- muMixture Density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Mixture Density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - rhoContinuous phase density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Continuous phase density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 
NSFVDispersePhaseDragFunctorMaterial
This material computes the linear drag coefficient for a dispersed phase based on the particle Reynolds number . The particle Reynolds number is defined as follows:
where:
is the density of the dispersed phase particles,
is the characteristic diameter of the dispersed phase particles,
is the mixture velocity,
is the mixture viscosity.
Based on this Reynolds number, the linear drag coefficient for the dispersed phase is computed as follows Schiller (1933):
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
 - declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
 - drag_coef_nameDarcy_coefficientName of the scalar friction coefficient defined. The vector coefficient is suffixed with _vec. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:Darcy_coefficient
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Name of the scalar friction coefficient defined. The vector coefficient is suffixed with _vec. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - execute_onALWAYSThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:ALWAYS
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, ALWAYS
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
 - particle_diameter1Diameter of particles in the dispersed phase. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:1
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Diameter of particles in the dispersed phase. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
 - search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
Default:nearest_node_connected_sides
C++ Type:MooseEnum
Options:nearest_node_connected_sides, all_proximate_sides
Controllable:No
Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
 - seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
 
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
 - outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
 
Outputs Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/segregated/channel-drift-flux.i)
 
References
- Links Schiller.
A drag coefficient correlation.
Zeit. Ver. Deutsch. Ing., 77:318–320, 1933.[BibTeX]
@article{schiller1933drag, author = "Schiller, Links", title = "A drag coefficient correlation", journal = "Zeit. Ver. Deutsch. Ing.", volume = "77", pages = "318--320", year = "1933" } 
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
mu = 10.0
rho = 100.0
mu_d = 1.0
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.0
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.01
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
  [interface_area]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  inactive = 'u_time v_time phase_2_time interface_area_time'
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
    functor = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_time]
    type = FVFunctorTimeKernel
    variable = interface_area
    functor = interface_area
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = 1.0
    rho = 'rho_mixture'
    rho_d = ${rho_d}
    pressure = 'pressure'
    k_c = ${fparse mass_exchange_coeff * 100.0}
    fd = 'phase_2'
    sigma = 1e-3
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = 0.0
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  # dt = 0.1
  # end_time = 1.0
  # nl_max_its = 10
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  exodus = true
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 4
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = x
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_x
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = y
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_y
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
    functor = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
  [vel_slip_x_var]
    type = MooseVariableFVReal
  []
  [vel_slip_y_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
  [populate_vx_slip_var]
    type = FunctorAux
    variable = vel_slip_x_var
    functor = 'vel_slip_x'
  []
  [populate_vy_slip_var]
    type = FunctorAux
    variable = vel_slip_y_var
    functor = 'vel_slip_y'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  dt = 0.1
  end_time = 1.0
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'TIMESTEP_END'
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
  [vslip_x]
    type = SideExtremeValue
    boundary = 'left'
    variable = 'vel_slip_x_var'
  []
  [vslip_y]
    type = SideExtremeValue
    boundary = 'left'
    variable = 'vel_slip_y_var'
  []
  [vslip_value]
    type = ParsedPostprocessor
    expression = 'sqrt(vslip_x*vslip_x + vslip_y*vslip_y)*vslip_x/abs(vslip_x)'
    pp_names = 'vslip_x vslip_y'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 5
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of
# bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 5.031429
dp = 0.005
inlet_phase_2 = 0.442
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 60}'
    ymin = 0
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_phase_2}
  []
  [interface_area]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_interface_area}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_x'
    v_slip = 'vel_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = ${fparse l/2}
    rho = 'rho_mixture'
    rho_d = 'rho'
    pressure = 'pressure'
    k_c = '${fparse mass_exchange_coeff}'
    fd = 'phase_2'
    sigma = 1e-3
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${outlet_pressure}'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = ${inlet_interface_area}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [symmetry-phase-2]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = phase_2
  []
  [symmetry-interface-area]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = interface_area
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [bubble_properties]
    type = GeneralFunctorFluidProps
    fp = 'fp'
    pressure = 'pressure'
    T_fluid = 300.0
    speed = 1.0
    characteristic_length = 1.0
    porosity = 1.0
    output_properties = 'rho'
    outputs = 'out'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = 'rho ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  line_search = 'none'
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 4
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = x
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_x
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = y
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_y
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_x'
    ghost_layers = 5
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_y'
    ghost_layers = 5
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
    outputs = 'out'
    output_properties = 'phase_1'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  print_linear_residuals = true
  print_nonlinear_residuals = true
  [out]
    type = Exodus
    hide = 'Re lin cum_lin'
  []
  [perf]
    type = PerfGraphOutput
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
  []
  [lin]
    type = NumLinearIterations
  []
  [cum_lin]
    type = CumulativeValuePostprocessor
    postprocessor = lin
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 60}'
    ymin = 0
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_phase_2}
  []
  [interface_area]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_interface_area}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_x'
    v_slip = 'vel_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = ${fparse l/2}
    rho = 'rho_mixture'
    rho_d = 'rho'
    pressure = 'pressure'
    k_c = '${fparse mass_exchange_coeff}'
    fd = 'phase_2'
    sigma = 1e-3
    cutoff_fraction = 0.0
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${outlet_pressure}'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = ${inlet_interface_area}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [symmetry-phase-2]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = phase_2
  []
  [symmetry-interface-area]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = interface_area
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [bubble_properties]
    type = GeneralFunctorFluidProps
    fp = 'fp'
    pressure = 'pressure'
    T_fluid = 300.0
    speed = 1.0
    characteristic_length = 1.0
    porosity = 1.0
    output_properties = 'rho'
    outputs = 'out'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = 'rho ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  line_search = 'none'
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
mu = 1.0
rho = 1e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.0
g = -9.81
[GlobalParams]
  velocity_interp_method = 'rc'
  advected_interp_method = 'upwind'
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = .1
    ymin = 0
    ymax = .1
    nx = 11
    ny = 11
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Correctors]
  [pin_pressure]
    type = NSPressurePin
    variable = pressure
    pin_type = point-value
    point = '0 0 0'
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = 'rho_mixture'
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyant]
    type = INSFVMomentumGravity
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
    gravity = '0 ${g} 0'
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyant]
    type = INSFVMomentumGravity
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
    gravity = '0 ${g} 0'
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1e-3
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${U_lid}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [bottom_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'bottom'
    value = 1.0
  []
  [top_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'top'
    value = 0.0
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
  [phase_1]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
  [compute_phase_1]
    type = ParsedAux
    variable = phase_1
    coupled_variables = 'phase_2'
    expression = '1 - phase_2'
  []
[]
[FunctorMaterials]
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_1_names = '${rho_d} ${mu_d}'
    phase_2_names = '${rho} ${mu}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
[]
[Postprocessors]
  [average_void]
    type = ElementAverageValue
    variable = 'phase_2'
  []
  [max_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = max
  []
  [min_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = min
  []
  [max_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = max
  []
  [min_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = min
  []
  [max_x_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_x'
    value_type = max
  []
  [max_y_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_y'
    value_type = max
  []
  [max_drag_coefficient]
    type = ElementExtremeFunctorValue
    functor = 'drag_coefficient'
    value_type = max
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 10
    iteration_window = 2
    growth_factor = 2
    cutback_factor = 0.5
    dt = 1e-3
  []
  nl_max_its = 20
  nl_rel_tol = 1e-03
  nl_abs_tol = 1e-9
  l_max_its = 5
  end_time = 1e8
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'FINAL'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  mu_interp_method = 'average'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 6
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection_slip]
    type = WCNSFV2PMomentumAdvectionSlip
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    rho_d = ${rho_d}
    fd = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = x
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_x
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection_slip]
    type = WCNSFV2PMomentumAdvectionSlip
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    rho_d = ${rho_d}
    fd = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = y
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_y
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [phase_1]
    property_name = 'phase_1'
    type = ADParsedFunctorMaterial
    functor_names = 'phase_2'
    expression = '1 - phase_2'
    outputs = 'out'
    output_properties = 'phase_1'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_x'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_y'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
    hide = 'Re lin cum_lin'
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
  []
  [lin]
    type = NumLinearIterations
  []
  [cum_lin]
    type = CumulativeValuePostprocessor
    postprocessor = lin
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
[GlobalParams]
  velocity_interp_method = 'rc'
  advected_interp_method = 'upwind'
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = .1
    ymin = 0
    ymax = .1
    nx = 5
    ny = 5
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = 'rho_mixture'
  []
  [mean_zero_pressure]
    type = FVPointValueConstraint
    variable = pressure
    lambda = lambda
    point = '0 0 0'
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyant]
    type = INSFVMomentumGravity
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
    gravity = '0 ${g} 0'
  []
  # NOTE: the friction terms for u and v are missing
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyant]
    type = INSFVMomentumGravity
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
    gravity = '0 ${g} 0'
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1e-3
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${U_lid}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [bottom_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'bottom'
    value = 1.0
  []
  [top_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'top'
    value = 0.0
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    gravity = '0 ${g} 0'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    gravity = '0 ${g} 0'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_1_names = '${rho_d} ${mu_d}'
    phase_2_names = '${rho} ${mu}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Postprocessors]
  [average_void]
    type = ElementAverageValue
    variable = 'phase_2'
  []
  [max_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = max
  []
  [min_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = min
  []
  [max_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = max
  []
  [min_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = min
  []
  [max_x_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_x'
    value_type = max
  []
  [max_y_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_y'
    value_type = max
  []
  [max_drag_coefficient]
    type = ElementExtremeFunctorValue
    functor = 'drag_coefficient'
    value_type = max
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 7
    iteration_window = 2
    growth_factor = 2.0
    cutback_factor = 0.5
    dt = 1e-3
  []
  nl_max_its = 20
  nl_rel_tol = 1e-03
  nl_abs_tol = 1e-9
  l_max_its = 5
  end_time = 1e8
  line_search=none
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'FINAL'
    execute_scalars_on = NONE
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e6
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 60}'
    ymin = 0
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_phase_2}
  []
  [interface_area]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_interface_area}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
    functor = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_x'
    v_slip = 'vel_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_time]
    type = FVFunctorTimeKernel
    variable = interface_area
    functor = interface_area
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = ${fparse l/2}
    rho = 'rho_mixture'
    rho_d = 'rho'
    pressure = 'pressure'
    k_c = '${fparse mass_exchange_coeff}'
    fd = 'phase_2'
    sigma = 1e-3
    cutoff_fraction = 0.0
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${outlet_pressure}'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = ${inlet_interface_area}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [symmetry-phase-2]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = phase_2
  []
  [symmetry-interface-area]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = interface_area
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [bubble_properties]
    type = GeneralFunctorFluidProps
    fp = 'fp'
    pressure = 'pressure'
    T_fluid = 300.0
    speed = 1.0
    characteristic_length = 1.0
    porosity = 1.0
    output_properties = 'rho'
    outputs = 'out'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = 'rho ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  nl_abs_tol = 1e-7
  dt = 0.1
  end_time = 1.0
  nl_max_its = 10
  line_search = 'none'
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/segregated/channel-drift-flux.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
# 'average' leads to slight oscillations, upwind may be preferred
# This method is selected for consistency with the original nonlinear input
advected_interp_method = 'average'
# TODO remove need for those
cp = 1
k = 1
cp_d = 1
k_d = 1
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 4
  []
  uniform_refine = 0
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system phi_system'
  previous_nl_solution_required = true
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    solver_sys = u_system
    initial_condition = 1
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    solver_sys = pressure_system
  []
  [phase_2]
    type = MooseLinearVariableFVReal
    solver_sys = phi_system
  []
[]
[LinearFVKernels]
  [flow_p_diffusion]
    type = LinearFVAnisotropicDiffusion
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
    variable = pressure
  []
  [flow_HbyA_divergence]
    type = LinearFVDivergence
    face_flux = HbyA
    force_boundary_execution = true
    variable = pressure
  []
  [flow_ins_momentum_flux_x]
    type = LinearWCNSFVMomentumFlux
    advected_interp_method = ${advected_interp_method}
    momentum_component = x
    mu = mu_mixture
    rhie_chow_user_object = ins_rhie_chow_interpolator
    u = vel_x
    use_deviatoric_terms = false
    use_nonorthogonal_correction = false
    v = vel_y
    variable = vel_x
  []
  [flow_ins_momentum_flux_y]
    type = LinearWCNSFVMomentumFlux
    advected_interp_method = ${advected_interp_method}
    momentum_component = y
    mu = mu_mixture
    rhie_chow_user_object = ins_rhie_chow_interpolator
    u = vel_x
    use_deviatoric_terms = false
    use_nonorthogonal_correction = false
    v = vel_y
    variable = vel_y
  []
  [mixture_drift_flux_x]
    type = LinearWCNSFV2PMomentumDriftFlux
    density_interp_method = average
    fraction_dispersed = phase_2
    momentum_component = x
    rhie_chow_user_object = ins_rhie_chow_interpolator
    rho_d = ${rho_d}
    u_slip = vel_slip_x
    v_slip = vel_slip_y
    variable = vel_x
  []
  [mixture_drift_flux_y]
    type = LinearWCNSFV2PMomentumDriftFlux
    density_interp_method = average
    fraction_dispersed = phase_2
    momentum_component = y
    rhie_chow_user_object = ins_rhie_chow_interpolator
    rho_d = ${rho_d}
    u_slip = vel_slip_x
    v_slip = vel_slip_y
    variable = vel_y
  []
  [flow_ins_momentum_pressure_x]
    type = LinearFVMomentumPressure
    momentum_component = x
    pressure = pressure
    variable = vel_x
  []
  [flow_ins_momentum_pressure_y]
    type = LinearFVMomentumPressure
    momentum_component = y
    pressure = pressure
    variable = vel_y
  []
  [flow_momentum_friction_0_x]
    type = LinearFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    momentum_component = x
    mu = mu_mixture
    variable = vel_x
  []
  [flow_momentum_friction_0_y]
    type = LinearFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    momentum_component = y
    mu = mu_mixture
    variable = vel_y
  []
  # Mixture phase equation
  [mixture_ins_phase_2_advection]
    type = LinearFVScalarAdvection
    advected_interp_method = upwind
    rhie_chow_user_object = ins_rhie_chow_interpolator
    u_slip = vel_slip_x
    v_slip = vel_slip_y
    variable = phase_2
  []
  [mixture_phase_interface_reaction]
    type = LinearFVReaction
    coeff = 0.1
    variable = phase_2
  []
  [mixture_phase_interface_source]
    type = LinearFVSource
    scaling_factor = 0.1
    source_density = phase_1
    variable = phase_2
  []
[]
[LinearFVBCs]
  [vel_x_left]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = left
    functor = 1
    variable = vel_x
  []
  [vel_y_left]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = left
    functor = 0
    variable = vel_y
  []
  [pressure_extrapolation_inlet_left]
    type = LinearFVExtrapolatedPressureBC
    boundary = left
    use_two_term_expansion = true
    variable = pressure
  []
  [vel_x_right]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = right
    use_two_term_expansion = true
    variable = vel_x
  []
  [vel_y_right]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = right
    use_two_term_expansion = true
    variable = vel_y
  []
  [pressure_right]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = right
    functor = 0
    variable = pressure
  []
  [vel_x_bottom]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = bottom
    functor = 0
    variable = vel_x
  []
  [vel_y_bottom]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = bottom
    functor = 0
    variable = vel_y
  []
  [vel_x_top]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = top
    functor = 0
    variable = vel_x
  []
  [vel_y_top]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = top
    functor = 0
    variable = vel_y
  []
  [pressure_extrapolation_top_bottom]
    type = LinearFVExtrapolatedPressureBC
    boundary = 'top bottom'
    use_two_term_expansion = true
    variable = pressure
  []
  [phase_2_left]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = left
    functor = 0.1
    variable = phase_2
  []
  [phase_2_right]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = right
    use_two_term_expansion = true
    variable = phase_2
  []
[]
[FunctorMaterials]
  [flow_ins_speed_material]
    type = ADVectorMagnitudeFunctorMaterial
    execute_on = ALWAYS
    outputs = none
    vector_magnitude_name = speed
    x_functor = vel_x
    y_functor = vel_y
  []
  [mixture_phase_1_fraction]
    type = ParsedFunctorMaterial
    execute_on = ALWAYS
    expression = '1 - phase_2'
    functor_names = phase_2
    output_properties = phase_1
    outputs = all
    property_name = phase_1
  []
  [mixture_mixture_material]
    type = WCNSLinearFVMixtureFunctorMaterial
    execute_on = ALWAYS
    limit_phase_fraction = true
    outputs = all
    phase_1_fraction = phase_2
    phase_1_names = '${rho_d} ${mu_d} ${cp_d} ${k_d}'
    phase_2_names = '${rho}   ${mu}   ${cp}   ${k}'
    prop_names = 'rho_mixture mu_mixture cp_mixture k_mixture'
  []
  [mixture_slip_x]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    execute_on = ALWAYS
    gravity = '0 0 0'
    linear_coef_name = Darcy_coefficient
    momentum_component = x
    mu = mu_mixture
    outputs = all
    particle_diameter = 0.01
    rho = ${rho}
    rho_d = ${rho_d}
    slip_velocity_name = vel_slip_x
    u = vel_x
    v = vel_y
  []
  [mixture_slip_y]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    execute_on = ALWAYS
    gravity = '0 0 0'
    linear_coef_name = Darcy_coefficient
    momentum_component = y
    mu = mu_mixture
    outputs = all
    particle_diameter = 0.01
    rho = ${rho}
    rho_d = ${rho_d}
    slip_velocity_name = vel_slip_y
    u = vel_x
    v = vel_y
  []
  [mixture_dispersed_drag]
    type = NSFVDispersePhaseDragFunctorMaterial
    drag_coef_name = Darcy_coefficient
    execute_on = ALWAYS
    mu = mu_mixture
    outputs = all
    particle_diameter = 0.01
    rho = rho_mixture
    u = vel_x
    v = vel_y
  []
[]
[UserObjects]
  [ins_rhie_chow_interpolator]
    type = RhieChowMassFlux
    p_diffusion_kernel = flow_p_diffusion
    pressure = pressure
    rho = rho_mixture
    u = vel_x
    v = vel_y
  []
[]
[Executioner]
  type = SIMPLE
  rhie_chow_user_object = 'ins_rhie_chow_interpolator'
  # Systems
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  active_scalar_systems = 'phi_system'
  momentum_equation_relaxation = 0.8
  active_scalar_equation_relaxation = '0.7'
  pressure_variable_relaxation = 0.3
  # We need to converge the problem to show conservation
  num_iterations = 200
  pressure_absolute_tolerance = 1e-10
  momentum_absolute_tolerance = 1e-10
  active_scalar_absolute_tolerance = '1e-10'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  active_scalar_petsc_options_iname = '-pc_type -pc_hypre_type'
  active_scalar_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-13
  pressure_l_abs_tol = 1e-13
  active_scalar_l_abs_tol = 1e-13
  momentum_l_tol = 0
  pressure_l_tol = 0
  active_scalar_l_tol = 0
  # print_fields = true
  continue_on_max_its = true
[]
[Outputs]
  csv = true
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '10.0 * 2 * 1'
  []
  [average_phase2]
    type = ElementAverageValue
    variable = phase_2
  []
  [dp]
    type = PressureDrop
    boundary = 'left right'
    downstream_boundary = right
    pressure = pressure
    upstream_boundary = left
  []
  [max_phase2]
    type = ElementExtremeValue
    variable = phase_2
  []
[]