]
type = ElementAverageValue
variable = k
[]
[average_k_solid]
type = ElementAverageValue
variable = k_s
[]
[average_kappa_solid]
type = ElementAverageValue
variable = kappa_s
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
hide = 'porosity average_eps'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = ${l}
nx = 16
ny = 16
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
expression = 'u'
execute_on = 'initial timestep_end'
coupled_variables = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
expression = 'v'
execute_on = 'initial timestep_end'
coupled_variables = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
expression = 'T'
execute_on = 'initial timestep_end'
coupled_variables = 'T'
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
expression = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
steady_state_detection = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-5
optimal_iterations = 6
[]
nl_abs_tol = 1e-9
normalize_solution_diff_norm_by_dt = false
nl_max_its = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(test/tests/fviks/auxiliary_variables/fv_reaction_1D.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
block = '0'
[]
[]
[AuxVariables]
[v]
type = MooseVariableFVReal
block = '1'
initial_condition = 4
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
block = '0'
coeff = 1
[]
[]
[FVInterfaceKernels]
[interface]
type = FVDiffusionInterface
variable1 = u
variable2 = 'v'
boundary = 'primary0_interface'
coeff1 = 1
coeff2= 2
subdomain1 = 0
subdomain2 = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_forced_its = 2
[]
[Problem]
kernel_coverage_check = false
[]
[Outputs]
csv = true
[]
[Postprocessors]
[min]
type = ElementExtremeValue
variable = 'u'
value_type = 'min'
block = '0'
[]
[max]
type = ElementExtremeValue
variable = 'u'
block = '0'
[]
[]
(test/tests/executioners/nl_forced_its/nl_forced_its.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[./u]
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[force]
type = FVCoupledForce
v = v
variable = u
[]
[]
[FunctorMaterials]
[parsed]
type = ADParsedFunctorMaterial
property_name = 'v'
functor_names = 'u'
expression = 'if(u>0.1,1e6,0)'
[]
[]
[FVBCs]
[./left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
line_search = 'none'
solve_type = NEWTON
nl_max_its = 5
nl_forced_its = 3
nl_abs_div_tol = 1e+3
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(tutorials/shield_multiphysics/inputs/step11_multiapps/step11_2d_fluid.i)
cp_water_multiplier = 5e-2
mu_multiplier = 1
# Real facility uses forced convection to cool the water tank at full power
# Need to lower power for natural convection so concrete doesn't get too hot.
power = '${fparse 5e4 / 144 * 0.5}'
[Mesh]
[fmg]
type = FileMeshGenerator
file = 'mesh2d_coarse_in.e'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[vel_y]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[pressure]
type = INSFVPressureVariable
block = 'water'
initial_condition = 1e5
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
block = 'water'
scaling = 1e-05
[]
[lambda]
type = MooseVariableScalar
family = SCALAR
order = FIRST
# Cleans up console output
outputs = none
[]
[]
[GlobalParams]
velocity_interp_method = rc
rhie_chow_user_object = ins_rhie_chow_interpolator
rho = rho
[]
[FVKernels]
[water_ins_mass_advection]
type = INSFVMassAdvection
advected_interp_method = upwind
block = water
variable = pressure
[]
[water_ins_mass_pressure_pin]
type = FVPointValueConstraint
lambda = lambda
phi0 = 1e5
point = '1 3 0'
variable = pressure
[]
[water_ins_momentum_time_vel_x]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = x
variable = vel_x
[]
[water_ins_momentum_time_vel_y]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_advection_x]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = x
variable = vel_x
characteristic_speed = 0.01
[]
[water_ins_momentum_advection_y]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = y
variable = vel_y
characteristic_speed = 0.1
[]
[water_ins_momentum_diffusion_x]
type = INSFVMomentumDiffusion
block = water
momentum_component = x
mu = mu
variable = vel_x
[]
[water_ins_momentum_diffusion_y]
type = INSFVMomentumDiffusion
block = water
momentum_component = y
mu = mu
variable = vel_y
[]
[water_ins_momentum_pressure_x]
type = INSFVMomentumPressure
block = water
momentum_component = x
pressure = pressure
variable = vel_x
[]
[water_ins_momentum_pressure_y]
type = INSFVMomentumPressure
block = water
momentum_component = y
pressure = pressure
variable = vel_y
[]
[water_ins_momentum_gravity_z]
type = INSFVMomentumGravity
block = water
gravity = '0 -9.81 0'
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_boussinesq_z]
type = INSFVMomentumBoussinesq
T_fluid = T_fluid
alpha_name = alpha
block = water
gravity = '0 -9.81 0'
momentum_component = y
ref_temperature = 300
rho = 955.7
variable = vel_y
[]
# Energy conservation equation
[water_ins_energy_time]
type = INSFVEnergyTimeDerivative
block = water
dh_dt = dh_dt
rho = rho
variable = T_fluid
[]
[water_ins_energy_advection]
type = INSFVEnergyAdvection
advected_interp_method = upwind
block = water
variable = T_fluid
[]
[water_ins_energy_diffusion_all]
type = FVDiffusion
block = water
coeff = k
variable = T_fluid
[]
# Turbulence
[water_ins_viscosity_rans_x]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[water_ins_viscosity_rans_y]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[water_ins_energy_rans]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
cp = cp
mixing_length = mixing_length
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
variable = mixing_length
walls = 'water_boundary inner_cavity_water'
execute_on = 'initial'
[]
[]
[FunctorMaterials]
[water]
type = ADGenericFunctorMaterial
block = 'water'
prop_names = 'rho k cp mu alpha_wall'
prop_values = '955.7 0.6 ${fparse cp_water_multiplier * 4181} ${fparse 7.98e-4 * mu_multiplier} 30'
[]
[boussinesq_params]
type = ADGenericFunctorMaterial
prop_names = 'alpha '
prop_values = '2.9e-3'
[]
[water_ins_enthalpy_material]
type = INSFVEnthalpyFunctorMaterial
block = water
cp = cp
execute_on = ALWAYS
outputs = none
temperature = T_fluid
[]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x'
v = 'vel_y'
mixing_length = mixing_length
mu = mu
[]
[]
[FVBCs]
[vel_x_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_x
[]
[vel_y_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_y
[]
[T_fluid_inner_cavity]
type = FVFunctorNeumannBC
boundary = inner_cavity_water
functor = ${power}
variable = T_fluid
[]
[T_fluid_water_boundary]
type = FVFunctorConvectiveHeatFluxBC
boundary = water_boundary
variable = T_fluid
T_bulk = T_fluid
T_solid = T_solid
heat_transfer_coefficient = 600
is_solid = false
[]
[]
[UserObjects]
[ins_rhie_chow_interpolator]
type = INSFVRhieChowInterpolator
pressure = 'pressure'
u = 'vel_x'
v = 'vel_y'
block = 'water'
[]
[]
[AuxVariables]
# This isn't used in simulation, but useful for visualization
[vel_z]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 0
[]
[mixing_length]
block = 'water'
order = CONSTANT
family = MONOMIAL
fv = true
[]
# This is the variable that is transferred from the main app
[T_solid]
block = 'concrete_hd concrete Al'
initial_condition = 300
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
off_diagonals_in_auto_scaling = true
line_search = none
# Direct solve works for everything small enough
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
nl_abs_tol = 3e-7
nl_max_its = 10
l_max_its = 3
start_time = -1
dtmax = 100
[TimeStepper]
type = FunctionDT
function = 'if(t < 0.1, 0.1, t)'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
mu = 1.0
rho = 1e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.0
g = -9.81
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 11
ny = 11
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Correctors]
[pin_pressure]
type = NSPressurePin
variable = pressure
pin_type = point-value
point = '0 0 0'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyant]
type = INSFVMomentumGravity
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
gravity = '0 ${g} 0'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyant]
type = INSFVMomentumGravity
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
gravity = '0 ${g} 0'
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1e-3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[phase_1]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[compute_phase_1]
type = ParsedAux
variable = phase_1
coupled_variables = 'phase_2'
expression = '1 - phase_2'
[]
[]
[FunctorMaterials]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_1_names = '${rho_d} ${mu_d}'
phase_2_names = '${rho} ${mu}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
iteration_window = 2
growth_factor = 2
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 20
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
mu = 10.0
rho = 100.0
mu_d = 1.0
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.0
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.01
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[interface_area]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
inactive = 'u_time v_time phase_2_time interface_area_time'
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
functor = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_time]
type = FVFunctorTimeKernel
variable = interface_area
functor = interface_area
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = 1.0
rho = 'rho_mixture'
rho_d = ${rho_d}
pressure = 'pressure'
k_c = ${fparse mass_exchange_coeff * 100.0}
fd = 'phase_2'
sigma = 1e-3
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = 0.0
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
# dt = 0.1
# end_time = 1.0
# nl_max_its = 10
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
function = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(test/tests/postprocessors/interface_value/interface_fv_variable_value_postprocessor.i)
postprocessor_type = InterfaceAverageVariableValuePostprocessor
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 6
xmax = 3
ny = 9
ymax = 3
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '2 1 0'
block_id = 1
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain_id
primary_block = '0'
paired_block = '1'
new_boundary = 'interface'
[../]
[]
[Functions]
[./fn_exact]
type = ParsedFunction
expression = 'x*x+y*y'
[../]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[]
[Variables]
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[./ffn]
type = FVBodyForce
variable = u
function = ffn
[../]
[]
[FVBCs]
[./all]
type = FVFunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = fn_exact
[../]
[]
[Materials]
[./stateful1]
type = GenericConstantMaterial
block = 0
prop_names = 'diffusivity'
prop_values = 10
[../]
[./stateful2]
type = GenericConstantMaterial
block = 1
prop_names = 'diffusivity'
prop_values = 4
[../]
[]
[AuxKernels]
[./diffusivity_1]
type = MaterialRealAux
property = diffusivity
variable = diffusivity_1
[]
[./diffusivity_2]
type = MaterialRealAux
property = diffusivity
variable = diffusivity_2
[]
[]
[AuxVariables]
[./diffusivity_1]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_2]
family = MONOMIAL
order = CONSTANT
[]
[]
[Postprocessors]
[./diffusivity_average]
type = ${postprocessor_type}
interface_value_type = average
variable = diffusivity_1
neighbor_variable = diffusivity_2
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[./diffusivity_jump_primary_secondary]
type = ${postprocessor_type}
interface_value_type = jump_primary_minus_secondary
variable = diffusivity_1
neighbor_variable = diffusivity_2
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[./diffusivity_jump_secondary_primary]
type = ${postprocessor_type}
interface_value_type = jump_secondary_minus_primary
variable = diffusivity_1
neighbor_variable = diffusivity_2
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[./diffusivity_jump_abs]
type = ${postprocessor_type}
interface_value_type = jump_abs
variable = diffusivity_1
neighbor_variable = diffusivity_2
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[./diffusivity_primary]
type = ${postprocessor_type}
interface_value_type = primary
variable = diffusivity_1
neighbor_variable = diffusivity_2
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[./diffusivity_secondary]
type = ${postprocessor_type}
interface_value_type = secondary
variable = diffusivity_1
neighbor_variable = diffusivity_2
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[./diffusivity_single_variable]
type = ${postprocessor_type}
interface_value_type = primary
variable = diffusivity_1
execute_on = TIMESTEP_END
boundary = 'interface'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
file_base = ${raw ${postprocessor_type} _fv}
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
mu = 2.6
rho = 1.0
cp = 700
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
# uniform_refine = 1
[fmg]
type = FileMeshGenerator
file = "diverger-2d.msh"
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
# two_term_boundary_expansion = false
[]
[T]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
solver_sys = energy_system
initial_condition = 700
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[heat_advection]
type = INSFVEnergyAdvection
variable = T
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[heat_diffusion]
type = FVDiffusion
variable = T
coeff = '10'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_y
function = '0.0'
[]
[inlet-T]
type = FVDirichletBC
boundary = 'inlet'
value = 700
variable = T
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = 1.4
[]
[zerograd-p]
type = FVNeumannBC
boundary = 'top bottom inlet'
variable = pressure
value = 0
[]
[]
[FunctorMaterials]
[mu]
type = ADGenericFunctorMaterial #defines mu artificially for numerical convergence
prop_names = 'mu rho cp' #it converges to the real mu eventually.
prop_values = '${mu} ${rho} ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
cp = ${cp}
temperature = 'T'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
energy_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
mu = 1
rho = 1
k = 0.01
cp = 1
alpha = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
inactive = 'u_buoyancy u_gravity v_buoyancy v_gravity'
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
alpha_name = ${alpha}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
alpha_name = ${alpha}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'left right top bottom'
function = 0.0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 0
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.90
energy_equation_relaxation = 0.99
pressure_variable_relaxation = 0.30
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(test/tests/fvkernels/constraints/point_value.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[lambda]
type = MooseVariableScalar
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[average]
type = FVPointValueConstraint
variable = v
phi0 = 13
lambda = lambda
point = '0.3 0 0'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/non-orthogonal/extended-adr.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = TRI3
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
type = MooseVariableFVReal
face_interp_method = vertex-based
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} ${fparse 2*a} 0'
advected_interp_method = 'average'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
use_point_neighbors = true
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'hypre'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/userobjects/layered_side_integral/layered_side_diffusive_flux_average_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[AuxVariables]
[./layered_side_flux_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[FVKernels]
[./diff]
type = FVDiffusion
variable = u
coeff = 1
[../]
[]
[FVBCs]
[./bottom]
type = FVDirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = FVDirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[AuxKernels]
[./lsfa]
type = SpatialUserObjectAux
variable = layered_side_flux_average
boundary = top
user_object = layered_side_flux_average
[../]
[]
[Materials]
[./gcm]
type = GenericConstantMaterial
prop_values = 2
prop_names = diffusivity
boundary = 'right top'
[../]
[]
[UserObjects]
[./layered_side_flux_average]
type = LayeredSideDiffusiveFluxAverage
direction = y
diffusivity = diffusivity
num_layers = 1
variable = u
execute_on = linear
boundary = top
[../]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
l_abs_tol = 1e-14
l_tol = 1e-6
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(modules/navier_stokes/include/fvkernels/INSFVTurbulentDiffusion.h)
// This file is part of the MOOSE framework
// https://mooseframework.inl.gov
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "FVDiffusion.h"
/// INSFVTurbulentDiffusion implements a standard diffusion term for a turbulent problem:
///
/// - strong form: \nabla \cdot k \nabla u / coef
///
/// - weak form: \int_{A} k \nabla u / coef \cdot \vec{n} dA
///
/// It uses/requests a material property named "coeff" for k. An average of
/// the elem and neighbor k-values (which should be face-values) is used to
/// compute k on the face. Cross-diffusion correction factors are currently not
/// implemented for the "grad_u*n" term.
/// The specialty of this kernel is that it takes into account the wall treatment of the variable with respect to turbulence.
class INSFVTurbulentDiffusion : public FVDiffusion
{
public:
static InputParameters validParams();
virtual void initialSetup() override;
INSFVTurbulentDiffusion(const InputParameters & params);
protected:
virtual ADReal computeQpResidual() override final;
using FVDiffusion::computeResidual;
void computeResidual(const FaceInfo & fi) override;
using FVDiffusion::computeJacobian;
void computeJacobian(const FaceInfo & fi) override;
const Moose::Functor<ADReal> & _scaling_coef;
/// Wall boundaries
const std::vector<BoundaryName> & _wall_boundary_names;
/// Maps for wall treatment
std::map<const Elem *, bool> _wall_bounded;
/// Whether a Newton's method is being used (and we need to preserve the sparsity pattern in edge cases)
const bool _preserve_sparsity_pattern;
};
(test/include/fvkernels/RenamedCoeffFVDiffusion.h)
// This file is part of the MOOSE framework
// https://mooseframework.inl.gov
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "FVDiffusion.h"
class RenamedCoeffFVDiffusion : public FVDiffusion
{
public:
static InputParameters validParams();
RenamedCoeffFVDiffusion(const InputParameters & params);
};