- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- momentum_componentThe component of the momentum equation that this kernel applies to.
C++ Type:MooseEnum
Controllable:No
Description:The component of the momentum equation that this kernel applies to.
- muThe viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Controllable:No
Description:The rhie-chow user-object
- uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this boundary condition applies to
INSFVSymmetryVelocityBC
This object implements a symmetry boundary condition for the velocity. It applies boundary forces such that the gradient of the velocity parallel to the boundary is zero in the boundary normal direction. A INSFVSymmetryVelocityBC
should be applied for every velocity component on a symmetry boundary. Similarly an INSFVSymmetryPressureBC
should be applied for the pressure on the symmetry boundary.
Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- v0The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:0
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- w0The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:0
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-symmetry.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/diverging.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-average-no-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/no-slip-tris.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/mixing_length_eddy_viscosity.i)
- (modules/navier_stokes/test/tests/postprocessors/pressure_drop/drop_insfv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/steady.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/fvbcs/wall_function/Re_t395.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/mixing_length_total_viscosity.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
- (modules/navier_stokes/examples/pipe_mixing_length/pipe_mixing_length.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/wall_distance_capped_mixing_length_aux/capped_mixing_length.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-rc-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/steady.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/channel_ERCOFTAC.i)
Child Objects
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/cartesian-version/2d-rc-symmetry.i)
mu=1.1
rho=1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
two_term_boundary_expansion = true
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[ICs]
[u]
type = FunctionIC
function = 'exact_u'
variable = u
[]
[v]
type = FunctionIC
function = 'exact_v'
variable = v
[]
[pressure]
type = FunctionIC
function = 'exact_p'
variable = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[u_wall]
type = INSFVNoSlipWallBC
variable = u
boundary = 'right'
function = 'exact_u'
[]
[v_wall]
type = INSFVNoSlipWallBC
variable = v
boundary = 'right'
function = 'exact_v'
[]
[u_axis]
type = INSFVSymmetryVelocityBC
variable = u
boundary = 'left'
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[v_axis]
type = INSFVSymmetryVelocityBC
variable = v
boundary = 'left'
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[p_axis]
type = INSFVSymmetryPressureBC
variable = pressure
boundary = 'left'
[]
[p]
type = INSFVOutletPressureBC
variable = pressure
function = 'exact_p'
boundary = 'top'
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
function = 'exact_u'
boundary = 'bottom'
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
function = 'exact_v'
boundary = 'bottom'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(x*pi)*cos(y*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '2*pi^2*mu*sin(x*pi)*cos(y*pi) - 2*pi*rho*sin(x*pi)*sin(y*pi)*cos(1.3*x)*cos(y*pi) + 2*pi*rho*sin(x*pi)*cos(x*pi)*cos(y*pi)^2 - 1.5*sin(1.5*x)*cos(1.6*y)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'cos(1.3*x)*cos(y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = '1.69*mu*cos(1.3*x)*cos(y*pi) + pi^2*mu*cos(1.3*x)*cos(y*pi) - 1.3*rho*sin(1.3*x)*sin(x*pi)*cos(y*pi)^2 - 2*pi*rho*sin(y*pi)*cos(1.3*x)^2*cos(y*pi) + pi*rho*cos(1.3*x)*cos(x*pi)*cos(y*pi)^2 - 1.6*sin(1.6*y)*cos(1.5*x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'cos(1.5*x)*cos(1.6*y)'
[]
[forcing_p]
type = ParsedFunction
expression = '-pi*rho*sin(y*pi)*cos(1.3*x) + pi*rho*cos(x*pi)*cos(y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/diverging.i)
mu = 1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
file = diverging.msh
uniform_refine = 2
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
# we can think of the axis as a slip wall boundary, no normal velocity and no viscous shear
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
active = 'inlet-u inlet-v free-slip-wall-u free-slip-wall-v outlet-p axis-u axis-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[free-slip-wall-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-wall-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'bottom'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'top'
[]
[num_lin]
type = NumLinearIterations
outputs = 'console'
[]
[num_nl]
type = NumNonlinearIterations
outputs = 'console'
[]
[cum_lin]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_lin'
[]
[cum_nl]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_nl'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-average-no-slip.i)
mu = 1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 4
nx = 10
ny = 40
[]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'bottom'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'top'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.3683 0.0127'
dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
ix = '2 1'
iy = '1 2 3 2 1'
subdomain_id = '0 0
1 0
2 0
1 0
0 0
'
[]
[rename_block_name]
type = RenameBlockGenerator
input = cmg
old_block = '0 1 2'
new_block = 'wall_block spacer_block porous_block'
[]
[solid_fluid_interface_1]
type = SideSetsBetweenSubdomainsGenerator
input = rename_block_name
primary_block = porous_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[solid_fluid_interface_2]
type = SideSetsBetweenSubdomainsGenerator
input = solid_fluid_interface_1
primary_block = spacer_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[wall_left_boundary_1]
type = SideSetsFromBoundingBoxGenerator
input = solid_fluid_interface_2
bottom_left = '0 0 0'
top_right = '0.1 0.0127 0'
included_boundaries = left
boundary_new = wall_left
[]
[wall_left_boundary_2]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_1
bottom_left = '0 2.9857 0'
top_right = '0.1 2.9984 0'
included_boundaries = left
boundary_new = wall_left
[]
[fluid_left_boundary]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_2
bottom_left = '0 0.0127 0'
top_right = '0.1 2.9857 0'
included_boundaries = left
boundary_new = fluid_left
[]
coord_type = RZ
rz_coord_axis = Y
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
block = 'spacer_block porous_block'
[]
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
[]
[pressure]
type = INSFVPressureVariable
block = 'spacer_block porous_block'
[]
[T_fluid]
type = INSFVEnergyVariable
block = 'spacer_block porous_block'
[]
[lambda]
family = SCALAR
order = FIRST
block = 'spacer_block porous_block'
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
block = 'spacer_block porous_block'
[]
[]
[FVKernels]
# No mass time derivative because imcompressible (derivative = 0)
[mass]
type = PINSFVMassAdvection
variable = pressure
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
block = 'spacer_block porous_block'
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_conduction]
type = PINSFVEnergyDiffusion
k = 'k_fluid'
variable = T_fluid
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
block = 'spacer_block porous_block'
[]
[heat_source]
type = FVBodyForce
variable = T_fluid
function = ${Q}
block = 'porous_block'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = superficial_vel_x
boundary = 'solid_fluid_interface'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = superficial_vel_y
boundary = 'solid_fluid_interface'
function = 0
[]
[reflective_x]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_x
boundary = fluid_left
momentum_component = 'x'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_y]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_y
boundary = fluid_left
momentum_component = 'y'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_p]
type = INSFVSymmetryPressureBC
boundary = fluid_left
variable = pressure
[]
[T_reflective]
type = FVNeumannBC
variable = T_fluid
boundary = fluid_left
value = 0
[]
[T_cold_boundary]
type = FVDirichletBC
variable = T_fluid
boundary = solid_fluid_interface
value = ${T_cold}
[]
[]
[ICs]
[porosity_spacer]
type = ConstantIC
variable = porosity
block = spacer_block
value = 1.0
[]
[porosity_fuel]
type = ConstantIC
variable = porosity
block = porous_block
value = 0.1
[]
[temp_ic_fluid]
type = ConstantIC
variable = T_fluid
value = ${T_cold}
block = 'spacer_block porous_block'
[]
[superficial_vel_x]
type = ConstantIC
variable = superficial_vel_x
value = 1E-5
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = ConstantIC
variable = superficial_vel_y
value = 1E-5
block = 'spacer_block porous_block'
[]
[]
[FunctorMaterials]
[functor_constants_fluid]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k_fluid'
prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
block = 'spacer_block porous_block'
[]
[density_fluid]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[functor_constants_steel]
# We need this to avoid errors for materials not existing on every block
type = ADGenericFunctorMaterial
prop_names = 'dummy'
prop_values = 0.0
block = wall_block
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = none
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
mu = 8.8871e-4
rho_solid = 997.561
rho_liquid = 997.561
k_solid = 0.6203
k_liquid = 0.6203
cp_solid = 4181.72
cp_liquid = 4181.72
L = 3e5
T_liquidus = 285
T_solidus = 280
advected_interp_method = 'average'
velocity_interp_method = 'rc'
U_inlet = '${fparse 0.5 * mu / rho_liquid / 0.5}'
T_inlet = 300.0
T_cold = 200.0
Nx = 30
Ny = 5
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = '${fparse 0.5 * 1.0}'
nx = ${Nx}
ny = ${Ny}
bias_y = '${fparse 1 / 1.2}'
[]
[rename1]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'inlet'
[]
[rename2]
type = RenameBoundaryGenerator
input = rename1
old_boundary = 'right'
new_boundary = 'outlet'
[]
[rename3]
type = RenameBoundaryGenerator
input = rename2
old_boundary = 'bottom'
new_boundary = 'symmetry'
[]
[rename4]
type = RenameBoundaryGenerator
input = rename3
old_boundary = 'top'
new_boundary = 'wall'
[]
[rename5]
type = ParsedGenerateSideset
input = rename4
normal = '0 1 0'
combinatorial_geometry = 'x>2.0 & x<8.0 & y>0.49999'
new_sideset_name = 'cooled_wall'
[]
[]
[AuxVariables]
[U]
type = MooseVariableFVReal
[]
[fl]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[darcy_coef]
type = MooseVariableFVReal
[]
[fch_coef]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = FunctorAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = FunctorAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = FunctorAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[darcy_out]
type = FunctorAux
functor = 'Darcy_coefficient'
variable = 'darcy_coef'
[]
[fch_out]
type = FunctorAux
functor = 'Forchheimer_coefficient'
variable = 'fch_coef'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_inlet}'
scaling = 1.0
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = rho_mixture
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
momentum_component = 'x'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = rho_mixture
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
momentum_component = 'y'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = rho_mixture
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = k_mixture
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_x
function = '${U_inlet}'
[]
[sym_u]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = vel_y
function = 0
[]
[sym_v]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = 0
[]
[sym_p]
type = INSFVSymmetryPressureBC
boundary = 'symmetry'
variable = pressure
[]
[sym_T]
type = INSFVSymmetryScalarBC
variable = T
boundary = 'symmetry'
[]
[cooled_wall]
type = FVFunctorDirichletBC
variable = T
functor = '${T_cold}'
boundary = 'cooled_wall'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = rho_mixture
cp = cp_mixture
temperature = 'T'
[]
[eff_cp]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[mushy_zone_resistance]
type = INSFVMushyPorousFrictionFunctorMaterial
liquid_fraction = 'fl'
mu = '${mu}'
rho_l = '${rho_liquid}'
[]
[friction]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coeff Forchheimer_coeff'
prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
[]
[]
[Executioner]
type = Transient
dt = 5e3
end_time = 1e4
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-8
nl_max_its = 12
[]
[Postprocessors]
[average_T]
type = ElementAverageValue
variable = T
outputs = csv
execute_on = FINAL
[]
[]
[VectorPostprocessors]
[sat]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.0 0 0'
end_point = '10.0 0 0'
num_points = '${Nx}'
sort_by = x
variable = 'T'
execute_on = FINAL
[]
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/no-slip-tris.i)
mu = 1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
type = GeneratedMesh
nx = 4
ny = 4
xmax = 3.9
ymax = 4.1
elem_type = TRI3
dim = 2
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
# we can think of the axis as a slip wall boundary, no normal velocity and no viscous shear
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
active = 'inlet-u inlet-v free-slip-wall-u free-slip-wall-v outlet-p axis-u axis-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = vel_x
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = vel_y
function = 1
[]
[free-slip-wall-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = vel_x
momentum_component = 'x'
[]
[free-slip-wall-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = vel_y
momentum_component = 'y'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = vel_x
function = 0
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = vel_y
function = 0
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = vel_y
boundary = 'bottom'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = vel_y
boundary = 'top'
[]
[num_lin]
type = NumLinearIterations
outputs = 'console'
[]
[num_nl]
type = NumNonlinearIterations
outputs = 'console'
[]
[cum_lin]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_lin'
[]
[cum_nl]
type = CumulativeValuePostprocessor
outputs = 'console'
postprocessor = 'num_nl'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/mixing_length_eddy_viscosity.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '100'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[eddy_viscosity]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[turbulent_viscosity]
type = INSFVMixingLengthTurbulentViscosityAux
variable = eddy_viscosity
mixing_length = mixing_len
u = u
v = v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/pressure_drop/drop_insfv.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[vel_functor]
type = ADGenericVectorFunctorMaterial
prop_names = 'velocity'
prop_values = 'u v 0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[pdrop_total]
type = PressureDrop
pressure = pressure
upstream_boundary = 'bottom'
downstream_boundary = 'top'
boundary = 'top bottom'
[]
[pdrop_mid1]
type = PressureDrop
pressure = pressure
upstream_boundary = 'bottom'
downstream_boundary = 'internal_bot'
boundary = 'bottom internal_bot'
[]
[pdrop_mid2]
type = PressureDrop
pressure = pressure
upstream_boundary = 'internal_bot'
downstream_boundary = 'internal_top'
boundary = 'internal_top internal_bot'
[]
[pdrop_mid3]
type = PressureDrop
pressure = pressure
upstream_boundary = 'internal_top'
downstream_boundary = 'top'
boundary = 'top internal_top'
[]
[sum_drops]
type = ParsedPostprocessor
expression = 'pdrop_mid1 + pdrop_mid2 + pdrop_mid3'
pp_names = 'pdrop_mid1 pdrop_mid2 pdrop_mid3'
[]
[p_upstream]
type = SideAverageValue
variable = pressure
boundary = 'bottom'
[]
[p_downstream]
type = SideAverageValue
variable = pressure
boundary = 'top'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
mu=1.1
rho=1.1
k=1.1
cp=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[temperature]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = temperature
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[temp_forcing]
type = FVBodyForce
variable = temperature
function = forcing_t
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[axis-inlet-wall-t]
type = FVFunctionDirichletBC
boundary = 'left bottom right'
variable = temperature
function = 'exact_t'
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*cos(x*pi)*cos(y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[exact_t]
type = ParsedFunction
expression = 'sin(x*pi)*sin((1/2)*y*pi)'
[]
[forcing_t]
type = ParsedFunction
expression = '(1/4)*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) - (-x*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) + pi*k*sin((1/2)*y*pi)*cos(x*pi))/x + (3*x*pi*cp*rho*sin(x*pi)^2*sin((1/2)*y*pi)^2*cos(x*pi) + cp*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2)/x + (-x*pi*cp*rho*sin(x*pi)*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*cp*rho*sin(x*pi)*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x'
symbol_names = 'k rho cp'
symbol_values = '${k} ${rho} ${cp}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2t]
approximate = temperature
exact = exact_t
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/steady.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 100
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Functions]
[delta_func]
type = ParsedFunction
expression = '1.0-x/150'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = vel_x
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = vel_y
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = mixing_length
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = ${restricted_blocks}
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = '1 2'
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*cos(x*pi)*cos(y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
mu = 2.6
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 350
alpha = 'alpha'
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 300
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-11
pressure_l_abs_tol = 1e-11
energy_l_abs_tol = 1e-11
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.999
num_iterations = 100
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
energy_absolute_tolerance = 1e-10
print_fields = false
continue_on_max_its = true
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/wall_function/Re_t395.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[wall_shear_stress]
type = WallFunctionWallShearStressAux
variable = wall_shear_stress
walls = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[wall_yplus]
type = WallFunctionYPlusAux
variable = wall_yplus
walls = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'u' #computes total viscosity = mu_t + mu
v = 'v' #property is called total_viscosity
mixing_length = mixing_len
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/mixing_length_total_viscosity.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = vel_x
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = vel_y
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = mixing_length
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
type = MooseVariableFVReal
initial_condition = ${rho}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
force_boundary_execution = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
force_boundary_execution = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = 'upwind'
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericFunctorMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = advected_density
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = 'advected_rho'
[]
[mid1_mass]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[mid2_mass]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = u
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_quantity = v
[]
[mid1_advected_energy]
type = VolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[mid2_advected_energy]
type = VolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_quantity = 'rho_cp_temp'
advected_interp_method = 'upwind'
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
mu = 2.6
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'left'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'left'
variable = scalar_2
value = 2
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.9 0.9'
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = FINAL
[]
[]
[Postprocessors]
inactive = "out1 out2 in1 in2"
[out1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = left
execute_on = FINAL
outputs = csv
[]
[out2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = left
execute_on = FINAL
outputs = csv
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
# Fluid properties
mu = 1.1
rho = 1.1
cp = 1.1
k = 1e-3
# Operating conditions
u_inlet = 1
T_inlet = 200
T_solid = 190
p_outlet = 10
h_fs = 0.01
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 20
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${u_inlet}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-12
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${T_inlet}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_time]
type = INSFVEnergyTimeDerivative
variable = T_fluid
rho = ${rho}
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
variable = T_fluid
coeff = ${k}
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = T_fluid
value = '${fparse u_inlet * rho * cp * T_inlet}'
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_x
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_y
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${p_outlet}'
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv T_solid'
prop_values = '${h_fs} ${T_solid}'
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 7e-13
dt = 0.4
end_time = 0.8
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/examples/pipe_mixing_length/pipe_mixing_length.i)
# This example demonstrates how the mixing length model can be tuned to match an
# established correlation for pressure drop in a smooth circular pipe.
# The primary input parameters for this example are the system Reynolds number
# and the von Karman constant for the mixing length model. These two parameters
# can be changed here:
Re = 1e5
von_karman_const = 0.22
# Note that for this model (using the wall-distance mixing length for the entire
# pipe) different von Karman constants are optimal for different Reynolds
# numbers.
# This model has been non-dimensionalized. The diameter (D), density (rho), and
# bulk velocity (bulk_u) are all considered unity.
D = 1
total_len = ${fparse 40 * D}
rho = 1
bulk_u = 1
# With those parameters set, the viscosity is then computed in order to reach
# the desired Reynolds number.
mu = ${fparse rho * bulk_u * D / Re}
# Here the DeltaP will be evaluated by using a postprocessor to find the pressure
# at a point that is 10 diameters away from the outlet. (The outlet pressure is
# set to zero.)
L = ${fparse 10 * D}
# We will use the McAdams correlation to find the Darcy friction factor. Note
# that this correlation is valid for fully developed flow in smooth circular
# tubes at 3e4 < Re < 1e6.
f = ${fparse 0.316 * Re^(-0.25)}
# The DeltaP can then be computed using this friction factor as,
ref_delta_P = ${fparse f * L / D * rho * bulk_u^2 / 2}
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${total_len}
ymin = 0
ymax = ${fparse 0.5 * D}
nx = 200
ny = 40
bias_y = ${fparse 1 / 1.2}
[]
[rename1]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'inlet'
[]
[rename2]
type = RenameBoundaryGenerator
input = rename1
old_boundary = 'right'
new_boundary = 'outlet'
[]
[rename3]
type = RenameBoundaryGenerator
input = rename2
old_boundary = 'bottom'
new_boundary = 'symmetry'
[]
[rename4]
type = RenameBoundaryGenerator
input = rename3
old_boundary = 'top'
new_boundary = 'wall'
[]
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
fv_bcs_integrity_check = true
coord_type = 'RZ'
rz_coord_axis = 'X'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
# The upwind and Rhie-Chow interpolation schemes are used here.
advected_interp_method='upwind'
velocity_interp_method='rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'wall'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet_u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = u
function = ${bulk_u}
[]
[inlet_v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = v
function = '0'
[]
[walls_u]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = u
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = v
function = 0
[]
[sym_u]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym_v]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[sym_p]
type = INSFVSymmetryPressureBC
boundary = 'symmetry'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Postprocessors]
[delta_P]
type = PointValue
variable = 'pressure'
point = '${fparse total_len - L} 0 0'
[]
[reference_delta_P]
type = Receiver
default = ${ref_delta_P}
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
Re = 1e4
von_karman_const = 0.2
D = 1
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * D / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = '${fparse 0.5 * D}'
nx = 20
ny = 10
bias_y = '${fparse 1 / 1.2}'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion_rans]
type = INSFVMixingLengthScalarDiffusion
variable = scalar
mixing_length = 'mixing_length'
u = vel_x
v = vel_y
schmidt_number = 1.0
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top bottom'
variable = 'mixing_length'
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[wall-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[wall-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = 'mixing_length'
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
mu = 1.1
rho = 1.1
pressure_tag = "pressure_grad"
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 40
ny = 6
[]
[]
[GlobalParams]
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
solver_sys = u_system
two_term_boundary_expansion = false
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
solver_sys = pressure_system
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = "u_friction v_friction"
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
inactive = 'slip-u slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
### Are disabled by default but we switch it on for certain tests ###
[slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_x
momentum_component = 'x'
[]
[slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_y
momentum_component = 'y'
[]
#####################################################################
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.01 0.02 0.03 0.01 0.02 0.03'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.85
pressure_variable_relaxation = 0.45
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
pressure_tag = "pressure_grad"
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.3683 0.0127'
dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
ix = '2 1'
iy = '1 2 3 2 1'
subdomain_id = '0 0
1 0
2 0
1 0
0 0
'
[]
[rename_block_name]
type = RenameBlockGenerator
input = cmg
old_block = '0 1 2'
new_block = 'wall_block spacer_block porous_block'
[]
[solid_fluid_interface_1]
type = SideSetsBetweenSubdomainsGenerator
input = rename_block_name
primary_block = porous_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[solid_fluid_interface_2]
type = SideSetsBetweenSubdomainsGenerator
input = solid_fluid_interface_1
primary_block = spacer_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[wall_left_boundary_1]
type = SideSetsFromBoundingBoxGenerator
input = solid_fluid_interface_2
bottom_left = '0 0 0'
top_right = '0.1 0.0127 0'
included_boundaries = left
boundary_new = wall_left
[]
[wall_left_boundary_2]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_1
bottom_left = '0 2.9857 0'
top_right = '0.1 2.9984 0'
included_boundaries = left
boundary_new = wall_left
[]
[fluid_left_boundary]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_2
bottom_left = '0 0.0127 0'
top_right = '0.1 2.9857 0'
included_boundaries = left
boundary_new = fluid_left
[]
coord_type = RZ
rz_coord_axis = Y
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
block = 'spacer_block porous_block'
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system t_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
solver_sys = u_system
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
solver_sys = v_system
[]
[pressure]
type = INSFVPressureVariable
block = 'spacer_block porous_block'
solver_sys = pressure_system
[]
[T_fluid]
type = INSFVEnergyVariable
block = 'spacer_block porous_block'
solver_sys = t_system
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
block = 'spacer_block porous_block'
[]
[]
[FVKernels]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[u_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_conduction]
type = PINSFVEnergyDiffusion
k = 'k_fluid'
variable = T_fluid
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
block = 'spacer_block porous_block'
boundaries_to_force = fluid_left
[]
[heat_source]
type = FVBodyForce
variable = T_fluid
function = ${Q}
block = 'porous_block'
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
block = 'spacer_block porous_block'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
block = 'spacer_block porous_block'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = superficial_vel_x
boundary = 'solid_fluid_interface'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = superficial_vel_y
boundary = 'solid_fluid_interface'
function = 0
[]
[reflective_x]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_x
boundary = fluid_left
momentum_component = 'x'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_y]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_y
boundary = fluid_left
momentum_component = 'y'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_p]
type = INSFVSymmetryPressureBC
boundary = fluid_left
variable = pressure
[]
[T_reflective]
type = FVNeumannBC
variable = T_fluid
boundary = fluid_left
value = 0
[]
[T_cold_boundary]
type = FVDirichletBC
variable = T_fluid
boundary = solid_fluid_interface
value = ${T_cold}
[]
[]
[ICs]
[porosity_spacer]
type = ConstantIC
variable = porosity
block = spacer_block
value = 1.0
[]
[porosity_fuel]
type = ConstantIC
variable = porosity
block = porous_block
value = 0.1
[]
[temp_ic_fluid]
type = ConstantIC
variable = T_fluid
value = ${T_cold}
block = 'spacer_block porous_block'
[]
[superficial_vel_x]
type = ConstantIC
variable = superficial_vel_x
value = 1E-5
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = ConstantIC
variable = superficial_vel_y
value = 1E-5
block = 'spacer_block porous_block'
[]
[]
[FunctorMaterials]
[functor_constants_fluid]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k_fluid'
prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
block = 'spacer_block porous_block'
[]
[density_fluid]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[functor_constants_steel]
# We need this to avoid errors for materials not existing on every block
type = ADGenericFunctorMaterial
prop_names = 'dummy'
prop_values = 0.0
block = wall_block
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 't_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.85
energy_equation_relaxation = 0.95
pressure_variable_relaxation = 0.45
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
pin_pressure = true
pressure_pin_point = '0.2 1.5 0.0'
pressure_pin_value = 0
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/wall_distance_capped_mixing_length_aux/capped_mixing_length.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '100'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
previous_nl_solution_required = true
kernel_coverage_check = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
block = ${restricted_blocks}
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1.0
solver_sys = u_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
solver_sys = scalar_system
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = T_fluid
[]
[energy_loss]
type = FVBodyForce
variable = T_fluid
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1.0
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
energy_l_abs_tol = 1e-12
passive_scalar_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
passive_scalar_systems = 'scalar_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.99
passive_scalar_equation_relaxation = 0.99
num_iterations = 100
pressure_absolute_tolerance = 1e-9
momentum_absolute_tolerance = 1e-9
energy_absolute_tolerance = 1e-9
passive_scalar_absolute_tolerance = 1e-9
print_fields = false
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
block = ${restricted_blocks}
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*cos(x*pi)*cos(y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
[]
[Outputs]
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
coord_type = 'RZ'
rz_coord_axis = X
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.25'
dy = '0.2'
ix = '30'
iy = '7'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
inactive = 'u_friction v_friction'
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
u = vel_x
v = vel_y
momentum_component = 'x'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
standard_friction_formulation = false
rho = ${rho}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
u = vel_x
v = vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
standard_friction_formulation = false
rho = ${rho}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = vel_y
momentum_component = 'y'
[]
[symmetry_u]
type = INSFVSymmetryVelocityBC
variable = vel_x
boundary = 'bottom'
momentum_component = 'x'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_v]
type = INSFVSymmetryVelocityBC
variable = vel_y
boundary = 'bottom'
momentum_component = 'y'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.5
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/cylindrical/2d-rc-slip.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 10
nx = 10
ny = 50
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[free-slip-wall-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
momentum_component = 'x'
[]
[free-slip-wall-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
momentum_component = 'y'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Postprocessors]
[in]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'bottom'
outputs = 'csv'
[]
[out]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 'top'
outputs = 'csv'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
coord_type = 'RZ'
rz_coord_axis = X
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.25'
dy = '0.2'
ix = '30'
iy = '7'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0.0
[]
[symmetry_u]
type = INSFVSymmetryVelocityBC
variable = vel_x
boundary = 'bottom'
momentum_component = 'x'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_v]
type = INSFVSymmetryVelocityBC
variable = vel_y
boundary = 'bottom'
momentum_component = 'y'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-15
pressure_l_abs_tol = 1e-15
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/steady.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 100
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[eddy_viscosity]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[turbulent_viscosity]
type = INSFVMixingLengthTurbulentViscosityAux
variable = eddy_viscosity
mixing_length = mixing_len
u = u
v = v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/channel_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe turbulent channel flow
# Case Number: 032
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
H = 1 #halfwidth of the channel
L = 30
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 20
ny = 5
bias_y = 0.7
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e-8
solver_sys = pressure_system
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '${bulk_u}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = FVDirichletBC
boundary = 'top'
variable = vel_x
value = 0
[]
[walls-v]
type = FVDirichletBC
boundary = 'top'
variable = vel_y
value = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_TKE]
type = INSFVInletIntensityTKEBC
boundary = 'left'
variable = TKE
u = vel_x
v = vel_y
intensity = ${intensity}
[]
[inlet_TKED]
type = INSFVMixingLengthTKEDBC
boundary = 'left'
variable = TKED
k = TKE
characteristic_length = '${fparse 2*H}'
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'top'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_t'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_t'
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry_TKE]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = TKE
[]
[symmetry_TKED]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = TKED
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[yplus]
type = MooseVariableFVReal
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
k = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.25 0.25'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/include/fvbcs/PINSFVSymmetryVelocityBC.h)
// This file is part of the MOOSE framework
// https://mooseframework.inl.gov
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "INSFVSymmetryVelocityBC.h"
/**
* A symmetry boundary condition for the superficial velocity. It should be
* used in conjunction with an INSFVSymmetryPressureBC.
*/
class PINSFVSymmetryVelocityBC : public INSFVSymmetryVelocityBC
{
public:
static InputParameters validParams();
PINSFVSymmetryVelocityBC(const InputParameters & params);
};