Compute Extra Stress Constant

Computes a constant extra stress that is added to the stress calculated by the constitutive model

Description

The class ComputeExtraStressConstant adds an additional stress term, (), to the residual calculation after the constitutive model calculation of the stress, as shown in Eq. (1). An extra stress may be a residual stress, such as in large civil engineering simulations.

The extra stress material property, extra_stress stores the Rank-2 tensor values of the extra stress. (1) where the value of is constant across the entire mesh in this class.

ComputeExtraStressConstant creates a symmetric stress tensor, and expects the values of the stress tensor components in the specific order specified in the input parameter description below.

Example Input File Syntax

[./const_stress]
  type = ComputeExtraStressConstant
  block = 0
  base_name = ppt
  extra_stress_tensor = '-0.288 -0.373 -0.2747 0 0 0'
[../]
(modules/combined/test/tests/linear_elasticity/extra_stress.i)

Input Parameters

  • extra_stress_tensorVector of values defining the constant extra stress to add, in order 11, 22, 33, 23, 13, 12

    C++ Type:std::vector

    Options:

    Description:Vector of values defining the constant extra stress to add, in order 11, 22, 33, 23, 13, 12

Required Parameters

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector

    Options:

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Options:

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector

    Options:

    Description:The list of block ids (SubdomainID) that this object will be applied

  • base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

    C++ Type:std::string

    Options:

    Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

  • prefactor1Name of material defining additional constant prefactor

    Default:1

    C++ Type:MaterialPropertyName

    Options:

    Description:Name of material defining additional constant prefactor

Optional Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector

    Options:

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector

    Options:

    Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Options:

    Description:The seed for the master random number generator

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Options:

    Description:Determines whether this object is calculated using an implicit or explicit form

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE ELEMENT SUBDOMAIN

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

Advanced Parameters

Input Files