- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- densityName of Material Property or a constant real number defining the density of the material.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Name of Material Property or a constant real number defining the density of the material.
- density_scalingName of material property to add mass scaling in explicit simulations.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Name of material property to add mass scaling in explicit simulations.
- factor1Factor to mulitply to the critical time step.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Factor to mulitply to the critical time step.
Critical Time Step Postprocessor
Computes and reports the critical time step for the explicit solver.
Description
The CriticalTimeStep
postprocessor is used to compute the value of the minimum time step for explicit integration scheme. Please refer to CriticalTimeStepMath for the theoretical details.
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
Execution Scheduling Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/solid_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i)
- (modules/solid_mechanics/test/tests/critical_time_step/crit_time_solid_uniform.i)
- (modules/contact/test/tests/explicit_dynamics/highvel.i)
- (modules/contact/test/tests/explicit_dynamics/settlement.i)
- (modules/contact/test/tests/explicit_dynamics/test_balance.i)
- (modules/solid_mechanics/test/tests/central_difference/consistent/3D/3d_consistent_explicit_mass_scaling.i)
- (modules/solid_mechanics/test/tests/critical_time_step/crit_time_solid_variable.i)
- (modules/solid_mechanics/test/tests/critical_time_step/timoshenko_smallstrain_critstep.i)
- (modules/contact/test/tests/explicit_dynamics/first_test.i)
(modules/solid_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[SolidMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
file_base = out
csv = true
[]
(modules/solid_mechanics/test/tests/critical_time_step/crit_time_solid_uniform.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[SolidMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/explicit_dynamics/highvel.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Problem]
extra_tag_matrices = 'mass'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.06
zmax = 1.06
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
[]
[AuxVariables]
[penetration]
[]
[]
[AuxKernels]
[penetration]
type = PenetrationAux
variable = penetration
boundary = ball_back
paired_boundary = base_front
quantity = distance
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[gap_rate]
[]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[strain_zz]
family = MONOMIAL
order = CONSTANT
[]
[kinetic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[kinetic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
execute_on = 'TIMESTEP_END'
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[kinetic_energy_one]
type = KineticEnergyAux
block = '1'
variable = kinetic_energy_one
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_one]
type = ElasticEnergyAux
variable = elastic_energy_one
block = '1'
[]
[kinetic_energy_two]
type = KineticEnergyAux
block = '2'
variable = kinetic_energy_two
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_two]
type = ElasticEnergyAux
variable = elastic_energy_two
block = '2'
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 1.0e-3
generate_output = 'stress_zz strain_zz'
[]
[Mass_x]
type = MassMatrix
variable = disp_x
density = density
matrix_tags = 'mass'
[]
[Mass_y]
type = MassMatrix
variable = disp_y
density = density
matrix_tags = 'mass'
[]
[Mass_z]
type = MassMatrix
variable = disp_z
density = density
matrix_tags = 'mass'
[]
[gravity]
type = Gravity
variable = disp_z
value = -981
block = 1
[]
[]
[BCs]
[x_front]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'ball_front'
value = 0.0
[]
[y_front]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'ball_front'
value = 0.0
[]
[x_fixed]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
[]
[y_fixed]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
[]
[z_fixed]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
[]
[z_fixed_front]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 1
outputs = 'exodus'
output_properties = __all__
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.0
block = 2
outputs = 'exodus'
output_properties = __all__
[]
[strain_block]
type = ComputeFiniteStrain # ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e1
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e6
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[wave_speed]
type = WaveSpeed
outputs = 'exodus'
output_properties = 'wave_speed'
[]
[]
[Executioner]
type = Transient
end_time = 0.03
dt = 2e-4
timestep_tolerance = 1e-6
[TimeIntegrator]
type = ExplicitMixedOrder
mass_matrix_tag = mass
second_order_vars = 'disp_x disp_y disp_z'
[]
[]
[Outputs]
interval = 2
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
file_base = highvel_out
[]
[Postprocessors]
[accel_58z]
type = NodalVariableValue
nodeid = 1
variable = accel_z
[]
[vel_58z]
type = NodalVariableValue
nodeid = 1
variable = vel_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[penetration_max]
type = NodalExtremeValue
variable = penetration
block = '1 2'
value_type = max
[]
[total_kinetic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_one
block = '1'
[]
[total_elastic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_one
block = '1'
[]
[total_kinetic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_two
block = '2'
[]
[total_elastic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_two
block = '2'
[]
[]
(modules/contact/test/tests/explicit_dynamics/settlement.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Problem]
extra_tag_matrices = 'mass'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
[]
[AuxVariables]
[penetration]
[]
[]
[AuxKernels]
[penetration]
type = PenetrationAux
variable = penetration
boundary = ball_back
paired_boundary = base_front
quantity = distance
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[gap_rate]
[]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[strain_zz]
family = MONOMIAL
order = CONSTANT
[]
[kinetic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[kinetic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
execute_on = 'TIMESTEP_END'
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[kinetic_energy_one]
type = KineticEnergyAux
block = '1'
variable = kinetic_energy_one
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_one]
type = ElasticEnergyAux
variable = elastic_energy_one
block = '1'
[]
[kinetic_energy_two]
type = KineticEnergyAux
block = '2'
variable = kinetic_energy_two
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_two]
type = ElasticEnergyAux
variable = elastic_energy_two
block = '2'
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 9.5e-4
generate_output = 'stress_zz strain_zz'
[]
[Mass_x]
type = MassMatrix
variable = disp_x
density = density
matrix_tags = 'mass'
[]
[Mass_y]
type = MassMatrix
variable = disp_y
density = density
matrix_tags = 'mass'
[]
[Mass_z]
type = MassMatrix
variable = disp_z
density = density
matrix_tags = 'mass'
[]
[gravity]
type = Gravity
variable = disp_z
value = -98.10
block = 1
[]
[]
[BCs]
[x_front]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'ball_front'
value = 0.0
[]
[y_front]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'ball_front'
value = 0.0
[]
[x_fixed]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
[]
[y_fixed]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
[]
[z_fixed]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
[]
[z_fixed_front]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 1
outputs = 'exodus'
output_properties = __all__
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.0
block = 2
outputs = 'exodus'
output_properties = __all__
[]
[strain_block]
type = ComputeFiniteStrain # ComputeIncrementalStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e1
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e6
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[wave_speed]
type = WaveSpeed
outputs = 'exodus'
output_properties = 'wave_speed'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.05
dt = 1.0e-4
timestep_tolerance = 1e-6
[TimeIntegrator]
type = ExplicitMixedOrder
mass_matrix_tag = 'mass'
second_order_vars = 'disp_x disp_y disp_z'
[]
[]
[Outputs]
interval = 1
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
[]
[Postprocessors]
[accel_58z]
type = NodalVariableValue
nodeid = 1
variable = accel_z
[]
[vel_58z]
type = NodalVariableValue
nodeid = 1
variable = vel_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[penetration_max]
type = NodalExtremeValue
variable = penetration
block = '1 2'
value_type = max
[]
[total_kinetic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_one
block = '1'
[]
[total_elastic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_one
block = '1'
[]
[total_kinetic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_two
block = '2'
[]
[total_elastic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_two
block = '2'
[]
[]
(modules/contact/test/tests/explicit_dynamics/test_balance.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Problem]
extra_tag_matrices = 'mass'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
allow_renumbering = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[gap_rate]
[]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[strain_zz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
execute_on = 'TIMESTEP_END'
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[]
[AuxVariables]
[penetration]
[]
[]
[AuxKernels]
[penetration]
type = PenetrationAux
variable = penetration
boundary = ball_back
paired_boundary = base_front
quantity = distance
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
stiffness_damping_coefficient = 0.001
generate_output = 'stress_zz strain_zz'
[]
[Mass_x]
type = MassMatrix
variable = disp_x
density = density
matrix_tags = 'mass'
[]
[Mass_y]
type = MassMatrix
variable = disp_y
density = density
matrix_tags = 'mass'
[]
[Mass_z]
type = MassMatrix
variable = disp_z
density = density
matrix_tags = 'mass'
[]
[]
[Kernels]
[gravity]
type = Gravity
variable = disp_z
value = -981.0
[]
[]
[BCs]
[x_front]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'ball_front'
value = 0.0
[]
[y_front]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'ball_front'
value = 0.0
[]
[x_fixed]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
[]
[y_fixed]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
[]
[z_fixed]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
[]
[z_fixed_front]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 1
outputs = 'exodus'
output_properties = __all__
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.0
block = 2
outputs = 'exodus'
output_properties = __all__
[]
[strain_block]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e1
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e6
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[wave_speed]
type = WaveSpeed
outputs = 'exodus'
output_properties = 'wave_speed'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.0025
dt = 0.00001
timestep_tolerance = 1e-6
[TimeIntegrator]
type = ExplicitMixedOrder
mass_matrix_tag = 'mass'
second_order_vars = 'disp_x disp_y disp_z'
[]
[]
[Outputs]
interval = 10
exodus = true
csv = true
[]
[Postprocessors]
[accel_58z]
type = NodalVariableValue
nodeid = 1
variable = accel_z
[]
[vel_58z]
type = NodalVariableValue
nodeid = 1
variable = vel_z
[]
[disp_58z]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[]
(modules/solid_mechanics/test/tests/central_difference/consistent/3D/3d_consistent_explicit_mass_scaling.i)
# One element test to test the central difference time integrator in 3D.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[]
[AuxKernels]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
[]
[]
[Kernels]
[DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[inertia_x]
type = InertialForce
variable = disp_x
[]
[inertia_y]
type = InertialForce
variable = disp_y
[]
[inertia_z]
type = InertialForce
variable = disp_z
[]
[]
[BCs]
[x_bot]
type = FunctionDirichletBC
variable = disp_x
boundary = 'back'
function = dispx
preset = false
[]
[y_bot]
type = FunctionDirichletBC
variable = disp_y
boundary = 'back'
function = dispy
preset = false
[]
[z_bot]
type = FunctionDirichletBC
variable = disp_z
boundary = 'back'
function = dispz
preset = false
[]
[Periodic]
[x_dir]
variable = 'disp_x disp_y disp_z'
primary = 'left'
secondary = 'right'
translation = '1.0 0.0 0.0'
[]
[y_dir]
variable = 'disp_x disp_y disp_z'
primary = 'bottom'
secondary = 'top'
translation = '0.0 1.0 0.0'
[]
[]
[]
[Functions]
[dispx]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[]
[dispy]
type = ParsedFunction
value = 0.1*t*t*sin(10*t)
[]
[dispz]
type = ParsedFunction
value = 0.1*t*t*sin(20*t)
[]
[]
[Materials]
[elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[]
[strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1e4
[]
[density_scaling]
type = DensityScaling
block = 0
density = density
desired_time_step = 0.06
output_properties = density_scaling
outputs = 'exodus'
factor = 0.5
[]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[TimeIntegrator]
type = CentralDifference
use_constant_mass = false
solve_type = lumped
[]
[TimeStepper]
type = PostprocessorDT
postprocessor = time_step
[]
[]
[Postprocessors]
[accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[]
[time_step]
type = CriticalTimeStep
factor = 0.5
density = density
density_scaling = density_scaling
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/solid_mechanics/test/tests/critical_time_step/crit_time_solid_variable.i)
[GlobalParams]
displacements = 'disp_x'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 5
[]
[Variables]
[./disp_x]
[../]
[]
[Kernels]
[SolidMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Functions]
[./prefac]
type = ParsedFunction
expression = '1+2*x'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
elasticity_tensor_prefactor = prefac
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/critical_time_step/timoshenko_smallstrain_critstep.i)
# Test for small strain timoshenko beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.00027846257
# Poisson's ratio (nu) = 0.3
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 204.3734
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = 5.868e-4 m
# Using 10 elements to discretize the beam element, the FEM solution is 5.852e-2m.
# This deflection matches the FEM solution given in Prathap and Bhashyam (1982).
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = 0.3
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/explicit_dynamics/first_test.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
allow_renumbering = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[]
[AuxKernels]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
stiffness_damping_coefficient = 0.04
#generate_output = 'stress_zz strain_zz'
[]
[inertia_x]
type = InertialForce
variable = disp_x
[]
[inertia_y]
type = InertialForce
variable = disp_y
[]
[inertia_z]
type = InertialForce
variable = disp_z
[]
[]
[Functions]
[dispz]
type = ParsedFunction
expression = if(t<1.0e3,-0.01*t,0)
[]
[push]
type = ParsedFunction
expression = if(t<10.0,0.01*t,0.1)
[]
[]
[BCs]
[z_front]
type = FunctionDirichletBC
variable = disp_z
boundary = 'ball_front'
function = dispz
preset = false
[]
[x_front]
type = DirichletBC
variable = disp_x
boundary = 'ball_front'
preset = false
value = 0.0
[]
[y_front]
type = DirichletBC
variable = disp_y
boundary = 'ball_front'
preset = false
value = 0.0
[]
[x_fixed]
type = DirichletBC
variable = disp_x
boundary = 'base_back'
preset = false
value = 0.0
[]
[y_fixed]
type = DirichletBC
variable = disp_y
boundary = 'base_back'
preset = false
value = 0.0
[]
[z_fixed]
type = DirichletBC
variable = disp_z
boundary = 'base_back'
preset = false
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless
primary = base_front
secondary = ball_back
penalty = 1.0e3
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e3
poissons_ratio = 0.0
block = 1
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 2
[]
[strain_block]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e4
[]
[wave_speed]
type = WaveSpeed
[]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.25
dt = 0.005
timestep_tolerance = 1e-6
[TimeIntegrator]
type = CentralDifference
[]
[]
[Postprocessors]
[disp_58z]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[]
[Outputs]
exodus = true
csv = true
[]