- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector
Description:The list of boundary IDs from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.
Default:True
C++ Type:bool
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector
Description:The list of block ids (SubdomainID) that this object will be applied
- base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
C++ Type:std::string
Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
<!– MOOSE Documentation Stub: Remove this when content is added. –>
ComputePlasticHeatEnergy

The ComputePlasticHeatEnergy has not been documented. The content contained on this page includes the basic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Plastic heat energy density = stress * plastic_strain_rate
Input Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector
Description:Adds user-defined labels for accessing object parameters via control logic.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Description:The seed for the master random number generator
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Description:Determines whether this object is calculated using an implicit or explicit form
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Advanced Parameters
Input Files
- modules/porous_flow/test/tests/jacobian/phe01.i
- modules/porous_flow/test/tests/plastic_heating/tensile01.i
- modules/tensor_mechanics/test/tests/jacobian/phe01.i
- modules/porous_flow/test/tests/plastic_heating/compressive01.i
- modules/porous_flow/test/tests/plastic_heating/shear01.i