- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- variableThe name of the variable that this boundary condition applies to
C++ Type:LinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this boundary condition applies to
LinearFVExtrapolatedPressureBC
Description
This boundary condition is created for pressure variables in the pressure Poisson equation. It behaves just like a LinearFVAdvectionDiffusionExtrapolatedBC but its response depends on the usage:
- When it is used for the computation of gradients, the user can prescribe two-term extrapolation to the boundary faces to increase accuracy. - When it is used for building the pressure Poisson equation, it assumes a one-term expansion. The reason behind this is that for cases when the pressure needs to be pinned, adding boundary-related terms to the right hand side of the system will emulate a boundary source which yields unphysical results.
Input Parameters
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- use_two_term_expansionFalseIf an approximate linear expansion should be used to compute the face value.
Default:False
C++ Type:bool
Controllable:No
Description:If an approximate linear expansion should be used to compute the face value.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsrhsThe tag for the vectors this Kernel should fill
Default:rhs
C++ Type:MultiMooseEnum
Options:rhs, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
Advanced Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/linear-segregated/2d-vortex/2d-vortex.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/enthalpy_equation/enthalpy_equation.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/linear-segregated/lid-driven-segregated.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/linear_segregated/2d/diff_heated_cavity_linear_segregated.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/segregated/channel-drift-flux.i)
(modules/navier_stokes/test/tests/finite_volume/ins/mms/linear-segregated/2d-vortex/2d-vortex.i)
mu = 1
rho = 1
advected_interp_method = 'average'
[Problem]
linear_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
initial_condition = 0.0
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[u_forcing]
type = LinearFVSource
variable = vel_x
source_density = forcing_u
[]
[v_forcing]
type = LinearFVSource
variable = vel_y
source_density = forcing_v
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
use_nonorthogonal_correction_on_boundary = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[no-slip-wall-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left right top bottom'
variable = vel_x
functor = '0'
[]
[no-slip-wall-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left right top bottom'
variable = vel_y
functor = '0'
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
[]
[exact_v]
type = ParsedFunction
expression = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
[]
[exact_p]
type = ParsedFunction
expression = 'x*(1-x)'
[]
[forcing_u]
type = ParsedFunction
expression = '-4*mu*(-1+2*y)*(y^2-6*x*y^2+6*x^2*y^2-y+6*x*y-6*x^2*y+3*x^2-6*x^3+3*x^4)+1-2*x+rho*4*x^3'
'*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '4*mu*(-1+2*x)*(x^2-6*y*x^2+6*x^2*y^2-x+6*x*y-6*x*y^2+3*y^2-6*y^3+3*y^4)+rho*4*y^3*x^2*(2'
'*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-8
pressure_l_abs_tol = 1e-8
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 2000
pressure_absolute_tolerance = 1e-8
momentum_absolute_tolerance = 1e-8
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
print_fields = false
pin_pressure = true
pressure_pin_value = 0.25
pressure_pin_point = '0.5 0.5 0.0'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = FINAL
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'csv'
execute_on = FINAL
[]
[L2u]
type = ElementL2FunctorError
approximate = vel_x
exact = exact_u
outputs = 'csv'
execute_on = FINAL
[]
[L2v]
type = ElementL2FunctorError
approximate = vel_y
exact = exact_v
outputs = 'csv'
execute_on = FINAL
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'csv'
execute_on = FINAL
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/enthalpy_equation/enthalpy_equation.i)
H = 0.015 #halfwidth of the channel, 10 cm of channel height
L = 1
bulk_u = 0.01
p_ref = 101325.0
advected_interp_method = 'upwind'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = -${H}
ymax = ${H}
nx = 30
ny = 15
[]
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = 'rho'
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
solver_sys = u_system
initial_condition = ${bulk_u}
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
initial_condition = 0
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = ${p_ref}
[]
[h]
type = MooseLinearVariableFVReal
solver_sys = energy_system
initial_condition = 44000 # 1900 is an approx of cp(T)
[]
[]
[AuxVariables]
[rho_var]
type = MooseLinearVariableFVReal
[]
[cp_var]
type = MooseLinearVariableFVReal
[]
[mu_var]
type = MooseLinearVariableFVReal
[]
[k_var]
type = MooseLinearVariableFVReal
[]
[T]
type = MooseLinearVariableFVReal
initial_condition = 777.
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
mu = 'mu'
momentum_component = 'x'
use_nonorthogonal_correction = false
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
u = vel_x
v = vel_y
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
mu = 'mu'
momentum_component = 'y'
use_nonorthogonal_correction = false
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
u = vel_x
v = vel_y
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[temp_conduction]
type = LinearFVDiffusion
diffusion_coeff = 'alpha'
variable = h
[]
[temp_advection]
type = LinearFVEnergyAdvection
variable = h
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
[]
[]
[LinearFVBCs]
[inlet_u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = ${bulk_u} #${bulk_u} #'fully_developed_velocity'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = 0
[]
[inlet_h]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = h
boundary = 'left'
functor = h_from_p_T # ${fparse 1900.*860.}
[]
[inlet_T]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = T
boundary = 'left'
functor = 860.
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top bottom'
functor = 0.
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'top bottom'
functor = 0.
[]
[walls_h]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = h
boundary = 'top bottom'
functor = h_from_p_T # ${fparse 1900. * 950}
[]
[walls_T]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = T
boundary = 'top bottom'
functor = 950.
[]
[walls_p]
type = LinearFVExtrapolatedPressureBC
boundary = 'top bottom'
variable = pressure
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = ${p_ref}
[]
[outlet_h]
type = LinearFVAdvectionDiffusionOutflowBC
variable = h
use_two_term_expansion = false
boundary = 'right'
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_x
use_two_term_expansion = false
boundary = right
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_y
use_two_term_expansion = false
boundary = right
[]
[]
[FluidProperties]
[lead]
type = LeadFluidProperties
[]
[]
[FunctorMaterials]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = lead
pressure = ${p_ref}
T_fluid = 'T'
speed = 1
porosity = 1
characteristic_length = 1
[]
[alpha]
type = ADParsedFunctorMaterial
property_name = 'alpha'
functor_names = 'k cp'
expression = 'k/cp'
[]
[enthalpy_material]
type = LinearFVEnthalpyFunctorMaterial
pressure = ${p_ref}
T_fluid = T
h = h
fp = lead
[]
[]
[AuxKernels]
[rho_out]
type = FunctorAux
functor = 'rho'
variable = 'rho_var'
execute_on = 'NONLINEAR'
[]
[cp_out]
type = FunctorAux
functor = 'cp'
variable = 'cp_var'
execute_on = 'NONLINEAR'
[]
[mu_out]
type = FunctorAux
functor = 'mu'
variable = 'mu_var'
execute_on = 'NONLINEAR'
[]
[k_out]
type = FunctorAux
functor = 'k'
variable = 'k_var'
execute_on = 'NONLINEAR'
[]
[T_from_h_functor]
type = FunctorAux
functor = 'T_from_p_h'
variable = 'T'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-6
pressure_l_abs_tol = 1e-6
energy_l_abs_tol = 1e-8
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.9
num_iterations = 200
pressure_absolute_tolerance = 1e-6
momentum_absolute_tolerance = 1e-6
energy_absolute_tolerance = 1e-6
print_fields = false
momentum_l_max_its = 1000
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
continue_on_max_its = true
[]
[Outputs]
exodus = true
execute_on = 'TIMESTEP_BEGIN FINAL'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/linear-segregated/lid-driven-segregated.i)
mu = .01
rho = 1
advected_interp_method = 'average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 3
ny = 3
[]
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0.2
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[top_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top'
functor = 1
[]
[no_slip_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'left right bottom'
functor = 0
[]
[no_slip_y]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'left right top bottom'
functor = 0
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-10
pressure_l_abs_tol = 1e-10
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 500
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.05 0.05 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/linear_segregated/2d/diff_heated_cavity_linear_segregated.i)
################################################################################
# MATERIAL PROPERTIES
################################################################################
rho = 3279.
T_0 = 875.0
mu = 1.
k_cond = 38.0
cp = 640.
alpha = 3.26e-4
walls = 'right left top bottom'
[GlobalParams]
rhie_chow_user_object = 'ins_rhie_chow_interpolator'
advected_interp_method = 'upwind'
u = superficial_vel_x
v = superficial_vel_y
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
################################################################################
# GEOMETRY
################################################################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 30
ny = 30
[]
[]
################################################################################
# EQUATIONS: VARIABLES, KERNELS & BCS
################################################################################
[UserObjects]
[ins_rhie_chow_interpolator]
type = RhieChowMassFlux
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[superficial_vel_x]
type = MooseLinearVariableFVReal
solver_sys = u_system
[]
[superficial_vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = pressure_system
[]
[T_fluid]
type = MooseLinearVariableFVReal
solver_sys = energy_system
initial_condition = 875
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
use_nonorthogonal_correction = true
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = superficial_vel_x
pressure = pressure
momentum_component = 'x'
[]
[u_buoyancy]
type = LinearFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -9.81 0'
rho = ${rho}
ref_temperature = ${T_0}
alpha_name = ${alpha}
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
use_nonorthogonal_correction = true
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = superficial_vel_y
pressure = pressure
momentum_component = 'y'
[]
[v_buoyancy]
type = LinearFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -9.81 0'
rho = ${rho}
ref_temperature = ${T_0}
alpha_name = ${alpha}
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = true
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
####### FUEL ENERGY EQUATION #######
[heat_advection]
type = LinearFVEnergyAdvection
variable = T_fluid
advected_quantity = temperature
cp = ${cp}
[]
[conduction]
type = LinearFVDiffusion
variable = T_fluid
diffusion_coeff = ${fparse k_cond}
[]
[]
[LinearFVBCs]
[no-slip-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = superficial_vel_x
boundary = ${walls}
functor = 0
[]
[no-slip-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = superficial_vel_y
boundary = ${walls}
functor = 0
[]
[T_cold]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = T_fluid
boundary = 'right'
functor = 870.0
[]
[T_hot]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = T_fluid
boundary = 'left'
functor = 880.0
[]
[T_all]
type = LinearFVAdvectionDiffusionExtrapolatedBC
variable = T_fluid
boundary = 'top bottom'
use_two_term_expansion = false
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = ${walls}
variable = pressure
use_two_term_expansion = false
[]
[]
[FunctorMaterials]
[constant_functors]
type = GenericFunctorMaterial
prop_names = 'cp alpha_b'
prop_values = '${cp} ${alpha}'
[]
[]
################################################################################
# EXECUTION / SOLVE
################################################################################
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-11
pressure_l_abs_tol = 1e-11
energy_l_abs_tol = 1e-11
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'ins_rhie_chow_interpolator'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
momentum_equation_relaxation = 0.3
pressure_variable_relaxation = 0.7
energy_equation_relaxation = 0.95
num_iterations = 3000
pressure_absolute_tolerance = 1e-8
momentum_absolute_tolerance = 1e-8
energy_absolute_tolerance = 1e-8
print_fields = false
momentum_l_max_its = 300
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.5 0.0 0.0'
# momentum_petsc_options = '-ksp_monitor'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
[]
################################################################################
# SIMULATION OUTPUTS
################################################################################
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/segregated/channel-drift-flux.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
# 'average' leads to slight oscillations, upwind may be preferred
# This method is selected for consistency with the original nonlinear input
advected_interp_method = 'average'
# TODO remove need for those
cp = 1
k = 1
cp_d = 1
k_d = 1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 4
[]
uniform_refine = 0
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system phi_system'
previous_nl_solution_required = true
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
solver_sys = u_system
initial_condition = 1
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
[]
[phase_2]
type = MooseLinearVariableFVReal
solver_sys = phi_system
[]
[]
[LinearFVKernels]
[flow_p_diffusion]
type = LinearFVAnisotropicDiffusion
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
variable = pressure
[]
[flow_HbyA_divergence]
type = LinearFVDivergence
face_flux = HbyA
force_boundary_execution = true
variable = pressure
[]
[flow_ins_momentum_flux_x]
type = LinearWCNSFVMomentumFlux
advected_interp_method = ${advected_interp_method}
momentum_component = x
mu = mu_mixture
rhie_chow_user_object = ins_rhie_chow_interpolator
u = vel_x
use_deviatoric_terms = false
use_nonorthogonal_correction = false
v = vel_y
variable = vel_x
[]
[flow_ins_momentum_flux_y]
type = LinearWCNSFVMomentumFlux
advected_interp_method = ${advected_interp_method}
momentum_component = y
mu = mu_mixture
rhie_chow_user_object = ins_rhie_chow_interpolator
u = vel_x
use_deviatoric_terms = false
use_nonorthogonal_correction = false
v = vel_y
variable = vel_y
[]
[mixture_drift_flux_x]
type = LinearWCNSFV2PMomentumDriftFlux
density_interp_method = average
fraction_dispersed = phase_2
momentum_component = x
rhie_chow_user_object = ins_rhie_chow_interpolator
rho_d = ${rho_d}
u_slip = vel_slip_x
v_slip = vel_slip_y
variable = vel_x
[]
[mixture_drift_flux_y]
type = LinearWCNSFV2PMomentumDriftFlux
density_interp_method = average
fraction_dispersed = phase_2
momentum_component = y
rhie_chow_user_object = ins_rhie_chow_interpolator
rho_d = ${rho_d}
u_slip = vel_slip_x
v_slip = vel_slip_y
variable = vel_y
[]
[flow_ins_momentum_pressure_x]
type = LinearFVMomentumPressure
momentum_component = x
pressure = pressure
variable = vel_x
[]
[flow_ins_momentum_pressure_y]
type = LinearFVMomentumPressure
momentum_component = y
pressure = pressure
variable = vel_y
[]
[flow_momentum_friction_0_x]
type = LinearFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
momentum_component = x
mu = mu_mixture
variable = vel_x
[]
[flow_momentum_friction_0_y]
type = LinearFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
momentum_component = y
mu = mu_mixture
variable = vel_y
[]
# Mixture phase equation
[mixture_ins_phase_2_advection]
type = LinearFVScalarAdvection
advected_interp_method = upwind
rhie_chow_user_object = ins_rhie_chow_interpolator
u_slip = vel_slip_x
v_slip = vel_slip_y
variable = phase_2
[]
[mixture_phase_interface_reaction]
type = LinearFVReaction
coeff = 0.1
variable = phase_2
[]
[mixture_phase_interface_source]
type = LinearFVSource
scaling_factor = 0.1
source_density = phase_1
variable = phase_2
[]
[]
[LinearFVBCs]
[vel_x_left]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = left
functor = 1
variable = vel_x
[]
[vel_y_left]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = left
functor = 0
variable = vel_y
[]
[pressure_extrapolation_inlet_left]
type = LinearFVExtrapolatedPressureBC
boundary = left
use_two_term_expansion = true
variable = pressure
[]
[vel_x_right]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = right
use_two_term_expansion = true
variable = vel_x
[]
[vel_y_right]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = right
use_two_term_expansion = true
variable = vel_y
[]
[pressure_right]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = right
functor = 0
variable = pressure
[]
[vel_x_bottom]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = bottom
functor = 0
variable = vel_x
[]
[vel_y_bottom]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = bottom
functor = 0
variable = vel_y
[]
[vel_x_top]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = top
functor = 0
variable = vel_x
[]
[vel_y_top]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = top
functor = 0
variable = vel_y
[]
[pressure_extrapolation_top_bottom]
type = LinearFVExtrapolatedPressureBC
boundary = 'top bottom'
use_two_term_expansion = true
variable = pressure
[]
[phase_2_left]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = left
functor = 0.1
variable = phase_2
[]
[phase_2_right]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = right
use_two_term_expansion = true
variable = phase_2
[]
[]
[FunctorMaterials]
[flow_ins_speed_material]
type = ADVectorMagnitudeFunctorMaterial
execute_on = ALWAYS
outputs = none
vector_magnitude_name = speed
x_functor = vel_x
y_functor = vel_y
[]
[mixture_phase_1_fraction]
type = ParsedFunctorMaterial
execute_on = ALWAYS
expression = '1 - phase_2'
functor_names = phase_2
output_properties = phase_1
outputs = all
property_name = phase_1
[]
[mixture_mixture_material]
type = WCNSLinearFVMixtureFunctorMaterial
execute_on = ALWAYS
limit_phase_fraction = true
outputs = all
phase_1_fraction = phase_2
phase_1_names = '${rho_d} ${mu_d} ${cp_d} ${k_d}'
phase_2_names = '${rho} ${mu} ${cp} ${k}'
prop_names = 'rho_mixture mu_mixture cp_mixture k_mixture'
[]
[mixture_slip_x]
type = WCNSFV2PSlipVelocityFunctorMaterial
execute_on = ALWAYS
gravity = '0 0 0'
linear_coef_name = Darcy_coefficient
momentum_component = x
mu = mu_mixture
outputs = all
particle_diameter = 0.01
rho = ${rho}
rho_d = ${rho_d}
slip_velocity_name = vel_slip_x
u = vel_x
v = vel_y
[]
[mixture_slip_y]
type = WCNSFV2PSlipVelocityFunctorMaterial
execute_on = ALWAYS
gravity = '0 0 0'
linear_coef_name = Darcy_coefficient
momentum_component = y
mu = mu_mixture
outputs = all
particle_diameter = 0.01
rho = ${rho}
rho_d = ${rho_d}
slip_velocity_name = vel_slip_y
u = vel_x
v = vel_y
[]
[mixture_dispersed_drag]
type = NSFVDispersePhaseDragFunctorMaterial
drag_coef_name = Darcy_coefficient
execute_on = ALWAYS
mu = mu_mixture
outputs = all
particle_diameter = 0.01
rho = rho_mixture
u = vel_x
v = vel_y
[]
[]
[UserObjects]
[ins_rhie_chow_interpolator]
type = RhieChowMassFlux
p_diffusion_kernel = flow_p_diffusion
pressure = pressure
rho = rho_mixture
u = vel_x
v = vel_y
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'ins_rhie_chow_interpolator'
# Systems
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
active_scalar_systems = 'phi_system'
momentum_equation_relaxation = 0.8
active_scalar_equation_relaxation = '0.7'
pressure_variable_relaxation = 0.3
# We need to converge the problem to show conservation
num_iterations = 200
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
active_scalar_absolute_tolerance = '1e-10'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
active_scalar_petsc_options_iname = '-pc_type -pc_hypre_type'
active_scalar_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-13
pressure_l_abs_tol = 1e-13
active_scalar_l_abs_tol = 1e-13
momentum_l_tol = 0
pressure_l_tol = 0
active_scalar_l_tol = 0
# print_fields = true
continue_on_max_its = true
[]
[Outputs]
csv = true
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '10.0 * 2 * 1'
[]
[average_phase2]
type = ElementAverageValue
variable = phase_2
[]
[dp]
type = PressureDrop
boundary = 'left right'
downstream_boundary = right
pressure = pressure
upstream_boundary = left
[]
[max_phase2]
type = ElementExtremeValue
variable = phase_2
[]
[]