- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
 - valuevalue to enforce at the boundary face
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:value to enforce at the boundary face
 - variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this boundary condition applies to
 
FVDirichletBC
Defines a Dirichlet boundary condition for finite volume method.
Overview
Dirichlet boundary conditions impose the boundary condition , where is a constant. This boundary condition is imposed weakly, through the value of the flux.
Note that an upwinding scheme that may be used by flux kernels will affect how the Dirichlet value is applied to the interface. Upwinding schemes can result in the boundary solution being different than the specified Dirichlet value. In order to obtain the desired boundary value, it is necessary to use a FVNeumannBC to specify the flux.
Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
 - matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
 
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
 - extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
 - extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
 - matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
 - vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
 
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
 - search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
Default:nearest_node_connected_sides
C++ Type:MooseEnum
Options:nearest_node_connected_sides, all_proximate_sides
Controllable:No
Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
 - use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
 
Advanced Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/hllc.i)
 - (test/tests/userobjects/layered_side_integral/layered_side_integral_fv.i)
 - (test/tests/fviks/diffusion/multisystem.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/iks/flow-around-square/flow-around-square.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
 - (test/tests/fvkernels/constraints/point_value.i)
 - (test/tests/misc/check_error/incomplete_fvkernel_variable_coverage_test.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient-action.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
 - (test/tests/postprocessors/side_integral/side_integral_functor.i)
 - (modules/porous_flow/test/tests/dispersion/disp01_fv.i)
 - (test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
 - (test/tests/scaling/scalar-field-grouping/test.i)
 - (test/tests/fvkernels/fv_simple_diffusion/dirichlet_rz.i)
 - (test/tests/fvkernels/constraints/bounded_value.i)
 - (test/tests/materials/functor_properties/vector-magnitude/test.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
 - (test/tests/misc/multiple-nl-systems/test-fv.i)
 - (test/tests/indicators/analytical_indicator/analytical_indicator_fv.i)
 - (test/tests/fvkernels/fv_simple_diffusion/dirichlet-constrained-average-value.i)
 - (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
 - (test/tests/fvkernels/fv-to-fe-coupling/1d.i)
 - (test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
 - (test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average_fv.i)
 - (modules/porous_flow/test/tests/poroperm/PermFromPoro01_fv.i)
 - (test/tests/fvkernels/fv_simple_diffusion/unstructured-rz.i)
 - (test/tests/materials/boundary_material/fv_material_quadrature.i)
 - (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
 - (test/tests/fvkernels/fv_simple_diffusion/dirichlet.i)
 - (modules/porous_flow/test/tests/dispersion/diff01_fv.i)
 - (test/tests/fvkernels/fv_adapt/steady-adapt.i)
 - (test/tests/postprocessors/element_variable_value/elemental_variable_value_fv.i)
 - (test/tests/bounds/constant_bounds_fv.i)
 - (modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
 - (modules/porous_flow/test/tests/gravity/grav01a_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/segregated/BFS_ERCOFTAC.i)
 - (test/tests/postprocessors/fvfluxbc_integral/fvfluxbc_integral.i)
 - (modules/navier_stokes/examples/laser-welding/2d-fv.i)
 - (test/tests/fvkernels/block-restriction/just-mat-blk-restriction.i)
 - (test/tests/executioners/nl_forced_its/nl_forced_its.i)
 - (modules/porous_flow/test/tests/heat_conduction/two_phase_fv.i)
 - (modules/porous_flow/test/tests/poroperm/PermTensorFromVar01_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/solidification/solidification_no_advection.i)
 - (test/tests/fvkernels/scaling/auto-scaling.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
 - (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fv.i)
 - (test/tests/mesh/preparedness/test.i)
 - (test/tests/fvkernels/fv_simple_diffusion/grad-adaptive.i)
 - (test/tests/transfers/multiapp_variable_value_sample_transfer/parent_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase-physics.i)
 - (modules/ray_tracing/test/tests/raykernels/variable_integral_ray_kernel/fv_simple_diffusion_line_integral.i)
 - (test/tests/fvkernels/fv_adapt/transient-adapt.i)
 - (test/tests/auxkernels/divergence_aux/test_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
 - (test/tests/fviks/continuity/test.i)
 - (modules/navier_stokes/test/tests/finite_volume/fvbcs/FVHeatFluxBC/wall_heat_transfer.i)
 - (modules/porous_flow/test/tests/heat_conduction/no_fluid_fv.i)
 - (test/tests/fvkernels/block-restriction/fv-and-fe-block-restriction.i)
 - (test/tests/variables/caching_fv_variables/fv_caching.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase_fv.i)
 - (test/tests/materials/functor_properties/gradients/functor-gradients.i)
 - (test/tests/userobjects/layered_integral/layered_integral_fv_test.i)
 - (test/tests/indicators/gradient_jump_indicator/gradient_jump_indicator_fv_test.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
 - (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-action.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
 - (test/tests/postprocessors/side_integral/side_integral_fv_test.i)
 - (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-steady-wall-balance.i)
 - (test/tests/functors/previous-nl-it/test.i)
 - (test/tests/vectorpostprocessors/point_value_sampler/point_value_sampler_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
 - (modules/porous_flow/test/tests/poroperm/PermFromPoro03_fv.i)
 - (test/tests/misc/rename-parameters/rename-functor.i)
 - (test/tests/fvbcs/fv_pp_dirichlet/fv_pp_dirichlet.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
 - (test/tests/fvkernels/fv_simple_diffusion/neumann.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
 - (test/tests/tag/mass-matrix.i)
 - (test/tests/fviks/diffusion/test.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
 - (test/tests/fvkernels/fv_coupled_var/coupled.i)
 - (test/tests/fvkernels/fv_simple_diffusion/1d_dirichlet.i)
 - (test/tests/outputs/debug/show_functors.i)
 - (test/tests/markers/error_fraction_marker/error_fraction_marker_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-action.i)
 - (test/tests/indicators/value_jump_indicator/value_jump_indicator_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/scalar-transport.i)
 - (modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/segregated/channel_ERCOFTAC.i)
 - (modules/navier_stokes/examples/solidification/gallium_melting.i)
 - (test/tests/fvkernels/two-var-flux-and-kernel/input.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/wcns/materials/1d_test_cpT.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
 - (test/tests/postprocessors/discrete_variable_residual_norm/part_fv.i)
 - (modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/fv_simple_diffusion_line_source.i)
 - (test/tests/userobjects/layered_side_integral/layered_side_diffusive_flux_average_fv.i)
 - (test/tests/fvbcs/fv_functor_dirichlet/fv_functor_dirichlet.i)
 - (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
 - (test/tests/fvkernels/fv_euler/fv_euler.i)
 - (test/tests/fviks/one-var-diffusion/no-ik.i)
 - (test/tests/fvkernels/constraints/integral_transient.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/newton/lid-driven-turb-std-wall-nonlinear.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
 - (test/tests/fvkernels/fv_simple_diffusion/fv_only_refined.i)
 - (modules/heat_transfer/test/tests/ad_convective_heat_flux/fe_fv_coupled.i)
 - (test/tests/fvkernels/constraints/integral.i)
 - (test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
 - (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
 - (modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test.i)
 - (test/tests/auxkernels/build_array_variable_aux/build_array_variable_aux.i)
 - (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
 - (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/fv_modular_gap_heat_transfer_mortar_radiation_conduction.i)
 - (test/tests/fvkernels/boundary_execution/2d.i)
 - (test/tests/fvkernels/dispersion-test/cartesian_advection.i)
 - (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
 - (test/tests/tag/tag-fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
 - (test/tests/functors/fe-var-for-fv-neumann/test.i)
 - (test/tests/fvkernels/fv_simple_diffusion/transient.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/physics/diffusion_interfaces/three_zones.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
 - (test/tests/postprocessors/side_average_value/side_average_functor_test.i)
 - (test/tests/materials/functor_properties/ad_conversion/1d_dirichlet.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
 - (modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test_functor.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-scalar.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/fvbcs/FVFunctorHeatFluxBC/wall_heat_transfer.i)
 - (test/tests/fvkernels/block-restriction/1d.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
 - (test/tests/fvkernels/fv_anisotropic_diffusion/fv_anisotropic_diffusion.i)
 - (test/tests/transfers/multiapp_copy_transfer/linear_sys_to_aux/nonlinear_main.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/newton_physics/lid-driven-turb-std-wall-nonlinear-physics.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
 - (modules/heat_transfer/test/tests/fvkernels/radiation_istothermal_medium_1d.i)
 - (test/tests/functormaterials/functor_change/fp_parent.i)
 - (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
 - (test/tests/fvbcs/fv_functor_dirichlet/fv_other_side.i)
 - (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
 - (test/tests/materials/piecewise_by_block_material/discontinuous_functor.i)
 - (test/tests/auxkernels/parsed_aux/parsed_aux_boundary_test.i)
 - (modules/porous_flow/test/tests/gravity/grav02b_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-no-wall.i)
 - (test/tests/fvkernels/fv_simple_diffusion/3d_dirichlet.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
 - (test/tests/postprocessors/internal_side_integral/internal_side_integral_fv_test.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-physics.i)
 - (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/dc.i)
 - (test/tests/dirackernels/constant_point_source/1d_point_source_fv.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
 - (test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
 - (test/tests/misc/check_error/incomplete_fvkernel_block_coverage_test.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
 - (test/tests/fviks/one-var-diffusion/test.i)
 - (modules/heat_transfer/test/tests/fvbcs/fv_functor_convective_heat_flux/fv_functor_convective_heat_flux.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
 - (test/tests/fvkernels/fv_simple_diffusion/fv_only.i)
 - (test/tests/fvbcs/fv_functor_neumannbc/fv_functor_neumann.i)
 - (test/tests/materials/functor_properties/1d_dirichlet.i)
 - (modules/heat_transfer/test/tests/fvbcs/fv_radiative_heat_flux/test.i)
 - (test/tests/fvkernels/fv_dotdot/fv_dotdot.i)
 
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/hllc.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
[GlobalParams]
  fp = fp
  two_term_boundary_expansion = true
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 1
    xmin = 0
    xmax = 18
    nx = 180
  []
  [to_pt5]
    input = cartesian
    type = SubdomainBoundingBoxGenerator
    bottom_left = '2 0 0'
    top_right = '4 1 0'
    block_id = 1
  []
  [pt5]
    input = to_pt5
    type = SubdomainBoundingBoxGenerator
    bottom_left = '4 0 0'
    top_right = '6 1 0'
    block_id = 2
  []
  [to_pt25]
    input = pt5
    type = SubdomainBoundingBoxGenerator
    bottom_left = '6 0 0'
    top_right = '8 1 0'
    block_id = 3
  []
  [pt25]
    input = to_pt25
    type = SubdomainBoundingBoxGenerator
    bottom_left = '8 0 0'
    top_right = '10 1 0'
    block_id = 4
  []
  [to_pt5_again]
    input = pt25
    type = SubdomainBoundingBoxGenerator
    bottom_left = '10 0 0'
    top_right = '12 1 0'
    block_id = 5
  []
  [pt5_again]
    input = to_pt5_again
    type = SubdomainBoundingBoxGenerator
    bottom_left = '12 0 0'
    top_right = '14 1 0'
    block_id = 6
  []
  [to_one]
    input = pt5_again
    type = SubdomainBoundingBoxGenerator
    bottom_left = '14 0 0'
    top_right = '16 1 0'
    block_id = 7
  []
  [one]
    input = to_one
    type = SubdomainBoundingBoxGenerator
    bottom_left = '16 0 0'
    top_right = '18 1 0'
    block_id = 8
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = MooseVariableFVReal
    initial_condition = ${p_initial}
  []
  [sup_vel_x]
    type = MooseVariableFVReal
    initial_condition = 1
    scaling = 1e-2
  []
  [T_fluid]
    type = MooseVariableFVReal
    initial_condition = ${T}
    scaling = 1e-5
  []
[]
[AuxVariables]
  [vel_x]
    type = MooseVariableFVReal
  []
  [sup_mom_x]
    type = MooseVariableFVReal
  []
  [rho]
    type = MooseVariableFVReal
  []
  [worst_courant]
    type = MooseVariableFVReal
  []
  [porosity]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [vel_x]
    type = ADMaterialRealAux
    variable = vel_x
    property = vel_x
    execute_on = 'timestep_end'
  []
  [sup_mom_x]
    type = ADMaterialRealAux
    variable = sup_mom_x
    property = superficial_rhou
    execute_on = 'timestep_end'
  []
  [rho]
    type = ADMaterialRealAux
    variable = rho
    property = rho
    execute_on = 'timestep_end'
  []
  [worst_courant]
    type = Courant
    variable = worst_courant
    u = sup_vel_x
    execute_on = 'timestep_end'
  []
  [porosity]
    type = MaterialRealAux
    variable = porosity
    property = porosity
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass_advection]
    type = PCNSFVMassHLLC
    variable = pressure
  []
  [momentum_advection]
    type = PCNSFVMomentumHLLC
    variable = sup_vel_x
    momentum_component = 'x'
  []
  [eps_grad]
    type = PNSFVPGradEpsilon
    variable = sup_vel_x
    momentum_component = 'x'
    epsilon_function = 'eps'
  []
  [energy_advection]
    type = PCNSFVFluidEnergyHLLC
    variable = T_fluid
  []
[]
[FVBCs]
  [rho_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = pressure
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'mass'
  []
  [rhou_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = sup_vel_x
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rho_et_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = T_fluid
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'energy'
  []
  [rho_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = pressure
    pressure = ${p_initial}
    eqn = 'mass'
  []
  [rhou_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = sup_vel_x
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rho_et_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = T_fluid
    pressure = ${p_initial}
    eqn = 'energy'
  []
  # Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
  [T_left]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T}
    boundary = 'left'
  []
  [sup_vel_left]
    type = FVDirichletBC
    variable = sup_vel_x
    value = ${u_in}
    boundary = 'left'
  []
  [p_right]
    type = FVDirichletBC
    variable = pressure
    value = ${p_initial}
    boundary = 'right'
  []
[]
[Functions]
  [ud_in]
    type = ParsedVectorFunction
    expression_x = '${u_in}'
  []
  [eps]
    type = ParsedFunction
    expression = 'if(x < 2, 1,
             if(x < 4, 1 - .5 / 2 * (x - 2),
             if(x < 6, .5,
             if(x < 8, .5 - .25 / 2 * (x - 6),
             if(x < 10, .25,
             if(x < 12, .25 + .25 / 2 * (x - 10),
             if(x < 14, .5,
             if(x < 16, .5 + .5 / 2 * (x - 14),
                1))))))))'
  []
[]
[Materials]
  [var_mat]
    type = PorousPrimitiveVarMaterial
    pressure = pressure
    T_fluid = T_fluid
    superficial_vel_x = sup_vel_x
    porosity = porosity
  []
  [porosity]
    type = GenericFunctionMaterial
    prop_names = 'porosity'
    prop_values = 'eps'
  []
[]
[Executioner]
  solve_type = NEWTON
  line_search = 'bt'
  type = Steady
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'final'
  []
  checkpoint = true
[]
[Debug]
  show_var_residual_norms = true
[]
(test/tests/userobjects/layered_side_integral/layered_side_integral_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 6
  ny = 6
  nz = 6
[]
[Variables]
  [./u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  [../]
[]
[AuxVariables]
  [./layered_integral]
    order = CONSTANT
    family = MONOMIAL
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
[]
[FVBCs]
  [./bottom]
    type = FVDirichletBC
    variable = u
    boundary = bottom
    value = 0
  [../]
  [./top]
    type = FVDirichletBC
    variable = u
    boundary = top
    value = 1
  [../]
[]
[AuxKernels]
  [./liaux]
    type = SpatialUserObjectAux
    variable = layered_integral
    boundary = right
    user_object = layered_integral
  [../]
[]
[UserObjects]
  [./layered_integral]
    type = LayeredSideIntegral
    direction = y
    num_layers = 3
    variable = u
    execute_on = linear
    boundary = right
  [../]
[]
[Executioner]
  type = Steady
  nl_abs_tol = 1e-14
  nl_rel_tol = 1e-14
  l_abs_tol = 1e-14
  l_tol = 1e-6
[]
[Outputs]
  exodus = true
[]
(test/tests/fviks/diffusion/multisystem.i)
[Mesh]
  [gmg]
    type = CartesianMeshGenerator
    dim = 1
    ix = '50 50'
    dx = '1 1'
    subdomain_id = '0 1'
  []
  [sds]
    type = SideSetsBetweenSubdomainsGenerator
    input = gmg
    new_boundary = 'between'
    paired_block = '1'
    primary_block = '0'
  []
[]
[Problem]
  nl_sys_names = 'u v'
  error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    solver_sys = 'u'
    block = 0
  []
  [v]
    type = MooseVariableFVReal
    solver_sys = 'v'
    block = 1
  []
[]
[FVKernels]
  [diff_u]
    type = FVDiffusion
    variable = u
    coeff = 3.0
  []
  [force_u]
    type = FVBodyForce
    variable = u
    function = 5
  []
  [diff_v]
    type = FVDiffusion
    variable = v
    coeff = 1.0
  []
  [force_v]
    type = FVBodyForce
    variable = v
    function = 5
  []
[]
[FVInterfaceKernels]
  [diff_ik]
    type = FVDiffusionInterface
    variable1 = u
    variable2 = v
    boundary = 'between'
    coeff1 = 3
    coeff2 = 1
    subdomain1 = 0
    subdomain2 = 1
  []
  [diff_ik_v]
    type = FVDiffusionInterface
    variable1 = v
    variable2 = u
    boundary = 'between'
    coeff1 = 1
    coeff2 = 3
    subdomain1 = 1
    subdomain2 = 0
  []
[]
[FVBCs]
  [left_u]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right_v]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 1
  []
[]
[Preconditioning]
  [u]
    type = SMP
    nl_sys = u
    petsc_options = '-snes_monitor'
    petsc_options_iname = '-pc_type -pc_hypre_type'
    petsc_options_value = 'hypre boomeramg'
  []
  [v]
    type = SMP
    nl_sys = v
    petsc_options = '-snes_monitor'
    petsc_options_iname = '-pc_type -pc_hypre_type'
    petsc_options_value = 'hypre boomeramg'
  []
[]
[Executioner]
  type = SteadySolve2
  solve_type = 'NEWTON'
  first_nl_sys_to_solve = 'u'
  second_nl_sys_to_solve = 'v'
  number_of_iterations = 200
  nl_abs_tol = 1e-10
[]
[Outputs]
  print_nonlinear_residuals = false
  print_linear_residuals = false
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/iks/flow-around-square/flow-around-square.i)
# Water properties
mu = 1.0E-3
rho = 1000.0
k = 0.598
cp = 4186
# Solid properties
cp_s = 830
rho_s = 1680
k_s = 3.5
# Other parameters
p_outlet = 0
u_inlet = -1e-4
h_conv = 50
[Mesh]
  [generated_mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
    xmin = 0
    ymin = 0
    ymax = 0.1
    xmax = 0.1
  []
  [subdomain1]
    input = generated_mesh
    type = SubdomainBoundingBoxGenerator
    block_name = subdomain1
    bottom_left = '0.04 0.04 0'
    block_id = 1
    top_right = '0.06 0.06 0'
  []
  [interface]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 0
    paired_block = 1
    new_boundary = interface
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
    block = 0
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1e-4
    block = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-4
    block = 0
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = 283.15
    scaling = 1e-5
    block = 0
  []
  [Ts]
    type = INSFVEnergyVariable
    initial_condition = 333.15
    scaling = 1e-5
    block = 1
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
    block = 0
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
    block = 0
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
    block = 0
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 0
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 0
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    block = 0
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    block = 0
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 0
  []
  [energy_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho}
    dh_dt = dh_dt
    block = 0
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
    block = 0
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    block = 0
  []
  [solid_energy_time]
    type = INSFVEnergyTimeDerivative
    variable = Ts
    rho = ${rho_s}
    dh_dt = dh_solid_dt
    block = 1
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k_s'
    variable = Ts
    block = 1
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    subdomain1 = 0
    subdomain2 = 1
    boundary = interface
    h = ${h_conv}
    T_solid = Ts
    T_fluid = T
    wall_cell_is_bulk = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'top'
    variable = vel_x
    functor = 0
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'top'
    variable = vel_y
    functor = ${u_inlet}
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 283.15
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right interface'
    variable = vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right interface'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'bottom'
    variable = pressure
    function = '${p_outlet}'
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
    block = 0
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
  [solid_functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp_s k_s'
    prop_values = '${cp_s} ${k_s}'
    block = 1
  []
  [solid_ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'Ts'
    rho = ${rho_s}
    cp = ${cp_s}
    block = 1
    h = h_solid
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-8
  dt = 10
  end_time = 10
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
[GlobalParams]
  velocity_interp_method = 'rc'
  advected_interp_method = 'upwind'
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = .1
    ymin = 0
    ymax = .1
    nx = 5
    ny = 5
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = 'rho_mixture'
  []
  [mean_zero_pressure]
    type = FVPointValueConstraint
    variable = pressure
    lambda = lambda
    point = '0 0 0'
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyant]
    type = INSFVMomentumGravity
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
    gravity = '0 ${g} 0'
  []
  # NOTE: the friction terms for u and v are missing
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyant]
    type = INSFVMomentumGravity
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
    gravity = '0 ${g} 0'
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1e-3
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${U_lid}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [bottom_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'bottom'
    value = 1.0
  []
  [top_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'top'
    value = 0.0
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    gravity = '0 ${g} 0'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    gravity = '0 ${g} 0'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_1_names = '${rho_d} ${mu_d}'
    phase_2_names = '${rho} ${mu}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Postprocessors]
  [average_void]
    type = ElementAverageValue
    variable = 'phase_2'
  []
  [max_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = max
  []
  [min_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = min
  []
  [max_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = max
  []
  [min_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = min
  []
  [max_x_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_x'
    value_type = max
  []
  [max_y_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_y'
    value_type = max
  []
  [max_drag_coefficient]
    type = ElementExtremeFunctorValue
    functor = 'drag_coefficient'
    value_type = max
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 7
    iteration_window = 2
    growth_factor = 2.0
    cutback_factor = 0.5
    dt = 1e-3
  []
  nl_max_its = 20
  nl_rel_tol = 1e-03
  nl_abs_tol = 1e-9
  l_max_its = 5
  end_time = 1e8
  line_search=none
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'FINAL'
    execute_scalars_on = NONE
  []
[]
(test/tests/fvkernels/constraints/point_value.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 4
[]
[Variables]
  [v]
    type = MooseVariableFVReal
  []
  [lambda]
    type = MooseVariableScalar
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
  [average]
    type = FVPointValueConstraint
    variable = v
    phi0 = 13
    lambda = lambda
    point = '0.3 0 0'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
[]
[Outputs]
  exodus = true
[]
(test/tests/misc/check_error/incomplete_fvkernel_variable_coverage_test.i)
[Mesh]
  [./square]
    type = GeneratedMeshGenerator
    nx = 2
    ny = 2
    dim = 2
  [../]
[]
[Variables]
  [./u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  [../]
  [./v]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  [../]
[]
[FVKernels]
  active = 'diff body_force'
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
  [./body_force]
    type = FVBodyForce
    variable = u
    value = 10
  [../]
[]
[FVBCs]
  active = 'right'
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = 3
    value = 1
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = 1
    value = 1
  [../]
[]
[Executioner]
  type = Steady
[]
[Outputs]
  file_base = out
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient-action.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 100
    ny = 20
  []
[]
[Variables]
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[Modules]
  [NavierStokesFV]
    compressibility = 'incompressible'
    porous_medium_treatment = true
    add_energy_equation = true
    density = 'rho'
    dynamic_viscosity = 'mu'
    thermal_conductivity = 'k'
    specific_heat = 'cp'
    porosity = 'porosity'
    # Reference file sets effective_conductivity by default that way
    # so the conductivity is multiplied by the porosity in the kernel
    effective_conductivity = false
    initial_velocity = '${u_inlet} 1e-6 0'
    initial_pressure = ${p_outlet}
    initial_temperature = 0.0
    inlet_boundaries = 'left'
    momentum_inlet_types = 'fixed-velocity'
    momentum_inlet_functors = '${u_inlet} 0'
    energy_inlet_types = 'heatflux'
    energy_inlet_functors = '${fparse u_inlet * rho * cp * T_inlet}'
    wall_boundaries = 'top bottom'
    momentum_wall_types = 'noslip symmetry'
    energy_wall_types = 'heatflux heatflux'
    energy_wall_functors = '0 0'
    outlet_boundaries = 'right'
    momentum_outlet_types = 'fixed-pressure'
    pressure_functors = '${p_outlet}'
    ambient_convection_alpha = 'h_cv'
    ambient_temperature = 'T_solid'
    mass_advection_interpolation = 'average'
    momentum_advection_interpolation = 'average'
    energy_advection_interpolation = 'average'
  []
[]
[FVKernels]
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv cp rho mu k'
    prop_values = '${h_fs} ${cp} ${rho} ${mu} ${k}'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
  end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
# This test is designed to check for energy conservation
# in separated channels which are described using a nonorthogonal mesh.
# The two inlet temperatures should be preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [file]
    type = FileMeshGenerator
    file = diverging.msh
  []
  [mirror]
    type = SymmetryTransformGenerator
    input = file
    mirror_point = "0 0 0"
    mirror_normal_vector = "1 0 0"
  []
  [stitch]
    type = StitchedMeshGenerator
    inputs = 'file mirror'
    stitch_boundaries_pairs = 'left left'
  []
  [subdomain1]
    type = ParsedSubdomainMeshGenerator
    input = stitch
    combinatorial_geometry = 'x > 0'
    block_id = 1
  []
  [subdomain2]
    type = ParsedSubdomainMeshGenerator
    input = subdomain1
    combinatorial_geometry = 'x < 0'
    block_id = 2
  []
  [separator]
    type = ParsedGenerateSideset
    input = subdomain2
    combinatorial_geometry = 'x > -0.00001 & x < 0.00001'
    replace = true
    new_sideset_name = separator
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator
    combinatorial_geometry = 'y < 0.00001 & x < 0'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y < 0.00001 & x > 0'
    replace = true
    new_sideset_name = inlet-2
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 20.999999 & x < 0'
    replace = true
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 20.999999 & x > 0'
    replace = true
    new_sideset_name = outlet-2
  []
  uniform_refine = 1
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2'
    variable = superficial_vel_x
    functor = '0.0'
  []
  [inlet-v-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_y
    functor = 0.1
  []
  [inlet-v-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_y
    functor = 0.2
  []
  [inlet-T-1]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-1'
    value = 310
  []
  [inlet-T-2]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-2'
    value = 350
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet-2 outlet-1'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-1'
  []
  [outlet_T2]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-2'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(test/tests/postprocessors/side_integral/side_integral_functor.i)
[Mesh]
  inactive = 'refine'
  # U-shaped domains to have internal boundaries in
  # a variety of directions
  [cmg]
     type = CartesianMeshGenerator
     dim = 2
     dx = '1 1 1'
     dy = '3 1'
     ix = '4 5 3'
     iy = '12 4'
     subdomain_id = '1 2 1
                     1 1 1'
  []
  [internal_boundary_dir1]
     type = SideSetsBetweenSubdomainsGenerator
     input = cmg
     primary_block = 1
     paired_block = 2
     new_boundary = 'inside_1'
  []
  [internal_boundary_dir2]
     type = SideSetsBetweenSubdomainsGenerator
     input = internal_boundary_dir1
     primary_block = 2
     paired_block = 1
     new_boundary = 'inside_2'
  []
  [refine]
    type = RefineBlockGenerator
    input = internal_boundary_dir2
    block = '1 2'
    refinement = '2 1'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    block = 1
  []
[]
[AuxVariables]
  [v1]
    type = MooseVariableFVReal
    block = 1
    [FVInitialCondition]
      type = FVFunctionIC
      function = 'x + y'
    []
  []
  [v2]
    type = MooseVariableFVReal
    block = 2
    [FVInitialCondition]
      type = FVFunctionIC
      function = '2*x*x - y'
    []
  []
[]
[Functions]
  [f1]
    type = ParsedFunction
    expression = 'exp(x - y)'
  []
[]
[Materials]
  [m1]
    type = ADGenericFunctorMaterial
    prop_names = 'm1'
    prop_values = 'f1'
  []
  [m2]
    type = ADPiecewiseByBlockFunctorMaterial
    prop_name = 'm2'
    subdomain_to_prop_value = '1 12
                               2 4'
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = '1'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 3
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 1
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
[Postprocessors]
  # Mesh external boundaries integration
  [ext_u]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'left top right'
    functor = u
    restrict_to_functors_domain = true
  []
  [ext_v1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'left right'
    functor = v1
  []
  [ext_v2]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'top'
    functor = v2
    restrict_to_functors_domain = true
  []
  [ext_f1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'left top right'
    functor = f1
    prefactor = f1
  []
  [ext_m1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'left top right'
    functor = m1
    restrict_to_functors_domain = true
  []
  [ext_m2]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'left top right'
    functor = m2
    restrict_to_functors_domain = true
  []
  # Internal to the mesh, but a side to the variables
  # With orientation of normal 1->2
  [int_s1_u]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_1
    functor = u
  []
  [int_s1_v1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_1
    functor = v1
  []
  [int_s1_f1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_1
    functor = f1
  []
  [int_s1_m1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_1
    functor = m1
  []
  [int_s1_m2]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_1
    functor = m2
  []
  # With orientation of normal 2->1
  [int_s2_v2]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_2
    functor = v2
  []
  [int_s2_f1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_2
    functor = f1
  []
  [int_s2_m1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_2
    functor = m1
  []
  [int_s2_m2]
    type = ADSideIntegralFunctorPostprocessor
    boundary = inside_2
    functor = m2
  []
[]
[Outputs]
  csv = true
  exodus = true
[]
[Problem]
  kernel_coverage_check = false
[]
(modules/porous_flow/test/tests/dispersion/disp01_fv.i)
# Test dispersive part of FVPorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 20
  xmax = 10
  bias_x = 1.1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
    type = MooseVariableFVReal
  []
  [massfrac0]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [velocity]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [velocity]
    type = ADPorousFlowDarcyVelocityComponent
    variable = velocity
    component = x
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = pic
  []
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[Functions]
  [pic]
    type = ParsedFunction
    expression = '1.1e5-x*1e3'
  []
[]
[FVBCs]
  [xleft]
    type = FVDirichletBC
    value = 1
    variable = massfrac0
    boundary = left
  []
  [xright]
    type = FVDirichletBC
    value = 0
    variable = massfrac0
    boundary = right
  []
  [pright]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 1e5
  []
  [pleft]
    type = FVDirichletBC
    variable = pp
    boundary = left
    value = 1.1e5
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = FVPorousFlowDispersiveFlux
    variable = pp
    disp_trans = 0
    disp_long = 0.2
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [adv1]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
  []
  [diff1]
    type = FVPorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0.2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro]
    type = ADPorousFlowPorosityConst
    porosity = 0.3
  []
  [diff]
    type = ADPorousFlowDiffusivityConst
    diffusion_coeff = '0 0'
    tortuosity = 0.1
  []
  [relp]
    type = ADPorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type'
    petsc_options_value = 'gmres      asm      lu           NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 3e2
  dtmax = 100
  nl_abs_tol = 1e-12
  [TimeStepper]
    type = IterationAdaptiveDT
    growth_factor = 2
    cutback_factor = 0.5
    dt = 10
  []
[]
[VectorPostprocessors]
  [xmass]
    type = ElementValueSampler
    sort_by = id
    variable = 'massfrac0 velocity'
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[FunctorMaterials]
  [mat_props]
    type = GenericFunctorMaterial
    prop_names = diffusivity
    prop_values = 1
  []
  [mat_props_vector]
    type = GenericVectorFunctorMaterial
    prop_names = diffusivity_vec
    prop_values = '1 1.5 1'
  []
[]
[Postprocessors]
  inactive = 'avg_flux_top'
  [avg_flux_right]
    # Computes flux integral on the boundary, which should be -1
    type = SideDiffusiveFluxAverage
    variable = u
    boundary = right
    functor_diffusivity = diffusivity
  []
  [avg_flux_top]
    type = SideVectorDiffusivityFluxIntegral
    variable = u
    boundary = top
    functor_diffusivity = diffusivity_vec
  []
[]
[Executioner]
  type = Steady
  solve_type = PJFNK
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  nl_abs_tol = 1e-14
  nl_rel_tol = 1e-14
  l_abs_tol = 1e-14
  l_tol = 1e-6
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
p_initial=1.01e5
T=273.15
u_in=10
eps=1
superficial_vel_in=${fparse u_in * eps}
[GlobalParams]
  fp = fp
  limiter = 'vanLeer'
  two_term_boundary_expansion = true
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 1
    xmin = 0
    xmax = 10
    nx = 100
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = MooseVariableFVReal
    initial_condition = ${p_initial}
  []
  [superficial_vel_x]
    type = MooseVariableFVReal
    initial_condition = ${superficial_vel_in}
  []
  [temperature]
    type = MooseVariableFVReal
    initial_condition = ${T}
  []
[]
[AuxVariables]
  [rho]
    type = MooseVariableFVReal
  []
  [superficial_rhou]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [rho]
    type = ADMaterialRealAux
    variable = rho
    property = rho
    execute_on = 'timestep_end'
  []
  [superficial_rhou]
    type = ADMaterialRealAux
    variable = superficial_rhou
    property = superficial_rhou
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_dt'
    variable = pressure
  []
  [mass_advection]
    type = PCNSFVKT
    variable = pressure
    eqn = "mass"
  []
  [momentum_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhou_dt'
    variable = superficial_vel_x
  []
  [momentum_advection]
    type = PCNSFVKT
    variable = superficial_vel_x
    eqn = "momentum"
    momentum_component = 'x'
  []
  [energy_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
    variable = temperature
  []
  [energy_advection]
    type = PCNSFVKT
    variable = temperature
    eqn = "energy"
  []
  [heat]
    type = FVBodyForce
    variable = temperature
    value = 1e6
  []
[]
[FVBCs]
  [rho_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = pressure
    superficial_velocity = 'superficial_vel_in'
    T_fluid = ${T}
    eqn = 'mass'
  []
  [rhou_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = superficial_vel_x
    superficial_velocity = 'superficial_vel_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rho_et_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = temperature
    superficial_velocity = 'superficial_vel_in'
    T_fluid = ${T}
    eqn = 'energy'
  []
  [rho_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = pressure
    pressure = ${p_initial}
    eqn = 'mass'
  []
  [rhou_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = superficial_vel_x
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rho_et_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = temperature
    pressure = ${p_initial}
    eqn = 'energy'
  []
  # Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
  [T_left]
    type = FVDirichletBC
    variable = temperature
    value = ${T}
    boundary = 'left'
  []
  [sup_vel_left]
    type = FVDirichletBC
    variable = superficial_vel_x
    value = ${superficial_vel_in}
    boundary = 'left'
  []
  [p_right]
    type = FVDirichletBC
    variable = pressure
    value = ${p_initial}
    boundary = 'right'
  []
[]
[Functions]
  [superficial_vel_in]
    type = ParsedVectorFunction
    expression_x = '${superficial_vel_in}'
  []
[]
[Materials]
  [var_mat]
    type = PorousPrimitiveVarMaterial
    pressure = pressure
    T_fluid = temperature
    superficial_vel_x = superficial_vel_x
    fp = fp
    porosity = porosity
  []
  [fluid_only]
    type = GenericConstantMaterial
    prop_names = 'porosity'
    prop_values = '${eps}'
  []
[]
[Executioner]
  solve_type = NEWTON
  type = Transient
  nl_max_its = 20
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e-5
    optimal_iterations = 10
  []
  steady_state_detection = false
  steady_state_tolerance = 1e-12
  abort_on_solve_fail = false
  end_time = 100
  nl_abs_tol = 1e-8
  dtmin = 5e-5
  automatic_scaling = true
  compute_scaling_once = false
  verbose = true
  petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -snes_linesearch_minlambda'
  petsc_options_value = 'lu       mumps                      NONZERO               1e-3 '
[]
[Outputs]
  [exo]
    type = Exodus
    execute_on = 'final'
  []
  [dof]
    type = DOFMap
    execute_on = 'initial'
  []
  checkpoint = true
[]
[Debug]
  show_var_residual_norms = true
[]
(test/tests/scaling/scalar-field-grouping/test.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
    xmax = 2
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '1.0 0 0'
    block_id = 1
    top_right = '2.0 1.0 0'
  []
  [interface_primary_side]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'primary_interface'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    block = 0
    initial_condition = 0.5
  []
  [v]
    type = MooseVariableFVReal
    block = 1
    initial_condition = 0.5
  []
  [lambda]
    type = MooseVariableScalar
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 'left'
    block = 0
  []
  [diff_right]
    type = FVDiffusion
    variable = v
    coeff = 'right'
    block = 1
  []
[]
[FVInterfaceKernels]
  [interface]
    type = FVTwoVarContinuityConstraint
    variable1 = u
    variable2 = v
    boundary = 'primary_interface'
    subdomain1 = '0'
    subdomain2 = '1'
    lambda = 'lambda'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 'left'
    value = 1
  []
  [v_left]
    type = FVDirichletBC
    variable = v
    boundary = 'right'
    value = 0
  []
[]
[Materials]
  [block0]
    type = ADGenericFunctorMaterial
    block = '0'
    prop_names = 'left'
    prop_values = '1'
  []
  [block1]
    type = ADGenericFunctorMaterial
    block = '1'
    prop_names = 'right'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm lu NONZERO'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  scaling_group_variables = 'u v lambda'
  verbose = true
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet_rz.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
  # x can't start at zero because FV's weak dirichlet BCs need a non-zero area
  # on the left so their numerical flux contribution isn't zero'd out -
  # causing there to basically be no BC on the left.
  xmin = .1
  xmax = 1
  coord_type = RZ
[]
[Variables]
  [u]
  []
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[Kernels]
  [diff]
    type = Diffusion
    variable = u
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = u
    boundary = left
    value = 7
  []
  [right]
    type = DirichletBC
    variable = u
    boundary = right
    value = 42
  []
[]
[Problem]
  type = FEProblem
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/constraints/bounded_value.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Variables]
  [v]
    type = MooseVariableFVReal
    # breaks the constraint
    initial_condition = -1
  []
  [lambda]
    type = MooseVariableScalar
  []
[]
[FVKernels]
  [time]
    type = FVTimeKernel
    variable = v
  []
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
  [average]
    type = FVBoundedValueConstraint
    variable = v
    phi0 = 0
    lambda = lambda
    bound_type = 'HIGHER_THAN'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 0
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'Newton'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  num_steps = 2
  dt = 0.001
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(test/tests/materials/functor_properties/vector-magnitude/test.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
  [v]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [mag]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = FunctorAux
    variable = mag
    functor = mat_mag
  []
[]
[FVKernels]
  [v_diff]
    type = FVDiffusion
    variable = v
    coeff = 1
  []
  [u_diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [v_left]
    type = FVDirichletBC
    variable = v
    boundary = 'left'
    value = 0
  []
  [v_right]
    type = FVDirichletBC
    variable = v
    boundary = 'right'
    value = 1
  []
  [u_bottom]
    type = FVDirichletBC
    variable = u
    boundary = 'bottom'
    value = 0
  []
  [u_top]
    type = FVDirichletBC
    variable = u
    boundary = 'top'
    value = 1
  []
[]
[Materials]
  [functor]
    type = ADVectorMagnitudeFunctorMaterial
    x_functor = u
    y_functor = v
    vector_magnitude_name = mat_mag
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
mu = 0.002
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 3
    dx = '0.2'
    dy = '0.2'
    dz = '0.8'
    ix = '3'
    iy = '3'
    iz = '6'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system w_system pressure_system scalar_1_system scalar_2_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    w = vel_z
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [vel_z]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = w_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [scalar_1]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_1_system
    initial_condition = 1.2
  []
  [scalar_2]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_2_system
    initial_condition = 1.2
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [w_advection]
    type = INSFVMomentumAdvection
    variable = vel_z
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [w_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_z
    mu = ${mu}
    momentum_component = 'z'
  []
  [w_pressure]
    type = INSFVMomentumPressure
    variable = vel_z
    momentum_component = 'z'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [scalar_1_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_1
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_1_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar_1
  []
  [scalar_1_src]
    type = FVBodyForce
    variable = scalar_1
    value = 1.0
  []
  [scalar_1_coupled_source]
    type = FVCoupledForce
    variable = scalar_1
    v = scalar_2
    coef = 0.1
  []
  [scalar_2_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_2
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_2_diffusion]
    type = FVDiffusion
    coeff = '${fparse 2*diff}'
    variable = scalar_2
  []
  [scalar_2_src]
    type = FVBodyForce
    variable = scalar_2
    value = 5.0
  []
  [scalar_2_coupled_source]
    type = FVCoupledForce
    variable = scalar_2
    v = scalar_1
    coef = 0.05
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_x
    functor = '0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_y
    functor = '0'
  []
  [inlet-w]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_z
    functor = '1.1'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom '
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0.0
  []
  [walls-w]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_z
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'front'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'back left right top bottom'
    function = 0.0
  []
  [inlet_scalar_1]
    type = FVDirichletBC
    boundary = 'back'
    variable = scalar_1
    value = 1
  []
  [inlet_scalar_2]
    type = FVDirichletBC
    boundary = 'back'
    variable = scalar_2
    value = 2
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  passive_scalar_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system w_system'
  pressure_system = 'pressure_system'
  passive_scalar_systems = 'scalar_1_system scalar_2_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  passive_scalar_equation_relaxation = '0.98 0.98'
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  passive_scalar_absolute_tolerance = '1e-13 1e-13'
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(test/tests/misc/multiple-nl-systems/test-fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Problem]
  nl_sys_names = 'u v'
  error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    solver_sys = 'u'
  []
  [v]
    type = MooseVariableFVReal
    solver_sys = 'v'
  []
[]
[FVKernels]
  [diff_u]
    type = FVDiffusion
    variable = u
    coeff = 1.0
  []
  [diff_v]
    type = FVDiffusion
    variable = v
    coeff = 1.0
  []
  [force]
    type = FVCoupledForce
    variable = v
    v = u
  []
[]
[FVBCs]
  [left_u]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right_u]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
  [left_v]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 0
  []
  [right_v]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 1
  []
[]
[Preconditioning]
  [u]
    nl_sys = 'u'
    type = SMP
    petsc_options = '-snes_monitor'
    petsc_options_iname = '-pc_type -pc_hypre_type'
    petsc_options_value = 'hypre boomeramg'
  []
  [v]
    nl_sys = 'v'
    type = SMP
    petsc_options = '-snes_monitor'
    petsc_options_iname = '-pc_type -pc_hypre_type'
    petsc_options_value = 'hypre boomeramg'
  []
[]
[Executioner]
  type = SteadySolve2
  solve_type = 'NEWTON'
  first_nl_sys_to_solve = 'u'
  second_nl_sys_to_solve = 'v'
[]
[Functions]
  [exact]
    type = ParsedFunction
    value = '-1/6*x*x*x +7/6*x'
  []
[]
[Postprocessors]
  [error]
    type = ElementL2Error
    function = exact
    variable = v
    execute_on = FINAL
    outputs = 'csv'
  []
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = FINAL
  []
[]
[Outputs]
  print_nonlinear_residuals = false
  print_linear_residuals = false
  exodus = true
  [csv]
    type = CSV
    execute_on = 'FINAL'
  []
[]
(test/tests/indicators/analytical_indicator/analytical_indicator_fv.i)
[Mesh]
  [mesh]
  type = GeneratedMeshGenerator
  dim = 2
  nx = 20
  ny = 1
  []
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[Functions]
  [solution]
    type = ParsedFunction
    expression = (exp(x)-1)/(exp(1)-1)
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = coeff
  []
  [conv]
    type = FVAdvection
    variable = u
    velocity = '1 0 0'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Adaptivity]
  [Indicators]
    [error]
      type = AnalyticalIndicator
      variable = u
      function = solution
    []
  []
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet-constrained-average-value.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
  []
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[Kernels]
  [diff]
    type = ADDiffusion
    variable = u
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVBoundaryIntegralValueConstraint
    variable = v
    boundary = right
    phi0 = 42
    lambda = lambda
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[BCs]
  [left]
    type = ADDirichletBC
    variable = u
    boundary = left
    value = 7
  []
  [right]
    type = ADDirichletBC
    variable = u
    boundary = right
    value = 42
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
  hide = lambda
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 20
    ny = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_v}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [mixing_length]
    type = MooseVariableFVReal
  []
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  inactive = 'u_turb v_turb temp_turb'
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_x
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_turb]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_x
    rho = ${rho}
    mixing_length = 'mixing_length'
    momentum_component = 'x'
    u = vel_x
    v = vel_y
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = vel_y
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_turb]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_y
    rho = ${rho}
    mixing_length = 'mixing_length'
    momentum_component = 'y'
    u = vel_x
    v = vel_y
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T_fluid
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T_fluid
    v = power_density
  []
  [temp_turb]
    type = WCNSFVMixingLengthEnergyDiffusion
    variable = T_fluid
    rho = rho
    cp = cp
    mixing_length = 'mixing_length'
    schmidt_number = 1
    u = vel_x
    v = vel_y
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'top bottom'
    function = 0
  []
  # Inlet
  [inlet_u]
    type = INSFVInletVelocityBC
    variable = vel_x
    boundary = 'left'
    functor = ${inlet_v}
  []
  [inlet_v]
    type = INSFVInletVelocityBC
    variable = vel_y
    boundary = 'left'
    functor = 0
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'left'
    value = ${inlet_temp}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T_fluid
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[AuxKernels]
  inactive = 'mixing_len'
  [mixing_len]
    type = WallDistanceMixingLengthAux
    walls = 'top'
    variable = mixing_length
    execute_on = 'initial'
    delta = 0.5
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-3
    optimal_iterations = 6
  []
  end_time = 15
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  compute_scaling_once = false
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv-to-fe-coupling/1d.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 40
    xmax = 2
  []
[]
[Variables]
  [fv]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 1
  []
  [fe]
    initial_condition = 1
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = fv
    coeff = fv_prop
    coeff_interp_method = average
  []
  [coupled]
    type = FVCoupledForce
    v = fv
    variable = fv
  []
[]
[Kernels]
  [diff]
    type = ADFunctorMatDiffusion
    variable = fe
    diffusivity = fe_prop
  []
  [coupled]
    type = CoupledForce
    v = fv
    variable = fe
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = fv
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = fv
    boundary = right
    value = 1
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = fe
    boundary = left
    value = 0
  []
  [right]
    type = DirichletBC
    variable = fe
    boundary = right
    value = 1
  []
[]
[Materials]
  active = 'fe_mat fv_mat'
  [bad_mat]
    type = FEFVCouplingMaterial
    fe_var = fe
    fv_var = fv
    execute_on = 'linear nonlinear'
  []
  [fe_mat]
    type = FEFVCouplingMaterial
    fe_var = fe
    execute_on = 'linear nonlinear'
  []
  [fv_mat]
    type = FEFVCouplingMaterial
    fv_var = fv
  []
  [fe_mat_bad_dep]
    type = FEFVCouplingMaterial
    fe_var = fe
    declared_prop_name = bad
  []
  [fv_mat_bad_dep]
    type = FEFVCouplingMaterial
    fv_var = fv
    retrieved_prop_name = bad
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  line_search = 'none'
[]
[Outputs]
  exodus = true
[]
(test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 5
[]
[Variables]
  [./u]
    type = MooseVariableFVReal
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
  [force]
    type = FVCoupledForce
    v = v
    variable = u
  []
[]
[FunctorMaterials]
  [parsed]
    type = ADParsedFunctorMaterial
    property_name = 'v'
    functor_names = 'u'
    expression = 'if(u>0.1,1e6,0)'
  []
[]
[FVBCs]
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  [../]
[]
[Executioner]
  type = Steady
  line_search = 'none'
  solve_type = NEWTON
  nl_max_its = 5
  nl_div_tol = 10
  petsc_options = '-snes_converged_reason -ksp_converged_reason'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
(test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Materials]
  [mat_props]
    type = GenericFunctorMaterial
    prop_names = diffusivity
    prop_values = 1
  []
[]
[Postprocessors]
  [avg_flux_right]
    # Computes flux integral on the boundary, which should be -1
    type = SideDiffusiveFluxAverage
    variable = u
    boundary = right
    functor_diffusivity = diffusivity
  []
[]
[Executioner]
  type = Steady
  solve_type = PJFNK
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  nl_abs_tol = 1e-14
  nl_rel_tol = 1e-14
  l_abs_tol = 1e-14
  l_tol = 1e-6
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro01_fv.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * f * d^2 * phi^n / (1-phi)^m
[Mesh]
  [mesh]
  type = GeneratedMeshGenerator
    dim = 1
    nx = 3
    xmin = 0
    xmax = 3
  []
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    type = MooseVariableFVReal
    [FVInitialCondition]
      type = FVConstantIC
      value = 0
    []
  []
[]
[FVKernels]
  [flux]
    type = FVPorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[FVBCs]
  [ptop]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = FVDirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    type = MooseVariableFVReal
  []
  [perm_x]
    type = MooseVariableFVReal
  []
  [perm_y]
    type = MooseVariableFVReal
  []
  [perm_z]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [poro]
    type = ADPorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [permeability]
    type = ADPorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_fd2
    f = 0.1
    d = 5
    m = 2
    n = 7
  []
  [temperature]
    type = ADPorousFlowTemperature
  []
  [massfrac]
    type = ADPorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = ADPorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = ADPorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
[]
[Outputs]
  file_base = 'PermFromPoro01_out'
  csv = true
  execute_on = 'timestep_end'
[]
(test/tests/fvkernels/fv_simple_diffusion/unstructured-rz.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 20
  ny = 20
  elem_type = TRI3
  coord_type = RZ
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[FVBCs]
  [right]
    type = FVDirichletBC
    boundary = right
    value = 1
    variable = v
  []
[]
[Problem]
  type = FEProblem
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
[]
(test/tests/materials/boundary_material/fv_material_quadrature.i)
# Parsed material properties depend on the physical location of the element
# This requires the initialization of the quadrature in the FVFlux loop
[Mesh]
  type = GeneratedMesh
  dim = 2
  xmin = 0
  xmax = 1
  ymin = 0
  ymax = 1
  nx = 4
  ny = 4
  elem_type = QUAD9
[]
[Functions]
  [linear_x]
    type = ParsedFunction
    expression = 'x'
  []
  [piecewise_linear_x]
    type = PiecewiseLinear
    x = '-1 2'
    y = '-1 2'
    axis = 'x'
  []
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = k1
    coeff_interp_method = average
  []
  [r]
    type = FVReaction
    variable = u
  []
[]
[FVBCs]
  [all]
    type = FVDirichletBC
    variable = u
    boundary = 'left right bottom top'
    value = 1
  []
[]
[Materials]
  active = 'k1'
  [k1]
    type = ADGenericFunctorMaterial
    prop_names = 'k1'
    prop_values = linear_x
    block = 0
  []
  [k1_piecewise]
    type = ADGenericFunctorMaterial
    prop_names = 'k1'
    prop_values = piecewise_linear_x
    block = 0
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
[]
[Outputs]
  execute_on = 'timestep_end'
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_cavity.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 0.5'
    dy = '1'
    ix = '8 5'
    iy = '8'
    subdomain_id = '0 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = 0
    paired_block = 1
    new_boundary = 'interface'
  []
  [secondary_interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'interface'
    primary_block = 1
    paired_block = 0
    new_boundary = 'secondary_interface'
  []
[]
[GlobalParams]
  # retain behavior at time of test creation
  two_term_boundary_expansion = false
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = 0
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    block = 0
  []
  [v]
    type = INSFVVelocityVariable
    block = 0
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    block = 0
  []
  [Ts]
    type = INSFVEnergyVariable
    block = 1
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[ICs]
  [T]
    type = ConstantIC
    variable = T
    value = 1
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    block = 0
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    block = 0
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    block = 0
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    block = 0
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    block = 0
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    block = 0
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    block = 0
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    block = 0
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
    block = 0
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    block = 0
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = Ts
    block = 1
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    boundary = 'interface'
    h = 5
    T_solid = Ts
    T_fluid = T
    subdomain1 = 0
    subdomain2 = 1
    bulk_distance = 0.3
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left interface bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left interface top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = Ts
    boundary = 'right'
    value = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = 'asm      lu           NONZERO                   200'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_max_its = 6
  l_max_its = 200
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
  []
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[Kernels]
  [diff]
    type = ADDiffusion
    variable = u
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[BCs]
  [left]
    type = ADDirichletBC
    variable = u
    boundary = left
    value = 7
  []
  [right]
    type = ADDirichletBC
    variable = u
    boundary = right
    value = 42
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/dispersion/diff01_fv.i)
# Test diffusive part of FVPorousFlowDispersiveFlux kernel by setting dispersion
# coefficients to zero. Pressure is held constant over the mesh, and gravity is
# set to zero so that no advective transport of mass takes place.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
    xmax = 10
    bias_x = 1.2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
    type = MooseVariableFVReal
  []
  [massfrac0]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [velocity]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [velocity]
    type = ADPorousFlowDarcyVelocityComponent
    variable = velocity
    component = x
  []
[]
[ICs]
  [pp]
    type = ConstantIC
    variable = pp
    value = 1e5
  []
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    value = 1
    variable = massfrac0
    boundary = left
  []
  [right]
    type = FVDirichletBC
    value = 0
    variable = massfrac0
    boundary = right
  []
  [pright]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 1e5
  []
  [pleft]
    type = FVDirichletBC
    variable = pp
    boundary = left
    value = 1e5
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [diff0_pp]
    type = FVPorousFlowDispersiveFlux
    fluid_component = 0
    variable = pp
    disp_trans = 0
    disp_long = 0
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [diff1_x]
    type = FVPorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro]
    type = ADPorousFlowPorosityConst
    porosity = 0.3
  []
  [diff]
    type = ADPorousFlowDiffusivityConst
    diffusion_coeff = '1 1'
    tortuosity = 0.1
  []
  [relp]
    type = ADPorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 20
[]
[VectorPostprocessors]
  [xmass]
    type = ElementValueSampler
    sort_by = id
    variable = massfrac0
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(test/tests/fvkernels/fv_adapt/steady-adapt.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 2
    ny = 1
    elem_type = QUAD4
  []
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
    type = MooseVariableFVReal
  []
[]
[Functions]
  [exact-quadratic]
    type = ParsedFunction
    expression = '-(x-1)^2+1'
  []
  [exact-linear]
    type = ParsedFunction
    expression = 'x'
  []
[]
[FVKernels]
  inactive = 'source'
  [diff]
    type = FVDiffusion
    variable = u
    coeff = coeff
    use_point_neighbors = true
  []
  [source]
    type = FVBodyForce
    variable = u
    function = 2
  []
[]
[FVBCs]
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'hypre'
[]
[Adaptivity]
  marker = box
  initial_steps = 1
  [Markers]
    [box]
      bottom_left = '0.5 0 0'
      inside = refine
      top_right = '1 1 0'
      outside = do_nothing
      type = BoxMarker
    []
  []
[]
[Outputs]
  exodus = true
  csv = true
  [console]
    type = Console
    system_info = 'framework mesh aux nonlinear relationship execution'
  []
[]
[Postprocessors]
  [error]
    type = ElementL2Error
    variable = u
    function = exact-linear
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]
(test/tests/postprocessors/element_variable_value/elemental_variable_value_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 1
  ymax = 0.1
[]
[Variables]
  [./u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 0.1
  [../]
[]
[FVBCs]
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 1
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 10
  [../]
[]
[Executioner]
  type = Steady
  solve_type = PJFNK
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
  [./elem_left]
    type = ElementalVariableValue
    variable = u
    elementid = 0
  []
  [./elem_right]
    type = ElementalVariableValue
    variable = u
    elementid = 9
  []
[]
[Outputs]
  csv = true
[]
(test/tests/bounds/constant_bounds_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  xmin = 0
  xmax = 1
  nx = 10
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [v]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [bounds_dummy]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[FVKernels]
  [diff_u]
    type = FVDiffusion
    variable = u
    coeff = 4
  []
  [reaction_u]
    type = FVReaction
    variable = u
  []
  [diff_v]
    type = FVDiffusion
    variable = v
    coeff = 2
  []
  [reaction_v]
    type = FVReaction
    variable = v
  []
[]
[FVBCs]
  [left_u]
    type = FVDirichletBC
    variable = u
    boundary = '0'
    value = -0.5
  []
  [right_u]
    type = FVNeumannBC
    variable = u
    boundary = 1
    value = 30
  []
  [left_v]
    type = FVDirichletBC
    variable = v
    boundary = '0'
    value = 4
  []
  [right_v]
    type = FVNeumannBC
    variable = v
    boundary = 1
    value = -40
  []
[]
[Bounds]
  [u_upper_bound]
    type = ConstantBounds
    variable = bounds_dummy
    bounded_variable = u
    bound_type = upper
    bound_value = 1
  []
  [u_lower_bound]
    type = ConstantBounds
    variable = bounds_dummy
    bounded_variable = u
    bound_type = lower
    bound_value = 0
  []
  [v_upper_bound]
    type = ConstantBounds
    variable = bounds_dummy
    bounded_variable = v
    bound_type = upper
    bound_value = 3
  []
  [v_lower_bound]
    type = ConstantBounds
    variable = bounds_dummy
    bounded_variable = v
    bound_type = lower
    bound_value = -1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-snes_type'
  petsc_options_value = 'vinewtonrsls'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
mu = 1
rho = 1.1
beta = 1e-4
k = .01
cp = 1000
velocity_interp_method = 'rc'
advected_interp_method = 'average'
l = 4
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = ${l}
    nx = 8
    ny = 8
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    rhie_chow_user_object = 'rc'
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    rhie_chow_user_object = 'rc'
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    rhie_chow_user_object = 'rc'
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rhie_chow_user_object = 'rc'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right bottom top'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 0
  []
[]
[FluidProperties]
  [fp]
    type = SimpleFluidProperties
    density0 = ${rho}
    thermal_expansion = ${beta}
  []
[]
[FunctorMaterials]
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  dt = 1
  end_time = 10
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      300                lu           NONZERO'
  nl_abs_tol = 1e-11
  automatic_scaling = true
[]
[Postprocessors]
  [rayleigh_1]
    type = RayleighNumber
    rho_min = rho_min
    rho_max = rho_max
    rho_ave = ${rho}
    l = ${l}
    mu_ave = ${mu}
    k_ave = ${k}
    cp_ave = ${cp}
    gravity_magnitude = 9.81
  []
  [rayleigh_2]
    type = RayleighNumber
    T_cold = T_min
    T_hot = T_max
    rho_ave = ${rho}
    beta = ${beta}
    l = ${l}
    mu_ave = ${mu}
    k_ave = ${k}
    cp_ave = ${cp}
    gravity_magnitude = 9.81
  []
  [rho_min]
    type = ADElementExtremeFunctorValue
    functor = 'rho'
    value_type = 'min'
  []
  [rho_max]
    type = ADElementExtremeFunctorValue
    functor = 'rho'
    value_type = 'max'
  []
  [T_min]
    type = ADElementExtremeFunctorValue
    functor = 'T'
    value_type = 'min'
  []
  [T_max]
    type = ADElementExtremeFunctorValue
    functor = 'T'
    value_type = 'max'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.0'
    dy = '0.25 0.25 0.25'
    ix = '5'
    iy = '2 2 2'
    subdomain_id = '1 2 3'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-2'
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator-2
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-3
    combinatorial_geometry = 'y < 0.25 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-2
  []
  [outlet-3]
    type = ParsedGenerateSideset
    input = outlet-2
    combinatorial_geometry = 'y > 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T-1]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-1'
    value = 310
  []
  [inlet-T-2]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-2'
    value = 320
  []
  [inlet-T-3]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-3'
    value = 330
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1 3'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-1'
  []
  [outlet_T2]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-2'
  []
  [outlet_T3]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-3'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/porous_flow/test/tests/gravity/grav01a_fv.i)
# Checking that gravity head is established using FV
# 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# fully saturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    type = MooseVariableFVReal
  []
[]
[ICs]
  [p]
    type = RandomIC
    variable = pp
    min = 0
    max = 1
  []
[]
[FVKernels]
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_pp]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 1.2 0 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[FVBCs]
  [z]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
[]
[Postprocessors]
  [pp_base]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
  [pp_analytical]
    type = FunctionValuePostprocessor
    function = ana_pp
    point = '-1 0 0'
  []
  [pp_00]
    type = PointValue
    variable = pp
    point = '0 0 0'
  []
  [pp_01]
    type = PointValue
    variable = pp
    point = '-0.1 0 0'
  []
  [pp_02]
    type = PointValue
    variable = pp
    point = '-0.2 0 0'
  []
  [pp_03]
    type = PointValue
    variable = pp
    point = '-0.3 0 0'
  []
  [pp_04]
    type = PointValue
    variable = pp
    point = '-0.4 0 0'
  []
  [pp_05]
    type = PointValue
    variable = pp
    point = '-0.5 0 0'
  []
  [pp_06]
    type = PointValue
    variable = pp
    point = '-0.6 0 0'
  []
  [pp_07]
    type = PointValue
    variable = pp
    point = '-0.7 0 0'
  []
  [pp_08]
    type = PointValue
    variable = pp
    point = '-0.8 0 0'
  []
  [pp_09]
    type = PointValue
    variable = pp
    point = '-0.9 0 0'
  []
  [pp_10]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  [csv]
    type = CSV
  []
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 4
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = x
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_x
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = y
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_y
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_x'
    ghost_layers = 5
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_y'
    ghost_layers = 5
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
    outputs = 'out'
    output_properties = 'phase_1'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  print_linear_residuals = true
  print_nonlinear_residuals = true
  [out]
    type = Exodus
    hide = 'Re lin cum_lin'
  []
  [perf]
    type = PerfGraphOutput
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
  []
  [lin]
    type = NumLinearIterations
  []
  [cum_lin]
    type = CumulativeValuePostprocessor
    postprocessor = lin
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/segregated/BFS_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe BFS
# Case Number: 031
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H/ Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [gen]
    type = CartesianMeshGenerator
    dim = 2
    dx = '${fparse 10.0*H} ${fparse 20.0*H}'
    dy = '${H} ${fparse 5*H}'
    ix = '8 16'
    iy = '2 8'
    subdomain_id = '
                    2 1
                    1 1
                  '
  []
  [corner_walls]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block ='1'
    paired_block ='2'
    new_boundary = 'wall-side'
  []
  [delete_bottom]
    type = BlockDeletionGenerator
    input = corner_walls
    block ='2'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e-8
    solver_sys = pressure_system
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [inlet_TKE]
    type = INSFVInletIntensityTKEBC
    boundary = 'left'
    variable = TKE
    u = vel_x
    v = vel_y
    intensity = ${intensity}
  []
  [inlet_TKED]
    type = INSFVMixingLengthTKEDBC
    boundary = 'left'
    variable = TKED
    tke = TKE
    characteristic_length = '${fparse 2*H}'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    functor = 0
  []
  [walls-u]
    type = FVDirichletBC
    boundary = ${walls}
    variable = vel_x
    value = 0
  []
  [walls-v]
    type = FVDirichletBC
    boundary = ${walls}
    variable = vel_y
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = ${walls}
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.3 0.3'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  [console]
    type = Console
    outlier_variable_norms = false
  []
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_entry_channel_wall]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_entry_channel]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(test/tests/postprocessors/fvfluxbc_integral/fvfluxbc_integral.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  ny = 3
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [left]
    type = FVNeumannBC
    variable = u
    boundary = left
    value = 18
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Postprocessors]
  [flux_left]
    type = SideFVFluxBCIntegral
    boundary = left
    fvbcs = 'left'
  []
[]
[Executioner]
  type = Steady
  solve_type = PJFNK
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  nl_abs_tol = 1e-9
  nl_rel_tol = 1e-9
  l_abs_tol = 1e-9
  l_tol = 1e-6
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/examples/laser-welding/2d-fv.i)
period=.2e-4 # s
endtime=${fparse 3 * period} # s
timestep=${fparse period / 100} # s
surfacetemp=2700 # K
bottomtemp=2700 # K
sb=5.67e-8 # W/(m^2 K^4)
advected_interp_method='upwind'
velocity_interp_method='rc'
rho='rho'
mu='mu'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  xmin = -.7e-3 # m
  xmax = 0.7e-3 # m
  ymin = -.35e-3 # m
  ymax = 0
  nx = 75
  ny = 20
  displacements = 'disp_x disp_y'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
    use_displaced_mesh = true
    disp_x = disp_x
    disp_y = disp_y
  []
[]
[Problem]
  extra_tag_vectors = 'e_time e_advection e_conduction e_laser e_radiation e_mesh_advection'
[]
[AuxVariables]
  [mu_out]
    type = MooseVariableFVReal
  []
  [e_time]
    type = MooseVariableFVReal
  []
  [e_advection]
    type = MooseVariableFVReal
  []
  [e_mesh_advection]
    type = MooseVariableFVReal
  []
  [e_conduction]
    type = MooseVariableFVReal
  []
  [e_laser]
    type = MooseVariableFVReal
  []
  [e_radiation]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mu_out]
    type = FunctorAux
    functor = mu
    variable = mu_out
    execute_on = timestep_end
  []
  [e_time]
    type = TagVectorAux
    variable = e_time
    vector_tag = e_time
    v = T
  []
  [e_advection]
    type = TagVectorAux
    variable = e_advection
    vector_tag = e_advection
    v = T
  []
  [e_mesh_advection]
    type = TagVectorAux
    variable = e_mesh_advection
    vector_tag = e_mesh_advection
    v = T
  []
  [e_conduction]
    type = TagVectorAux
    variable = e_conduction
    vector_tag = e_conduction
    v = T
  []
  [e_laser]
    type = TagVectorAux
    variable = e_laser
    vector_tag = e_laser
    v = T
  []
  [e_radiation]
    type = TagVectorAux
    variable = e_radiation
    vector_tag = e_radiation
    v = T
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [disp_x]
  []
  [disp_y]
  []
[]
[ICs]
  [T]
    type = FunctionIC
    variable = T
    function = '${surfacetemp} + ((${surfacetemp} - ${bottomtemp}) / .35e-3) * y'
  []
[]
[Kernels]
  [disp_x]
    type = MatDiffusion
    variable = disp_x
    diffusivity = 1e6
  []
  [disp_y]
    type = MatDiffusion
    variable = disp_y
    diffusivity = 1e6
  []
[]
[FVKernels]
  # pressure equation
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    use_displaced_mesh = true
    boundaries_to_force = top
  []
  # momentum equations
  # u equation
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
    use_displaced_mesh = true
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
    use_displaced_mesh = true
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
    use_displaced_mesh = true
  []
  [u_pressure]
    type = INSFVMomentumPressureFlux
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    use_displaced_mesh = true
  []
  [u_mesh_advection_volumetric]
    type = INSFVMomentumMeshAdvection
    variable = vel_x
    momentum_component = 'x'
    rho = ${rho}
    disp_x = disp_x
    disp_y = disp_y
    add_to_a = false
    use_displaced_mesh = true
  []
  # v equation
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    use_displaced_mesh = true
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
    use_displaced_mesh = true
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
    use_displaced_mesh = true
  []
  [v_pressure]
    type = INSFVMomentumPressureFlux
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    use_displaced_mesh = true
  []
  [v_mesh_advection_volumetric]
    type = INSFVMomentumMeshAdvection
    variable = vel_y
    momentum_component = 'y'
    rho = ${rho}
    disp_x = disp_x
    disp_y = disp_y
    add_to_a = false
    use_displaced_mesh = true
  []
  # energy equation
  [temperature_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho}
    dh_dt = dh_dt
    use_displaced_mesh = true
    extra_vector_tags = 'e_time'
  []
  [temperature_advection]
    type = INSFVEnergyAdvection
    variable = T
    use_displaced_mesh = true
    extra_vector_tags = 'e_advection'
  []
  [temperature_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
    use_displaced_mesh = true
    extra_vector_tags = 'e_conduction'
  []
  [temperature_mesh_advection_volumetric]
    type = INSFVMeshAdvection
    variable = T
    rho = ${rho}
    disp_x = disp_x
    disp_y = disp_y
    advected_quantity = 'h'
    use_displaced_mesh = true
    extra_vector_tags = 'e_mesh_advection'
  []
[]
[FVBCs]
  # momentum boundary conditions
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'bottom right left'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'bottom right left'
    function = 0
  []
  [vapor_recoil_x]
    type = INSFVVaporRecoilPressureMomentumFluxBC
    variable = vel_x
    boundary = 'top'
    momentum_component = 'x'
    rc_pressure = rc_pressure
    use_displaced_mesh = true
  []
  [vapor_recoil_y]
    type = INSFVVaporRecoilPressureMomentumFluxBC
    variable = vel_y
    boundary = 'top'
    momentum_component = 'y'
    rc_pressure = rc_pressure
    use_displaced_mesh = true
  []
  # energy boundary conditions
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = '${bottomtemp}'
  []
  [radiation_flux]
    type = FVFunctorRadiativeBC
    variable = T
    boundary = 'top'
    emissivity = '1'
    Tinfinity = 300
    stefan_boltzmann_constant = ${sb}
    use_displaced_mesh = true
    extra_vector_tags = 'e_radiation'
  []
  [weld_flux]
    type = FVGaussianEnergyFluxBC
    variable = T
    boundary = 'top'
    P0 = 159.96989792079225
    R = 1.25e-4
    x_beam_coord = '2e-4 * sin(t * 2 * pi / ${period})'
    y_beam_coord = 0
    z_beam_coord = 0
    use_displaced_mesh = true
    extra_vector_tags = 'e_laser'
  []
[]
[BCs]
  # displacement boundary conditions
  [x_no_disp]
    type = DirichletBC
    variable = disp_x
    boundary = 'bottom'
    value = 0
  []
  [y_no_disp]
    type = DirichletBC
    variable = disp_y
    boundary = 'bottom'
    value = 0
  []
  [displace_x_top]
    type = INSADDisplaceBoundaryBC
    boundary = 'top'
    variable = 'disp_x'
    velocity = 'vel'
    component = 0
    associated_subdomain = 0
  []
  [displace_y_top]
    type = INSADDisplaceBoundaryBC
    boundary = 'top'
    variable = 'disp_y'
    velocity = 'vel'
    component = 1
    associated_subdomain = 0
  []
  [displace_x_top_dummy]
    type = INSADDummyDisplaceBoundaryIntegratedBC
    boundary = 'top'
    variable = 'disp_x'
    velocity = 'vel'
    component = 0
  []
  [displace_y_top_dummy]
    type = INSADDummyDisplaceBoundaryIntegratedBC
    boundary = 'top'
    variable = 'disp_y'
    velocity = 'vel'
    component = 1
  []
[]
[FunctorMaterials]
  [steel]
    type = AriaLaserWeld304LStainlessSteelFunctorMaterial
    temperature = T
    beta = 1e7
  []
  [disp_vec_value_and_dot]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'disp_vec'
    prop_values = 'disp_x disp_y 0'
  []
  [vel]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'vel'
    prop_values = 'vel_x vel_y 0'
  []
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type -mat_mffd_err'
    petsc_options_value = 'lu       NONZERO               strumpack                  1e-6'
  []
[]
[Executioner]
  type = Transient
  end_time = ${endtime}
  dtmin = 1e-8
  dtmax = ${timestep}
  petsc_options = '-snes_converged_reason -ksp_converged_reason -options_left'
  solve_type = 'PJFNK'
  line_search = 'none'
  nl_max_its = 12
  l_max_its = 100
  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 7
    dt = ${timestep}
    linear_iteration_ratio = 1e6
    growth_factor = 1.1
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
[Debug]
  show_var_residual_norms = true
[]
[Postprocessors]
  [laser_flux]
    type = TagVectorSum
    vector = 'e_laser'
  []
  [volume_rho_cp_dT]
    type = TagVectorSum
    vector = 'e_time'
  []
  [conduction]
    type = TagVectorSum
    vector = 'e_conduction'
  []
  [advection]
    type = TagVectorSum
    vector = 'e_advection'
  []
  [mesh_advection]
    type = TagVectorSum
    vector = 'e_mesh_advection'
  []
  [radiation]
    type = TagVectorSum
    vector = 'e_radiation'
  []
  [total_sum]
    type = ParsedPostprocessor
    expression = 'laser_flux + volume_rho_cp_dT + advection + mesh_advection + conduction + radiation'
    pp_names = 'laser_flux volume_rho_cp_dT advection mesh_advection conduction radiation'
  []
[]
(test/tests/fvkernels/block-restriction/just-mat-blk-restriction.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 50
    xmax = 4
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '2.0 0 0'
    block_id = 1
    top_right = '4.0 1.0 0'
  []
  [left_right]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'left_right'
  []
  [right_left]
    input = left_right
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '1'
    paired_block = '0'
    new_boundary = 'right_left'
  []
[]
[Variables]
  [fv]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 1
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = fv
    coeff = diff
    coeff_interp_method = average
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = fv
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = fv
    boundary = right
    value = 1
  []
[]
[Materials]
  [left]
    type = ADGenericFunctorMaterial
    prop_names = 'diff'
    prop_values = '1'
    block = 0
  []
  [right]
    type = ADGenericFunctorMaterial
    prop_names = 'diff'
    prop_values = '2'
    block = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  line_search = 'none'
[]
[Outputs]
  exodus = true
[]
(test/tests/executioners/nl_forced_its/nl_forced_its.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 5
[]
[Variables]
  [./u]
    type = MooseVariableFVReal
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
  [force]
    type = FVCoupledForce
    v = v
    variable = u
  []
[]
[FunctorMaterials]
  [parsed]
    type = ADParsedFunctorMaterial
    property_name = 'v'
    functor_names = 'u'
    expression = 'if(u>0.1,1e6,0)'
  []
[]
[FVBCs]
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  [../]
[]
[Executioner]
  type = Steady
  line_search = 'none'
  solve_type = NEWTON
  nl_max_its = 5
  nl_forced_its = 3
  nl_abs_div_tol = 1e+3
  petsc_options = '-snes_converged_reason -ksp_converged_reason'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase_fv.i)
# 2 phase heat conduction, with saturation fixed at 0.5
# Apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [phase0_porepressure]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [phase1_saturation]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
  [temp]
    type = MooseVariableFVReal
    initial_condition = 200
  []
[]
[FVKernels]
  [dummy_p0]
    type = FVTimeKernel
    variable = phase0_porepressure
  []
  [dummy_s1]
    type = FVTimeKernel
    variable = phase1_saturation
  []
  [energy_dot]
    type = FVPorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_conduction]
    type = FVPorousFlowHeatConduction
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 0.4
    thermal_expansion = 0
    cv = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
    temperature = temp
  []
  [thermal_conductivity]
    type = ADPorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0.3 0 0  0 0 0  0 0 0'
    wet_thermal_conductivity = '1.7 0 0  0 0 0  0 0 0'
    exponent = 1.0
    aqueous_phase_number = 1
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = phase0_porepressure
    phase1_saturation = phase1_saturation
    capillary_pressure = pc
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.8
  []
  [rock_heat]
    type = ADPorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 0.25
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    boundary = left
    value = 300
    variable = temp
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E1
  end_time = 1E2
[]
[Postprocessors]
  [t005]
    type = PointValue
    variable = temp
    point = '5 0 0'
    execute_on = 'initial timestep_end'
  []
  [t015]
    type = PointValue
    variable = temp
    point = '15 0 0'
    execute_on = 'initial timestep_end'
  []
  [t025]
    type = PointValue
    variable = temp
    point = '25 0 0'
    execute_on = 'initial timestep_end'
  []
  [t035]
    type = PointValue
    variable = temp
    point = '35 0 0'
    execute_on = 'initial timestep_end'
  []
  [t045]
    type = PointValue
    variable = temp
    point = '45 0 0'
    execute_on = 'initial timestep_end'
  []
  [t055]
    type = PointValue
    variable = temp
    point = '55 0 0'
    execute_on = 'initial timestep_end'
  []
  [t065]
    type = PointValue
    variable = temp
    point = '65 0 0'
    execute_on = 'initial timestep_end'
  []
  [t075]
    type = PointValue
    variable = temp
    point = '75 0 0'
    execute_on = 'initial timestep_end'
  []
  [t085]
    type = PointValue
    variable = temp
    point = '85 0 0'
    execute_on = 'initial timestep_end'
  []
  [t095]
    type = PointValue
    variable = temp
    point = '95 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = two_phase_fv
  csv = true
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar01_fv.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# k = k_anisotropy * perm
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 3
    xmin = 0
    xmax = 3
  []
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    type = MooseVariableFVReal
    [FVInitialCondition]
      type = FVConstantIC
      value = 0
    []
  []
[]
[FVKernels]
  [flux]
    type = FVPorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[FVBCs]
  [ptop]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = FVDirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [perm_var]
    type = MooseVariableFVReal
  []
  [perm_x]
    type = MooseVariableFVReal
  []
  [perm_y]
    type = MooseVariableFVReal
  []
  [perm_z]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [perm_var]
    type = ConstantAux
    value = 2
    variable = perm_var
  []
  [perm_x]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_left]
    type = PointValue
    variable = perm_x
    point = '0.5 0 0'
  []
  [perm_y_left]
    type = PointValue
    variable = perm_y
    point = '0.5 0 0'
  []
  [perm_z_left]
    type = PointValue
    variable = perm_z
    point = '0.5 0 0'
  []
  [perm_x_right]
    type = PointValue
    variable = perm_x
    point = '2.5 0 0'
  []
  [perm_y_right]
    type = PointValue
    variable = perm_y
    point = '2.5 0 0'
  []
  [perm_z_right]
    type = PointValue
    variable = perm_z
    point = '2.5 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [permeability]
    type = ADPorousFlowPermeabilityTensorFromVar
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    perm = perm_var
  []
  [temperature]
    type = ADPorousFlowTemperature
  []
  [massfrac]
    type = ADPorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = ADPorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = ADPorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
[]
[Outputs]
  file_base = 'PermTensorFromVar01_out'
  csv = true
  execute_on = 'timestep_end'
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '10 10'
    iy = '5'
    subdomain_id = '1 2'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system solid_energy_system'
  previous_nl_solution_required = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
    solver_sys = pressure_system
  []
  [T_fluid]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    solver_sys = energy_system
    initial_condition = 200
  []
  [T_solid]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
    solver_sys = solid_energy_system
    initial_condition = 200
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = bottom
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 250
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv cp'
    prop_values = '0.1 ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  solid_energy_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  solid_energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  solid_energy_system = 'solid_energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.4
  energy_equation_relaxation = 1.0
  num_iterations = 160
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  solid_energy_absolute_tolerance = 1e-12
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/solidification_no_advection.i)
rho_solid = 1.0
rho_liquid = 1.0
k_solid = 0.03
k_liquid = 0.1
cp_solid = 1.0
cp_liquid = 1.0
T_liquidus = 260
T_solidus = 240
L = 1.0
T_hot = 300.0
T_cold = 200.0
N = 10
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = ${N}
    ny = ${N}
  []
[]
[AuxVariables]
  [fl]
    type = MooseVariableFVReal
    initial_condition = 1.0
  []
  [density]
    type = MooseVariableFVReal
  []
  [th_cond]
    type = MooseVariableFVReal
  []
  [cp_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [compute_fl]
    type = NSLiquidFractionAux
    variable = fl
    temperature = T
    T_liquidus = '${T_liquidus}'
    T_solidus = '${T_solidus}'
    execute_on = 'TIMESTEP_END'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho_mixture'
    variable = 'density'
  []
  [th_cond_out]
    type = FunctorAux
    functor = 'k_mixture'
    variable = 'th_cond'
  []
  [cp_out]
    type = FunctorAux
    functor = 'cp_mixture'
    variable = 'cp_var'
  []
[]
[Variables]
  [T]
    type = INSFVEnergyVariable
    initial_condition = '${T_hot}'
  []
[]
[FVKernels]
  [T_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho_liquid}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 'k_mixture'
    variable = T
  []
  [energy_source]
    type = NSFVPhaseChangeSource
    variable = T
    L = ${L}
    liquid_fraction = fl
    T_liquidus = ${T_liquidus}
    T_solidus = ${T_solidus}
    rho = 'rho_mixture'
  []
[]
[FVBCs]
  [heated_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_hot}'
    boundary = 'top'
  []
  [cooled_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_cold}'
    boundary = 'bottom'
  []
[]
[FunctorMaterials]
  [eff_cp]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
    phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
    prop_names = 'cp_mixture k_mixture rho_mixture'
    phase_1_fraction = fl
  []
  [h]
    type = INSFVEnthalpyFunctorMaterial
    cp = ${cp_liquid}
    temperature = T
    rho = ${rho_liquid}
  []
[]
[Executioner]
  type = Transient
  dt = 0.5
  end_time = 50.0
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_abs_tol = 1e-12
  nl_max_its = 50
  steady_state_detection = true
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/scaling/auto-scaling.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff_u]
    type = FVDiffusion
    variable = u
    coeff = coeff_u
  []
  [diff_v]
    type = FVDiffusion
    variable = v
    coeff = coeff_v
  []
[]
[FVBCs]
  [left_u]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right_u]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
  [left_v]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 0
  []
  [right_v]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 1
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff_u coeff_v'
    prop_values = '1      1e-20'
  []
[]
[Executioner]
  type = Steady
  petsc_options = '-pc_svd_monitor'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'svd'
  automatic_scaling = true
  verbose = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 5
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of
# bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 5.031429
dp = 0.005
inlet_phase_2 = 0.442
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 60}'
    ymin = 0
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_phase_2}
  []
  [interface_area]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_interface_area}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_x'
    v_slip = 'vel_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = ${fparse l/2}
    rho = 'rho_mixture'
    rho_d = 'rho'
    pressure = 'pressure'
    k_c = '${fparse mass_exchange_coeff}'
    fd = 'phase_2'
    sigma = 1e-3
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${outlet_pressure}'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = ${inlet_interface_area}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [symmetry-phase-2]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = phase_2
  []
  [symmetry-interface-area]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = interface_area
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [bubble_properties]
    type = GeneralFunctorFluidProps
    fp = 'fp'
    pressure = 'pressure'
    T_fluid = 300.0
    speed = 1.0
    characteristic_length = 1.0
    porosity = 1.0
    output_properties = 'rho'
    outputs = 'out'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = 'rho ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  line_search = 'none'
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/with-empty-block.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
[Problem]
  kernel_coverage_check = false
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  velocity_interp_method = 'rc'
  advected_interp_method = 'average'
[]
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3683 0.0127'
    dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
    ix = '2 1'
    iy = '1 2 3 2 1'
    subdomain_id = '0 0
                    1 0
                    2 0
                    1 0
                    0 0
                    '
  []
  [rename_block_name]
    type = RenameBlockGenerator
    input = cmg
    old_block = '0 1 2'
    new_block = 'wall_block spacer_block porous_block'
  []
  [solid_fluid_interface_1]
    type = SideSetsBetweenSubdomainsGenerator
    input = rename_block_name
    primary_block = porous_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [solid_fluid_interface_2]
    type = SideSetsBetweenSubdomainsGenerator
    input = solid_fluid_interface_1
    primary_block = spacer_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [wall_left_boundary_1]
    type = SideSetsFromBoundingBoxGenerator
    input = solid_fluid_interface_2
    bottom_left = '0 0 0'
    top_right = '0.1 0.0127 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [wall_left_boundary_2]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_1
    bottom_left = '0 2.9857 0'
    top_right = '0.1 2.9984 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [fluid_left_boundary]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_2
    bottom_left = '0 0.0127 0'
    top_right = '0.1 2.9857 0'
    included_boundaries = left
    boundary_new = fluid_left
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
    block = 'spacer_block porous_block'
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'spacer_block porous_block'
  []
  [T_fluid]
    type = INSFVEnergyVariable
    block = 'spacer_block porous_block'
  []
  [lambda]
    family = SCALAR
    order = FIRST
    block = 'spacer_block porous_block'
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    block = 'spacer_block porous_block'
  []
[]
[FVKernels]
  # No mass time derivative because imcompressible (derivative = 0)
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    block = 'spacer_block porous_block'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_x
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_y
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_conduction]
    type = PINSFVEnergyDiffusion
    k = 'k_fluid'
    variable = T_fluid
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    block = 'spacer_block porous_block'
  []
  [heat_source]
    type = FVBodyForce
    variable = T_fluid
    function = ${Q}
    block = 'porous_block'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_x
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_y
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [reflective_x]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_x
    boundary = fluid_left
    momentum_component = 'x'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_y]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_y
    boundary = fluid_left
    momentum_component = 'y'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_p]
    type = INSFVSymmetryPressureBC
    boundary = fluid_left
    variable = pressure
  []
  [T_reflective]
    type = FVNeumannBC
    variable = T_fluid
    boundary = fluid_left
    value = 0
  []
  [T_cold_boundary]
    type = FVDirichletBC
    variable = T_fluid
    boundary = solid_fluid_interface
    value = ${T_cold}
  []
[]
[ICs]
  [porosity_spacer]
    type = ConstantIC
    variable = porosity
    block = spacer_block
    value = 1.0
  []
  [porosity_fuel]
    type = ConstantIC
    variable = porosity
    block = porous_block
    value = 0.1
  []
  [temp_ic_fluid]
    type = ConstantIC
    variable = T_fluid
    value = ${T_cold}
    block = 'spacer_block porous_block'
  []
  [superficial_vel_x]
    type = ConstantIC
    variable = superficial_vel_x
    value = 1E-5
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = ConstantIC
    variable = superficial_vel_y
    value = 1E-5
    block = 'spacer_block porous_block'
  []
[]
[FunctorMaterials]
  [functor_constants_fluid]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k_fluid'
    prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
    block = 'spacer_block porous_block'
  []
  [density_fluid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [functor_constants_steel]
    # We need this to avoid errors for materials not existing on every block
    type = ADGenericFunctorMaterial
    prop_names = 'dummy'
    prop_values = 0.0
    block = wall_block
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  line_search = none
  nl_rel_tol = 1e-10
  nl_abs_tol = 1e-10
[]
[Outputs]
  exodus = true
[]
[Debug]
  show_var_residual_norms = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fv.i)
# 1phase, heat advecting with a moving fluid using FV
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 50
    xmin = 0
    xmax = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [temp]
    type = MooseVariableFVReal
  []
  [pp]
    type = MooseVariableFVReal
  []
[]
[FVICs]
  [pp]
    type = FVFunctionIC
    variable = pp
    function = '1-x'
  []
  [temp]
    type = FVFunctionIC
    variable = temp
    function = 'if(x<0.02, 300, 200)'
  []
[]
[FVBCs]
  [pp0]
    type = FVDirichletBC
    variable = pp
    boundary = left
    value = 1
  []
  [pp1]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [hot]
    type = FVDirichletBC
    variable = temp
    boundary = left
    value = 300
  []
  [cold]
    type = FVDirichletBC
    variable = temp
    boundary = right
    value = 200
  []
[]
[FVKernels]
  [mass_dot]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [advection]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [energy_dot]
    type = FVPorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_advection]
    type = FVPorousFlowHeatAdvection
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.6
    alpha = 1.3
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 100
    density0 = 1000
    viscosity = 4.4
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
    temperature = temp
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.2
  []
  [rock_heat]
    type = ADPorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1.1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [massfrac]
    type = ADPorousFlowMassFraction
  []
  [PS]
    type = ADPorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.01
  end_time = 0.6
[]
[VectorPostprocessors]
  [T]
    type = ElementValueSampler
    sort_by = x
    variable = 'temp'
  []
[]
[Outputs]
  [csv]
    type = CSV
    execute_vector_postprocessors_on = final
  []
[]
(test/tests/mesh/preparedness/test.i)
[GlobalParams]
  prevent_boundary_ids_overlap = false
[]
[Mesh]
  [region_2_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.065 0.13 0.305 0.17 0.196'
      ix = '  2    2     2    2     2'
      dy = '0.85438 '
      iy = '6'
      subdomain_id = '68 68 68 68 68'
  []
  [region_2_move]
      type = TransformGenerator
      transform = TRANSLATE
      vector_value = '1.2 1.551 0'
      input = region_2_gen
  []
  [region_3_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.24 0.24 0.24 0.24 0.24'
      ix = ' 2   2   2   2   2'
      dy = '0.744166666666666 0.744166666666667 0.744166666666667'
      iy = ' 2 2 2'
      subdomain_id = '56 57 58 59 60
                      51 52 53 54 55
                      46 47 48 49 50'
  []
  [region_3_move]
      type = TransformGenerator
      transform = TRANSLATE
      vector_value = '0 2.40538 0'
      input = region_3_gen
  []
  [region_1_gen]
      type = GeneratedMeshGenerator
      dim = 2
      nx = 10
      ny = 6
      xmin = 0
      xmax = 0.26
      ymin = 1.551
      ymax = 1.851
      subdomain_ids = '62 62 62 62 62 62 62 62 62 62
                       62 62 62 62 62 62 62 62 62 62
                       62 62 62 62 62 62 62 62 62 62
                       62 62 62 62 62 62 62 62 62 62
                       62 62 62 62 62 62 62 62 62 62
                       62 62 62 62 62 62 62 62 62 62'
  []
  [region_1_extend_1]
      type = FillBetweenSidesetsGenerator
      input_mesh_1 = 'region_3_move'
      input_mesh_2 = 'region_1_gen'
      boundary_1 = '0'
      boundary_2 = '2'
      num_layers = 6
      block_id= 61
      use_quad_elements = true
      keep_inputs = true
      begin_side_boundary_id = '3'
      end_side_boundary_id = '1'
  []
  [region_1_extend_2]
      type = FillBetweenSidesetsGenerator
      input_mesh_1 = 'region_2_move'
      input_mesh_2 = 'region_1_gen'
      boundary_1 = 3
      boundary_2 = 1
      num_layers = 6
      block_id= 69
      use_quad_elements = true
      keep_inputs = false
      begin_side_boundary_id = '0'
      end_side_boundary_id = '3'
      input_boundary_1_id = '1'
      input_boundary_2_id = '3'
  []
  [region_2_2_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.065 0.13 0.305 0.17 0.196'
      ix = '  2    2     2    2     2'
      dy = '0.85438 '
      iy = '6'
      subdomain_id = '68 68 68 68 68'
  []
  [region_2_2_move]
      type = TransformGenerator
      transform = TRANSLATE
      vector_value = '1.2 1.551 0'
      input = region_2_2_gen
  []
  [region_6_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.26 0.94 0.065 0.13 0.305 0.17 0.196'
      ix = '10  6     2    2     2    2     2'
      dy = '0.584 0.967'
      iy = '  4    6'
      subdomain_id = '62 72 72 72 72 72 72
                      62 70 71 71 71 71 71'
  []
  [stitch_1_2_6]
      type = StitchedMeshGenerator
      inputs = 'region_1_extend_1 region_1_extend_2 region_2_2_move region_6_gen'
      stitch_boundaries_pairs = '1   3;
                                 1   3;
                                 0   2'
      merge_boundaries_with_same_name = false
  []
  [rename_boundary_stitch_1_2_6]
      type = RenameBoundaryGenerator
      input = stitch_1_2_6
      old_boundary = '1'
      new_boundary = '2'
  []
  [region_4_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.065 0.13'
      ix = '  2    2  '
      dy = '0.744166666666666 0.744166666666667 0.744166666666667'
      iy = ' 2 2 2'
      subdomain_id = '78 92
                      78 91
                      78 90'
  []
  [region_4_move]
      type = TransformGenerator
      transform = TRANSLATE
      vector_value = '1.2 2.40538 0'
      input = region_4_gen
  []
  [region_5_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.17 0.196'
      ix = '2     2'
      dy = '0.39  1.8425'
      iy = '2 4'
      subdomain_id = '100 104
                      100 104'
  []
  [region_5_move]
      type = TransformGenerator
      transform = TRANSLATE
      vector_value = '1.7 2.40538 0'
      input = region_5_gen
  []
  [region_5_extend]
      type = FillBetweenSidesetsGenerator
      input_mesh_1 = 'region_4_move'
      input_mesh_2 = 'region_5_move'
      boundary_1 = 1
      boundary_2 = 3
      num_layers = 2
      block_id= 96
      use_quad_elements = true
      keep_inputs = true
      begin_side_boundary_id = '0'
      end_side_boundary_id = '2'
  []
  [rename_boundary_region_5]
      type = RenameBoundaryGenerator
      input = region_5_extend
      old_boundary = '0'
      new_boundary = '3'
  []
  [stitch_1_2_6_5]
      type = StitchedMeshGenerator
      inputs = 'rename_boundary_stitch_1_2_6 rename_boundary_region_5'
      stitch_boundaries_pairs = '2     3'
      merge_boundaries_with_same_name = false
  []
  [region_7_gen]
      type = CartesianMeshGenerator
      dim = 2
      dx = '0.24 0.24 0.24 0.24 0.24 0.065 0.13 0.305 0.17 0.196'
      ix = '  2    2    2    2    2      2    2     2    2     2'
      dy = '0.744166666666667 0.744166666666667 0.744166666666667 0.744166666666667
            0.744166666666667 0.744166666666667 0.744166666666666 0.744166666666666
            0.744166666666666 0.458 0.86002'
      iy = '2 2 2 2 2 2 2 2 2 2 4'
      subdomain_id = '41 42 43 44 45 77 89 95 99 103
                      36 37 38 39 40 77 88 95 99 103
                      31 32 33 34 35 77 87 95 99 103
                      26 27 28 29 30 76 86 94 98 102
                      21 22 23 24 25 76 85 94 98 102
                      16 17 18 19 20 76 84 94 98 102
                      11 12 13 14 15 75 83 93 97 101
                       6  7  8  9 10 75 82 93 97 101
                       1  2  3  4  5 75 81 93 97 101
                      67 67 67 67 67 74 80 65 65  66
                      63 63 63 63 63 73 79 64 64  64'
  []
  [region_7_move]
      type = TransformGenerator
      transform = TRANSLATE
      vector_value = '0.0 4.63788 0'
      input = region_7_gen
  []
  [stitch]
    type = StitchedMeshGenerator
    inputs = 'stitch_1_2_6_5 region_7_move'
    stitch_boundaries_pairs = '2 0'
    merge_boundaries_with_same_name = false
  []
  [rename_boundary_1]
    type = BoundaryDeletionGenerator
    input = stitch
    boundary_names = '0 1 2 3'
  []
  [rename_boundary_2]
      type = SideSetsFromPointsGenerator
      input = rename_boundary_1
      new_boundary = '2 4 1 3'
      points = '1.2 0. 0.
                2.066 1.551 0.
                1.2 12.6534 0.
                0. 1.551 0.'
  []
  [rename_boundary_3]
      type = RenameBoundaryGenerator
      input = rename_boundary_2
      new_boundary = 'rbottom ssright rtop ssleft'
      old_boundary = '2 4 1 3'
  []
[rename_blocks]
      type = RenameBlockGenerator
      input = rename_boundary_3
      old_block = '1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
                  21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
                  41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
                  61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                  81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                  101 102 103 104'
      new_block = 'pbedfuel001 pbedfuel002 pbedfuel003 pbedfuel004 pbedfuel005
                   pbedfuel006 pbedfuel007 pbedfuel008 pbedfuel009 pbedfuel010
                   pbedfuel011 pbedfuel012 pbedfuel013 pbedfuel014 pbedfuel015
                   pbedfuel016 pbedfuel017 pbedfuel018 pbedfuel019 pbedfuel020
                   pbedfuel021 pbedfuel022 pbedfuel023 pbedfuel024 pbedfuel025
                   pbedfuel026 pbedfuel027 pbedfuel028 pbedfuel029 pbedfuel030
                   pbedfuel031 pbedfuel032 pbedfuel033 pbedfuel034 pbedfuel035
                   pbedfuel036 pbedfuel037 pbedfuel038 pbedfuel039 pbedfuel040
                   pbedfuel041 pbedfuel042 pbedfuel043 pbedfuel044 pbedfuel045
                   pbedfuel046 pbedfuel047 pbedfuel048 pbedfuel049 pbedfuel050
                   pbedfuel051 pbedfuel052 pbedfuel053 pbedfuel054 pbedfuel055
                   pbedfuel056 pbedfuel057 pbedfuel058 pbedfuel059 pbedfuel060
                   consfuel061 dischfuel062 upref063 upref064 upref065 upref066
                   upcvt067 lwref068 outch069 lwrpln070 htleg071 lwref072 buffr073
                   buffr074 buffr075 buffr076 buffr077 buffr078 crds079 crds080
                   crds081 crds082 crds083 crds084 crds085 crds086 crds087 crds088
                   crds089 crds090 crds091 crds092 radrf093 radrf094 radrf095 radrf096
                   risr097 risr098 risr099 risr100 radrf101 radrf102 radrf103 radrf104'
  []
[]
[Variables]
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[FVKernels]
  [energy_storage]
    type = FVTimeKernel
    variable = T_solid
  []
  [solid_energy_diffusion_core]
    type = FVAnisotropicDiffusion
    variable = T_solid
    coeff = 'effective_thermal_conductivity'
  []
[]
[FVBCs]
  [side_set_bc1]
    type = FVDirichletBC
    variable = T_solid
    value = '300'
    boundary = 'rtop'
  []
  [side_set_bc2]
    type = FVDirichletBC
    variable = T_solid
    value = '600'
    boundary = 'rbottom'
  []
[]
[Materials]
  [all_channels_porosity]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = 0.5
  []
  [solid_blocks_full_density_graphite]
    type = ADGenericFunctorMaterial
    prop_names = 'rho_s cp_s k_s '
    prop_values = '1.0 2.0 3.0'
  []
  [effective_solid_thermal_conductivity_solid_only]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'effective_thermal_conductivity'
    prop_values = 'k_s k_s k_s'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -ksp_gmres_restart -pc_factor_shift_type'
  petsc_options_value = 'lu        100                NONZERO'
  # Tolerances.
  nl_abs_tol = 1e-8
  nl_rel_tol = 1e-9
  line_search = none
  nl_max_its = 15
  [TimeStepper]
    type = IterationAdaptiveDT
    dt                 = 0.05
    cutback_factor     = 0.5
    growth_factor      = 2.00
    optimal_iterations = 6
  []
  # Steady state detection.
  steady_state_detection = true
  steady_state_tolerance = 1e-13
  abort_on_solve_fail = true
  num_steps = 1
[]
[Outputs]
  exodus = true
  print_linear_residuals = false
  print_linear_converged_reason = false
  print_nonlinear_converged_reason = false
[]
(test/tests/fvkernels/fv_simple_diffusion/grad-adaptive.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
[]
[Variables]
  [v]
    type = MooseVariableFVReal
    initial_condition = 0
  []
[]
[AuxVariables]
  [dummy]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [time]
    type = FVTimeKernel
    variable = v
  []
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 1
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Postprocessors]
  [average]
    type = ElementAverageValue
    variable = v
  []
[]
[Executioner]
  type = Transient
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-6
    optimal_iterations = 6
  []
  end_time = 1000
  nl_abs_tol = 1e-8
[]
[Outputs]
  exodus = false
  [csv]
    type = CSV
    execute_on = 'final'
  []
[]
[Adaptivity]
  steps = 1
  marker = error
  [Indicators]
    [jump]
      type = GradientJumpIndicator
      variable = v
    []
  []
  [Markers]
    [error]
      type = ErrorFractionMarker
      coarsen = 0.1
      refine = 0.7
      indicator = jump
    []
  []
  max_h_level = 1
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/parent_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  # Yes we want a slightly irregular grid
  nx = 11
  ny = 11
  # We will transfer data to the sub app, and that is currently only
  # supported from a replicated mesh
  parallel_type = replicated
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Executioner]
  type = Transient
  num_steps = 1
  dt = 1
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  exodus = true
[]
[MultiApps]
  [sub]
    app_type = MooseTestApp
    positions = '0.5 0.5 0 0.7 0.7 0'
    execute_on = timestep_end
    type = TransientMultiApp
    input_files = sub.i
  []
  [pp_sub]
    app_type = MooseTestApp
    positions = '0.5 0.5 0 0.7 0.7 0'
    execute_on = timestep_end
    type = TransientMultiApp
    input_files = pp_sub.i
  []
[]
[Transfers]
  [sample_transfer]
    source_variable = u
    variable = from_parent
    type = MultiAppVariableValueSampleTransfer
    to_multi_app = sub
  []
  [sample_pp_transfer]
      source_variable = u
      postprocessor = from_parent
      type = MultiAppVariableValueSamplePostprocessorTransfer
      to_multi_app = pp_sub
  []
[]
[Problem]
  parallel_barrier_messaging = false
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase-physics.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
k = 1
k_d = 1
cp = 1
cp_d = 1
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = .1
    ymin = 0
    ymax = .1
    nx = 5
    ny = 5
  []
[]
[Physics]
  [NavierStokes]
    [Flow]
      [flow]
        compressibility = 'incompressible'
        density = 'rho_mixture'
        dynamic_viscosity = 'mu_mixture'
        # Initial conditions
        initial_velocity = '0 0 0'
        initial_pressure = 0
        # Pressure pin
        pin_pressure = true
        pinned_pressure_type = 'point-value'
        pinned_pressure_point = '0 0 0'
        pinned_pressure_value = '0'
        # Gravity
        gravity = '0 ${g} 0'
        # Boundary conditions are defined outside of the Physics
        # Moving walls are not that common of a problem
        mass_advection_interpolation = '${advected_interp_method}'
        momentum_advection_interpolation = '${advected_interp_method}'
        velocity_interpolation = '${velocity_interp_method}'
      []
    []
    [TwoPhaseMixture]
      [mixture]
        phase_1_fraction_name = 'phase_1'
        phase_2_fraction_name = 'phase_2'
        add_phase_transport_equation = true
        phase_advection_interpolation = '${advected_interp_method}'
        phase_fraction_diffusivity = 1e-3
        # We could consider adding fixed-value-yet-not-an-inlet
        # boundary conditions to the TwoPhaseMixture physics
        # Base phase material properties
        phase_1_density_name = ${rho}
        phase_1_viscosity_name = ${mu}
        phase_1_specific_heat_name = ${cp}
        phase_1_thermal_conductivity_name = ${k}
        # Other phase material properties
        phase_2_density_name = ${rho_d}
        phase_2_viscosity_name = ${mu_d}
        phase_2_specific_heat_name = ${cp_d}
        phase_2_thermal_conductivity_name = ${k_d}
        output_all_properties = true
        # Friction model, not actually used!
        use_dispersed_phase_drag_model = true
        particle_diameter = ${dp}
      []
    []
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${U_lid}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [bottom_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'bottom'
    value = 1.0
  []
  [top_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'top'
    value = 0.0
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
    execute_on = 'TIMESTEP_END'
  []
[]
[Postprocessors]
  [average_void]
    type = ElementAverageValue
    variable = 'phase_2'
  []
  [max_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = max
  []
  [min_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = min
  []
  [max_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = max
  []
  [min_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = min
  []
  [max_x_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_x'
    value_type = max
  []
  [max_y_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_y'
    value_type = max
  []
  [max_drag_coefficient]
    type = ElementExtremeFunctorValue
    functor = 'drag_coefficient'
    value_type = max
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 7
    iteration_window = 2
    growth_factor = 2.0
    cutback_factor = 0.5
    dt = 1e-3
  []
  nl_max_its = 20
  nl_rel_tol = 1e-03
  nl_abs_tol = 1e-9
  l_max_its = 5
  end_time = 1e8
  line_search=none
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'FINAL'
    execute_scalars_on = NONE
  []
[]
(modules/ray_tracing/test/tests/raykernels/variable_integral_ray_kernel/fv_simple_diffusion_line_integral.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
  xmax = 10
  ymax = 10
[]
[Variables/v]
  family = MONOMIAL
  order = CONSTANT
  fv = true
[]
[FVKernels/diff]
  type = FVDiffusion
  variable = v
  coeff = coeff
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
  [top_bottom]
    type = FVDirichletBC
    variable = v
    boundary = 'top bottom'
    value = 1
  []
[]
[Materials/diff]
  type = ADGenericFunctorMaterial
  prop_names = 'coeff'
  prop_values = '1'
[]
[UserObjects/study]
  type = RepeatableRayStudy
  names = 'diag
           right_up'
  start_points = '0 0 0
                  10 0 0'
  end_points = '10 10 0
                10 10 0'
[]
[RayKernels/v_integral]
  type = VariableIntegralRayKernel
  study = study
  variable = v
[]
[Postprocessors]
  [diag_line_integral]
    type = RayIntegralValue
    ray_kernel = v_integral
    ray = diag
  []
  [right_up_line_integral]
    type = RayIntegralValue
    ray_kernel = v_integral
    ray = right_up
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  csv = true
  exodus = false
[]
(test/tests/fvkernels/fv_adapt/transient-adapt.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
    elem_type = QUAD4
  []
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
  []
  [v][]
[]
[Functions]
  [force]
    type = ParsedFunction
    expression = t
  []
[]
[Kernels]
  [diff]
    type = Diffusion
    variable = v
  []
  [force]
    type = BodyForce
    variable = v
    function = force
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = coeff
  []
  [force]
    type = FVBodyForce
    variable = u
    function = force
  []
[]
[FVBCs]
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
[]
[BCs]
  [right]
    type = DirichletBC
    variable = v
    boundary = right
    value = 1
  []
  [left]
    type = DirichletBC
    variable = v
    boundary = left
    value = 0
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Transient
  num_steps = 2
  dt = 1
  solve_type = 'NEWTON'
[]
[Adaptivity]
  marker = box
  initial_steps = 1
  [Markers]
    [box]
      bottom_left = '0.3 0.3 0'
      inside = refine
      top_right = '0.6 0.6 0'
      outside = do_nothing
      type = BoxMarker
    []
  []
[]
[Outputs]
  exodus = true
[]
(test/tests/auxkernels/divergence_aux/test_fv.i)
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.5 1 0.1'
    dy = '1.3 1 0.9'
    ix = '2 4 1'
    iy = '2 3 3'
    subdomain_id = '1 1 1
                    1 2 1
                    1 1 1'
  []
  [add_inner_boundaries_top]
    type = SideSetsAroundSubdomainGenerator
    input = cmg
    new_boundary = 'block_2_top'
    block = 2
    normal = '0 1 0'
  []
  [add_inner_boundaries_bot]
    type = SideSetsAroundSubdomainGenerator
    input = add_inner_boundaries_top
    new_boundary = 'block_2_bot'
    block = 2
    normal = '0 -1 0'
  []
  [add_inner_boundaries_right]
    type = SideSetsAroundSubdomainGenerator
    input = add_inner_boundaries_bot
    new_boundary = 'block_2_right'
    block = 2
    normal = '1 0 0'
  []
  [add_inner_boundaries_left]
    type = SideSetsAroundSubdomainGenerator
    input = add_inner_boundaries_right
    new_boundary = 'block_2_left'
    block = 2
    normal = '-1 0 0'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
  [v]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff_u]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
  [reaction_u]
    type = FVReaction
    variable = u
  []
  [diff_v]
    type = FVDiffusion
    variable = v
    coeff = 2
  []
  [reaction_v]
    type = FVReaction
    variable = v
  []
[]
[AuxVariables]
  [div]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [divergence]
    type = ADDivergenceAux
    variable = div
    u = 'u'
    v = 'v'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 2
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
  [top]
    type = FVDirichletBC
    variable = v
    boundary = top
    value = 2
  []
  [bottom]
    type = FVDirichletBC
    variable = v
    boundary = bottom
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = PJFNK
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
  [int_divergence]
    type = ElementL1Error
    block = 2
    variable = div
    function = 0
  []
  [sum_surface_current]
    type = ParsedPostprocessor
    expression = 's1 - s2 + s3 - s4'
    pp_names = 's1 s2 s3 s4'
  []
  [s1]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'block_2_right'
    functor = 'u'
  []
  [s2]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'block_2_left'
    functor = 'u'
  []
  [s3]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'block_2_top'
    functor = 'v'
  []
  [s4]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'block_2_bot'
    functor = 'v'
  []
[]
[Outputs]
  csv = true
  hide = 's1 s2 s3 s4'
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 60}'
    ymin = 0
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_phase_2}
  []
  [interface_area]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_interface_area}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_x'
    v_slip = 'vel_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = ${fparse l/2}
    rho = 'rho_mixture'
    rho_d = 'rho'
    pressure = 'pressure'
    k_c = '${fparse mass_exchange_coeff}'
    fd = 'phase_2'
    sigma = 1e-3
    cutoff_fraction = 0.0
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${outlet_pressure}'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = ${inlet_interface_area}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [symmetry-phase-2]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = phase_2
  []
  [symmetry-interface-area]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = interface_area
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [bubble_properties]
    type = GeneralFunctorFluidProps
    fp = 'fp'
    pressure = 'pressure'
    T_fluid = 300.0
    speed = 1.0
    characteristic_length = 1.0
    porosity = 1.0
    output_properties = 'rho'
    outputs = 'out'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = 'rho ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  line_search = 'none'
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(test/tests/fviks/continuity/test.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
    xmax = 2
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '1.0 0 0'
    block_id = 1
    top_right = '2.0 1.0 0'
  []
  [interface_primary_side]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'primary_interface'
  []
[]
[GlobalParams]
  # retain behavior at time of test creation
  two_term_boundary_expansion = false
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    block = 0
    initial_condition = 0.5
  []
  [v]
    type = MooseVariableFVReal
    block = 1
    initial_condition = 0.5
  []
  [lambda]
    type = MooseVariableScalar
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 'left'
    block = 0
  []
  [diff_right]
    type = FVDiffusion
    variable = v
    coeff = 'right'
    block = 1
  []
[]
[FVInterfaceKernels]
  [interface]
    type = FVTwoVarContinuityConstraint
    variable1 = u
    variable2 = v
    boundary = 'primary_interface'
    subdomain1 = '0'
    subdomain2 = '1'
    lambda = 'lambda'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 'left'
    value = 1
  []
  [v_left]
    type = FVDirichletBC
    variable = v
    boundary = 'right'
    value = 0
  []
[]
[Materials]
  [block0]
    type = ADGenericFunctorMaterial
    block = '0'
    prop_names = 'left'
    prop_values = '1'
  []
  [block1]
    type = ADGenericFunctorMaterial
    block = '1'
    prop_names = 'right'
    prop_values = '1'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm lu NONZERO'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/FVHeatFluxBC/wall_heat_transfer.i)
flux=10
[GlobalParams]
  porosity = 'porosity'
  splitting = 'porosity'
  locality = 'global'
  average_porosity = 'average_eps'
  average_k_fluid='average_k_fluid'
  average_k_solid='average_k_solid'
  average_kappa='average_k_fluid'  # because of vector matprop, should be kappa
  average_kappa_solid='average_kappa_solid'
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 20
  xmin = 0.0
  xmax = 1.0
  ymin = 0.0
  ymax = 1.0
[]
[Variables]
  [Tf]
    type = MooseVariableFVReal
  []
  [Ts]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [k]
    type = MooseVariableFVReal
  []
  [kappa]
    type = MooseVariableFVReal
  []
  [k_s]
    type = MooseVariableFVReal
  []
  [kappa_s]
    type = MooseVariableFVReal
  []
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.2
  []
[]
[Functions]
  [k]
    type = ParsedFunction
    expression = 0.1*(100*y+1)
  []
  [kappa]
    type = ParsedFunction
    expression = 0.2*(200*y+1)
  []
  [kappa_s]
    type = ParsedFunction
    expression = 0.4*(200*y+1)
  []
  [k_s]
    type = ParsedFunction
    expression = 0.2*(200*y+1)+2*x
  []
[]
[FVKernels]
  [Tf_diffusion]
    type = FVDiffusion
    variable = Tf
    coeff = 1
  []
  [Ts_diffusion]
    type = FVDiffusion
    variable = Ts
    coeff = 1
  []
[]
[FVBCs]
  [left_Ts]
    type = NSFVHeatFluxBC
    variable = Ts
    boundary = 'left'
    phase = 'solid'
    value = ${flux}
  []
  [right_Ts]
    type = FVDirichletBC
    variable = Ts
    boundary = 'right'
    value = 1000.0
  []
  [left_Tf]
    type = NSFVHeatFluxBC
    variable = Tf
    boundary = 'left'
    phase = 'fluid'
    value = ${flux}
  []
  [right_Tf]
    type = FVDirichletBC
    variable = Tf
    boundary = 'right'
    value = 1000.0
  []
[]
[AuxKernels]
  [k]
    type = ADMaterialRealAux
    variable = k
    property = 'k'
  []
  [k_s]
    type = ADMaterialRealAux
    variable = k_s
    property = 'k_s'
  []
  [kappa_s]
    type = ADMaterialRealAux
    variable = kappa_s
    property = 'kappa_s'
  []
[]
[Materials]
  [thermal_conductivities_k]
    type = ADGenericFunctionMaterial
    prop_names = 'k'
    prop_values = 'k'
  []
  [thermal_conductivities_k_s]
    type = ADGenericFunctionMaterial
    prop_names = 'k_s'
    prop_values = 'k_s'
  []
  [thermal_conductivities_kappa]
    type = ADGenericConstantVectorMaterial
    prop_names = 'kappa'
    prop_values = '0.1 0.2 .03'
  []
  [thermal_conductivities_kappa_s]
    type = ADGenericFunctionMaterial
    prop_names = 'kappa_s'
    prop_values = 'kappa_s'
  []
[]
[Postprocessors]
  [average_eps]
    type = ElementAverageValue
    variable = porosity
    # because porosity is constant in time, we evaluate this only once
    execute_on = 'initial'
  []
  [average_k_fluid]
    type = ElementAverageValue
    variable = k
  []
  [average_k_solid]
    type = ElementAverageValue
    variable = k_s
  []
  [average_kappa_solid]
    type = ElementAverageValue
    variable = kappa_s
  []
[]
[Executioner]
  type = Steady
[]
[Outputs]
  exodus = true
  hide = 'porosity average_eps'
[]
(modules/porous_flow/test/tests/heat_conduction/no_fluid_fv.i)
# 0 phase (no fluid) heat conduction using FV
# Apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [temp]
    type = MooseVariableFVReal
    initial_condition = 200
  []
[]
[FVKernels]
  [energy_dot]
    type = FVPorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_conduction]
    type = FVPorousFlowHeatConduction
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp'
    number_fluid_phases = 0
    number_fluid_components = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
    temperature = temp
  []
  [thermal_conductivity]
    type = ADPorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '2.2 0 0  0 0 0  0 0 0'
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = ADPorousFlowMatrixInternalEnergy
    specific_heat_capacity = 2.2
    density = 0.5
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    boundary = left
    value = 300
    variable = temp
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E1
  end_time = 1E2
[]
[Postprocessors]
  [t005]
    type = PointValue
    variable = temp
    point = '5 0 0'
    execute_on = 'initial timestep_end'
  []
  [t015]
    type = PointValue
    variable = temp
    point = '15 0 0'
    execute_on = 'initial timestep_end'
  []
  [t025]
    type = PointValue
    variable = temp
    point = '25 0 0'
    execute_on = 'initial timestep_end'
  []
  [t035]
    type = PointValue
    variable = temp
    point = '35 0 0'
    execute_on = 'initial timestep_end'
  []
  [t045]
    type = PointValue
    variable = temp
    point = '45 0 0'
    execute_on = 'initial timestep_end'
  []
  [t055]
    type = PointValue
    variable = temp
    point = '55 0 0'
    execute_on = 'initial timestep_end'
  []
  [t065]
    type = PointValue
    variable = temp
    point = '65 0 0'
    execute_on = 'initial timestep_end'
  []
  [t075]
    type = PointValue
    variable = temp
    point = '75 0 0'
    execute_on = 'initial timestep_end'
  []
  [t085]
    type = PointValue
    variable = temp
    point = '85 0 0'
    execute_on = 'initial timestep_end'
  []
  [t095]
    type = PointValue
    variable = temp
    point = '95 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = no_fluid_fv
  csv = true
[]
(test/tests/fvkernels/block-restriction/fv-and-fe-block-restriction.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 80
    xmax = 4
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '2.0 0 0'
    block_id = 1
    top_right = '4.0 1.0 0'
  []
  [left_right]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'left_right'
  []
  [right_left]
    input = left_right
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '1'
    paired_block = '0'
    new_boundary = 'right_left'
  []
[]
[Variables]
  [left_fv]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 1
    block = 0
  []
  [left_fe]
    initial_condition = 1
    block = 0
  []
  [right_fv]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 1
    block = 1
  []
  [right_fe]
    initial_condition = 1
    block = 1
  []
[]
[FVKernels]
  active = 'bad_left_diff left_coupled bad_right_diff right_coupled'
  [bad_left_diff]
    type = FVDiffusion
    variable = left_fv
    coeff = fv_prop
    block = 0
    coeff_interp_method = average
  []
  [good_left_diff]
    type = FVDiffusion
    variable = left_fv
    coeff = left_fv_prop
    block = 0
    coeff_interp_method = average
  []
  [left_coupled]
    type = FVCoupledForce
    v = left_fv
    variable = left_fv
    block = 0
  []
  [bad_right_diff]
    type = FVDiffusion
    variable = right_fv
    coeff = fv_prop
    block = 1
    coeff_interp_method = average
  []
  [good_right_diff]
    type = FVDiffusion
    variable = right_fv
    coeff = right_fv_prop
    block = 1
    coeff_interp_method = average
  []
  [right_coupled]
    type = FVCoupledForce
    v = right_fv
    variable = right_fv
    block = 1
  []
[]
[Kernels]
  [left_diff]
    type = ADFunctorMatDiffusion
    variable = left_fe
    diffusivity = fe_prop
  []
  [left_coupled]
    type = CoupledForce
    v = left_fv
    variable = left_fe
  []
  [right_diff]
    type = ADFunctorMatDiffusion
    variable = right_fe
    diffusivity = fe_prop
  []
  [right_coupled]
    type = CoupledForce
    v = right_fv
    variable = right_fe
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = left_fv
    boundary = left
    value = 0
  []
  [left_right]
    type = FVDirichletBC
    variable = left_fv
    boundary = left_right
    value = 1
  []
  [right_left]
    type = FVDirichletBC
    variable = right_fv
    boundary = right_left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = right_fv
    boundary = right
    value = 1
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = left_fe
    boundary = left
    value = 0
  []
  [left_right]
    type = DirichletBC
    variable = left_fe
    boundary = left_right
    value = 1
  []
  [right_left]
    type = DirichletBC
    variable = right_fe
    boundary = right_left
    value = 0
  []
  [right]
    type = DirichletBC
    variable = right_fe
    boundary = right
    value = 1
  []
[]
[Materials]
  active = 'fe_mat_left bad_fv_mat_left fe_mat_right bad_fv_mat_right'
  [fe_mat_left]
    type = FEFVCouplingMaterial
    fe_var = left_fe
    block = 0
  []
  [bad_fv_mat_left]
    type = FEFVCouplingMaterial
    fv_var = left_fv
    block = 0
  []
  [good_fv_mat_left]
    type = FEFVCouplingMaterial
    fv_var = left_fv
    fv_prop_name = 'left_fv_prop'
    block = 0
  []
  [fe_mat_right]
    type = FEFVCouplingMaterial
    fe_var = right_fe
    block = 1
  []
  [bad_fv_mat_right]
    type = FEFVCouplingMaterial
    fv_var = right_fv
    block = 1
  []
  [good_fv_mat_right]
    type = FEFVCouplingMaterial
    fv_var = right_fv
    fv_prop_name = 'right_fv_prop'
    block = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  line_search = 'none'
[]
[Outputs]
  exodus = true
[]
(test/tests/variables/caching_fv_variables/fv_caching.i)
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.5 2.4 0.1'
    dy = '1.3 0.9'
    ix = '2 1 1'
    iy = '2 3'
    subdomain_id = '0 1 1 2 2 2'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
  [adv]
    type = FVMatAdvection
    variable = u
    vel = v_mat
  []
  [body_force]
    type = FVBodyForce
    variable = u
    value = 10
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 'left'
    value = 1
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 'right'
    value = 1
  []
  [top]
    type = FVNeumannBC
    variable = u
    value = 1
    boundary = 'top'
  []
[]
[Materials]
  [v_mat]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'v_mat'
    prop_values = '4 0 0'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase_fv.i)
# Pressure pulse in 1D with 2 phases (with one having zero saturation), 2components - transient using FV
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = 2E6
  []
  [ppgas]
    type = MooseVariableFVReal
    initial_condition = 2E6
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    variable = ppwater
    gravity = '0 0 0'
    fluid_component = 0
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = ppgas
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    variable = ppgas
    gravity = '0 0 0'
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e6
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[FVBCs]
  [leftwater]
    type = FVDirichletBC
    boundary = left
    value = 3E6
    variable = ppwater
  []
  [leftgas]
    type = FVDirichletBC
    boundary = left
    value = 3E6
    variable = ppgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-12'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E3
  end_time = 1E4
[]
[Postprocessors]
  [p005]
    type = PointValue
    variable = ppwater
    point = '5 0 0'
    execute_on = 'initial timestep_end'
  []
  [p015]
    type = PointValue
    variable = ppwater
    point = '15 0 0'
    execute_on = 'initial timestep_end'
  []
  [p025]
    type = PointValue
    variable = ppwater
    point = '25 0 0'
    execute_on = 'initial timestep_end'
  []
  [p035]
    type = PointValue
    variable = ppwater
    point = '35 0 0'
    execute_on = 'initial timestep_end'
  []
  [p045]
    type = PointValue
    variable = ppwater
    point = '45 0 0'
    execute_on = 'initial timestep_end'
  []
  [p055]
    type = PointValue
    variable = ppwater
    point = '55 0 0'
    execute_on = 'initial timestep_end'
  []
  [p065]
    type = PointValue
    variable = ppwater
    point = '65 0 0'
    execute_on = 'initial timestep_end'
  []
  [p075]
    type = PointValue
    variable = ppwater
    point = '75 0 0'
    execute_on = 'initial timestep_end'
  []
  [p085]
    type = PointValue
    variable = ppwater
    point = '85 0 0'
    execute_on = 'initial timestep_end'
  []
  [p095]
    type = PointValue
    variable = ppwater
    point = '95 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phase_fv
  print_linear_residuals = false
  csv = true
[]
(test/tests/materials/functor_properties/gradients/functor-gradients.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 4
  xmax = 2
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [sink]
    type = MooseVariableFVReal
  []
  [diffusive_flux_x]
    type = MooseVariableFVReal
  []
  [diffusive_flux_y]
    type = MooseVariableFVReal
  []
  [diffusive_flux_magnitude]
    type = MooseVariableFVReal
  []
[]
[ICs]
  [sink]
    type = FunctionIC
    variable = sink
    function = 'x^3'
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1.1
  []
  [sink]
    type = FVFunctorElementalKernel
    variable = u
    functor_name = 'sink_mat'
  []
[]
[FVBCs]
  [bounds]
    type = FVDirichletBC
    variable = u
    boundary = 'left right top bottom'
    value = 0
  []
[]
[Materials]
  [functor_properties]
    type = ADGenericFunctorMaterial
    prop_names = 'sink_mat diffusive_coef'
    prop_values = 'sink 4.5'
  []
  [gradient_of_u]
    type = ADGenericFunctorGradientMaterial
    prop_names = 'grad_u'
    prop_values = 'u'
  []
[]
# Compute the diffusive flux magnitude
[AuxKernels]
  [diffusive_flux_x]
    type = ADFunctorVectorElementalAux
    variable = 'diffusive_flux_x'
    functor = 'grad_u'
    factor = 'diffusive_coef'
    component = 0
  []
  [diffusive_flux_y]
    type = ADFunctorVectorElementalAux
    variable = 'diffusive_flux_y'
    functor = 'grad_u'
    factor = 'diffusive_coef'
    component = 1
  []
  [diffusive_flux_magnitude]
    type = VectorMagnitudeAux
    variable = 'diffusive_flux_magnitude'
    x = 'diffusive_flux_x'
    y = 'diffusive_flux_y'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(test/tests/userobjects/layered_integral/layered_integral_fv_test.i)
###########################################################
# This is a test of the UserObject System. The
# LayeredIntegral UserObject executes independently during
# the solve to compute a user-defined value. In this case
# an integral value in discrete layers along a vector
# in the domain. (Type: ElementalUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 6
  ny = 6
  nz = 6
[]
[Variables]
  [./u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  [../]
[]
[AuxVariables]
  [./layered_integral]
    order = CONSTANT
    family = MONOMIAL
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
[]
[AuxKernels]
  [./liaux]
    type = SpatialUserObjectAux
    variable = layered_integral
    execute_on = timestep_end
    user_object = layered_integral
  [../]
[]
[FVBCs]
  [./bottom]
    type = FVDirichletBC
    variable = u
    boundary = bottom
    value = 0
  [../]
  [./top]
    type = FVDirichletBC
    variable = u
    boundary = top
    value = 1
  [../]
[]
[UserObjects]
  [./layered_integral]
    type = LayeredIntegral
    direction = y
    num_layers = 3
    variable = u
    execute_on = linear
  [../]
[]
[Executioner]
  type = Steady
[]
[Outputs]
  file_base = fv_out
  exodus = true
[]
(test/tests/indicators/gradient_jump_indicator/gradient_jump_indicator_fv_test.i)
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 2
    xmax = 2
    nx = 2
    ny = 1
    subdomain_ids = '0 1'
  []
  [interface_mesh]
    type = SideSetsBetweenSubdomainsGenerator
    input = gmg
    primary_block = 0
    paired_block = 1
    new_boundary = interface
  []
  # This creates enough elements to have defined gradients
  [refine]
    type = RefineBlockGenerator
    input = interface_mesh
    block = '0 1'
    refinement = '3 3'
  []
[]
[Adaptivity]
  marker = error_frac
  max_h_level = 5
  [Indicators]
    [u0_jump]
      type = GradientJumpIndicator
      variable = u0
      scale_by_flux_faces = false
    []
  []
  [Markers]
    [error_frac]
      type = ErrorFractionMarker
      coarsen = 0.15
      indicator = u0_jump
      refine = 0.7
    []
  []
[]
[Variables]
  [u0]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    block = 0
    initial_condition = 0
  []
  [u1]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    block = 1
    initial_condition = 0
  []
[]
[FVKernels]
  [time0]
    type = FVTimeKernel
    variable = u0
  []
  [diff0]
    type = FVDiffusion
    variable = u0
    coeff = 1
    block = 0
  []
  [time1]
    type = FVTimeKernel
    variable = u1
  []
  [diff1]
    type = FVDiffusion
    variable = u1
    coeff = 1
    block = 1
  []
[]
[FVInterfaceKernels]
  [diffusion]
    type = FVDiffusionInterface
    variable1 = u0
    variable2 = u1
    boundary = interface
    subdomain1 = 0
    subdomain2 = 1
    coeff1 = 1
    coeff2 = 1
  []
[]
[FVBCs]
  [left] # arbitrary user-chosen name
    type = FVDirichletBC
    variable = u0
    boundary = 'left' # This must match a named boundary in the mesh file
    value = 1
  []
  [right] # arbitrary user-chosen name
    type = FVNeumannBC
    variable = u1
    boundary = 'right' # This must match a named boundary in the mesh file
    value = 0
  []
[]
[Executioner]
  type = Transient
  solve_type = 'Newton'
  end_time = 0.5
  dt = 0.1
[]
[VectorPostprocessors]
  [samples]
    type = LineValueSampler
    variable = u0
    # Avoiding element faces
    start_point = '0.0001 1e-6 0'
    end_point = '0.999999 1e-6 0'
    num_points = 10
    sort_by = 'x'
  []
[]
[Outputs]
  execute_on = 'timestep_end'
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  mu_interp_method = 'average'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 6
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection_slip]
    type = WCNSFV2PMomentumAdvectionSlip
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    rho_d = ${rho_d}
    fd = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = x
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_x
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection_slip]
    type = WCNSFV2PMomentumAdvectionSlip
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    rho_d = ${rho_d}
    fd = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = y
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_y
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [phase_1]
    property_name = 'phase_1'
    type = ADParsedFunctorMaterial
    functor_names = 'phase_2'
    expression = '1 - phase_2'
    outputs = 'out'
    output_properties = 'phase_1'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_x'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
    outputs = 'out'
    output_properties = 'vel_slip_y'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
    hide = 'Re lin cum_lin'
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
  []
  [lin]
    type = NumLinearIterations
  []
  [cum_lin]
    type = CumulativeValuePostprocessor
    postprocessor = lin
  []
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
  fp = fp
  two_term_boundary_expansion = true
  limiter = ${user_limiter}
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    nx = 3
    ymin = 0
    ymax = 18
    ny = 90
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = MooseVariableFVReal
    initial_condition = ${p_initial}
  []
  [sup_vel_x]
    type = MooseVariableFVReal
    initial_condition = 1e-15
    scaling = 1e-2
  []
  [sup_vel_y]
    type = MooseVariableFVReal
    initial_condition = 1e-15
    scaling = 1e-2
  []
  [T_fluid]
    type = MooseVariableFVReal
    initial_condition = ${T}
    scaling = 1e-5
  []
[]
[AuxVariables]
  [vel_y]
    type = MooseVariableFVReal
  []
  [sup_mom_y]
    type = MooseVariableFVReal
  []
  [rho]
    type = MooseVariableFVReal
  []
  [eps]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [vel_y]
    type = ADMaterialRealAux
    variable = vel_y
    property = vel_y
    execute_on = 'timestep_end'
  []
  [sup_mom_y]
    type = ADMaterialRealAux
    variable = sup_mom_y
    property = superficial_rhov
    execute_on = 'timestep_end'
  []
  [rho]
    type = ADMaterialRealAux
    variable = rho
    property = rho
    execute_on = 'timestep_end'
  []
  [eps]
    type = MaterialRealAux
    variable = eps
    property = porosity
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_dt'
    variable = pressure
  []
  [mass_advection]
    type = PCNSFVKT
    variable = pressure
    eqn = "mass"
  []
  [momentum_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhou_dt'
    variable = sup_vel_x
  []
  [momentum_advection]
    type = PCNSFVKT
    variable = sup_vel_x
    eqn = "momentum"
    momentum_component = 'x'
  []
  [eps_grad]
    type = PNSFVPGradEpsilon
    variable = sup_vel_x
    momentum_component = 'x'
    epsilon_function = 'eps'
  []
  [drag]
    type = PCNSFVMomentumFriction
    variable = sup_vel_x
    momentum_component = 'x'
    Darcy_name = 'cl'
    momentum_name = superficial_rhou
  []
  [momentum_time_y]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhov_dt'
    variable = sup_vel_y
  []
  [momentum_advection_y]
    type = PCNSFVKT
    variable = sup_vel_y
    eqn = "momentum"
    momentum_component = 'y'
  []
  [eps_grad_y]
    type = PNSFVPGradEpsilon
    variable = sup_vel_y
    momentum_component = 'y'
    epsilon_function = 'eps'
  []
  [drag_y]
    type = PCNSFVMomentumFriction
    variable = sup_vel_y
    momentum_component = 'y'
    Darcy_name = 'cl'
    momentum_name = superficial_rhov
  []
  [energy_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
    variable = T_fluid
  []
  [energy_advection]
    type = PCNSFVKT
    variable = T_fluid
    eqn = "energy"
  []
[]
[FVBCs]
  [rho_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = pressure
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'mass'
  []
  [rhou_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = sup_vel_x
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rhov_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = sup_vel_y
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'y'
  []
  [rho_et_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = T_fluid
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'energy'
  []
  [rho_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = pressure
    pressure = ${p_initial}
    eqn = 'mass'
  []
  [rhou_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = sup_vel_x
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rhov_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = sup_vel_y
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'y'
  []
  [rho_et_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = T_fluid
    pressure = ${p_initial}
    eqn = 'energy'
  []
  [wall_pressure_x]
    type = PCNSFVImplicitMomentumPressureBC
    momentum_component = 'x'
    boundary = 'left right'
    variable = sup_vel_x
  []
  [wall_pressure_y]
    type = PCNSFVImplicitMomentumPressureBC
    momentum_component = 'y'
    boundary = 'left right'
    variable = sup_vel_y
  []
  # Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
  [T_bottom]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T}
    boundary = 'bottom'
  []
  [sup_vel_x_bottom_and_walls]
    type = FVDirichletBC
    variable = sup_vel_x
    value = 0
    boundary = 'bottom left right'
  []
  [sup_vel_y_walls]
    type = FVDirichletBC
    variable = sup_vel_y
    value = 0
    boundary = 'left right'
  []
  [sup_vel_y_bottom]
    type = FVDirichletBC
    variable = sup_vel_y
    value = ${u_in}
    boundary = 'bottom'
  []
  [p_top]
    type = FVDirichletBC
    variable = pressure
    value = ${p_initial}
    boundary = 'top'
  []
[]
[Functions]
  [ud_in]
    type = ParsedVectorFunction
    expression_x = '0'
    expression_y = '${u_in}'
  []
  [eps]
    type = ParsedFunction
    expression = 'if(y < 2.8, 1,
             if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
             if(y < 6.8, .5,
             if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
             if(y < 10.8, .25,
             if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
             if(y < 14.8, .5,
             if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
                1))))))))'
  []
[]
[Materials]
  [var_mat]
    type = PorousPrimitiveVarMaterial
    pressure = pressure
    T_fluid = T_fluid
    superficial_vel_x = sup_vel_x
    superficial_vel_y = sup_vel_y
    fp = fp
    porosity = porosity
  []
  [porosity]
    type = GenericFunctionMaterial
    prop_names = 'porosity'
    prop_values = 'eps'
  []
  [ad_generic]
    type = ADGenericConstantVectorMaterial
    prop_names = 'cl'
    prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = NEWTON
  line_search = 'bt'
  type = Transient
  nl_max_its = 20
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e-5
    optimal_iterations = 6
    growth_factor = 1.2
  []
  num_steps = 10000
  end_time = 500
  nl_abs_tol = 1e-7
  petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
  petsc_options_value = 'lu       mumps'
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'final'
  []
  checkpoint = true
[]
[Debug]
  show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e6
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = 'X'
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 60}'
    ymin = 0
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_phase_2}
  []
  [interface_area]
    type = INSFVScalarFieldVariable
    initial_condition = ${inlet_interface_area}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
    functor = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_x'
    v_slip = 'vel_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_time]
    type = FVFunctorTimeKernel
    variable = interface_area
    functor = interface_area
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = ${fparse l/2}
    rho = 'rho_mixture'
    rho_d = 'rho'
    pressure = 'pressure'
    k_c = '${fparse mass_exchange_coeff}'
    fd = 'phase_2'
    sigma = 1e-3
    cutoff_fraction = 0.0
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '${outlet_pressure}'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = ${inlet_interface_area}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [symmetry-phase-2]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = phase_2
  []
  [symmetry-interface-area]
    type = INSFVSymmetryScalarBC
    boundary = 'bottom'
    variable = interface_area
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [bubble_properties]
    type = GeneralFunctorFluidProps
    fp = 'fp'
    pressure = 'pressure'
    T_fluid = 300.0
    speed = 1.0
    characteristic_length = 1.0
    porosity = 1.0
    output_properties = 'rho'
    outputs = 'out'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = 'rho ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  nl_abs_tol = 1e-7
  dt = 0.1
  end_time = 1.0
  nl_max_its = 10
  line_search = 'none'
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-action.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
h_cv = 1.0
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '50 50'
    iy = '20'
    subdomain_id = '1 2'
  []
[]
[Variables]
  [T_solid]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[Modules]
  [NavierStokesFV]
    compressibility = 'incompressible'
    porous_medium_treatment = true
    add_energy_equation = true
    density = ${rho}
    dynamic_viscosity = ${mu}
    thermal_conductivity = ${k}
    specific_heat = ${cp}
    porosity = 'porosity'
    # Reference file sets effective_conductivity by default that way
    # so the conductivity is multiplied by the porosity in the kernel
    effective_conductivity = false
    initial_velocity = '${u_inlet} 1e-6 0'
    initial_pressure = 0.0
    initial_temperature = 0.0
    inlet_boundaries = 'left'
    momentum_inlet_types = 'fixed-velocity'
    momentum_inlet_functors = '${u_inlet} 0'
    energy_inlet_types = 'heatflux'
    energy_inlet_functors = '${fparse u_inlet * rho * cp * T_inlet}'
    wall_boundaries = 'top bottom'
    momentum_wall_types = 'noslip symmetry'
    energy_wall_types = 'heatflux heatflux'
    energy_wall_functors = '0 0'
    outlet_boundaries = 'right'
    momentum_outlet_types = 'fixed-pressure'
    pressure_functors = '0.1'
    ambient_convection_alpha = ${h_cv}
    ambient_temperature = 'T_solid'
    mass_advection_interpolation = 'average'
    momentum_advection_interpolation = 'average'
    energy_advection_interpolation = 'average'
  []
[]
[FVKernels]
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = 'T_solid'
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = ${h_cv}
  []
[]
[FVBCs]
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 150
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-transient.i)
# Fluid properties
mu = 1
rho = 1
cp = 1
k = 1e-3
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 100
    ny = 20
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    cp = ${cp}
    rho = ${rho}
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
  end_time = 1.5
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(test/tests/postprocessors/side_integral/side_integral_fv_test.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
  xmin = 0
  xmax = 4
  ymin = 0
  ymax = 1
[]
[Variables]
  active = 'u'
  [./u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  [../]
[]
[FVKernels]
  active = 'diff'
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = '1'
  [../]
[]
[FVBCs]
  active = 'left right'
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = 3
    value = 0
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = 1
    value = 1
  [../]
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
[Postprocessors]
  [./integral]
    type = SideIntegralVariablePostprocessor
    boundary = 0
    variable = u
  [../]
[]
[Outputs]
  file_base = fv_out
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-steady-wall-balance.i)
L = 30
bulk_u = 0.01
p_ref = 101325.0
T_in = 860
q_source = 50000
q2_wall = 10000
A_cp = 976.78
B_cp = 1.0634
rho = 2000
advected_interp_method = 'upwind'
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 1
    ymax = 2.5
    nx = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_ref}
    two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    initial_condition = ${T_in}
  []
[]
[FVKernels]
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    rho = 'rho'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = 'rho'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [source]
    type = FVBodyForce
    variable = T
    function = source_func
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = ${bulk_u}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'left'
    value = ${T_in}
  []
  [incoming_heat]
    type = FVNeumannBC
    variable = T
    value = ${q2_wall}
    boundary = 'top'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_ref}
  []
[]
[Functions]
  [source_func]
    type = ParsedFunction
    expression = '${q_source}'
  []
[]
[FunctorMaterials]
  [converter_to_regular_T]
    type = FunctorADConverter
    ad_props_in = 'T'
    reg_props_out = 'T_nAD'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = 'rho'
    cp = 'cp'
    assumed_constant_cp = false
    h_in = 'h'
    # fp = 'fp'
    # pressure = 'pressure'
  []
  [rho]
    type = ADParsedFunctorMaterial
    property_name = 'rho'
    expression = '${rho}'
  []
  [mu]
    type = ADParsedFunctorMaterial
    property_name = 'mu'
    expression = '4.5e-3'
  []
  [k]
    type = ADParsedFunctorMaterial
    property_name = 'k'
    expression = '0.7'
  []
  [h]
    type = ADParsedFunctorMaterial
    property_name = 'h'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp * T + B_cp * T * T / 2'
  []
  [cp]
    type = ADParsedFunctorMaterial
    property_name = 'cp'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp+B_cp*T'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
[]
[Postprocessors]
  [H_in]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'left'
  []
  [H_out]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'right'
  []
  [Q]
    type = FunctionElementIntegral
    function = 'source_func'
    execute_on = 'initial'
  []
  [Q_wall]
    type = FunctionSideIntegral
    function = ${q2_wall}
    boundary = 'top'
  []
  [balance_in_percent]
    type = ParsedPostprocessor
    expression = '(H_out + H_in - Q - Q_wall) / H_in * 100'
    pp_names = 'H_in H_out Q Q_wall'
  []
[]
[Outputs]
  csv = true
[]
(test/tests/functors/previous-nl-it/test.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Problem]
  previous_nl_solution_required = true
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    initial_condition = 1
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
  [rxn]
    type = FVSecondOrderRxnLagged
    variable = u
    lag = false
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(test/tests/vectorpostprocessors/point_value_sampler/point_value_sampler_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [./u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  [../]
  [./v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
  [./diff_v]
    type = FVDiffusion
    variable = v
    coeff = 1
  [../]
[]
[FVBCs]
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  [../]
  [./left_v]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 1
  [../]
  [./right_v]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 0
  [../]
[]
[VectorPostprocessors]
  [./point_sample]
    type = PointValueSampler
    warn_discontinuous_face_values = false
    variable = 'u v'
    points = '0.09 0.09 0  0.23 0.4 0  0.78 0.2 0'
    sort_by = x
  [../]
[]
[Executioner]
  type = Steady
  solve_type = PJFNK
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  execute_on = 'timestep_end'
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
  two_term_boundary_expansion = true
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 10
    nx = 64
    ny = 64
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e5
  []
  [T]
    type = INSFVEnergyVariable
    scaling = 1e-4
    initial_condition = ${cold_temp}
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [vel_x]
    order = FIRST
    family = MONOMIAL
  []
  [vel_y]
    order = FIRST
    family = MONOMIAL
  []
  [viz_T]
    order = FIRST
    family = MONOMIAL
  []
  [rho_out]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = u
    y = v
    execute_on = 'initial timestep_end'
  []
  [vel_x]
    type = ParsedAux
    variable = vel_x
    expression = 'u'
    execute_on = 'initial timestep_end'
    coupled_variables = 'u'
  []
  [vel_y]
    type = ParsedAux
    variable = vel_y
    expression = 'v'
    execute_on = 'initial timestep_end'
    coupled_variables = 'v'
  []
  [viz_T]
    type = ParsedAux
    variable = viz_T
    expression = 'T'
    execute_on = 'initial timestep_end'
    coupled_variables = 'T'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho'
    variable = 'rho_out'
    execute_on = 'initial timestep_end'
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    phi0 = 1e5
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = u
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = v
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = left
    value = ${hot_temp}
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = right
    value = ${cold_temp}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Materials]
  [const]
    type = ADGenericConstantMaterial
    prop_names = 'alpha'
    prop_values = '${alpha}'
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro03_fv.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * B * exp(A * phi)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 3
    xmin = 0
    xmax = 3
  []
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    type = MooseVariableFVReal
    [FVInitialCondition]
      type = FVConstantIC
      value = 0
    []
  []
[]
[FVKernels]
  [flux]
    type = FVPorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[FVBCs]
  [ptop]
    type = FVDirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = FVDirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    type = MooseVariableFVReal
  []
  [perm_x]
    type = MooseVariableFVReal
  []
  [perm_y]
    type = MooseVariableFVReal
  []
  [perm_z]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [poro]
    type = ADPorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = ADPorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [permeability]
    type = ADPorousFlowPermeabilityExponential
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = exp_k
    A = 10
    B = 1e-8
  []
  [temperature]
    type = ADPorousFlowTemperature
  []
  [massfrac]
    type = ADPorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = ADPorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = ADPorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
[]
[Outputs]
  file_base = 'PermFromPoro03_out'
  csv = true
  execute_on = 'timestep_end'
[]
(test/tests/misc/rename-parameters/rename-functor.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Variables]
  [v]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff]
    type = RenamedCoeffFVDiffusion
    variable = v
    diffusion_coeff = diff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'diff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  csv = true
[]
[Postprocessors]
  [avg]
    type = ElementAverageValue
    variable = v
  []
[]
(test/tests/fvbcs/fv_pp_dirichlet/fv_pp_dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 2
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [left]
    type = FVPostprocessorDirichletBC
    variable = u
    boundary = left
    postprocessor = bc_val
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 0
  []
[]
[Postprocessors]
  [bc_val]
    type = Receiver
    default = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'Newton'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
# ========================================================================
#     The purpose of this MOOSE scripts is to solve a 2-D axisymmetric
#     problem with the following details:
#     ------------------------------------------------------------------
#     Physics: natural convection through a fluid  and heat conduction
#              in a solid and there is convective heat transfer from the
#              solid to the liquid.
#     ------------------------------------------------------------------
#     Materials: the fluid is water and the solid is not specified.
#     ------------------------------------------------------------------
#     BCS: Inlet and outlet pressure with value of 0
#          noslip conditions on the walls.
#          Heat flux on the left wall with value of 40000 W/m^2
# ========================================================================
# ========================================================================
#           Dimensions & Physical properties
# ========================================================================
Domain_length = 121.92e-2 # m
Solid_width = 0.7112e-3 # m
Liquid_width = 0.56261e-2 # m
mu = 0.00053157
rho = 987.27
k = 0.64247
k_solid = 15.0
cp = 4181.8
alpha_b = 210e-6
T_init = 300.0
input_heat_flux = 40000.0
# ========================================================================
#             The main body of the script
# ========================================================================
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    #dx   = '0.7032625e-4  0.7112e-5'
    dx = '${Liquid_width} ${Solid_width}'
    ix = '10 3'
    dy = '${fparse 1./5.*Domain_length} ${fparse 4./5.*Domain_length}'
    iy = '30 10'
    subdomain_id = '0 1
                    0 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = 0
    paired_block = 1
    new_boundary = 'interface'
  []
  [fluid_side]
    type = BreakBoundaryOnSubdomainGenerator
    input = 'interface'
    boundaries = 'top bottom'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    block = 0
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [vel_y]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    block = 0
    initial_condition = ${T_init}
    scaling = 1e-5
  []
  [Ts]
    type = INSFVEnergyVariable
    block = 1
    initial_condition = ${T_init}
    scaling = 1e-3
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = ${rho}
    ref_temperature = ${T_init}
    momentum_component = 'x'
    #alpha_name = ${alpha_b}
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
    #alpha_name = ${alpha_b}
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = ${rho}
    ref_temperature = ${T_init}
    momentum_component = 'y'
  []
  [temp_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = '${rho}'
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [Ts_time]
    type = INSFVEnergyTimeDerivative
    variable = Ts
    rho = '${rho}'
    dh_dt = dh_solid_dt
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k_solid'
    variable = Ts
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    boundary = 'interface'
    h = htc
    T_solid = Ts
    T_fluid = T
    subdomain1 = 0
    subdomain2 = 1
    wall_cell_is_bulk = true
  []
[]
[FVBCs]
  [walls_u]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'interface left bottom_to_0'
    function = 0
  []
  [walls_v]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'interface left bottom_to_0'
    function = 0
  []
  [outlet]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'top_to_0'
    function = 0.0
  []
  [outlet_T]
    type = NSFVOutflowTemperatureBC
    variable = T
    boundary = 'top_to_0'
    u = vel_x
    v = vel_y
    rho = ${rho}
    cp = '${cp}'
    backflow_T = ${T_init}
  []
  [Insulator]
    type = FVNeumannBC
    variable = 'T'
    boundary = 'left'
    value = 0.0
  []
  [heater]
    type = FVNeumannBC
    variable = 'Ts'
    boundary = 'right'
    value = '${fparse input_heat_flux}'
  []
  [Insulator_solid]
    type = FVNeumannBC
    variable = 'Ts'
    boundary = 'top_to_1'
    value = 0.0
  []
  [inlet_T_1]
    type = FVDirichletBC
    variable = Ts
    boundary = 'bottom_to_1'
    value = ${T_init}
  []
[]
[AuxVariables]
  [Ra]
    type = INSFVScalarFieldVariable
    initial_condition = 1000.0
  []
  [htc]
    type = INSFVScalarFieldVariable
    initial_condition = 0.0
  []
[]
[AuxKernels]
  [compute_Ra]
    type = ParsedAux
    variable = Ra
    coupled_variables = 'T'
    constant_names = 'g beta T_init width nu alpha'
    constant_expressions = '9.81 ${alpha_b} ${T_init} ${Liquid_width} ${fparse mu/rho} ${fparse k/(rho*cp)}'
    expression = 'g * beta * (T - T_init) * pow(width, 3) / (nu*alpha) + 1.0'
    block = 0
  []
  [htc]
    type = ParsedAux
    variable = htc
    coupled_variables = 'Ra'
    constant_names = 'Pr'
    constant_expressions = '${fparse cp*mu/k}'
    expression = '${k}* (0.68 + 0.67 * pow(Ra, 0.25)/pow(1 + pow(0.437/Pr, 9/16) ,4/9) )/ ${Liquid_width} '
    block = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k k_solid'
    prop_values = '${cp} ${k} ${k_solid}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
  [ins_fv_solid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'Ts'
    rho = ${rho}
    cp = ${cp}
    h = h_solid
    rho_h = rho_h_solid
    block = 1
  []
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b'
    prop_values = '${alpha_b}'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = ' lu       NONZERO                   200'
  line_search = 'none'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 0.01
    optimal_iterations = 20
    iteration_window = 2
  []
  nl_max_its = 30
  nl_abs_tol = 1e-10
  steady_state_detection = true
  steady_state_tolerance = 1e-09
[]
[Postprocessors]
  [max_T]
    type = ADElementExtremeFunctorValue
    functor = T
    block = 0
  []
  [max_Ts]
    type = ADElementExtremeFunctorValue
    functor = Ts
    block = 1
  []
[]
[Outputs]
  exodus = false
  csv = true
[]
(test/tests/fvkernels/fv_simple_diffusion/neumann.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
  []
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[Kernels]
  [diff]
    type = ADDiffusion
    variable = u
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVNeumannBC
    variable = v
    boundary = left
    value = 5
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[FunctorMaterials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[BCs]
  [left]
    type = ADNeumannBC
    variable = u
    boundary = left
    value = 5
  []
  [right]
    type = ADDirichletBC
    variable = u
    boundary = right
    value = 42
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
mu = 0.002
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 3
    dx = '0.2'
    dy = '0.2'
    dz = '0.8'
    ix = '3'
    iy = '3'
    iz = '12'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system w_system pressure_system energy_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    w = vel_z
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [vel_z]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = w_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [w_advection]
    type = INSFVMomentumAdvection
    variable = vel_z
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [w_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_z
    mu = ${mu}
    momentum_component = 'z'
  []
  [w_pressure]
    type = INSFVMomentumPressure
    variable = vel_z
    momentum_component = 'z'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 350
    alpha = 'alpha'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_x
    functor = '0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_y
    functor = '0'
  []
  [inlet-w]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_z
    functor = '1.1'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom '
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0.0
  []
  [walls-w]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_z
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'front'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'back left right top bottom'
    function = 0.0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'back'
    variable = T_fluid
    value = 300
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  # petsc_options_iname = '-pc_type -pc_hypre_type -pc_factor_shift_type'
  # petsc_options_value = 'hypre boomeramg NONZERO'
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system w_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.95
  num_iterations = 150
  pressure_absolute_tolerance = 1e-11
  momentum_absolute_tolerance = 1e-11
  energy_absolute_tolerance = 1e-11
  print_fields = false
  momentum_l_abs_tol = 1e-13
  pressure_l_abs_tol = 1e-13
  energy_l_abs_tol = 1e-13
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(test/tests/tag/mass-matrix.i)
[Mesh]
  [square]
    type = GeneratedMeshGenerator
    nx = 2
    ny = 2
    dim = 2
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [mass]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
  [mass]
    type = FVMassMatrix
    variable = u
    matrix_tags = 'mass'
  []
[]
[AuxKernels]
  [TagMatrixAux1]
    type = TagMatrixAux
    variable = mass
    v = u
    matrix_tag = mass
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Problem]
  type = FEProblem
  extra_tag_matrices = 'mass'
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(test/tests/fviks/diffusion/test.i)
L = 2
l = 1
q1 = 1
q2 = 2
uR = 1
D1 = 1
D2 = 2
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmax = ${L}
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '${l} 0 0'
    block_id = 1
    top_right = '${L} 1.0 0'
  []
  [interface_primary]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'primary_interface'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    block = 0
    initial_condition = 0.5
  []
  [v]
    type = MooseVariableFVReal
    block = 1
    initial_condition = 0.5
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 'left'
    block = 0
    coeff_interp_method = average
  []
  [source_left]
    type = FVBodyForce
    variable = u
    function = ${q1}
    block = 0
  []
  [diff_right]
    type = FVDiffusion
    variable = v
    coeff = 'right'
    block = 1
    coeff_interp_method = average
  []
  [source_right]
    type = FVBodyForce
    variable = v
    function = ${q2}
    block = 1
  []
[]
[FVInterfaceKernels]
  [interface]
    type = FVDiffusionInterface
    variable1 = u
    variable2 = v
    boundary = 'primary_interface'
    subdomain1 = '0'
    subdomain2 = '1'
    coeff1 = 'left'
    coeff2 = 'right'
    coeff_interp_method = average
  []
[]
[FVBCs]
  [v_left]
    type = FVDirichletBC
    variable = v
    boundary = 'right'
    value = ${uR}
  []
[]
[Materials]
  [block0]
    type = ADGenericFunctorMaterial
    block = '0'
    prop_names = 'left'
    prop_values = '${D1}'
  []
  [block1]
    type = ADGenericFunctorMaterial
    block = '1'
    prop_names = 'right'
    prop_values = '${D2}'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
restricted_blocks = '1'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = ${restricted_blocks}
    pressure = pressure
  []
[]
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    block = ${restricted_blocks}
  []
  [temperature]
    type = INSFVEnergyVariable
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = temperature
  []
  [energy_loss]
    type = FVBodyForce
    variable = temperature
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 0
  []
  [top-wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = u
    function = 0
  []
  [top-wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = v
    function = 0
  []
  [bottom-wall-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = u
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'x'
  []
  [bottom-wall-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = v
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'y'
  []
  [bottom-wall-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = temperature
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
    block = ${restricted_blocks}
  []
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_coupled_var/coupled.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 2
[]
[Variables]
  [u][]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [w]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [s][]
[]
[Kernels]
  [diff]
    type = Diffusion
    variable = u
  []
  [rxn]
    type = Reaction
    variable = u
    rate = 2.0
  []
  [diffs]
    type = Diffusion
    variable = s
  []
  [prod]
    type = CoupledForce
    variable = s
    v = u
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
  [rxn]
    type = FVReaction
    variable = v
    rate = 2.0
  []
  [diffw]
    type = FVDiffusion
    variable = w
    coeff = coeff
  []
  [prod]
    type = FVCoupledForce
    variable = w
    v = 'v'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 1
  []
  [leftw]
    type = FVDirichletBC
    variable = w
    boundary = left
    value = 0
  []
  [rightw]
    type = FVDirichletBC
    variable = w
    boundary = right
    value = 1
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = DirichletBC
    variable = u
    boundary = right
    value = 1
  []
  [lefts]
    type = DirichletBC
    variable = s
    boundary = left
    value = 0
  []
  [rights]
    type = DirichletBC
    variable = s
    boundary = right
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/1d_dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 2
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
[]
(test/tests/outputs/debug/show_functors.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 40
    xmax = 2
  []
[]
[Debug]
  show_functors = true
[]
[Variables]
  [fv]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 1
  []
  [fe]
    initial_condition = 1
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = fv
    coeff = fv_prop
    coeff_interp_method = average
  []
  [coupled]
    type = FVCoupledForce
    v = fv
    variable = fv
  []
[]
[Kernels]
  [diff]
    type = ADFunctorMatDiffusion
    variable = fe
    diffusivity = fe_prop
  []
  [coupled]
    type = CoupledForce
    v = fv
    variable = fe
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = fv
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = fv
    boundary = right
    value = 1
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = fe
    boundary = left
    value = 0
  []
  [right]
    type = DirichletBC
    variable = fe
    boundary = right
    value = 1
  []
[]
[Materials]
  active = 'fe_mat fv_mat'
  [bad_mat]
    type = FEFVCouplingMaterial
    fe_var = fe
    fv_var = fv
    execute_on = 'linear nonlinear'
  []
  [fe_mat]
    type = FEFVCouplingMaterial
    fe_var = fe
    execute_on = 'linear nonlinear'
  []
  [fv_mat]
    type = FEFVCouplingMaterial
    fv_var = fv
  []
  [fe_mat_bad_dep]
    type = FEFVCouplingMaterial
    fe_var = fe
    declared_prop_name = bad
  []
  [fv_mat_bad_dep]
    type = FEFVCouplingMaterial
    fv_var = fv
    retrieved_prop_name = bad
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  line_search = 'none'
[]
[Outputs]
  exodus = true
[]
(test/tests/markers/error_fraction_marker/error_fraction_marker_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[Functions]
  [solution]
    type = ParsedFunction
    expression = (exp(x)-1)/(exp(1)-1)
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = coeff
  []
  [conv]
    type = FVAdvection
    variable = u
    velocity = '1 0 0'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Adaptivity]
  [Indicators]
    [error]
      type = AnalyticalIndicator
      variable = u
      function = solution
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      coarsen = 0.1
      indicator = error
      refine = 0.3
    []
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-action.i)
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 20
    ny = 5
  []
[]
[Variables]
  [T_solid]
    type = INSFVEnergyVariable
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
  [velocity_norm]
    type = MooseVariableFVReal
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[Modules]
  [NavierStokesFV]
    compressibility = 'weakly-compressible'
    add_energy_equation = true
    porous_medium_treatment = true
    density = 'rho'
    dynamic_viscosity = 'mu'
    thermal_conductivity = 'k'
    specific_heat = 'cp'
    initial_velocity = '${u_inlet} 1e-6 0'
    initial_pressure = '${p_outlet}'
    initial_temperature = '${T_inlet}'
    inlet_boundaries = 'left'
    momentum_inlet_types = 'fixed-velocity'
    momentum_inlet_functors = '${u_inlet} 0'
    energy_inlet_types = 'fixed-temperature'
    energy_inlet_functors = '${T_inlet}'
    wall_boundaries = 'top bottom'
    momentum_wall_types = 'noslip symmetry'
    energy_wall_types = 'heatflux heatflux'
    energy_wall_functors = '0 0'
    outlet_boundaries = 'right'
    momentum_outlet_types = 'fixed-pressure'
    pressure_functors = '${p_outlet}'
    ambient_convection_alpha = 'h_cv'
    ambient_temperature = 'T_solid'
    mass_advection_interpolation = 'average'
    momentum_advection_interpolation = 'average'
    energy_advection_interpolation = 'average'
  []
[]
[FVKernels]
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = 'porosity'
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    # this should use eps * k instead of k
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = 'velocity_norm'
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 'porosity'
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[AuxKernels]
  [speed]
    type = ParsedAux
    variable = 'velocity_norm'
    coupled_variables = 'superficial_vel_x superficial_vel_y porosity'
    expression = 'sqrt(superficial_vel_x*superficial_vel_x + superficial_vel_y*superficial_vel_y) / porosity'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(test/tests/indicators/value_jump_indicator/value_jump_indicator_fv.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
  []
[]
[Adaptivity]
  [Indicators]
    [error]
      type = ValueJumpIndicator
      variable = something
    []
  []
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[ICs]
  [leftright]
    type = BoundingBoxIC
    variable = something
    inside = 1
    y2 = 1
    y1 = 0
    x2 = 0.5
    x1 = 0
  []
[]
[AuxVariables]
  [something]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = coeff
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 'left'
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 'right'
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
[GlobalParams]
  fp = fp
  two_term_boundary_expansion = true
  limiter = ${user_limiter}
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 1
    xmin = 0
    xmax = 18
    nx = 180
  []
  [to_pt5]
    input = cartesian
    type = SubdomainBoundingBoxGenerator
    bottom_left = '2 0 0'
    top_right = '4 1 0'
    block_id = 1
  []
  [pt5]
    input = to_pt5
    type = SubdomainBoundingBoxGenerator
    bottom_left = '4 0 0'
    top_right = '6 1 0'
    block_id = 2
  []
  [to_pt25]
    input = pt5
    type = SubdomainBoundingBoxGenerator
    bottom_left = '6 0 0'
    top_right = '8 1 0'
    block_id = 3
  []
  [pt25]
    input = to_pt25
    type = SubdomainBoundingBoxGenerator
    bottom_left = '8 0 0'
    top_right = '10 1 0'
    block_id = 4
  []
  [to_pt5_again]
    input = pt25
    type = SubdomainBoundingBoxGenerator
    bottom_left = '10 0 0'
    top_right = '12 1 0'
    block_id = 5
  []
  [pt5_again]
    input = to_pt5_again
    type = SubdomainBoundingBoxGenerator
    bottom_left = '12 0 0'
    top_right = '14 1 0'
    block_id = 6
  []
  [to_one]
    input = pt5_again
    type = SubdomainBoundingBoxGenerator
    bottom_left = '14 0 0'
    top_right = '16 1 0'
    block_id = 7
  []
  [one]
    input = to_one
    type = SubdomainBoundingBoxGenerator
    bottom_left = '16 0 0'
    top_right = '18 1 0'
    block_id = 8
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = MooseVariableFVReal
    initial_condition = ${p_initial}
  []
  [sup_vel_x]
    type = MooseVariableFVReal
    initial_condition = 1e-15
    scaling = 1e-2
  []
  [T_fluid]
    type = MooseVariableFVReal
    initial_condition = ${T}
    scaling = 1e-5
  []
[]
[AuxVariables]
  [vel_x]
    type = MooseVariableFVReal
  []
  [sup_mom_x]
    type = MooseVariableFVReal
  []
  [rho]
    type = MooseVariableFVReal
  []
  [worst_courant]
    type = MooseVariableFVReal
  []
  [porosity]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [vel_x]
    type = ADMaterialRealAux
    variable = vel_x
    property = vel_x
    execute_on = 'timestep_end'
  []
  [sup_mom_x]
    type = ADMaterialRealAux
    variable = sup_mom_x
    property = superficial_rhou
    execute_on = 'timestep_end'
  []
  [rho]
    type = ADMaterialRealAux
    variable = rho
    property = rho
    execute_on = 'timestep_end'
  []
  [worst_courant]
    type = Courant
    variable = worst_courant
    u = sup_vel_x
    execute_on = 'timestep_end'
  []
  [porosity]
    type = MaterialRealAux
    variable = porosity
    property = porosity
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_dt'
    variable = pressure
  []
  [mass_advection]
    type = PCNSFVKT
    variable = pressure
    eqn = "mass"
  []
  [momentum_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhou_dt'
    variable = sup_vel_x
  []
  [momentum_advection]
    type = PCNSFVKT
    variable = sup_vel_x
    eqn = "momentum"
    momentum_component = 'x'
  []
  [eps_grad]
    type = PNSFVPGradEpsilon
    variable = sup_vel_x
    momentum_component = 'x'
    epsilon_function = 'eps'
  []
  [energy_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
    variable = T_fluid
  []
  [energy_advection]
    type = PCNSFVKT
    variable = T_fluid
    eqn = "energy"
  []
[]
[FVBCs]
  [rho_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = pressure
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'mass'
  []
  [rhou_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = sup_vel_x
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rho_et_left]
    type = PCNSFVStrongBC
    boundary = 'left'
    variable = T_fluid
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'energy'
  []
  [rho_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = pressure
    pressure = ${p_initial}
    eqn = 'mass'
  []
  [rhou_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = sup_vel_x
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rho_et_right]
    type = PCNSFVStrongBC
    boundary = 'right'
    variable = T_fluid
    pressure = ${p_initial}
    eqn = 'energy'
  []
  # Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
  [T_left]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T}
    boundary = 'left'
  []
  [sup_vel_left]
    type = FVDirichletBC
    variable = sup_vel_x
    value = ${u_in}
    boundary = 'left'
  []
  [p_right]
    type = FVDirichletBC
    variable = pressure
    value = ${p_initial}
    boundary = 'right'
  []
[]
[Functions]
  [ud_in]
    type = ParsedVectorFunction
    expression_x = '${u_in}'
  []
  [eps]
    type = ParsedFunction
    expression = 'if(x < 2, 1,
             if(x < 4, 1 - .5 / 2 * (x - 2),
             if(x < 6, .5,
             if(x < 8, .5 - .25 / 2 * (x - 6),
             if(x < 10, .25,
             if(x < 12, .25 + .25 / 2 * (x - 10),
             if(x < 14, .5,
             if(x < 16, .5 + .5 / 2 * (x - 14),
                1))))))))'
  []
[]
[Materials]
  [var_mat]
    type = PorousPrimitiveVarMaterial
    pressure = pressure
    T_fluid = T_fluid
    superficial_vel_x = sup_vel_x
    fp = fp
    porosity = porosity
  []
  [porosity]
    type = GenericFunctionMaterial
    prop_names = 'porosity'
    prop_values = 'eps'
  []
[]
[Executioner]
  solve_type = NEWTON
  line_search = 'bt'
  type = Transient
  nl_max_its = 20
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e-5
    optimal_iterations = 6
    growth_factor = 1.2
  []
  num_steps = 10000
  end_time = 500
  nl_abs_tol = 1e-8
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'final'
  []
  checkpoint = true
[]
[Debug]
  show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/scalar-transport.i)
diff=1e-3
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  active = 'rc'
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
    a_u = ax
    a_v = ay
  []
  [rc_bad]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = -1
    ymax = 1
    nx = 100
    ny = 20
  []
[]
[Variables]
  [scalar]
    type = INSFVScalarFieldVariable
  []
[]
[AuxVariables]
  [ax]
    type = MooseVariableFVReal
  []
  [ay]
    type = MooseVariableFVReal
  []
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
[]
[FVKernels]
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet_scalar]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar
    value = 1
  []
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fv-thermal.i)
mu = 1
rho = 1
k = 1
cp = 1
[GlobalParams]
  velocity_interp_method = 'rc'
  # Maximum cell Peclet number is ~.1 so energy transport is stable without upwinding
  advected_interp_method = 'average'
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [Pe]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [Pe]
    type = PecletNumberFunctorAux
    variable = Pe
    speed = speed
    thermal_diffusivity = 'thermal_diffusivity'
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = 'mu'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 0
  []
[]
[Materials]
  [mu]
    type = ADGenericFunctorMaterial
    prop_names = 'mu'
    prop_values = '${mu}'
  []
  [speed]
    type = ADVectorMagnitudeFunctorMaterial
    x_functor = u
    y_functor = v
    vector_magnitude_name = speed
  []
  [thermal_diffusivity]
    type = ThermalDiffusivityFunctorMaterial
    k = ${k}
    rho = ${rho}
    cp = ${cp}
  []
  [enthalpy]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = T
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/segregated/channel_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe turbulent channel flow
# Case Number: 032
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [block_1]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 0
    ymax = ${H}
    nx = 4
    ny = 3
    bias_y = 0.7
  []
  [block_2]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = ${fparse -H}
    ymax = 0
    nx = 4
    ny = 3
    bias_y = ${fparse 1/0.7}
  []
  [smg]
    type = StitchedMeshGenerator
    inputs = 'block_1 block_2'
    clear_stitched_boundary_ids = true
    stitch_boundaries_pairs = 'bottom top'
    merge_boundaries_with_same_name = true
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e-8
    solver_sys = pressure_system
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = no
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = no
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = FVDirichletBC
    boundary = 'bottom top'
    variable = vel_x
    value = 0
  []
  [walls-v]
    type = FVDirichletBC
    boundary = 'bottom top'
    variable = vel_y
    value = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_TKE]
    type = FVDirichletBC
    boundary = 'left'
    variable = TKE
    value = '${k_init}'
  []
  [inlet_TKED]
    type = FVDirichletBC
    boundary = 'left'
    variable = TKED
    value = '${eps_init}'
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'bottom top'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
  [yplus]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.2 0.2'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_center_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_radius_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
    num_points =  ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/examples/solidification/gallium_melting.i)
##########################################################
# Simulation of Gallium Melting Experiment
# Ref: Gau, C., & Viskanta, R. (1986). Melting and solidification of a pure metal on a vertical wall.
# Key physics: melting/solidification, convective heat transfer, natural convection
##########################################################
mu = 1.81e-3
rho_solid = 6093
rho_liquid = 6093
k_solid = 32
k_liquid = 32
cp_solid = 381.5
cp_liquid = 381.5
L = 80160
alpha_b = 1.2e-4
T_solidus = 302.93
T_liquidus = '${fparse T_solidus + 0.1}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
T_cold = 301.15
T_hot = 311.15
Nx = 100
Ny = 50
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 88.9e-3
    ymin = 0
    ymax = 63.5e-3
    nx = ${Nx}
    ny = ${Ny}
  []
[]
[AuxVariables]
  [U]
    type = MooseVariableFVReal
  []
  [fl]
    type = MooseVariableFVReal
    initial_condition = 0.0
  []
  [density]
    type = MooseVariableFVReal
  []
  [th_cond]
    type = MooseVariableFVReal
  []
  [cp_var]
    type = MooseVariableFVReal
  []
  [darcy_coef]
    type = MooseVariableFVReal
  []
  [fch_coef]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [compute_fl]
    type = NSLiquidFractionAux
    variable = fl
    temperature = T
    T_liquidus = '${T_liquidus}'
    T_solidus = '${T_solidus}'
    execute_on = 'TIMESTEP_END'
  []
  [rho_out]
    type = FunctorAux
    functor = 'rho_mixture'
    variable = 'density'
  []
  [th_cond_out]
    type = FunctorAux
    functor = 'k_mixture'
    variable = 'th_cond'
  []
  [cp_out]
    type = FunctorAux
    functor = 'cp_mixture'
    variable = 'cp_var'
  []
  [darcy_out]
    type = FunctorAux
    functor = 'Darcy_coefficient'
    variable = 'darcy_coef'
  []
  [fch_out]
    type = FunctorAux
    functor = 'Forchheimer_coefficient'
    variable = 'fch_coef'
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = '${T_cold}'
    scaling = 1e-4
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    phi0 = 0.0
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = rho_mixture
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = vel_x
    momentum_component = 'x'
    u = vel_x
    v = vel_y
    Darcy_name = 'Darcy_coeff'
    Forchheimer_name = 'Forchheimer_coeff'
    rho = ${rho_liquid}
    mu = ${mu}
    standard_friction_formulation = false
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    ref_temperature = ${T_cold}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    momentum_component = 'x'
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = rho_mixture
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = rho_mixture
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = vel_y
    momentum_component = 'y'
    u = vel_x
    v = vel_y
    Darcy_name = 'Darcy_coeff'
    Forchheimer_name = 'Forchheimer_coeff'
    rho = ${rho_liquid}
    mu = ${mu}
    standard_friction_formulation = false
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    ref_temperature = ${T_cold}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -9.81 0'
    rho = '${rho_liquid}'
    momentum_component = 'y'
  []
  [T_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = rho_mixture
    dh_dt = dh_dt
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = k_mixture
    variable = T
  []
  [energy_source]
    type = NSFVPhaseChangeSource
    variable = T
    L = ${L}
    liquid_fraction = fl
    T_liquidus = ${T_liquidus}
    T_solidus = ${T_solidus}
    rho = 'rho_mixture'
  []
[]
[FVBCs]
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0
  []
  [hot_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_hot}'
    boundary = 'left'
  []
  [cold_wall]
    type = FVDirichletBC
    variable = T
    value = '${T_cold}'
    boundary = 'right'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = rho_mixture
    cp = cp_mixture
    temperature = 'T'
  []
  [eff_cp]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
    phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
    prop_names = 'cp_mixture k_mixture rho_mixture'
    phase_1_fraction = fl
  []
  [mushy_zone_resistance]
    type = INSFVMushyPorousFrictionFunctorMaterial
    liquid_fraction = 'fl'
    mu = '${mu}'
    rho_l = '${rho_liquid}'
    dendrite_spacing_scaling = 1e-1
  []
  [friction]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coeff Forchheimer_coeff'
    prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
  []
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b'
    prop_values = '${alpha_b}'
  []
[]
[Executioner]
  type = Transient
  # Time-stepping parameters
  start_time = 0.0
  end_time = 200.0
  num_steps = 2
  [TimeStepper]
    type = IterationAdaptiveDT
    # Raise time step often but not by as much
    # There's a rough spot for convergence near 10% fluid fraction
    optimal_iterations = 15
    growth_factor = 1.5
    dt = 0.1
  []
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-6
  nl_max_its = 30
  line_search = 'none'
[]
[Postprocessors]
  [ave_p]
    type = ElementAverageValue
    variable = 'pressure'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [ave_fl]
    type = ElementAverageValue
    variable = 'fl'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [ave_T]
    type = ElementAverageValue
    variable = 'T'
    execute_on = 'INITIAL TIMESTEP_END'
  []
[]
[VectorPostprocessors]
  [vel_x]
    type = ElementValueSampler
    variable = 'vel_x fl'
    sort_by = 'x'
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
(test/tests/fvkernels/two-var-flux-and-kernel/input.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff_u]
    type = FVDiffusion
    variable = u
    coeff = coeff
  []
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left_u]
    type = FVNeumannBC
    variable = u
    boundary = left
    value = 0
  []
  [right_u]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 42
  []
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 32
    ny = 32
  []
  [pin]
    type = ExtraNodesetGenerator
    input = gen
    new_boundary = 'pin'
    nodes = '0'
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
  []
  [v]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T]
    type = INSFVEnergyVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[ICs]
  [T]
    type = ConstantIC
    variable = T
    value = 1
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = u
    y = v
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = 'u'
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = INSFVEnergyTimeDerivative
    variable = T
    rho = ${rho}
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  # Run for 100+ timesteps to reach steady state.
  num_steps = 5
  dt = .5
  dtmin = .5
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_max_its = 6
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/1d_test_cpT.i)
L = 30
bulk_u = 0.01
p_ref = 101325.0
T_in = 860
q_source = 50000
A_cp = 976.78
B_cp = 1.0634
rho = 2000
advected_interp_method = 'upwind'
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    xmin = 0
    xmax = ${L}
    nx = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_ref}
    two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    initial_condition = ${T_in}
  []
[]
[FVKernels]
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    rho = 'rho'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [source]
    type = FVBodyForce
    variable = T
    function = source_func
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = ${bulk_u}
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'left'
    value = ${T_in}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_ref}
  []
[]
[Functions]
  [source_func]
    type = ParsedFunction
    expression = '${q_source}'
  []
[]
[FunctorMaterials]
  [converter_to_regular_T]
    type = FunctorADConverter
    ad_props_in = 'T'
    reg_props_out = 'T_nAD'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = 'rho'
    cp = 'cp'
    assumed_constant_cp = false
    h_in = 'h'
    # Alternative to providing 'h': set the fluid property and the pressure parameter
    # fp = 'fp'
    # pressure = 'pressure'
  []
  [rho]
    type = ADParsedFunctorMaterial
    property_name = 'rho'
    expression = '${rho}'
  []
  [mu]
    type = ADParsedFunctorMaterial
    property_name = 'mu'
    expression = '4.5e-3'
  []
  [k]
    type = ADParsedFunctorMaterial
    property_name = 'k'
    expression = '0.7'
  []
  [h]
    type = ADParsedFunctorMaterial
    property_name = 'h'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp * T + B_cp * T * T / 2'
  []
  [cp]
    type = ADParsedFunctorMaterial
    property_name = 'cp'
    functor_names = 'T ${A_cp} ${B_cp}'
    functor_symbols = 'T A_cp B_cp'
    expression = 'A_cp+B_cp*T'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  nl_abs_tol = 1e-9
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
[]
[Postprocessors]
  [H_in]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'left'
  []
  [H_out]
    type = VolumetricFlowRate
    vel_x = 'vel_x'
    advected_quantity = 'rho_h'
    boundary = 'right'
  []
  [Q]
    type = FunctionElementIntegral
    function = 'source_func'
    execute_on = 'initial'
  []
  [balance_in_percent]
    type = ParsedPostprocessor
    expression = '(H_out + H_in - Q) / H_in * 100'
    pp_names = 'H_in H_out Q'
  []
  [T_out]
    type = SideAverageValue
    variable = T
    boundary = 'right'
  []
  [T_analytical_outlet]
    type = Receiver
    default = ${fparse (-A_cp+sqrt(A_cp^2-2*B_cp*(-q_source/rho/bulk_u*L-A_cp*T_in-B_cp/2*T_in*T_in)))/B_cp}
  []
  [error_T]
    type = ParsedPostprocessor
    expression = 'T_out - T_analytical_outlet'
    pp_names = 'T_out T_analytical_outlet'
  []
[]
[Outputs]
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-ambient-convection.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
alpha = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = -1
    ymax = 1
    nx = 50
    ny = 16
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 100
    alpha = 'alpha'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Postprocessors]
  [temp]
    type = ElementAverageValue
    variable = T_fluid
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
  csv = true
[]
(test/tests/postprocessors/discrete_variable_residual_norm/part_fv.i)
[Variables]
  [T_fv]
    type = MooseVariableFVReal
  []
[]
[FunctorMaterials]
  [heat_flux_mat_elem]
    type = ADParsedFunctorMaterial
    expression = 'htc * (T - T_inf)'
    functor_symbols = 'T T_inf htc'
    functor_names = 'T_fv ${T_ambient} ${htc}'
    property_name = 'heat_flux_elem'
  []
  [source_mat_elem]
    type = ADParsedFunctorMaterial
    expression = '-B + A * (T - T_inf)^2'
    functor_symbols = 'A B T T_inf'
    functor_names = '${source_coef_A} ${source_coef_B} T_fv ${T_ambient}'
    property_name = 'source_elem'
  []
[]
[FVKernels]
  [T_fv_diff]
    type = FVDiffusion
    variable = T_fv
    coeff = ${k}
  []
  [T_fv_source]
    type = FVFunctorElementalKernel
    variable = T_fv
    functor_name = source_elem
  []
[]
[FVBCs]
  [left_bc_elem]
    type = FVDirichletBC
    variable = T_fv
    boundary = left
    value = ${T_ambient}
  []
  [right_bc_elem]
    type = FVFunctorNeumannBC
    variable = T_fv
    boundary = right
    functor = heat_flux_elem
    factor = -1
  []
[]
[Postprocessors]
  [fv_A_l1]
    type = DiscreteVariableResidualNorm
    variable = T_fv
    block = 'blockA'
    norm_type = l_1
    execute_on = 'FINAL'
  []
  [fv_B_l1]
    type = DiscreteVariableResidualNorm
    variable = T_fv
    block = 'blockB'
    norm_type = l_1
    execute_on = 'FINAL'
  []
[]
(modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/fv_simple_diffusion_line_source.i)
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    ny = 10
    xmax = 5
    ymax = 5
  []
[]
[Variables/v]
  family = MONOMIAL
  order = CONSTANT
  fv = true
[]
[FVKernels/diff]
  type = FVDiffusion
  variable = v
  coeff = coeff
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 1
  []
  [top_bottom]
    type = FVDirichletBC
    variable = v
    boundary = 'top bottom'
    value = 2
  []
[]
[Materials/diff]
  type = ADGenericFunctorMaterial
  prop_names = 'coeff'
  prop_values = '1'
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  exodus = true
[]
[Problem]
  kernel_coverage_check = false
[]
[UserObjects/study]
  type = RepeatableRayStudy
  names = 'line_source_ray'
  start_points = '1 1 0'
  end_points = '5 2 0'
  execute_on = PRE_KERNELS # must be set for line sources!
[]
[RayKernels/line_source]
  type = ADLineSourceRayKernel
  variable = v
  value = 5
[]
(test/tests/userobjects/layered_side_integral/layered_side_diffusive_flux_average_fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 6
  ny = 6
  nz = 6
[]
[Variables]
  [./u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  [../]
[]
[AuxVariables]
  [./layered_side_flux_average]
    order = CONSTANT
    family = MONOMIAL
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
[]
[FVBCs]
  [./bottom]
    type = FVDirichletBC
    variable = u
    boundary = bottom
    value = 0
  [../]
  [./top]
    type = FVDirichletBC
    variable = u
    boundary = top
    value = 1
  [../]
[]
[AuxKernels]
  [./lsfa]
    type = SpatialUserObjectAux
    variable = layered_side_flux_average
    boundary = top
    user_object = layered_side_flux_average
  [../]
[]
[Materials]
  [./gcm]
    type = GenericConstantMaterial
    prop_values = 2
    prop_names = diffusivity
    boundary = 'right top'
  [../]
[]
[UserObjects]
  [./layered_side_flux_average]
    type = LayeredSideDiffusiveFluxAverage
    direction = y
    diffusivity = diffusivity
    num_layers = 1
    variable = u
    execute_on = linear
    boundary = top
  [../]
[]
[Executioner]
  type = Steady
  nl_abs_tol = 1e-14
  nl_rel_tol = 1e-14
  l_abs_tol = 1e-14
  l_tol = 1e-6
[]
[Outputs]
  exodus = true
[]
[Debug]
  show_material_props = true
[]
(test/tests/fvbcs/fv_functor_dirichlet/fv_functor_dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 4
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  [left]
    type = FVFunctorDirichletBC
    variable = u
    boundary = left
    functor = bc_value
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 0
  []
[]
[Materials]
  [bc_value]
    type = GenericFunctorMaterial
    prop_names = bc_value
    prop_values = 10
  []
[]
[Executioner]
  type = Steady
  solve_type = 'Newton'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
cp = 'cp'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 20
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${T_inlet}
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
  [velocity_norm]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass_time]
    type = PWCNSFVMassTimeDerivative
    variable = pressure
    porosity = 'porosity'
    drho_dt = 'drho_dt'
  []
  [mass]
    type = PWCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    cp = ${cp}
    rho = ${rho}
    drho_dt = 'drho_dt'
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
  []
[]
[FunctorMaterials]
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = 'velocity_norm'
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 'porosity'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[AuxKernels]
  [speed]
    type = ParsedAux
    variable = 'velocity_norm'
    coupled_variables = 'superficial_vel_x superficial_vel_y porosity'
    expression = 'sqrt(superficial_vel_x*superficial_vel_x + superficial_vel_y*superficial_vel_y) / '
               'porosity'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(test/tests/fvkernels/fv_euler/fv_euler.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
  []
[]
[Variables]
  # we have to impose non-zero initial conditions in order to avoid an initially
  # singular matrix
  [fv_vel]
    order = CONSTANT
    family = MONOMIAL
    fv = true
    initial_condition = 2
  []
  [fv_rho]
    order = CONSTANT
    family = MONOMIAL
    fv = true
    initial_condition = 2
  []
[]
[FVKernels]
  # del * rho * velocity * velocity
  [adv_rho_u]
    type = FVMatAdvection
    variable = fv_vel
    vel = 'fv_velocity'
    advected_quantity = 'rho_u'
  []
  # del * rho * velocity
  [adv_rho]
    type = FVMatAdvection
    variable = fv_rho
    vel = 'fv_velocity'
  []
[]
[FVBCs]
  [left_vel]
    type = FVDirichletBC
    variable = fv_vel
    value = 1
    boundary = 'left'
  []
  [left_rho]
    type = FVDirichletBC
    variable = fv_rho
    value = 1
    boundary = 'left'
  []
  # del * rho * velocity * velocity
  [right_vel]
    type = FVMatAdvectionOutflowBC
    variable = fv_vel
    vel = 'fv_velocity'
    advected_quantity = 'rho_u'
    boundary = 'right'
  []
  # del * rho * velocity
  [adv_rho]
    type = FVMatAdvectionOutflowBC
    variable = fv_rho
    vel = 'fv_velocity'
    boundary = 'right'
  []
[]
[Materials]
  [euler_material]
    type = ADCoupledVelocityMaterial
    vel_x = fv_vel
    rho = fv_rho
    velocity = 'fv_velocity'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  line_search = 'none'
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'final'
  []
[]
(test/tests/fviks/one-var-diffusion/no-ik.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmax = 2
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '1.0 0 0'
    block_id = 1
    top_right = '2.0 1.0 0'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 'coeff'
    coeff_interp_method = average
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 'left'
    value = 1
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 'right'
    value = 0
  []
[]
[Materials]
  [block0]
    type = ADGenericFunctorMaterial
    block = '0'
    prop_names = 'coeff'
    prop_values = '4'
  []
  [block1]
    type = ADGenericFunctorMaterial
    block = '1'
    prop_names = 'coeff'
    prop_values = '2'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  csv = true
[]
[Functions]
  [exact_u]
    type = ParsedFunction
    expression = 'if(x<1, 1 - x/3, 4/3 - 2*x/3)'
  []
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2u]
    type = ElementL2Error
    variable = u
    function = exact_u
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]
(test/tests/fvkernels/constraints/integral_transient.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 4
[]
[Variables]
  [v]
    type = MooseVariableFVReal
  []
  [lambda]
    type = MooseVariableScalar
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
  [average]
    type = FVIntegralValueConstraint
    variable = v
    phi0 = phi0_pp
    lambda = lambda
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Postprocessors]
  [phi0_pp]
    type = FunctionValuePostprocessor
    function = 't + 13'
    execute_on = 'INITIAL TIMESTEP_BEGIN'
  []
[]
[Executioner]
  type = Transient
  dt = 1
  num_steps = 2
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
pressure_tag = "pressure_grad"
[Problem]
  kernel_coverage_check = false
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  velocity_interp_method = 'rc'
  advected_interp_method = 'average'
[]
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3683 0.0127'
    dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
    ix = '2 1'
    iy = '1 2 3 2 1'
    subdomain_id = '0 0
                    1 0
                    2 0
                    1 0
                    0 0
                    '
  []
  [rename_block_name]
    type = RenameBlockGenerator
    input = cmg
    old_block = '0 1 2'
    new_block = 'wall_block spacer_block porous_block'
  []
  [solid_fluid_interface_1]
    type = SideSetsBetweenSubdomainsGenerator
    input = rename_block_name
    primary_block = porous_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [solid_fluid_interface_2]
    type = SideSetsBetweenSubdomainsGenerator
    input = solid_fluid_interface_1
    primary_block = spacer_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [wall_left_boundary_1]
    type = SideSetsFromBoundingBoxGenerator
    input = solid_fluid_interface_2
    bottom_left = '0 0 0'
    top_right = '0.1 0.0127 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [wall_left_boundary_2]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_1
    bottom_left = '0 2.9857 0'
    top_right = '0.1 2.9984 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [fluid_left_boundary]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_2
    bottom_left = '0 0.0127 0'
    top_right = '0.1 2.9857 0'
    included_boundaries = left
    boundary_new = fluid_left
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
    block = 'spacer_block porous_block'
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system t_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
    solver_sys = u_system
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
    solver_sys = v_system
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'spacer_block porous_block'
    solver_sys = pressure_system
  []
  [T_fluid]
    type = INSFVEnergyVariable
    block = 'spacer_block porous_block'
    solver_sys = t_system
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    block = 'spacer_block porous_block'
  []
[]
[FVKernels]
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [u_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_x
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_y
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_conduction]
    type = PINSFVEnergyDiffusion
    k = 'k_fluid'
    variable = T_fluid
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    block = 'spacer_block porous_block'
    boundaries_to_force = fluid_left
  []
  [heat_source]
    type = FVBodyForce
    variable = T_fluid
    function = ${Q}
    block = 'porous_block'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
    block = 'spacer_block porous_block'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
    block = 'spacer_block porous_block'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_x
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_y
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [reflective_x]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_x
    boundary = fluid_left
    momentum_component = 'x'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_y]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_y
    boundary = fluid_left
    momentum_component = 'y'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_p]
    type = INSFVSymmetryPressureBC
    boundary = fluid_left
    variable = pressure
  []
  [T_reflective]
    type = FVNeumannBC
    variable = T_fluid
    boundary = fluid_left
    value = 0
  []
  [T_cold_boundary]
    type = FVDirichletBC
    variable = T_fluid
    boundary = solid_fluid_interface
    value = ${T_cold}
  []
[]
[ICs]
  [porosity_spacer]
    type = ConstantIC
    variable = porosity
    block = spacer_block
    value = 1.0
  []
  [porosity_fuel]
    type = ConstantIC
    variable = porosity
    block = porous_block
    value = 0.1
  []
  [temp_ic_fluid]
    type = ConstantIC
    variable = T_fluid
    value = ${T_cold}
    block = 'spacer_block porous_block'
  []
  [superficial_vel_x]
    type = ConstantIC
    variable = superficial_vel_x
    value = 1E-5
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = ConstantIC
    variable = superficial_vel_y
    value = 1E-5
    block = 'spacer_block porous_block'
  []
[]
[FunctorMaterials]
  [functor_constants_fluid]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k_fluid'
    prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
    block = 'spacer_block porous_block'
  []
  [density_fluid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [functor_constants_steel]
    # We need this to avoid errors for materials not existing on every block
    type = ADGenericFunctorMaterial
    prop_names = 'dummy'
    prop_values = 0.0
    block = wall_block
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 't_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.85
  energy_equation_relaxation = 0.95
  pressure_variable_relaxation = 0.45
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  pin_pressure = true
  pressure_pin_point = '0.2 1.5 0.0'
  pressure_pin_value = 0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/newton/lid-driven-turb-std-wall-nonlinear.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# Newton Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
walls = ''
linearized_model = false
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 10
    ny = 10
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1e-10
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1e-10
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 0.2
  []
  [TKE]
    type = INSFVEnergyVariable
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
    mu_interp_method = average
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
    mu_interp_method = average
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
    mu_interp_method = average
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
    mu_interp_method = average
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [TKE_time]
    type = FVFunctorTimeKernel
    variable = TKE
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
    coeff_interp_method = average
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    linearized_model = ${linearized_model}
  []
  [TKED_time]
    type = FVFunctorTimeKernel
    variable = TKED
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
    coeff_interp_method = average
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    linearized_model = ${linearized_model}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_TKE]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKE
    value = ${k_init}
  []
  [walls_TKED]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKED
    value = ${eps_init}
  []
[]
[FunctorMaterials]
  [mu_t_material]
    type = INSFVkEpsilonViscosityFunctorMaterial
    tke = TKE
    epsilon = TKED
    rho = ${rho}
  []
[]
[Executioner]
  type = Transient
  end_time = 200
  dt = 0.01
  steady_state_detection = true
  steady_state_tolerance = 1e-3
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -snes_linesearch_damping'
  petsc_options_value = 'lu        NONZERO               0.5'
  nl_abs_tol = 1e-8
  nl_rel_tol = 1e-8
  nl_max_its = 50
  line_search = none
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = true
  print_linear_residuals = false
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 32
    ny = 32
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 10
    ny = 4
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = x
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_x
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'phase_2'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction]
    type = PINSFVMomentumFriction
    Darcy_name = Darcy_coefficient_vec
    is_porous_medium = false
    momentum_component = y
    mu = mu_mixture
    rho = rho_mixture
    variable = vel_y
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
    functor = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
  [vel_slip_x_var]
    type = MooseVariableFVReal
  []
  [vel_slip_y_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
  [populate_vx_slip_var]
    type = FunctorAux
    variable = vel_slip_x_var
    functor = 'vel_slip_x'
  []
  [populate_vy_slip_var]
    type = FunctorAux
    variable = vel_slip_y_var
    functor = 'vel_slip_y'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  dt = 0.1
  end_time = 1.0
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'TIMESTEP_END'
  []
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
  [vslip_x]
    type = SideExtremeValue
    boundary = 'left'
    variable = 'vel_slip_x_var'
  []
  [vslip_y]
    type = SideExtremeValue
    boundary = 'left'
    variable = 'vel_slip_y_var'
  []
  [vslip_value]
    type = ParsedPostprocessor
    expression = 'sqrt(vslip_x*vslip_x + vslip_y*vslip_y)*vslip_x/abs(vslip_x)'
    pp_names = 'vslip_x vslip_y'
  []
[]
(test/tests/fvkernels/fv_simple_diffusion/fv_only_refined.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  uniform_refine = 1
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
[]
(modules/heat_transfer/test/tests/ad_convective_heat_flux/fe_fv_coupled.i)
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.5 0.5'
    dy = '0.5 0.5'
    ix = '5 5'
    iy = '5 5'
    subdomain_id = '0 1
                    0 1'
  []
  [add_sideset0]
    type = SideSetsBetweenSubdomainsGenerator
    input = cmg
    new_boundary = middle01
    primary_block = 0
    paired_block = 1
  []
  [add_sideset1]
    type = SideSetsBetweenSubdomainsGenerator
    input = add_sideset0
    new_boundary = middle10
    primary_block = 1
    paired_block = 0
  []
[]
[Variables]
  [u_fe]
    block = 0
  []
  [u_fv]
    type = MooseVariableFVReal
    block = 1
  []
[]
[Kernels]
  [u_fe_diff]
    type = ADDiffusion
    variable = u_fe
  []
[]
[BCs]
  [u_fe_left]
    type = ADDirichletBC
    boundary = left
    variable = u_fe
    value = 0
  []
  [u_fe_middle]
    type = ADConvectiveHeatFluxBC
    boundary = middle01
    variable = u_fe
    T_infinity_functor = u_fv
    heat_transfer_coefficient_functor = 1.0
  []
[]
[FVKernels]
  [u_fv_diff]
    type = FVDiffusion
    variable = u_fv
    coeff = 1.0
  []
[]
[FVBCs]
  [u_fv_right]
    type = FVDirichletBC
    boundary = right
    variable = u_fv
    value = 1.0
  []
  [u_fv_middle]
    type = FVFunctorConvectiveHeatFluxBC
    boundary = middle10
    variable = u_fv
    T_bulk = u_fv
    T_solid = u_fe
    heat_transfer_coefficient = 1.0
    is_solid = false
  []
[]
[Executioner]
  type = Steady
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/constraints/integral.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 4
[]
[Variables]
  [v]
    type = MooseVariableFVReal
  []
  [lambda]
    type = MooseVariableScalar
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
  [average]
    type = FVIntegralValueConstraint
    variable = v
    phi0 = 13
    lambda = lambda
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
[]
[Outputs]
  exodus = true
[]
(test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 5
[]
[Variables]
  [./u]
    type = MooseVariableFVReal
  [../]
[]
[FVKernels]
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  [../]
  [force]
    type = FVCoupledForce
    v = v
    variable = u
  []
[]
[FunctorMaterials]
  [parsed]
    type = ADParsedFunctorMaterial
    property_name = 'v'
    functor_names = 'u'
    expression = 'if(u>0.1,1e6,0)'
  []
[]
[FVBCs]
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  [../]
[]
[Executioner]
  type = Steady
  line_search = 'none'
  solve_type = NEWTON
  nl_max_its = 5
  nl_abs_div_tol = 1e+5
  nl_div_tol = 1e+50
  petsc_options = '-snes_converged_reason -ksp_converged_reason'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 0.5'
    dy = '1'
    ix = '8 5'
    iy = '8'
    subdomain_id = '0 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = 0
    paired_block = 1
    new_boundary = 'interface'
  []
  [fluid_side]
    type = BreakBoundaryOnSubdomainGenerator
    input = 'interface'
    boundaries = 'top bottom'
  []
[]
[GlobalParams]
  # retain behavior at time of test creation
  two_term_boundary_expansion = false
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'average'
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = 0
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [v]
    type = INSFVVelocityVariable
    block = 0
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
    block = 0
  []
  [T]
    type = INSFVEnergyVariable
    block = 0
    initial_condition = 1
  []
  [Ts]
    type = INSFVEnergyVariable
    block = 1
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
  []
  [solid_temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = Ts
  []
[]
[FVInterfaceKernels]
  [convection]
    type = FVConvectionCorrelationInterface
    variable1 = T
    variable2 = Ts
    boundary = 'interface'
    h = 5
    T_solid = Ts
    T_fluid = T
    subdomain1 = 0
    subdomain2 = 1
    wall_cell_is_bulk = true
  []
[]
[FVBCs]
  [walls_u]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'interface left'
    function = 0
  []
  [walls_v]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'interface left'
    function = 0
  []
  [inlet_u]
    type = INSFVInletVelocityBC
    variable = u
    boundary = 'bottom_to_0'
    functor = 0
  []
  [inlet_v]
    type = INSFVInletVelocityBC
    variable = v
    boundary = 'bottom_to_0'
    functor = 1
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'bottom_to_0'
    value = 0.5
  []
  [outlet]
    type = INSFVMassAdvectionOutflowBC
    variable = pressure
    boundary = 'top_to_0'
    u = u
    v = v
    rho = ${rho}
  []
  [outlet_u]
    type = INSFVMomentumAdvectionOutflowBC
    variable = u
    boundary = 'top_to_0'
    u = u
    v = v
    momentum_component = 'x'
    rho = ${rho}
  []
  [outlet_v]
    type = INSFVMomentumAdvectionOutflowBC
    variable = v
    boundary = 'top_to_0'
    u = u
    v = v
    momentum_component = 'y'
    rho = ${rho}
  []
  [heater]
    type = FVDirichletBC
    variable = 'Ts'
    boundary = 'right'
    value = 10
  []
[]
[FunctorMaterials]
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
    block = 0
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = 'asm      lu           NONZERO                   200'
  line_search = 'none'
  nl_abs_tol = 1e-14
[]
[Postprocessors]
  [max_T]
    type = ADElementExtremeFunctorValue
    functor = T
    block = 0
  []
  [max_Ts]
    type = ADElementExtremeFunctorValue
    functor = Ts
    block = 1
  []
  [mdot_out]
    type = VolumetricFlowRate
    boundary = 'top_to_0'
    vel_x = u
    vel_y = v
    advected_quantity = ${rho}
  []
[]
[Outputs]
  exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 5
    ny = 5
    xmax = 2
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 4
  []
  [gradient_creating]
    type = FVBodyForce
    variable = u
  []
[]
[FVBCs]
  [left]
    type = FVThermalResistanceBC
    geometry = 'cartesian'
    variable = u
    T_ambient = 10
    htc = 'htc'
    emissivity = 0.2
    thermal_conductivities = '0.1 0.2 0.3'
    conduction_thicknesses = '1 0.7 0.2'
    boundary = 'left'
    # Test setting iteration parameters
    step_size = 0.02
    max_iterations = 120
    tolerance = 1e-4
  []
  [top]
    type = FVThermalResistanceBC
    geometry = 'cartesian'
    variable = u
    # Test setting the temperature separately from the variable
    temperature = 'u'
    T_ambient = 14
    htc = 'htc'
    emissivity = 0
    thermal_conductivities = '0.1 0.2 0.3'
    conduction_thicknesses = '1 0.7 0.4'
    boundary = 'top'
  []
  [other]
    type = FVDirichletBC
    variable = u
    boundary = 'right bottom'
    value = 0
  []
[]
[Materials]
  [cht]
    type = ADGenericConstantMaterial
    prop_names = 'htc'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(test/tests/auxkernels/build_array_variable_aux/build_array_variable_aux.i)
[Mesh]
  [meshgen]
    type = GeneratedMeshGenerator
    nx = 2
    ny = 2
    dim = 2
  []
[]
[Variables]
  [a]
    order = FIRST
    family = LAGRANGE
  []
  [b]
    order = FIRST
    family = LAGRANGE
  []
  [c]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [d]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[Kernels]
  [diff_a]
    type = Diffusion
    variable = a
  []
  [diff_b]
    type = Diffusion
    variable = b
  []
[]
[FVKernels]
  [diff_c]
    type = FVDiffusion
    variable = c
    coeff = 1
  []
  [diff_d]
    type = FVDiffusion
    variable = d
    coeff = 1
  []
[]
[BCs]
  [a1]
    type = DirichletBC
    variable = a
    boundary = left
    value = 0
  []
  [a2]
    type = DirichletBC
    variable = a
    boundary = right
    value = 1
  []
  [b1]
    type = DirichletBC
    variable = b
    boundary = bottom
    value = 0
  []
  [b2]
    type = DirichletBC
    variable = b
    boundary = top
    value = 1
  []
[]
[FVBCs]
  [c1]
    type = FVDirichletBC
    variable = c
    boundary = left
    value = 0
  []
  [c2]
    type = FVDirichletBC
    variable = c
    boundary = right
    value = 1
  []
  [d1]
    type = FVDirichletBC
    variable = d
    boundary = bottom
    value = 0
  []
  [d2]
    type = FVDirichletBC
    variable = d
    boundary = top
    value = 1
  []
[]
[Problem]
  kernel_coverage_check = off
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[AuxVariables]
  [ab]
    order = FIRST
    family = LAGRANGE
    components = 2
  []
  [cd]
    order = CONSTANT
    family = MONOMIAL
    components = 2
  []
[]
[AuxKernels]
  [build_ab]
    type = BuildArrayVariableAux
    variable = ab
    component_variables = 'a b'
  []
  [build_cd]
    type = BuildArrayVariableAux
    variable = cd
    component_variables = 'c d'
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 20
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${T_inlet}
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass_time]
    type = PWCNSFVMassTimeDerivative
    variable = pressure
    porosity = 'porosity'
    drho_dt = 'drho_dt'
  []
  [mass]
    type = PWCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    h = 'h'
    dh_dt = 'dh_dt'
    rho = ${rho}
    drho_dt = 'drho_dt'
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
    gamma = 1.4
  []
[]
[FunctorMaterials]
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = 'speed'
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 'porosity'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    porosity = 'porosity'
    superficial_vel_x = 'superficial_vel_x'
    superficial_vel_y = 'superficial_vel_y'
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_abs_tol = 1e-10
  automatic_scaling = true
  end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = VolumetricFlowRate
    boundary = 'right'
    advected_quantity = '1'
    advected_interp_method = ${advected_interp_method}
    vel_x = 'superficial_vel_x'
    vel_y = 'superficial_vel_y'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/fv_modular_gap_heat_transfer_mortar_radiation_conduction.i)
[Mesh]
  inactive = 'translate'
  [file]
    type = FileMeshGenerator
    file = 2blk-gap.e
  []
  [secondary]
    type = LowerDBlockFromSidesetGenerator
    sidesets = '101'
    new_block_id = 10001
    new_block_name = 'secondary_lower'
    input = file
  []
  [primary]
    type = LowerDBlockFromSidesetGenerator
    sidesets = '100'
    new_block_id = 10000
    new_block_name = 'primary_lower'
    input = secondary
  []
  [translate]
    type = TransformGenerator
    transform = translate
    input = primary
    vector_value = '1 0 0'
  []
[]
[Problem]
  kernel_coverage_check = false
  material_coverage_check = false
[]
[Variables]
  [temp]
    type = MooseVariableFVReal
    block = '1 2'
  []
  [lm]
    order = CONSTANT
    family = MONOMIAL
    block = 'secondary_lower'
  []
[]
[Materials]
  [left]
    type = ADGenericFunctorMaterial
    block = 1
    prop_names = 'thermal_conductivity'
    prop_values = '0.01'
  []
  [right]
    type = ADGenericFunctorMaterial
    block = 2
    prop_names = 'thermal_conductivity'
    prop_values = '0.005'
  []
[]
[FVKernels]
  [hc]
    type = FVDiffusion
    variable = temp
    block = '1 2'
    coeff = 'thermal_conductivity'
  []
[]
[UserObjects]
  [radiation]
    type = FunctorGapFluxModelRadiation
    temperature = temp
    boundary = 100
    primary_emissivity = 1.0
    secondary_emissivity = 1.0
  []
  [conduction]
    type = FunctorGapFluxModelConduction
    temperature = temp
    boundary = 100
    gap_conductivity = 0.02
  []
[]
[Constraints]
  [ced]
    type = ModularGapConductanceConstraint
    variable = lm
    secondary_variable = temp
    primary_boundary = 100
    primary_subdomain = 10000
    secondary_boundary = 101
    secondary_subdomain = 10001
    gap_flux_models = 'radiation conduction'
    ghost_higher_d_neighbors = true
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = temp
    boundary = 'left'
    value = 100
  []
  [right]
    type = FVDirichletBC
    variable = temp
    boundary = 'right'
    value = 0
  []
[]
[Executioner]
  type = Steady
  nl_rel_tol = 1e-11
  nl_abs_tol = 1.0e-10
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/boundary_execution/2d.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 5
    ny = 5
    xmax = 2
    ymax = 2
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '0.0 0 0'
    top_right = '1.0 1.0 0'
    block_id = 1
  []
  [corner_inward]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'corner_inward'
  []
  [corner_outward]
    input = corner_inward
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '1'
    paired_block = '0'
    new_boundary = 'corner_outward'
  []
[]
[Variables]
  [all_domain]
    type = MooseVariableFVReal
  []
  [part_domain]
    type = MooseVariableFVReal
    block = 1
  []
[]
[FVKernels]
  [diff_all]
    type = FVDiffusion
    variable = all_domain
    coeff = coeff
  []
  [diff_part]
    type = FVDiffusion
    variable = part_domain
    coeff = coeff
  []
[]
[FVBCs]
  # The boundaries where the flux kernels are executed are
  # the dirichlet BCs: left, right and corner_inward
  # On top and bottom, not executed because 0 flux is assumed
  [left]
    type = FVDirichletBC
    variable = all_domain
    boundary = left
    value = 2
  []
  [corner_inward]
    type = FVDirichletBC
    variable = all_domain
    boundary = right
    value = 1
  []
  [corner_outward]
    type = FVDirichletBC
    variable = part_domain
    boundary = corner_inward
    value = 2
  []
  [right]
    type = FVDirichletBC
    variable = part_domain
    boundary = left
    value = 1
  []
[]
[Materials]
  [diffusion]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  line_search = 'none'
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/dispersion-test/cartesian_advection.i)
[GlobalParams]
  advected_interp_method = 'min_mod' #average upwind sou min_mod vanLeer quick venkatakrishnan skewness-corrected
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 11
    ny = 11
  []
[]
[Variables]
  [scalar]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [time_derivative]
    type = FVTimeKernel
    variable = scalar
  []
  [scalar_advection]
    type = FVAdvection
    variable = scalar
    velocity = '1 1 0'
  []
[]
[FVBCs]
  [inflow_1]
    type = FVDirichletBC
    boundary = 'left'
    value = '1'
    variable = scalar
  []
  [inflow_0]
    type = FVDirichletBC
    boundary = 'bottom'
    value = '0'
    variable = scalar
  []
  [outflow]
    type = FVConstantScalarOutflowBC
    variable = scalar
    velocity = '1 1 0'
    boundary = 'right top'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  dt = 0.1
  end_time = 10.0
  steady_state_detection = true
  steady_state_tolerance = 1e-12
  nl_abs_tol = 1e-12
  line_search = none
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'final'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = 1
    nx = 20
    ny = 10
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  rho = 'rho'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = ${inlet_v}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${outlet_pressure}
  []
  [T]
    type = INSFVEnergyVariable
    initial_condition = ${inlet_temp}
  []
[]
[AuxVariables]
  [velocity_norm]
    type = MooseVariableFVReal
  []
  [power_density]
    type = MooseVariableFVReal
    initial_condition = 1e4
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho'
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = 'rho'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = 'mu'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = 'rho'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = 'mu'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [temp_time]
    type = WCNSFVEnergyTimeDerivative
    variable = T
    rho = rho
    drho_dt = drho_dt
    h = h
    dh_dt = dh_dt
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [heat_source]
    type = FVCoupledForce
    variable = T
    v = power_density
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'top bottom'
    function = 0
  []
  # Inlet
  [inlet_u]
    type = INSFVInletVelocityBC
    variable = u
    boundary = 'left'
    functor = ${inlet_v}
  []
  [inlet_v]
    type = INSFVInletVelocityBC
    variable = v
    boundary = 'left'
    functor = 0
  []
  [inlet_T]
    type = FVDirichletBC
    variable = T
    boundary = 'left'
    value = ${inlet_temp}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = pressure
    boundary = 'right'
    function = ${outlet_pressure}
  []
[]
[FluidProperties]
  [fp]
    type = FlibeFluidProperties
    # AD-version of h_from_p_T(p, T, h, dh_dp, dh_dT) not implemented
    allow_imperfect_jacobians = true
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = 'rho'
  []
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T'
    speed = 'velocity_norm'
    # even though we provide rho from the parameters, we
    # want to get rho from the fluid properties
    force_define_density = true
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 1
  []
[]
[AuxKernels]
  [speed]
    type = VectorMagnitudeAux
    variable = 'velocity_norm'
    x = u
    y = v
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-3
    optimal_iterations = 6
  []
  end_time = 15
  nl_abs_tol = 1e-12
  nl_max_its = 50
  line_search = 'none'
  automatic_scaling = true
  off_diagonals_in_auto_scaling = true
  compute_scaling_once = false
[]
[Outputs]
  exodus = true
[]
(test/tests/tag/tag-fv.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 5
[]
[Variables]
  [v]
    type = MooseVariableFVReal
    initial_condition = 7
  []
[]
[AuxVariables]
  [soln_dof]
    type = MooseVariableFVReal
  []
  [soln_old_dof]
    type = MooseVariableFVReal
  []
  [soln_older_dof]
    type = MooseVariableFVReal
  []
  [resid_nontime_dof]
    type = MooseVariableFVReal
  []
  [soln]
    type = MooseVariableFVReal
  []
  [soln_old]
    type = MooseVariableFVReal
  []
  [soln_older]
    type = MooseVariableFVReal
  []
  [resid_nontime]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [soln_dof]
    type = TagVectorDofValueAux
    variable = soln_dof
    v = v
    vector_tag = 'solution'
  []
  [soln_old_dof]
    type = TagVectorDofValueAux
    variable = soln_old_dof
    v = v
    vector_tag = 'solution_state_1'
  []
  [soln_older_dof]
    type = TagVectorDofValueAux
    variable = soln_older_dof
    v = v
    vector_tag = 'solution_state_2'
  []
  [nontime_dof]
    type = TagVectorDofValueAux
    variable = resid_nontime_dof
    v = v
    vector_tag = 'nontime'
  []
  [soln]
    type = TagVectorAux
    variable = soln
    v = v
    vector_tag = 'solution'
  []
  [soln_old]
    type = TagVectorAux
    variable = soln_old
    v = v
    vector_tag = 'solution_state_1'
  []
  [soln_older]
    type = TagVectorAux
    variable = soln_older
    v = v
    vector_tag = 'solution_state_2'
  []
  [nontime]
    type = TagVectorAux
    variable = resid_nontime
    v = v
    vector_tag = 'nontime'
  []
[]
[FVKernels]
  [time]
    type = FVTimeKernel
    variable = v
  []
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '.2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  num_steps = 5
  dt = 0.1
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
Re = 1e4
von_karman_const = 0.2
D = 1
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * D / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = 0
    ymax = '${fparse 0.5 * D}'
    nx = 20
    ny = 10
    bias_y = '${fparse 1 / 1.2}'
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [scalar]
    type = INSFVScalarFieldVariable
  []
[]
[AuxVariables]
  [mixing_length]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_rans]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_x
    rho = ${rho}
    mixing_length = 'mixing_length'
    momentum_component = 'x'
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_rans]
    type = INSFVMixingLengthReynoldsStress
    variable = vel_y
    rho = ${rho}
    mixing_length = 'mixing_length'
    momentum_component = 'y'
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion_rans]
    type = INSFVMixingLengthScalarDiffusion
    variable = scalar
    mixing_length = 'mixing_length'
    u = vel_x
    v = vel_y
    schmidt_number = 1.0
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[AuxKernels]
  [mixing_len]
    type = WallDistanceMixingLengthAux
    walls = 'top bottom'
    variable = 'mixing_length'
    execute_on = 'initial'
    von_karman_const = ${von_karman_const}
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [inlet_scalar]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar
    value = 1
  []
  [wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0
  []
  [wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0
  []
  [sym-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = 'total_viscosity'
    momentum_component = x
  []
  [sym-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = 'total_viscosity'
    momentum_component = y
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
[]
[FunctorMaterials]
  [total_viscosity]
    type = MixingLengthTurbulentViscosityFunctorMaterial
    u = 'vel_x' #computes total viscosity = mu_t + mu
    v = 'vel_y' #property is called total_viscosity
    mixing_length = 'mixing_length'
    mu = ${mu}
    rho = ${rho}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
mu = 1.0
rho = 1e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.0
g = -9.81
[GlobalParams]
  velocity_interp_method = 'rc'
  advected_interp_method = 'upwind'
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = .1
    ymin = 0
    ymax = .1
    nx = 11
    ny = 11
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Correctors]
  [pin_pressure]
    type = NSPressurePin
    variable = pressure
    pin_type = point-value
    point = '0 0 0'
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    rho = 'rho_mixture'
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyant]
    type = INSFVMomentumGravity
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
    gravity = '0 ${g} 0'
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyant]
    type = INSFVMomentumGravity
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
    gravity = '0 ${g} 0'
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1e-3
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${U_lid}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [bottom_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'bottom'
    value = 1.0
  []
  [top_phase_2]
    type = FVDirichletBC
    variable = phase_2
    boundary = 'top'
    value = 0.0
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
  [phase_1]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
  [compute_phase_1]
    type = ParsedAux
    variable = phase_1
    coupled_variables = 'phase_2'
    expression = '1 - phase_2'
  []
[]
[FunctorMaterials]
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_1_names = '${rho_d} ${mu_d}'
    phase_2_names = '${rho} ${mu}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
[]
[Postprocessors]
  [average_void]
    type = ElementAverageValue
    variable = 'phase_2'
  []
  [max_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = max
  []
  [min_y_velocity]
    type = ElementExtremeValue
    variable = 'vel_y'
    value_type = min
  []
  [max_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = max
  []
  [min_x_velocity]
    type = ElementExtremeValue
    variable = 'vel_x'
    value_type = min
  []
  [max_x_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_x'
    value_type = max
  []
  [max_y_slip_velocity]
    type = ElementExtremeFunctorValue
    functor = 'vel_slip_y'
    value_type = max
  []
  [max_drag_coefficient]
    type = ElementExtremeFunctorValue
    functor = 'drag_coefficient'
    value_type = max
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 10
    iteration_window = 2
    growth_factor = 2
    cutback_factor = 0.5
    dt = 1e-3
  []
  nl_max_its = 20
  nl_rel_tol = 1e-03
  nl_abs_tol = 1e-9
  l_max_its = 5
  end_time = 1e8
[]
[Outputs]
  exodus = false
  [CSV]
    type = CSV
    execute_on = 'FINAL'
  []
[]
(test/tests/functors/fe-var-for-fv-neumann/test.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
  []
[]
[Variables]
  [fe][]
  [fv]
    type = MooseVariableFVReal
  []
[]
[Kernels]
  [diff]
    type = Diffusion
    variable = fe
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = fv
    coeff = 1
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = fe
    value = 0
    boundary = left
   []
   [right]
     type = DirichletBC
     variable = fe
     value = 1
     boundary = right
   []
 []
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = fv
    value = 0
    boundary = left
  []
  [right]
    type = FVFunctorNeumannBC
    variable = fv
    functor = fe
    boundary = right
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/transient.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 7
  []
[]
[Kernels]
[]
[FVKernels]
  [./time]
    type = FVFunctorTimeKernel
    variable = v
  [../]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '.2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
  num_steps = 20
  dt = 0.1
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/physics/diffusion_interfaces/three_zones.i)
D0 = 1
D1 = 2
D2 = 6
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 1
    dx = '1.5 3 2'
    ix = '3 3 4'
    subdomain_id = '0 1 2'
  []
  [add_01]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = '0'
    paired_block = '1'
    new_boundary = '0to1'
  []
  [add_12]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'add_01'
    primary_block = '1'
    paired_block = '2'
    new_boundary = '1to2'
  []
[]
[Variables]
  [T_solid]
    type = MooseVariableFVReal
  []
[]
[FVBCs]
  [right]
    type = FVDirichletBC
    variable = T_solid
    boundary = 'right'
    value = 1
  []
[]
[FVKernels]
  [diff1]
    type = FVDiffusion
    variable = T_solid
    coeff = ${D0}
    block = 0
  []
  [diff2]
    type = FVDiffusion
    variable = T_solid
    coeff = ${D1}
    block = 1
  []
  [diff3]
    type = FVDiffusion
    variable = T_solid
    coeff = ${D2}
    block = 2
  []
  [source]
    type = FVBodyForce
    variable = T_solid
    value = 1
    block = 1
  []
[]
[FVInterfaceKernels]
  [01]
    type = FVOneVarDiffusionInterface
    variable1 = T_solid
    subdomain1 = '0'
    subdomain2 = '1'
    coeff1 = ${D0}
    coeff2 = ${D1}
    boundary = '0to1'
  []
  [12]
    type = FVOneVarDiffusionInterface
    variable1 = T_solid
    subdomain1 = '1'
    subdomain2 = '2'
    coeff1 = ${D1}
    coeff2 = ${D2}
    boundary = '1to2'
  []
[]
[Executioner]
  type = Steady
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  [all_values]
    type = ElementValueSampler
    variable = T_solid
    sort_by = 'x'
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_fv.i)
# Pressure pulse in 1D with 2 phases, 2components - transient using FV
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = 2e6
  []
  [sgas]
    type = MooseVariableFVReal
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [ppgas]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = ADPorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[FVBCs]
  [leftwater]
    type = FVDirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = FVDirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
  [sgas]
    type = FVDirichletBC
    boundary = 'left right'
    value = 0.3
    variable = sgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = ElementValueSampler
    sort_by = x
    variable = 'ppwater ppgas'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS_fv
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
mu = 2.6
rho = 1.0
cp = 700
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  # uniform_refine = 1
  [fmg]
    type = FileMeshGenerator
    file = "diverger-2d.msh"
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    # two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    solver_sys = energy_system
    initial_condition = 700
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [heat_advection]
    type = INSFVEnergyAdvection
    variable = T
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
  []
  [heat_diffusion]
    type = FVDiffusion
    variable = T
    coeff = '10'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_y
    functor = '0.0'
  []
  [inlet-T]
    type = FVDirichletBC
    boundary = 'inlet'
    value = 700
    variable = T
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet'
    variable = pressure
    function = 1.4
  []
  [zerograd-p]
    type = FVNeumannBC
    boundary = 'top bottom inlet'
    variable = pressure
    value = 0
  []
[]
[FunctorMaterials]
  [mu]
    type = ADGenericFunctorMaterial #defines mu artificially for numerical convergence
    prop_names = 'mu rho cp' #it converges to the real mu eventually.
    prop_values = '${mu} ${rho} ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    cp = ${cp}
    temperature = 'T'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-12
  pressure_l_abs_tol = 1e-12
  energy_l_abs_tol = 1e-12
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  energy_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(test/tests/postprocessors/side_average_value/side_average_functor_test.i)
[Mesh]
  inactive = 'refine'
  # U-shaped domains to have internal boundaries in
  # a variety of directions
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1 1'
    dy = '3 1'
    ix = '4 5 3'
    iy = '12 4'
    subdomain_id = '1 2 1
                    1 1 1'
  []
  [internal_boundary_dir1]
    type = SideSetsBetweenSubdomainsGenerator
    input = cmg
    primary_block = 1
    paired_block = 2
    new_boundary = 'inside_1'
  []
  [internal_boundary_dir2]
    type = SideSetsBetweenSubdomainsGenerator
    input = internal_boundary_dir1
    primary_block = 2
    paired_block = 1
    new_boundary = 'inside_2'
  []
  [refine]
    type = RefineBlockGenerator
    input = internal_boundary_dir2
    block = '1 2'
    refinement = '2 1'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    block = 1
  []
[]
[AuxVariables]
  [v1]
    type = MooseVariableFVReal
    block = 1
    [FVInitialCondition]
      type = FVFunctionIC
      function = 'x + y'
    []
  []
  [v2]
    type = MooseVariableFVReal
    block = 2
    [FVInitialCondition]
      type = FVFunctionIC
      function = '2*x*x - y'
    []
  []
[]
[Functions]
  [f1]
    type = ParsedFunction
    expression = 'exp(x - y)'
  []
[]
[FunctorMaterials]
  [m1]
    type = ADGenericFunctorMaterial
    prop_names = 'm1'
    prop_values = 'f1'
  []
  [m2]
    type = ADPiecewiseByBlockFunctorMaterial
    prop_name = 'm2'
    subdomain_to_prop_value = '1 12
                               2 4'
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = '1'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 3
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 1
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
[Postprocessors]
  # Mesh external boundaries integration
  [ext_u]
    type = SideAverageFunctorPostprocessor
    boundary = 'left top right'
    functor = u
    restrict_to_functors_domain = true
  []
  [ext_u_int]
    type = ADSideIntegralFunctorPostprocessor
    boundary = 'left top right'
    functor = u
    restrict_to_functors_domain = true
  []
  [ext_u_area]
    type = AreaPostprocessor
    boundary = 'left top right'
  []
  [ext_u_diff]
    type = ParsedPostprocessor
    pp_names = 'ext_u ext_u_int ext_u_area'
    expression = 'ext_u - ext_u_int/ext_u_area'
  []
  [ext_v1]
    type = SideAverageFunctorPostprocessor
    boundary = 'left right'
    functor = v1
  []
  [ext_v2]
    type = SideAverageFunctorPostprocessor
    boundary = 'top'
    functor = v2
    restrict_to_functors_domain = true
  []
  [ext_f1]
    type = SideAverageFunctorPostprocessor
    boundary = 'left top right'
    functor = f1
    prefactor = f1
  []
  [ext_m1]
    type = SideAverageFunctorPostprocessor
    boundary = 'left top right'
    functor = m1
    restrict_to_functors_domain = true
  []
  [ext_m2]
    type = SideAverageFunctorPostprocessor
    boundary = 'left top right'
    functor = m2
    restrict_to_functors_domain = true
  []
  # Internal to the mesh, but a side to the variables
  # With orientation of normal 1->2
  [int_s1_u]
    type = SideAverageFunctorPostprocessor
    boundary = inside_1
    functor = u
  []
  [int_s1_v1]
    type = SideAverageFunctorPostprocessor
    boundary = inside_1
    functor = v1
  []
  [int_s1_f1]
    type = SideAverageFunctorPostprocessor
    boundary = inside_1
    functor = f1
  []
  [int_s1_m1]
    type = SideAverageFunctorPostprocessor
    boundary = inside_1
    functor = m1
  []
  [int_s1_m2]
    type = SideAverageFunctorPostprocessor
    boundary = inside_1
    functor = m2
  []
  # With orientation of normal 2->1
  [int_s2_v2]
    type = SideAverageFunctorPostprocessor
    boundary = inside_2
    functor = v2
  []
  [int_s2_f1]
    type = SideAverageFunctorPostprocessor
    boundary = inside_2
    functor = f1
  []
  [int_s2_m1]
    type = SideAverageFunctorPostprocessor
    boundary = inside_2
    functor = m1
  []
  [int_s2_m2]
    type = SideAverageFunctorPostprocessor
    boundary = inside_2
    functor = m2
  []
[]
[Outputs]
  csv = true
  exodus = true
[]
[Problem]
  kernel_coverage_check = false
[]
(test/tests/materials/functor_properties/ad_conversion/1d_dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmax = 2
[]
[Variables]
  [v]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [sink]
    type = MooseVariableFVReal
  []
[]
[ICs]
  [sink]
    type = FunctionIC
    variable = sink
    function = 'x^3'
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = 1
  []
  [sink]
    type = FVFunctorElementalKernel
    variable = v
    functor_name = 'ad_sink'
  []
[]
[FVBCs]
  [bounds]
    type = FVDirichletBC
    variable = v
    boundary = 'left right'
    value = 0
  []
[]
[Materials]
  [converter_to_regular]
    type = FunctorADConverter
    ad_props_in = 'sink'
    reg_props_out = 'regular_sink_0'
  []
  # Just to change the name
  [functor]
    type = GenericFunctorMaterial
    prop_names = 'regular_sink_1'
    prop_values = 'regular_sink_0'
  []
  [converter_to_ad]
    type = FunctorADConverter
    reg_props_in = 'regular_sink_1'
    ad_props_out = 'ad_sink'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
mu = 2.6
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 350
    alpha = 'alpha'
  []
[]
[FVBCs]
  inactive = "symmetry-u symmetry-v symmetry-p"
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 300
  []
  ### Inactive by default, some tests will turn these on ###
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  ##########################################################
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-11
  pressure_l_abs_tol = 1e-11
  energy_l_abs_tol = 1e-11
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.999
  num_iterations = 100
  pressure_absolute_tolerance = 1e-10
  momentum_absolute_tolerance = 1e-10
  energy_absolute_tolerance = 1e-10
  print_fields = false
  continue_on_max_its = true
[]
[Materials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_thermal_resistance/test_functor.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 5
    ny = 5
    xmax = 2
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 4
  []
  [gradient_creating]
    type = FVBodyForce
    variable = u
  []
[]
[FVBCs]
  [left]
    type = FunctorThermalResistanceBC
    geometry = 'cartesian'
    variable = u
    T_ambient = 10
    htc = 'htc'
    emissivity = 0.2
    thermal_conductivities = '0.1 0.2 0.3'
    conduction_thicknesses = '1 0.7 0.2'
    boundary = 'left'
    # Test setting iteration parameters
    step_size = 0.02
    max_iterations = 120
    tolerance = 1e-4
  []
  [top]
    type = FunctorThermalResistanceBC
    geometry = 'cartesian'
    variable = u
    # Test setting the temperature separately from the variable
    temperature = 'u'
    T_ambient = 14
    htc = 'htc'
    emissivity = 0
    thermal_conductivities = '0.1 0.2 0.3'
    conduction_thicknesses = '1 0.7 0.4'
    boundary = 'top'
  []
  [other]
    type = FVDirichletBC
    variable = u
    boundary = 'right bottom'
    value = 0
  []
[]
[Materials]
  [cht]
    type = ADGenericFunctorMaterial
    prop_names = 'htc'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-scalar.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
alpha=0.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.0'
    dy = '0.25 0.25 0.25'
    ix = '5'
    iy = '2 2 2'
    subdomain_id = '1 2 3'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-2'
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator-2
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-3
    combinatorial_geometry = 'y < 0.25 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-2
  []
  [outlet-3]
    type = ParsedGenerateSideset
    input = outlet-2
    combinatorial_geometry = 'y > 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [scalar]
    type = INSFVEnergyVariable
    initial_condition = 50
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [scalar_conduction]
    type = FVDiffusion
    coeff = ${alpha}
    variable = scalar
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-scalar-1]
    type = FVDirichletBC
    variable = scalar
    boundary = 'inlet-1'
    value = 10
  []
  [inlet-scalar-2]
    type = FVDirichletBC
    variable = scalar
    boundary = 'inlet-2'
    value = 20
  []
  [inlet-scalar-3]
    type = FVDirichletBC
    variable = scalar
    boundary = 'inlet-3'
    value = 30
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-scalar]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = scalar
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1 3'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_scalar1]
    type = SideAverageValue
    variable = 'scalar'
    boundary = 'outlet-1'
  []
  [outlet_scalar2]
    type = SideAverageValue
    variable = 'scalar'
    boundary = 'outlet-2'
  []
  [outlet_scalar3]
    type = SideAverageValue
    variable = 'scalar'
    boundary = 'outlet-3'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
mu = 1
rho = 1
k = 0.01
cp = 1
alpha = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 10
    ny = 10
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  inactive = 'u_buoyancy u_gravity v_buoyancy v_gravity'
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    alpha_name = ${alpha}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    alpha_name = ${alpha}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'left right top bottom'
    function = 0.0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.90
  energy_equation_relaxation = 0.99
  pressure_variable_relaxation = 0.30
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  energy_absolute_tolerance = 1e-13
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/FVFunctorHeatFluxBC/wall_heat_transfer.i)
flux=10
[GlobalParams]
  porosity = 'porosity'
  splitting = 'porosity'
  locality = 'global'
  average_porosity = 'average_eps'
  average_k_fluid='average_k_fluid'
  average_k_solid='average_k_solid'
  average_kappa='average_k_fluid'  # because of vector matprop, should be kappa
  average_kappa_solid='average_kappa_solid'
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 20
  xmin = 0.0
  xmax = 1.0
  ymin = 0.0
  ymax = 1.0
[]
[Variables]
  [Tf]
    type = MooseVariableFVReal
  []
  [Ts]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [k]
    type = MooseVariableFVReal
  []
  [kappa]
    type = MooseVariableFVReal
  []
  [k_s]
    type = MooseVariableFVReal
  []
  [kappa_s]
    type = MooseVariableFVReal
  []
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.2
  []
[]
[Functions]
  [k_function]
    type = ParsedFunction
    expression = 0.1*(100*y+1)
  []
  [kappa_function]
    type = ParsedFunction
    expression = 0.2*(200*y+1)
  []
  [kappa_s_function]
    type = ParsedFunction
    expression = 0.4*(200*y+1)
  []
  [k_s_function]
    type = ParsedFunction
    expression = 0.2*(200*y+1)+2*x
  []
[]
[FVKernels]
  [Tf_diffusion]
    type = FVDiffusion
    variable = Tf
    coeff = 1
  []
  [Ts_diffusion]
    type = FVDiffusion
    variable = Ts
    coeff = 1
  []
[]
[FVBCs]
  [left_Ts]
    type = NSFVFunctorHeatFluxBC
    variable = Ts
    boundary = 'left'
    phase = 'solid'
    value = ${flux}
    k = 'k_mat'
    k_s = 'k_s_mat'
    kappa = 'kappa_mat'
    kappa_s = 'kappa_s_mat'
  []
  [right_Ts]
    type = FVDirichletBC
    variable = Ts
    boundary = 'right'
    value = 1000.0
  []
  [left_Tf]
    type = NSFVFunctorHeatFluxBC
    variable = Tf
    boundary = 'left'
    phase = 'fluid'
    value = ${flux}
    k = 'k_mat'
    k_s = 'k_s_mat'
    kappa = 'kappa_mat'
    kappa_s = 'kappa_s_mat'
  []
  [right_Tf]
    type = FVDirichletBC
    variable = Tf
    boundary = 'right'
    value = 1000.0
  []
[]
[AuxKernels]
  [k]
    type = FunctorAux
    variable = k
    functor = 'k_mat'
  []
  [k_s]
    type = FunctorAux
    variable = k_s
    functor = 'k_s_mat'
  []
  [kappa_s]
    type = FunctorAux
    variable = kappa_s
    functor = 'kappa_s_mat'
  []
[]
[FunctorMaterials]
  [thermal_conductivities_k]
    type = ADGenericFunctorMaterial
    prop_names = 'k_mat'
    prop_values = 'k_function'
  []
  [thermal_conductivities_k_s]
    type = ADGenericFunctorMaterial
    prop_names = 'k_s_mat'
    prop_values = 'k_s_function'
  []
  [thermal_conductivities_kappa]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'kappa_mat'
    prop_values = '0.1 0.2 .03'
  []
  [thermal_conductivities_kappa_s]
    type = ADGenericFunctorMaterial
    prop_names = 'kappa_s_mat'
    prop_values = 'kappa_s_function'
  []
[]
[Postprocessors]
  [average_eps]
    type = ElementAverageValue
    variable = porosity
    # because porosity is constant in time, we evaluate this only once
    execute_on = 'initial'
  []
  [average_k_fluid]
    type = ElementAverageValue
    variable = k
  []
  [average_k_solid]
    type = ElementAverageValue
    variable = k_s
  []
  [average_kappa_solid]
    type = ElementAverageValue
    variable = kappa_s
  []
[]
[Executioner]
  type = Steady
[]
[Outputs]
  exodus = true
  hide = 'porosity average_eps'
[]
(test/tests/fvkernels/block-restriction/1d.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
    xmax = 2
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '1.0 0 0'
    block_id = 1
    top_right = '2.0 1.0 0'
  []
  [left_right]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'left_right'
  []
  [right_left]
    input = left_right
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '1'
    paired_block = '0'
    new_boundary = 'right_left'
  []
[]
[Variables]
  [left]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    block = 0
  []
  [right]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    block = 1
  []
[]
[FVKernels]
  [left]
    type = FVDiffusion
    variable = left
    coeff = coeff_left
    block = 0
    coeff_interp_method = average
  []
  [right]
    type = FVDiffusion
    variable = right
    coeff = coeff_right
    block = 1
    coeff_interp_method = average
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = left
    boundary = left
    value = 0
  []
  [left_right]
    type = FVDirichletBC
    variable = left
    boundary = left_right
    value = 1
  []
  [right_left]
    type = FVDirichletBC
    variable = right
    boundary = right_left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = right
    boundary = right
    value = 1
  []
[]
[Materials]
  [left]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff_left'
    prop_values = '1'
    block = 0
  []
  [right]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff_right'
    prop_values = '1'
    block = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  line_search = 'none'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '50 50'
    iy = '20'
    subdomain_id = '1 2'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  inactive = 'T_solid'
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
  []
[]
[AuxVariables]
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
    initial_condition = 100
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  inactive = 'solid_energy_diffusion solid_energy_convection'
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  inactive = 'heated-side'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 150
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '1'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(test/tests/fvkernels/fv_anisotropic_diffusion/fv_anisotropic_diffusion.i)
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '10 10'
    ix = '2 2'
    dy = '20'
    iy = '4'
    subdomain_id = '1 2'
  []
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [u]
    order = FIRST
    family = LAGRANGE
  []
[]
[Kernels]
  [fem_diff1]
    type = AnisotropicDiffusion
    variable = u
    tensor_coeff = '1 0 0
                    0 10 0
                    0 0 0'
    block = 1
  []
  [fem_diff2]
    type = AnisotropicDiffusion
    variable = u
    tensor_coeff = '10 0 0
                    0 10 0
                    0 0 0'
    block = 2
  []
[]
[BCs]
  [fem_left_bottom]
    type = NeumannBC
    variable = u
    boundary = 'left bottom'
    value = 1
  []
  [fem_top_right]
    type = DirichletBC
    variable = u
    boundary = 'right top'
    value = 0
  []
[]
[FVKernels]
  [diff]
    type = FVAnisotropicDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left_bottom]
    type = FVNeumannBC
    variable = v
    boundary = 'left bottom'
    value = 1
  []
  [top_right]
    type = FVDirichletBC
    variable = v
    boundary = 'right top'
    value = 0
  []
[]
[Materials]
  [diff1]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1 10 1'
    block = 1
  []
  [diff2]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'coeff'
    prop_values = '10 10 1'
    block = 2
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
  exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/linear_sys_to_aux/nonlinear_main.i)
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
  []
[]
[Variables]
  [u_main]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [transferred]
    type = MooseLinearVariableFVReal
  []
[]
[Transfers]
  [copy]
    type = MultiAppCopyTransfer
    from_multi_app = linear_sub
    source_variable = u
    variable = transferred
  []
[]
[MultiApps]
  [linear_sub]
    type = FullSolveMultiApp
    input_files = 'linear_sub.i'
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u_main
    coeff = 2
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u_main
    boundary = left
    value = 0
  []
  [./right]
    type = FVDirichletBC
    variable = u_main
    boundary = right
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/newton_physics/lid-driven-turb-std-wall-nonlinear-physics.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: May, 2024
# Turbulent model using:
# k-epsilon model
# No wall functions
# Newton Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
walls = '' # no walls for turbulence, to get 'standard' walls
bulk_wall_treatment = false
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 10
    ny = 10
  []
[]
[Problem]
  previous_nl_solution_required = true
[]
[Physics]
  [NavierStokes]
    [Flow]
      [flow]
        compressibility = 'incompressible'
        density = ${rho}
        dynamic_viscosity = ${mu}
        initial_pressure = 0.2
        initial_velocity = '1e-10 1e-10 0'
        wall_boundaries = 'left right top bottom'
        momentum_wall_types = 'noslip noslip noslip noslip'
        momentum_wall_functors = '0 0; 0 0; ${lid_velocity} 0; 0 0'
        pin_pressure = true
        pinned_pressure_type = average
        pinned_pressure_value = 0
        mu_interp_method = 'average'
      []
    []
    [Turbulence]
      [keps]
        turbulence_handling = 'k-epsilon'
        # only needed for comparing input syntax with DumpObjectsProblem
        transient = true
        tke_name = TKE
        tked_name = TKED
        # Initialization
        initial_tke = ${k_init}
        initial_tked = ${eps_init}
        # Model parameters
        C1_eps = ${C1_eps}
        C2_eps = ${C2_eps}
        C_mu = ${C_mu}
        sigma_k = ${sigma_k}
        sigma_eps = ${sigma_eps}
        # Wall parameters
        turbulence_walls = ${walls}
        bulk_wall_treatment = ${bulk_wall_treatment}
        wall_treatment_eps = ${wall_treatment}
        # Numerical parameters
        turbulent_viscosity_two_term_bc_expansion = false
        turbulent_viscosity_interp_method = 'average'
        mu_t_as_aux_variable = false
        output_mu_t = false
        tke_two_term_bc_expansion = false
        tked_two_term_bc_expansion = false
      []
    []
  []
[]
[FVBCs]
  [walls_TKE]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKE
    value = ${k_init}
  []
  [walls_TKED]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKED
    value = ${eps_init}
  []
[]
[Executioner]
  type = Transient
  end_time = 200
  dt = 0.01
  # To force it to end on the same step as the gold file
  num_steps = 160
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -snes_linesearch_damping'
  petsc_options_value = 'lu        NONZERO               0.5'
  nl_abs_tol = 1e-8
  nl_rel_tol = 1e-8
  nl_max_its = 50
  line_search = none
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = true
  print_linear_residuals = false
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
mu = 1
rho = 1
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 100
    ny = 20
  []
  [left]
    type = ParsedSubdomainMeshGenerator
    input = gen
    combinatorial_geometry = 'x > 3 & x < 6'
    block_id = 1
  []
  [right]
    type = ParsedSubdomainMeshGenerator
    input = left
    combinatorial_geometry = 'x < 3'
    block_id = 2
  []
  [more-right]
    type = ParsedSubdomainMeshGenerator
    input = right
    combinatorial_geometry = 'x > 6'
    block_id = 3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
[]
[AuxVariables]
  [T_solid]
    family = 'MONOMIAL'
    order = 'CONSTANT'
    fv = true
    initial_condition = 100
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion_1]
    type = PINSFVEnergyAnisotropicDiffusion
    kappa = 'kappa'
    variable = T_fluid
    porosity = porosity
    block = '1 2'
  []
  [energy_diffusion_2]
    type = PINSFVEnergyAnisotropicDiffusion
    kappa = 'kappa'
    variable = T_fluid
    porosity = porosity
    block = '3'
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  inactive = 'inlet-T-dirichlet'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVNeumannBC
    variable = T_fluid
    value = '${fparse u_inlet * rho * cp * T_inlet}'
    boundary = 'left'
  []
  [inlet-T-dirichlet]
    type = FVDirichletBC
    variable = T_fluid
    value = '${T_inlet}'
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '1'
  []
  [functor_constants]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [kappa]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'kappa'
    prop_values = '1e-3 1e-2 1e-1'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/heat_transfer/test/tests/fvkernels/radiation_istothermal_medium_1d.i)
diffusion_coef = 1.0
opacity = 1.0
temperature_radiation = 100.0
G_bc = 1.0
sigma = 5.670374419e-8
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 50
  []
[]
[Variables]
  [G]
    type = MooseVariableFVReal
    initial_condition = 1
  []
[]
[FVKernels]
  [G_diffusion]
    type = FVDiffusion
    variable = G
    coeff = ${diffusion_coef}
  []
  [source_and_sink]
    type = FVThermalRadiationSourceSink
    variable = G
    temperature_radiation = ${temperature_radiation}
    opacity = ${opacity}
  []
[]
[FVBCs]
  [right_bc]
    type = FVDirichletBC
    boundary = 'right'
    variable = G
    value = ${G_bc}
  []
[]
[Functions]
  [analytical_sol]
    type = ParsedFunction
    symbol_names = 'a'
    symbol_values = '${fparse sqrt(opacity / diffusion_coef)}'
    expression = '${G_bc} * cosh(a*x) / cosh(a) + ${sigma} * ${temperature_radiation}^4 * (1.0 - cosh(a*x) / cosh(a))'
  []
[]
[Postprocessors]
  [value_solution]
    type = ElementIntegralFunctorPostprocessor
    functor = G
  []
  [value_analytic]
    type = ElementIntegralFunctorPostprocessor
    functor = analytical_sol
  []
  [relative_difference]
    type = RelativeDifferencePostprocessor
    value1 = value_solution
    value2 = value_analytic
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = false
  csv = true
[]
(test/tests/functormaterials/functor_change/fp_parent.i)
# Heat conduction with fixed temperature on left and convection BC on right:
#
#   d/dx(-k dT/dx) = S'''(T)    (0,1)X(0,1)
#   T = T_inf                    x = 0
#   -k dT/dx = htc (T - T_inf)   x = 1
#
# Source is temperature-dependent and is calculated in the child app:
#   S(T) = B - A * (T - T_inf)^2
k = 15.0
htc = 100.0
T_ambient = 300.0
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 5
  ny = 5
[]
[Variables]
  [T_nodal]
  []
  [T_elem]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [S_parent]
  []
[]
[FunctorMaterials]
  [heat_flux_mat_nodal]
    type = ADParsedFunctorMaterial
    expression = 'htc * (T - T_inf)'
    functor_symbols = 'T T_inf htc'
    functor_names = 'T_nodal ${T_ambient} ${htc}'
    property_name = 'heat_flux_nodal'
  []
  [heat_flux_mat_elem]
    type = ADParsedFunctorMaterial
    expression = 'htc * (T - T_inf)'
    functor_symbols = 'T T_inf htc'
    functor_names = 'T_elem ${T_ambient} ${htc}'
    property_name = 'heat_flux_elem'
  []
[]
[Kernels]
  [T_nodal_diff]
    type = FunctionDiffusion
    variable = T_nodal
    function = ${k}
  []
  [T_nodal_source]
    type = CoupledForce
    variable = T_nodal
    v = S_parent
  []
[]
[FVKernels]
  [T_elem_diff]
    type = FVDiffusion
    variable = T_elem
    coeff = ${k}
  []
  [T_elem_source]
    type = FVCoupledForce
    variable = T_elem
    v = S_parent
  []
[]
[BCs]
  [left_bc_nodal]
    type = DirichletBC
    variable = T_nodal
    boundary = left
    value = ${T_ambient}
  []
  [right_bc_nodal]
    type = FunctorNeumannBC
    variable = T_nodal
    boundary = right
    functor = heat_flux_nodal
    flux_is_inward = false
  []
[]
[FVBCs]
  [left_bc_elem]
    type = FVDirichletBC
    variable = T_elem
    boundary = left
    value = ${T_ambient}
  []
  [right_bc_elem]
    type = FVFunctorNeumannBC
    variable = T_elem
    boundary = right
    functor = heat_flux_elem
    factor = -1
  []
[]
[MultiApps]
  [source_app]
    type = FullSolveMultiApp
    positions = '0 0 0'
    input_files = fp_child.i
    execute_on = 'TIMESTEP_END'
  []
[]
[Transfers]
  [T_to_child]
    type = MultiAppCopyTransfer
    to_multi_app = source_app
    source_variable = T_nodal
    variable = T_child
    execute_on = 'SAME_AS_MULTIAPP'
  []
  [S_from_child]
    type = MultiAppCopyTransfer
    from_multi_app = source_app
    source_variable = S
    variable = S_parent
    execute_on = 'SAME_AS_MULTIAPP'
  []
[]
[FunctorMaterials]
  [nodal_mat]
    type = ADFunctorChangeFunctorMaterial
    functor = T_nodal
    change_over = fixed_point
    take_absolute_value = false
    prop_name = T_nodal_change
  []
  [elem_mat]
    type = ADFunctorChangeFunctorMaterial
    functor = T_elem
    change_over = fixed_point
    take_absolute_value = false
    prop_name = T_elem_change
  []
  [S_mat]
    type = ADFunctorChangeFunctorMaterial
    functor = S_parent
    change_over = fixed_point
    take_absolute_value = false
    prop_name = S_change
  []
[]
[Postprocessors]
  [T_nodal_avg]
    type = AverageNodalVariableValue
    variable = T_nodal
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [T_elem_avg]
    type = ElementAverageValue
    variable = T_elem
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [S_avg]
    type = ElementAverageValue
    variable = S_parent
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [T_nodal_max_change]
    type = ElementExtremeFunctorValue
    functor = T_nodal_change
    value_type = max
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [T_elem_max_change]
    type = ElementExtremeFunctorValue
    functor = T_elem_change
    value_type = max
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [S_max_change]
    type = ElementExtremeFunctorValue
    functor = S_change
    value_type = max
    execute_on = 'TIMESTEP_BEGIN'
  []
  [fp_it]
    type = NumFixedPointIterations
    get_index_instead_of_count = true
    execute_on = 'INITIAL TIMESTEP_END'
  []
[]
[Convergence]
  [fp_conv]
    type = IterationCountConvergence
    max_iterations = 5
    converge_at_max_iterations = true
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  multiapp_fixed_point_convergence = fp_conv
[]
[Outputs]
  [console]
    type = Console
    new_row_detection_columns = all
    execute_postprocessors_on = 'INITIAL MULTIAPP_FIXED_POINT_ITERATION_END'
  []
  [out]
    type = CSV
    new_row_detection_columns = all
    execute_on = 'INITIAL MULTIAPP_FIXED_POINT_ITERATION_END'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
  fp = fp
  two_term_boundary_expansion = true
  limiter = ${user_limiter}
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    nx = 3
    ymin = 0
    ymax = 18
    ny = 90
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = MooseVariableFVReal
    initial_condition = ${p_initial}
  []
  [sup_mom_x]
    type = MooseVariableFVReal
    initial_condition = 1e-15
    scaling = 1e-2
  []
  [sup_mom_y]
    type = MooseVariableFVReal
    initial_condition = 1e-15
    scaling = 1e-2
  []
  [T_fluid]
    type = MooseVariableFVReal
    initial_condition = ${T}
    scaling = 1e-5
  []
[]
[AuxVariables]
  [vel_y]
    type = MooseVariableFVReal
  []
  [rho]
    type = MooseVariableFVReal
  []
  [eps]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [vel_y]
    type = ADMaterialRealAux
    variable = vel_y
    property = vel_y
    execute_on = 'timestep_end'
  []
  [rho]
    type = ADMaterialRealAux
    variable = rho
    property = rho
    execute_on = 'timestep_end'
  []
  [eps]
    type = MaterialRealAux
    variable = eps
    property = porosity
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_dt'
    variable = pressure
  []
  [mass_advection]
    type = PCNSFVKT
    variable = pressure
    eqn = "mass"
  []
  [momentum_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhou_dt'
    variable = sup_mom_x
  []
  [momentum_advection]
    type = PCNSFVKT
    variable = sup_mom_x
    eqn = "momentum"
    momentum_component = 'x'
  []
  [eps_grad]
    type = PNSFVPGradEpsilon
    variable = sup_mom_x
    momentum_component = 'x'
    epsilon_function = 'eps'
  []
  [drag]
    type = PCNSFVMomentumFriction
    variable = sup_mom_x
    momentum_component = 'x'
    Darcy_name = 'cl'
    momentum_name = superficial_rhou
  []
  [momentum_time_y]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhov_dt'
    variable = sup_mom_y
  []
  [momentum_advection_y]
    type = PCNSFVKT
    variable = sup_mom_y
    eqn = "momentum"
    momentum_component = 'y'
  []
  [eps_grad_y]
    type = PNSFVPGradEpsilon
    variable = sup_mom_y
    momentum_component = 'y'
    epsilon_function = 'eps'
  []
  [drag_y]
    type = PCNSFVMomentumFriction
    variable = sup_mom_y
    momentum_component = 'y'
    Darcy_name = 'cl'
    momentum_name = superficial_rhov
  []
  [energy_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
    variable = T_fluid
  []
  [energy_advection]
    type = PCNSFVKT
    variable = T_fluid
    eqn = "energy"
  []
[]
[FVBCs]
  [rho_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = pressure
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'mass'
    velocity_function_includes_rho = true
  []
  [rhou_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = sup_mom_x
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'x'
    velocity_function_includes_rho = true
  []
  [rhov_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = sup_mom_y
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'y'
    velocity_function_includes_rho = true
  []
  [rho_et_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = T_fluid
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'energy'
    velocity_function_includes_rho = true
  []
  [rho_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = pressure
    pressure = ${p_initial}
    eqn = 'mass'
  []
  [rhou_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = sup_mom_x
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rhov_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = sup_mom_y
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'y'
  []
  [rho_et_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = T_fluid
    pressure = ${p_initial}
    eqn = 'energy'
  []
  [wall_pressure_x]
    type = PCNSFVImplicitMomentumPressureBC
    momentum_component = 'x'
    boundary = 'left right'
    variable = sup_mom_x
  []
  [wall_pressure_y]
    type = PCNSFVImplicitMomentumPressureBC
    momentum_component = 'y'
    boundary = 'left right'
    variable = sup_mom_y
  []
  # Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
  [T_bottom]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T}
    boundary = 'bottom'
  []
  [sup_mom_x_bottom_and_walls]
    type = FVDirichletBC
    variable = sup_mom_x
    value = 0
    boundary = 'bottom left right'
  []
  [sup_mom_y_walls]
    type = FVDirichletBC
    variable = sup_mom_y
    value = 0
    boundary = 'left right'
  []
  [sup_mom_y_bottom]
    type = FVDirichletBC
    variable = sup_mom_y
    value = ${sup_mom_y_in}
    boundary = 'bottom'
  []
  [p_top]
    type = FVDirichletBC
    variable = pressure
    value = ${p_initial}
    boundary = 'top'
  []
[]
[Functions]
  [ud_in]
    type = ParsedVectorFunction
    expression_x = '0'
    expression_y = '${sup_mom_y_in}'
  []
  [eps]
    type = ParsedFunction
    expression = 'if(y < 2.8, 1,
             if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
             if(y < 6.8, .5,
             if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
             if(y < 10.8, .25,
             if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
             if(y < 14.8, .5,
             if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
                1))))))))'
  []
[]
[Materials]
  [var_mat]
    type = PorousMixedVarMaterial
    pressure = pressure
    T_fluid = T_fluid
    superficial_rhou = sup_mom_x
    superficial_rhov = sup_mom_y
    fp = fp
    porosity = porosity
  []
  [porosity]
    type = GenericFunctionMaterial
    prop_names = 'porosity'
    prop_values = 'eps'
  []
  [ad_generic]
    type = ADGenericConstantVectorMaterial
    prop_names = 'cl'
    prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = NEWTON
  line_search = 'bt'
  type = Transient
  nl_max_its = 20
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e-5
    optimal_iterations = 6
    growth_factor = 1.2
  []
  num_steps = 10000
  end_time = 500
  nl_abs_tol = 1e-7
  petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
  petsc_options_value = 'lu       mumps'
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'final'
  []
  checkpoint = true
[]
[Debug]
  show_var_residual_norms = true
[]
(test/tests/fvbcs/fv_functor_dirichlet/fv_other_side.i)
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 2'
    dy = '1.3'
    ix = '5 10'
    iy = '3'
    subdomain_id = '0 1'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    input = 'cmg'
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'mid'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    block = 0
  []
  [v]
    type = MooseVariableFVReal
    block = 1
  []
[]
[FVKernels]
  [diffu]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
  [diffv]
    type = FVDiffusion
    variable = v
    coeff = 2
    block = 1
  []
  [source]
    type = FVBodyForce
    variable = v
    value = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 4
  []
  [mid]
    type = FVADFunctorDirichletBC
    variable = u
    functor = v
    functor_only_defined_on_other_side = true
    ghost_layers = 3
    boundary = mid
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 0.5
  []
[]
[Executioner]
  type = Steady
  solve_type = 'Newton'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_abs_tol = 1e-12
[]
[VectorPostprocessors]
  [u_sample]
    type = LineValueSampler
    variable = 'u'
    start_point = '0.01 0.3 0'
    end_point = '0.99 0.3 0'
    num_points = 4
    sort_by = x
  []
  [v_sample]
    type = LineValueSampler
    variable = 'v'
    start_point = '1.01 0.3 0'
    end_point = '1.99 0.3 0'
    num_points = 4
    sort_by = x
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
mu = 10.0
rho = 100.0
mu_d = 1.0
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.0
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.01
[GlobalParams]
  rhie_chow_user_object = 'rc'
  density_interp_method = 'average'
  mu_interp_method = 'average'
[]
[Problem]
  identify_variable_groups_in_nl = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = '${fparse l * 5}'
    ymin = '${fparse -l / 2}'
    ymax = '${fparse l / 2}'
    nx = 20
    ny = 5
  []
  uniform_refine = 0
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [phase_2]
    type = INSFVScalarFieldVariable
  []
  [interface_area]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  inactive = 'u_time v_time phase_2_time interface_area_time'
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_x
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'x'
  []
  [u_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_x
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_time]
    type = INSFVMomentumTimeDerivative
    variable = vel_y
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = 'rho_mixture'
    momentum_component = 'y'
  []
  [v_drift]
    type = WCNSFV2PMomentumDriftFlux
    variable = vel_y
    rho_d = ${rho_d}
    fd = 'rho_mixture_var'
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_mixture'
    limit_interpolation = true
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [phase_2_time]
    type = FVFunctorTimeKernel
    variable = phase_2
    functor = phase_2
  []
  [phase_2_advection]
    type = INSFVScalarFieldAdvection
    variable = phase_2
    u_slip = 'vel_slip_x'
    v_slip = 'vel_slip_y'
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [phase_2_diffusion]
    type = FVDiffusion
    variable = phase_2
    coeff = 1.0
  []
  [phase_2_src]
    type = NSFVMixturePhaseInterface
    variable = phase_2
    phase_coupled = phase_1
    alpha = ${mass_exchange_coeff}
  []
  [interface_area_time]
    type = FVFunctorTimeKernel
    variable = interface_area
    functor = interface_area
  []
  [interface_area_advection]
    type = INSFVScalarFieldAdvection
    variable = interface_area
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = 'upwind'
  []
  [interface_area_diffusion]
    type = FVDiffusion
    variable = interface_area
    coeff = 0.1
  []
  [interface_area_source_sink]
    type = WCNSFV2PInterfaceAreaSourceSink
    variable = interface_area
    u = 'vel_x'
    v = 'vel_y'
    L = 1.0
    rho = 'rho_mixture'
    rho_d = ${rho_d}
    pressure = 'pressure'
    k_c = ${fparse mass_exchange_coeff * 100.0}
    fd = 'phase_2'
    sigma = 1e-3
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${U}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
  [inlet_phase_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = phase_2
    value = ${inlet_phase_2}
  []
  [inlet_interface_area]
    type = FVDirichletBC
    boundary = 'left'
    variable = interface_area
    value = 0.0
  []
[]
[AuxVariables]
  [drag_coefficient]
    type = MooseVariableFVReal
  []
  [rho_mixture_var]
    type = MooseVariableFVReal
  []
  [mu_mixture_var]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [populate_cd]
    type = FunctorAux
    variable = drag_coefficient
    functor = 'Darcy_coefficient'
  []
  [populate_rho_mixture_var]
    type = FunctorAux
    variable = rho_mixture_var
    functor = 'rho_mixture'
  []
  [populate_mu_mixture_var]
    type = FunctorAux
    variable = mu_mixture_var
    functor = 'mu_mixture'
  []
[]
[FunctorMaterials]
  [populate_u_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_x'
    momentum_component = 'x'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [populate_v_slip]
    type = WCNSFV2PSlipVelocityFunctorMaterial
    slip_velocity_name = 'vel_slip_y'
    momentum_component = 'y'
    u = 'vel_x'
    v = 'vel_y'
    rho = ${rho}
    mu = 'mu_mixture'
    rho_d = ${rho_d}
    particle_diameter = ${dp}
    linear_coef_name = 'Darcy_coefficient'
  []
  [compute_phase_1]
    type = ADParsedFunctorMaterial
    property_name = phase_1
    functor_names = 'phase_2'
    expression = '1 - phase_2'
  []
  [CD]
    type = NSFVDispersePhaseDragFunctorMaterial
    rho = 'rho_mixture'
    mu = mu_mixture
    u = 'vel_x'
    v = 'vel_y'
    particle_diameter = ${dp}
  []
  [mixing_material]
    type = NSFVMixtureFunctorMaterial
    phase_2_names = '${rho} ${mu}'
    phase_1_names = '${rho_d} ${mu_d}'
    prop_names = 'rho_mixture mu_mixture'
    phase_1_fraction = 'phase_2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  nl_rel_tol = 1e-10
  # dt = 0.1
  # end_time = 1.0
  # nl_max_its = 10
[]
[Debug]
  show_var_residual_norms = true
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu       NONZERO'
  []
[]
[Outputs]
  exodus = true
[]
[Postprocessors]
  [Re]
    type = ParsedPostprocessor
    expression = '${rho} * ${l} * ${U}'
    pp_names = ''
  []
  [rho_outlet]
    type = SideAverageValue
    boundary = 'right'
    variable = 'rho_mixture_var'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=1e-4
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.25 1.0 0.25'
    dy = '0.25 0.25 0.25'
    ix = '4 20 4'
    iy = '5 5 5'
    subdomain_id = '1 2 5 1 3 5 1 4 5'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '3'
    paired_block = '4'
    new_boundary = 'separator-2'
  []
  [jump-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-2
    primary_block = '1'
    paired_block = '2'
    new_boundary = jump-1
  []
  [jump-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-1
    primary_block = '1'
    paired_block = '3'
    new_boundary = jump-2
  []
  [jump-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-2
    primary_block = '1'
    paired_block = '4'
    new_boundary = jump-3
  []
  [outlet-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-3
    primary_block = '2'
    paired_block = '5'
    new_boundary = outlet-1
  []
  [outlet-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = outlet-1
    primary_block = '3'
    paired_block = '5'
    new_boundary = outlet-2
  []
  [outlet-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = outlet-2
    primary_block = '4'
    paired_block = '5'
    new_boundary = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
    pressure_drop_sidesets = 'jump-1 jump-2 jump-3 outlet-1 outlet-2 outlet-3'
    pressure_drop_form_factors = '0.1 0.2 0.3 0.1 0.2 0.3'
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'x'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_source]
    type = FVBodyForce
    variable = T_fluid
    function = heating
    block = '2 3 4'
  []
[]
[Functions]
  [heating]
    type = ParsedFunction
    expression = 'if(y<0.25, 10, if(y<0.5, 20, 30))'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'left'
    value = 300
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity]
    type = ADPiecewiseByBlockFunctorMaterial
    prop_name = porosity
    subdomain_to_prop_value = '1 0.8
                               2 0.7
                               3 0.6
                               4 0.5
                               5 0.8'
  []
  [darcy-1]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.0 1.0 1.0'
    block = '1 5'
  []
  [darcy-2]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '3.0 3.0 3.0'
    block = 2
  []
  [darcy-3]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.5 1.5 1.5'
    block = 3
  []
  [darcy-4]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '0.75 0.75 0.75'
    block = 4
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'right'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(test/tests/materials/piecewise_by_block_material/discontinuous_functor.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmax = 2
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '1.0 0 0'
    block_id = 1
    top_right = '2.0 1.0 0'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 'coeff'
    coeff_interp_method = average
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = 'left'
    value = 1
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 'right'
    value = 0
  []
[]
[Materials]
  [coeff_mat]
    type = ADPiecewiseByBlockFunctorMaterial
    prop_name = 'coeff'
    subdomain_to_prop_value = '0 4
                               1 2'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(test/tests/auxkernels/parsed_aux/parsed_aux_boundary_test.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  xmin = 0
  xmax = 1
  ymin = 0
  ymax = 1
  nx = 5
  ny = 3
  allow_renumbering = false
[]
[Variables]
  [u]
    order = FIRST
    family = LAGRANGE
  []
  [v]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxVariables]
  [boundary_values_fe_qp]
    order = CONSTANT
    family = MONOMIAL
  []
  [boundary_values_fe_noqp]
    order = CONSTANT
    family = MONOMIAL
  []
  [boundary_values_fv_qp]
    order = CONSTANT
    family = MONOMIAL
  []
  [boundary_values_fv_noqp]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[Kernels]
  [diff_u]
    type = Diffusion
    variable = u
  []
  [react]
    type = BodyForce
    variable = u
    # trigger some boundary-tangential variation
    function = 'x*x + y'
  []
[]
[BCs]
  [left_u]
    type = DirichletBC
    variable = u
    boundary = 'left'
    value = 0
  []
  [right_u]
    type = NeumannBC
    variable = u
    boundary = 'right'
    value = 1
  []
[]
[FVKernels]
  [diff_v]
    type = FVDiffusion
    variable = v
    coeff = 1
  []
  [react_v]
    type = FVBodyForce
    variable = v
    function = 'x*x + y'
  []
[]
[FVBCs]
  [left_v]
    type = FVDirichletBC
    variable = v
    boundary = 'left'
    value = '0'
  []
  [right_v]
    type = FVNeumannBC
    variable = v
    boundary = 'right'
    value = 10
  []
[]
[AuxKernels]
  [boundary_values_fe_qp]
    type = ParsedAux
    variable = boundary_values_fe_qp
    expression = u
    functor_names = u
    boundary = 'left right'
  []
  [boundary_values_fe_noqp]
    type = ParsedAux
    variable = boundary_values_fe_noqp
    expression = u
    functor_names = u
    evaluate_functors_on_qp = false
    boundary = 'left right'
  []
  [boundary_values_fv_qp]
    type = ParsedAux
    variable = boundary_values_fv_qp
    expression = v
    functor_names = v
    boundary = 'left right'
  []
  [boundary_values_fv_noqp]
    type = ParsedAux
    variable = boundary_values_fv_noqp
    expression = v
    functor_names = v
    evaluate_functors_on_qp = false
    boundary = 'left right'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  # on the left, the face FV argument in ParsedAux picks up the dirichlet BC,
  # while when using the ElemSideQp argument, we use a two term and miss it
  # For FE, we get the DirichletBC with both arguments
  [sampler_left]
    type = SideValueSampler
    variable = 'boundary_values_fe_qp boundary_values_fe_noqp boundary_values_fv_qp boundary_values_fv_noqp'
    boundary = 'left'
    sort_by = 'id'
  []
  [sampler_right]
    type = SideValueSampler
    variable = 'boundary_values_fe_qp boundary_values_fe_noqp boundary_values_fv_qp boundary_values_fv_noqp'
    boundary = 'right'
    sort_by = 'id'
  []
[]
(modules/porous_flow/test/tests/gravity/grav02b_fv.i)
# Checking that gravity head is established in the steady-state situation when 0<saturation<1 (note the strictly less-than).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = -1.0
  []
  [ppgas]
    type = MooseVariableFVReal
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
[]
[FVKernels]
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 0 0'
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 0 0'
  []
[]
[FVBCs]
  [ppwater]
    type = FVDirichletBC
    boundary = right
    variable = ppwater
    value = -1
  []
  [ppgas]
    type = FVDirichletBC
    boundary = right
    variable = ppgas
    value = 0
  []
[]
[Functions]
  [ana_ppwater]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 pp_water_top 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
  [ana_ppgas]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 1 pp_gas_top 0.1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    viscosity = 0.5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[Postprocessors]
  [pp_water_top]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
  []
  [pp_water_base]
    type = PointValue
    variable = ppwater
    point = '-1 0 0'
  []
  [pp_water_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppwater
    point = '-1 0 0'
  []
  [pp_gas_top]
    type = PointValue
    variable = ppgas
    point = '0 0 0'
  []
  [pp_gas_base]
    type = PointValue
    variable = ppgas
    point = '-1 0 0'
  []
  [pp_gas_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppgas
    point = '-1 0 0'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  [csv]
    type = CSV
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-no-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = ''
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
  [walls_TKED]
    type = INSFVTKEDWallFunctionBC
    boundary = 'left right top bottom'
    variable = TKED
    u = vel_x
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
  []
  [walls_TKE]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKE
    value = ${k_init}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.9 0.9'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(test/tests/fvkernels/fv_simple_diffusion/3d_dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 2
  ny = 2
  nz = 2
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
cold_temp=300
hot_temp=310
[GlobalParams]
  two_term_boundary_expansion = true
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${l}
    ymin = 0
    ymax = ${l}
    nx = 16
    ny = 16
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1e-15
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e5
  []
  [T]
    type = INSFVEnergyVariable
    scaling = 1e-4
    initial_condition = ${cold_temp}
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
  [vel_x]
    order = FIRST
    family = MONOMIAL
  []
  [vel_y]
    order = FIRST
    family = MONOMIAL
  []
  [viz_T]
    order = FIRST
    family = MONOMIAL
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = u
    y = v
    execute_on = 'initial timestep_end'
  []
  [vel_x]
    type = ParsedAux
    variable = vel_x
    expression = 'u'
    execute_on = 'initial timestep_end'
    coupled_variables = 'u'
  []
  [vel_y]
    type = ParsedAux
    variable = vel_y
    expression = 'v'
    execute_on = 'initial timestep_end'
    coupled_variables = 'v'
  []
  [viz_T]
    type = ParsedAux
    variable = viz_T
    expression = 'T'
    execute_on = 'initial timestep_end'
    coupled_variables = 'T'
  []
[]
[FVKernels]
  [mass_time]
    type = WCNSFVMassTimeDerivative
    variable = pressure
    drho_dt = drho_dt
  []
  [mass]
    type = WCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = u
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'x'
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = u
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = v
    drho_dt = drho_dt
    rho = rho
    momentum_component = 'y'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = v
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = u
    boundary = 'left right top bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = v
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T
    boundary = left
    value = ${hot_temp}
  []
  [T_cold]
    type = FVDirichletBC
    variable = T
    boundary = right
    value = ${cold_temp}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp k'
    prop_values = '${cp} ${k}'
  []
  [rho]
    type = RhoFromPTFunctorMaterial
    fp = fp
    temperature = T
    pressure = pressure
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu       NONZERO'
  steady_state_detection = true
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e-5
    optimal_iterations = 6
  []
  nl_abs_tol = 1e-9
  normalize_solution_diff_norm_by_dt = false
  nl_max_its = 10
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/boussinesq.i)
mu = 1
rho = 1
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 32
    ny = 32
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
  []
  [vel_y]
    type = INSFVVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
    scaling = 1e-4
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mean_zero_pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = 'k'
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 'lid_function'
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = left
    value = ${hot_temp}
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = right
    value = 0
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k'
    prop_values = '${alpha} ${cp} ${k}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
  []
[]
[Functions]
  [lid_function]
    type = ParsedFunction
    expression = '4*x*(1-x)'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(test/tests/postprocessors/internal_side_integral/internal_side_integral_fv_test.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
  xmin = 0
  xmax = 4
  ymin = 0
  ymax = 1
[]
[Variables]
  active = 'u'
  [./u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  [../]
[]
[FVKernels]
  active = 'diff'
  [./diff]
    type = FVDiffusion
    variable = u
    coeff = '1'
  [../]
[]
[FVBCs]
  active = 'left right'
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = 3
    value = 0
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = 1
    value = 1
  [../]
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
[Postprocessors]
  [./integral]
    type = InternalSideIntegralVariablePostprocessor
    variable = u
  [../]
[]
[Outputs]
  file_base = fv_out
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
  [k_t]
    type = ADParsedFunctorMaterial
    expression = 'mu_t * cp / Pr_t'
    functor_names = 'mu_t ${cp} ${Pr_t}'
    functor_symbols = 'mu_t cp Pr_t'
    property_name = 'k_t'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-physics.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
h_cv = 1.0
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '50 50'
    iy = '20'
    subdomain_id = '1 2'
  []
[]
[Variables]
  [T_solid]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[Physics]
  [NavierStokes]
    [Flow]
      [flow]
        compressibility = 'incompressible'
        porous_medium_treatment = true
        density = ${rho}
        dynamic_viscosity = ${mu}
        porosity = 'porosity'
        initial_velocity = '${u_inlet} 1e-6 0'
        initial_pressure = 0.0
        inlet_boundaries = 'left'
        momentum_inlet_types = 'fixed-velocity'
        momentum_inlet_functors = '${u_inlet} 0'
        wall_boundaries = 'top bottom'
        momentum_wall_types = 'noslip symmetry'
        outlet_boundaries = 'right'
        momentum_outlet_types = 'fixed-pressure'
        pressure_functors = '0.1'
        mass_advection_interpolation = 'average'
        momentum_advection_interpolation = 'average'
      []
    []
    [FluidHeatTransfer]
      [heat]
        thermal_conductivity = ${k}
        specific_heat = ${cp}
        # Reference file sets effective_conductivity by default that way
        # so the conductivity is multiplied by the porosity in the kernel
        effective_conductivity = false
        initial_temperature = 0.0
        energy_inlet_types = 'heatflux'
        energy_inlet_functors = '${fparse u_inlet * rho * cp * T_inlet}'
        energy_wall_types = 'heatflux heatflux'
        energy_wall_functors = '0 0'
        ambient_convection_alpha = ${h_cv}
        ambient_temperature = 'T_solid'
        energy_advection_interpolation = 'average'
      []
    []
  []
[]
[FVKernels]
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = 'T_solid'
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = ${h_cv}
  []
[]
[FVBCs]
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 150
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-14
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/dc.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='min_mod'
friction_coeff=10
[GlobalParams]
  fp = fp
  two_term_boundary_expansion = true
  limiter = ${user_limiter}
[]
[Mesh]
  [cartesian]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    nx = 3
    ymin = 0
    ymax = 18
    ny = 90
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Problem]
  fv_bcs_integrity_check = false
[]
[Variables]
  [pressure]
    type = MooseVariableFVReal
    initial_condition = ${p_initial}
  []
  [sup_mom_x]
    type = MooseVariableFVReal
    initial_condition = 1e-15
  []
  [sup_mom_y]
    type = MooseVariableFVReal
    initial_condition = 1e-15
  []
  [T_fluid]
    type = MooseVariableFVReal
    initial_condition = ${T}
  []
[]
[AuxVariables]
  [vel_y]
    type = MooseVariableFVReal
  []
  [rho]
    type = MooseVariableFVReal
  []
  [eps]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [vel_y]
    type = ADMaterialRealAux
    variable = vel_y
    property = vel_y
    execute_on = 'timestep_end'
  []
  [rho]
    type = ADMaterialRealAux
    variable = rho
    property = rho
    execute_on = 'timestep_end'
  []
  [eps]
    type = MaterialRealAux
    variable = eps
    property = porosity
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_dt'
    variable = pressure
  []
  [mass_advection]
    type = PCNSFVKTDC
    variable = pressure
    eqn = "mass"
  []
  [momentum_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhou_dt'
    variable = sup_mom_x
  []
  [momentum_advection]
    type = PCNSFVKTDC
    variable = sup_mom_x
    eqn = "momentum"
    momentum_component = 'x'
  []
  [eps_grad]
    type = PNSFVPGradEpsilon
    variable = sup_mom_x
    momentum_component = 'x'
    epsilon_function = 'eps'
  []
  [drag]
    type = PCNSFVMomentumFriction
    variable = sup_mom_x
    momentum_component = 'x'
    Darcy_name = 'cl'
    momentum_name = superficial_rhou
  []
  [momentum_time_y]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rhov_dt'
    variable = sup_mom_y
  []
  [momentum_advection_y]
    type = PCNSFVKTDC
    variable = sup_mom_y
    eqn = "momentum"
    momentum_component = 'y'
  []
  [eps_grad_y]
    type = PNSFVPGradEpsilon
    variable = sup_mom_y
    momentum_component = 'y'
    epsilon_function = 'eps'
  []
  [drag_y]
    type = PCNSFVMomentumFriction
    variable = sup_mom_y
    momentum_component = 'y'
    Darcy_name = 'cl'
    momentum_name = superficial_rhov
  []
  [energy_time]
    type = FVMatPropTimeKernel
    mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
    variable = T_fluid
  []
  [energy_advection]
    type = PCNSFVKTDC
    variable = T_fluid
    eqn = "energy"
  []
[]
[FVBCs]
  [rho_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = pressure
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'mass'
    velocity_function_includes_rho = true
  []
  [rhou_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = sup_mom_x
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'x'
    velocity_function_includes_rho = true
  []
  [rhov_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = sup_mom_y
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'momentum'
    momentum_component = 'y'
    velocity_function_includes_rho = true
  []
  [rho_et_bottom]
    type = PCNSFVStrongBC
    boundary = 'bottom'
    variable = T_fluid
    superficial_velocity = 'ud_in'
    T_fluid = ${T}
    eqn = 'energy'
    velocity_function_includes_rho = true
  []
  [rho_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = pressure
    pressure = ${p_initial}
    eqn = 'mass'
  []
  [rhou_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = sup_mom_x
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'x'
  []
  [rhov_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = sup_mom_y
    pressure = ${p_initial}
    eqn = 'momentum'
    momentum_component = 'y'
  []
  [rho_et_top]
    type = PCNSFVStrongBC
    boundary = 'top'
    variable = T_fluid
    pressure = ${p_initial}
    eqn = 'energy'
  []
  [wall_pressure_x]
    type = PCNSFVImplicitMomentumPressureBC
    momentum_component = 'x'
    boundary = 'left right'
    variable = sup_mom_x
  []
  [wall_pressure_y]
    type = PCNSFVImplicitMomentumPressureBC
    momentum_component = 'y'
    boundary = 'left right'
    variable = sup_mom_y
  []
  # Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
  [T_bottom]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T}
    boundary = 'bottom'
  []
  [sup_mom_x_bottom_and_walls]
    type = FVDirichletBC
    variable = sup_mom_x
    value = 0
    boundary = 'bottom left right'
  []
  [sup_mom_y_walls]
    type = FVDirichletBC
    variable = sup_mom_y
    value = 0
    boundary = 'left right'
  []
  [sup_mom_y_bottom]
    type = FVDirichletBC
    variable = sup_mom_y
    value = ${sup_mom_y_in}
    boundary = 'bottom'
  []
  [p_top]
    type = FVDirichletBC
    variable = pressure
    value = ${p_initial}
    boundary = 'top'
  []
[]
[Functions]
  [ud_in]
    type = ParsedVectorFunction
    expression_x = '0'
    expression_y = '${sup_mom_y_in}'
  []
  [eps]
    type = ParsedFunction
    expression = 'if(y < 2.8, 1,
             if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
             if(y < 6.8, .5,
             if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
             if(y < 10.8, .25,
             if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
             if(y < 14.8, .5,
             if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
                1))))))))'
  []
[]
[Materials]
  [var_mat]
    type = PorousMixedVarMaterial
    pressure = pressure
    T_fluid = T_fluid
    superficial_rhou = sup_mom_x
    superficial_rhov = sup_mom_y
    porosity = porosity
  []
  [porosity]
    type = GenericFunctionMaterial
    prop_names = 'porosity'
    prop_values = 'eps'
  []
  [ad_generic]
    type = ADGenericConstantVectorMaterial
    prop_names = 'cl'
    prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = NEWTON
  line_search = 'bt'
  type = Transient
  nl_max_its = 20
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e-5
    optimal_iterations = 6
    growth_factor = 1.2
  []
  num_steps = 10
  nl_abs_tol = 1e-8
  automatic_scaling = true
  compute_scaling_once = false
  resid_vs_jac_scaling_param = 0.5
  verbose = true
  steady_state_detection = true
  steady_state_tolerance = 1e-8
  normalize_solution_diff_norm_by_dt = false
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
[]
[Outputs]
  [out]
    type = Exodus
  []
[]
[Debug]
  show_var_residual_norms = true
[]
[Postprocessors]
  active = ''
  [num_nl]
    type = NumNonlinearIterations
  []
  [total_nl]
    type = CumulativeValuePostprocessor
    postprocessor = num_nl
  []
[]
(test/tests/dirackernels/constant_point_source/1d_point_source_fv.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
  []
[]
[Variables]
  [u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = coeff
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[DiracKernels]
  [point_source1]
    type = ConstantPointSource
    variable = u
    value = 1.0
    point = '0.15 0 0'
  []
  [point_source2]
    type = ConstantPointSource
    variable = u
    value = -0.5
    point = '0.65 0 0'
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 0
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 1
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  file_base = 1d_fv_out
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
mu = 1
rho = 1
k = 1e-3
diff = 1e-3
cp = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = -1
    ymax = 1
    nx = 100
    ny = 20
  []
[]
[AuxVariables]
  [U]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  []
[]
[AuxKernels]
  [mag]
    type = VectorMagnitudeAux
    variable = U
    x = vel_x
    y = vel_y
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [T_fluid]
    type = INSFVEnergyVariable
  []
  [scalar]
    type = INSFVScalarFieldVariable
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
  [scalar_coupled_source]
    type = FVCoupledForce
    variable = scalar
    v = U
    coef = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
  [inlet_scalar]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar
    value = 1
  []
[]
[FunctorMaterials]
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
  csv = true
[]
(test/tests/fvbcs/fv_neumannbc/fv_neumannbc.i)
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '5 5'
    iy = '5'
    subdomain_id = '1 1'
  []
  [internal_sideset]
    type = ParsedGenerateSideset
    combinatorial_geometry = 'x<1.01 & x>0.99'
    included_subdomains = 1
    new_sideset_name = 'center'
    input = 'mesh'
  []
[]
[Variables]
  [u]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    block = 1
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = u
    coeff = 1
  []
[]
[FVBCs]
  inactive = 'center'
  [left]
    type = FVDirichletBC
    variable = u
    boundary = left
    value = 1
  []
  [right]
    type = FVNeumannBC
    variable = u
    boundary = right
    value = 4
  []
  # Internal center sideset, should cause erroring out
  [center]
    type = FVNeumannBC
    variable = u
    boundary = center
    value = 0
  []
[]
[Executioner]
  type = Steady
  solve_type = 'Newton'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
[]
[Outputs]
  exodus = true
[]
(test/tests/misc/check_error/incomplete_fvkernel_block_coverage_test.i)
[Mesh]
  file = rectangle.e
[]
[Variables]
  active = 'u'
  [./u]
    order = CONSTANT
    family = MONOMIAL
    fv = true
  [../]
[]
[FVKernels]
  active = 'diff body_force'
  [./diff]
    type = FVDiffusion
    variable = u
    block = 1
    coeff = 1
  [../]
  [./body_force]
    type = FVBodyForce
    variable = u
    block = 1
    value = 10
  [../]
[]
[FVBCs]
  active = 'right'
  [./left]
    type = FVDirichletBC
    variable = u
    boundary = 1
    value = 1
  [../]
  [./right]
    type = FVDirichletBC
    variable = u
    boundary = 2
    value = 1
  [../]
[]
[Executioner]
  type = Steady
  solve_type = 'PJFNK'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
mu = 2.6
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system scalar_1_system scalar_2_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [scalar_1]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_1_system
    initial_condition = 1.2
  []
  [scalar_2]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_2_system
    initial_condition = 1.2
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [scalar_1_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_1
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_1_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar_1
  []
  [scalar_1_src]
    type = FVBodyForce
    variable = scalar_1
    value = 1.0
  []
  [scalar_1_coupled_source]
    type = FVCoupledForce
    variable = scalar_1
    v = scalar_2
    coef = 0.1
  []
  [scalar_2_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_2
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_2_diffusion]
    type = FVDiffusion
    coeff = '${fparse 2*diff}'
    variable = scalar_2
  []
  [scalar_2_src]
    type = FVBodyForce
    variable = scalar_2
    value = 5.0
  []
  [scalar_2_coupled_source]
    type = FVCoupledForce
    variable = scalar_2
    v = scalar_1
    coef = 0.05
  []
[]
[FVBCs]
  inactive = "symmetry-u symmetry-v symmetry-p"
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [inlet_scalar_1]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar_1
    value = 1
  []
  [inlet_scalar_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar_2
    value = 2
  []
  ### Inactive by default, some tests will turn these on ###
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  ##########################################################
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  passive_scalar_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  passive_scalar_systems = 'scalar_1_system scalar_2_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  passive_scalar_equation_relaxation = '0.9 0.9'
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  passive_scalar_absolute_tolerance = '1e-13 1e-13'
  print_fields = false
[]
[Outputs]
  exodus = true
  [csv]
    type = CSV
    execute_on = FINAL
  []
[]
[Postprocessors]
  inactive = "out1 out2 in1 in2"
  [out1]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_1'
    boundary = right
    execute_on = FINAL
    outputs = csv
  []
  [in1]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_1'
    boundary = left
    execute_on = FINAL
    outputs = csv
  []
  [out2]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_2'
    boundary = right
    execute_on = FINAL
    outputs = csv
  []
  [in2]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_2'
    boundary = left
    execute_on = FINAL
    outputs = csv
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
  previous_nl_solution_required = true
  kernel_coverage_check = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
    block = ${restricted_blocks}
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1.0
    solver_sys = u_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
    solver_sys = scalar_system
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = 'bottom_0'
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = T_fluid
  []
  [energy_loss]
    type = FVBodyForce
    variable = T_fluid
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = 'bottom_0'
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1.0
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-12
  pressure_l_abs_tol = 1e-12
  energy_l_abs_tol = 1e-12
  passive_scalar_l_abs_tol = 1e-12
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  passive_scalar_systems = 'scalar_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.99
  passive_scalar_equation_relaxation = 0.99
  num_iterations = 100
  pressure_absolute_tolerance = 1e-9
  momentum_absolute_tolerance = 1e-9
  energy_absolute_tolerance = 1e-9
  passive_scalar_absolute_tolerance = 1e-9
  print_fields = false
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
    block = ${restricted_blocks}
  []
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(test/tests/fviks/one-var-diffusion/test.i)
L = 2
l = 1
q1 = 1
q2 = 2
uR = 1
D1 = 1
D2 = 2
ul = '${fparse 1/D2*(D2*uR+q2*L*L/2-q2*l*l/2-l*(q2-q1)*L+l*l*(q2-q1))}'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmax = ${L}
  []
  [subdomain1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '${l} 0 0'
    block_id = 1
    top_right = '${L} 1.0 0'
  []
  [interface_primary_side]
    input = subdomain1
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '0'
    paired_block = '1'
    new_boundary = 'primary_interface'
  []
  [interface_secondary_side]
    input = interface_primary_side
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = '1'
    paired_block = '0'
    new_boundary = 'secondary_interface'
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
  []
  [v]
    type = MooseVariableFVReal
    block = 0
  []
  [w]
    type = MooseVariableFVReal
    block = 1
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 'left'
    block = 0
  []
  [diff_right]
    type = FVDiffusion
    variable = u
    coeff = 'right'
    block = 1
  []
  [source_left]
    type = FVBodyForce
    variable = u
    function = ${q1}
    block = 0
  []
  [source_right]
    type = FVBodyForce
    variable = u
    function = ${q2}
    block = 1
  []
  [diff_v]
    type = FVDiffusion
    variable = v
    block = 0
    coeff = 'left'
  []
  [diff_w]
    type = FVDiffusion
    variable = w
    block = 1
    coeff = 'right'
  []
[]
[FVInterfaceKernels]
  active = 'interface'
  [interface]
    type = FVOneVarDiffusionInterface
    variable1 = u
    boundary = primary_interface
    subdomain1 = '0'
    subdomain2 = '1'
    coeff1 = 'left'
    coeff2 = 'right'
    coeff_interp_method = average
  []
  [bad1]
    type = FVOneVarDiffusionInterface
    variable1 = w
    variable2 = u
    boundary = primary_interface
    subdomain1 = '0'
    subdomain2 = '1'
    coeff1 = 'left'
    coeff2 = 'right'
    coeff_interp_method = average
  []
  [bad2]
    type = FVOneVarDiffusionInterface
    variable1 = u
    variable2 = v
    boundary = primary_interface
    subdomain1 = '0'
    subdomain2 = '1'
    coeff1 = 'left'
    coeff2 = 'right'
    coeff_interp_method = average
  []
  [bad3]
    type = FVOneVarDiffusionInterface
    variable1 = v
    boundary = primary_interface
    subdomain1 = '0'
    subdomain2 = '1'
    coeff1 = 'left'
    coeff2 = 'right'
    coeff_interp_method = average
  []
[]
[FVBCs]
  [right]
    type = FVDirichletBC
    variable = u
    boundary = 'right'
    value = ${uR}
  []
  [v_left]
    type = FVDirichletBC
    variable = v
    boundary = 'left'
    value = 1
  []
  [v_right]
    type = FVDirichletBC
    variable = v
    boundary = 'primary_interface'
    value = 0
  []
  [w_left]
    type = FVDirichletBC
    variable = w
    boundary = 'secondary_interface'
    value = 1
  []
  [w_right]
    type = FVDirichletBC
    variable = w
    boundary = 'right'
    value = 0
  []
[]
[Materials]
  [block0]
    type = ADGenericFunctorMaterial
    block = '0'
    prop_names = 'left'
    prop_values = '${D1}'
  []
  [block1]
    type = ADGenericFunctorMaterial
    block = '1'
    prop_names = 'right'
    prop_values = '${D2}'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
  csv = true
[]
[Functions]
  [exact_u]
    type = ParsedFunction
    expression = 'if(x<${l}, 1/${D1}*(${fparse D1*ul+q1*l*l/2}-${fparse q1/2}*x*x),-1/${D2}*(${fparse -D2*ul-q2*l*l/2}+${fparse q2/2}*x*x-${fparse l*(q2-q1)}*x+${fparse l*l*(q2-q1)}))'
  []
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2u]
    type = ElementL2Error
    variable = u
    function = exact_u
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]
(modules/heat_transfer/test/tests/fvbcs/fv_functor_convective_heat_flux/fv_functor_convective_heat_flux.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 6
    ny = 5
    xmax = 2
    subdomain_ids = '0 0 0 1 1 1
                     0 0 0 1 1 1
                     0 0 0 1 1 1
                     0 0 0 1 1 1
                     0 0 0 1 1 1'
  []
  [interface]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block = 0
    paired_block = 1
    new_boundary = interface
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Variables]
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 1
    block = 0
  []
  [T_fluid]
    type = MooseVariableFVReal
    initial_condition = 0
    block = 1
  []
[]
[FVKernels]
  [diff_wall]
    type = FVDiffusion
    variable = T_solid
    block = 0
    coeff = 2
  []
  [diff_fluid]
    type = FVDiffusion
    variable = T_fluid
    block = 1
    coeff = 4
  []
  [gradient_creating]
    type = FVBodyForce
    variable = T_fluid
  []
[]
[FVBCs]
  [interface_fluid_to_solid]
    type = FVFunctorConvectiveHeatFluxBC
    boundary = 'interface'
    variable = T_solid
    T_bulk = T_fluid
    T_solid = T_solid
    is_solid = true
    heat_transfer_coefficient = 'htc'
  []
  [left]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_solid
    value = 1
  []
  [interface_solid_to_fluid]
    type = FVFunctorConvectiveHeatFluxBC
    boundary = 'interface'
    variable = T_fluid
    T_bulk = T_fluid
    T_solid = T_solid
    is_solid = false
    heat_transfer_coefficient = 'htc'
  []
  [right]
    type = FVDirichletBC
    boundary = 'right'
    variable = T_fluid
    value = 0
  []
[]
[Materials]
  [cht]
    type = ADGenericFunctorMaterial
    prop_names = 'htc'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = u
    v = v
    block = '1 2'
    pressure = pressure
  []
[]
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[Problem]
  kernel_coverage_check = false
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 1
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    block = ${restricted_blocks}
  []
  [temperature]
    type = INSFVEnergyVariable
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
  []
[]
[FVKernels]
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = temperature
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = temperature
  []
  [energy_loss]
    type = FVBodyForce
    variable = temperature
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 0
  []
  [top-wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = u
    function = 0
  []
  [top-wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = v
    function = 0
  []
  [bottom-wall-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = u
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'x'
  []
  [bottom-wall-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = v
    mu = ${mu}
    u = u
    v = v
    momentum_component = 'y'
  []
  [bottom-wall-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = temperature
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'temperature'
    rho = ${rho}
    block = ${restricted_blocks}
  []
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
(test/tests/fvkernels/fv_simple_diffusion/fv_only.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  residual_and_jacobian_together = true
[]
[Outputs]
  exodus = true
[]
(test/tests/fvbcs/fv_functor_neumannbc/fv_functor_neumann.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 5
    ny = 5
    xmax = 2
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 4
  []
[]
[AuxVariables]
  [qdot]
    type = MooseVariableFVReal
  []
[]
[ICs]
  [set_qdot]
    type = FunctionIC
    variable = qdot
    function = 'y'
  []
[]
[FVBCs]
  [left]
    type = FVFunctorNeumannBC
    variable = u
    functor = qdot
    boundary = left
  []
  [right]
    type = FVDirichletBC
    variable = u
    boundary = right
    value = 0
  []
[]
[Executioner]
  type = Steady
[]
[Outputs]
  exodus = true
[]
(test/tests/materials/functor_properties/1d_dirichlet.i)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmax = 2
[]
[Variables]
  [v]
    type = MooseVariableFVReal
  []
[]
[AuxVariables]
  [sink]
    type = MooseVariableFVReal
  []
[]
[ICs]
  [sink]
    type = FunctionIC
    variable = sink
    function = 'x^3'
  []
[]
[FVKernels]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = 1
  []
  [sink]
    type = FVFunctorElementalKernel
    variable = v
    functor_name = 'sink_mat'
  []
[]
[FVBCs]
  [bounds]
    type = FVDirichletBC
    variable = v
    boundary = 'left right'
    value = 0
  []
[]
[Materials]
  active = 'functor'
  [functor]
    type = ADGenericFunctorMaterial
    prop_names = sink_mat
    prop_values = sink
  []
  [overlapping_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'sink_mat'
    prop_values = v
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
[]
[Outputs]
  exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_radiative_heat_flux/test.i)
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 5
    ny = 5
    xmax = 2
  []
[]
[Variables]
  [u]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [diff_left]
    type = FVDiffusion
    variable = u
    coeff = 4
  []
  [gradient_creating]
    type = FVBodyForce
    variable = u
  []
[]
[FVBCs]
  [left]
    type = FVInfiniteCylinderRadiativeBC
    variable = u
    boundary = 'left'
    boundary_radius = 1
    cylinder_radius = 12
    cylinder_emissivity = 0.4
    # Using previous defaults
    boundary_emissivity = 1
    Tinfinity = 0
  []
  [top]
    type = FVInfiniteCylinderRadiativeBC
    variable = u
    # Test setting it separately
    temperature = 'u'
    boundary = 'top'
    boundary_radius = 1
    cylinder_radius = 12
    cylinder_emissivity = 0.4
    # Using previous defaults
    boundary_emissivity = 1
    Tinfinity = 0
  []
  [other]
    type = FVDirichletBC
    variable = u
    boundary = 'right bottom'
    value = 0
  []
[]
[Materials]
  [cht]
    type = ADGenericConstantMaterial
    prop_names = 'htc'
    prop_values = '1'
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  exodus = true
[]
(test/tests/fvkernels/fv_dotdot/fv_dotdot.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  ny = 10
[]
[Variables]
  [v]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 7
  []
[]
[Kernels]
[]
[FVKernels]
  [./time]
    type = FVTimeKernel
    variable = v
  [../]
  [diff]
    type = FVDiffusion
    variable = v
    coeff = coeff
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    variable = v
    boundary = left
    value = 7
  []
  [right]
    type = FVDirichletBC
    variable = v
    boundary = right
    value = 42
  []
[]
[Materials]
  [diff]
    type = ADGenericFunctorMaterial
    prop_names = 'coeff'
    prop_values = '.2'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'PJFNK'
  petsc_options_iname = '-pc_type -pc_hypre_type'
  petsc_options_value = 'hypre boomeramg'
  scheme = newmark-beta
  num_steps = 20
  dt = 0.1
[]
[Postprocessors]
  [vdotdot]
    type = ADElementAverageSecondTimeDerivative
    variable = v
  []
[]
[Outputs]
  csv = true
[]