- porosityporosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:porosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 
PINSFVSpeedFunctorMaterial
This is the material class used to compute the interstitial velocity norm for the incompressible and weakly compressible primitive superficial finite-volume implementation of porous media equations.
This class defines the interstitial speed and interstitial velocity functors that are often used in pressure drop and heat transfer correlations.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
 - declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
 - define_interstitial_velocity_componentsTrueWhether to define the interstitial velocity functors
Default:True
C++ Type:bool
Controllable:No
Description:Whether to define the interstitial velocity functors
 - execute_onALWAYSThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:ALWAYS
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, ALWAYS
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
 - speedspeedThe name to give the declared 'speed' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:speed
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name to give the declared 'speed' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - superficial_vel_x0The x component of the fluid superficial velocity variable. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:0
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The x component of the fluid superficial velocity variable. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - superficial_vel_y0The y component of the fluid superficial velocity variable. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:0
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The y component of the fluid superficial velocity variable. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - superficial_vel_z0The z component of the fluid superficial velocity variable. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:0
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The z component of the fluid superficial velocity variable. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - vel_xvel_xThe name to give the declared 'vel_x' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:vel_x
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name to give the declared 'vel_x' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - vel_yvel_yThe name to give the declared 'vel_y' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:vel_y
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name to give the declared 'vel_y' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - vel_zvel_zThe name to give the declared 'vel_z' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:vel_z
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name to give the declared 'vel_z' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - velocityvelocityThe name to give the declared 'velocity' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:velocity
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name to give the declared 'velocity' functor property. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
 - search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
Default:nearest_node_connected_sides
C++ Type:MooseEnum
Options:nearest_node_connected_sides, all_proximate_sides
Controllable:No
Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
 - seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
 
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
 - outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
 
Outputs Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-scalar.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-no-jump.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-rz-by-parts.i)
 - (modules/navier_stokes/test/tests/finite_volume/materials/ergun/ergun.i)
 - (modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/friction/2d-rc-friction.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-jump.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/materials/2d-rc.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
 - (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/pressure-interpolation-corrected.i)
 
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-scalar.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
alpha=0.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.0'
    dy = '0.25 0.25 0.25'
    ix = '5'
    iy = '2 2 2'
    subdomain_id = '1 2 3'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-2'
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator-2
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-3
    combinatorial_geometry = 'y < 0.25 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-2
  []
  [outlet-3]
    type = ParsedGenerateSideset
    input = outlet-2
    combinatorial_geometry = 'y > 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [scalar]
    type = INSFVEnergyVariable
    initial_condition = 50
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [scalar_conduction]
    type = FVDiffusion
    coeff = ${alpha}
    variable = scalar
  []
  [scalar_advection]
    type = INSFVScalarFieldAdvection
    variable = scalar
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-scalar-1]
    type = FVDirichletBC
    variable = scalar
    boundary = 'inlet-1'
    value = 10
  []
  [inlet-scalar-2]
    type = FVDirichletBC
    variable = scalar
    boundary = 'inlet-2'
    value = 20
  []
  [inlet-scalar-3]
    type = FVDirichletBC
    variable = scalar
    boundary = 'inlet-3'
    value = 30
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-scalar]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = scalar
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1 3'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_scalar1]
    type = SideAverageValue
    variable = 'scalar'
    boundary = 'outlet-1'
  []
  [outlet_scalar2]
    type = SideAverageValue
    variable = 'scalar'
    boundary = 'outlet-2'
  []
  [outlet_scalar3]
    type = SideAverageValue
    variable = 'scalar'
    boundary = 'outlet-3'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-mixing.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=1e-4
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.25 1.0 0.25'
    dy = '0.25 0.25 0.25'
    ix = '4 20 4'
    iy = '5 5 5'
    subdomain_id = '1 2 5 1 3 5 1 4 5'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '3'
    paired_block = '4'
    new_boundary = 'separator-2'
  []
  [jump-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-2
    primary_block = '1'
    paired_block = '2'
    new_boundary = jump-1
  []
  [jump-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-1
    primary_block = '1'
    paired_block = '3'
    new_boundary = jump-2
  []
  [jump-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-2
    primary_block = '1'
    paired_block = '4'
    new_boundary = jump-3
  []
  [outlet-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-3
    primary_block = '2'
    paired_block = '5'
    new_boundary = outlet-1
  []
  [outlet-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = outlet-1
    primary_block = '3'
    paired_block = '5'
    new_boundary = outlet-2
  []
  [outlet-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = outlet-2
    primary_block = '4'
    paired_block = '5'
    new_boundary = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
    pressure_drop_sidesets = 'jump-1 jump-2 jump-3 outlet-1 outlet-2 outlet-3'
    pressure_drop_form_factors = '0.1 0.2 0.3 0.1 0.2 0.3'
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'x'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_source]
    type = FVBodyForce
    variable = T_fluid
    function = heating
    block = '2 3 4'
  []
[]
[Functions]
  [heating]
    type = ParsedFunction
    expression = 'if(y<0.25, 10, if(y<0.5, 20, 30))'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'left'
    value = 300
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity]
    type = ADPiecewiseByBlockFunctorMaterial
    prop_name = porosity
    subdomain_to_prop_value = '1 0.8
                               2 0.7
                               3 0.6
                               4 0.5
                               5 0.8'
  []
  [darcy-1]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.0 1.0 1.0'
    block = '1 5'
  []
  [darcy-2]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '3.0 3.0 3.0'
    block = 2
  []
  [darcy-3]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.5 1.5 1.5'
    block = 3
  []
  [darcy-4]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '0.75 0.75 0.75'
    block = 4
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'right'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-no-jump.i)
# This test describes a test where three parallel channels are
# separated using flow separators that act as slip boundary conditions.
# The different channels have different friction factors
# meaning that we expect different pressure drops.
# Channel 1 expected drop (analytic, Forchheimer only): 5.50E-03 Pa
# Channel 2 expected drop (analytic, Forchheimer only): 4.40E-02 Pa
# Channel 3 expected drop (analytic, Forchheimer only): 1.49E-01 Pa
rho=1.1
mu=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1'
    dy = '0.25 0.25 0.25'
    ix = '5'
    iy = '2 2 2'
    subdomain_id = '1 2 3'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    new_boundary = 'separator-1'
    primary_block = 1
    paired_block = 2
    input = mesh
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    new_boundary = 'separator-2'
    primary_block = 2
    paired_block = 3
    input = separator-1
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator-2
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = u
    v = v
    rho = ${rho}
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'x'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [const]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
  []
  [darcy-1]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '1.0 1.0 1.0'
    block = 1
  []
  [darcy-2]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '2.0 2.0 2.0'
    block = 2
  []
  [darcy-3]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Forchheimer_coefficient'
    prop_values = '3.0 3.0 3.0'
    block = 3
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
  nl_max_its = 10
[]
[Postprocessors]
  [inlet_p1]
    type = SideAverageValue
    variable = 'pressure'
    boundary = 'inlet-1'
  []
  [inlet_p2]
    type = SideAverageValue
    variable = 'pressure'
    boundary = 'inlet-2'
  []
  [inlet_p3]
    type = SideAverageValue
    variable = 'pressure'
    boundary = 'inlet-3'
  []
  [drop-1]
    type = ParsedPostprocessor
    expression = 'inlet_p1 - outlet'
    pp_names = 'inlet_p1'
    constant_names = 'outlet'
    constant_expressions = '0.4'
  []
  [drop-2]
    type = ParsedPostprocessor
    expression = 'inlet_p2 - outlet'
    pp_names = 'inlet_p2'
    constant_names = 'outlet'
    constant_expressions = '0.4'
  []
  [drop-3]
    type = ParsedPostprocessor
    expression = 'inlet_p3 - outlet'
    pp_names = 'inlet_p3'
    constant_names = 'outlet'
    constant_expressions = '0.4'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-rz-by-parts.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = 0
    ymax = 1
    nx = 40
    ny = 10
  []
  coord_type = 'RZ'
  rz_coord_axis = 'X'
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = u
    v = v
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [u]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
  []
  [v]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
[]
[AuxVariables]
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  inactive = 'v_pressure_volumetric'
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressureFlux
    variable = u
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = u
    momentum_component = 'x'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure_volumetric]
    type = PINSFVMomentumPressure
    variable = v
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [v_pressure_by_parts_flux]
    type = PINSFVMomentumPressureFlux
    variable = v
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [v_pressure_by_parts_volume_term]
    type = PNSFVMomentumPressureFluxRZ
    variable = v
    pressure = pressure
    porosity = porosity
    momentum_component = 'y'
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = v
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
[]
[FVBCs]
  inactive = 'free-slip-u free-slip-v'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 0
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = u
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = v
    function = 0
  []
  [free-slip-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = u
    momentum_component = 'x'
  []
  [free-slip-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = v
    momentum_component = 'y'
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = u
    u = u
    v = v
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = v
    u = u
    v = v
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
[]
[FunctorMaterials]
  [darcy]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coefficient Forchheimer_coefficient'
    prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = u
    superficial_vel_y = v
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-11
  nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideIntegralVariablePostprocessor
    variable = u
    boundary = 'right'
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/materials/ergun/ergun.i)
# This file simulates flow of fluid in a porous elbow for the purpose of verifying
# correct implementation of the various different solution variable sets. This input
# tests correct implementation of the primitive superficial variable set. Flow enters on the top
# and exits on the right. Because the purpose is only to test the equivalence of
# different equation sets, no solid energy equation is included.
porosity_left = 0.4
porosity_right = 0.6
pebble_diameter = 0.06
mu = 1.81e-5 # This has been increased to avoid refining the mesh
M = 28.97e-3
R = 8.3144598
# inlet mass flowrate, kg/s
mdot = -10.0
# inlet mass flux (superficial)
mflux_in_superficial = ${fparse mdot / (pi * 0.5 * 0.5)}
# inlet mass flux (interstitial)
mflux_in_interstitial = ${fparse mflux_in_superficial / porosity_left}
p_initial = 201325.0
T_initial = 300.0
rho_initial = ${fparse p_initial / T_initial * M / R}
vel_y_initial = ${fparse mflux_in_interstitial / rho_initial}
vel_x_initial = 0.0
superficial_vel_y_initial = ${fparse mflux_in_superficial / rho_initial}
superficial_vel_x_initial = 1e-12
# Computation parameters
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
# ==============================================================================
# GEOMETRY AND MESH
# ==============================================================================
[Mesh]
  [fmg]
    type = FileMeshGenerator
    file = 'ergun_in.e'
  []
  coord_type = RZ
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[GlobalParams]
  porosity = porosity
  pebble_diameter = ${pebble_diameter}
  fp = fp
  # rho for the kernels. Must match fluid property!
  rho = ${rho_initial}
  fv = true
  velocity_interp_method = ${velocity_interp_method}
  advected_interp_method = ${advected_interp_method}
  # behavior at time of test creation
  two_term_boundary_expansion = false
  rhie_chow_user_object = 'rc'
[]
# ==============================================================================
# VARIABLES AND KERNELS
# ==============================================================================
[Variables]
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_initial}
  []
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${superficial_vel_x_initial}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${superficial_vel_y_initial}
  []
[]
[FVKernels]
  # Mass Equation.
  [mass]
    type = PINSFVMassAdvection
    variable = 'pressure'
  []
  # Momentum x component equation.
  [vel_x_time]
    type = PINSFVMomentumTimeDerivative
    variable = 'superficial_vel_x'
    momentum_component = 'x'
  []
  [vel_x_advection]
    type = PINSFVMomentumAdvection
    variable = 'superficial_vel_x'
    momentum_component = 'x'
  []
  [vel_x_viscosity]
    type = PINSFVMomentumDiffusion
    variable = 'superficial_vel_x'
    momentum_component = 'x'
    mu = 'mu'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = 'superficial_vel_x'
    pressure = pressure
    momentum_component = 'x'
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = 'superficial_vel_x'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    momentum_component = 'x'
    speed = speed
    mu = 'mu'
  []
  # Momentum y component equation.
  [vel_y_time]
    type = PINSFVMomentumTimeDerivative
    variable = 'superficial_vel_y'
    momentum_component = 'y'
  []
  [vel_y_advection]
    type = PINSFVMomentumAdvection
    variable = 'superficial_vel_y'
    momentum_component = 'y'
  []
  [vel_y_viscosity]
    type = PINSFVMomentumDiffusion
    variable = 'superficial_vel_y'
    momentum_component = 'y'
    mu = 'mu'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = 'superficial_vel_y'
    pressure = pressure
    momentum_component = 'y'
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = 'superficial_vel_y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    momentum_component = 'y'
    mu = 'mu'
    speed = speed
  []
  [gravity]
    type = PINSFVMomentumGravity
    variable = 'superficial_vel_y'
    gravity = '0 -9.81 0'
    momentum_component = 'y'
  []
[]
# ==============================================================================
# AUXVARIABLES AND AUXKERNELS
# ==============================================================================
[AuxVariables]
  [T_fluid]
    initial_condition = ${T_initial}
    order = CONSTANT
    family = MONOMIAL
  []
  [vel_x]
    initial_condition = ${fparse vel_x_initial}
    order = CONSTANT
    family = MONOMIAL
  []
  [vel_y]
    initial_condition = ${fparse vel_y_initial}
    order = CONSTANT
    family = MONOMIAL
  []
  [porosity_out]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [vel_x]
    type = FunctorAux
    variable = vel_x
    functor = vel_x_mat
  []
  [vel_y]
    type = FunctorAux
    variable = vel_y
    functor = vel_y_mat
  []
  [porosity_out]
    type = FunctorAux
    variable = porosity_out
    functor = porosity
  []
[]
# ==============================================================================
# FLUID PROPERTIES, MATERIALS AND USER OBJECTS
# ==============================================================================
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
    k = 0.0
    mu = ${mu}
    gamma = 1.4
    molar_mass = ${M}
  []
[]
[FunctorMaterials]
  [enthalpy]
    type = INSFVEnthalpyMaterial
    temperature = 'T_fluid'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = 'superficial_vel_x'
    superficial_vel_y = 'superficial_vel_y'
    porosity = porosity
    vel_x = vel_x_mat
    vel_y = vel_y_mat
  []
  [kappa]
    type = FunctorKappaFluid
  []
  [const_Fdrags_mat]
    type = FunctorErgunDragCoefficients
    porosity = porosity
  []
  [fluidprops]
    type = GeneralFunctorFluidProps
    mu_rampdown = mu_func
    porosity = porosity
    characteristic_length = ${pebble_diameter}
    T_fluid = 'T_fluid'
    pressure = 'pressure'
    speed = 'speed'
  []
[]
d = 0.05
[Functions]
  [mu_func]
    type = PiecewiseLinear
    x = '1 3 5 10 15 20'
    y = '1e5 1e4 1e3 1e2 1e1 1'
  []
  [real_porosity_function]
    type = ParsedFunction
    expression = 'if (x < 0.6 - ${d}, ${porosity_left}, if (x > 0.6 + ${d}, ${porosity_right},
        (x-(0.6-${d}))/(2*${d})*(${porosity_right}-${porosity_left}) + ${porosity_left}))'
  []
  [porosity]
    type = ParsedFunction
    expression = 'if (x < 0.6 - ${d}, ${porosity_left}, if (x > 0.6 + ${d}, ${porosity_right},
        (x-(0.6-${d}))/(2*${d})*(${porosity_right}-${porosity_left}) + ${porosity_left}))'
  []
[]
# ==============================================================================
# BOUNDARY CONDITIONS
# ==============================================================================
[FVBCs]
  [outlet_p]
    type = INSFVOutletPressureBC
    variable = 'pressure'
    function = ${p_initial}
    boundary = 'right'
  []
  ## No or Free slip BC
  [free-slip-wall-x]
    type = INSFVNaturalFreeSlipBC
    boundary = 'bottom wall_1 wall_2 left'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [free-slip-wall-y]
    type = INSFVNaturalFreeSlipBC
    boundary = 'bottom wall_1 wall_2 left'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  ## Symmetry
  [symmetry-x]
    type = PINSFVSymmetryVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = 'mu'
    momentum_component = 'x'
  []
  [symmetry-y]
    type = PINSFVSymmetryVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = 'mu'
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'left'
    variable = 'pressure'
  []
  ## inlet
  [inlet_vel_x]
    type = INSFVInletVelocityBC
    variable = 'superficial_vel_x'
    functor = ${superficial_vel_x_initial}
    boundary = 'top'
  []
  [inlet_vel_y]
    type = INSFVInletVelocityBC
    variable = 'superficial_vel_y'
    functor = ${superficial_vel_y_initial}
    boundary = 'top'
  []
[]
# ==============================================================================
# EXECUTION PARAMETERS
# ==============================================================================
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = 'asm      lu           NONZERO                   200'
  line_search = 'none'
  # Problem time parameters
  dtmin = 0.01
  dtmax = 2000
  end_time = 3000
  # must be the same as the fluid
  # Iterations parameters
  l_max_its = 50
  l_tol     = 1e-8
  nl_max_its = 25
  # nl_rel_tol = 5e-7
  nl_abs_tol = 2e-7
  # Automatic scaling
  automatic_scaling = true
  verbose = true
  [TimeStepper]
    type = IterationAdaptiveDT
    dt                 = 0.025
    cutback_factor     = 0.5
    growth_factor      = 2.0
  []
  # Steady state detection.
  steady_state_detection = true
  steady_state_tolerance = 1e-7
  steady_state_start_time = 400
[]
# ==============================================================================
# POSTPROCESSORS DEBUG AND OUTPUTS
# ==============================================================================
[Postprocessors]
  [mass_flow_in]
    type = VolumetricFlowRate
    boundary = 'top'
    vel_x = 'superficial_vel_x'
    vel_y = 'superficial_vel_y'
    advected_quantity = ${rho_initial}
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [mass_flow_out]
    type = VolumetricFlowRate
    boundary = 'right'
    vel_x = 'superficial_vel_x'
    vel_y = 'superficial_vel_y'
    advected_quantity = ${rho_initial}
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_in]
    type = SideAverageValue
    variable = pressure
    boundary = 'top'
  []
  [dP]
    type = LinearCombinationPostprocessor
    pp_names = 'p_in'
    pp_coefs = '1.0'
    b = ${fparse -p_initial}
  []
[]
[Outputs]
  exodus = true
  print_linear_residuals = false
[]
(modules/navier_stokes/test/tests/finite_volume/pwcns/channel-flow/2d-transient-gas.i)
# Fluid properties
mu = 'mu'
rho = 'rho'
k = 'k'
# Solid properties
cp_s = 2
rho_s = 4
k_s = 1e-2
h_fs = 10
# Operating conditions
u_inlet = 1
T_inlet = 200
p_outlet = 10
top_side_temperature = 150
# Numerical scheme
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 20
    ny = 5
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = ${p_outlet}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = ${T_inlet}
  []
  [T_solid]
    type = MooseVariableFVReal
    initial_condition = 100
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  [mass_time]
    type = PWCNSFVMassTimeDerivative
    variable = pressure
    porosity = 'porosity'
    drho_dt = 'drho_dt'
  []
  [mass]
    type = PWCNSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_x
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'x'
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_time]
    type = WCNSFVMomentumTimeDerivative
    variable = superficial_vel_y
    rho = ${rho}
    drho_dt = 'drho_dt'
    momentum_component = 'y'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_fluid
    h = 'h'
    dh_dt = 'dh_dt'
    rho = ${rho}
    drho_dt = 'drho_dt'
    is_solid = false
    porosity = porosity
  []
  [energy_advection]
    type = PINSFVEnergyAdvection
    variable = T_fluid
    velocity_interp_method = ${velocity_interp_method}
    advected_interp_method = ${advected_interp_method}
  []
  [energy_diffusion]
    type = PINSFVEnergyDiffusion
    variable = T_fluid
    k = ${k}
    porosity = porosity
  []
  [energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_fluid
    is_solid = false
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
  [solid_energy_time]
    type = PINSFVEnergyTimeDerivative
    variable = T_solid
    cp = ${cp_s}
    rho = ${rho_s}
    is_solid = true
    porosity = porosity
  []
  [solid_energy_diffusion]
    type = FVDiffusion
    variable = T_solid
    coeff = ${k_s}
  []
  [solid_energy_convection]
    type = PINSFVEnergyAmbientConvection
    variable = T_solid
    is_solid = true
    T_fluid = T_fluid
    T_solid = T_solid
    h_solid_fluid = 'h_cv'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T]
    type = FVDirichletBC
    variable = T_fluid
    value = ${T_inlet}
    boundary = 'left'
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [heated-side]
    type = FVDirichletBC
    boundary = 'top'
    variable = 'T_solid'
    value = ${top_side_temperature}
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = ${p_outlet}
  []
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
    gamma = 1.4
  []
[]
[FunctorMaterials]
  [fluid_props_to_mat_props]
    type = GeneralFunctorFluidProps
    fp = fp
    pressure = 'pressure'
    T_fluid = 'T_fluid'
    speed = 'speed'
    # To initialize with a high viscosity
    mu_rampdown = 'mu_rampdown'
    # For porous flow
    characteristic_length = 1
    porosity = 'porosity'
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    rho = ${rho}
    temperature = 'T_fluid'
  []
  [constants]
    type = ADGenericFunctorMaterial
    prop_names = 'h_cv'
    prop_values = '${h_fs}'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    porosity = 'porosity'
    superficial_vel_x = 'superficial_vel_x'
    superficial_vel_y = 'superficial_vel_y'
  []
[]
[Functions]
  [mu_rampdown]
    type = PiecewiseLinear
    x = '1 2 3 4'
    y = '1e3 1e2 1e1 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
  nl_abs_tol = 1e-10
  automatic_scaling = true
  end_time = 3.0
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = VolumetricFlowRate
    boundary = 'right'
    advected_quantity = '1'
    advected_interp_method = ${advected_interp_method}
    vel_x = 'superficial_vel_x'
    vel_y = 'superficial_vel_y'
  []
  [outlet-temp]
    type = SideAverageValue
    variable = T_fluid
    boundary = 'right'
  []
  [solid-temp]
    type = ElementAverageValue
    variable = T_solid
  []
[]
[Outputs]
  exodus = true
  csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '2.5 2.5'
    dy = '1.0'
    ix = '20 20'
    iy = '20'
    subdomain_id = '1 2'
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  inactive = 'lambda'
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
  [lambda]
    family = SCALAR
    order = FIRST
  []
[]
[AuxVariables]
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
[]
[FVKernels]
  inactive = 'mean-pressure'
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'x'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    mu = ${mu}
    rho = ${rho}
    speed = speed
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [mean-pressure]
    type = FVIntegralValueConstraint
    variable = pressure
    lambda = lambda
    phi0 = 0.01
  []
[]
[FVBCs]
  inactive = 'free-slip-u free-slip-v'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [free-slip-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [free-slip-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
[]
[FunctorMaterials]
  [darcy]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coefficient Forchheimer_coefficient'
    prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
  []
  [speec]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-11
  nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideIntegralVariablePostprocessor
    variable = superficial_vel_x
    boundary = 'right'
  []
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/friction/2d-rc-friction.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolator
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = -1
    ymax = 1
    nx = 50
    ny = 10
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
[]
[FVKernels]
  inactive = 'u_friction_quad v_friction_quad'
  [mass]
    type = INSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
  []
  [u_friction_linear]
    type = PINSFVMomentumFriction
    variable = vel_x
    Darcy_name = friction_coefficient
    momentum_component = 'x'
    rho = ${rho}
    standard_friction_formulation = false
  []
  [u_friction_quad]
    type = PINSFVMomentumFriction
    variable = vel_x
    speed = speed
    Forchheimer_name = friction_coefficient
    momentum_component = 'x'
    rho = ${rho}
    standard_friction_formulation = false
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
  []
  [v_friction_linear]
    type = PINSFVMomentumFriction
    variable = vel_y
    Darcy_name = friction_coefficient
    momentum_component = 'y'
    rho = ${rho}
    standard_friction_formulation = false
  []
  [v_friction_quad]
    type = PINSFVMomentumFriction
    variable = vel_y
    speed = speed
    Forchheimer_name = friction_coefficient
    momentum_component = 'y'
    rho = ${rho}
    standard_friction_formulation = false
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = '0'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_x
    function = 0
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = vel_y
    function = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = '0'
  []
[]
[FunctorMaterials]
  inactive = exponential_friction_coefficient
  [friction_coefficient]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'friction_coefficient'
    prop_values = '25 25 25'
  []
  [speed_material]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = vel_x
    superficial_vel_y = vel_y
    porosity = 1
    vel_x = vel_x_mat
    vel_y = vel_y_mat
  []
  [Re_material]
    type = ReynoldsNumberFunctorMaterial
    speed = speed
    characteristic_length = 2
    rho = ${rho}
    mu = ${mu}
  []
  [exponential_coeff]
    type = ExponentialFrictionMaterial
    friction_factor_name = 'exponential_coeff'
    Re = Re
    c1 = 0.25
    c2 = 0.55
  []
  [exponential_friction_coefficient]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'friction_coefficient'
    prop_values = 'exponential_coeff exponential_coeff exponential_coeff'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-jump.i)
# This test describes a test where three parallel channels are
# separated using flow separators that act as slip boundary conditions.
# The different channels have different pressure discontinuities
# due to Bernoulli pressure jump combined with irreversible form losses.
# Channel 1 expected drop (analytic, Bernoulli plus contraction form loss): 2.079E-01 Pa
# Channel 2 expected drop (analytic, Bernoulli plus contraction form loss): 8.360E-02 Pa
# Channel 3 expected drop (analytic, Bernoulli plus contraction form loss): 1.870E-02 Pa
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '0.2 0.2 0.2 0.2'
    dy = '0.25 0.25 0.25'
    ix = '2 2 2 2'
    iy = '2 2 2'
    subdomain_id = '1 2 2 2 3 3 4 4 5 5 5 6'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '1 2'
    paired_block = '3 4'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '3 4'
    paired_block = '5 6'
    new_boundary = 'separator-2'
  []
  [jump-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-2
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'jump-1'
  []
  [jump-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-1
    primary_block = '3'
    paired_block = '4'
    new_boundary = 'jump-2'
  []
  [jump-3]
    type = SideSetsBetweenSubdomainsGenerator
    input = jump-2
    primary_block = '5'
    paired_block = '6'
    new_boundary = 'jump-3'
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = jump-3
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
    pressure_drop_sidesets = 'jump-1 jump-2 jump-3'
    pressure_drop_form_factors = '0.1 0.2 0.3 '
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1 3 5'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2 4 6'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [inlet_p1]
    type = SideAverageValue
    variable = 'pressure'
    boundary = 'inlet-1'
  []
  [inlet_p2]
    type = SideAverageValue
    variable = 'pressure'
    boundary = 'inlet-2'
  []
  [inlet_p3]
    type = SideAverageValue
    variable = 'pressure'
    boundary = 'inlet-3'
  []
  [drop-1]
    type = ParsedPostprocessor
    expression = 'inlet_p1 - outlet'
    pp_names = 'inlet_p1'
    constant_names = 'outlet'
    constant_expressions = '0.4'
  []
  [drop-2]
    type = ParsedPostprocessor
    expression = 'inlet_p2 - outlet'
    pp_names = 'inlet_p2'
    constant_names = 'outlet'
    constant_expressions = '0.4'
  []
  [drop-3]
    type = ParsedPostprocessor
    expression = 'inlet_p3 - outlet'
    pp_names = 'inlet_p3'
    constant_names = 'outlet'
    constant_expressions = '0.4'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/materials/2d-rc.i)
mu = 0.01
rho = 2000
u_inlet = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 10
    ymin = 0
    ymax = 1
    nx = 10
    ny = 6
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = ${u_inlet}
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
  []
  [pressure]
    type = INSFVPressureVariable
  []
[]
[AuxVariables]
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.5
  []
  [speed_output]
    type = MooseVariableFVReal
  []
  [vel_x_output]
    type = MooseVariableFVReal
  []
  [vel_y_output]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [speed]
    type = FunctorAux
    variable = 'speed_output'
    functor = 'speed'
  []
  [vel_x]
    type = ADFunctorVectorElementalAux
    variable = 'vel_x_output'
    functor = 'velocity'
    component = 0
  []
  [vel_y]
    type = ADFunctorVectorElementalAux
    variable = 'vel_y_output'
    functor = 'velocity'
    component = 1
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = ${u_inlet}
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.1
  []
[]
[FunctorMaterials]
  # Testing this object
  [var_mat]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = 'superficial_vel_x'
    superficial_vel_y = 'superficial_vel_y'
    porosity = porosity
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type'
  petsc_options_value = 'lu NONZERO'
  nl_rel_tol = 1e-12
  nl_abs_tol = 1e-11
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
  [inlet-p]
    type = SideAverageValue
    variable = pressure
    boundary = 'left'
  []
  [outlet-u]
    type = SideAverageValue
    variable = superficial_vel_x
    boundary = 'right'
  []
[]
[Outputs]
  exodus = true
  csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
mu = 1.1
rho = 1.1
pressure_tag = "pressure_grad"
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 5
    ymin = 0
    ymax = 1
    nx = 40
    ny = 6
  []
[]
[GlobalParams]
  advected_interp_method = 'average'
  velocity_interp_method = 'rc'
  rhie_chow_user_object = 'rc'
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolatorSegregated
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
    porosity = porosity
  []
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system'
  previous_nl_solution_required = true
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1e-6
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    two_term_boundary_expansion = false
    solver_sys = pressure_system
  []
[]
[AuxVariables]
  [porosity]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
[]
[FVKernels]
  inactive = "u_friction v_friction"
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    rho = ${rho}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    momentum_component = 'x'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [u_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_x
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    rho = ${rho}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    momentum_component = 'y'
    pressure = pressure
    porosity = porosity
    extra_vector_tags = ${pressure_tag}
  []
  [v_friction]
    type = PINSFVMomentumFriction
    variable = superficial_vel_y
    momentum_component = 'y'
    Darcy_name = 'Darcy_coefficient'
    Forchheimer_name = 'Forchheimer_coefficient'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
[]
[FVBCs]
  inactive = 'slip-u slip-v'
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_x
    functor = '1'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = superficial_vel_y
    functor = 0
  []
  [no-slip-u]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_x
    function = 0
  []
  [no-slip-v]
    type = INSFVNoSlipWallBC
    boundary = 'top'
    variable = superficial_vel_y
    function = 0
  []
  [symmetry-u]
    type = INSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_x
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'x'
  []
  [symmetry-v]
    type = PINSFVSymmetryVelocityBC
    boundary = 'bottom'
    variable = superficial_vel_y
    u = superficial_vel_x
    v = superficial_vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [symmetry-p]
    type = INSFVSymmetryPressureBC
    boundary = 'bottom'
    variable = pressure
  []
  [outlet-p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
  ### Are disabled by default but we switch it on for certain tests ###
  [slip-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [slip-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  #####################################################################
[]
[FunctorMaterials]
  [darcy]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coefficient Forchheimer_coefficient'
    prop_values = '0.01 0.02 0.03 0.01 0.02 0.03'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  momentum_l_tol = 0
  pressure_l_tol = 0
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.85
  pressure_variable_relaxation = 0.45
  num_iterations = 150
  pressure_absolute_tolerance = 1e-13
  momentum_absolute_tolerance = 1e-13
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy.i)
# This test is designed to check for energy conservation
# in separated channels. The three inlet temperatures should be
# preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [mesh]
    type = CartesianMeshGenerator
    dim = 2
    dx = '1.0'
    dy = '0.25 0.25 0.25'
    ix = '5'
    iy = '2 2 2'
    subdomain_id = '1 2 3'
  []
  [separator-1]
    type = SideSetsBetweenSubdomainsGenerator
    input = mesh
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'separator-1'
  []
  [separator-2]
    type = SideSetsBetweenSubdomainsGenerator
    input = separator-1
    primary_block = '2'
    paired_block = '3'
    new_boundary = 'separator-2'
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator-2
    combinatorial_geometry = 'y < 0.25 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-2
  []
  [inlet-3]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 0.5 & x < 0.00001'
    replace = true
    new_sideset_name = inlet-3
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-3
    combinatorial_geometry = 'y < 0.25 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 0.25 & y < 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-2
  []
  [outlet-3]
    type = ParsedGenerateSideset
    input = outlet-2
    combinatorial_geometry = 'y > 0.5 & x > 0.999999'
    replace = false
    new_sideset_name = outlet-3
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
[]
[FVBCs]
  [inlet-u-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_x
    functor = '0.1'
  []
  [inlet-u-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_x
    functor = '0.2'
  []
  [inlet-u-3]
    type = INSFVInletVelocityBC
    boundary = 'inlet-3'
    variable = superficial_vel_x
    functor = '0.3'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2 inlet-3'
    variable = superficial_vel_y
    functor = 0
  []
  [inlet-T-1]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-1'
    value = 310
  []
  [inlet-T-2]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-2'
    value = 320
  []
  [inlet-T-3]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-3'
    value = 330
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'top bottom'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator-1 separator-2'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1 3'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-1'
  []
  [outlet_T2]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-2'
  []
  [outlet_T3]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-3'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/hydraulic-separators/separator-energy-nonorthogonal.i)
# This test is designed to check for energy conservation
# in separated channels which are described using a nonorthogonal mesh.
# The two inlet temperatures should be preserved at the outlets.
rho=1.1
mu=0.6
k=2.1
cp=5.5
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
  [file]
    type = FileMeshGenerator
    file = diverging.msh
  []
  [mirror]
    type = SymmetryTransformGenerator
    input = file
    mirror_point = "0 0 0"
    mirror_normal_vector = "1 0 0"
  []
  [stitch]
    type = StitchedMeshGenerator
    inputs = 'file mirror'
    stitch_boundaries_pairs = 'left left'
  []
  [subdomain1]
    type = ParsedSubdomainMeshGenerator
    input = stitch
    combinatorial_geometry = 'x > 0'
    block_id = 1
  []
  [subdomain2]
    type = ParsedSubdomainMeshGenerator
    input = subdomain1
    combinatorial_geometry = 'x < 0'
    block_id = 2
  []
  [separator]
    type = ParsedGenerateSideset
    input = subdomain2
    combinatorial_geometry = 'x > -0.00001 & x < 0.00001'
    replace = true
    new_sideset_name = separator
  []
  [inlet-1]
    type = ParsedGenerateSideset
    input = separator
    combinatorial_geometry = 'y < 0.00001 & x < 0'
    replace = true
    new_sideset_name = inlet-1
  []
  [inlet-2]
    type = ParsedGenerateSideset
    input = inlet-1
    combinatorial_geometry = 'y < 0.00001 & x > 0'
    replace = true
    new_sideset_name = inlet-2
  []
  [outlet-1]
    type = ParsedGenerateSideset
    input = inlet-2
    combinatorial_geometry = 'y > 20.999999 & x < 0'
    replace = true
    new_sideset_name = outlet-1
  []
  [outlet-2]
    type = ParsedGenerateSideset
    input = outlet-1
    combinatorial_geometry = 'y > 20.999999 & x > 0'
    replace = true
    new_sideset_name = outlet-2
  []
  uniform_refine = 1
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = superficial_vel_x
    v = superficial_vel_y
    pressure = pressure
  []
[]
[Variables]
  [superficial_vel_x]
    type = PINSFVSuperficialVelocityVariable
  []
  [superficial_vel_y]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 0.1
  []
  [pressure]
    type = BernoulliPressureVariable
    u = superficial_vel_x
    v = superficial_vel_y
    rho = ${rho}
  []
  [T_fluid]
    type = INSFVEnergyVariable
    initial_condition = 300
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_x
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_x
    momentum_component = 'x'
    mu = ${mu}
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = superficial_vel_y
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = superficial_vel_y
    momentum_component = 'y'
    mu = ${mu}
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = superficial_vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1 inlet-2'
    variable = superficial_vel_x
    functor = '0.0'
  []
  [inlet-v-1]
    type = INSFVInletVelocityBC
    boundary = 'inlet-1'
    variable = superficial_vel_y
    functor = 0.1
  []
  [inlet-v-2]
    type = INSFVInletVelocityBC
    boundary = 'inlet-2'
    variable = superficial_vel_y
    functor = 0.2
  []
  [inlet-T-1]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-1'
    value = 310
  []
  [inlet-T-2]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'inlet-2'
    value = 350
  []
  [walls-u]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [walls-v]
    type = INSFVNaturalFreeSlipBC
    boundary = 'right'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-u]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator'
    variable = superficial_vel_x
    momentum_component = 'x'
  []
  [separator-v]
    type = INSFVVelocityHydraulicSeparatorBC
    boundary = 'separator'
    variable = superficial_vel_y
    momentum_component = 'y'
  []
  [separator-p]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator'
    variable = pressure
  []
  [separator-T]
    type = INSFVScalarFieldSeparatorBC
    boundary = 'separator'
    variable = T_fluid
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'outlet-2 outlet-1'
    variable = pressure
    function = 0.4
  []
[]
[FunctorMaterials]
  [porosity-1]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '1.0'
    block = '1'
  []
  [porosity-2]
    type = ADGenericFunctorMaterial
    prop_names = 'porosity'
    prop_values = '0.5'
    block = '2'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = superficial_vel_x
    superficial_vel_y = superficial_vel_y
    porosity = porosity
  []
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
  petsc_options_value = ' lu       NONZERO               1e-10'
  line_search = 'none'
  nl_rel_tol = 1e-10
[]
[Postprocessors]
  [outlet_T1]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-1'
  []
  [outlet_T2]
    type = SideAverageValue
    variable = 'T_fluid'
    boundary = 'outlet-2'
  []
[]
[Outputs]
  csv = true
  execute_on = final
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/pressure-interpolation-corrected.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
darcy = 1.1
forch = 1.1
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = 2
    ymin = -1
    ymax = 1
    nx = 2
    ny = 2
  []
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  Darcy_name = 'Darcy_coefficient'
  Forchheimer_name = 'Forchheimer_coefficient'
  porosity = porosity
[]
[UserObjects]
  [rc]
    type = PINSFVRhieChowInterpolator
    u = u
    v = v
    porosity = porosity
    pressure = pressure
    smoothing_layers = 2
  []
[]
[Variables]
  [u]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
  []
  [v]
    type = PINSFVSuperficialVelocityVariable
    initial_condition = 1
  []
  [pressure]
    type = INSFVPressureVariable
  []
[]
[AuxVariables]
  [eps_out]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [eps_out]
    type = FunctorAux
    variable = eps_out
    functor = porosity
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass]
    type = PINSFVMassAdvection
    variable = pressure
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
  []
  [mass_forcing]
    type = FVBodyForce
    variable = pressure
    function = forcing_p
  []
  [u_advection]
    type = PINSFVMomentumAdvection
    variable = u
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = PINSFVMomentumDiffusion
    variable = u
    mu = ${mu}
    porosity = porosity
    momentum_component = 'x'
  []
  [u_pressure]
    type = PINSFVMomentumPressure
    variable = u
    pressure = pressure
    porosity = porosity
    momentum_component = 'x'
  []
  [u_drag]
    type = PINSFVMomentumFriction
    variable = u
    momentum_component = 'x'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [u_correction]
    type = PINSFVMomentumFrictionCorrection
    variable = u
    momentum_component = 'x'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [u_forcing]
    type = INSFVBodyForce
    variable = u
    functor = forcing_u
    momentum_component = 'x'
  []
  [v_advection]
    type = PINSFVMomentumAdvection
    variable = v
    advected_interp_method = ${advected_interp_method}
    velocity_interp_method = ${velocity_interp_method}
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = PINSFVMomentumDiffusion
    variable = v
    mu = ${mu}
    porosity = porosity
    momentum_component = 'y'
  []
  [v_pressure]
    type = PINSFVMomentumPressure
    variable = v
    pressure = pressure
    porosity = porosity
    momentum_component = 'y'
  []
  [v_drag]
    type = PINSFVMomentumFriction
    variable = v
    momentum_component = 'y'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [v_correction]
    type = PINSFVMomentumFrictionCorrection
    variable = v
    momentum_component = 'y'
    rho = ${rho}
    speed = speed
    mu = ${mu}
  []
  [v_forcing]
    type = INSFVBodyForce
    variable = v
    functor = forcing_v
    momentum_component = 'y'
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = u
    functor = 'exact_u'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = v
    functor = 'exact_v'
  []
  [walls-u]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = u
    function = 'exact_u'
  []
  [walls-v]
    type = INSFVNoSlipWallBC
    boundary = 'top bottom'
    variable = v
    function = 'exact_v'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 'exact_p'
  []
[]
[FunctorMaterials]
  [darcy]
    type = ADGenericVectorFunctorMaterial
    prop_names = 'Darcy_coefficient Forchheimer_coefficient'
    prop_values = '${darcy} ${darcy} ${darcy} ${forch} ${forch} ${forch}'
  []
  [speed]
    type = PINSFVSpeedFunctorMaterial
    superficial_vel_x = u
    superficial_vel_y = v
    porosity = porosity
  []
[]
[Functions]
  [porosity]
    type = ParsedFunction
    expression = '.5 + .1 * sin(pi * x / 4) * cos(pi * y / 4)'
  []
  [exact_u]
    type = ParsedFunction
    expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
  []
  [forcing_u]
    type = ParsedFunction
    expression = 'darcy*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) + (1/2)*forch*rho*sqrt(sin((1/4)*x*pi)^2*cos((1/2)*y*pi)^2 + sin((1/2)*y*pi)^2*cos((1/2)*x*pi)^2)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(0.1*pi^2*sin((1/4)*x*pi)*sin((1/4)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.025*pi^2*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(0.025*pi^2*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.1*pi^2*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/2)*y*pi)*cos((1/4)*x*pi)^2*cos((1/2)*x*pi)*cos((1/4)*y*pi)^2/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) + 0.025*pi*mu*(0.1*pi*sin((1/4)*x*pi)*sin((1/4)*y*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + (1/2)*pi*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*sin((1/4)*x*pi)*sin((1/4)*y*pi) - 0.025*pi*mu*(-0.1*pi*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 1/2*pi*sin((1/2)*x*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*cos((1/4)*x*pi)*cos((1/4)*y*pi) + 0.1*pi*rho*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 0.1*pi*rho*sin((1/2)*y*pi)^2*cos((1/4)*x*pi)*cos((1/2)*x*pi)^2*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 1/4*pi*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
    symbol_names = 'mu rho darcy forch'
    symbol_values = '${mu} ${rho} ${darcy} ${forch}'
  []
  [exact_v]
    type = ParsedFunction
    expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
  []
  [forcing_v]
    type = ParsedFunction
    expression = 'darcy*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) + (1/2)*forch*rho*sqrt(sin((1/4)*x*pi)^2*cos((1/2)*y*pi)^2 + sin((1/2)*y*pi)^2*cos((1/2)*x*pi)^2)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(-0.1*pi^2*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*sin((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.025*pi^2*sin((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/4)*x*pi)^3*sin((1/4)*y*pi)^2*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/4*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(0.025*pi^2*sin((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 0.05*pi^2*cos((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/4)*x*pi)*cos((1/4)*x*pi)^2*cos((1/4)*y*pi)^2*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/16*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) + 0.025*pi*mu*(0.1*pi*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 1/2*pi*sin((1/4)*x*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*sin((1/4)*x*pi)*sin((1/4)*y*pi) - 0.025*pi*mu*(-0.1*pi*sin((1/4)*x*pi)*cos((1/4)*x*pi)*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + (1/4)*pi*cos((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*cos((1/4)*x*pi)*cos((1/4)*y*pi) + 0.1*pi*rho*sin((1/4)*x*pi)^3*sin((1/4)*y*pi)*cos((1/2)*y*pi)^2/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 0.1*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (3/2)*pi*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
    symbol_names = 'mu rho darcy forch'
    symbol_values = '${mu} ${rho} ${darcy} ${forch}'
  []
  [exact_p]
    type = ParsedFunction
    expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
  []
  [forcing_p]
    type = ParsedFunction
    expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
    symbol_names = 'rho'
    symbol_values = '${rho}'
  []
[]
[Executioner]
  type = Steady
  solve_type = 'NEWTON'
  petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
  petsc_options_value = 'asm      100                lu           NONZERO'
  line_search = 'none'
  nl_rel_tol = 1e-12
[]
[Outputs]
  exodus = false
  csv = true
[]
[Postprocessors]
  [h]
    type = AverageElementSize
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2u]
    type = ElementL2FunctorError
    approximate = u
    exact = exact_u
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2v]
    type = ElementL2FunctorError
    approximate = v
    exact = exact_v
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
  [L2p]
    type = ElementL2FunctorError
    approximate = pressure
    exact = exact_p
    outputs = 'console csv'
    execute_on = 'timestep_end'
  []
[]