- rhoThe value for the density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:The value for the density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
INSFVEnthalpyFunctorMaterial
This is the material class used to compute enthalpy where is the density, is the specific heat capacity, and is the temperature, for the incompressible/weakly-compressible finite-volume implementation of the Navier-Stokes equations.
It defines the following functor material properties, for a variety of use cases and postprocessing needs:
If "assumed_constant_cp" is set to true (default):
- enthalpy density and , named as "rho_h" and "rho_cp_temp" 
- specific enthalpy and , named as "h" and "cp_temp" 
- time derivative of the specific enthalpy , named as "dh_dt" 
else if the specific enthalpy functor is specified with "h_in", as well as the fluid properties using the "fp" parameter. This case is used for solving with the specific enthalpy variable.
- enthalpy density , named as "rho_h" 
- temperature of the fluid computed using the fluid properties from the specific enthalpy and pressure, named as "T_fluid" 
- time derivative of the specific enthalpy , named as "dh_dt" 
else if "assumed_constant_cp" is set to false, but the specific enthalpy functor is not specified:
- enthalpy density , named as "rho_h" 
- specific enthalpy , named as "h" 
- time derivative of the specific enthalpy , named as "dh_dt" 
Input Parameters
- assumed_constant_cpTrueWhether to assume cp is constantDefault:True C++ Type:bool Controllable:No Description:Whether to assume cp is constant 
- blockThe list of blocks (ids or names) that this object will be appliedC++ Type:std::vector<SubdomainName> Controllable:No Description:The list of blocks (ids or names) that this object will be applied 
- cpcpThe constant value for the specific heat capacity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.Default:cp C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:The constant value for the specific heat capacity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.C++ Type:MaterialPropertyName Unit:(no unit assumed) Controllable:No Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character. 
- execute_onALWAYSThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.Default:ALWAYS C++ Type:ExecFlagEnum Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, ALWAYS Controllable:No Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html. 
- fpFluid properties, to be used when cp is not constant to compute enthalpyC++ Type:UserObjectName Controllable:No Description:Fluid properties, to be used when cp is not constant to compute enthalpy 
- hhthe name of the specific enthalpy, for defining it. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.Default:h C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:the name of the specific enthalpy, for defining it. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
- h_inSpecific enthalpy functor, to be used when cp is not constant to compute the enthalpy, as an alternative to using a 'fp' FluidProperties object. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:Specific enthalpy functor, to be used when cp is not constant to compute the enthalpy, as an alternative to using a 'fp' FluidProperties object. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
- pressurePressure functor, to be used when cp is not constant to compute enthalpy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:Pressure functor, to be used when cp is not constant to compute enthalpy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
- rho_hrho_hthe name of the (extensive) enthalpy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.Default:rho_h C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:the name of the (extensive) enthalpy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
- temperaturethe temperature. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.C++ Type:MooseFunctorName Unit:(no unit assumed) Controllable:No Description:the temperature. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.C++ Type:std::vector<std::string> Controllable:No Description:Adds user-defined labels for accessing object parameters via control logic. 
- enableTrueSet the enabled status of the MooseObject.Default:True C++ Type:bool Controllable:Yes Description:Set the enabled status of the MooseObject. 
- implicitTrueDetermines whether this object is calculated using an implicit or explicit formDefault:True C++ Type:bool Controllable:No Description:Determines whether this object is calculated using an implicit or explicit form 
- search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).Default:nearest_node_connected_sides C++ Type:MooseEnum Options:nearest_node_connected_sides, all_proximate_sides Controllable:No Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes). 
- seed0The seed for the master random number generatorDefault:0 C++ Type:unsigned int Controllable:No Description:The seed for the master random number generator 
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)C++ Type:std::vector<std::string> Controllable:No Description:List of material properties, from this material, to output (outputs must also be defined to an output type) 
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this objectDefault:none C++ Type:std::vector<OutputName> Controllable:No Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object 
Outputs Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/1d_test_cpT.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
- (modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
- (tutorials/shield_multiphysics/inputs/step11_multiapps/step11_2d_fluid.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
- (modules/navier_stokes/test/tests/postprocessors/pressure_drop/drop_insfv.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
- (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/examples/solidification/gallium_melting.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy-wall.i)
- (modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-steady-wall-balance.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/pwcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/with-direction/errors/flux_bcs.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
- (tutorials/shield_multiphysics/inputs/step10_finite_volume/step10.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/solidification/solidification_no_advection.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/iks/flow-around-square/flow-around-square.i)
- (modules/navier_stokes/test/tests/finite_volume/controls/switch-pressure-bc/switch_vel_pres_bc.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/enthalpy_computation.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_reversal.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
- (modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-disp-system.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
assumed_constant_cp
Default:True
C++ Type:bool
Controllable:No
Description:Whether to assume cp is constant
h_in
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Specific enthalpy functor, to be used when cp is not constant to compute the enthalpy, as an alternative to using a 'fp' FluidProperties object. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
fp
C++ Type:UserObjectName
Controllable:No
Description:Fluid properties, to be used when cp is not constant to compute enthalpy
assumed_constant_cp
Default:True
C++ Type:bool
Controllable:No
Description:Whether to assume cp is constant
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 20
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${T_inlet}
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass_time]
    type = PWCNSFVMassTimeDerivative
    variable = pressure
    porosity = 'porosity'
    drho_dt = 'drho_dt'
  []
  [mass]
    type = PWCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    h = 'h'
    dh_dt = 'dh_dt'
    rho = ${rho}
    drho_dt = 'drho_dt'
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
    gamma = 1.4
  []
[]
[FunctorMaterials]
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = 'speed'
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 'porosity'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    porosity = 'porosity'
    superficial_vel_x = 'superficial_vel_x'
    superficial_vel_y = 'superficial_vel_y'
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_abs_tol = 1e-10
  automatic_scaling = true
  end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = VolumetricFlowRate
    boundary = 'right'
    advected_quantity = '1'
    advected_interp_method = ${advected_interp_method}
    vel_x = 'superficial_vel_x'
    vel_y = 'superficial_vel_y'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/1d_test_cpT.i)
L = 30
bulk_u = 0.01
p_ref = 101325.0
T_in = 860
q_source = 50000
A_cp = 976.78
B_cp = 1.0634
rho = 2000
advected_interp_method = 'upwind'
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    xmin = 0
    xmax = ${L}
    nx = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_ref}
    two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    initial_condition = ${T_in}
  []
[]
[FVKernels]
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    rho = 'rho'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [source]
    type = FVBodyForce
    variable = T
    function = source_func
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = ${bulk_u}
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'left'
    value = ${T_in}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_ref}
  []
[]
[Functions]
  [source_func]
    type = ParsedFunction
    expression = '${q_source}'
  []
[]
[FunctorMaterials]
  [converter_to_regular_T]
    type = FunctorADConverter
    ad_props_in = 'T'
    reg_props_out = 'T_nAD'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = 'rho'
    cp = 'cp'
    assumed_constant_cp = false
    h_in = 'h'
    # Alternative to providing 'h': set the fluid property and the pressure parameter
    # fp = 'fp'
    # pressure = 'pressure'
  []
  [rho]
    type = ADParsedFunctorMaterial
    property_name = 'rho'
    expression = '${rho}'
  []
  [mu]
    type = ADParsedFunctorMaterial
    property_name = 'mu'
    expression = '4.5e-3'
  []
  [k]
    type = ADParsedFunctorMaterial
    property_name = 'k'
    expression = '0.7'
  []
  [h]
    type = ADParsedFunctorMaterial
    property_name = 'h'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp * T + B_cp * T * T / 2'
  []
  [cp]
    type = ADParsedFunctorMaterial
    property_name = 'cp'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp+B_cp*T'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
[]
[Postprocessors]
  [H_in]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'left'
  []
  [H_out]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'right'
  []
  [Q]
    type = FunctionElementIntegral
    function = 'source_func'
    execute_on = 'initial'
  []
  [balance_in_percent]
    type = ParsedPostprocessor
    expression = '(H_out + H_in - Q) / H_in * 100'
    pp_names = 'H_in H_out Q'
  []
  [T_out]
    type = SideAverageValue
    variable = T
    boundary = 'right'
  []
  [T_analytical_outlet]
    type = Receiver
    default = ${fparse (-A_cp+sqrt(A_cp^2-2*B_cp*(-q_source/rho/bulk_u*L-A_cp*T_in-B_cp/2*T_in*T_in)))/B_cp}
  []
  [error_T]
    type = ParsedPostprocessor
    expression = 'T_out - T_analytical_outlet'
    pp_names = 'T_out T_analytical_outlet'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
mu = 1
rho = 1
k = 1e-3
diff = 1e-3
cp = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = -1
    ymax = 1
    nx = 100
    ny = 20
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [scalar]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
  [scalar_coupled_source]
    type = FVCoupledForce
    variable = scalar
    v = U
    coef = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
  [inlet_scalar]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar
    value = 1
  []
[]
[FunctorMaterials]
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
alpha = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = -1
    ymax = 1
    nx = 50
    ny = 16
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 100
    alpha = 'alpha'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Postprocessors]
  [temp]
    type = ElementAverageValue
    variable = T_fluid
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
mu = 1
rho = 1
k = 1
cp = 1
[GlobalParams]
  velocity_interp_method = 'rc'
  # Maximum cell Peclet number is ~.1 so energy transport is stable without upwinding
  advected_interp_method = 'average'
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [Pe]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [Pe]
    type = PecletNumberFunctorAux
    variable = Pe
    speed = speed
    thermal_diffusivity = 'thermal_diffusivity'
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = 'mu'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 0
  []
[]
[Materials]
  [mu]
    type = ADGenericFunctorMaterial
    prop_names = 'mu'
    prop_values = '${mu}'
  []
  [speed]
    type = ADVectorMagnitudeFunctorMaterial
    x_functor = u
    y_functor = v
    vector_magnitude_name = speed
  []
  [thermal_diffusivity]
    type = ThermalDiffusivityFunctorMaterial
    k = ${k}
    rho = ${rho}
    cp = ${cp}
  []
  [enthalpy]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = T
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(tutorials/shield_multiphysics/inputs/step11_multiapps/step11_2d_fluid.i)
cp_water_multiplier = 5e-2
mu_multiplier = 1
# Real facility uses forced convection to cool the water tank at full power
# Need to lower power for natural convection so concrete doesn't get too hot.
power = '${fparse 5e4 / 144 * 0.5}'
[Mesh]
  [fmg]
    type = FileMeshGenerator
    file = 'mesh2d_coarse_in.e'
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    block = 'water'
    initial_condition = 1e-4
  []
  [vel_y]
    type = INSFVVelocityVariable
    block = 'water'
    initial_condition = 1e-4
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'water'
    initial_condition = 1e5
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    block = 'water'
    scaling = 1e-05
  []
  [lambda]
    type = MooseVariableScalar
    family = SCALAR
    order = FIRST
    # Cleans up console output
    outputs = none
  []
[]
[GlobalParams]
  velocity_interp_method = rc
  rhie_chow_user_object = ins_rhie_chow_interpolator
  rho = rho
[]
[FVKernels]
  [water_ins_mass_advection]
    type = INSFVMassAdvection
    advected_interp_method = upwind
    block = water
    variable = pressure
  []
  [water_ins_mass_pressure_pin]
    type = FVPointValueConstraint
    lambda = lambda
    phi0 = 1e5
    point = '1 3 0'
    variable = pressure
  []
  [water_ins_momentum_time_vel_x]
    type = INSFVMomentumTimeDerivative
    block = water
    momentum_component = x
    variable = vel_x
  []
  [water_ins_momentum_time_vel_y]
    type = INSFVMomentumTimeDerivative
    block = water
    momentum_component = y
    variable = vel_y
  []
  [water_ins_momentum_advection_x]
    type = INSFVMomentumAdvection
    advected_interp_method = upwind
    block = water
    momentum_component = x
    variable = vel_x
    characteristic_speed = 0.01
  []
  [water_ins_momentum_advection_y]
    type = INSFVMomentumAdvection
    advected_interp_method = upwind
    block = water
    momentum_component = y
    variable = vel_y
    characteristic_speed = 0.1
  []
  [water_ins_momentum_diffusion_x]
    type = INSFVMomentumDiffusion
    block = water
    momentum_component = x
    mu = mu
    variable = vel_x
  []
  [water_ins_momentum_diffusion_y]
    type = INSFVMomentumDiffusion
    block = water
    momentum_component = y
    mu = mu
    variable = vel_y
  []
  [water_ins_momentum_pressure_x]
    type = INSFVMomentumPressure
    block = water
    momentum_component = x
    pressure = pressure
    variable = vel_x
  []
  [water_ins_momentum_pressure_y]
    type = INSFVMomentumPressure
    block = water
    momentum_component = y
    pressure = pressure
    variable = vel_y
  []
  [water_ins_momentum_gravity_z]
    type = INSFVMomentumGravity
    block = water
    gravity = '0 -9.81 0'
    momentum_component = y
    variable = vel_y
  []
  [water_ins_momentum_boussinesq_z]
    type = INSFVMomentumBoussinesq
    T_fluid = T_fluid
    alpha_name = alpha
    block = water
    gravity = '0 -9.81 0'
    momentum_component = y
    ref_temperature = 300
    rho = 955.7
    variable = vel_y
  []
  # Energy conservation equation
  [water_ins_energy_time]
    type = INSFVEnergyTimeDerivative
    block = water
    dh_dt = dh_dt
    rho = rho
    variable = T_fluid
  []
  [water_ins_energy_advection]
    type = INSFVEnergyAdvection
    advected_interp_method = upwind
    block = water
    variable = T_fluid
  []
  [water_ins_energy_diffusion_all]
    type = FVDiffusion
    block = water
    coeff = k
    variable = T_fluid
  []
  # Turbulence
  [water_ins_viscosity_rans_x]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_x
    mixing_length = mixing_length
    momentum_component = 'x'
    u = vel_x
    v = vel_y
  []
  [water_ins_viscosity_rans_y]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_y
    mixing_length = mixing_length
    momentum_component = 'y'
    u = vel_x
    v = vel_y
  []
  [water_ins_energy_rans]
    type = WCNSFVMixingLengthEnergyDiffusion
    variable = T_fluid
    cp = cp
    mixing_length = mixing_length
    schmidt_number = 1
    u = vel_x
    v = vel_y
  []
[]
[AuxKernels]
  [mixing_length]
    type = WallDistanceMixingLengthAux
    variable = mixing_length
    walls = 'water_boundary inner_cavity_water'
    execute_on = 'initial'
  []
[]
[FunctorMaterials]
  [water]
    type = ADGenericFunctorMaterial
    block = 'water'
    prop_names = 'rho    k     cp      mu alpha_wall'
    prop_values = '955.7 0.6 ${fparse cp_water_multiplier * 4181} ${fparse 7.98e-4 * mu_multiplier} 30'
  []
  [boussinesq_params]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha '
    prop_values = '2.9e-3'
  []
  [water_ins_enthalpy_material]
    type = INSFVEnthalpyFunctorMaterial
    block = water
    cp = cp
    execute_on = ALWAYS
    outputs = none
    temperature = T_fluid
  []
  [total_viscosity]
    type = MixingLengthTurbulentViscosityFunctorMaterial
    u = 'vel_x'
    v = 'vel_y'
    mixing_length = mixing_length
    mu = mu
  []
[]
[FVBCs]
  [vel_x_water_boundary]
    type = INSFVNoSlipWallBC
    boundary = 'water_boundary inner_cavity_water'
    function = 0
    variable = vel_x
  []
  [vel_y_water_boundary]
    type = INSFVNoSlipWallBC
    boundary = 'water_boundary inner_cavity_water'
    function = 0
    variable = vel_y
  []
  [T_fluid_inner_cavity]
    type = FVFunctorNeumannBC
    boundary = inner_cavity_water
    functor = ${power}
    variable = T_fluid
  []
  [T_fluid_water_boundary]
    type = FVFunctorConvectiveHeatFluxBC
    boundary = water_boundary
    variable = T_fluid
    T_bulk = T_fluid
    T_solid = T_solid
    heat_transfer_coefficient = 600
    is_solid = false
  []
[]
[UserObjects]
  [ins_rhie_chow_interpolator]
    type = INSFVRhieChowInterpolator
    pressure = 'pressure'
    u = 'vel_x'
    v = 'vel_y'
    block = 'water'
  []
[]
[AuxVariables]
  # This isn't used in simulation, but useful for visualization
  [vel_z]
    type = INSFVVelocityVariable
    block = 'water'
    initial_condition = 0
  []
  [mixing_length]
    block = 'water'
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  # This is the variable that is transferred from the main app
  [T_solid]
    block = 'concrete_hd concrete Al'
    initial_condition = 300
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  line_search = none
  # Direct solve works for everything small enough
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
  petsc_options_value = 'lu NONZERO superlu_dist'
  nl_abs_tol = 3e-7
  nl_max_its = 10
  l_max_its = 3
  start_time = -1
  dtmax = 100
  [TimeStepper]
    type = FunctionDT
    function = 'if(t < 0.1, 0.1, t)'
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_INSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  inactive = 'mesh internal_boundary_bot internal_boundary_top'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1'
    dy = '1 1 1'
    ix = '5'
    iy = '5 5 5'
    subdomain_id = '1
                    2
                    3'
  []
  [internal_boundary_bot]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    new_boundary = 'internal_bot'
    primary_block = 1
    paired_block = 2
  []
  [internal_boundary_top]
    type = SideSetsBetweenSubdomainsGenerator
    input = internal_boundary_bot
    new_boundary = 'internal_top'
    primary_block = 2
    paired_block = 3
  []
  [diverging_mesh]
    type = FileMeshGenerator
    file = 'expansion_quad.e'
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [temperature]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [advected_density]
    type = MooseVariableFVReal
    initial_condition = ${rho}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    force_boundary_execution = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    force_boundary_execution = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    advected_interp_method = 'upwind'
  []
  [temp_source]
    type = FVBodyForce
    variable = temperature
    function = 10
    block = 1
  []
[]
[FVBCs]
  inactive = 'noslip-u noslip-v'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = u
    functor = 0
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = v
    functor = 1
  []
  [noslip-u]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = u
    function = 0
  []
  [noslip-v]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = v
    function = 0
  []
  [free-slip-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = u
    momentum_component = 'x'
  []
  [free-slip-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = v
    momentum_component = 'y'
  []
  [axis-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'left'
    variable = u
    u = u
    v = v
    mu = ${mu}
    momentum_component = x
  []
  [axis-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'left'
    variable = v
    u = u
    v = v
    mu = ${mu}
    momentum_component = y
  []
  [axis-p]
    type = INSFVSymmetryPressureBC
    boundary = 'left'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'top'
    variable = pressure
    function = 0
  []
  [inlet_temp]
    type = FVNeumannBC
    boundary = 'bottom'
    variable = temperature
    value = 300
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
  []
  [advected_material_property]
    type = ADGenericFunctorMaterial
    prop_names = 'advected_rho cp'
    prop_values ='${rho} 1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      200                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
[Postprocessors]
  [inlet_mass_variable]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = advected_density
  []
  [inlet_mass_constant]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [inlet_mass_matprop]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = 'advected_rho'
  []
  [mid1_mass]
    type = VolumetricFlowRate
    boundary = internal_bot
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [mid2_mass]
    type = VolumetricFlowRate
    boundary = internal_top
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [outlet_mass]
    type = VolumetricFlowRate
    boundary = top
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [inlet_momentum_x]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = u
  []
  [inlet_momentum_y]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = v
  []
  [mid1_advected_energy]
    type = VolumetricFlowRate
    boundary = internal_bot
    vel_x = u
    vel_y = v
    advected_quantity = 'rho_cp_temp'
    advected_interp_method = 'upwind'
  []
  [mid2_advected_energy]
    type = VolumetricFlowRate
    boundary = internal_top
    vel_x = u
    vel_y = v
    advected_quantity = 'rho_cp_temp'
    advected_interp_method = 'upwind'
  []
  [outlet_advected_energy]
    type = VolumetricFlowRate
    boundary = top
    vel_x = u
    vel_y = v
    advected_quantity = 'rho_cp_temp'
    advected_interp_method = 'upwind'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/postprocessors/pressure_drop/drop_insfv.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  inactive = 'mesh internal_boundary_bot internal_boundary_top'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1'
    dy = '1 1 1'
    ix = '5'
    iy = '5 5 5'
    subdomain_id = '1
                    2
                    3'
  []
  [internal_boundary_bot]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    new_boundary = 'internal_bot'
    primary_block = 1
    paired_block = 2
  []
  [internal_boundary_top]
    type = SideSetsBetweenSubdomainsGenerator
    input = internal_boundary_bot
    new_boundary = 'internal_top'
    primary_block = 2
    paired_block = 3
  []
  [diverging_mesh]
    type = FileMeshGenerator
    file = 'expansion_quad.e'
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [temperature]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [advected_density]
    type = MooseVariableFVReal
    initial_condition = ${rho}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    force_boundary_execution = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    force_boundary_execution = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    advected_interp_method = 'upwind'
  []
  [temp_source]
    type = FVBodyForce
    variable = temperature
    function = 10
    block = 1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = u
    functor = 0
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = v
    functor = 1
  []
  [noslip-u]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = u
    function = 0
  []
  [noslip-v]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = v
    function = 0
  []
  [axis-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'left'
    variable = u
    u = u
    v = v
    mu = ${mu}
    momentum_component = x
  []
  [axis-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'left'
    variable = v
    u = u
    v = v
    mu = ${mu}
    momentum_component = y
  []
  [axis-p]
    type = INSFVSymmetryPressureBC
    boundary = 'left'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'top'
    variable = pressure
    function = 0
  []
  [inlet_temp]
    type = FVNeumannBC
    boundary = 'bottom'
    variable = temperature
    value = 300
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
  []
  [advected_material_property]
    type = ADGenericFunctorMaterial
    prop_names = 'advected_rho cp'
    prop_values ='${rho} 1'
  []
  [vel_functor]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'velocity'
    prop_values = 'u v 0'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      200                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
[Postprocessors]
  [pdrop_total]
    type = PressureDrop
    pressure = pressure
    upstream_boundary = 'bottom'
    downstream_boundary = 'top'
    boundary = 'top bottom'
  []
  [pdrop_mid1]
    type = PressureDrop
    pressure = pressure
    upstream_boundary = 'bottom'
    downstream_boundary = 'internal_bot'
    boundary = 'bottom internal_bot'
  []
  [pdrop_mid2]
    type = PressureDrop
    pressure = pressure
    upstream_boundary = 'internal_bot'
    downstream_boundary = 'internal_top'
    boundary = 'internal_top internal_bot'
  []
  [pdrop_mid3]
    type = PressureDrop
    pressure = pressure
    upstream_boundary = 'internal_top'
    downstream_boundary = 'top'
    boundary = 'top internal_top'
  []
  [sum_drops]
    type = ParsedPostprocessor
    expression = 'pdrop_mid1 + pdrop_mid2 + pdrop_mid3'
    pp_names = 'pdrop_mid1 pdrop_mid2 pdrop_mid3'
  []
  [p_upstream]
    type = SideAverageValue
    variable = pressure
    boundary = 'bottom'
  []
  [p_downstream]
    type = SideAverageValue
    variable = pressure
    boundary = 'top'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
mu = 1
rho = 1
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 100
    ny = 20
  []
  [left]
    type = ParsedSubdomainMeshGenerator
    input = gen
    combinatorial_geometry = 'x > 3 & x < 6'
    block_id = 1
  []
  [right]
    type = ParsedSubdomainMeshGenerator
    input = left
    combinatorial_geometry = 'x < 3'
    block_id = 2
  []
  [more-right]
    type = ParsedSubdomainMeshGenerator
    input = right
    combinatorial_geometry = 'x > 6'
    block_id = 3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
    initial_condition = 100
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion_1]
    type = PINSFVEnergyAnisotropicDiffusion
    kappa = 'kappa'
    variable = T_fluid
    porosity = porosity
    block = '1 2'
  []
  [energy_diffusion_2]
    type = PINSFVEnergyAnisotropicDiffusion
    kappa = 'kappa'
    variable = T_fluid
    porosity = porosity
    block = '3'
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  inactive = 'inlet-T-dirichlet'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [inlet-T-dirichlet]
    type = FVDirichletBC
    variable = T_fluid
    value = '${T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '1'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [kappa]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'kappa'
    prop_values = '1e-3 1e-2 1e-1'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
cp = 'cp'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 20
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${T_inlet}
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
  [velocity_norm]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass_time]
    type = PWCNSFVMassTimeDerivative
    variable = pressure
    porosity = 'porosity'
    drho_dt = 'drho_dt'
  []
  [mass]
    type = PWCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    cp = ${cp}
    rho = ${rho}
    drho_dt = 'drho_dt'
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = 'velocity_norm'
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 'porosity'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[AuxKernels]
  [speed]
    type = ParsedAux
    variable = 'velocity_norm'
    coupled_variables = 'superficial_vel_x superficial_vel_y porosity'
    expression = 'sqrt(superficial_vel_x*superficial_vel_x + superficial_vel_y*superficial_vel_y) / '
               'porosity'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 32
    ny = 32
  []
  [pin]
    type = ExtraNodesetGenerator
    input = gen
    new_boundary = 'pin'
    nodes = '0'
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[ICs]
  [T]
    type = ConstantIC
    variable = T
    value = 1
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = u
    y = v
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = 'u'
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho}
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  # Run for 100+ timesteps to reach steady state.
  num_steps = 5
  dt = .5
  dtmin = .5
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_max_its = 6
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 20
    ny = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_v}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [mixing_length]
    type = MooseVariableFVReal
  []
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  inactive = 'u_turb v_turb temp_turb'
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_x
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_turb]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_x
    rho = ${rho}
    mixing_length = 'mixing_length'
    momentum_component = 'x'
    u = vel_x
    v = vel_y
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_y
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_turb]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_y
    rho = ${rho}
    mixing_length = 'mixing_length'
    momentum_component = 'y'
    u = vel_x
    v = vel_y
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T_fluid
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T_fluid
    v = power_density
  []
  [temp_turb]
    type = WCNSFVMixingLengthEnergyDiffusion
    variable = T_fluid
    rho = rho
    cp = cp
    mixing_length = 'mixing_length'
    schmidt_number = 1
    u = vel_x
    v = vel_y
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'top bottom'
    function = 0
  []
  # Inlet
  [inlet_u]
    type = INSFVInletVelocityBC
    variable = vel_x
    boundary = 'left'
    functor = ${inlet_v}
  []
  [inlet_v]
    type = INSFVInletVelocityBC
    variable = vel_y
    boundary = 'left'
    functor = 0
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'left'
    value = ${inlet_temp}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T_fluid
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[AuxKernels]
  inactive = 'mixing_len'
  [mixing_len]
    type = WallDistanceMixingLengthAux
    walls = 'top'
    variable = mixing_length
    execute_on = 'initial'
    delta = 0.5
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-3
    optimal_iterations = 6
  []
  end_time = 15
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  compute_scaling_once = false
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/examples/solidification/gallium_melting.i)
##########################################################
# Simulation of Gallium Melting Experiment
# Ref: Gau, C., & Viskanta, R. (1986). Melting and solidification of a pure metal on a vertical wall.
# Key physics: melting/solidification, convective heat transfer, natural convection
##########################################################
mu = 1.81e-3
rho_solid = 6093
rho_liquid = 6093
k_solid = 32
k_liquid = 32
cp_solid = 381.5
cp_liquid = 381.5
L = 80160
alpha_b = 1.2e-4
T_solidus = 302.93
T_liquidus = '${fparse T_solidus + 0.1}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
T_cold = 301.15
T_hot = 311.15
Nx = 100
Ny = 50
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 88.9e-3
    ymin = 0
    ymax = 63.5e-3
    nx = ${Nx}
    ny = ${Ny}
  []
[]
[AuxVariables]
  [U]
    type = MooseVariableFVReal
  []
  [fl]
    type = MooseVariableFVReal
    initial_condition = 0.0
  []
  [density]
    type = MooseVariableFVReal
  []
  [th_cond]
    type = MooseVariableFVReal
  []
  [cp_var]
    type = MooseVariableFVReal
  []
  [darcy_coef]
    type = MooseVariableFVReal
  []
  [fch_coef]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [compute_fl]
    type = NSLiquidFractionAux
    variable = fl
    temperature = T
    T_liquidus = '${T_liquidus}'
    T_solidus = '${T_solidus}'
    execute_on = 'TIMESTEP_END'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho_mixture'
    variable = 'density'
  []
  [th_cond_out]
    type = FunctorAux
    functor = 'k_mixture'
    variable = 'th_cond'
  []
  [cp_out]
    type = FunctorAux
    functor = 'cp_mixture'
    variable = 'cp_var'
  []
  [darcy_out]
    type = FunctorAux
    functor = 'Darcy_coefficient'
    variable = 'darcy_coef'
  []
  [fch_out]
    type = FunctorAux
    functor = 'Forchheimer_coefficient'
    variable = 'fch_coef'
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = '${T_cold}'
    scaling = 1e-4
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    phi0 = 0.0
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = rho_mixture
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = vel_x
    momentum_component = 'x'
    u = vel_x
    v = vel_y
    Darcy_name = 'Darcy_coeff'
    Forchheimer_name = 'Forchheimer_coeff'
    rho = ${rho_liquid}
    mu = ${mu}
    standard_friction_formulation = false
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    ref_temperature = ${T_cold}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    momentum_component = 'x'
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = rho_mixture
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = vel_y
    momentum_component = 'y'
    u = vel_x
    v = vel_y
    Darcy_name = 'Darcy_coeff'
    Forchheimer_name = 'Forchheimer_coeff'
    rho = ${rho_liquid}
    mu = ${mu}
    standard_friction_formulation = false
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    ref_temperature = ${T_cold}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    momentum_component = 'y'
  []
  [T_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = rho_mixture
    dh_dt = dh_dt
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = k_mixture
    variable = T
  []
  [energy_source]
    type = NSFVPhaseChangeSource
    variable = T
    L = ${L}
    liquid_fraction = fl
    T_liquidus = ${T_liquidus}
    T_solidus = ${T_solidus}
    rho = 'rho_mixture'
  []
[]
[FVBCs]
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0
  []
  [hot_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_hot}'
    boundary = 'left'
  []
  [cold_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_cold}'
    boundary = 'right'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = rho_mixture
    cp = cp_mixture
    temperature = 'T'
  []
  [eff_cp]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
    phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
    prop_names = 'cp_mixture k_mixture rho_mixture'
    phase_1_fraction = fl
  []
  [mushy_zone_resistance]
    type = INSFVMushyPorousFrictionFunctorMaterial
    liquid_fraction = 'fl'
    mu = '${mu}'
    rho_l = '${rho_liquid}'
    dendrite_spacing_scaling = 1e-1
  []
  [friction]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coeff Forchheimer_coeff'
    prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
  []
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b'
    prop_values = '${alpha_b}'
  []
[]
[Executioner]
  type = Transient
  # Time-stepping parameters
  start_time = 0.0
  end_time = 200.0
  num_steps = 2
  [TimeStepper]
    type = IterationAdaptiveDT
    # Raise time step often but not by as much
    # There's a rough spot for convergence near 10% fluid fraction
    optimal_iterations = 15
    growth_factor = 1.5
    dt = 0.1
  []
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-6
  nl_max_its = 30
  line_search = 'none'
[]
[Postprocessors]
  [ave_p]
    type = ElementAverageValue
    variable = 'pressure'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [ave_fl]
    type = ElementAverageValue
    variable = 'fl'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [ave_T]
    type = ElementAverageValue
    variable = 'T'
    execute_on = 'INITIAL TIMESTEP_END'
  []
[]
[VectorPostprocessors]
  [vel_x]
    type = ElementValueSampler
    variable = 'vel_x fl'
    sort_by = 'x'
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions with temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment_v = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_T = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = INSFVTurbulentTemperatureWallFunction
    variable = T_fluid
    boundary = 'top'
    T_w = 1
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    cp = ${cp}
    kappa = ${k}
    tke = TKE
    wall_treatment = ${wall_treatment_T}
  []
  [T_cold]
    type = INSFVTurbulentTemperatureWallFunction
    variable = T_fluid
    boundary = 'bottom'
    T_w = 0
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    cp = ${cp}
    kappa = ${k}
    tke = TKE
    wall_treatment = ${wall_treatment_T}
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment_v}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
  [k_t]
    type = MooseVariableFVReal
    initial_condition = 1.0
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
    execute_on = 'NONLINEAR'
  []
  [compute_k_t]
    type = TurbulentConductivityAux
    variable = k_t
    Pr_t = ${Pr_t}
    cp = ${cp}
    mu_t = 'mu_t'
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
mu = 1
rho = 1.1
beta = 1e-4
k = .01
cp = 1000
velocity_interp_method = 'rc'
advected_interp_method = 'average'
l = 4
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = ${l}
    nx = 8
    ny = 8
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    rhie_chow_user_object = 'rc'
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    rhie_chow_user_object = 'rc'
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    rhie_chow_user_object = 'rc'
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rhie_chow_user_object = 'rc'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right bottom top'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 0
  []
[]
[FluidProperties]
  [fp]
    type = SimpleFluidProperties
    density0 = ${rho}
    thermal_expansion = ${beta}
  []
[]
[FunctorMaterials]
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  dt = 1
  end_time = 10
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      300                lu           NONZERO'
  nl_abs_tol = 1e-11
  automatic_scaling = true
[]
[Postprocessors]
  [rayleigh_1]
    type = RayleighNumber
    rho_min = rho_min
    rho_max = rho_max
    rho_ave = ${rho}
    l = ${l}
    mu_ave = ${mu}
    k_ave = ${k}
    cp_ave = ${cp}
    gravity_magnitude = 9.81
  []
  [rayleigh_2]
    type = RayleighNumber
    T_cold = T_min
    T_hot = T_max
    rho_ave = ${rho}
    beta = ${beta}
    l = ${l}
    mu_ave = ${mu}
    k_ave = ${k}
    cp_ave = ${cp}
    gravity_magnitude = 9.81
  []
  [rho_min]
    type = ADElementExtremeFunctorValue
    functor = 'rho'
    value_type = 'min'
  []
  [rho_max]
    type = ADElementExtremeFunctorValue
    functor = 'rho'
    value_type = 'max'
  []
  [T_min]
    type = ADElementExtremeFunctorValue
    functor = 'T'
    value_type = 'min'
  []
  [T_max]
    type = ADElementExtremeFunctorValue
    functor = 'T'
    value_type = 'max'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
mu = 1
rho = 1
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 32
    ny = 32
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
    scaling = 1e-4
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = left
    value = ${hot_temp}
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = right
    value = 0
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k'
    prop_values = '${alpha} ${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-steady-wall-balance.i)
L = 30
bulk_u = 0.01
p_ref = 101325.0
T_in = 860
q_source = 50000
q2_wall = 10000
A_cp = 976.78
B_cp = 1.0634
rho = 2000
advected_interp_method = 'upwind'
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 1
    ymax = 2.5
    nx = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_ref}
    two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    initial_condition = ${T_in}
  []
[]
[FVKernels]
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    rho = 'rho'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = 'rho'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [source]
    type = FVBodyForce
    variable = T
    function = source_func
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = ${bulk_u}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'left'
    value = ${T_in}
  []
  [incoming_heat]
    type = FVNeumannBC
    variable = T
    value = ${q2_wall}
    boundary = 'top'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_ref}
  []
[]
[Functions]
  [source_func]
    type = ParsedFunction
    expression = '${q_source}'
  []
[]
[FunctorMaterials]
  [converter_to_regular_T]
    type = FunctorADConverter
    ad_props_in = 'T'
    reg_props_out = 'T_nAD'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = 'rho'
    cp = 'cp'
    assumed_constant_cp = false
    h_in = 'h'
    # fp = 'fp'
    # pressure = 'pressure'
  []
  [rho]
    type = ADParsedFunctorMaterial
    property_name = 'rho'
    expression = '${rho}'
  []
  [mu]
    type = ADParsedFunctorMaterial
    property_name = 'mu'
    expression = '4.5e-3'
  []
  [k]
    type = ADParsedFunctorMaterial
    property_name = 'k'
    expression = '0.7'
  []
  [h]
    type = ADParsedFunctorMaterial
    property_name = 'h'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp * T + B_cp * T * T / 2'
  []
  [cp]
    type = ADParsedFunctorMaterial
    property_name = 'cp'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp+B_cp*T'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
[]
[Postprocessors]
  [H_in]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'left'
  []
  [H_out]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'right'
  []
  [Q]
    type = FunctionElementIntegral
    function = 'source_func'
    execute_on = 'initial'
  []
  [Q_wall]
    type = FunctionSideIntegral
    function = ${q2_wall}
    boundary = 'top'
  []
  [balance_in_percent]
    type = ParsedPostprocessor
    expression = '(H_out + H_in - Q - Q_wall) / H_in * 100'
    pp_names = 'H_in H_out Q Q_wall'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/pwcnsfv.i)
rho='rho'
advected_interp_method='upwind'
velocity_interp_method='rc'
gamma=1.4
R=8.3145
molar_mass=29.0e-3
R_specific=${fparse R/molar_mass}
cp=${fparse gamma*R_specific/(gamma-1)}
[GlobalParams]
  two_term_boundary_expansion = true
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = sup_vel_x
    pressure = pressure
    porosity = porosity
  []
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 1
    xmin = .1
    xmax = .6
    nx = 2
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = INSFVPressureVariable
  []
  [sup_vel_x]
    type = PINSFVSuperficialVelocityVariable
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[ICs]
  [pressure]
    type = FunctionIC
    variable = pressure
    function = 'exact_p'
  []
  [sup_vel_x]
    type = FunctionIC
    variable = sup_vel_x
    function = 'exact_sup_vel_x'
  []
  [T_fluid]
    type = FunctionIC
    variable = T_fluid
    function = 'exact_T'
  []
  [eps]
    type = FunctionIC
    variable = porosity
    function = 'eps'
  []
[]
[FVKernels]
  [mass_advection]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mass_fn]
    type = FVBodyForce
    variable = pressure
    function = 'forcing_rho'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = sup_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressureFlux
    variable = sup_vel_x
    pressure = pressure
    porosity = porosity
    momentum_component = 'x'
    force_boundary_execution = false
  []
  [momentum_fn]
    type = INSFVBodyForce
    variable = sup_vel_x
    functor = 'forcing_rho_ud'
    momentum_component = 'x'
  []
[]
[FVBCs]
  [mass]
    variable = pressure
    type = PINSFVFunctorBC
    boundary = 'left right'
    superficial_vel_x = sup_vel_x
    pressure = pressure
    eqn = 'mass'
    porosity = porosity
  []
  [momentum]
    variable = sup_vel_x
    type = PINSFVFunctorBC
    boundary = 'left right'
    superficial_vel_x = sup_vel_x
    pressure = pressure
    eqn = 'momentum'
    momentum_component = 'x'
    porosity = porosity
  []
  # help gradient reconstruction *and* create Dirichlet values for use in PINSFVFunctorBC
  [pressure_right]
    type = FVFunctionDirichletBC
    variable = pressure
    function = exact_p
    boundary = 'right'
  []
  [sup_vel_x_left]
    type = FVFunctionDirichletBC
    variable = sup_vel_x
    function = exact_sup_vel_x
    boundary = 'left'
  []
  [T_fluid_left]
    type = FVFunctionDirichletBC
    variable = T_fluid
    function = exact_T
    boundary = 'left'
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T_fluid
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = T_fluid
    rho = ${rho}
  []
[]
[Functions]
  [forcing_rho]
    type = ParsedFunction
    expression = '-3.45300378856215*sin(1.1*x)'
  []
  [forcing_rho_ud]
    type = ParsedFunction
    expression = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
  []
  [exact_T]
    type = ParsedFunction
    expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
  []
  [exact_p]
    type = ParsedFunction
    expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
  []
  [exact_sup_vel_x]
    type = ParsedFunction
    expression = '0.9*cos(1.1*x)/cos(x)'
  []
  [eps]
    type = ParsedFunction
    expression = '0.9'
  []
[]
[Executioner]
  solve_type = NEWTON
  type = Transient
  num_steps = 1
  dtmin = 1
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_max_its = 50
  line_search = bt
  nl_rel_tol = 1e-12
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = true
  csv = true
[]
[Debug]
  show_var_residual_norms = true
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2pressure]
    type = ElementL2FunctorError
    approximate = pressure
    exact = exact_p
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2sup_vel_x]
    approximate = sup_vel_x
    exact = exact_sup_vel_x
    type = ElementL2FunctorError
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 0.5'
    dy = '1'
    ix = '8 5'
    iy = '8'
    subdomain_id = '0 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = 0
    paired_block = 1
    new_boundary = 'interface'
  []
  [fluid_side]
    type = BreakBoundaryOnSubdomainGenerator
    input = 'interface'
    boundaries = 'top bottom'
  []
[]
[GlobalParams]
  # retain behavior at time of test creation
  two_term_boundary_expansion = false
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'average'
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = 0
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [v]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    block = 0
    initial_condition = 1
  []
  [Ts]
    type = INSFVEnergyVariable
    block = 1
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = Ts
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    boundary = 'interface'
    h = 5
    T_solid = Ts
    T_fluid = T
    subdomain1 = 0
    subdomain2 = 1
    wall_cell_is_bulk = true
  []
[]
[FVBCs]
  [walls_u]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'interface left'
    function = 0
  []
  [walls_v]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'interface left'
    function = 0
  []
  [inlet_u]
    type = INSFVInletVelocityBC
    variable = u
    boundary = 'bottom_to_0'
    functor = 0
  []
  [inlet_v]
    type = INSFVInletVelocityBC
    variable = v
    boundary = 'bottom_to_0'
    functor = 1
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom_to_0'
    value = 0.5
  []
  [outlet]
    type = INSFVMassAdvectionOutflowBC
    variable = pressure
    boundary = 'top_to_0'
    u = u
    v = v
    rho = ${rho}
  []
  [outlet_u]
    type = INSFVMomentumAdvectionOutflowBC
    variable = u
    boundary = 'top_to_0'
    u = u
    v = v
    momentum_component = 'x'
    rho = ${rho}
  []
  [outlet_v]
    type = INSFVMomentumAdvectionOutflowBC
    variable = v
    boundary = 'top_to_0'
    u = u
    v = v
    momentum_component = 'y'
    rho = ${rho}
  []
  [heater]
    type = FVDirichletBC
    variable = 'Ts'
    boundary = 'right'
    value = 10
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = 'asm      lu           NONZERO                   200'
  line_search = 'none'
  nl_abs_tol = 1e-14
[]
[Postprocessors]
  [max_T]
    type = ADElementExtremeFunctorValue
    functor = T
    block = 0
  []
  [max_Ts]
    type = ADElementExtremeFunctorValue
    functor = Ts
    block = 1
  []
  [mdot_out]
    type = VolumetricFlowRate
    boundary = 'top_to_0'
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 100
    ny = 20
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    cp = ${cp}
    rho = ${rho}
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
  end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
mu = 1.1
rho = 1.1
k = 1.1
cp = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'average'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 2
    ymin = -1
    ymax = 1
    nx = 2
    ny = 2
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
  []
  [temperature]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mass_forcing]
    type = FVBodyForce
    variable = pressure
    function = forcing_p
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [u_forcing]
    type = INSFVBodyForce
    variable = u
    functor = forcing_u
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [v_forcing]
    type = INSFVBodyForce
    variable = v
    functor = forcing_v
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = temperature
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
  []
  [temp_forcing]
    type = FVBodyForce
    variable = temperature
    function = forcing_t
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = 'exact_u'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 'exact_v'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 'exact_u'
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 'exact_v'
  []
  [inlet-and-walls-t]
    type = FVFunctionDirichletBC
    boundary = 'left top bottom'
    variable = temperature
    function = 'exact_t'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 'exact_p'
  []
[]
[FunctorMaterials]
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'k cp'
    prop_values = '${k} ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
  []
[]
[Functions]
  [exact_u]
    type = ParsedFunction
    expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
  []
  [exact_rhou]
    type = ParsedFunction
    expression = 'rho*sin((1/2)*y*pi)*cos((1/2)*x*pi)'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_u]
    type = ParsedFunction
    expression = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - '
            '1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + '
            '(1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - '
            'pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - '
            '1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
    symbol_names = 'mu rho'
    symbol_values = '${mu} ${rho}'
  []
  [exact_v]
    type = ParsedFunction
    expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
  []
  [exact_rhov]
    type = ParsedFunction
    expression = 'rho*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_v]
    type = ParsedFunction
    expression = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - '
            'pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
            '1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
            '(1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
            '(3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
    symbol_names = 'mu rho'
    symbol_values = '${mu} ${rho}'
  []
  [exact_p]
    type = ParsedFunction
    expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
  []
  [forcing_p]
    type = ParsedFunction
    expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - '
            '1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [exact_t]
    type = ParsedFunction
    expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
  []
  [forcing_t]
    type = ParsedFunction
    expression = '-pi*cp*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
            '1/2*pi*cp*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
            '(1/4)*pi*cp*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
            '(5/16)*pi^2*k*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
    symbol_names = 'k rho cp'
    symbol_values = '${k} ${rho} ${cp}'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
[]
[Outputs]
  csv = true
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2u]
    type = ElementL2Error
    variable = u
    function = exact_u
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2v]
    type = ElementL2Error
    variable = v
    function = exact_v
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2p]
    variable = pressure
    function = exact_p
    type = ElementL2Error
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2t]
    variable = temperature
    function = exact_t
    type = ElementL2Error
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/with-direction/errors/flux_bcs.i)
l = 5
inlet_area = 2
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
rho = 1000
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
  [gen]
    type = CartesianMeshGenerator
    dim = 2
    dx = '${l} ${l}'
    dy = '${inlet_area}'
    ix = '5 5'
    iy = '2'
    subdomain_id = '1 2'
  []
  [side_set]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'mid-inlet'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
    block = 2
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
    block = 2
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
    block = 2
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
    block = 2
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
    block = 2
  []
  [scalar]
    type = MooseVariableFVReal
    initial_condition = 0.1
    block = 2
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  # Mass equation
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  # X component momentum equation
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  # Y component momentum equation
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  # Energy equation
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T_fluid
    v = power_density
  []
  # Scalar concentration equation
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    variable = scalar
    coeff = 1.1
  []
  [scalar_source]
    type = FVBodyForce
    variable = scalar
    function = 2.1
  []
  # Solid temperature
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_solid
  []
[]
[FVBCs]
  # Inlet
  [inlet_mass]
    type = WCNSFVMassFluxBC
    variable = pressure
    boundary = 'mid-inlet'
    velocity_pp = 'inlet_velocity'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_u]
    type = WCNSFVMomentumFluxBC
    variable = vel_x
    boundary = 'mid-inlet'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'x'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_v]
    type = WCNSFVMomentumFluxBC
    variable = vel_y
    boundary = 'mid-inlet'
    mdot_pp = 0
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'y'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_T]
    type = WCNSFVEnergyFluxBC
    variable = T_fluid
    T_fluid = T_fluid
    boundary = 'mid-inlet'
    temperature_pp = 'inlet_T'
    velocity_pp = 'inlet_velocity'
    area_pp = 'area_pp_left'
    rho = 'rho'
    cp = 'cp'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_scalar]
    type = WCNSFVScalarFluxBC
    variable = scalar
    boundary = 'mid-inlet'
    scalar_value_pp = 'inlet_scalar_value'
    velocity_pp = 'inlet_velocity'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
    passive_scalar = scalar
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'top bottom'
    function = 0
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_mdot]
    type = Receiver
    default = '${fparse 1980 * inlet_velocity * inlet_area}'
  []
  [inlet_velocity]
    type = Receiver
    default = ${inlet_velocity}
  []
  [area_pp_left]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
  []
  [inlet_scalar_value]
    type = Receiver
    default = 0.2
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k rho'
    prop_values = '${cp} ${k} ${rho}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
[Problem]
  kernel_coverage_check = false
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  velocity_interp_method = 'rc'
  advected_interp_method = 'average'
[]
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3683 0.0127'
    dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
    ix = '2 1'
    iy = '1 2 3 2 1'
    subdomain_id = '0 0
                    1 0
                    2 0
                    1 0
                    0 0
                    '
  []
  [rename_block_name]
    type = RenameBlockGenerator
    input = cmg
    old_block = '0 1 2'
    new_block = 'wall_block spacer_block porous_block'
  []
  [solid_fluid_interface_1]
    type = SideSetsBetweenSubdomainsGenerator
    input = rename_block_name
    primary_block = porous_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [solid_fluid_interface_2]
    type = SideSetsBetweenSubdomainsGenerator
    input = solid_fluid_interface_1
    primary_block = spacer_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [wall_left_boundary_1]
    type = SideSetsFromBoundingBoxGenerator
    input = solid_fluid_interface_2
    bottom_left = '0 0 0'
    top_right = '0.1 0.0127 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [wall_left_boundary_2]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_1
    bottom_left = '0 2.9857 0'
    top_right = '0.1 2.9984 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [fluid_left_boundary]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_2
    bottom_left = '0 0.0127 0'
    top_right = '0.1 2.9857 0'
    included_boundaries = left
    boundary_new = fluid_left
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
    block = 'spacer_block porous_block'
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'spacer_block porous_block'
  []
  [T_fluid]
    type = INSFVEnergyVariable
    block = 'spacer_block porous_block'
  []
  [lambda]
    family = SCALAR
    order = FIRST
    block = 'spacer_block porous_block'
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    block = 'spacer_block porous_block'
  []
[]
[FVKernels]
  # No mass time derivative because imcompressible (derivative = 0)
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    block = 'spacer_block porous_block'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_x
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_y
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_conduction]
    type = PINSFVEnergyDiffusion
    k = 'k_fluid'
    variable = T_fluid
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    block = 'spacer_block porous_block'
  []
  [heat_source]
    type = FVBodyForce
    variable = T_fluid
    function = ${Q}
    block = 'porous_block'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_x
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_y
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [reflective_x]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_x
    boundary = fluid_left
    momentum_component = 'x'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_y]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_y
    boundary = fluid_left
    momentum_component = 'y'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_p]
    type = INSFVSymmetryPressureBC
    boundary = fluid_left
    variable = pressure
  []
  [T_reflective]
    type = FVNeumannBC
    variable = T_fluid
    boundary = fluid_left
    value = 0
  []
  [T_cold_boundary]
    type = FVDirichletBC
    variable = T_fluid
    boundary = solid_fluid_interface
    value = ${T_cold}
  []
[]
[ICs]
  [porosity_spacer]
    type = ConstantIC
    variable = porosity
    block = spacer_block
    value = 1.0
  []
  [porosity_fuel]
    type = ConstantIC
    variable = porosity
    block = porous_block
    value = 0.1
  []
  [temp_ic_fluid]
    type = ConstantIC
    variable = T_fluid
    value = ${T_cold}
    block = 'spacer_block porous_block'
  []
  [superficial_vel_x]
    type = ConstantIC
    variable = superficial_vel_x
    value = 1E-5
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = ConstantIC
    variable = superficial_vel_y
    value = 1E-5
    block = 'spacer_block porous_block'
  []
[]
[FunctorMaterials]
  [functor_constants_fluid]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k_fluid'
    prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
    block = 'spacer_block porous_block'
  []
  [density_fluid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [functor_constants_steel]
    # We need this to avoid errors for materials not existing on every block
    type = ADGenericFunctorMaterial
    prop_names = 'dummy'
    prop_values = 0.0
    block = wall_block
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  line_search = none
  nl_rel_tol = 1e-10
  nl_abs_tol = 1e-10
[]
[Outputs]
  exodus = true
[]
[Debug]
  show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
  previous_nl_solution_required = true
  kernel_coverage_check = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
    block = ${restricted_blocks}
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1.0
    solver_sys = u_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
    solver_sys = scalar_system
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = 'bottom_0'
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = T_fluid
  []
  [energy_loss]
    type = FVBodyForce
    variable = T_fluid
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = 'bottom_0'
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1.0
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-12
  pressure_l_abs_tol = 1e-12
  energy_l_abs_tol = 1e-12
  passive_scalar_l_abs_tol = 1e-12
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  passive_scalar_systems = 'scalar_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.99
  passive_scalar_equation_relaxation = 0.99
  num_iterations = 100
  pressure_absolute_tolerance = 1e-9
  momentum_absolute_tolerance = 1e-9
  energy_absolute_tolerance = 1e-9
  passive_scalar_absolute_tolerance = 1e-9
  print_fields = false
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
    block = ${restricted_blocks}
  []
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 20
    ny = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  rho = 'rho'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_v}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [velocity_norm]
    type = MooseVariableFVReal
  []
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho'
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = 'rho'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = 'rho'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = 'mu'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T
    v = power_density
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'top bottom'
    function = 0
  []
  # Inlet
  [inlet_u]
    type = INSFVInletVelocityBC
    variable = u
    boundary = 'left'
    functor = ${inlet_v}
  []
  [inlet_v]
    type = INSFVInletVelocityBC
    variable = v
    boundary = 'left'
    functor = 0
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'left'
    value = ${inlet_temp}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
    # AD-version of h_from_p_T(p, T, h, dh_dp, dh_dT) not implemented
    allow_imperfect_jacobians = true
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = 'rho'
  []
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T'
    speed = 'velocity_norm'
    # even though we provide rho from the parameters, we
    # want to get rho from the fluid properties
    force_define_density = true
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 1
  []
[]
[AuxKernels]
  [speed]
    type = VectorMagnitudeAux
    variable = 'velocity_norm'
    x = u
    y = v
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-3
    optimal_iterations = 6
  []
  end_time = 15
  nl_abs_tol = 1e-12
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  compute_scaling_once = false
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
mu = 8.8871e-4
rho_solid = 997.561
rho_liquid = 997.561
k_solid = 0.6203
k_liquid = 0.6203
cp_solid = 4181.72
cp_liquid = 4181.72
L = 3e5
T_liquidus = 285
T_solidus = 280
advected_interp_method = 'average'
velocity_interp_method = 'rc'
U_inlet = '${fparse 0.5 * mu / rho_liquid / 0.5}'
T_inlet = 300.0
T_cold = 200.0
Nx = 30
Ny = 5
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = '${fparse 0.5 * 1.0}'
    nx = ${Nx}
    ny = ${Ny}
    bias_y = '${fparse 1 / 1.2}'
  []
  [rename1]
    type = RenameBoundaryGenerator
    input = gen
    old_boundary = 'left'
    new_boundary = 'inlet'
  []
  [rename2]
    type = RenameBoundaryGenerator
    input = rename1
    old_boundary = 'right'
    new_boundary = 'outlet'
  []
  [rename3]
    type = RenameBoundaryGenerator
    input = rename2
    old_boundary = 'bottom'
    new_boundary = 'symmetry'
  []
  [rename4]
    type = RenameBoundaryGenerator
    input = rename3
    old_boundary = 'top'
    new_boundary = 'wall'
  []
  [rename5]
    type = ParsedGenerateSideset
    input = rename4
    normal = '0 1 0'
    combinatorial_geometry = 'x>2.0 & x<8.0 & y>0.49999'
    new_sideset_name = 'cooled_wall'
  []
[]
[AuxVariables]
  [U]
    type = MooseVariableFVReal
  []
  [fl]
    type = MooseVariableFVReal
    initial_condition = 1.0
  []
  [density]
    type = MooseVariableFVReal
  []
  [th_cond]
    type = MooseVariableFVReal
  []
  [cp_var]
    type = MooseVariableFVReal
  []
  [darcy_coef]
    type = MooseVariableFVReal
  []
  [fch_coef]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [compute_fl]
    type = NSLiquidFractionAux
    variable = fl
    temperature = T
    T_liquidus = '${T_liquidus}'
    T_solidus = '${T_solidus}'
    execute_on = 'TIMESTEP_END'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho_mixture'
    variable = 'density'
  []
  [th_cond_out]
    type = FunctorAux
    functor = 'k_mixture'
    variable = 'th_cond'
  []
  [cp_out]
    type = FunctorAux
    functor = 'cp_mixture'
    variable = 'cp_var'
  []
  [darcy_out]
    type = FunctorAux
    functor = 'Darcy_coefficient'
    variable = 'darcy_coef'
  []
  [fch_out]
    type = FunctorAux
    functor = 'Forchheimer_coefficient'
    variable = 'fch_coef'
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = '${T_inlet}'
    scaling = 1.0
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = rho_mixture
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = vel_x
    momentum_component = 'x'
    u = vel_x
    v = vel_y
    Darcy_name = 'Darcy_coeff'
    Forchheimer_name = 'Forchheimer_coeff'
    rho = ${rho_liquid}
    mu = ${mu}
    standard_friction_formulation = false
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = rho_mixture
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = vel_y
    momentum_component = 'y'
    u = vel_x
    v = vel_y
    Darcy_name = 'Darcy_coeff'
    Forchheimer_name = 'Forchheimer_coeff'
    rho = ${rho_liquid}
    mu = ${mu}
    standard_friction_formulation = false
  []
  [T_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = rho_mixture
    dh_dt = dh_dt
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = k_mixture
    variable = T
  []
  [energy_source]
    type = NSFVPhaseChangeSource
    variable = T
    L = ${L}
    liquid_fraction = fl
    T_liquidus = ${T_liquidus}
    T_solidus = ${T_solidus}
    rho = 'rho_mixture'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_x
    functor = '${U_inlet}'
  []
  [sym_u]
    type = INSFVSymmetryVelocityBC
    boundary = 'symmetry'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'wall'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'wall'
    variable = vel_y
    function = 0
  []
  [sym_v]
    type = INSFVSymmetryVelocityBC
    boundary = 'symmetry'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = y
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet'
    variable = pressure
    function = 0
  []
  [sym_p]
    type = INSFVSymmetryPressureBC
    boundary = 'symmetry'
    variable = pressure
  []
  [sym_T]
    type = INSFVSymmetryScalarBC
    variable = T
    boundary = 'symmetry'
  []
  [cooled_wall]
    type = FVFunctorDirichletBC
    variable = T
    functor = '${T_cold}'
    boundary = 'cooled_wall'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = rho_mixture
    cp = cp_mixture
    temperature = 'T'
  []
  [eff_cp]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
    phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
    prop_names = 'cp_mixture k_mixture rho_mixture'
    phase_1_fraction = fl
  []
  [mushy_zone_resistance]
    type = INSFVMushyPorousFrictionFunctorMaterial
    liquid_fraction = 'fl'
    mu = '${mu}'
    rho_l = '${rho_liquid}'
  []
  [friction]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coeff Forchheimer_coeff'
    prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
  []
[]
[Executioner]
  type = Transient
  dt = 5e3
  end_time = 1e4
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_abs_tol = 1e-8
  nl_max_its = 12
[]
[Postprocessors]
  [average_T]
    type = ElementAverageValue
    variable = T
    outputs = csv
    execute_on = FINAL
  []
[]
[VectorPostprocessors]
  [sat]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    start_point = '0.0 0 0'
    end_point = '10.0 0 0'
    num_points = '${Nx}'
    sort_by = x
    variable = 'T'
    execute_on = FINAL
  []
[]
[Outputs]
  exodus = true
  [csv]
    type = CSV
    execute_on = 'FINAL'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
mu = 1
rho = 1
k = 0.01
cp = 1
alpha = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 10
    ny = 10
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  inactive = 'u_buoyancy u_gravity v_buoyancy v_gravity'
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    alpha_name = ${alpha}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    alpha_name = ${alpha}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'left right top bottom'
    function = 0.0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.90
  energy_equation_relaxation = 0.99
  pressure_variable_relaxation = 0.30
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  energy_absolute_tolerance = 1e-13
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 10
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
  [scalar]
    type = MooseVariableFVReal
    initial_condition = 0.1
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T
    v = power_density
  []
  # Scalar concentration equation
  [scalar_time]
    type = FVFunctorTimeKernel
    variable = scalar
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    variable = scalar
    coeff = 1.1
  []
  [scalar_source]
    type = FVBodyForce
    variable = scalar
    function = 2.1
  []
[]
[FVBCs]
  # Inlet
  [inlet_mass]
    type = WCNSFVMassFluxBC
    variable = pressure
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'surface_inlet'
    vel_x = u
    vel_y = v
    rho = 'rho'
  []
  [inlet_u]
    type = WCNSFVMomentumFluxBC
    variable = u
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'surface_inlet'
    rho = 'rho'
    momentum_component = 'x'
    vel_x = u
    vel_y = v
  []
  [inlet_v]
    type = WCNSFVMomentumFluxBC
    variable = v
    boundary = 'left'
    mdot_pp = 0
    area_pp = 'surface_inlet'
    rho = 'rho'
    momentum_component = 'y'
    vel_x = u
    vel_y = v
  []
  [inlet_T]
    type = WCNSFVEnergyFluxBC
    variable = T
    T_fluid = T
    boundary = 'left'
    energy_pp = 'inlet_Edot'
    area_pp = 'surface_inlet'
    vel_x = u
    vel_y = v
    rho = 'rho'
    cp = cp
  []
  [inlet_scalar]
    type = WCNSFVScalarFluxBC
    variable = scalar
    boundary = 'left'
    scalar_flux_pp = 'inlet_scalar_flux'
    area_pp = 'surface_inlet'
    vel_x = u
    vel_y = v
    rho = 'rho'
    passive_scalar = scalar
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'top bottom'
    function = 0
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_mdot]
    type = Receiver
    default = ${fparse 1980 * inlet_velocity * inlet_area}
  []
  [surface_inlet]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
  []
  [inlet_Edot]
    type = Receiver
    default = ${fparse 1980 * inlet_velocity * 2530 * inlet_temp * inlet_area}
  []
  [inlet_scalar_flux]
    type = Receiver
    default = ${fparse inlet_velocity * 0.2 * inlet_area}
  []
[]
[FluidProperties]
  [fp]
    type = SimpleFluidProperties
    density0 = 1980
    cp = 2530
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-2
    optimal_iterations = 6
  []
  end_time = 1
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
[Outputs]
  exodus = true
  execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 10
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
  [scalar]
    type = MooseVariableFVReal
    initial_condition = 0.1
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  # Mass equation
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  # X component momentum equation
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_x
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  # Y component momentum equation
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_y
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  # Energy equation
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T_fluid
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T_fluid
    v = power_density
  []
  # Scalar concentration equation
  [scalar_time]
    type = FVFunctorTimeKernel
    variable = scalar
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    variable = scalar
    coeff = 1.1
  []
  [scalar_source]
    type = FVBodyForce
    variable = scalar
    function = 2.1
  []
[]
[FVBCs]
  # Inlet
  [inlet_mass]
    type = WCNSFVMassFluxBC
    variable = pressure
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_u]
    type = WCNSFVMomentumFluxBC
    variable = vel_x
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'x'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_v]
    type = WCNSFVMomentumFluxBC
    variable = vel_y
    boundary = 'left'
    mdot_pp = 0
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'y'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_T]
    type = WCNSFVEnergyFluxBC
    variable = T_fluid
    T_fluid = T_fluid
    boundary = 'left'
    temperature_pp = 'inlet_T'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    cp = 'cp'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_scalar]
    type = WCNSFVScalarFluxBC
    variable = scalar
    boundary = 'left'
    scalar_value_pp = 'inlet_scalar_value'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
    passive_scalar = scalar
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'top bottom'
    function = 0
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_mdot]
    type = Receiver
    default = ${fparse 1980 * inlet_velocity * inlet_area}
  []
  [area_pp_left]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
  []
  [inlet_scalar_value]
    type = Receiver
    default = 0.2
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T_fluid
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-2
    optimal_iterations = 6
  []
  end_time = 1
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
[Outputs]
  exodus = true
  execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '50 50'
    iy = '20'
    subdomain_id = '1 2'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  inactive = 'T_solid'
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
  []
[]
[AuxVariables]
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
    initial_condition = 100
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  inactive = 'solid_energy_diffusion solid_energy_convection'
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  inactive = 'heated-side'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 150
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '1'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(tutorials/shield_multiphysics/inputs/step10_finite_volume/step10.i)
cp_water_multiplier = 5e-2
mu_multiplier = 1
power = '${fparse 5e4 / 144}'
[Mesh]
  [fmg]
    type = FileMeshGenerator
    file = 'mesh2d_in.e'
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    block = 'water'
    initial_condition = 1e-4
  []
  [vel_y]
    type = INSFVVelocityVariable
    block = 'water'
    initial_condition = 1e-4
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'water'
    initial_condition = 1e5
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    block = 'water'
    scaling = 1e-05
  []
  [lambda]
    type = MooseVariableScalar
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  # This isn't used in simulation, but useful for visualization
  [vel_z]
    type = INSFVVelocityVariable
    block = 'water'
    initial_condition = 0
  []
  [mixing_length]
    block = 'water'
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[GlobalParams]
  velocity_interp_method = rc
  rhie_chow_user_object = ins_rhie_chow_interpolator
  rho = rho
[]
[FVKernels]
  [water_ins_mass_advection]
    type = INSFVMassAdvection
    advected_interp_method = upwind
    block = water
    variable = pressure
  []
  [water_ins_mass_pressure_pin]
    type = FVPointValueConstraint
    lambda = lambda
    phi0 = 1e5
    point = '1 3 0'
    variable = pressure
  []
  [water_ins_momentum_time_vel_x]
    type = INSFVMomentumTimeDerivative
    block = water
    momentum_component = x
    variable = vel_x
  []
  [water_ins_momentum_time_vel_y]
    type = INSFVMomentumTimeDerivative
    block = water
    momentum_component = y
    variable = vel_y
  []
  [water_ins_momentum_advection_x]
    type = INSFVMomentumAdvection
    advected_interp_method = upwind
    block = water
    momentum_component = x
    variable = vel_x
    characteristic_speed = 0.01
  []
  [water_ins_momentum_advection_y]
    type = INSFVMomentumAdvection
    advected_interp_method = upwind
    block = water
    momentum_component = y
    variable = vel_y
    characteristic_speed = 0.1
  []
  [water_ins_momentum_diffusion_x]
    type = INSFVMomentumDiffusion
    block = water
    momentum_component = x
    mu = mu
    variable = vel_x
  []
  [water_ins_momentum_diffusion_y]
    type = INSFVMomentumDiffusion
    block = water
    momentum_component = y
    mu = mu
    variable = vel_y
  []
  [water_ins_momentum_pressure_x]
    type = INSFVMomentumPressure
    block = water
    momentum_component = x
    pressure = pressure
    variable = vel_x
  []
  [water_ins_momentum_pressure_y]
    type = INSFVMomentumPressure
    block = water
    momentum_component = y
    pressure = pressure
    variable = vel_y
  []
  [water_ins_momentum_gravity_z]
    type = INSFVMomentumGravity
    block = water
    gravity = '0 -9.81 0'
    momentum_component = y
    variable = vel_y
  []
  [water_ins_momentum_boussinesq_z]
    type = INSFVMomentumBoussinesq
    T_fluid = T_fluid
    alpha_name = alpha
    block = water
    gravity = '0 -9.81 0'
    momentum_component = y
    ref_temperature = 300
    rho = 955.7
    variable = vel_y
  []
  # Energy conservation equation
  [water_ins_energy_time]
    type = INSFVEnergyTimeDerivative
    block = water
    dh_dt = dh_dt
    rho = rho
    variable = T_fluid
  []
  [water_ins_energy_advection]
    type = INSFVEnergyAdvection
    advected_interp_method = upwind
    block = water
    variable = T_fluid
  []
  [water_ins_energy_diffusion_all]
    type = FVDiffusion
    block = water
    coeff = k
    variable = T_fluid
  []
  # Turbulence
  [water_ins_viscosity_rans_x]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_x
    mixing_length = mixing_length
    momentum_component = 'x'
    u = vel_x
    v = vel_y
  []
  [water_ins_viscosity_rans_y]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_y
    mixing_length = mixing_length
    momentum_component = 'y'
    u = vel_x
    v = vel_y
  []
  [water_ins_energy_rans]
    type = WCNSFVMixingLengthEnergyDiffusion
    variable = T_fluid
    cp = cp
    mixing_length = mixing_length
    schmidt_number = 1
    u = vel_x
    v = vel_y
  []
[]
[AuxKernels]
  [mixing_length]
    type = WallDistanceMixingLengthAux
    variable = mixing_length
    walls = 'water_boundary inner_cavity_water'
    execute_on = 'initial'
  []
[]
[FunctorMaterials]
  [water]
    type = ADGenericFunctorMaterial
    block = 'water'
    prop_names = 'rho    k     cp      mu alpha_wall'
    prop_values = '955.7 0.6 ${fparse cp_water_multiplier * 4181} ${fparse 7.98e-4 * mu_multiplier} 30'
  []
  [boussinesq_params]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha '
    prop_values = '2.9e-3'
  []
  [water_ins_enthalpy_material]
    type = INSFVEnthalpyFunctorMaterial
    block = water
    cp = cp
    execute_on = ALWAYS
    outputs = none
    temperature = T_fluid
  []
  [total_viscosity]
    type = MixingLengthTurbulentViscosityFunctorMaterial
    u = 'vel_x'
    v = 'vel_y'
    mixing_length = mixing_length
    mu = mu
  []
[]
[FVBCs]
  [vel_x_water_boundary]
    type = INSFVNoSlipWallBC
    boundary = 'water_boundary inner_cavity_water'
    function = 0
    variable = vel_x
  []
  [vel_y_water_boundary]
    type = INSFVNoSlipWallBC
    boundary = 'water_boundary inner_cavity_water'
    function = 0
    variable = vel_y
  []
  [T_fluid_inner_cavity]
    type = FVFunctorNeumannBC
    boundary = inner_cavity_water
    functor = ${power}
    variable = T_fluid
  []
  [T_fluid_water_boundary]
    type = FVFunctorConvectiveHeatFluxBC
    boundary = water_boundary
    variable = T_fluid
    T_bulk = T_fluid
    T_solid = 300
    heat_transfer_coefficient = 600
    is_solid = false
  []
[]
[UserObjects]
  [ins_rhie_chow_interpolator]
    type = INSFVRhieChowInterpolator
    pressure = 'pressure'
    u = 'vel_x'
    v = 'vel_y'
    block = 'water'
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  line_search = none
  # Direct solve works for everything small enough
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
  petsc_options_value = 'lu NONZERO superlu_dist'
  nl_abs_tol = 1e-8
  nl_max_its = 10
  l_max_its = 3
  steady_state_tolerance = 1e-12
  steady_state_detection = true
  normalize_solution_diff_norm_by_dt = false
  start_time = -1
  dtmax = 100
  [TimeStepper]
    type = FunctionDT
    function = 'if(t < 1, 0.1, t / 10)'
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
restricted_blocks = '1'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = ${restricted_blocks}
    pressure = pressure
  []
[]
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    block = ${restricted_blocks}
  []
  [temperature]
    type = INSFVEnergyVariable
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = temperature
  []
  [energy_loss]
    type = FVBodyForce
    variable = temperature
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 0
  []
  [top-wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = u
    function = 0
  []
  [top-wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = v
    function = 0
  []
  [bottom-wall-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = u
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'x'
  []
  [bottom-wall-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = v
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'y'
  []
  [bottom-wall-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = temperature
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
    block = ${restricted_blocks}
  []
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 10
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
  [scalar]
    type = MooseVariableFVReal
    initial_condition = 0.1
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_x
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_y
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T_fluid
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T_fluid
    v = power_density
  []
  # Scalar concentration equation
  [scalar_time]
    type = FVFunctorTimeKernel
    variable = scalar
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    variable = scalar
    coeff = 1.1
  []
  [scalar_source]
    type = FVBodyForce
    variable = scalar
    function = 2.1
  []
[]
[FVBCs]
  # Inlet
  [inlet_mass]
    type = WCNSFVMassFluxBC
    variable = pressure
    boundary = 'left'
    velocity_pp = 'inlet_u'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_u]
    type = WCNSFVMomentumFluxBC
    variable = vel_x
    boundary = 'left'
    velocity_pp = 'inlet_u'
    rho = 'rho'
    momentum_component = 'x'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_v]
    type = WCNSFVMomentumFluxBC
    variable = vel_y
    boundary = 'left'
    velocity_pp = 0
    rho = 'rho'
    momentum_component = 'y'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_T]
    type = WCNSFVEnergyFluxBC
    variable = T_fluid
    T_fluid = T_fluid
    boundary = 'left'
    velocity_pp = 'inlet_u'
    temperature_pp = 'inlet_T'
    rho = 'rho'
    cp = 'cp'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_scalar]
    type = WCNSFVScalarFluxBC
    variable = scalar
    boundary = 'left'
    scalar_value_pp = 'inlet_scalar_value'
    velocity_pp = 'inlet_u'
    vel_x = vel_x
    vel_y = vel_y
    rho = rho
    passive_scalar = scalar
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'top bottom'
    function = 0
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_u]
    type = Receiver
    default = ${inlet_velocity}
  []
  [area_pp_left]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
  []
  [inlet_scalar_value]
    type = Receiver
    default = 0.2
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T_fluid
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-2
    optimal_iterations = 6
  []
  end_time = 1
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
[Outputs]
  exodus = true
  execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
mu = 2.6
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 350
    alpha = 'alpha'
  []
[]
[FVBCs]
  inactive = "symmetry-u symmetry-v symmetry-p"
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 300
  []
  ### Inactive by default, some tests will turn these on ###
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  ##########################################################
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-11
  pressure_l_abs_tol = 1e-11
  energy_l_abs_tol = 1e-11
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.999
  num_iterations = 100
  pressure_absolute_tolerance = 1e-10
  momentum_absolute_tolerance = 1e-10
  energy_absolute_tolerance = 1e-10
  print_fields = false
  continue_on_max_its = true
[]
[Materials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
mu = 0.002
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 3
    dx = '0.2'
    dy = '0.2'
    dz = '0.8'
    ix = '3'
    iy = '3'
    iz = '12'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system w_system pressure_system energy_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    w = vel_z
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [vel_z]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = w_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [w_advection]
    type = INSFVMomentumAdvection
    variable = vel_z
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [w_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_z
    mu = ${mu}
    momentum_component = 'z'
  []
  [w_pressure]
    type = INSFVMomentumPressure
    variable = vel_z
    momentum_component = 'z'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 350
    alpha = 'alpha'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_x
    functor = '0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_y
    functor = '0'
  []
  [inlet-w]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_z
    functor = '1.1'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom '
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0.0
  []
  [walls-w]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_z
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'front'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'back left right top bottom'
    function = 0.0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'back'
    variable = T_fluid
    value = 300
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  # petsc_options_iname = '-pc_type -pc_hypre_type -pc_factor_shift_type'
  # petsc_options_value = 'hypre boomeramg NONZERO'
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system w_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.95
  num_iterations = 150
  pressure_absolute_tolerance = 1e-11
  momentum_absolute_tolerance = 1e-11
  energy_absolute_tolerance = 1e-11
  print_fields = false
  momentum_l_abs_tol = 1e-13
  pressure_l_abs_tol = 1e-13
  energy_l_abs_tol = 1e-13
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/solidification_no_advection.i)
rho_solid = 1.0
rho_liquid = 1.0
k_solid = 0.03
k_liquid = 0.1
cp_solid = 1.0
cp_liquid = 1.0
T_liquidus = 260
T_solidus = 240
L = 1.0
T_hot = 300.0
T_cold = 200.0
N = 10
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = ${N}
    ny = ${N}
  []
[]
[AuxVariables]
  [fl]
    type = MooseVariableFVReal
    initial_condition = 1.0
  []
  [density]
    type = MooseVariableFVReal
  []
  [th_cond]
    type = MooseVariableFVReal
  []
  [cp_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [compute_fl]
    type = NSLiquidFractionAux
    variable = fl
    temperature = T
    T_liquidus = '${T_liquidus}'
    T_solidus = '${T_solidus}'
    execute_on = 'TIMESTEP_END'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho_mixture'
    variable = 'density'
  []
  [th_cond_out]
    type = FunctorAux
    functor = 'k_mixture'
    variable = 'th_cond'
  []
  [cp_out]
    type = FunctorAux
    functor = 'cp_mixture'
    variable = 'cp_var'
  []
[]
[Variables]
  [T]
    type = INSFVEnergyVariable
    initial_condition = '${T_hot}'
  []
[]
[FVKernels]
  [T_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho_liquid}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 'k_mixture'
    variable = T
  []
  [energy_source]
    type = NSFVPhaseChangeSource
    variable = T
    L = ${L}
    liquid_fraction = fl
    T_liquidus = ${T_liquidus}
    T_solidus = ${T_solidus}
    rho = 'rho_mixture'
  []
[]
[FVBCs]
  [heated_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_hot}'
    boundary = 'top'
  []
  [cooled_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_cold}'
    boundary = 'bottom'
  []
[]
[FunctorMaterials]
  [eff_cp]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
    phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
    prop_names = 'cp_mixture k_mixture rho_mixture'
    phase_1_fraction = fl
  []
  [h]
    type = INSFVEnthalpyFunctorMaterial
    cp = ${cp_liquid}
    temperature = T
    rho = ${rho_liquid}
  []
[]
[Executioner]
  type = Transient
  dt = 0.5
  end_time = 50.0
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_abs_tol = 1e-12
  nl_max_its = 50
  steady_state_detection = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/iks/flow-around-square/flow-around-square.i)
# Water properties
mu = 1.0E-3
rho = 1000.0
k = 0.598
cp = 4186
# Solid properties
cp_s = 830
rho_s = 1680
k_s = 3.5
# Other parameters
p_outlet = 0
u_inlet = -1e-4
h_conv = 50
[Mesh]
  [generated_mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
    xmin = 0
    ymin = 0
    ymax = 0.1
    xmax = 0.1
  []
  [subdomain1]
    input = generated_mesh
    type = SubdomainBoundingBoxGenerator
    block_name = subdomain1
    bottom_left = '0.04 0.04 0'
    block_id = 1
    top_right = '0.06 0.06 0'
  []
  [interface]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 0
    paired_block = 1
    new_boundary = interface
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
    block = 0
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1e-4
    block = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-4
    block = 0
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = 283.15
    scaling = 1e-5
    block = 0
  []
  [Ts]
    type = INSFVEnergyVariable
    initial_condition = 333.15
    scaling = 1e-5
    block = 1
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
    block = 0
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
    block = 0
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
    block = 0
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 0
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 0
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    block = 0
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    block = 0
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 0
  []
  [energy_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho}
    dh_dt = dh_dt
    block = 0
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
    block = 0
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    block = 0
  []
  [solid_energy_time]
    type = INSFVEnergyTimeDerivative
    variable = Ts
    rho = ${rho_s}
    dh_dt = dh_solid_dt
    block = 1
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k_s'
    variable = Ts
    block = 1
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    subdomain1 = 0
    subdomain2 = 1
    boundary = interface
    h = ${h_conv}
    T_solid = Ts
    T_fluid = T
    wall_cell_is_bulk = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'top'
    variable = vel_x
    functor = 0
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'top'
    variable = vel_y
    functor = ${u_inlet}
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 283.15
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right interface'
    variable = vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right interface'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'bottom'
    variable = pressure
    function = '${p_outlet}'
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
    block = 0
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
  [solid_functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp_s k_s'
    prop_values = '${cp_s} ${k_s}'
    block = 1
  []
  [solid_ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'Ts'
    rho = ${rho_s}
    cp = ${cp_s}
    block = 1
    h = h_solid
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-8
  dt = 10
  end_time = 10
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/controls/switch-pressure-bc/switch_vel_pres_bc.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
end_time = 3.0
switch_time = 1.0
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 10
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T
    v = power_density
  []
[]
[FVBCs]
  # Inlet
  [inlet_u]
    type = WCNSFVSwitchableInletVelocityBC
    variable = u
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'surface_inlet'
    rho = 'rho'
    switch_bc = true
    face_limiter = 1.0
  []
  [outlet_u]
    type = WCNSFVSwitchableInletVelocityBC
    variable = u
    boundary = 'right'
    mdot_pp = 'inlet_mdot'
    area_pp = 'surface_inlet'
    rho = 'rho'
    switch_bc = false
    scaling_factor = -1.0
    face_limiter = 1.0
  []
  [inlet_v]
    type = WCNSFVInletVelocityBC
    variable = v
    boundary = 'left'
    mdot_pp = 0
    area_pp = 'surface_inlet'
    rho = 'rho'
  []
  [inlet_T]
    type = WCNSFVInletTemperatureBC
    variable = T
    boundary = 'left'
    temperature_pp = 'inlet_T'
  []
  [outlet_T]
    type = NSFVOutflowTemperatureBC
    variable = T
    boundary = 'right'
    u = u
    v = v
    rho = 'rho'
    cp = 'cp'
    backflow_T = ${inlet_temp}
  []
  [outlet_p]
    type = INSFVSwitchableOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
    switch_bc = true
    face_limiter = 1.0
  []
  [inlet_p]
    type = INSFVSwitchableOutletPressureBC
    variable = pressure
    boundary = 'left'
    function = ${outlet_pressure}
    switch_bc = false
    face_limiter = 1.0
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'top bottom'
    function = 0
  []
[]
[Functions]
  [func_coef]
    type = ParsedFunction
    expression = 'if(t<${switch_time} | t>2.0*${switch_time}, 1, 0)'
  []
  [func_coef_comp]
    type = ParsedFunction
    expression = 'if(t<${switch_time} | t>2.0*${switch_time}, 0, 1)'
  []
  [mass_flux_and_pressure_test_scaling]
    type = ParsedFunction
    expression = 'if(t<${switch_time} | t>2.0*${switch_time}, 0.1, 0.2)'
  []
[]
[Controls]
  [func_control_u_inlet]
    type = BoolFunctionControl
    parameter = 'FVBCs/inlet_u/switch_bc'
    function = 'func_coef'
    execute_on = 'initial timestep_begin'
  []
  [func_control_u_outlet]
    type = BoolFunctionControl
    parameter = 'FVBCs/outlet_u/switch_bc'
    function = 'func_coef_comp'
    execute_on = 'initial timestep_begin'
  []
  [func_control_p_outlet]
    type = BoolFunctionControl
    parameter = 'FVBCs/outlet_p/switch_bc'
    function = 'func_coef'
    execute_on = 'initial timestep_begin'
  []
  [func_control_p_inlet]
    type = BoolFunctionControl
    parameter = 'FVBCs/inlet_p/switch_bc'
    function = 'func_coef_comp'
    execute_on = 'initial timestep_begin'
  []
  [func_control_limiter_u_inlet]
    type = RealFunctionControl
    parameter = 'FVBCs/inlet_u/face_limiter'
    function = 'mass_flux_and_pressure_test_scaling'
    execute_on = 'initial timestep_begin'
  []
  [func_control_limiter_u_outlet]
    type = RealFunctionControl
    parameter = 'FVBCs/outlet_u/face_limiter'
    function = 'mass_flux_and_pressure_test_scaling'
    execute_on = 'initial timestep_begin'
  []
  [func_control_limiter_p_outlet]
    type = RealFunctionControl
    parameter = 'FVBCs/outlet_p/face_limiter'
    function = 'mass_flux_and_pressure_test_scaling'
    execute_on = 'initial timestep_begin'
  []
  [func_control_limiter_p_inlet]
    type = RealFunctionControl
    parameter = 'FVBCs/inlet_p/face_limiter'
    function = 'mass_flux_and_pressure_test_scaling'
    execute_on = 'initial timestep_begin'
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_mdot]
    type = Receiver
    default = '${fparse 1980 * inlet_velocity * inlet_area}'
  []
  [surface_inlet]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
  []
  [outlet_mfr]
    type = VolumetricFlowRate
    boundary = 'right'
    advected_quantity = 1.0
    vel_x = u
    vel_y = v
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  dt = 0.1
  end_time = ${end_time}
  nl_abs_tol = 1e-12
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
[Outputs]
  csv = true
  execute_on = 'TIMESTEP_END'
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/enthalpy_computation.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 2
    ymin = 0
    ymax = 1
    nx = 5
    ny = 5
  []
[]
[AuxVariables]
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[FVICs]
  [p]
    type = FVFunctionIC
    variable = 'pressure'
    function = '1e5 + 1e4 * x + 5e3 * y'
  []
  [T]
    type = FVFunctionIC
    variable = T_fluid
    function = '300 + 20 * x + 100 * y'
  []
[]
[FluidProperties]
  [fp]
    type = LeadBismuthFluidProperties
  []
[]
[FunctorMaterials]
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = '1'
    # For porous flow
    characteristic_length = 2
    porosity = 1
  []
  [compute_cp]
    type = INSFVEnthalpyFunctorMaterial
    # Use these for non constant cp
    # fp = fp
    # pressure = 'pressure'
    temperature = 'T_fluid'
    cp = 'cp'
    rho = 'rho'
  []
[]
T_mo = 398
[Postprocessors]
  [min_T]
    type = ElementExtremeFunctorValue
    value_type = 'min'
    functor = 'T_fluid'
  []
  [max_T]
    type = ElementExtremeFunctorValue
    functor = 'T_fluid'
  []
  [min_h]
    type = ElementExtremeFunctorValue
    value_type = 'min'
    functor = 'h'
  []
  [max_h]
    type = ElementExtremeFunctorValue
    value_type = 'max'
    functor = 'h'
  []
  [min_rho_h]
    type = ElementExtremeFunctorValue
    value_type = 'min'
    functor = 'rho_h'
  []
  [max_rho_h]
    type = ElementExtremeFunctorValue
    value_type = 'max'
    functor = 'rho_h'
  []
  [expected_min_h]
    type = ParsedPostprocessor
    expression = '164.8 * (min_T - T_mo) - 1.97e-2 * (min_T * min_T - T_mo * T_mo) +
         (1.25e-5 / 3) * (min_T * min_T * min_T - T_mo * T_mo * T_mo) + 4.56e+5 * (1. / min_T - 1. / T_mo)'
    pp_names = 'min_T'
    constant_names = 'T_mo'
    constant_expressions = '${T_mo}'
  []
  [expected_max_h]
    type = ParsedPostprocessor
    expression = '164.8 * (max_T - T_mo) - 1.97e-2 * (max_T * max_T - T_mo * T_mo) +
         (1.25e-5 / 3) * (max_T * max_T * max_T - T_mo * T_mo * T_mo) + 4.56e+5 * (1. / max_T - 1. / T_mo)'
    pp_names = 'max_T'
    constant_names = 'T_mo'
    constant_expressions = '${T_mo}'
  []
[]
[Executioner]
  type = Transient
  end_time = 0.1
  dt = 0.1
[]
[Outputs]
  csv = true
  hide = 'min_T max_T'
[]
[Problem]
  solve = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 32
    ny = 32
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = '1 2'
    pressure = pressure
  []
[]
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    block = ${restricted_blocks}
  []
  [temperature]
    type = INSFVEnergyVariable
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = temperature
  []
  [energy_loss]
    type = FVBodyForce
    variable = temperature
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 0
  []
  [top-wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = u
    function = 0
  []
  [top-wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = v
    function = 0
  []
  [bottom-wall-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = u
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'x'
  []
  [bottom-wall-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = v
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'y'
  []
  [bottom-wall-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = temperature
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
    block = ${restricted_blocks}
  []
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 0.5'
    dy = '1'
    ix = '8 5'
    iy = '8'
    subdomain_id = '0 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = 0
    paired_block = 1
    new_boundary = 'interface'
  []
  [secondary_interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'interface'
    primary_block = 1
    paired_block = 0
    new_boundary = 'secondary_interface'
  []
[]
[GlobalParams]
  # retain behavior at time of test creation
  two_term_boundary_expansion = false
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = 0
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    block = 0
  []
  [v]
    type = INSFVVelocityVariable
    block = 0
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    block = 0
  []
  [Ts]
    type = INSFVEnergyVariable
    block = 1
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[ICs]
  [T]
    type = ConstantIC
    variable = T
    value = 1
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    block = 0
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    block = 0
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    block = 0
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    block = 0
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    block = 0
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    block = 0
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    block = 0
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    block = 0
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
    block = 0
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    block = 0
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = Ts
    block = 1
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    boundary = 'interface'
    h = 5
    T_solid = Ts
    T_fluid = T
    subdomain1 = 0
    subdomain2 = 1
    bulk_distance = 0.3
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left interface bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left interface top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = Ts
    boundary = 'right'
    value = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = 'asm      lu           NONZERO                   200'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_max_its = 6
  l_max_its = 200
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
pressure_tag = "pressure_grad"
[Problem]
  kernel_coverage_check = false
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  velocity_interp_method = 'rc'
  advected_interp_method = 'average'
[]
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3683 0.0127'
    dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
    ix = '2 1'
    iy = '1 2 3 2 1'
    subdomain_id = '0 0
                    1 0
                    2 0
                    1 0
                    0 0
                    '
  []
  [rename_block_name]
    type = RenameBlockGenerator
    input = cmg
    old_block = '0 1 2'
    new_block = 'wall_block spacer_block porous_block'
  []
  [solid_fluid_interface_1]
    type = SideSetsBetweenSubdomainsGenerator
    input = rename_block_name
    primary_block = porous_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [solid_fluid_interface_2]
    type = SideSetsBetweenSubdomainsGenerator
    input = solid_fluid_interface_1
    primary_block = spacer_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [wall_left_boundary_1]
    type = SideSetsFromBoundingBoxGenerator
    input = solid_fluid_interface_2
    bottom_left = '0 0 0'
    top_right = '0.1 0.0127 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [wall_left_boundary_2]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_1
    bottom_left = '0 2.9857 0'
    top_right = '0.1 2.9984 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [fluid_left_boundary]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_2
    bottom_left = '0 0.0127 0'
    top_right = '0.1 2.9857 0'
    included_boundaries = left
    boundary_new = fluid_left
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
    block = 'spacer_block porous_block'
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system t_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
    solver_sys = u_system
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
    solver_sys = v_system
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'spacer_block porous_block'
    solver_sys = pressure_system
  []
  [T_fluid]
    type = INSFVEnergyVariable
    block = 'spacer_block porous_block'
    solver_sys = t_system
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    block = 'spacer_block porous_block'
  []
[]
[FVKernels]
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [u_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_x
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_y
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_conduction]
    type = PINSFVEnergyDiffusion
    k = 'k_fluid'
    variable = T_fluid
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    block = 'spacer_block porous_block'
    boundaries_to_force = fluid_left
  []
  [heat_source]
    type = FVBodyForce
    variable = T_fluid
    function = ${Q}
    block = 'porous_block'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
    block = 'spacer_block porous_block'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
    block = 'spacer_block porous_block'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_x
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_y
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [reflective_x]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_x
    boundary = fluid_left
    momentum_component = 'x'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_y]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_y
    boundary = fluid_left
    momentum_component = 'y'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_p]
    type = INSFVSymmetryPressureBC
    boundary = fluid_left
    variable = pressure
  []
  [T_reflective]
    type = FVNeumannBC
    variable = T_fluid
    boundary = fluid_left
    value = 0
  []
  [T_cold_boundary]
    type = FVDirichletBC
    variable = T_fluid
    boundary = solid_fluid_interface
    value = ${T_cold}
  []
[]
[ICs]
  [porosity_spacer]
    type = ConstantIC
    variable = porosity
    block = spacer_block
    value = 1.0
  []
  [porosity_fuel]
    type = ConstantIC
    variable = porosity
    block = porous_block
    value = 0.1
  []
  [temp_ic_fluid]
    type = ConstantIC
    variable = T_fluid
    value = ${T_cold}
    block = 'spacer_block porous_block'
  []
  [superficial_vel_x]
    type = ConstantIC
    variable = superficial_vel_x
    value = 1E-5
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = ConstantIC
    variable = superficial_vel_y
    value = 1E-5
    block = 'spacer_block porous_block'
  []
[]
[FunctorMaterials]
  [functor_constants_fluid]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k_fluid'
    prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
    block = 'spacer_block porous_block'
  []
  [density_fluid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [functor_constants_steel]
    # We need this to avoid errors for materials not existing on every block
    type = ADGenericFunctorMaterial
    prop_names = 'dummy'
    prop_values = 0.0
    block = wall_block
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 't_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.85
  energy_equation_relaxation = 0.95
  pressure_variable_relaxation = 0.45
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  pin_pressure = true
  pressure_pin_point = '0.2 1.5 0.0'
  pressure_pin_value = 0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 10
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T
    v = power_density
  []
[]
[FVBCs]
  # Inlet
  [inlet_u]
    type = WCNSFVInletVelocityBC
    variable = u
    boundary = 'left'
    velocity_pp = 'inlet_u'
  []
  [inlet_v]
    type = WCNSFVInletVelocityBC
    variable = v
    boundary = 'left'
    velocity_pp = 0
  []
  [inlet_T]
    type = WCNSFVInletTemperatureBC
    variable = T
    boundary = 'left'
    temperature_pp = 'inlet_T'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'top bottom'
    function = 0
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_u]
    type = Receiver
    default = ${inlet_velocity}
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-2
    optimal_iterations = 6
  []
  end_time = 1
  line_search = 'none'
  automatic_scaling = true
  compute_scaling_once = false
  off_diagonals_in_auto_scaling = true
[]
[Debug]
  show_var_residual_norms = true
[]
[Outputs]
  exodus = true
  execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
cold_temp=300
hot_temp=310
[GlobalParams]
  two_term_boundary_expansion = true
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = ${l}
    nx = 16
    ny = 16
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e5
  []
  [T]
    type = INSFVEnergyVariable
    scaling = 1e-4
    initial_condition = ${cold_temp}
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [vel_x]
    order = FIRST
    family = MONOMIAL
  []
  [vel_y]
    order = FIRST
    family = MONOMIAL
  []
  [viz_T]
    order = FIRST
    family = MONOMIAL
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = u
    y = v
    execute_on = 'initial timestep_end'
  []
  [vel_x]
    type = ParsedAux
    variable = vel_x
    expression = 'u'
    execute_on = 'initial timestep_end'
    coupled_variables = 'u'
  []
  [vel_y]
    type = ParsedAux
    variable = vel_y
    expression = 'v'
    execute_on = 'initial timestep_end'
    coupled_variables = 'v'
  []
  [viz_T]
    type = ParsedAux
    variable = viz_T
    expression = 'T'
    execute_on = 'initial timestep_end'
    coupled_variables = 'T'
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = u
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = v
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = left
    value = ${hot_temp}
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = right
    value = ${cold_temp}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  steady_state_detection = true
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-5
    optimal_iterations = 6
  []
  nl_abs_tol = 1e-9
  normalize_solution_diff_norm_by_dt = false
  nl_max_its = 10
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-average-with-temp.i)
mu=1.1
rho=1.1
k=1.1
cp=1.1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 2
    ny = 2
  []
  coord_type = 'RZ'
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
  []
  [temperature]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mass_forcing]
    type = FVBodyForce
    variable = pressure
    function = forcing_p
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [u_forcing]
    type = INSFVBodyForce
    variable = u
    functor = forcing_u
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [v_forcing]
    type = INSFVBodyForce
    variable = v
    functor = forcing_v
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = temperature
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
  []
  [temp_forcing]
    type = FVBodyForce
    variable = temperature
    function = forcing_t
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = u
    functor = 'exact_u'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = v
    functor = 'exact_v'
  []
  [no-slip-wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = u
    function = 'exact_u'
  []
  [no-slip-wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = v
    function = 'exact_v'
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'top'
    variable = pressure
    function = 'exact_p'
  []
  [axis-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'left'
    variable = u
    u = u
    v = v
    mu = ${mu}
    momentum_component = x
  []
  [axis-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'left'
    variable = v
    u = u
    v = v
    mu = ${mu}
    momentum_component = y
  []
  [axis-p]
    type = INSFVSymmetryPressureBC
    boundary = 'left'
    variable = pressure
  []
  [axis-inlet-wall-t]
    type = FVFunctionDirichletBC
    boundary = 'left bottom right'
    variable = temperature
    function = 'exact_t'
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
  []
[]
[Functions]
  [exact_u]
    type = ParsedFunction
    expression = 'sin(x*pi)^2*sin((1/2)*y*pi)'
  []
  [exact_rhou]
    type = ParsedFunction
    expression = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_u]
    type = ParsedFunction
    expression = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
    symbol_names = 'mu rho'
    symbol_values = '${mu} ${rho}'
  []
  [exact_v]
    type = ParsedFunction
    expression = 'cos(x*pi)*cos(y*pi)'
  []
  [exact_rhov]
    type = ParsedFunction
    expression = 'rho*cos(x*pi)*cos(y*pi)'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_v]
    type = ParsedFunction
    expression = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
    symbol_names = 'mu rho'
    symbol_values = '${mu} ${rho}'
  []
  [exact_p]
    type = ParsedFunction
    expression = 'cos(x*pi)*cos((1/2)*y*pi)'
  []
  [forcing_p]
    type = ParsedFunction
    expression = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [exact_t]
    type = ParsedFunction
    expression = 'sin(x*pi)*sin((1/2)*y*pi)'
  []
  [forcing_t]
    type = ParsedFunction
    expression = '(1/4)*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) - (-x*pi^2*k*sin(x*pi)*sin((1/2)*y*pi) + pi*k*sin((1/2)*y*pi)*cos(x*pi))/x + (3*x*pi*cp*rho*sin(x*pi)^2*sin((1/2)*y*pi)^2*cos(x*pi) + cp*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2)/x + (-x*pi*cp*rho*sin(x*pi)*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*cp*rho*sin(x*pi)*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x'
    symbol_names = 'k rho cp'
    symbol_values = '${k} ${rho} ${cp}'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
[]
[Outputs]
  csv = true
  [dof]
    type = DOFMap
    execute_on = 'initial'
  []
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [./L2u]
    type = ElementL2FunctorError
    approximate = u
    exact = exact_u
    outputs = 'console csv'
    execute_on = 'timestep_end'
  [../]
  [./L2v]
    type = ElementL2FunctorError
    approximate = v
    exact = exact_v
    outputs = 'console csv'
    execute_on = 'timestep_end'
  [../]
  [./L2p]
    approximate = pressure
    exact = exact_p
    type = ElementL2FunctorError
    outputs = 'console csv'
    execute_on = 'timestep_end'
  [../]
  [./L2t]
    approximate = temperature
    exact = exact_t
    type = ElementL2FunctorError
    outputs = 'console csv'
    execute_on = 'timestep_end'
  [../]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_reversal.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.1
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 6
    ny = 3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
  [scalar]
    type = MooseVariableFVReal
    initial_condition = 0.1
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e6
  []
[]
[FVKernels]
  # Mass equation
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    phi0 = 0.0
  []
  # X component momentum equation
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_x
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  # Y component momentum equation
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_y
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  # Energy equation
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T_fluid
    rho = rho
    drho_dt = drho_dt
    dh_dt = dh_dt
    h = h
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T_fluid
    v = power_density
  []
  # Scalar concentration equation
  [scalar_time]
    type = FVFunctorTimeKernel
    variable = scalar
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    variable = scalar
    coeff = 1.1
  []
  [scalar_source]
    type = FVBodyForce
    variable = scalar
    function = 2.1
  []
[]
[FVBCs]
  # Inlet
  [inlet_mass]
    type = WCNSFVMassFluxBC
    variable = pressure
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_u]
    type = WCNSFVMomentumFluxBC
    variable = vel_x
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'x'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_v]
    type = WCNSFVMomentumFluxBC
    variable = vel_y
    boundary = 'left'
    mdot_pp = 0
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'y'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_T]
    type = WCNSFVEnergyFluxBC
    variable = T_fluid
    T_fluid = T_fluid
    boundary = 'left'
    temperature_pp = 'inlet_T'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    cp = 'cp'
    vel_x = vel_x
    vel_y = vel_y
  []
  [inlet_scalar]
    type = WCNSFVScalarFluxBC
    variable = scalar
    boundary = 'left'
    scalar_value_pp = 'inlet_scalar_value'
    mdot_pp = 'inlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
    passive_scalar = scalar
  []
  [outlet_mass]
    type = WCNSFVMassFluxBC
    variable = pressure
    boundary = 'right'
    mdot_pp = 'outlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
  []
  [outlet_u]
    type = WCNSFVMomentumFluxBC
    variable = vel_x
    boundary = 'right'
    mdot_pp = 'outlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'x'
    vel_x = vel_x
    vel_y = vel_y
  []
  [outlet_v]
    type = WCNSFVMomentumFluxBC
    variable = vel_y
    boundary = 'right'
    mdot_pp = 0
    area_pp = 'area_pp_left'
    rho = 'rho'
    momentum_component = 'y'
    vel_x = vel_x
    vel_y = vel_y
  []
  [outlet_T]
    type = WCNSFVEnergyFluxBC
    variable = T_fluid
    T_fluid = T_fluid
    boundary = 'right'
    temperature_pp = 'inlet_T'
    mdot_pp = 'outlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    cp = 'cp'
    vel_x = vel_x
    vel_y = vel_y
  []
  [outlet_scalar]
    type = WCNSFVScalarFluxBC
    variable = scalar
    boundary = 'right'
    scalar_value_pp = 'inlet_scalar_value'
    mdot_pp = 'outlet_mdot'
    area_pp = 'area_pp_left'
    rho = 'rho'
    vel_x = vel_x
    vel_y = vel_y
    passive_scalar = scalar
  []
  # Walls
  [no_slip_x]
    type = INSFVNaturalFreeSlipBC
    variable = vel_x
    momentum_component = x
    boundary = 'top bottom'
  []
  [no_slip_y]
    type = INSFVNaturalFreeSlipBC
    variable = vel_y
    momentum_component = y
    boundary = 'top bottom'
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_mdot]
    type = Receiver
    default = ${fparse 1980 * inlet_velocity * inlet_area}
    #outputs = none
  []
  [outlet_mdot]
    type = Receiver
    default = ${fparse -1980 * inlet_velocity * inlet_area}
    outputs = none
  []
  [area_pp_left]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
    outputs = none
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
    outputs = none
  []
  [inlet_scalar_value]
    type = Receiver
    default = 0.2
    outputs = none
  []
  [left_mdot]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = rho
    boundary = left
    advected_interp_method = ${advected_interp_method}
  []
  [right_mdot]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = rho
    boundary = right
    advected_interp_method = ${advected_interp_method}
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k rho'
    prop_values = '${cp} ${k} 1980'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-1
    optimal_iterations = 6
    growth_factor = 4
  []
  end_time = 500000
  nl_abs_tol = 1e-7
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
[Outputs]
  exodus = true
  execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
  [k_t]
    type = ADParsedFunctorMaterial
    expression = 'mu_t * cp / Pr_t'
    functor_names = 'mu_t ${cp} ${Pr_t}'
    functor_symbols = 'mu_t cp Pr_t'
    property_name = 'k_t'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient.i)
# Fluid properties
mu = 1.1
rho = 1.1
cp = 1.1
k = 1e-3
# Operating conditions
u_inlet = 1
T_inlet = 200
T_solid = 190
p_outlet = 10
h_fs = 0.01
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = -1
    ymax = 1
    nx = 50
    ny = 20
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${u_inlet}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-12
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${T_inlet}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_time]
    type = INSFVEnergyTimeDerivative
    variable = T_fluid
    rho = ${rho}
    dh_dt = dh_dt
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    variable = T_fluid
    coeff = ${k}
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet_u]
    type = INSFVMomentumAdvectionOutflowBC
    variable = vel_x
    u = vel_x
    v = vel_y
    boundary = 'right'
    momentum_component = 'x'
    rho = ${rho}
  []
  [outlet_v]
    type = INSFVMomentumAdvectionOutflowBC
    variable = vel_y
    u = vel_x
    v = vel_y
    boundary = 'right'
    momentum_component = 'y'
    rho = ${rho}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${p_outlet}'
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv T_solid'
    prop_values = '${h_fs} ${T_solid}'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  line_search = 'none'
  nl_rel_tol = 7e-13
  dt = 0.4
  end_time = 0.8
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '10 10'
    iy = '5'
    subdomain_id = '1 2'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system solid_energy_system'
  previous_nl_solution_required = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
    solver_sys = pressure_system
  []
  [T_fluid]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    solver_sys = energy_system
    initial_condition = 200
  []
  [T_solid]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
    solver_sys = solid_energy_system
    initial_condition = 200
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = bottom
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 250
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv cp'
    prop_values = '0.1 ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  solid_energy_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  solid_energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  solid_energy_system = 'solid_energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.4
  energy_equation_relaxation = 1.0
  num_iterations = 160
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  solid_energy_absolute_tolerance = 1e-12
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
# This test is designed to check for energy conservation
# in separated channels which are described using a nonorthogonal mesh.
# The two inlet temperatures should be preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [file]
    type = FileMeshGenerator
    file = diverging.msh
  []
  [mirror]
    type = SymmetryTransformGenerator
    input = file
    mirror_point = "0 0 0"
    mirror_normal_vector = "1 0 0"
  []
  [stitch]
    type = StitchedMeshGenerator
    inputs = 'file mirror'
    stitch_boundaries_pairs = 'left left'
  []
  [subdomain1]
    type = ParsedSubdomainMeshGenerator
    input = stitch
    combinatorial_geometry = 'x > 0'
    block_id = 1
  []
  [subdomain2]
    type = ParsedSubdomainMeshGenerator
    input = subdomain1
    combinatorial_geometry = 'x < 0'
    block_id = 2
  []
  [separator]
    type = ParsedGenerateSideset
    input = subdomain2
    combinatorial_geometry = 'x > -0.00001 & x < 0.00001'
    replace = true
    new_sideset_name = separator
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator
    combinatorial_geometry = 'y < 0.00001 & x < 0'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y < 0.00001 & x > 0'
    replace = true
    new_sideset_name = inlet-2
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 20.999999 & x < 0'
    replace = true
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 20.999999 & x > 0'
    replace = true
    new_sideset_name = outlet-2
  []
  uniform_refine = 1
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2'
    variable = superficial_vel_x
    functor = '0.0'
  []
  [inlet-v-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_y
    functor = 0.1
  []
  [inlet-v-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_y
    functor = 0.2
  []
  [inlet-T-1]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-1'
    value = 310
  []
  [inlet-T-2]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-2'
    value = 350
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet-2 outlet-1'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-1'
  []
  [outlet_T2]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-2'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
mu = 2.6
rho = 1.0
cp = 700
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  # uniform_refine = 1
  [fmg]
    type = FileMeshGenerator
    file = "diverger-2d.msh"
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    # two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    solver_sys = energy_system
    initial_condition = 700
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [heat_advection]
    type = INSFVEnergyAdvection
    variable = T
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
  []
  [heat_diffusion]
    type = FVDiffusion
    variable = T
    coeff = '10'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_y
    functor = '0.0'
  []
  [inlet-T]
    type = FVDirichletBC
    boundary = 'inlet'
    value = 700
    variable = T
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet'
    variable = pressure
    function = 1.4
  []
  [zerograd-p]
    type = FVNeumannBC
    boundary = 'top bottom inlet'
    variable = pressure
    value = 0
  []
[]
[FunctorMaterials]
  [mu]
    type = ADGenericFunctorMaterial #defines mu artificially for numerical convergence
    prop_names = 'mu rho cp' #it converges to the real mu eventually.
    prop_values = '${mu} ${rho} ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    cp = ${cp}
    temperature = 'T'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-12
  pressure_l_abs_tol = 1e-12
  energy_l_abs_tol = 1e-12
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  energy_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/postprocessors/flow_rates/conservation_PINSFV.i)
mu=1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
  inactive = 'mesh internal_boundary_bot internal_boundary_top'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1'
    dy = '1 1 1'
    ix = '5'
    iy = '5 5 5'
    subdomain_id = '1
                    2
                    3'
  []
  [internal_boundary_bot]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    new_boundary = 'internal_bot'
    primary_block = 1
    paired_block = 2
  []
  [internal_boundary_top]
    type = SideSetsBetweenSubdomainsGenerator
    input = internal_boundary_bot
    new_boundary = 'internal_top'
    primary_block = 2
    paired_block = 3
  []
  [diverging_mesh]
    type = FileMeshGenerator
    file = 'expansion_quad.e'
  []
[]
[Problem]
  fv_bcs_integrity_check = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = ${velocity_interp_method}
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [u]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0
  []
  [v]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [temperature]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [advected_density]
    order = CONSTANT
    family = MONOMIAL
    fv = true
    initial_condition = ${rho}
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = u
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = u
    force_boundary_execution = true
    porosity = porosity
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = v
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = v
    force_boundary_execution = true
    porosity = porosity
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [temp_advection]
    type = PINSFVEnergyAdvection
    variable = temperature
    advected_interp_method = 'upwind'
  []
  [temp_source]
    type = FVBodyForce
    variable = temperature
    function = 10
    block = 1
  []
[]
[FVBCs]
  inactive = 'noslip-u noslip-v'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = u
    functor = 0
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = v
    functor = 1
  []
  [noslip-u]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = u
    function = 0
  []
  [noslip-v]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = v
    function = 0
  []
  [free-slip-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = u
    momentum_component = 'x'
  []
  [free-slip-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = v
    momentum_component = 'y'
  []
  [axis-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'left'
    variable = u
    u = u
    v = v
    mu = ${mu}
    momentum_component = x
  []
  [axis-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'left'
    variable = v
    u = u
    v = v
    mu = ${mu}
    momentum_component = y
  []
  [axis-p]
    type = INSFVSymmetryPressureBC
    boundary = 'left'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'top'
    variable = pressure
    function = 0
  []
  [inlet_temp]
    type = FVNeumannBC
    boundary = 'bottom'
    variable = temperature
    value = 300
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
  []
  [advected_material_property]
    type = ADGenericFunctorMaterial
    prop_names = 'advected_rho cp'
    prop_values ='${rho} 1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      200                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
[Postprocessors]
  [inlet_mass_variable]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = advected_density
  []
  [inlet_mass_constant]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [inlet_mass_matprop]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = 'advected_rho'
  []
  [mid1_mass]
    type = VolumetricFlowRate
    boundary = internal_bot
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [mid2_mass]
    type = VolumetricFlowRate
    boundary = internal_top
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [outlet_mass]
    type = VolumetricFlowRate
    boundary = top
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
  [inlet_momentum_x]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = u
  []
  [inlet_momentum_y]
    type = VolumetricFlowRate
    boundary = bottom
    vel_x = u
    vel_y = v
    advected_quantity = v
  []
  [mid1_advected_energy]
    type = VolumetricFlowRate
    boundary = internal_bot
    vel_x = u
    vel_y = v
    advected_quantity = 'rho_cp_temp'
    advected_interp_method = 'upwind'
  []
  [mid2_advected_energy]
    type = VolumetricFlowRate
    boundary = internal_top
    vel_x = u
    vel_y = v
    advected_quantity = 'rho_cp_temp'
    advected_interp_method = 'upwind'
  []
  [outlet_advected_energy]
    type = VolumetricFlowRate
    boundary = top
    vel_x = u
    vel_y = v
    advected_quantity = 'rho_cp_temp'
    advected_interp_method = 'upwind'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.0'
    dy = '0.25 0.25 0.25'
    ix = '5'
    iy = '2 2 2'
    subdomain_id = '1 2 3'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-2'
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator-2
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-3
    combinatorial_geometry = 'y < 0.25 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-2
  []
  [outlet-3]
    type = ParsedGenerateSideset
    input = outlet-2
    combinatorial_geometry = 'y > 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T-1]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-1'
    value = 310
  []
  [inlet-T-2]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-2'
    value = 320
  []
  [inlet-T-3]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-3'
    value = 330
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1 3'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-1'
  []
  [outlet_T2]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-2'
  []
  [outlet_T3]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-3'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 10
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_velocity}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T
    v = power_density
  []
[]
[FVBCs]
  # Inlet
  [inlet_u]
    type = WCNSFVInletVelocityBC
    variable = u
    boundary = 'left'
    mdot_pp = 'inlet_mdot'
    area_pp = 'surface_inlet'
    rho = 'rho'
  []
  [inlet_v]
    type = WCNSFVInletVelocityBC
    variable = v
    boundary = 'left'
    mdot_pp = 0
    area_pp = 'surface_inlet'
    rho = 'rho'
  []
  [inlet_T]
    type = WCNSFVInletTemperatureBC
    variable = T
    boundary = 'left'
    temperature_pp = 'inlet_T'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
  # Walls
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'top bottom'
    function = 0
  []
[]
# used for the boundary conditions in this example
[Postprocessors]
  [inlet_mdot]
    type = Receiver
    default = ${fparse 1980 * inlet_velocity * inlet_area}
  []
  [surface_inlet]
    type = AreaPostprocessor
    boundary = 'left'
    execute_on = 'INITIAL'
  []
  [inlet_T]
    type = Receiver
    default = ${inlet_temp}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-2
    optimal_iterations = 6
  []
  end_time = 1
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
[]
[Outputs]
  exodus = true
  execute_on = 'FINAL'
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-disp-system.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '50 50'
    iy = '20'
    subdomain_id = '1 2'
  []
  displacements = 'disp_x disp_y'
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  use_displaced_mesh = true
[]
[AuxVariables]
  [disp_x][]
  [disp_y][]
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
    disp_x = disp_x
    disp_y = disp_y
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
    initial_condition = 100
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
  num_steps = 1
  dtmin = 1
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '1'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  hide = 'disp_x disp_y'
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
v_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 2
    ymin = 0
    ymax = 10
    nx = 20
    ny = 100
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${v_inlet}
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
    initial_condition = 100
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.4
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [u_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_x
    rho = ${rho}
    gravity = '0 -9.81 0'
    momentum_component = 'x'
    porosity = porosity
  []
  [u_boussinesq]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_x
    T_fluid = 'T_fluid'
    rho = ${rho}
    ref_temperature = 150
    gravity = '0 -9.81 0'
    momentum_component = 'x'
    alpha_name = 'alpha_b'
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [v_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_y
    rho = ${rho}
    gravity = '-0 -9.81 0'
    momentum_component = 'y'
    porosity = porosity
  []
  [v_boussinesq]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_y
    T_fluid = 'T_fluid'
    rho = ${rho}
    ref_temperature = 150
    gravity = '0 -9.81 0'
    momentum_component = 'y'
    alpha_name = 'alpha_b'
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    functor = 0
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    functor = ${v_inlet}
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse v_inlet * rho * cp * T_inlet}'
    boundary = 'bottom'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'right'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'left'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'top'
    variable = pressure
    function = 0
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv alpha_b'
    prop_values = '1e-3 8e-4'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'top'
  []
  [outlet-v]
    type = SideAverageValue
    variable = superficial_vel_y
    boundary = 'top'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'top'
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=1e-4
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.25 1.0 0.25'
    dy = '0.25 0.25 0.25'
    ix = '4 20 4'
    iy = '5 5 5'
    subdomain_id = '1 2 5 1 3 5 1 4 5'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '3'
    paired_block = '4'
    new_boundary = 'separator-2'
  []
  [jump-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-2
    primary_block = '1'
    paired_block = '2'
    new_boundary = jump-1
  []
  [jump-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-1
    primary_block = '1'
    paired_block = '3'
    new_boundary = jump-2
  []
  [jump-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-2
    primary_block = '1'
    paired_block = '4'
    new_boundary = jump-3
  []
  [outlet-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-3
    primary_block = '2'
    paired_block = '5'
    new_boundary = outlet-1
  []
  [outlet-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = outlet-1
    primary_block = '3'
    paired_block = '5'
    new_boundary = outlet-2
  []
  [outlet-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = outlet-2
    primary_block = '4'
    paired_block = '5'
    new_boundary = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
    pressure_drop_sidesets = 'jump-1 jump-2 jump-3 outlet-1 outlet-2 outlet-3'
    pressure_drop_form_factors = '0.1 0.2 0.3 0.1 0.2 0.3'
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'x'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_source]
    type = FVBodyForce
    variable = T_fluid
    function = heating
    block = '2 3 4'
  []
[]
[Functions]
  [heating]
    type = ParsedFunction
    expression = 'if(y<0.25, 10, if(y<0.5, 20, 30))'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'left'
    value = 300
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity]
    type = ADPiecewiseByBlockFunctorMaterial
    prop_name = porosity
    subdomain_to_prop_value = '1 0.8
                               2 0.7
                               3 0.6
                               4 0.5
                               5 0.8'
  []
  [darcy-1]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.0 1.0 1.0'
    block = '1 5'
  []
  [darcy-2]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '3.0 3.0 3.0'
    block = 2
  []
  [darcy-3]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.5 1.5 1.5'
    block = 3
  []
  [darcy-4]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '0.75 0.75 0.75'
    block = 4
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'right'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
# ========================================================================
#     The purpose of this MOOSE scripts is to solve a 2-D axisymmetric
#     problem with the following details:
#     ------------------------------------------------------------------
#     Physics: natural convection through a fluid  and heat conduction
#              in a solid and there is convective heat transfer from the
#              solid to the liquid.
#     ------------------------------------------------------------------
#     Materials: the fluid is water and the solid is not specified.
#     ------------------------------------------------------------------
#     BCS: Inlet and outlet pressure with value of 0
#          noslip conditions on the walls.
#          Heat flux on the left wall with value of 40000 W/m^2
# ========================================================================
# ========================================================================
#           Dimensions & Physical properties
# ========================================================================
Domain_length = 121.92e-2 # m
Solid_width = 0.7112e-3 # m
Liquid_width = 0.56261e-2 # m
mu = 0.00053157
rho = 987.27
k = 0.64247
k_solid = 15.0
cp = 4181.8
alpha_b = 210e-6
T_init = 300.0
input_heat_flux = 40000.0
# ========================================================================
#             The main body of the script
# ========================================================================
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    #dx   = '0.7032625e-4  0.7112e-5'
    dx = '${Liquid_width} ${Solid_width}'
    ix = '10 3'
    dy = '${fparse 1./5.*Domain_length} ${fparse 4./5.*Domain_length}'
    iy = '30 10'
    subdomain_id = '0 1
                    0 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = 0
    paired_block = 1
    new_boundary = 'interface'
  []
  [fluid_side]
    type = BreakBoundaryOnSubdomainGenerator
    input = 'interface'
    boundaries = 'top bottom'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    block = 0
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [vel_y]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    block = 0
    initial_condition = ${T_init}
    scaling = 1e-5
  []
  [Ts]
    type = INSFVEnergyVariable
    block = 1
    initial_condition = ${T_init}
    scaling = 1e-3
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = ${rho}
    ref_temperature = ${T_init}
    momentum_component = 'x'
    #alpha_name = ${alpha_b}
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    #alpha_name = ${alpha_b}
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = ${rho}
    ref_temperature = ${T_init}
    momentum_component = 'y'
  []
  [temp_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = '${rho}'
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [Ts_time]
    type = INSFVEnergyTimeDerivative
    variable = Ts
    rho = '${rho}'
    dh_dt = dh_solid_dt
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k_solid'
    variable = Ts
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    boundary = 'interface'
    h = htc
    T_solid = Ts
    T_fluid = T
    subdomain1 = 0
    subdomain2 = 1
    wall_cell_is_bulk = true
  []
[]
[FVBCs]
  [walls_u]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'interface left bottom_to_0'
    function = 0
  []
  [walls_v]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'interface left bottom_to_0'
    function = 0
  []
  [outlet]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'top_to_0'
    function = 0.0
  []
  [outlet_T]
    type = NSFVOutflowTemperatureBC
    variable = T
    boundary = 'top_to_0'
    u = vel_x
    v = vel_y
    rho = ${rho}
    cp = '${cp}'
    backflow_T = ${T_init}
  []
  [Insulator]
    type = FVNeumannBC
    variable = 'T'
    boundary = 'left'
    value = 0.0
  []
  [heater]
    type = FVNeumannBC
    variable = 'Ts'
    boundary = 'right'
    value = '${fparse input_heat_flux}'
  []
  [Insulator_solid]
    type = FVNeumannBC
    variable = 'Ts'
    boundary = 'top_to_1'
    value = 0.0
  []
  [inlet_T_1]
    type = FVDirichletBC
    variable = Ts
    boundary = 'bottom_to_1'
    value = ${T_init}
  []
[]
[AuxVariables]
  [Ra]
    type = INSFVScalarFieldVariable
    initial_condition = 1000.0
  []
  [htc]
    type = INSFVScalarFieldVariable
    initial_condition = 0.0
  []
[]
[AuxKernels]
  [compute_Ra]
    type = ParsedAux
    variable = Ra
    coupled_variables = 'T'
    constant_names = 'g beta T_init width nu alpha'
    constant_expressions = '9.81 ${alpha_b} ${T_init} ${Liquid_width} ${fparse mu/rho} ${fparse k/(rho*cp)}'
    expression = 'g * beta * (T - T_init) * pow(width, 3) / (nu*alpha) + 1.0'
    block = 0
  []
  [htc]
    type = ParsedAux
    variable = htc
    coupled_variables = 'Ra'
    constant_names = 'Pr'
    constant_expressions = '${fparse cp*mu/k}'
    expression = '${k}* (0.68 + 0.67 * pow(Ra, 0.25)/pow(1 + pow(0.437/Pr, 9/16) ,4/9) )/ ${Liquid_width} '
    block = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k k_solid'
    prop_values = '${cp} ${k} ${k_solid}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
  [ins_fv_solid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'Ts'
    rho = ${rho}
    cp = ${cp}
    h = h_solid
    rho_h = rho_h_solid
    block = 1
  []
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b'
    prop_values = '${alpha_b}'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = ' lu       NONZERO                   200'
  line_search = 'none'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 0.01
    optimal_iterations = 20
    iteration_window = 2
  []
  nl_max_its = 30
  nl_abs_tol = 1e-10
  steady_state_detection = true
  steady_state_tolerance = 1e-09
[]
[Postprocessors]
  [max_T]
    type = ADElementExtremeFunctorValue
    functor = T
    block = 0
  []
  [max_Ts]
    type = ADElementExtremeFunctorValue
    functor = Ts
    block = 1
  []
[]
[Outputs]
  exodus = false
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
  two_term_boundary_expansion = true
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 10
    nx = 64
    ny = 64
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e5
  []
  [T]
    type = INSFVEnergyVariable
    scaling = 1e-4
    initial_condition = ${cold_temp}
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [vel_x]
    order = FIRST
    family = MONOMIAL
  []
  [vel_y]
    order = FIRST
    family = MONOMIAL
  []
  [viz_T]
    order = FIRST
    family = MONOMIAL
  []
  [rho_out]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = u
    y = v
    execute_on = 'initial timestep_end'
  []
  [vel_x]
    type = ParsedAux
    variable = vel_x
    expression = 'u'
    execute_on = 'initial timestep_end'
    coupled_variables = 'u'
  []
  [vel_y]
    type = ParsedAux
    variable = vel_y
    expression = 'v'
    execute_on = 'initial timestep_end'
    coupled_variables = 'v'
  []
  [viz_T]
    type = ParsedAux
    variable = viz_T
    expression = 'T'
    execute_on = 'initial timestep_end'
    coupled_variables = 'T'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho'
    variable = 'rho_out'
    execute_on = 'initial timestep_end'
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    phi0 = 1e5
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = u
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = v
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = left
    value = ${hot_temp}
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = right
    value = ${cold_temp}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Materials]
  [const]
    type = ADGenericConstantMaterial
    prop_names = 'alpha'
    prop_values = '${alpha}'
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
[]
[Outputs]
  exodus = true
[]