- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Controllable:No
Description:The rhie-chow user-object
 
SIMPLENonlinearAssembly
Solves the Navier-Stokes equations using the SIMPLENonlinearAssembly algorithm.
Overview
For the overview of the SIMPLE algorithm, please visit SIMPLE.
This executioner implements the same iteration but it uses MOOSE's native residual and Jacobian computing routines to build system matrices and right hand sides. Even though this introduces an overhead in terms of computational speed, it allows the utilization of the same variables, kernels and boundary conditions that are used in the monolithic solvers.
Example Input Syntax
The setup of a problem with the segregated solver in MOOSE is slightly different compared to conventional monolithic solvers. In this section, we highlight the main differences. For setting up a 2D simulation with the SIMPLE algorithm, we add three systems in MOOSE: one for each momentum component and another for the pressure. The different systems can be created within the Problem block:
[Problem<<<{"href": "../../syntax/Problem/index.html"}>>>]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[](modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)It is visible that we requested that MOOSE keeps previous solution iterates as well. This is necessary to facilitate the relaxation processes mentioned in SIMPLE.
[Variables<<<{"href": "../../syntax/Variables/index.html"}>>>]
  [u]
    type = INSFVVelocityVariable<<<{"description": "Base class for Moose variables. This should never be the terminal object type", "href": "../variables/INSFVVelocityVariable.html"}>>>
    initial_condition<<<{"description": "Specifies a constant initial condition for this variable"}>>> = 0.5
    solver_sys<<<{"description": "If this variable is a solver variable, this is the solver system to which it should be added."}>>> = u_system
    two_term_boundary_expansion<<<{"description": "Whether to use a two-term Taylor expansion to calculate boundary face values. If the two-term expansion is used, then the boundary face value depends on the adjoining cell center gradient, which itself depends on the boundary face value. Consequently an implicit solve is used to simultaneously solve for the adjoining cell center gradient and boundary face value(s)."}>>> = false
  []
  [v]
    type = INSFVVelocityVariable<<<{"description": "Base class for Moose variables. This should never be the terminal object type", "href": "../variables/INSFVVelocityVariable.html"}>>>
    initial_condition<<<{"description": "Specifies a constant initial condition for this variable"}>>> = 0.0
    solver_sys<<<{"description": "If this variable is a solver variable, this is the solver system to which it should be added."}>>> = v_system
    two_term_boundary_expansion<<<{"description": "Whether to use a two-term Taylor expansion to calculate boundary face values. If the two-term expansion is used, then the boundary face value depends on the adjoining cell center gradient, which itself depends on the boundary face value. Consequently an implicit solve is used to simultaneously solve for the adjoining cell center gradient and boundary face value(s)."}>>> = false
  []
  [pressure]
    type = INSFVPressureVariable<<<{"description": "Base class for Moose variables. This should never be the terminal object type", "href": "../variables/INSFVPressureVariable.html"}>>>
    solver_sys<<<{"description": "If this variable is a solver variable, this is the solver system to which it should be added."}>>> = pressure_system
    initial_condition<<<{"description": "Specifies a constant initial condition for this variable"}>>> = 0.2
    two_term_boundary_expansion<<<{"description": "Whether to use a two-term Taylor expansion to calculate boundary face values. If the two-term expansion is used, then the boundary face value depends on the adjoining cell center gradient, which itself depends on the boundary face value. Consequently an implicit solve is used to simultaneously solve for the adjoining cell center gradient and boundary face value(s)."}>>> = false
  []
[](modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)The kernels are then created similarly to the monolithic system, with the exception that now the kernels acting on pressure are slightly different:
[FVKernels<<<{"href": "../../syntax/FVKernels/index.html"}>>>]
  [p_diffusion]
    type = FVAnisotropicDiffusion<<<{"description": "Computes residual for anisotropic diffusion operator for finite volume method.", "href": "../fvkernels/FVAnisotropicDiffusion.html"}>>>
    variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = pressure
    coeff<<<{"description": "The diagonal coefficients of a diffusion tensor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = "Ainv"
    coeff_interp_method<<<{"description": "Switch that can select face interpolation method for diffusion coefficients."}>>> = 'average'
  []
  [p_source]
    type = FVDivergence<<<{"description": "Computes the residual coming from the divergence of a vector fieldthat can be represented as a functor.", "href": "../fvkernels/FVDivergence.html"}>>>
    variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = pressure
    vector_field<<<{"description": "The name of the vector field whose divergence is added to the residual. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = "HbyA"
    force_boundary_execution<<<{"description": "Whether to force execution of this object on all external boundaries."}>>> = true
  []
[](modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)By default, the coupling fields corresponding to  and  are called HbyA and Ainv, respectively. These fields are generated by INSFVRhieChowInterpolatorSegregated under the hood. This means that we need to add the user object responsible for generating these fields:
[UserObjects<<<{"href": "../../syntax/UserObjects/index.html"}>>>]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated<<<{"description": "Computes H/A and 1/A together with face velocities for segregated momentum-pressure equations.", "href": "../userobjects/INSFVRhieChowInterpolatorSegregated.html"}>>>
    u<<<{"description": "The x-component of velocity"}>>> = u
    v<<<{"description": "The y-component of velocity"}>>> = v
    pressure<<<{"description": "The pressure variable."}>>> = pressure
  []
[](modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)Next, we add the SIMPLENonlinearAssembly executioner:
[Executioner<<<{"href": "../../syntax/Executioner/index.html"}>>>]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[](modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)We see that it has a parameter called "pressure_gradient_tag". This tag needs to be added to the pressure gradient kernels to enable the separation of terms needed in . This can be easily done as follows in the FVKernels:
[FVKernels<<<{"href": "../../syntax/FVKernels/index.html"}>>>]
  [u_pressure]
    type = INSFVMomentumPressure<<<{"description": "Introduces the coupled pressure term into the Navier-Stokes momentum equation.", "href": "../fvkernels/INSFVMomentumPressure.html"}>>>
    variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = u
    momentum_component<<<{"description": "The component of the momentum equation that this kernel applies to."}>>> = 'x'
    pressure<<<{"description": "The pressure. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = pressure
    extra_vector_tags<<<{"description": "The extra tags for the vectors this Kernel should fill"}>>> = ${pressure_tag}
  []
  [v_pressure]
    type = INSFVMomentumPressure<<<{"description": "Introduces the coupled pressure term into the Navier-Stokes momentum equation.", "href": "../fvkernels/INSFVMomentumPressure.html"}>>>
    variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = v
    momentum_component<<<{"description": "The component of the momentum equation that this kernel applies to."}>>> = 'y'
    pressure<<<{"description": "The pressure. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = pressure
    extra_vector_tags<<<{"description": "The extra tags for the vectors this Kernel should fill"}>>> = ${pressure_tag}
  []
[](modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)Input Parameters
- continue_on_max_itsFalseIf solve should continue if maximum number of iterations is hit.
Default:False
C++ Type:bool
Controllable:No
Description:If solve should continue if maximum number of iterations is hit.
 - energy_systemThe solver system for the energy equation.
C++ Type:SolverSystemName
Controllable:No
Description:The solver system for the energy equation.
 - num_iterations1000The number of momentum-pressure-(other fields) iterations needed.
Default:1000
C++ Type:unsigned int
Controllable:No
Description:The number of momentum-pressure-(other fields) iterations needed.
 - pressure_gradient_tagpressure_momentum_kernelsThe name of the tags associated with the kernels in the momentum equations which are not related to the pressure gradient.
Default:pressure_momentum_kernels
C++ Type:TagName
Controllable:No
Description:The name of the tags associated with the kernels in the momentum equations which are not related to the pressure gradient.
 - print_fieldsFalseUse this to print the coupling and solution fields and matrices throughout the iteration.
Default:False
C++ Type:bool
Controllable:No
Description:Use this to print the coupling and solution fields and matrices throughout the iteration.
 - solid_energy_systemThe solver system for the solid energy equation.
C++ Type:SolverSystemName
Controllable:No
Description:The solver system for the solid energy equation.
 - time0System time
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:System time
 - verboseFalseSet to true to print additional information
Default:False
C++ Type:bool
Controllable:No
Description:Set to true to print additional information
 
Optional Parameters
- accept_on_max_fixed_point_iterationFalseTrue to treat reaching the maximum number of fixed point iterations as converged.
Default:False
C++ Type:bool
Controllable:No
Description:True to treat reaching the maximum number of fixed point iterations as converged.
 - auto_advanceFalseWhether to automatically advance sub-applications regardless of whether their solve converges, for transient executioners only.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to automatically advance sub-applications regardless of whether their solve converges, for transient executioners only.
 - custom_abs_tol1e-50The absolute nonlinear residual to shoot for during fixed point iterations. This check is performed based on postprocessor defined by the custom_pp residual.
Default:1e-50
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute nonlinear residual to shoot for during fixed point iterations. This check is performed based on postprocessor defined by the custom_pp residual.
 - custom_ppPostprocessor for custom fixed point convergence check.
C++ Type:PostprocessorName
Unit:(no unit assumed)
Controllable:No
Description:Postprocessor for custom fixed point convergence check.
 - custom_rel_tol1e-08The relative nonlinear residual drop to shoot for during fixed point iterations. This check is performed based on the postprocessor defined by custom_pp residual.
Default:1e-08
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative nonlinear residual drop to shoot for during fixed point iterations. This check is performed based on the postprocessor defined by custom_pp residual.
 - direct_pp_valueFalseTrue to use direct postprocessor value (scaled by value on first iteration). False (default) to use difference in postprocessor value between fixed point iterations.
Default:False
C++ Type:bool
Controllable:No
Description:True to use direct postprocessor value (scaled by value on first iteration). False (default) to use difference in postprocessor value between fixed point iterations.
 - disable_fixed_point_residual_norm_checkFalseDisable the residual norm evaluation thus the three parameters fixed_point_rel_tol, fixed_point_abs_tol and fixed_point_force_norms.
Default:False
C++ Type:bool
Controllable:No
Description:Disable the residual norm evaluation thus the three parameters fixed_point_rel_tol, fixed_point_abs_tol and fixed_point_force_norms.
 - fixed_point_abs_tol1e-50The absolute nonlinear residual to shoot for during fixed point iterations. This check is performed based on the main app's nonlinear residual.
Default:1e-50
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute nonlinear residual to shoot for during fixed point iterations. This check is performed based on the main app's nonlinear residual.
 - fixed_point_algorithmpicardThe fixed point algorithm to converge the sequence of problems.
Default:picard
C++ Type:MooseEnum
Options:picard, secant, steffensen
Controllable:No
Description:The fixed point algorithm to converge the sequence of problems.
 - fixed_point_force_normsFalseForce the evaluation of both the TIMESTEP_BEGIN and TIMESTEP_END norms regardless of the existence of active MultiApps with those execute_on flags, default: false.
Default:False
C++ Type:bool
Controllable:No
Description:Force the evaluation of both the TIMESTEP_BEGIN and TIMESTEP_END norms regardless of the existence of active MultiApps with those execute_on flags, default: false.
 - fixed_point_max_its1Specifies the maximum number of fixed point iterations.
Default:1
C++ Type:unsigned int
Controllable:No
Description:Specifies the maximum number of fixed point iterations.
 - fixed_point_min_its1Specifies the minimum number of fixed point iterations.
Default:1
C++ Type:unsigned int
Controllable:No
Description:Specifies the minimum number of fixed point iterations.
 - fixed_point_rel_tol1e-08The relative nonlinear residual drop to shoot for during fixed point iterations. This check is performed based on the main app's nonlinear residual.
Default:1e-08
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative nonlinear residual drop to shoot for during fixed point iterations. This check is performed based on the main app's nonlinear residual.
 - multiapp_fixed_point_convergenceName of the Convergence object to use to assess convergence of the MultiApp fixed point solve. If not provided, a default Convergence will be constructed internally from the executioner parameters.
C++ Type:ConvergenceName
Controllable:No
Description:Name of the Convergence object to use to assess convergence of the MultiApp fixed point solve. If not provided, a default Convergence will be constructed internally from the executioner parameters.
 - relaxation_factor1Fraction of newly computed value to keep.Set between 0 and 2.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Fraction of newly computed value to keep.Set between 0 and 2.
 - transformed_postprocessorsList of main app postprocessors to transform during fixed point iterations
C++ Type:std::vector<PostprocessorName>
Unit:(no unit assumed)
Controllable:No
Description:List of main app postprocessors to transform during fixed point iterations
 - transformed_variablesList of main app variables to transform during fixed point iterations
C++ Type:std::vector<std::string>
Controllable:No
Description:List of main app variables to transform during fixed point iterations
 
Fixed Point Iterations Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
 
Advanced Parameters
- energy_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the energy equation.
 - energy_equation_relaxation1The relaxation which should be used for the energy equation. (=1 for no relaxation, diagonal dominance will still be enforced)
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the energy equation. (=1 for no relaxation, diagonal dominance will still be enforced)
 - energy_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the energy equation.
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the energy equation.
 - energy_l_max_its10000The maximum allowed iterations in the linear solver of the energy equation.
Default:10000
C++ Type:unsigned int
Controllable:No
Description:The maximum allowed iterations in the linear solver of the energy equation.
 - energy_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the energy equation.
 - energy_petsc_optionsSingleton PETSc options for the energy equation
C++ Type:MultiMooseEnum
Options:-dm_moose_print_embedding, -dm_view, -KSP_CONVERGED_REASON, -KSP_GMRES_MODIFIEDGRAMSCHMIDT, -KSP_MONITOR, -KSP_MONITOR_SNES_LG, -SNES_KSP_EW, -KSP_SNES_EW, -SNES_CONVERGED_REASON, -SNES_KSP, -SNES_LINESEARCH_MONITOR, -SNES_MF, -SNES_MF_OPERATOR, -SNES_MONITOR, -SNES_TEST_DISPLAY, -SNES_VIEW, -SNES_MONITOR_CANCEL
Controllable:No
Description:Singleton PETSc options for the energy equation
 - energy_petsc_options_inameNames of PETSc name/value pairs for the energy equation
C++ Type:MultiMooseEnum
Options:-mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -sub_pc_type, -KSP_ATOL, -KSP_GMRES_RESTART, -KSP_MAX_IT, -KSP_PC_SIDE, -KSP_RTOL, -KSP_TYPE, -SUB_KSP_TYPE, -SNES_ATOL, -SNES_LINESEARCH_TYPE, -SNES_LS, -SNES_MAX_IT, -SNES_RTOL, -SNES_DIVERGENCE_TOLERANCE, -SNES_TYPE
Controllable:No
Description:Names of PETSc name/value pairs for the energy equation
 - energy_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the energy equation
C++ Type:std::vector<std::string>
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the energy equation
 
Energy Equation Parameters
- max_xfem_update4294967295Maximum number of times to update XFEM crack topology in a step due to evolving cracks
Default:4294967295
C++ Type:unsigned int
Controllable:No
Description:Maximum number of times to update XFEM crack topology in a step due to evolving cracks
 - update_xfem_at_timestep_beginFalseShould XFEM update the mesh at the beginning of the timestep
Default:False
C++ Type:bool
Controllable:No
Description:Should XFEM update the mesh at the beginning of the timestep
 
Xfem Fixed Point Iterations Parameters
- momentum_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the momentum equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the momentum equation.
 - momentum_equation_relaxation1The relaxation which should be used for the momentum equation. (=1 for no relaxation, diagonal dominance will still be enforced)
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the momentum equation. (=1 for no relaxation, diagonal dominance will still be enforced)
 - momentum_l_abs_tol1e-50The absolute tolerance on the normalized residual in the linear solver of the momentum equation.
Default:1e-50
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the momentum equation.
 - momentum_l_max_its10000The maximum allowed iterations in the linear solver of the momentum equation.
Default:10000
C++ Type:unsigned int
Controllable:No
Description:The maximum allowed iterations in the linear solver of the momentum equation.
 - momentum_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the momentum equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the momentum equation.
 - momentum_petsc_optionsSingleton PETSc options for the momentum equation
C++ Type:MultiMooseEnum
Options:-dm_moose_print_embedding, -dm_view, -KSP_CONVERGED_REASON, -KSP_GMRES_MODIFIEDGRAMSCHMIDT, -KSP_MONITOR, -KSP_MONITOR_SNES_LG, -SNES_KSP_EW, -KSP_SNES_EW, -SNES_CONVERGED_REASON, -SNES_KSP, -SNES_LINESEARCH_MONITOR, -SNES_MF, -SNES_MF_OPERATOR, -SNES_MONITOR, -SNES_TEST_DISPLAY, -SNES_VIEW, -SNES_MONITOR_CANCEL
Controllable:No
Description:Singleton PETSc options for the momentum equation
 - momentum_petsc_options_inameNames of PETSc name/value pairs for the momentum equation
C++ Type:MultiMooseEnum
Options:-mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -sub_pc_type, -KSP_ATOL, -KSP_GMRES_RESTART, -KSP_MAX_IT, -KSP_PC_SIDE, -KSP_RTOL, -KSP_TYPE, -SUB_KSP_TYPE, -SNES_ATOL, -SNES_LINESEARCH_TYPE, -SNES_LS, -SNES_MAX_IT, -SNES_RTOL, -SNES_DIVERGENCE_TOLERANCE, -SNES_TYPE
Controllable:No
Description:Names of PETSc name/value pairs for the momentum equation
 - momentum_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the momentum equation
C++ Type:std::vector<std::string>
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the momentum equation
 - momentum_systemsThe solver system(s) for the momentum equation(s).
C++ Type:std::vector<SolverSystemName>
Controllable:No
Description:The solver system(s) for the momentum equation(s).
 
Momentum Equation Parameters
- passive_scalar_absolute_toleranceThe absolute tolerance(s) on the normalized residual(s) of the passive scalar equation(s).
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance(s) on the normalized residual(s) of the passive scalar equation(s).
 - passive_scalar_equation_relaxationThe relaxation which should be used for the passive scalar equations. (=1 for no relaxation, diagonal dominance will still be enforced)
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the passive scalar equations. (=1 for no relaxation, diagonal dominance will still be enforced)
 - passive_scalar_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
 - passive_scalar_l_max_its10000The maximum allowed iterations in the linear solver of the turbulence equation.
Default:10000
C++ Type:unsigned int
Controllable:No
Description:The maximum allowed iterations in the linear solver of the turbulence equation.
 - passive_scalar_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
 - passive_scalar_petsc_optionsSingleton PETSc options for the passive scalar equation(s)
C++ Type:MultiMooseEnum
Options:-dm_moose_print_embedding, -dm_view, -KSP_CONVERGED_REASON, -KSP_GMRES_MODIFIEDGRAMSCHMIDT, -KSP_MONITOR, -KSP_MONITOR_SNES_LG, -SNES_KSP_EW, -KSP_SNES_EW, -SNES_CONVERGED_REASON, -SNES_KSP, -SNES_LINESEARCH_MONITOR, -SNES_MF, -SNES_MF_OPERATOR, -SNES_MONITOR, -SNES_TEST_DISPLAY, -SNES_VIEW, -SNES_MONITOR_CANCEL
Controllable:No
Description:Singleton PETSc options for the passive scalar equation(s)
 - passive_scalar_petsc_options_inameNames of PETSc name/value pairs for the passive scalar equation(s)
C++ Type:MultiMooseEnum
Options:-mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -sub_pc_type, -KSP_ATOL, -KSP_GMRES_RESTART, -KSP_MAX_IT, -KSP_PC_SIDE, -KSP_RTOL, -KSP_TYPE, -SUB_KSP_TYPE, -SNES_ATOL, -SNES_LINESEARCH_TYPE, -SNES_LS, -SNES_MAX_IT, -SNES_RTOL, -SNES_DIVERGENCE_TOLERANCE, -SNES_TYPE
Controllable:No
Description:Names of PETSc name/value pairs for the passive scalar equation(s)
 - passive_scalar_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the passive scalar equation(s)
C++ Type:std::vector<std::string>
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the passive scalar equation(s)
 - passive_scalar_systemsThe solver system for each scalar advection equation.
C++ Type:std::vector<SolverSystemName>
Controllable:No
Description:The solver system for each scalar advection equation.
 
Passive_Scalar Equation Parameters
- pin_pressureFalseIf the pressure field needs to be pinned at a point.
Default:False
C++ Type:bool
Controllable:No
Description:If the pressure field needs to be pinned at a point.
 - pressure_pin_pointThe point where the pressure needs to be pinned.
C++ Type:libMesh::Point
Controllable:No
Description:The point where the pressure needs to be pinned.
 - pressure_pin_value0The value which needs to be enforced for the pressure.
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The value which needs to be enforced for the pressure.
 
Pressure Pin Parameters
- pressure_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the pressure equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the pressure equation.
 - pressure_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the pressure equation.
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the pressure equation.
 - pressure_l_max_its10000The maximum allowed iterations in the linear solver of the pressure equation.
Default:10000
C++ Type:unsigned int
Controllable:No
Description:The maximum allowed iterations in the linear solver of the pressure equation.
 - pressure_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the pressure equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the pressure equation.
 - pressure_petsc_optionsSingleton PETSc options for the pressure equation
C++ Type:MultiMooseEnum
Options:-dm_moose_print_embedding, -dm_view, -KSP_CONVERGED_REASON, -KSP_GMRES_MODIFIEDGRAMSCHMIDT, -KSP_MONITOR, -KSP_MONITOR_SNES_LG, -SNES_KSP_EW, -KSP_SNES_EW, -SNES_CONVERGED_REASON, -SNES_KSP, -SNES_LINESEARCH_MONITOR, -SNES_MF, -SNES_MF_OPERATOR, -SNES_MONITOR, -SNES_TEST_DISPLAY, -SNES_VIEW, -SNES_MONITOR_CANCEL
Controllable:No
Description:Singleton PETSc options for the pressure equation
 - pressure_petsc_options_inameNames of PETSc name/value pairs for the pressure equation
C++ Type:MultiMooseEnum
Options:-mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -sub_pc_type, -KSP_ATOL, -KSP_GMRES_RESTART, -KSP_MAX_IT, -KSP_PC_SIDE, -KSP_RTOL, -KSP_TYPE, -SUB_KSP_TYPE, -SNES_ATOL, -SNES_LINESEARCH_TYPE, -SNES_LS, -SNES_MAX_IT, -SNES_RTOL, -SNES_DIVERGENCE_TOLERANCE, -SNES_TYPE
Controllable:No
Description:Names of PETSc name/value pairs for the pressure equation
 - pressure_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the pressure equation
C++ Type:std::vector<std::string>
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the pressure equation
 - pressure_systemThe solver system for the pressure equation.
C++ Type:SolverSystemName
Controllable:No
Description:The solver system for the pressure equation.
 - pressure_variable_relaxation1The relaxation which should be used for the pressure variable (=1 for no relaxation).
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the pressure variable (=1 for no relaxation).
 
Pressure Equation Parameters
Restart Parameters
- solid_energy_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the solid energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the solid energy equation.
 - solid_energy_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the solid energy equation.
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the solid energy equation.
 - solid_energy_l_max_its10000The maximum allowed iterations in the linear solver of the solid energy equation.
Default:10000
C++ Type:unsigned int
Controllable:No
Description:The maximum allowed iterations in the linear solver of the solid energy equation.
 - solid_energy_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the solid energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the solid energy equation.
 - solid_energy_petsc_optionsSingleton PETSc options for the solid energy equation
C++ Type:MultiMooseEnum
Options:-dm_moose_print_embedding, -dm_view, -KSP_CONVERGED_REASON, -KSP_GMRES_MODIFIEDGRAMSCHMIDT, -KSP_MONITOR, -KSP_MONITOR_SNES_LG, -SNES_KSP_EW, -KSP_SNES_EW, -SNES_CONVERGED_REASON, -SNES_KSP, -SNES_LINESEARCH_MONITOR, -SNES_MF, -SNES_MF_OPERATOR, -SNES_MONITOR, -SNES_TEST_DISPLAY, -SNES_VIEW, -SNES_MONITOR_CANCEL
Controllable:No
Description:Singleton PETSc options for the solid energy equation
 - solid_energy_petsc_options_inameNames of PETSc name/value pairs for the solid energy equation
C++ Type:MultiMooseEnum
Options:-mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -sub_pc_type, -KSP_ATOL, -KSP_GMRES_RESTART, -KSP_MAX_IT, -KSP_PC_SIDE, -KSP_RTOL, -KSP_TYPE, -SUB_KSP_TYPE, -SNES_ATOL, -SNES_LINESEARCH_TYPE, -SNES_LS, -SNES_MAX_IT, -SNES_RTOL, -SNES_DIVERGENCE_TOLERANCE, -SNES_TYPE
Controllable:No
Description:Names of PETSc name/value pairs for the solid energy equation
 - solid_energy_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the solid energy equation
C++ Type:std::vector<std::string>
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the solid energy equation
 
Solid Energy Equation Parameters
- turbulence_absolute_toleranceThe absolute tolerance(s) on the normalized residual(s) of the turbulence equation(s).
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance(s) on the normalized residual(s) of the turbulence equation(s).
 - turbulence_equation_relaxationThe relaxation which should be used for the turbulence equations. (=1 for no relaxation, diagonal dominance will still be enforced)
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the turbulence equations. (=1 for no relaxation, diagonal dominance will still be enforced)
 - turbulence_field_min_limitThe lower limit imposed on turbulent quantities. The recommended value for robustness is 1e-8. This is the imposed default if not set.
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The lower limit imposed on turbulent quantities. The recommended value for robustness is 1e-8. This is the imposed default if not set.
 - turbulence_field_relaxationThe relaxation which should be used for the turbulence fields.
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the turbulence fields.
 - turbulence_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the turbulence equation(s).
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the turbulence equation(s).
 - turbulence_l_max_its10000The maximum allowed iterations in the linear solver of the turbulence equation.
Default:10000
C++ Type:unsigned int
Controllable:No
Description:The maximum allowed iterations in the linear solver of the turbulence equation.
 - turbulence_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the turbulence equation(s).
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the turbulence equation(s).
 - turbulence_petsc_optionsSingleton PETSc options for the turbulence equation(s)
C++ Type:MultiMooseEnum
Options:-dm_moose_print_embedding, -dm_view, -KSP_CONVERGED_REASON, -KSP_GMRES_MODIFIEDGRAMSCHMIDT, -KSP_MONITOR, -KSP_MONITOR_SNES_LG, -SNES_KSP_EW, -KSP_SNES_EW, -SNES_CONVERGED_REASON, -SNES_KSP, -SNES_LINESEARCH_MONITOR, -SNES_MF, -SNES_MF_OPERATOR, -SNES_MONITOR, -SNES_TEST_DISPLAY, -SNES_VIEW, -SNES_MONITOR_CANCEL
Controllable:No
Description:Singleton PETSc options for the turbulence equation(s)
 - turbulence_petsc_options_inameNames of PETSc name/value pairs for the turbulence equation(s)
C++ Type:MultiMooseEnum
Options:-mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -sub_pc_type, -KSP_ATOL, -KSP_GMRES_RESTART, -KSP_MAX_IT, -KSP_PC_SIDE, -KSP_RTOL, -KSP_TYPE, -SUB_KSP_TYPE, -SNES_ATOL, -SNES_LINESEARCH_TYPE, -SNES_LS, -SNES_MAX_IT, -SNES_RTOL, -SNES_DIVERGENCE_TOLERANCE, -SNES_TYPE
Controllable:No
Description:Names of PETSc name/value pairs for the turbulence equation(s)
 - turbulence_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the turbulence equation(s)
C++ Type:std::vector<std::string>
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the turbulence equation(s)
 - turbulence_systemsThe solver system for each surrogate turbulence equation.
C++ Type:std::vector<SolverSystemName>
Controllable:No
Description:The solver system for each surrogate turbulence equation.
 
Turbulence Equations Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/segregated/channel_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated-comparison/segregated-nonlinear.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-inc-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-velocity.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/mms/linear-segregated/2d-vortex/spacedependent_mu/snl.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-no-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
 - (modules/navier_stokes/test/tests/finite_volume/limiters/lid-driven-segregated/lid-driven-segregated.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/segregated/BFS_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-linear-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-capped.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-bulk.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-std-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-outflow-bcs.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy-wall.i)
 
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
pressure_gradient_tag
Default:pressure_momentum_kernels
C++ Type:TagName
Controllable:No
Description:The name of the tags associated with the kernels in the momentum equations which are not related to the pressure gradient.
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
pressure_tag = "pressure_grad"
[Problem]
  kernel_coverage_check = false
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  velocity_interp_method = 'rc'
  advected_interp_method = 'average'
[]
[Mesh]
  [cmg]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3683 0.0127'
    dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
    ix = '2 1'
    iy = '1 2 3 2 1'
    subdomain_id = '0 0
                    1 0
                    2 0
                    1 0
                    0 0
                    '
  []
  [rename_block_name]
    type = RenameBlockGenerator
    input = cmg
    old_block = '0 1 2'
    new_block = 'wall_block spacer_block porous_block'
  []
  [solid_fluid_interface_1]
    type = SideSetsBetweenSubdomainsGenerator
    input = rename_block_name
    primary_block = porous_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [solid_fluid_interface_2]
    type = SideSetsBetweenSubdomainsGenerator
    input = solid_fluid_interface_1
    primary_block = spacer_block
    paired_block = wall_block
    new_boundary = 'solid_fluid_interface'
  []
  [wall_left_boundary_1]
    type = SideSetsFromBoundingBoxGenerator
    input = solid_fluid_interface_2
    bottom_left = '0 0 0'
    top_right = '0.1 0.0127 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [wall_left_boundary_2]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_1
    bottom_left = '0 2.9857 0'
    top_right = '0.1 2.9984 0'
    included_boundaries = left
    boundary_new = wall_left
  []
  [fluid_left_boundary]
    type = SideSetsFromBoundingBoxGenerator
    input = wall_left_boundary_2
    bottom_left = '0 0.0127 0'
    top_right = '0.1 2.9857 0'
    included_boundaries = left
    boundary_new = fluid_left
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
    block = 'spacer_block porous_block'
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system t_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
    solver_sys = u_system
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    block = 'spacer_block porous_block'
    solver_sys = v_system
  []
  [pressure]
    type = INSFVPressureVariable
    block = 'spacer_block porous_block'
    solver_sys = pressure_system
  []
  [T_fluid]
    type = INSFVEnergyVariable
    block = 'spacer_block porous_block'
    solver_sys = t_system
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    block = 'spacer_block porous_block'
  []
[]
[FVKernels]
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [u_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [u_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_x
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'x'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    block = 'spacer_block porous_block'
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_buoyancy]
    type = PINSFVMomentumBoussinesq
    variable = superficial_vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    ref_temperature = ${T_cold}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [v_gravity]
    type = PINSFVMomentumGravity
    variable = superficial_vel_y
    gravity = '0 -1 0'
    rho = ${rho_fluid}
    momentum_component = 'y'
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_conduction]
    type = PINSFVEnergyDiffusion
    k = 'k_fluid'
    variable = T_fluid
    block = 'spacer_block porous_block'
    porosity = porosity
  []
  [temp_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    block = 'spacer_block porous_block'
    boundaries_to_force = fluid_left
  []
  [heat_source]
    type = FVBodyForce
    variable = T_fluid
    function = ${Q}
    block = 'porous_block'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
    block = 'spacer_block porous_block'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
    block = 'spacer_block porous_block'
  []
[]
[FVBCs]
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_x
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = superficial_vel_y
    boundary = 'solid_fluid_interface'
    function = 0
  []
  [reflective_x]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_x
    boundary = fluid_left
    momentum_component = 'x'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_y]
    type = INSFVSymmetryVelocityBC
    variable = superficial_vel_y
    boundary = fluid_left
    momentum_component = 'y'
    mu = ${mu}
    u = superficial_vel_x
    v = superficial_vel_y
  []
  [reflective_p]
    type = INSFVSymmetryPressureBC
    boundary = fluid_left
    variable = pressure
  []
  [T_reflective]
    type = FVNeumannBC
    variable = T_fluid
    boundary = fluid_left
    value = 0
  []
  [T_cold_boundary]
    type = FVDirichletBC
    variable = T_fluid
    boundary = solid_fluid_interface
    value = ${T_cold}
  []
[]
[ICs]
  [porosity_spacer]
    type = ConstantIC
    variable = porosity
    block = spacer_block
    value = 1.0
  []
  [porosity_fuel]
    type = ConstantIC
    variable = porosity
    block = porous_block
    value = 0.1
  []
  [temp_ic_fluid]
    type = ConstantIC
    variable = T_fluid
    value = ${T_cold}
    block = 'spacer_block porous_block'
  []
  [superficial_vel_x]
    type = ConstantIC
    variable = superficial_vel_x
    value = 1E-5
    block = 'spacer_block porous_block'
  []
  [superficial_vel_y]
    type = ConstantIC
    variable = superficial_vel_y
    value = 1E-5
    block = 'spacer_block porous_block'
  []
[]
[FunctorMaterials]
  [functor_constants_fluid]
    type = ADGenericFunctorMaterial
    prop_names = 'alpha_b cp k_fluid'
    prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
    block = 'spacer_block porous_block'
  []
  [density_fluid]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho_fluid}
    block = 'spacer_block porous_block'
  []
  [functor_constants_steel]
    # We need this to avoid errors for materials not existing on every block
    type = ADGenericFunctorMaterial
    prop_names = 'dummy'
    prop_values = 0.0
    block = wall_block
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 't_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.85
  energy_equation_relaxation = 0.95
  pressure_variable_relaxation = 0.45
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  pin_pressure = true
  pressure_pin_point = '0.2 1.5 0.0'
  pressure_pin_value = 0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = X
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.25'
    dy = '0.2'
    ix = '30'
    iy = '7'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = vel_y
    function = 0.0
  []
  [symmetry_u]
    type = INSFVSymmetryVelocityBC
    variable = vel_x
    boundary = 'bottom'
    momentum_component = 'x'
    mu = ${mu}
    u = vel_x
    v = vel_y
  []
  [symmetry_v]
    type = INSFVSymmetryVelocityBC
    variable = vel_y
    boundary = 'bottom'
    momentum_component = 'y'
    mu = ${mu}
    u = vel_x
    v = vel_y
  []
  [symmetry_pressure]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-15
  pressure_l_abs_tol = 1e-15
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
mu = 0.002
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 3
    dx = '0.2'
    dy = '0.2'
    dz = '0.8'
    ix = '3'
    iy = '3'
    iz = '12'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system w_system pressure_system energy_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    w = vel_z
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [vel_z]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = w_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [w_advection]
    type = INSFVMomentumAdvection
    variable = vel_z
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [w_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_z
    mu = ${mu}
    momentum_component = 'z'
  []
  [w_pressure]
    type = INSFVMomentumPressure
    variable = vel_z
    momentum_component = 'z'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 350
    alpha = 'alpha'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_x
    functor = '0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_y
    functor = '0'
  []
  [inlet-w]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_z
    functor = '1.1'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom '
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0.0
  []
  [walls-w]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_z
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'front'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'back left right top bottom'
    function = 0.0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'back'
    variable = T_fluid
    value = 300
  []
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  # petsc_options_iname = '-pc_type -pc_hypre_type -pc_factor_shift_type'
  # petsc_options_value = 'hypre boomeramg NONZERO'
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system w_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.95
  num_iterations = 150
  pressure_absolute_tolerance = 1e-11
  momentum_absolute_tolerance = 1e-11
  energy_absolute_tolerance = 1e-11
  print_fields = false
  momentum_l_abs_tol = 1e-13
  pressure_l_abs_tol = 1e-13
  energy_l_abs_tol = 1e-13
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/segregated/channel_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe turbulent channel flow
# Case Number: 032
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [block_1]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 0
    ymax = ${H}
    nx = 4
    ny = 3
    bias_y = 0.7
  []
  [block_2]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = ${fparse -H}
    ymax = 0
    nx = 4
    ny = 3
    bias_y = ${fparse 1/0.7}
  []
  [smg]
    type = StitchedMeshGenerator
    inputs = 'block_1 block_2'
    clear_stitched_boundary_ids = true
    stitch_boundaries_pairs = 'bottom top'
    merge_boundaries_with_same_name = true
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e-8
    solver_sys = pressure_system
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = no
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = no
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = FVDirichletBC
    boundary = 'bottom top'
    variable = vel_x
    value = 0
  []
  [walls-v]
    type = FVDirichletBC
    boundary = 'bottom top'
    variable = vel_y
    value = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_TKE]
    type = FVDirichletBC
    boundary = 'left'
    variable = TKE
    value = '${k_init}'
  []
  [inlet_TKED]
    type = FVDirichletBC
    boundary = 'left'
    variable = TKED
    value = '${eps_init}'
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'bottom top'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
  [yplus]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.2 0.2'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_center_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_radius_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
    num_points =  ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated-comparison/segregated-nonlinear.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 2
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  execute_on = TIMESTEP_END
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
mu = 2.6
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system scalar_1_system scalar_2_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [scalar_1]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_1_system
    initial_condition = 1.2
  []
  [scalar_2]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_2_system
    initial_condition = 1.2
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [scalar_1_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_1
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_1_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar_1
  []
  [scalar_1_src]
    type = FVBodyForce
    variable = scalar_1
    value = 1.0
  []
  [scalar_1_coupled_source]
    type = FVCoupledForce
    variable = scalar_1
    v = scalar_2
    coef = 0.1
  []
  [scalar_2_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_2
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_2_diffusion]
    type = FVDiffusion
    coeff = '${fparse 2*diff}'
    variable = scalar_2
  []
  [scalar_2_src]
    type = FVBodyForce
    variable = scalar_2
    value = 5.0
  []
  [scalar_2_coupled_source]
    type = FVCoupledForce
    variable = scalar_2
    v = scalar_1
    coef = 0.05
  []
[]
[FVBCs]
  inactive = "symmetry-u symmetry-v symmetry-p"
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [inlet_scalar_1]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar_1
    value = 1
  []
  [inlet_scalar_2]
    type = FVDirichletBC
    boundary = 'left'
    variable = scalar_2
    value = 2
  []
  ### Inactive by default, some tests will turn these on ###
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  ##########################################################
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  passive_scalar_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  passive_scalar_systems = 'scalar_1_system scalar_2_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  passive_scalar_equation_relaxation = '0.9 0.9'
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  passive_scalar_absolute_tolerance = '1e-13 1e-13'
  print_fields = false
[]
[Outputs]
  exodus = true
  [csv]
    type = CSV
    execute_on = FINAL
  []
[]
[Postprocessors]
  inactive = "out1 out2 in1 in2"
  [out1]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_1'
    boundary = right
    execute_on = FINAL
    outputs = csv
  []
  [in1]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_1'
    boundary = left
    execute_on = FINAL
    outputs = csv
  []
  [out2]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_2'
    boundary = right
    execute_on = FINAL
    outputs = csv
  []
  [in2]
    type = VolumetricFlowRate
    vel_x = vel_x
    vel_y = vel_y
    advected_quantity = 'scalar_2'
    boundary = left
    execute_on = FINAL
    outputs = csv
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-inc-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Incremental wall function formulation (similar to OpenFOAM)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-velocity.i)
mu = 0.002
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 3
    dx = '0.2'
    dy = '0.2'
    dz = '0.8'
    ix = '3'
    iy = '3'
    iz = '12'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system w_system pressure_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    w = vel_z
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [vel_z]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = w_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [w_advection]
    type = INSFVMomentumAdvection
    variable = vel_z
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [w_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_z
    mu = ${mu}
    momentum_component = 'z'
  []
  [w_pressure]
    type = INSFVMomentumPressure
    variable = vel_z
    momentum_component = 'z'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_x
    functor = '0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_y
    functor = '0'
  []
  [inlet-w]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_z
    functor = '1.1'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom '
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0.0
  []
  [walls-w]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_z
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'front'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'back left right top bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system w_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.6
  pressure_variable_relaxation = 0.3
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/linear-segregated/2d-vortex/spacedependent_mu/snl.i)
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 2
    ny = 2
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.0
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu'
    momentum_component = 'x'
    complete_expansion = false
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [u_forcing]
    type = INSFVBodyForce
    variable = vel_x
    functor = forcing_u
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu'
    momentum_component = 'y'
    complete_expansion = false
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_forcing]
    type = INSFVBodyForce
    variable = vel_y
    functor = forcing_v
    momentum_component = 'y'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [no-slip-wall-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_x
    function = '0'
  []
  [no-slip-wall-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = '0'
  []
[]
[Functions]
  [exact_u]
    type = ParsedFunction
    expression = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
  []
  [exact_v]
    type = ParsedFunction
    expression = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
  []
  [exact_p]
    type = ParsedFunction
    expression = 'x*(1-x)'
  []
  [mu]
    type = ParsedFunction
    expression = '1+(x-1)*x*(y-1)*y'
  []
  [forcing_u]
    type = ParsedFunction
    expression = '-(2*x-1)*y*(y-1)*(2*x-6*x^2+4*x^3)*(2*y-6*y^2+4*y^3)'
                 '-(1+x*(x-1)*y*(y-1))*(2*y-6*y^2+4*y^3)*(2-12*x+12*x^2)'
                 '-(2*y-1)*x*(x-1)*(x^2*(1-x)^2*(2-12*y+12*y^2))'
                 '-(1+x*(x-1)*y*(y-1))*(x^2*(1-x)^2*(-12+24*y))'
                 '+1-2*x+rho*4*x^3*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_v]
    type = ParsedFunction
    expression = '(2*y-1)*x*(x-1)*(2*y-6*y^2+4*y^3)*(2*x-6*x^2+4*x^3)'
                 '+(1+x*(x-1)*y*(y-1))*(2-12*y+12*y^2)*(2*x-6*x^2+4*x^3)'
                 '+(2*x-1)*y*(y-1)*(y^2*(1-y)^2*(2-12*x+12*x^2))'
                 '+(1+x*(x-1)*y*(y-1))*(y^2*(1-y)^2*(-12+24*x))'
                 '+rho*4*y^3*x^2*(2*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_u_deviatoric]
    type = ParsedFunction
    expression = '-2*(2*x-1)*y*(y-1)*(2*x-6*x^2+4*x^3)*(2*y-6*y^2+4*y^3)'
                 '-2*(1+x*(x-1)*y*(y-1))*(2*y-6*y^2+4*y^3)*(2-12*x+12*x^2)'
                 '-(2*y-1)*x*(x-1)*(x^2*(1-x)^2*(2-12*y+12*y^2)-y^2*(1-y)^2*(2-12*x+12*x^2))'
                 '-(1+x*(x-1)*y*(y-1))*(x^2*(1-x)^2*(-12+24*y)-(2*y-6*y^2+4*y^3)*(2-12*x+12*x^2))'
                 '+1-2*x+rho*4*x^3*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
  [forcing_v_deviatoric]
    type = ParsedFunction
    expression = '2*(2*y-1)*x*(x-1)*(2*y-6*y^2+4*y^3)*(2*x-6*x^2+4*x^3)'
                 '+2*(1+x*(x-1)*y*(y-1))*(2-12*y+12*y^2)*(2*x-6*x^2+4*x^3)'
                 '-(2*x-1)*y*(y-1)*(x^2*(1-x)^2*(2-12*y+12*y^2)-y^2*(1-y)^2*(2-12*x+12*x^2))'
                 '-(1+x*(x-1)*y*(y-1))*(-y^2*(1-y)^2*(-12+24*x)+(2*x-6*x^2+4*x^3)*(2-12*y+12*y^2))'
                 '+rho*4*y^3*x^2*(2*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 2000
  pressure_absolute_tolerance = 1e-8
  momentum_absolute_tolerance = 1e-8
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.25
  pressure_pin_point = '0.5 0.5 0.0'
[]
[Outputs]
  exodus = true
  csv = true
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2u]
    type = ElementL2FunctorError
    approximate = vel_x
    exact = exact_u
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2v]
    type = ElementL2FunctorError
    approximate = vel_y
    exact = exact_v
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2p]
    approximate = pressure
    exact = exact_p
    type = ElementL2FunctorError
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  coord_type = 'RZ'
  rz_coord_axis = X
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.25'
    dy = '0.2'
    ix = '30'
    iy = '7'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  inactive = 'u_friction v_friction'
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = vel_x
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    standard_friction_formulation = false
    rho = ${rho}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = vel_y
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    standard_friction_formulation = false
    rho = ${rho}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = vel_y
    momentum_component = 'y'
  []
  [symmetry_u]
    type = INSFVSymmetryVelocityBC
    variable = vel_x
    boundary = 'bottom'
    momentum_component = 'x'
    mu = ${mu}
    u = vel_x
    v = vel_y
  []
  [symmetry_v]
    type = INSFVSymmetryVelocityBC
    variable = vel_y
    boundary = 'bottom'
    momentum_component = 'y'
    mu = ${mu}
    u = vel_x
    v = vel_y
  []
  [symmetry_pressure]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
[]
[FunctorMaterials]
  [darcy]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coefficient Forchheimer_coefficient'
    prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.5
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-no-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = ''
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
  [walls_TKED]
    type = INSFVTKEDWallFunctionBC
    boundary = 'left right top bottom'
    variable = TKED
    u = vel_x
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
  []
  [walls_TKE]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKE
    value = ${k_init}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.9 0.9'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
  [k_t]
    type = ADParsedFunctorMaterial
    expression = 'mu_t * cp / Pr_t'
    functor_names = 'mu_t ${cp} ${Pr_t}'
    functor_symbols = 'mu_t cp Pr_t'
    property_name = 'k_t'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
  parallel_type = 'replicated'
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1 1'
    dy = '1'
    ix = '7 7'
    iy = 10
    subdomain_id = '1 2'
  []
  [mid]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 2
    input = mesh
    new_boundary = 'middle'
  []
  [break_top]
    type = PatchSidesetGenerator
    boundary = 'top'
    n_patches = 2
    input = mid
  []
  [break_bottom]
    type = PatchSidesetGenerator
    boundary = 'bottom'
    n_patches = 2
    input = break_top
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
  previous_nl_solution_required = true
  kernel_coverage_check = false
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
    block = ${restricted_blocks}
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1.0
    solver_sys = u_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
    block = ${restricted_blocks}
  []
  [scalar]
    type = INSFVScalarFieldVariable
    block = ${restricted_blocks}
    solver_sys = scalar_system
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = 'bottom_0'
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = 1.1
    variable = T_fluid
  []
  [energy_loss]
    type = FVBodyForce
    variable = T_fluid
    value = -0.1
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = 'bottom_0'
  []
  [scalar_diffusion]
    type = FVDiffusion
    coeff = 1.0
    variable = scalar
  []
  [scalar_src]
    type = FVBodyForce
    variable = scalar
    value = 0.1
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top_0'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'middle'
    variable = pressure
    function = 0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 1
  []
  [outlet_scalar]
    type = FVDirichletBC
    boundary = 'middle'
    variable = scalar
    value = 1
  []
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom_0'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom_0'
    variable = pressure
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-12
  pressure_l_abs_tol = 1e-12
  energy_l_abs_tol = 1e-12
  passive_scalar_l_abs_tol = 1e-12
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  passive_scalar_systems = 'scalar_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.99
  passive_scalar_equation_relaxation = 0.99
  num_iterations = 100
  pressure_absolute_tolerance = 1e-9
  momentum_absolute_tolerance = 1e-9
  energy_absolute_tolerance = 1e-9
  passive_scalar_absolute_tolerance = 1e-9
  print_fields = false
[]
[FunctorMaterials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp'
    prop_values = '2'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
    block = ${restricted_blocks}
  []
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/limiters/lid-driven-segregated/lid-driven-segregated.i)
mu = .001
rho = 1
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'min_mod' #average upwind sou min_mod vanLeer quick venkatakrishnan skewness-corrected
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 25
    ny = 25
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.5
  pressure_variable_relaxation = 0.2
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium wall formulation
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/segregated/BFS_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe BFS
# Case Number: 031
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H/ Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [gen]
    type = CartesianMeshGenerator
    dim = 2
    dx = '${fparse 10.0*H} ${fparse 20.0*H}'
    dy = '${H} ${fparse 5*H}'
    ix = '8 16'
    iy = '2 8'
    subdomain_id = '
                    2 1
                    1 1
                  '
  []
  [corner_walls]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block ='1'
    paired_block ='2'
    new_boundary = 'wall-side'
  []
  [delete_bottom]
    type = BlockDeletionGenerator
    input = corner_walls
    block ='2'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e-8
    solver_sys = pressure_system
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [inlet_TKE]
    type = INSFVInletIntensityTKEBC
    boundary = 'left'
    variable = TKE
    u = vel_x
    v = vel_y
    intensity = ${intensity}
  []
  [inlet_TKED]
    type = INSFVMixingLengthTKEDBC
    boundary = 'left'
    variable = TKED
    tke = TKE
    characteristic_length = '${fparse 2*H}'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    functor = 0
  []
  [walls-u]
    type = FVDirichletBC
    boundary = ${walls}
    variable = vel_x
    value = 0
  []
  [walls-v]
    type = FVDirichletBC
    boundary = ${walls}
    variable = vel_y
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = ${walls}
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.3 0.3'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  [console]
    type = Console
    outlier_variable_norms = false
  []
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_entry_channel_wall]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_entry_channel]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-linear-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Linear wall function formulation (faster runs)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-capped.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with capped mixing length
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
C_pl = 0.1
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  [break_symmetries]
    type = ParsedNodeTransformGenerator
    input = gen
    constant_names = 'side_length'
    constant_expressions = '${side_length}'
    x_function = 'if(x<side_length*1.001 / 2 & x > side_length * 0.999 / 2, x * 1.05, x)'
    y_function = 'if(y<side_length*1.001 / 2 & y > side_length * 0.999 / 2, y * 1.05, y)'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[ICs]
  [vx]
    type = FunctionIC
    variable = vel_x
    function = 'if(y>0.09, 0.1, -0.001)'
  []
  [vy]
    type = FunctionIC
    variable = vel_y
    function = 'if(x>0.05, -0.001, 0.001)'
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C_pl = ${C_pl}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    C_pl = ${C_pl}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = u
    v = v
    pressure = pressure
  []
[]
[Variables]
  [u]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [v]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = u
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-bulk.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium bulk formaultion
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated.i)
mu = .01
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = .1
    ymin = 0
    ymax = .1
    nx = 20
    ny = 20
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.9
  pressure_variable_relaxation = 0.3
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
mu = 1.1
rho = 1.1
pressure_tag = "pressure_grad"
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = 0
    ymax = 1
    nx = 40
    ny = 6
  []
[]
[GlobalParams]
  advected_interp_method = 'average'
  velocity_interp_method = 'rc'
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
    solver_sys = pressure_system
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  inactive = "u_friction v_friction"
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  inactive = 'slip-u slip-v'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
  ### Are disabled by default but we switch it on for certain tests ###
  [slip-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [slip-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  #####################################################################
[]
[FunctorMaterials]
  [darcy]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coefficient Forchheimer_coefficient'
    prop_values = '0.01 0.02 0.03 0.01 0.02 0.03'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.85
  pressure_variable_relaxation = 0.45
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
mu = 0.002
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 3
    dx = '0.2'
    dy = '0.2'
    dz = '0.8'
    ix = '3'
    iy = '3'
    iz = '6'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system w_system pressure_system scalar_1_system scalar_2_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    w = vel_z
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [vel_z]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = w_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [scalar_1]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_1_system
    initial_condition = 1.2
  []
  [scalar_2]
    type = INSFVScalarFieldVariable
    solver_sys = scalar_2_system
    initial_condition = 1.2
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [w_advection]
    type = INSFVMomentumAdvection
    variable = vel_z
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [w_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_z
    mu = ${mu}
    momentum_component = 'z'
  []
  [w_pressure]
    type = INSFVMomentumPressure
    variable = vel_z
    momentum_component = 'z'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [scalar_1_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_1
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_1_diffusion]
    type = FVDiffusion
    coeff = ${diff}
    variable = scalar_1
  []
  [scalar_1_src]
    type = FVBodyForce
    variable = scalar_1
    value = 1.0
  []
  [scalar_1_coupled_source]
    type = FVCoupledForce
    variable = scalar_1
    v = scalar_2
    coef = 0.1
  []
  [scalar_2_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar_2
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [scalar_2_diffusion]
    type = FVDiffusion
    coeff = '${fparse 2*diff}'
    variable = scalar_2
  []
  [scalar_2_src]
    type = FVBodyForce
    variable = scalar_2
    value = 5.0
  []
  [scalar_2_coupled_source]
    type = FVCoupledForce
    variable = scalar_2
    v = scalar_1
    coef = 0.05
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_x
    functor = '0'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_y
    functor = '0'
  []
  [inlet-w]
    type = INSFVInletVelocityBC
    boundary = 'back'
    variable = vel_z
    functor = '1.1'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom '
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_y
    function = 0.0
  []
  [walls-w]
    type = INSFVNoSlipWallBC
    boundary = 'left right top bottom'
    variable = vel_z
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'front'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'back left right top bottom'
    function = 0.0
  []
  [inlet_scalar_1]
    type = FVDirichletBC
    boundary = 'back'
    variable = scalar_1
    value = 1
  []
  [inlet_scalar_2]
    type = FVDirichletBC
    boundary = 'back'
    variable = scalar_2
    value = 2
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  passive_scalar_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  passive_scalar_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system w_system'
  pressure_system = 'pressure_system'
  passive_scalar_systems = 'scalar_1_system scalar_2_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  passive_scalar_equation_relaxation = '0.98 0.98'
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  passive_scalar_absolute_tolerance = '1e-13 1e-13'
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
mu = 2.6
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.3'
    dy = '0.3'
    ix = '3'
    iy = '3'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [ambient_convection]
    type = NSFVEnergyAmbientConvection
    variable = T_fluid
    T_ambient = 350
    alpha = 'alpha'
  []
[]
[FVBCs]
  inactive = "symmetry-u symmetry-v symmetry-p"
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 1.4
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'top left bottom'
    function = 0.0
  []
  [inlet_t]
    type = FVDirichletBC
    boundary = 'left'
    variable = T_fluid
    value = 300
  []
  ### Inactive by default, some tests will turn these on ###
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_x
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = vel_y
    u = vel_x
    v = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  ##########################################################
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-11
  pressure_l_abs_tol = 1e-11
  energy_l_abs_tol = 1e-11
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  energy_equation_relaxation = 0.999
  num_iterations = 100
  pressure_absolute_tolerance = 1e-10
  momentum_absolute_tolerance = 1e-10
  energy_absolute_tolerance = 1e-10
  print_fields = false
  continue_on_max_its = true
[]
[Materials]
  [const_functor]
    type = ADGenericFunctorMaterial
    prop_names = 'cp alpha'
    prop_values = '${cp} ${alpha}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
mu = 1
rho = 1
k = 0.01
cp = 1
alpha = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 1
    ymin = 0
    ymax = 1
    nx = 10
    ny = 10
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  inactive = 'u_buoyancy u_gravity v_buoyancy v_gravity'
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [u_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_x
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    alpha_name = ${alpha}
    momentum_component = 'x'
  []
  [u_gravity]
    type = INSFVMomentumGravity
    variable = vel_x
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'x'
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_buoyancy]
    type = INSFVMomentumBoussinesq
    variable = vel_y
    T_fluid = T_fluid
    gravity = '0 -1 0'
    rho = ${rho}
    ref_temperature = ${temp_ref}
    alpha_name = ${alpha}
    momentum_component = 'y'
  []
  [v_gravity]
    type = INSFVMomentumGravity
    variable = vel_y
    gravity = '0 -1 0'
    rho = ${rho}
    momentum_component = 'y'
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = 1
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [zero-grad-pressure]
    type = FVFunctionNeumannBC
    variable = pressure
    boundary = 'left right top bottom'
    function = 0.0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 0
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.90
  energy_equation_relaxation = 0.99
  pressure_variable_relaxation = 0.30
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  energy_absolute_tolerance = 1e-13
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '5 5'
    dy = '1.0'
    ix = '10 10'
    iy = '5'
    subdomain_id = '1 2'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system solid_energy_system'
  previous_nl_solution_required = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
    solver_sys = pressure_system
  []
  [T_fluid]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    solver_sys = energy_system
    initial_condition = 200
  []
  [T_solid]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
    solver_sys = solid_energy_system
    initial_condition = 200
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
    boundaries_to_force = bottom
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    k = ${k}
    variable = T_fluid
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    coeff = ${k}
    variable = T_solid
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = 'T_fluid'
    T_solid = 'T_solid'
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = 250
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv cp'
    prop_values = '0.1 ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  solid_energy_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  solid_energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  solid_energy_system = 'solid_energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.4
  energy_equation_relaxation = 1.0
  num_iterations = 160
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  solid_energy_absolute_tolerance = 1e-12
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
mu = 2.6
rho = 1.0
cp = 700
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
  # uniform_refine = 1
  [fmg]
    type = FileMeshGenerator
    file = "diverger-2d.msh"
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system'
  previous_nl_solution_required = true
  error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    # two_term_boundary_expansion = false
  []
  [T]
    type = INSFVEnergyVariable
    two_term_boundary_expansion = false
    solver_sys = energy_system
    initial_condition = 700
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [heat_advection]
    type = INSFVEnergyAdvection
    variable = T
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
  []
  [heat_diffusion]
    type = FVDiffusion
    variable = T
    coeff = '10'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_x
    functor = '1.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet'
    variable = vel_y
    functor = '0.0'
  []
  [inlet-T]
    type = FVDirichletBC
    boundary = 'inlet'
    value = 700
    variable = T
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0.0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0.0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet'
    variable = pressure
    function = 1.4
  []
  [zerograd-p]
    type = FVNeumannBC
    boundary = 'top bottom inlet'
    variable = pressure
    value = 0
  []
[]
[FunctorMaterials]
  [mu]
    type = ADGenericFunctorMaterial #defines mu artificially for numerical convergence
    prop_names = 'mu rho cp' #it converges to the real mu eventually.
    prop_values = '${mu} ${rho} ${cp}'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    cp = ${cp}
    temperature = 'T'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-12
  pressure_l_abs_tol = 1e-12
  energy_l_abs_tol = 1e-12
  momentum_l_tol = 0
  pressure_l_tol = 0
  energy_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.3
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  energy_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-std-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
    mu_interp_method = 'average'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
    mu_interp_method = 'average'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
    coeff_interp_method = 'average'
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
    coeff_interp_method = 'average'
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  continue_on_max_its = true
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-outflow-bcs.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = -1
    ymax = 1
    nx = 50
    ny = 10
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.5
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_u]
    type = INSFVMomentumAdvectionOutflowBC
    variable = vel_x
    u = vel_x
    v = vel_y
    boundary = 'right'
    momentum_component = 'x'
    rho = ${rho}
  []
  [outlet_v]
    type = INSFVMomentumAdvectionOutflowBC
    variable = vel_y
    u = vel_x
    v = vel_y
    boundary = 'right'
    momentum_component = 'y'
    rho = ${rho}
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.90
  pressure_variable_relaxation = 0.35
  num_iterations = 100
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
[]
[Outputs]
  exodus = true
  csv = false
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions with temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment_v = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_T = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = INSFVTurbulentTemperatureWallFunction
    variable = T_fluid
    boundary = 'top'
    T_w = 1
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    cp = ${cp}
    kappa = ${k}
    tke = TKE
    wall_treatment = ${wall_treatment_T}
  []
  [T_cold]
    type = INSFVTurbulentTemperatureWallFunction
    variable = T_fluid
    boundary = 'bottom'
    T_w = 0
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    cp = ${cp}
    kappa = ${k}
    tke = TKE
    wall_treatment = ${wall_treatment_T}
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment_v}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
  [k_t]
    type = MooseVariableFVReal
    initial_condition = 1.0
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
    execute_on = 'NONLINEAR'
  []
  [compute_k_t]
    type = TurbulentConductivityAux
    variable = k_t
    Pr_t = ${Pr_t}
    cp = ${cp}
    mu_t = 'mu_t'
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]