- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- variableThe name of the variable which this postprocessor integrates
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable which this postprocessor integrates
SideDiffusiveFluxAverage
Computes the integral of the diffusive flux over the specified boundary
The expression of the diffusive flux in this object is generic, as described, and may differ from the diffusive flux in your specific physics implementation. If so, you may not use this object to compute the diffusive flux.
Example Input Syntax
[Postprocessors<<<{"href": "../../syntax/Postprocessors/index.html"}>>>]
[avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage<<<{"description": "Computes the integral of the diffusive flux over the specified boundary", "href": "SideDiffusiveFluxAverage.html"}>>>
variable<<<{"description": "The name of the variable which this postprocessor integrates"}>>> = u
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = right
diffusivity<<<{"description": "The name of the diffusivity material property that will be used in the flux computation. This must be provided if the variable is of finite element type"}>>> = diffusivity
[]
[]
(test/tests/thewarehouse/test1.i)Input Parameters
- diffusivityThe name of the diffusivity material property that will be used in the flux computation. This must be provided if the variable is of finite element type
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:The name of the diffusivity material property that will be used in the flux computation. This must be provided if the variable is of finite element type
- functor_diffusivityThe name of the diffusivity functor that will be used in the flux computation. This must be provided if the variable is of finite volume type. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name of the diffusivity functor that will be used in the flux computation. This must be provided if the variable is of finite volume type. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
Execution Scheduling Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material_insulated.i)
- (modules/stochastic_tools/examples/parameter_study/diffusion_time.i)
- (modules/heat_transfer/test/tests/ad_convective_heat_flux/coupled.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/coupled.i)
- (modules/combined/test/tests/optimization/compliance_sensitivity/thermal_test.i)
- (test/tests/thewarehouse/test1.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/multi_component_mortar_thermal_conduction.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_radiation/sphere.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_radiation/cylinder.i)
- (modules/heat_transfer/test/tests/radiative_bcs/ad_radiative_bc_cyl.i)
- (modules/heat_transfer/test/tests/radiative_bcs/radiative_bc_cyl.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material.i)
- (modules/stochastic_tools/examples/sobol/diffusion.i)
- (test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_linear_fv.i)
- (modules/heat_transfer/test/tests/ad_convective_heat_flux/flux.i)
- (test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average_fv.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/t_inf.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material_insulated.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/transient_joule_heating_constraint.i)
- (modules/stochastic_tools/examples/workshop/diffusion.i)
- (modules/combined/examples/optimization/thermomechanical/thermal_sub.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/closed_gap_prescribed_pressure.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/closed_gap_thermomechanical_mortar_contact.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/flux.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/equilibrium.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_offset_single_material_insulated.i)
- (test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_fv.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/closed_gap_pressure_dependent_thermal_contact.i)
- (test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average.i)
- (modules/stochastic_tools/examples/parameter_study/diffusion_vector.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material.i)
- (modules/stochastic_tools/examples/parameter_study/diffusion.i)
- (modules/combined/test/tests/optimization/compliance_sensitivity/three_materials_thermal.i)
- (modules/heat_transfer/test/tests/ad_convective_heat_flux/equilibrium.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/open_gap_pressure_dependent.i)
(test/tests/thewarehouse/test1.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[manyblocks]
input = gen
type = ElemUniqueSubdomainsGenerator
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[mat_props]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 2
[]
[]
[UserObjects]
[]
[Postprocessors]
[avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[]
[u1_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[u2_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[diff]
type = DifferencePostprocessor
value1 = u1_avg
value2 = u2_avg
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material_insulated.i)
## Units in the input file: m-Pa-s-K-V
# Using the steady-state Fourier's law, the temperature at the interface in each block,
# in the case where thermal contact between the two blocks at the interface is not
# considered, (steel block on left, aluminum on right) is calculated as:
#
# T_{interface - steel} = 816.849K
# T_{interface - aluminum} = 339.871K
# which matches the simulation results to the 6 decimal places shown.
# As expected, the heat flux resulting from the volumetric Joule heating source is
# equivalent on both sides of the interface.
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[electric_steel]
type = ADMatDiffusion
variable = potential
diffusivity = steel_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = steel_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_electrical_conductivity steel_hardness'
prop_values = '8e3 16.2 500.0 1.39e6 1.0' ## for stainless steel 304
block = 'left_block interface_secondary_subdomain'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
nl_max_its = 100
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/stochastic_tools/examples/parameter_study/diffusion_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables/T]
initial_condition = 300
[]
[Kernels]
[time]
type = ADTimeDerivative
variable = T
[]
[diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[]
[source]
type = ADBodyForce
variable = T
value = 100
function = 1
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = T
boundary = left
value = 300
[]
[right]
type = ADNeumannBC
variable = T
boundary = right
value = -100
[]
[]
[Materials/constant]
type = ADGenericConstantMaterial
prop_names = 'diffusivity'
prop_values = 1
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.25
[]
[Postprocessors]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'initial timestep_end'
[]
[q_left]
type = ADSideDiffusiveFluxAverage
variable = T
boundary = left
diffusivity = diffusivity
execute_on = 'initial timestep_end'
[]
[]
[VectorPostprocessors]
[T_vec]
type = LineValueSampler
variable = T
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = x
execute_on = 'initial timestep_end'
[]
[]
[Controls/stochastic]
type = SamplerReceiver
[]
[Outputs]
[]
(modules/heat_transfer/test/tests/ad_convective_heat_flux/coupled.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = ADTimeDerivative
variable = temp
[../]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat]
type = ADBodyForce
variable = temp
value = 0
[../]
[]
[BCs]
[./right]
type = ADConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = T_inf
heat_transfer_coefficient = htc
[../]
[]
[Materials]
[chf_mat]
type = ADConvectiveHeatFluxTest
temperature = temp
boundary = 'right'
[]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
time_step_interval = 10
[../]
[]
(modules/heat_transfer/test/tests/convective_heat_flux/coupled.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat]
type = BodyForce
variable = temp
value = 0
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = T_inf
heat_transfer_coefficient = htc
heat_transfer_coefficient_dT = dhtc_dT
[../]
[]
[Materials]
[./T_inf]
type = ParsedMaterial
property_name = T_inf
coupled_variables = temp
expression = 'temp + 1'
[../]
[./htc]
type = ParsedMaterial
property_name = htc
coupled_variables = temp
expression = 'temp / 100 + 1'
[../]
[./dhtc_dT]
type = ParsedMaterial
property_name = dhtc_dT
coupled_variables = temp
expression = '1 / 100'
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
time_step_interval = 10
[../]
[]
(modules/combined/test/tests/optimization/compliance_sensitivity/thermal_test.i)
vol_frac = 0.4
cost_frac = 10.0
power = 2.0
E0 = 1.0e-6
E1 = 1.0
rho0 = 0.0
rho1 = 1.0
C0 = 1.0e-6
C1 = 1.0
TC0 = 1.0e-16
TC1 = 1.0
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[MeshGenerator]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 40
ymin = 0
ymax = 40
[]
[node]
type = ExtraNodesetGenerator
input = MeshGenerator
new_boundary = hold
nodes = 0
[]
[push_left]
type = ExtraNodesetGenerator
input = node
new_boundary = push_left
coord = '16 0 0'
[]
[push_center]
type = ExtraNodesetGenerator
input = push_left
new_boundary = push_center
coord = '24 0 0'
[]
[extra]
type = SideSetsFromBoundingBoxGenerator
input = push_center
bottom_left = '-0.01 17.999 0'
top_right = '5 22.001 0'
boundary_new = n1
included_boundaries = left
[]
[dirichlet_bc]
type = SideSetsFromNodeSetsGenerator
input = extra
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[temp]
initial_condition = 100.0
[]
[]
[AuxVariables]
[Dc]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[Cc]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[Tc]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[Cost]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[mat_den]
family = MONOMIAL
order = FIRST
initial_condition = ${vol_frac}
[]
[]
[AuxKernels]
[Cost]
type = MaterialRealAux
variable = Cost
property = Cost_mat
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = thermal_cond
[]
[heat_source]
type = HeatSource
value = 1e-2 # W/m^3
variable = temp
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = SMALL
add_variables = true
incremental = false
[]
[]
[BCs]
[no_y]
type = DirichletBC
variable = disp_y
boundary = hold
value = 0.0
[]
[no_x_symm]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[left_n1]
type = DirichletBC
variable = temp
boundary = n1
value = 0.0
[]
[top]
type = NeumannBC
variable = temp
boundary = top
value = 0
[]
[bottom]
type = NeumannBC
variable = temp
boundary = bottom
value = 0
[]
[right]
type = NeumannBC
variable = temp
boundary = right
value = 0
[]
[left]
type = NeumannBC
variable = temp
boundary = left
value = 0
[]
[]
[NodalKernels]
[push_left]
type = NodalGravity
variable = disp_y
boundary = push_left
gravity_value = 0.0 # -1e-8
mass = 1
[]
[push_center]
type = NodalGravity
variable = disp_y
boundary = push_center
gravity_value = 0.0 # -1e-8
mass = 1
[]
[]
[Materials]
[thermal_cond]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${TC0}-${TC1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${TC0}-A1*${rho0}^${power}; TC1:=A1*mat_den^${power}+B1; TC1"
coupled_variables = 'mat_den'
property_name = thermal_cond
outputs = 'exodus'
[]
[thermal_compliance]
type = ThermalCompliance
temperature = temp
thermal_conductivity = thermal_cond
outputs = 'exodus'
[]
[elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
youngs_modulus = E_phys
poissons_ratio = poissons_ratio
args = 'mat_den'
[]
[E_phys]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${E0}-${E1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${E0}-A1*${rho0}^${power}; E1:=A1*mat_den^${power}+B1; E1"
coupled_variables = 'mat_den'
property_name = E_phys
[]
[Cost_mat]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${C0}-${C1})/(${rho0}^(1/${power})-${rho1}^(1/${power})); "
"B1:=${C0}-A1*${rho0}^(1/${power}); C1:=A1*mat_den^(1/${power})+B1; C1"
coupled_variables = 'mat_den'
property_name = Cost_mat
[]
[CostDensity]
type = ParsedMaterial
property_name = CostDensity
coupled_variables = 'mat_den Cost'
expression = 'mat_den*Cost'
[]
[poissons_ratio]
type = GenericConstantMaterial
prop_names = poissons_ratio
prop_values = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[dc]
type = ComplianceSensitivity
design_density = mat_den
youngs_modulus = E_phys
[]
[cc]
type = CostSensitivity
design_density = mat_den
cost = Cost_mat
outputs = 'exodus'
[]
[tc]
type = ThermalSensitivity
design_density = mat_den
thermal_conductivity = thermal_cond
temperature = temp
outputs = 'exodus'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[UserObjects]
[rad_avg]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_cost]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = cost_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_thermal]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = thermal_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[update]
type = DensityUpdateTwoConstraints
density_sensitivity = Dc
cost_density_sensitivity = Cc
cost = Cost
cost_fraction = ${cost_frac}
design_density = mat_den
volume_fraction = ${vol_frac}
bisection_lower_bound = 0
bisection_upper_bound = 1.0e12 # 100
use_thermal_compliance = true
thermal_sensitivity = Tc
weight_mechanical_thermal = '0 1'
relative_tolerance = 1.0e-12
bisection_move = 0.015
adaptive_move = false
execute_on = TIMESTEP_BEGIN
[]
# Provides Dc
[calc_sense]
type = SensitivityFilter
density_sensitivity = Dc
design_density = mat_den
filter_UO = rad_avg
execute_on = TIMESTEP_END
force_postaux = true
[]
# Provides Cc
[calc_sense_cost]
type = SensitivityFilter
density_sensitivity = Cc
design_density = mat_den
filter_UO = rad_avg_cost
execute_on = TIMESTEP_END
force_postaux = true
[]
# Provides Tc
[calc_sense_thermal]
type = SensitivityFilter
density_sensitivity = Tc
design_density = mat_den
filter_UO = rad_avg_thermal
execute_on = TIMESTEP_END
force_postaux = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
nl_abs_tol = 1e-12
dt = 1.0
num_steps = 5
[]
[Outputs]
exodus = true
[out]
type = CSV
execute_on = 'TIMESTEP_END'
[]
print_linear_residuals = false
[]
[Postprocessors]
[right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 10
[]
[mesh_volume]
type = VolumePostprocessor
execute_on = 'initial timestep_end'
[]
[total_vol]
type = ElementIntegralVariablePostprocessor
variable = mat_den
execute_on = 'INITIAL TIMESTEP_END'
[]
[vol_frac]
type = ParsedPostprocessor
expression = 'total_vol / mesh_volume'
pp_names = 'total_vol mesh_volume'
[]
[sensitivity]
type = ElementIntegralMaterialProperty
mat_prop = sensitivity
[]
[cost_sensitivity]
type = ElementIntegralMaterialProperty
mat_prop = cost_sensitivity
[]
[cost]
type = ElementIntegralMaterialProperty
mat_prop = CostDensity
[]
[cost_frac]
type = ParsedPostprocessor
expression = 'cost / mesh_volume'
pp_names = 'cost mesh_volume'
[]
[objective]
type = ElementIntegralMaterialProperty
mat_prop = strain_energy_density
execute_on = 'INITIAL TIMESTEP_END'
[]
[objective_thermal]
type = ElementIntegralMaterialProperty
mat_prop = thermal_compliance
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
(test/tests/thewarehouse/test1.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[manyblocks]
input = gen
type = ElemUniqueSubdomainsGenerator
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[mat_props]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 2
[]
[]
[UserObjects]
[]
[Postprocessors]
[avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[]
[u1_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[u2_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[diff]
type = DifferencePostprocessor
value1 = u1_avg
value2 = u2_avg
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/multi_component_mortar_thermal_conduction.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1.
xmax = 2.
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
patch_update_strategy = iteration
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[displacement_left_block]
type = ADFunctionDirichletBC
variable = disp_x
function = 'if(t<61, 2.0e-7, -2.0e-8*(t-60))'
boundary = 'moving_block_left'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'radiation closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeLinearElasticStress
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity'
prop_values = ' 8e3 16.2 0.5' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeLinearElasticStress
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity'
prop_values = ' 2.7e3 210 0.9'
block = 'right_block'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
secondary_emissivity = 0.25
primary_emissivity = 0.6
temperature = temperature
boundary = moving_block_right
[]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = 1.0
secondary_hardness = 1.0
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[aluminum_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 560
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 60
end_time = 120
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_radiation/sphere.i)
#
# This problem is one of radiation boundary conditions between two
# spherical surfaces.
#
# S(T1^4 - T2^4) R1^2
# flux1 = - ---------------- and flux2 = -flux1 * ----
# 1 1 - e2 R1^2 R2^2
# -- + ------ * ----
# e1 e2 R2^2
#
# where S is the Stefan Boltzmann constant 5.67e-8 W/m^2/K^4
# T1 is the temperature on the left surface 278 K
# T2 is the temperature on the right surface 333 K
# e1 is the emissivity for the left surface 0.8
# e2 is the emissivity for the left surface 0.9
# R1 is the radius of the inner surface 0.1 m
# R2 is the radius of the outer surface 0.11 m
#
# Flux1:
# Exact Code
# ------------- -------------
# -267.21 W/m^2 -267.02 W/m^2
#
# Flux2:
# Exact Code
# ------------- -------------
# 220.83 W/m^2 220.70 W/m^2
#
thick = 0.01
R1 = 0.1
R2 = 0.11
[GlobalParams]
order = second
family = lagrange
[]
[Mesh]
coord_type = RSPHERICAL
[mesh1]
type = GeneratedMeshGenerator
dim = 1
elem_type = edge3
nx = 4
xmin = '${fparse R1 - thick}'
xmax = '${R1}'
boundary_name_prefix = left
[]
[mesh2]
type = GeneratedMeshGenerator
dim = 1
elem_type = edge3
nx = 4
ny = 1
xmin = '${R2}'
xmax = '${fparse R2 + thick}'
boundary_id_offset = 4
boundary_name_prefix = right
[]
[final]
type = CombinerGenerator
inputs = 'mesh1 mesh2'
[]
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temperature
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temperature
boundary = left_left
value = 278
[]
[right]
type = DirichletBC
variable = temperature
boundary = right_right
value = 333
[]
[]
[Materials]
[heat]
type = HeatConductionMaterial
thermal_conductivity = 200 # W/m/K
specific_heat = 4.2e5
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temperature
primary = left_right
secondary = right_left
emissivity_primary = 0.8
emissivity_secondary = 0.9
quadrature = true
gap_conductivity = 1e-40 # requires a positive value
gap_geometry_type = sphere
[]
[]
[Functions]
[analytic_flux_1]
type = ParsedFunction
symbol_names = 'S T1 T2 e1 e2 R1 R2'
symbol_values = '5.67e-8 278 333 0.8 0.9 ${R1} ${R2}'
expression = 'T14 := T1*T1*T1*T1;
T24 := T2*T2*T2*T2;
S*(T14-T24)/(1/e1+(1-e2)/e2*R1*R1/R2/R2)'
[]
[analytic_flux_2]
type = ParsedFunction
symbol_names = 'S T1 T2 e1 e2 R1 R2'
symbol_values = '5.67e-8 278 333 0.8 0.9 ${R1} ${R2}'
expression = 'T14 := T1*T1*T1*T1;
T24 := T2*T2*T2*T2;
-S*(T14-T24)/(1/e1+(1-e2)/e2*R1*R1/R2/R2)*R1*R1/R2/R2'
[]
[]
[Postprocessors]
[code_flux_1]
type = SideDiffusiveFluxAverage
variable = temperature
boundary = left_right
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[]
[analytic_flux_1]
type = FunctionValuePostprocessor
function = analytic_flux_1
execute_on = 'initial timestep_end'
[]
[error_1]
type = ParsedPostprocessor
pp_names = 'code_flux_1 analytic_flux_1'
expression = '(analytic_flux_1 - code_flux_1)/analytic_flux_1*100'
execute_on = 'initial timestep_end'
[]
[code_flux_2]
type = SideDiffusiveFluxAverage
variable = temperature
boundary = right_left
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[]
[analytic_flux_2]
type = FunctionValuePostprocessor
function = analytic_flux_2
execute_on = 'initial timestep_end'
[]
[error_2]
type = ParsedPostprocessor
pp_names = 'code_flux_2 analytic_flux_2'
expression = '(analytic_flux_2 - code_flux_2)/analytic_flux_2*100'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = newton
num_steps = 1
dt = 1
end_time = 1
nl_abs_tol = 1e-12
nl_rel_tol = 1e-10
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_radiation/cylinder.i)
#
# This problem is one of radiation boundary conditions between two
# cylindrical surfaces.
#
# S(T1^4 - T2^4) R1
# flux1 = - ---------------- and flux2 = -flux1 * --
# 1 1 - e2 R1 R2
# -- + ------ * --
# e1 e2 R2
#
# where S is the Stefan Boltzmann constant 5.67e-8 W/m^2/K^4
# T1 is the temperature on the left surface 278 K
# T2 is the temperature on the right surface 333 K
# e1 is the emissivity for the left surface 0.8
# e2 is the emissivity for the left surface 0.9
# R1 is the radius of the inner surface 0.1 m
# R2 is the radius of the outer surface 0.11 m
#
# Flux1:
# Exact Code
# ------------- -------------
# -265.29 W/m^2 -265.26 W/m^2
#
# Flux2:
# Exact Code
# ------------- -------------
# 241.26 W/m^2 241.15 W/m^2
#
thick = 0.01
R1 = 0.1
R2 = 0.11
[GlobalParams]
order = second
family = lagrange
[]
[Mesh]
coord_type = RZ
[mesh1]
type = GeneratedMeshGenerator
dim = 2
elem_type = quad8
nx = 4
ny = 1
xmin = '${fparse R1 - thick}'
xmax = '${R1}'
ymin = 0
ymax = '${R1}'
boundary_name_prefix = left
[]
[mesh2]
type = GeneratedMeshGenerator
dim = 2
elem_type = quad8
nx = 4
ny = 1
xmin = '${R2}'
xmax = '${fparse R2 + thick}'
ymin = 0
ymax = '${R1}'
boundary_id_offset = 4
boundary_name_prefix = right
[]
[final]
type = CombinerGenerator
inputs = 'mesh1 mesh2'
[]
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temperature
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temperature
boundary = left_left
value = 278
[]
[right]
type = DirichletBC
variable = temperature
boundary = right_right
value = 333
[]
[]
[Materials]
[heat]
type = HeatConductionMaterial
thermal_conductivity = 200 # W/m/K
specific_heat = 4.2e5
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temperature
primary = left_right
secondary = right_left
emissivity_primary = 0.8
emissivity_secondary = 0.9
quadrature = true
gap_conductivity = 1e-40 # requires a positive value
gap_geometry_type = cylinder
[]
[]
[Functions]
[analytic_flux_1]
type = ParsedFunction
symbol_names = 'S T1 T2 e1 e2 R1 R2'
symbol_values = '5.67e-8 278 333 0.8 0.9 ${R1} ${R2}'
expression = 'T14 := T1*T1*T1*T1;
T24 := T2*T2*T2*T2;
S*(T14-T24)/(1/e1+(1-e2)/e2*R1/R2)'
[]
[analytic_flux_2]
type = ParsedFunction
symbol_names = 'S T1 T2 e1 e2 R1 R2'
symbol_values = '5.67e-8 278 333 0.8 0.9 ${R1} ${R2}'
expression = 'T14 := T1*T1*T1*T1;
T24 := T2*T2*T2*T2;
-S*(T14-T24)/(1/e1+(1-e2)/e2*R1/R2)*R1/R2'
[]
[]
[Postprocessors]
[code_flux_1]
type = SideDiffusiveFluxAverage
variable = temperature
boundary = left_right
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[]
[analytic_flux_1]
type = FunctionValuePostprocessor
function = analytic_flux_1
execute_on = 'initial timestep_end'
[]
[error_1]
type = ParsedPostprocessor
pp_names = 'code_flux_1 analytic_flux_1'
expression = '(analytic_flux_1 - code_flux_1)/analytic_flux_1*100'
execute_on = 'initial timestep_end'
[]
[code_flux_2]
type = SideDiffusiveFluxAverage
variable = temperature
boundary = right_left
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[]
[analytic_flux_2]
type = FunctionValuePostprocessor
function = analytic_flux_2
execute_on = 'initial timestep_end'
[]
[error_2]
type = ParsedPostprocessor
pp_names = 'code_flux_2 analytic_flux_2'
expression = '(analytic_flux_2 - code_flux_2)/analytic_flux_2*100'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = newton
num_steps = 1
dt = 1
end_time = 1
nl_abs_tol = 1e-12
nl_rel_tol = 1e-10
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/radiative_bcs/ad_radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[]
[remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[]
[readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[temp]
initial_condition = 800.0
[]
[]
[Kernels]
[heat]
type = ADHeatConduction
variable = temp
[]
[]
[BCs]
[lefttemp]
type = ADDirichletBC
boundary = left
variable = temp
value = 800
[]
[radiative_bc]
type = ADInfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[]
[]
[Materials]
[density]
type = ADGenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[right]
type = ADSideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[]
[min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[]
[max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/radiative_bcs/radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[../]
[./remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[../]
[./readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[../]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./temp]
initial_condition = 800.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 800
[../]
[./radiative_bc]
type = InfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[./right]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[../]
[./min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[../]
[./max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[../]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[electric_steel]
type = ADMatDiffusion
variable = potential
diffusivity = steel_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_temperature'
[]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = steel_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_electrical_conductivity steel_hardness'
prop_values = '8e3 16.2 500.0 1.39e6 1.0' ## for stainless steel 304
block = 'left_block interface_secondary_subdomain'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_temperature]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
nl_max_its = 100
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/stochastic_tools/examples/sobol/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables/T]
initial_condition = 300
[]
[Kernels]
[time]
type = ADTimeDerivative
variable = T
[]
[diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[]
[source]
type = ADBodyForce
variable = T
value = 100
function = 1
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = T
boundary = left
value = 300
[]
[right]
type = ADNeumannBC
variable = T
boundary = right
value = -100
[]
[]
[Materials/constant]
type = ADGenericConstantMaterial
prop_names = 'diffusivity'
prop_values = 1
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 4
dt = 0.25
[]
[Postprocessors]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'initial timestep_end'
[]
[q_left]
type = ADSideDiffusiveFluxAverage
variable = T
boundary = left
diffusivity = diffusivity
execute_on = 'initial timestep_end'
[]
[]
[Controls/stochastic]
type = SamplerReceiver
[]
[Outputs]
[]
(test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_linear_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Problem]
linear_sys_names = 'u_sys'
[]
[Variables]
[u]
solver_sys = 'u_sys'
type = MooseLinearVariableFVReal
[]
[]
[LinearFVKernels]
[diff]
type = LinearFVDiffusion
variable = u
diffusion_coeff = diffusivity
[]
[]
[LinearFVBCs]
[left]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = u
boundary = left
functor = 0
[]
[right]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = u
boundary = right
functor = 1
[]
[]
[FunctorMaterials]
[mat_props]
type = GenericFunctorMaterial
prop_names = diffusivity
prop_values = 1
[]
[]
[AuxVariables]
[grad]
family = MONOMIAL_VEC
order = CONSTANT
[]
[]
[AuxKernels]
[grad]
variable = grad
functor = u
type = FunctorElementalGradientAux
[]
[]
[Postprocessors]
[avg_left]
type = SideAverageValue
variable = u
boundary = left
[]
[avg_right]
type = SideAverageValue
variable = u
boundary = right
[]
[avg_flux_left]
type = SideDiffusiveFluxAverage
variable = u
boundary = left
functor_diffusivity = diffusivity
[]
[avg_flux_right]
type = SideDiffusiveFluxAverage
variable = u
boundary = right
functor_diffusivity = diffusivity
[]
[]
[Executioner]
type = Steady
system_names = u_sys
l_tol = 1e-10
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/ad_convective_heat_flux/flux.i)
# This is a test of the ConvectiveHeatFluxBC.
# There is a single 1x1 element with a prescribed temperature
# on the left side and a convective flux BC on the right side.
# The temperature on the left is 100, and the far-field temp is 200.
# The conductance of the body (conductivity * length) is 10
#
# If the conductance in the BC is also 10, the temperature on the
# right side of the solid element should be 150 because half of the
# temperature drop should occur over the body and half in the BC.
#
# The integrated flux is deltaT * conductance, or -50 * 10 = -500.
# The negative sign indicates that heat is going into the body.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Problem]
extra_tag_vectors = 'bcs'
[]
[Variables]
[./temp]
initial_condition = 100.0
[../]
[]
[Kernels]
[./heat_conduction]
type = ADHeatConduction
variable = temp
thermal_conductivity = 10
[../]
[]
[BCs]
[./left]
type = ADDirichletBC
variable = temp
boundary = left
value = 100.0
[../]
[./right]
type = ADConvectiveHeatFluxBC
variable = temp
boundary = right
T_infinity = 200.0
heat_transfer_coefficient = 10
[../]
[]
[Postprocessors]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 10
[../]
[]
[Executioner]
type = Transient
num_steps = 1.0
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[mat_props]
type = GenericFunctorMaterial
prop_names = diffusivity
prop_values = 1
[]
[]
[Postprocessors]
[avg_flux_right]
# Computes flux integral on the boundary, which should be -1
type = SideDiffusiveFluxAverage
variable = u
boundary = right
functor_diffusivity = diffusivity
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
l_abs_tol = 1e-14
l_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/convective_heat_flux/t_inf.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = 1
[../]
[./heat]
type = BodyForce
variable = temp
value = 0
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = 100.0
heat_transfer_coefficient = 1
heat_transfer_coefficient_dT = 0
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1e1
nl_abs_tol = 1e-12
[]
[Outputs]
# csv = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material_insulated.i)
## Units in the input file: m-Pa-s-K-V
# In this steady-state, symmetric simulation, the temperature at the interface between
# the two blocks of aluminum can be calculated through Fourier's law (see the documentation
# page for ADInterfaceJouleHeatingConstraint for the relevant formulas).
#
# With the prescribed 0.0 V (left) and 0.3V (right) potential boundary conditions, the
# electric potential drop is 9.25e6 [V * S / m^2]. From this current-density-like LM variable,
# the volumetric heat source at the interface is calculated as
# q = 1.15625e6 [W/m^3}
# Because of the 2D nature of this problem, the volumetric heat source is equal to
# the negative of the heat flux at the interface.
#
# Finally, the temperature at the interface is computed as a function of the block width,
# thermal conductivity, and specified temperature boundary condition (300K on both the
# left and right edges):
# T_{interface} = 850.5952K
# which matches the simulation result to the 6 decimal places shown.
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = aluminum_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[aluminum_interface_potential]
type = AverageNodalVariableValue
variable = potential
block = interface_secondary_subdomain
[]
[interface_electrical_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 2e-10
nl_rel_tol = 1e-6
nl_max_its = 50
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/transient_joule_heating_constraint.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity #use parsed material property
density_name = steel_density
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity #use parsed material property
density_name = aluminum_density
extra_vector_tags = 'ref'
block = 'right_block'
[]
[electric_steel]
type = ADMatDiffusion
variable = potential
diffusivity = steel_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_temperature'
[]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = steel_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_electrical_conductivity steel_hardness'
prop_values = '8e3 16.2 500.0 1.39e6 1.0' ## for stainless steel 304
block = 'left_block interface_secondary_subdomain'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_temperature]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-4
nl_max_its = 100
nl_forced_its = 1
dt = 1200.0
dtmin = 1200.0
num_steps = 8
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/stochastic_tools/examples/workshop/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables/T]
initial_condition = 300
[]
[Kernels]
[time]
type = ADTimeDerivative
variable = T
[]
[diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[]
[source]
type = ADBodyForce
variable = T
value = 100
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = T
boundary = left
value = 300
[]
[right]
type = ADNeumannBC
variable = T
boundary = right
value = -100
[]
[]
[Materials/constant]
type = ADGenericConstantMaterial
prop_names = 'diffusivity'
prop_values = 1
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.25
[]
[Postprocessors]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'initial timestep_end'
[]
[q_left]
type = ADSideDiffusiveFluxAverage
variable = T
boundary = left
diffusivity = diffusivity
execute_on = 'initial timestep_end'
[]
[]
[Controls/stochastic]
type = SamplerReceiver
[]
[Outputs]
[]
(modules/combined/examples/optimization/thermomechanical/thermal_sub.i)
vol_frac = 0.4
power = 2.0
E0 = 1.0e-6
E1 = 1.0
rho0 = 0.0
rho1 = 1.0
C0 = 1.0e-6
C1 = 1.0
TC0 = 1.0e-16
TC1 = 1.0
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[MeshGenerator]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 40
xmin = 0
xmax = 40
ymin = 0
ymax = 40
[]
[node]
type = ExtraNodesetGenerator
input = MeshGenerator
new_boundary = hold
nodes = 0
[]
[push_left]
type = ExtraNodesetGenerator
input = node
new_boundary = push_left
coord = '16 0 0'
[]
[push_center]
type = ExtraNodesetGenerator
input = push_left
new_boundary = push_center
coord = '24 0 0'
[]
[extra]
type = SideSetsFromBoundingBoxGenerator
input = push_center
bottom_left = '-0.01 17.999 0'
top_right = '5 22.001 0'
boundary_new = n1
boundaries_old = left
[]
[dirichlet_bc]
type = SideSetsFromNodeSetsGenerator
input = extra
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[temp]
initial_condition = 100.0
[]
[]
[AuxVariables]
[Dc]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[Cc]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[Tc]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[Cost]
family = MONOMIAL
order = FIRST
initial_condition = -1.0
[]
[mat_den]
family = MONOMIAL
order = FIRST
initial_condition = ${vol_frac}
[]
[]
[AuxKernels]
[Cost]
type = MaterialRealAux
variable = Cost
property = Cost_mat
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = thermal_cond
[]
[heat_source]
type = HeatSource
value = 1e-2 # W/m^3
variable = temp
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = SMALL
add_variables = true
incremental = false
[]
[]
[BCs]
[no_y]
type = DirichletBC
variable = disp_y
boundary = hold
value = 0.0
[]
[no_x_symm]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[left_n1]
type = DirichletBC
variable = temp
boundary = n1
value = 0.0
[]
[top]
type = NeumannBC
variable = temp
boundary = top
value = 0
[]
[bottom]
type = NeumannBC
variable = temp
boundary = bottom
value = 0
[]
[right]
type = NeumannBC
variable = temp
boundary = right
value = 0
[]
[left]
type = NeumannBC
variable = temp
boundary = left
value = 0
[]
[]
[NodalKernels]
[push_left]
type = NodalGravity
variable = disp_y
boundary = push_left
gravity_value = 0.0 # -1e-8
mass = 1
[]
[push_center]
type = NodalGravity
variable = disp_y
boundary = push_center
gravity_value = 0.0 # -1e-8
mass = 1
[]
[]
[Materials]
[thermal_cond]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${TC0}-${TC1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${TC0}-A1*${rho0}^${power}; TC1:=A1*mat_den^${power}+B1; TC1"
coupled_variables = 'mat_den'
property_name = thermal_cond
outputs = 'exodus'
[]
[thermal_compliance]
type = ThermalCompliance
temperature = temp
thermal_conductivity = thermal_cond
outputs = 'exodus'
[]
[elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
youngs_modulus = E_phys
poissons_ratio = poissons_ratio
args = 'mat_den'
[]
[E_phys]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${E0}-${E1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${E0}-A1*${rho0}^${power}; E1:=A1*mat_den^${power}+B1; E1"
coupled_variables = 'mat_den'
property_name = E_phys
[]
[Cost_mat]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${C0}-${C1})/(${rho0}^(1/${power})-${rho1}^(1/${power})); "
"B1:=${C0}-A1*${rho0}^(1/${power}); C1:=A1*mat_den^(1/${power})+B1; C1"
coupled_variables = 'mat_den'
property_name = Cost_mat
[]
[CostDensity]
type = ParsedMaterial
property_name = CostDensity
coupled_variables = 'mat_den Cost'
expression = 'mat_den*Cost'
[]
[poissons_ratio]
type = GenericConstantMaterial
prop_names = poissons_ratio
prop_values = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[dc]
type = ComplianceSensitivity
design_density = mat_den
youngs_modulus = E_phys
[]
[cc]
type = CostSensitivity
design_density = mat_den
cost = Cost_mat
outputs = 'exodus'
[]
[tc]
type = ThermalSensitivity
design_density = mat_den
thermal_conductivity = thermal_cond
temperature = temp
outputs = 'exodus'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[UserObjects]
[rad_avg]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_cost]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = cost_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_thermal]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = thermal_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
# Provides Dc
[calc_sense]
type = SensitivityFilter
density_sensitivity = Dc
design_density = mat_den
filter_UO = rad_avg
execute_on = TIMESTEP_END
force_postaux = true
[]
# Provides Cc
[calc_sense_cost]
type = SensitivityFilter
density_sensitivity = Cc
design_density = mat_den
filter_UO = rad_avg_cost
execute_on = TIMESTEP_END
force_postaux = true
[]
# Provides Tc
[calc_sense_thermal]
type = SensitivityFilter
density_sensitivity = Tc
design_density = mat_den
filter_UO = rad_avg_thermal
execute_on = TIMESTEP_END
force_postaux = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
nl_abs_tol = 1e-12
dt = 1.0
num_steps = 500
[]
[Outputs]
exodus = true
[out]
type = CSV
execute_on = 'TIMESTEP_END'
[]
print_linear_residuals = false
[]
[Postprocessors]
[right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 10
[]
[mesh_volume]
type = VolumePostprocessor
execute_on = 'initial timestep_end'
[]
[total_vol]
type = ElementIntegralVariablePostprocessor
variable = mat_den
execute_on = 'INITIAL TIMESTEP_END'
[]
[vol_frac]
type = ParsedPostprocessor
expression = 'total_vol / mesh_volume'
pp_names = 'total_vol mesh_volume'
[]
[sensitivity]
type = ElementIntegralMaterialProperty
mat_prop = sensitivity
[]
[cost_sensitivity]
type = ElementIntegralMaterialProperty
mat_prop = cost_sensitivity
[]
[cost]
type = ElementIntegralMaterialProperty
mat_prop = CostDensity
[]
[cost_frac]
type = ParsedPostprocessor
expression = 'cost / mesh_volume'
pp_names = 'cost mesh_volume'
[]
[objective]
type = ElementIntegralMaterialProperty
mat_prop = strain_energy_density
execute_on = 'INITIAL TIMESTEP_END'
[]
[objective_thermal]
type = ElementIntegralMaterialProperty
mat_prop = thermal_compliance
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/closed_gap_prescribed_pressure.i)
## Units in the input file: m-Pa-s-K
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1
xmax = 2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Variables]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 100.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_hardness'
prop_values = '8e3 16.2 129' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 15' #for 99% pure Al
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
nl_rel_tol = 1e-14
nl_max_its = 20
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/closed_gap_thermomechanical_mortar_contact.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1
xmax = 2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
patch_update_strategy = iteration
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
eigenstrain_names = steel_thermal_expansion
block = 'left_block'
[]
[aluminum]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
eigenstrain_names = aluminum_thermal_expansion
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[displacement_left_block]
type = ADFunctionDirichletBC
variable = disp_x
function = '2.0e-7*t'
boundary = 'moving_block_left'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeFiniteStrainElasticStress
block = 'left_block'
[]
[steel_thermal_expansion]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 17.3e-6 # stainless steel 304
stress_free_temperature = 300.0
temperature = temperature
eigenstrain_name = 'steel_thermal_expansion'
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_hardness'
prop_values = ' 8e3 16.2 0.5 129' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeFiniteStrainElasticStress
block = 'right_block'
[]
[aluminum_thermal_expansion]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 24.0e-6 # aluminum
stress_free_temperature = 300.0
temperature = temperature
eigenstrain_name = 'aluminum_thermal_expansion'
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_hardness'
prop_values = ' 2.7e3 210 0.9 15' #for 99% pure Al
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[steel_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 199
[]
[aluminum_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 560
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-8
nl_max_its = 20
l_max_its = 50
dt = 2
end_time = 10
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/convective_heat_flux/flux.i)
# This is a test of the ConvectiveHeatFluxBC.
# There is a single 1x1 element with a prescribed temperature
# on the left side and a convective flux BC on the right side.
# The temperature on the left is 100, and the far-field temp is 200.
# The conductance of the body (conductivity * length) is 10
#
# If the conductance in the BC is also 10, the temperature on the
# right side of the solid element should be 150 because half of the
# temperature drop should occur over the body and half in the BC.
#
# The integrated flux is deltaT * conductance, or -50 * 10 = -500.
# The negative sign indicates that heat is going into the body.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Problem]
extra_tag_vectors = 'bcs'
[]
[Variables]
[./temp]
initial_condition = 100.0
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = 10
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = left
value = 100.0
[../]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = right
T_infinity = 200.0
heat_transfer_coefficient = 10
heat_transfer_coefficient_dT = 0
[../]
[]
[Postprocessors]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 10
[../]
[]
[Executioner]
type = Transient
num_steps = 1.0
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/convective_heat_flux/equilibrium.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = 100.0
heat_transfer_coefficient = 1
heat_transfer_coefficient_dT = 0
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1e1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
time_step_interval = 10
[../]
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_offset_single_material_insulated.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
xmax = 0.1
ymin = 0.1
ymax = 0.35
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
correct_edge_dropping = true
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = aluminum_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[interface_heat_flux_large_block]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_heat_flux_small_block]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux_large_block]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[interface_electrical_flux_small_block]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = moving_block_right
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 2e-10
nl_rel_tol = 1e-6
nl_max_its = 50
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral_fv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[FunctorMaterials]
[mat_props]
type = GenericFunctorMaterial
prop_names = diffusivity
prop_values = 1
[]
[mat_props_vector]
type = GenericVectorFunctorMaterial
prop_names = diffusivity_vec
prop_values = '1 1.5 1'
[]
[]
[Postprocessors]
inactive = 'avg_flux_top'
[avg_flux_right]
# Computes flux integral on the boundary, which should be -1
type = SideDiffusiveFluxAverage
variable = u
boundary = right
functor_diffusivity = diffusivity
[]
[avg_flux_top]
type = SideVectorDiffusivityFluxIntegral
variable = u
boundary = top
functor_diffusivity = diffusivity_vec
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
l_abs_tol = 1e-14
l_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/closed_gap_pressure_dependent_thermal_contact.i)
## Units in the input file: m-Pa-s-K
# The analytical solution for a steady state thermal contact and a mechanical
# contact pressure of 1Pa, the temperature of the steel block at the interface
# is calcaluated as
#
# T^s_{int} = \frac{T^a_{BC}C_T k_a + T^s_{BC} k_s \left(k_a +C_T \right)}{k_s (k_a + C_T) + k_a C_T}
# T^s_{int} = 460K
#
# with the boundary conditions and thermal conductivity values specified in the
# input file below. Similarly, the temperature of the aluminum block (cold block)
# is calculated as
#
# T^a_{int} = \frac{T^s_{int} C_T + T^a_{BC} k_a}{k_a + C_T}
# T^a_{int} = 276K
#
# The values predicted by the simulation at the interface converge towards these
# temperature values, and are within a few degrees by 240s. A smaller timestep
# than is practical for the regression test application further reduces the difference
# between the analytical solution and the simulation result.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1
xmax = 2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[displacement_left_block]
type = ADDirichletBC
variable = disp_x
value = 1.8e-11
boundary = 'moving_block_left'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeLinearElasticStress
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity'
prop_values = '8e3 16.2 0.5' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeLinearElasticStress
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity'
prop_values = ' 2.7e3 210 0.9'
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = 1.0
secondary_hardness = 1.0
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 60
end_time = 240
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./right_bc]
# Flux BC for computing the analytical solution in the postprocessor
type = ParsedFunction
expression = exp(y)+1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = right
function = right_bc
[../]
[]
[Materials]
[./mat_props]
type = GenericConstantMaterial
block = 0
prop_names = diffusivity
prop_values = 2
[../]
[./mat_props_bnd]
type = GenericConstantMaterial
boundary = right
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/examples/parameter_study/diffusion_vector.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables/T]
initial_condition = 300
[]
[Kernels]
[time]
type = ADTimeDerivative
variable = T
[]
[diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[]
[source]
type = ADBodyForce
variable = T
value = 100
function = 1
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = T
boundary = left
value = 300
[]
[right]
type = ADNeumannBC
variable = T
boundary = right
value = -100
[]
[]
[Materials/constant]
type = ADGenericConstantMaterial
prop_names = 'diffusivity'
prop_values = 1
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.25
[]
[Postprocessors]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'initial timestep_end'
[]
[q_left]
type = ADSideDiffusiveFluxAverage
variable = T
boundary = left
diffusivity = diffusivity
execute_on = 'initial timestep_end'
[]
[]
[Reporters]
[acc]
type = AccumulateReporter
reporters = 'T_avg/value q_left/value'
[]
[]
[Controls/stochastic]
type = SamplerReceiver
[]
[Outputs]
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_temperature'
[]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = aluminum_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_temperature]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[aluminum_interface_potential]
type = AverageNodalVariableValue
variable = potential
block = interface_secondary_subdomain
[]
[interface_electrical_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
nl_max_its = 50
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/stochastic_tools/examples/parameter_study/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables/T]
initial_condition = 300
[]
[Kernels]
[time]
type = ADTimeDerivative
variable = T
[]
[diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[]
[source]
type = ADBodyForce
variable = T
value = 100
function = 1
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = T
boundary = left
value = 300
[]
[right]
type = ADNeumannBC
variable = T
boundary = right
value = -100
[]
[]
[Materials/constant]
type = ADGenericConstantMaterial
prop_names = 'diffusivity'
prop_values = 1
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.25
[]
[Postprocessors]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'initial timestep_end'
[]
[q_left]
type = ADSideDiffusiveFluxAverage
variable = T
boundary = left
diffusivity = diffusivity
execute_on = 'initial timestep_end'
[]
[]
[Controls/stochastic]
type = SamplerReceiver
[]
[Outputs]
[]
(modules/combined/test/tests/optimization/compliance_sensitivity/three_materials_thermal.i)
vol_frac = 0.4
cost_frac = 0.4
power = 4
# Stiffness (not optimized in this test)
E0 = 1.0e-6
E1 = 0.2
E2 = 0.6
E3 = 1.0
# Densities
rho0 = 1.0e-6
rho1 = 0.4
rho2 = 0.7
rho3 = 1.0
# Costs
C0 = 1.0e-6
C1 = 0.5
C2 = 0.8
C3 = 1.0
# Thermal conductivity
TC0 = 1.0e-6
TC1 = 0.2
TC2 = 0.6
TC3 = 1.0
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[MeshGenerator]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 40
xmin = 0
xmax = 40
ymin = 0
ymax = 40
[]
[node]
type = ExtraNodesetGenerator
input = MeshGenerator
new_boundary = hold
nodes = 0
[]
[push_left]
type = ExtraNodesetGenerator
input = node
new_boundary = push_left
coord = '20 0 0'
[]
[push_center]
type = ExtraNodesetGenerator
input = push_left
new_boundary = push_center
coord = '40 0 0'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[temp]
initial_condition = 100.0
[]
[]
[AuxVariables]
[Dc]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[Cc]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[Tc]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[Cost]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[mat_den]
family = MONOMIAL
order = CONSTANT
initial_condition = ${vol_frac}
[]
[thermal_compliance]
order = CONSTANT
family = MONOMIAL
[]
[]
# [ICs]
# [mat_den]
# type = RandomIC
# seed = 4
# variable = mat_den
# max = '${fparse vol_frac+0.25}'
# min = '${fparse vol_frac-0.25}'
# []
# []
[AuxKernels]
[Cost]
type = MaterialRealAux
variable = Cost
property = Cost_mat
[]
[thermal_compliance]
type = MaterialRealAux
property = thermal_compliance
variable = thermal_compliance
execute_on = timestep_end
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = thermal_cond
[]
[heat_source]
type = HeatSource
value = 1e-2 # W/m^3
variable = temp
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = SMALL
add_variables = true
incremental = false
[]
[]
[BCs]
[no_y]
type = DirichletBC
variable = disp_y
boundary = hold
value = 0.0
[]
[no_x_symm]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[top]
type = DirichletBC
variable = temp
boundary = top
value = 0
[]
[bottom]
type = DirichletBC
variable = temp
boundary = bottom
value = 0
[]
[right]
type = DirichletBC
variable = temp
boundary = right
value = 0
[]
[left]
type = DirichletBC
variable = temp
boundary = left
value = 0
[]
[]
[NodalKernels]
[push_left]
type = NodalGravity
variable = disp_y
boundary = push_left
gravity_value = -1e-6 # -3
mass = 1
[]
[push_center]
type = NodalGravity
variable = disp_y
boundary = push_center
gravity_value = -1e-6 # -3
mass = 1
[]
[]
[Materials]
[thermal_cond]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${TC0}-${TC1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${TC0}-A1*${rho0}^${power}; TC1:=A1*mat_den^${power}+B1; "
"A2:=(${TC1}-${TC2})/(${rho1}^${power}-${rho2}^${power}); "
"B2:=${TC1}-A2*${rho1}^${power}; TC2:=A2*mat_den^${power}+B2; "
"A3:=(${TC2}-${TC3})/(${rho2}^${power}-${rho3}^${power}); "
"B3:=${TC2}-A3*${rho2}^${power}; TC3:=A3*mat_den^${power}+B3; "
"if(mat_den<${rho1},TC1,if(mat_den<${rho2},TC2,TC3))"
coupled_variables = 'mat_den'
property_name = thermal_cond
[]
[thermal_compliance]
type = ThermalCompliance
temperature = temp
thermal_conductivity = thermal_cond
[]
[elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
youngs_modulus = E_phys
poissons_ratio = poissons_ratio
args = 'mat_den'
[]
[E_phys]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${E0}-${E1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${E0}-A1*${rho0}^${power}; E1:=A1*mat_den^${power}+B1; "
"A2:=(${E1}-${E2})/(${rho1}^${power}-${rho2}^${power}); "
"B2:=${E1}-A2*${rho1}^${power}; E2:=A2*mat_den^${power}+B2; "
"A3:=(${E2}-${E3})/(${rho2}^${power}-${rho3}^${power}); "
"B3:=${E2}-A3*${rho2}^${power}; E3:=A3*mat_den^${power}+B3; "
"if(mat_den<${rho1},E1,if(mat_den<${rho2},E2,E3))"
coupled_variables = 'mat_den'
property_name = E_phys
[]
[Cost_mat]
type = DerivativeParsedMaterial
# ordered multimaterial simp
expression = "A1:=(${C0}-${C1})/(${rho0}^(1/${power})-${rho1}^(1/${power})); "
"B1:=${C0}-A1*${rho0}^(1/${power}); C1:=A1*mat_den^(1/${power})+B1; "
"A2:=(${C1}-${C2})/(${rho1}^(1/${power})-${rho2}^(1/${power})); "
"B2:=${C1}-A2*${rho1}^(1/${power}); C2:=A2*mat_den^(1/${power})+B2; "
"A3:=(${C2}-${C3})/(${rho2}^(1/${power})-${rho3}^(1/${power})); "
"B3:=${C2}-A3*${rho2}^(1/${power}); C3:=A3*mat_den^(1/${power})+B3; "
"if(mat_den<${rho1},C1,if(mat_den<${rho2},C2,C3))"
coupled_variables = 'mat_den'
property_name = Cost_mat
[]
[CostDensity]
type = ParsedMaterial
property_name = CostDensity
coupled_variables = 'mat_den Cost'
expression = 'mat_den*Cost'
[]
[poissons_ratio]
type = GenericConstantMaterial
prop_names = poissons_ratio
prop_values = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[dc]
type = ComplianceSensitivity
design_density = mat_den
youngs_modulus = E_phys
[]
[cc]
type = CostSensitivity
design_density = mat_den
cost = Cost_mat
[]
[tc]
type = ThermalSensitivity
design_density = mat_den
thermal_conductivity = thermal_cond
temperature = temp
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[UserObjects]
[rad_avg]
type = RadialAverage
radius = 4
weights = linear
prop_name = sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_cost]
type = RadialAverage
radius = 4
weights = linear
prop_name = cost_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_thermal]
type = RadialAverage
radius = 4
weights = linear
prop_name = thermal_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[update]
type = DensityUpdateTwoConstraints
density_sensitivity = Dc
cost_density_sensitivity = Cc
cost = Cost
cost_fraction = ${cost_frac}
design_density = mat_den
volume_fraction = ${vol_frac}
bisection_lower_bound = 0
bisection_upper_bound = 1.0e12 # 100
use_thermal_compliance = true
thermal_sensitivity = Tc
# Only account for thermal optimizxation
weight_mechanical_thermal = '0 1'
relative_tolerance = 1.0e-8
bisection_move = 0.05
adaptive_move = false
execute_on = TIMESTEP_BEGIN
[]
# Provides Dc
[calc_sense]
type = SensitivityFilter
density_sensitivity = Dc
design_density = mat_den
filter_UO = rad_avg
execute_on = TIMESTEP_END
force_postaux = true
[]
# Provides Cc
[calc_sense_cost]
type = SensitivityFilter
density_sensitivity = Cc
design_density = mat_den
filter_UO = rad_avg_cost
execute_on = TIMESTEP_END
force_postaux = true
[]
# Provides Tc
[calc_sense_thermal]
type = SensitivityFilter
density_sensitivity = Tc
design_density = mat_den
filter_UO = rad_avg_thermal
execute_on = TIMESTEP_END
force_postaux = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
nl_abs_tol = 1e-10
dt = 1.0
num_steps = 12
[]
[Outputs]
[out]
type = CSV
execute_on = 'TIMESTEP_END'
[]
print_linear_residuals = false
[]
[Postprocessors]
[right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 10
[]
[mesh_volume]
type = VolumePostprocessor
execute_on = 'initial timestep_end'
[]
[total_vol]
type = ElementIntegralVariablePostprocessor
variable = mat_den
execute_on = 'INITIAL TIMESTEP_END'
[]
[vol_frac]
type = ParsedPostprocessor
expression = 'total_vol / mesh_volume'
pp_names = 'total_vol mesh_volume'
[]
[sensitivity]
type = ElementIntegralMaterialProperty
mat_prop = sensitivity
[]
[cost_sensitivity]
type = ElementIntegralMaterialProperty
mat_prop = cost_sensitivity
[]
[cost]
type = ElementIntegralMaterialProperty
mat_prop = CostDensity
[]
[cost_frac]
type = ParsedPostprocessor
expression = 'cost / mesh_volume'
pp_names = 'cost mesh_volume'
[]
[objective]
type = ElementIntegralMaterialProperty
mat_prop = strain_energy_density
execute_on = 'INITIAL TIMESTEP_END'
[]
[objective_thermal]
type = ElementIntegralMaterialProperty
mat_prop = thermal_compliance
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
(modules/heat_transfer/test/tests/ad_convective_heat_flux/equilibrium.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = ADTimeDerivative
variable = temp
[../]
[./heat_conduction]
type = ADDiffusion
variable = temp
[../]
[]
[BCs]
[./right]
type = ADConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = 100.0
heat_transfer_coefficient = 1
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1e1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
time_step_interval = 10
[../]
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/open_gap_pressure_dependent.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1.0001
xmax = 2.0001
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[pressure_left_block]
type = ADPressure
variable = disp_x
boundary = 'moving_block_left'
component = 0
function = 1*t
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeLinearElasticStress
block = 'left_block'
[]
[steel_density]
type = ADGenericConstantMaterial
prop_names = 'steel_density'
prop_values = 8e3 #in kg/m^3, stainless steel 304
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_thermal_conductivity steel_heat_capacity steel_emissivity'
prop_values = '16.2 0.5 0.6' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeLinearElasticStress
block = 'right_block'
[]
[aluminum_density]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density'
prop_values = 2.7e3 #in kg/m^3, stainless steel 304
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_thermal_conductivity aluminum_heat_capacity aluminum_emissivity'
prop_values = '210 0.9 0.25'
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
primary_hardness = 1.0
secondary_hardness = 1.0
boundary = moving_block_right
contact_pressure = interface_normal_lm
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[steel_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 199
[]
[aluminum_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 560
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
csv = true
perf_graph = true
[]