- fileThe name of the mesh file to read
C++ Type:MeshFileName
Controllable:No
Description:The name of the mesh file to read
FileMesh
Read a mesh from a file.
Supported File Formats
The FileMesh
is the default type for MOOSE and as the name suggests it reads the mesh from an external file. MOOSE supports reading and writing a large number of formats and could be extended to read more.
Extension | Description |
---|---|
.e, .exd | Sandia's ExodusII format |
.dat | Tecplot ASCII file |
.fro | ACDL's surface triangulation file |
.gmv | LANL's GMV (General Mesh Viewer) format |
.mat | Matlab triangular ASCII file (read only) |
.msh | GMSH ASCII file |
.n, .nem | Sandia's Nemesis format |
.plt | Tecplot binary file (write only) |
.node, .ele; .poly | TetGen ASCII file (read; write) |
.inp | Abaqus .inp format (read only) |
.ucd | AVS's ASCII UCD format |
.unv | I-deas Universal format |
.xda, .xdr | libMesh formats |
.vtk, .pvtu | Visualization Toolkit |
Input Parameters
- allow_renumberingTrueIf allow_renumbering=false, node and element numbers are kept fixed until deletion
Default:True
C++ Type:bool
Controllable:No
Description:If allow_renumbering=false, node and element numbers are kept fixed until deletion
- clear_spline_nodesFalseIf clear_spline_nodes=true, IsoGeometric Analyis spline nodes and constraints are removed from an IGA mesh, after which only C^0 Rational-Bernstein-Bezier elements will remain.
Default:False
C++ Type:bool
Controllable:No
Description:If clear_spline_nodes=true, IsoGeometric Analyis spline nodes and constraints are removed from an IGA mesh, after which only C^0 Rational-Bernstein-Bezier elements will remain.
- dim1This is only required for certain mesh formats where the dimension of the mesh cannot be autodetected. In particular you must supply this for GMSH meshes. Note: This is completely ignored for ExodusII meshes!
Default:1
C++ Type:MooseEnum
Options:1, 2, 3
Controllable:No
Description:This is only required for certain mesh formats where the dimension of the mesh cannot be autodetected. In particular you must supply this for GMSH meshes. Note: This is completely ignored for ExodusII meshes!
- ghosting_patch_sizeThe number of nearest neighbors considered for ghosting purposes when 'iteration' patch update strategy is used. Default is 5 * patch_size.
C++ Type:unsigned int
Controllable:No
Description:The number of nearest neighbors considered for ghosting purposes when 'iteration' patch update strategy is used. Default is 5 * patch_size.
- parallel_typeDEFAULTDEFAULT: Use libMesh::ReplicatedMesh unless --distributed-mesh is specified on the command line REPLICATED: Always use libMesh::ReplicatedMesh DISTRIBUTED: Always use libMesh::DistributedMesh
Default:DEFAULT
C++ Type:MooseEnum
Options:DEFAULT, REPLICATED, DISTRIBUTED
Controllable:No
Description:DEFAULT: Use libMesh::ReplicatedMesh unless --distributed-mesh is specified on the command line REPLICATED: Always use libMesh::ReplicatedMesh DISTRIBUTED: Always use libMesh::DistributedMesh
- skip_refine_when_use_splitTrueTrue to skip uniform refinements when using a pre-split mesh.
Default:True
C++ Type:bool
Controllable:No
Description:True to skip uniform refinements when using a pre-split mesh.
Optional Parameters
- add_nodeset_idsThe listed nodeset ids will be assumed valid for the mesh. This permits setting up boundary restrictions for node initially containing no sides. Names for this nodesets may be provided using add_nodeset_names. In this case this list and add_nodeset_names must contain the same number of items.
C++ Type:std::vector<short>
Controllable:No
Description:The listed nodeset ids will be assumed valid for the mesh. This permits setting up boundary restrictions for node initially containing no sides. Names for this nodesets may be provided using add_nodeset_names. In this case this list and add_nodeset_names must contain the same number of items.
- add_nodeset_namesThe listed nodeset names will be assumed valid for the mesh. This permits setting up boundary restrictions for nodesets initially containing no sides. Ids for this nodesets may be provided using add_nodesets_ids. In this case this list and add_nodesets_ids must contain the same number of items.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The listed nodeset names will be assumed valid for the mesh. This permits setting up boundary restrictions for nodesets initially containing no sides. Ids for this nodesets may be provided using add_nodesets_ids. In this case this list and add_nodesets_ids must contain the same number of items.
- add_sideset_idsThe listed sideset ids will be assumed valid for the mesh. This permits setting up boundary restrictions for sidesets initially containing no sides. Names for this sidesets may be provided using add_sideset_names. In this case this list and add_sideset_names must contain the same number of items.
C++ Type:std::vector<short>
Controllable:No
Description:The listed sideset ids will be assumed valid for the mesh. This permits setting up boundary restrictions for sidesets initially containing no sides. Names for this sidesets may be provided using add_sideset_names. In this case this list and add_sideset_names must contain the same number of items.
- add_sideset_namesThe listed sideset names will be assumed valid for the mesh. This permits setting up boundary restrictions for sidesets initially containing no sides. Ids for this sidesets may be provided using add_sideset_ids. In this case this list and add_sideset_ids must contain the same number of items.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The listed sideset names will be assumed valid for the mesh. This permits setting up boundary restrictions for sidesets initially containing no sides. Ids for this sidesets may be provided using add_sideset_ids. In this case this list and add_sideset_ids must contain the same number of items.
- add_subdomain_idsThe listed subdomain ids will be assumed valid for the mesh. This permits setting up subdomain restrictions for subdomains initially containing no elements, which can occur, for example, in additive manufacturing simulations which dynamically add and remove elements. Names for this subdomains may be provided using add_subdomain_names. In this case this list and add_subdomain_names must contain the same number of items.
C++ Type:std::vector<unsigned short>
Controllable:No
Description:The listed subdomain ids will be assumed valid for the mesh. This permits setting up subdomain restrictions for subdomains initially containing no elements, which can occur, for example, in additive manufacturing simulations which dynamically add and remove elements. Names for this subdomains may be provided using add_subdomain_names. In this case this list and add_subdomain_names must contain the same number of items.
- add_subdomain_namesThe listed subdomain names will be assumed valid for the mesh. This permits setting up subdomain restrictions for subdomains initially containing no elements, which can occur, for example, in additive manufacturing simulations which dynamically add and remove elements. IDs for this subdomains may be provided using add_subdomain_ids. Otherwise IDs are automatically assigned. In case add_subdomain_ids is set too, both lists must contain the same number of items.
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The listed subdomain names will be assumed valid for the mesh. This permits setting up subdomain restrictions for subdomains initially containing no elements, which can occur, for example, in additive manufacturing simulations which dynamically add and remove elements. IDs for this subdomains may be provided using add_subdomain_ids. Otherwise IDs are automatically assigned. In case add_subdomain_ids is set too, both lists must contain the same number of items.
Pre-Declaration Of Future Mesh Sub-Entities Parameters
- alpha_rotationThe number of degrees that the domain should be alpha-rotated using the Euler angle ZXZ convention from https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix in order to align with a canonical physical space of your choosing.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The number of degrees that the domain should be alpha-rotated using the Euler angle ZXZ convention from https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix in order to align with a canonical physical space of your choosing.
- beta_rotationThe number of degrees that the domain should be beta-rotated using the Euler angle ZXZ convention from https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix in order to align with a canonical physical space of your choosing.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The number of degrees that the domain should be beta-rotated using the Euler angle ZXZ convention from https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix in order to align with a canonical physical space of your choosing.
- gamma_rotationThe number of degrees that the domain should be gamma-rotated using the Euler angle ZXZ convention from https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix in order to align with a canonical physical space of your choosing.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The number of degrees that the domain should be gamma-rotated using the Euler angle ZXZ convention from https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix in order to align with a canonical physical space of your choosing.
- length_unitHow much distance one mesh length unit represents, e.g. 1 cm, 1 nm, 1 ft, 5inches
C++ Type:std::string
Controllable:No
Description:How much distance one mesh length unit represents, e.g. 1 cm, 1 nm, 1 ft, 5inches
- up_directionSpecify what axis corresponds to the up direction in physical space (the opposite of the gravity vector if you will). If this parameter is provided, we will perform a single 90 degree rotation of the domain--if the provided axis is 'x' or 'z', we will not rotate if the axis is 'y'--such that a point which was on the provided axis will now lie on the y-axis, e.g. the y-axis is our canonical up direction. If you want finer grained control than this, please use the 'alpha_rotation', 'beta_rotation', and 'gamma_rotation' parameters.
C++ Type:MooseEnum
Options:X, Y, Z
Controllable:No
Description:Specify what axis corresponds to the up direction in physical space (the opposite of the gravity vector if you will). If this parameter is provided, we will perform a single 90 degree rotation of the domain--if the provided axis is 'x' or 'z', we will not rotate if the axis is 'y'--such that a point which was on the provided axis will now lie on the y-axis, e.g. the y-axis is our canonical up direction. If you want finer grained control than this, please use the 'alpha_rotation', 'beta_rotation', and 'gamma_rotation' parameters.
Transformations Relative To Parent Application Frame Of Reference Parameters
- coord_blockBlock IDs for the coordinate systems. If this parameter is specified, then it must encompass all the subdomains on the mesh.
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:Block IDs for the coordinate systems. If this parameter is specified, then it must encompass all the subdomains on the mesh.
- coord_typeXYZType of the coordinate system per block param
Default:XYZ
C++ Type:MultiMooseEnum
Options:XYZ, RZ, RSPHERICAL
Controllable:No
Description:Type of the coordinate system per block param
- rz_coord_axisYThe rotation axis (X | Y) for axisymmetric coordinates
Default:Y
C++ Type:MooseEnum
Options:X, Y
Controllable:No
Description:The rotation axis (X | Y) for axisymmetric coordinates
- rz_coord_blocksBlocks using general axisymmetric coordinate systems
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:Blocks using general axisymmetric coordinate systems
- rz_coord_directionsAxis directions for each block in 'rz_coord_blocks'
C++ Type:std::vector<libMesh::VectorValue<double>>
Unit:(no unit assumed)
Controllable:No
Description:Axis directions for each block in 'rz_coord_blocks'
- rz_coord_originsAxis origin points for each block in 'rz_coord_blocks'
C++ Type:std::vector<libMesh::Point>
Controllable:No
Description:Axis origin points for each block in 'rz_coord_blocks'
Coordinate System Parameters
- build_all_side_lowerd_meshFalseTrue to build the lower-dimensional mesh for all sides.
Default:False
C++ Type:bool
Controllable:No
Description:True to build the lower-dimensional mesh for all sides.
- construct_node_list_from_side_listTrueWhether or not to generate nodesets from the sidesets (usually a good idea).
Default:True
C++ Type:bool
Controllable:No
Description:Whether or not to generate nodesets from the sidesets (usually a good idea).
Automatic Definition Of Mesh Element Sides Entities Parameters
- centroid_partitioner_directionSpecifies the sort direction if using the centroid partitioner. Available options: x, y, z, radial
C++ Type:MooseEnum
Options:x, y, z, radial
Controllable:No
Description:Specifies the sort direction if using the centroid partitioner. Available options: x, y, z, radial
- partitionerdefaultSpecifies a mesh partitioner to use when splitting the mesh for a parallel computation.
Default:default
C++ Type:MooseEnum
Options:default, metis, parmetis, linear, centroid, hilbert_sfc, morton_sfc
Controllable:No
Description:Specifies a mesh partitioner to use when splitting the mesh for a parallel computation.
Partitioning Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
- nemesisFalseIf nemesis=true and file=foo.e, actually reads foo.e.N.0, foo.e.N.1, ... foo.e.N.N-1, where N = # CPUs, with NemesisIO.
Default:False
C++ Type:bool
Controllable:No
Description:If nemesis=true and file=foo.e, actually reads foo.e.N.0, foo.e.N.1, ... foo.e.N.N-1, where N = # CPUs, with NemesisIO.
Advanced Parameters
- max_leaf_size10The maximum number of points in each leaf of the KDTree used in the nearest neighbor search. As the leaf size becomes larger,KDTree construction becomes faster but the nearest neighbor searchbecomes slower.
Default:10
C++ Type:unsigned int
Controllable:No
Description:The maximum number of points in each leaf of the KDTree used in the nearest neighbor search. As the leaf size becomes larger,KDTree construction becomes faster but the nearest neighbor searchbecomes slower.
- patch_size40The number of nodes to consider in the NearestNode neighborhood.
Default:40
C++ Type:unsigned int
Controllable:No
Description:The number of nodes to consider in the NearestNode neighborhood.
- patch_update_strategyneverHow often to update the geometric search 'patch'. The default is to never update it (which is the most efficient but could be a problem with lots of relative motion). 'always' will update the patch for all secondary nodes at the beginning of every timestep which might be time consuming. 'auto' will attempt to determine at the start of which timesteps the patch for all secondary nodes needs to be updated automatically.'iteration' updates the patch at every nonlinear iteration for a subset of secondary nodes for which penetration is not detected. If there can be substantial relative motion between the primary and secondary surfaces during the nonlinear iterations within a timestep, it is advisable to use 'iteration' option to ensure accurate contact detection.
Default:never
C++ Type:MooseEnum
Options:never, always, auto, iteration
Controllable:No
Description:How often to update the geometric search 'patch'. The default is to never update it (which is the most efficient but could be a problem with lots of relative motion). 'always' will update the patch for all secondary nodes at the beginning of every timestep which might be time consuming. 'auto' will attempt to determine at the start of which timesteps the patch for all secondary nodes needs to be updated automatically.'iteration' updates the patch at every nonlinear iteration for a subset of secondary nodes for which penetration is not detected. If there can be substantial relative motion between the primary and secondary surfaces during the nonlinear iterations within a timestep, it is advisable to use 'iteration' option to ensure accurate contact detection.
Geometric Search Parameters
Input Files
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/convergence/L/small.i)
- (modules/solid_mechanics/test/tests/shell/static/inclined_straintest.i)
- (test/tests/outputs/sampled_output/oversample_file.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/two_pipe_sub.i)
- (modules/solid_mechanics/test/tests/truss/truss_2d_action.i)
- (modules/porous_flow/examples/reservoir_model/field_model.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/total/stabilization/cook_small.i)
- (test/tests/materials/output/output_multiple_files.i)
- (modules/solid_mechanics/examples/bridge/bridge.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_direct.i)
- (test/tests/mesh/abaqus_input/testcube_elset_name.i)
- (modules/heat_transfer/test/tests/conjugate_heat_transfer/conjugate_heat_transfer.i)
- (modules/richards/test/tests/theis/th_lumped_02.i)
- (modules/solid_mechanics/test/tests/finite_strain_elastic/elastic_rotation_test.i)
- (modules/combined/test/tests/poro_mechanics/borehole_highres.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_trimesh.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_trimesh.i)
- (modules/solid_mechanics/test/tests/beam/static/euler_finite_rot_y_action.i)
- (test/tests/misc/no_exodiff_map/no_exodiff_map.i)
- (test/tests/mesh/patterned_mesh/mesh_tester.i)
- (modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/total/stabilization/cook_large.i)
- (test/tests/geomsearch/fake_block_to_boundary/fake_block_to_boundary.i)
- (modules/richards/test/tests/dirac/bh27.i)
- (test/tests/misc/check_error/nodal_value_off_block.i)
- (modules/richards/test/tests/dirac/bh_fu_08.i)
- (modules/thermal_hydraulics/test/tests/components/hs_boundary_external_app_heat_flux/main.i)
- (modules/richards/test/tests/theis/th02.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/convergence/L/large.i)
- (modules/solid_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined_hht.i)
- (modules/solid_mechanics/examples/bridge/bridge_large_strain.i)
- (modules/solid_mechanics/test/tests/truss/truss_3d_action.i)
- (modules/solid_mechanics/test/tests/radial_disp_aux/sphere_3d_cartesian.i)
- (test/tests/partitioners/block_weighted_partitioner/block_weighted_partitioner.i)
- (test/tests/materials/output/output_block_displaced.i)
- (modules/solid_mechanics/test/tests/beam/fric_constraint/2_block_common_cross.i)
- (modules/solid_mechanics/test/tests/ad_pressure/pressure_test.i)
- (test/tests/restrictable/check_error/check_error.i)
- (modules/solid_mechanics/test/tests/beam/static/euler_finite_rot_z.i)
- (modules/solid_mechanics/test/tests/truss/truss_hex_action.i)
- (test/tests/transfers/multiapp_userobject_transfer/two_pipe_sub.i)
- (modules/richards/test/tests/dirac/bh07.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/action/no_action_L.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz_cross_section.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/stabilization/cook_small.i)
- (modules/solid_mechanics/test/tests/stress_recovery/stress_concentration/stress_concentration.i)
- (modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz.i)
- (test/tests/geomsearch/quadrature_penetration_locator/1d_quadrature_penetration.i)
- (test/tests/restrictable/block_api_test/block_restrictable.i)
- (modules/richards/test/tests/theis/th_lumped_01.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz.i)
- (modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial3.i)
- (modules/misc/test/tests/fracture_flow/single.i)
- (test/tests/mesh/abaqus_input/testcube_elem_id.i)
- (modules/solid_mechanics/test/tests/radial_disp_aux/cylinder_2d_cartesian.i)
- (modules/richards/test/tests/theis/th01.i)
- (modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial2.i)
- (test/tests/auxkernels/current_boundary_id/current_boundary_id.i)
- (test/tests/geomsearch/patch_update_strategy/auto.i)
- (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower.i)
- (modules/solid_mechanics/test/tests/radial_disp_aux/cylinder_3d_cartesian.i)
- (test/tests/auxkernels/solution_aux/solution_aux_direct.i)
- (test/tests/outputs/sampled_output/over_sampling_second_file.i)
- (modules/solid_mechanics/test/tests/beam/action/2_block_common.i)
- (modules/combined/test/tests/poro_mechanics/borehole_lowres.i)
- (test/tests/geomsearch/patch_update_strategy/never.i)
- (test/tests/materials/output/output_block.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i)
- (test/tests/geomsearch/2d_interior_boundary_penetration_locator/2d_interior_boundary_penetration_locator.i)
- (modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i)
- (test/tests/materials/has_material/has_boundary_prop.i)
- (modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i)
- (modules/chemical_reactions/test/tests/desorption/langmuir_jac2.i)
- (test/tests/kernels/ode/coupled_ode_td_var_ic_from_mesh.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/parent_uo_transfer.i)
- (modules/solid_mechanics/test/tests/beam/action/2_block.i)
- (modules/richards/test/tests/theis/th21.i)
- (python/chigger/tests/input/mug_blocks.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/total/convergence/L/large.i)
- (test/tests/auxkernels/element_aux_boundary/element_aux_boundary.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/sub.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_direct.i)
- (modules/porous_flow/examples/flow_through_fractured_media/coarse.i)
- (test/tests/bcs/periodic/auto_dir_repeated_id.i)
- (modules/solid_mechanics/examples/piston/piston_params.i)
- (modules/richards/test/tests/theis/th22.i)
- (modules/combined/test/tests/chemical_reactions_richards/langmuir_jac3.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_y.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart1.i)
- (test/tests/mesh/side_list_from_node_list/side_list_from_node_list.i)
- (modules/solid_mechanics/test/tests/beam/fric_constraint/2_block_common_cross_stick.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/total/action/no_action_L.i)
- (test/tests/materials/output/block_via_outputs.i)
- (test/tests/mesh/splitting/grid_from_file.i)
- (test/tests/functions/solution_function/solution_function_exodus_test.i)
- (test/tests/postprocessors/nodal_extreme_value/nodal_extreme_pps_test.i)
- (test/tests/auxkernels/element_quality_aux/element_quality_aux.i)
- (modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i)
- (modules/richards/test/tests/dirac/bh_fu_07.i)
- (test/tests/misc/line_source/line_source.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart2.i)
- (modules/solid_mechanics/test/tests/lagrangian/action/simple_test.i)
- (test/tests/materials/derivative_material_interface/ad_multiblock.i)
- (modules/porous_flow/test/tests/desorption/desorption01.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/action/action_L.i)
- (test/tests/mesh/abaqus_input/testcube_elset_name_ws.i)
- (modules/solid_mechanics/test/tests/coupled_pressure/coupled_pressure_test.i)
- (test/tests/constraints/tied_value_constraint/tied_value_constraint_test.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_cross_section.i)
- (modules/solid_mechanics/test/tests/beam/static/euler_finite_rot_y.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_z.i)
- (test/tests/geomsearch/patch_update_strategy/always.i)
- (modules/solid_mechanics/test/tests/truss/truss_2d.i)
- (test/tests/materials/output/output_boundary.i)
- (modules/solid_mechanics/test/tests/radial_disp_aux/sphere_2d_axisymmetric.i)
- (test/tests/controls/time_periods/constraints/constraints.i)
- (test/tests/constraints/coupled_tied_value_constraint/coupled_tied_value_constraint.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i)
- (test/tests/restart/duplicate_node/duplicate_node.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/total/convergence/L/small.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp.i)
- (modules/solid_mechanics/test/tests/truss/truss_3d.i)
- (modules/combined/test/tests/phase_field_fracture/void2d_iso.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/sub.i)
- (modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i)
- (modules/solid_mechanics/test/tests/pressure/pressure_test.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz_force_xz.i)
- (test/tests/kernels/ode/coupled_ode_td_auxvar_ic_from_mesh.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy_force_xy.i)
- (modules/richards/test/tests/excav/ex02.i)
- (test/tests/ics/check_error/two_ics_on_same_block.i)
- (test/tests/materials/derivative_material_interface/multiblock.i)
- (modules/navier_stokes/test/tests/finite_element/cns/step/step.i)
- (test/tests/ics/check_error/two_ics_on_same_block_global.i)
- (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_except.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/stabilization/cook_large.i)
- (modules/solid_mechanics/test/tests/truss/truss_hex.i)
- (modules/solid_mechanics/test/tests/shell/static/inclined_straintest_local_stress.i)
- (modules/solid_mechanics/test/tests/pressure/pressure_control_test.i)
- (modules/richards/test/tests/theis/th_lumped_22.i)
- (test/tests/materials/has_material/has_block_prop.i)
- (modules/richards/test/tests/excav/ex01.i)
- (modules/solid_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined.i)
- (modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm3.i)
- (test/tests/restrictable/boundary_api_test/boundary_restrictable.i)
- (test/tests/outputs/sampled_output/over_sampling_test_file.i)
- (modules/porous_flow/test/tests/desorption/desorption02.i)
- (test/tests/restrictable/internal_side_user_object/internal_side_user_object.i)
- (test/tests/misc/dont_overghost/test_properly_ghosted.i)
- (modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i)
- (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_2D.i)
- (test/tests/geomsearch/patch_update_strategy/always-grid-sequence.i)
- (modules/porous_flow/test/tests/dirackernels/bh07.i)
- (modules/richards/test/tests/dirac/bh_lumped_07.i)
- (modules/solid_mechanics/test/tests/lagrangian/cartesian/total/action/action_L.i)
Child Objects
(modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/convergence/L/small.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/shell/static/inclined_straintest.i)
# Static test for the inclined shell element.
# A single shell element is oriented at a 45 deg. angle with respect to the Y axis.
# One end of the shell is fixed and an axial deformation to the shell element is
# applied at the other end by resolving the deformation into Y and Z direction.
# The stress and strain result in the global orientation when transformed to
# the shell oriention gives the correct value of the axial stress and strain.
[Mesh]
type = FileMesh
file = shell_inclined.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[rot_x]
[]
[rot_y]
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
variable = stress_xx
selected_qp = 0
rank_two_tensor = global_stress_t_points_0
index_i = 0
index_j = 0
[]
[strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_global_strain_t_points_0
selected_qp = 0
index_i = 0
index_j = 0
[]
[stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
selected_qp = 0
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_global_strain_t_points_0
selected_qp = 0
index_i = 1
index_j = 1
[]
[stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = global_stress_t_points_0
selected_qp = 0
index_i = 0
index_j = 1
[]
[strain_xy]
type = RankTwoAux
variable = strain_xy
rank_two_tensor = total_global_strain_t_points_0
selected_qp = 0
index_i = 0
index_j = 1
[]
[stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
selected_qp = 0
index_i = 1
index_j = 2
[]
[strain_yz]
type = RankTwoAux
variable = strain_yz
rank_two_tensor = total_global_strain_t_points_0
selected_qp = 0
index_i = 1
index_j = 2
[]
[stress_xz]
type = RankTwoAux
variable = stress_xz
rank_two_tensor = global_stress_t_points_0
selected_qp = 0
index_i = 0
index_j = 2
[]
[strain_xz]
type = RankTwoAux
variable = strain_xz
rank_two_tensor = total_global_strain_t_points_0
selected_qp = 0
index_i = 0
index_j = 2
[]
[stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = global_stress_t_points_0
selected_qp = 0
index_i = 2
index_j = 2
[]
[strain_zz]
type = RankTwoAux
variable = strain_zz
rank_two_tensor = total_global_strain_t_points_0
selected_qp = 0
index_i = 2
index_j = 2
[]
[]
[BCs]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = '0'
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = '0'
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = '0'
value = 0.0
[]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.0
[]
[dispz]
type = FunctionDirichletBC
variable = disp_z
boundary = '2'
function = force_function
[]
[dispy]
type = FunctionDirichletBC
variable = disp_y
boundary = '2'
function = force_function
[]
[]
[Functions]
[force_function]
type = PiecewiseLinear
x = '0.0 1'
y = '0.0 0.33535534'
[]
[]
[Kernels]
[solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[]
[solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[]
[solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[]
[solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[]
[solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 5
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[]
[strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[]
[stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[]
[]
[Postprocessors]
[stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[]
[strain_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = strain_yy
[]
[stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[]
[strain_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = strain_yz
[]
[stress_xx_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_xx
[]
[strain_xx_el_0]
type = ElementalVariableValue
elementid = 0
variable = strain_xx
[]
[stress_xy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_xy
[]
[strain_xy_el_0]
type = ElementalVariableValue
elementid = 0
variable = strain_xy
[]
[stress_xz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_xz
[]
[strain_xz_el_0]
type = ElementalVariableValue
elementid = 0
variable = strain_xz
[]
[stress_zz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_zz
[]
[strain_zz_el_0]
type = ElementalVariableValue
elementid = 0
variable = strain_zz
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 1
dtmin = 0.01
timestep_tolerance = 2e-13
end_time = 1
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/sampled_output/oversample_file.i)
[Mesh]
type = FileMesh
file = square.e
dim = 2
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
refinements = 1
file_base = exodus_oversample_custom_name
[../]
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/two_pipe_sub.i)
[Mesh]
type = FileMesh
file = two_pipe.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[var]
order = CONSTANT
family = MONOMIAL
block = p1
[]
[]
[ICs]
[var]
type = FunctionIC
variable = var
function = setvar
block = p1
[]
[]
[Functions]
[setvar]
type = ParsedFunction
expression = '1 + z * z'
[]
[]
[UserObjects]
[sub_app_uo]
type = LayeredAverage
direction = z
variable = var
num_layers = 10
execute_on = TIMESTEP_END
block = p1
[]
[]
[Executioner]
type = Transient
[]
(modules/solid_mechanics/test/tests/truss/truss_2d_action.i)
#
# Truss in two dimensional space
#
# The truss is made of five equilateral triangles supported at each end.
# The truss starts at (0,0). At (1,0), there is a point load of 25.
# The reactions are therefore
# Ryleft = 2/3 * 25 = 16.7
# Ryright = 1/3 * 25 = 8.33
# The area of each member is 0.8.
# Statics gives the stress in each member. For example, for element 6 (from
# (0,0) to (1/2,sqrt(3)/2)), the force is
# f = 2/3 * 25 * 2/sqrt(3) = 100/3/sqrt(3) (compressive)
# and the stress is
# s = -100/3/sqrt(3)/0.8 = -24.06
#
[Mesh]
type = FileMesh
file = truss_2d.e
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixy4]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '1 0 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = 1
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = 1
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = 1
variable = area
value = 0.8
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block]
truss = true
add_variables = true
displacements = 'disp_x disp_y'
# area = area # commented out for error check
block = 1
save_in = 'react_x react_y'
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = 1
youngs_modulus = 1e6
displacements = 'disp_x disp_y'
[../]
[]
[Outputs]
file_base = 'truss_2d_out'
exodus = true
[]
(modules/porous_flow/examples/reservoir_model/field_model.i)
# Field model generated using geophysical modelling tool
[Mesh]
type = FileMesh
file = field.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 -9.81'
temperature_unit = Celsius
[]
[Problem]
# Variable porepressure has an initial condition despite the restart
allow_initial_conditions_with_restart = true
[]
[Variables]
[porepressure]
initial_condition = 20e6
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[porosity]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = poro
[]
[permx_md]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permX
[]
[permy_md]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permY
[]
[permz_md]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permZ
[]
[permx]
family = MONOMIAL
order = CONSTANT
[]
[permy]
family = MONOMIAL
order = CONSTANT
[]
[permz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[permx]
type = ParsedAux
variable = permx
coupled_variables = permx_md
expression = '9.869233e-16*permx_md'
execute_on = initial
[]
[permy]
type = ParsedAux
variable = permy
coupled_variables = permy_md
expression = '9.869233e-16*permy_md'
execute_on = initial
[]
[permz]
type = ParsedAux
variable = permz
coupled_variables = permz_md
expression = '9.869233e-16*permz_md'
execute_on = initial
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = porepressure
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = porepressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
save_file = false
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
water_fp = watertab
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConstFromVar
perm_xx = permx
perm_yy = permy
perm_zz = permz
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e2
end_time = 1e2
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/total/stabilization/cook_small.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 10.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 250.0
poissons_ratio = 0.4999999
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
l_tol = 1e-10
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/materials/output/output_multiple_files.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Materials]
[block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property'
outputs = all
variable = u
[]
[block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property'
outputs = exodus2
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[exodus1]
type = Exodus
hide = u
[]
[exodus2]
type = Exodus
hide = u
[]
[]
(modules/solid_mechanics/examples/bridge/bridge.i)
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[./TensorMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
active = 'density_concrete stress strain elasticity_tensor_concrete'
[./elasticity_tensor_steel]
#Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./elasticity_tensor_concrete]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 16.5e9 #Pa
poissons_ratio = 0.2
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[./density_concrete]
#Defines the density of concrete
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 2400 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_direct.i)
[Mesh]
type = FileMesh
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
direct = true
from_variable = source_nodal
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/mesh/abaqus_input/testcube_elset_name.i)
[Mesh]
type = FileMesh
file = testcube_elset_name_in.inp
[]
(modules/heat_transfer/test/tests/conjugate_heat_transfer/conjugate_heat_transfer.i)
[Mesh]
type = FileMesh
file = simple_pb.e
[]
[Variables]
[./temp_wall]
block = 'left right'
[../]
[./temp_fluid]
block = 'center'
[../]
[]
[Kernels]
[./wall_conduction]
type = ADHeatConduction
variable = temp_wall
[../]
[./heat_source]
type = HeatSource
value = 1e3 # W/m^3
variable = temp_fluid
block = 'center'
[../]
[./center_conduction]
type = ADHeatConduction
variable = temp_fluid
block = 'center'
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = temp_wall
boundary = 'right'
value = 300
[../]
[./left]
type = DirichletBC
variable = temp_wall
boundary = 'left'
value = 100
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
[Materials]
[./walls]
type = ADHeatConductionMaterial
thermal_conductivity = 10 # W/m k
block = 'left right'
specific_heat = .49e3 # J/kg k
[../]
[./pb]
type = ADHeatConductionMaterial
thermal_conductivity = 1
specific_heat = .49e3 # J/kg K
block = 'center'
[../]
[./alpha_wall]
type = ADGenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1'
block = 'center'
[../]
[]
[InterfaceKernels]
[./left_center_wrt_center]
type = ConjugateHeatTransfer
variable = temp_fluid
T_fluid = temp_fluid
neighbor_var = 'temp_wall'
boundary = 'left_center_wrt_center'
htc = 'alpha_wall'
[../]
[./right_center_wrt_center]
type = ConjugateHeatTransfer
variable = temp_fluid
T_fluid = temp_fluid
neighbor_var = 'temp_wall'
boundary = 'right_center_wrt_center'
htc = 'alpha_wall'
[../]
[]
[Preconditioning]
[./Hypre]
type = SMP
petsc_options_value = 'lu hypre'
full = true
petsc_options_iname = '-pc_type -pc_hypre_type'
[../]
[]
(modules/richards/test/tests/theis/th_lumped_02.i)
# fully-saturated
# production
# lumped
[Mesh]
type = FileMesh
file = th02_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1 2 4 20'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pressure
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pressure
point = '50 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-6 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = th_lumped_02
csv = true
[]
(modules/solid_mechanics/test/tests/finite_strain_elastic/elastic_rotation_test.i)
#
# Rotation Test
#
# This test is designed to compute stress based on uniaxial strain
# and then follow that stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the three directions are prescribed. Poisson's
# ratio is 1/3, and Young's modulus is 1e6.
#
# This test is mentioned in
# K. Kamojjala, R. Brannon, A. Sadeghirad, and J. Guilkey, "Verification
# tests in solid mechanics," Engineering with Computers, Vol. 31, 2015.
# DOI: 10.1007/s00366-013-0342-x
#
[Mesh]
type = FileMesh
file = rotation_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./x_200]
type = ParsedFunction
symbol_names = 'delta t0'
symbol_values = '1e-6 1.0'
expression = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2*(t-t0)) - 1.0)'
[../]
[./y_200]
type = ParsedFunction
symbol_names = 'delta t0'
symbol_values = '1e-6 1.0'
expression = 'if(t<=1.0, 0.0, (1.0+delta)*sin(pi/2*(t-t0)))'
[../]
[./x_300]
type = ParsedFunction
symbol_names = 'delta t0'
symbol_values = '1e-6 1.0'
expression = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2.0*(t-t0)) - sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./y_300]
type = ParsedFunction
symbol_names = 'delta t0'
symbol_values = '1e-6 1.0'
expression = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) + (1+delta)*sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./x_400]
type = ParsedFunction
symbol_names = 'delta t0'
symbol_values = '1e-6 1.0'
expression = 'if(t<=1.0, 0.0, -sin(pi/2.0*(t-t0)))'
[../]
[./y_400]
type = ParsedFunction
symbol_names = 'delta t0'
symbol_values = '1e-6 1.0'
expression = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) - 1.0)'
[../]
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./x_200]
type = FunctionDirichletBC
variable = disp_x
boundary = 200
function = x_200
[../]
[./y_200]
type = FunctionDirichletBC
variable = disp_y
boundary = 200
function = y_200
[../]
[./x_300]
type = FunctionDirichletBC
variable = disp_x
boundary = 300
function = x_300
[../]
[./y_300]
type = FunctionDirichletBC
variable = disp_y
boundary = 300
function = y_300
[../]
[./x_400]
type = FunctionDirichletBC
variable = disp_x
boundary = 400
function = x_400
[../]
[./y_400]
type = FunctionDirichletBC
variable = disp_y
boundary = 400
function = y_400
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '100 200 300 400'
value = 0.0
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.5e6 0.75e6 0.75e6 1.5e6 0.75e6 1.5e6 0.375e6 0.375e6 0.375e6'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type '
petsc_options_value = lu
nl_rel_tol = 1e-30
nl_abs_tol = 1e-20
l_max_its = 20
start_time = 0.0
dt = 0.01
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/poro_mechanics/borehole_highres.i)
# Poroelastic response of a borehole.
#
# HIGHRES VERSION: this version gives good agreement with the analytical solution, but it takes a while so is a "heavy" test
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_highres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
coupled_variables = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
expression = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.1
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_highres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_highres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_highres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_highres_t
type = CSV
[../]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_trimesh.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 2D version
[Mesh]
type = FileMesh
file = trimesh.msh
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
block = '50'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.305,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.04 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_trimesh.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 2D version
[Mesh]
type = FileMesh
file = trimesh.msh
[]
[GlobalParams]
block = '50'
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.305,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.04 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/solid_mechanics/test/tests/beam/static/euler_finite_rot_y_action.i)
# Large strain/large rotation cantilever beam tese
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# shear coefficient (k) = 1.0
# Area (A) = 1.0
# Iy = Iz = 0.16
# The non-dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha is quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in y
# large rotations + small strain = -0.92 m in x and 2.38 m in y
# large rotations + large strain = -0.954 m in x and 2.37 m in y (exact -1.0 m in x and 2.4 m in y)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = 2
functor = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
strain_type = FINITE
rotation_type = FINITE
# Geometry parameters
area = 1.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_z
[../]
[]
[Outputs]
file_base = 'euler_finite_rot_y_out'
exodus = true
perf_graph = true
[]
(test/tests/misc/no_exodiff_map/no_exodiff_map.i)
[Mesh]
type = FileMesh
file = double_square.e
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left1]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right1]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[./left2]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 4
value = 4
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/patterned_mesh/mesh_tester.i)
[Mesh]
type = FileMesh
file = patterned_mesh_in.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = conductivity
prop_values = 100
[../]
[./mat2]
type = GenericConstantMaterial
block = 2
prop_names = conductivity
prop_values = 1e-4
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i)
# Flow and solute transport along 2 2D eliptical fractures embedded in a 3D porous matrix
# the model domain has dimensions 1 x 1 x 0.3m and the two fracture have r1 = 0.45 and r2 = 0.2
# The fractures intersect each other and the domain boundaries on two opposite sides
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m
# fracture permeability = 1.8e-11 which is based in k=3e-8 from a**2/12, and k*a = 3e-8*6e-4;
# matrix porosity = 0.1;
# matrix permeanility = 1e-20;
[Mesh]
type = FileMesh
file = coarse_3D.e
block_id = '1 2 3'
block_name = 'matrix f1 f2'
boundary_id = '1 2 3 4'
boundary_name = 'rf2 lf1 right_matrix left_matrix'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[tracer]
[]
[]
[AuxVariables]
[velocity_x]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[]
[velocity_y]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[]
[velocity_z]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[]
[]
[AuxKernels]
[velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[]
[velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[]
[velocity_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_z
component = z
aperture = 6E-4
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e6
[]
[tracer]
type = ConstantIC
variable = tracer
value = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0
variable = tracer
boundary = rf2
[]
[bottom]
type = DirichletBC
value = 1
variable = tracer
boundary = lf1
[]
[ptop]
type = DirichletBC
variable = pp
boundary = rf2
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = lf1
value = 1.02e6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = tracer
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = tracer
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = tracer
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'tracer'
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro1]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'f1 f2'
[]
[diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1.e-9 1.e-9'
tortuosity = 1.0
block = 'f1 f2'
[]
[poro2]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix'
[]
[diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1.e-9 1.e-9'
tortuosity = 0.1
block = 'matrix'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # 1.8e-11 = a * kf
block = 'f1 f2'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 20
dt = 1
[]
[VectorPostprocessors]
[xmass]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 41
variable = tracer
outputs = csv
[]
[]
[Outputs]
[csv]
type = CSV
execute_on = 'final'
[]
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/total/stabilization/cook_large.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 0.1
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 416666611.0991259
mu = 8300.33333888888926
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_max_its = 500
nl_abs_tol = 1e-5
nl_rel_tol = 1e-6
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/geomsearch/fake_block_to_boundary/fake_block_to_boundary.i)
[Mesh]
type = FileMesh
file = fake_geom_search.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./distance_to_left_nodes]
[../]
[./penetration_to_left]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nodal_distance_aux]
type = NearestNodeDistanceAux
variable = distance_to_left_nodes
boundary = 100
paired_boundary = left
[../]
[./penetration_aux]
type = PenetrationAux
variable = penetration_to_left
boundary = 100
paired_boundary = left
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/dirac/bh27.i)
#2-phase version of bh07 (go to steadystate with borehole)
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.6
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.6
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGnone
[../]
[./SUPGgas]
type = RichardsSUPGnone
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = 1E7
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = 1E7
[../]
[]
[BCs]
[./fix_outer_w]
type = DirichletBC
boundary = perimeter
variable = pwater
value = 1E7
[../]
[./fix_outer_g]
type = DirichletBC
boundary = perimeter
variable = pgas
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
fully_upwind = true
variable = pwater
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2 # this is to make the length 1m borehole fill the entire 2m height
[../]
[./bh_gas_dummy]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
fully_upwind = true
variable = pgas
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2 # this is to make the length 1m borehole fill the entire 2m height
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./water_mass]
type = RichardsMass
variable = pwater
execute_on = 'initial timestep_end'
[../]
[./gas_mass]
type = RichardsMass
variable = pgas
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 20 1E-10 1E-100'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh27
execute_on = 'initial timestep_end final'
time_step_interval = 1000000
exodus = true
[]
(test/tests/misc/check_error/nodal_value_off_block.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
[./u]
block = '1 2'
[../]
[./v]
block = 2
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[./v_diff]
type = Diffusion
variable = v
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = 1
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = 2
prop_names = a
prop_values = 10
[../]
[]
[Postprocessors]
[./off_block]
type = NodalVariableValue
variable = v
nodeid = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/richards/test/tests/dirac/bh_fu_08.i)
#fullyupwind
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh08.bh
borehole_length = 1
borehole_direction = '0 0 1'
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
fully_upwind = true
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh_fu_08
execute_on = 'initial timestep_end final'
time_step_interval = 10000
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/hs_boundary_external_app_heat_flux/main.i)
# Main input file.
#
# Run mesh.i first to produce a mesh file that this input uses:
#
# thermal_hydraulics-opt -i mesh.i --mesh-only mesh.e
length = 5.0
n_elems_axial = 10
rho_name = density
cp_name = specific_heat
k_name = thermal_conductivity
rho = 8000.0
cp = 500.0
k = 15.0
T_initial = 500.0
power = 1000.0
[Mesh]
type = FileMesh
file = mesh.e
[]
[Variables]
[T_solid]
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T_solid
value = ${T_initial}
[]
[]
[Kernels]
[time_derivative]
type = ADHeatConductionTimeDerivative
variable = T_solid
density_name = ${rho_name}
specific_heat = ${cp_name}
[]
[heat_conduction]
type = ADHeatConduction
variable = T_solid
thermal_conductivity = ${k_name}
[]
[]
[BCs]
[bc]
type = FunctorNeumannBC
variable = T_solid
boundary = 'inner'
functor = heat_flux_fn
flux_is_inward = false
[]
[]
[Materials]
[ad_constant_mat]
type = ADGenericConstantMaterial
prop_names = '${rho_name} ${cp_name} ${k_name}'
prop_values = '${rho} ${cp} ${k}'
[]
[]
[Functions]
[heat_flux_fn]
type = ParsedFunction
symbol_names = 'S'
symbol_values = 'inner_surface_area'
expression = '${power} / S'
[]
[]
[Postprocessors]
[inner_surface_area]
type = AreaPostprocessor
boundary = 'inner'
execute_on = 'INITIAL'
[]
[inner_perimeter]
type = ParsedPostprocessor
pp_names = 'inner_surface_area'
expression = 'inner_surface_area / ${length}'
execute_on = 'INITIAL'
[]
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = 'sub.i'
positions = '0 0 0'
max_procs_per_app = 1
output_in_position = true
execute_on = 'TIMESTEP_END'
[]
[]
[UserObjects]
[layered_average_heat_flux]
type = NearestPointLayeredSideAverageFunctor
direction = z
points='0 0 0'
num_layers = ${n_elems_axial}
functor = heat_flux_fn
boundary = 'inner'
execute_on = 'TIMESTEP_END'
[]
[]
[Transfers]
[heat_flux_transfer]
type = MultiAppGeneralFieldUserObjectTransfer
to_multi_app = sub
source_user_object = layered_average_heat_flux
variable = q_ext
error_on_miss = true
[]
[perimeter_transfer]
type = MultiAppPostprocessorTransfer
to_multi_app = sub
from_postprocessor = inner_perimeter
to_postprocessor = P_ext
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 10.0
num_steps = 1
abort_on_solve_fail = true
solve_type = NEWTON
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[]
(modules/richards/test/tests/theis/th02.i)
# fully-saturated
# production
[Mesh]
type = FileMesh
file = th02_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1 2 4 20'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pressure
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pressure
point = '50 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-6 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = th02
csv = true
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/convergence/L/large.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined_hht.i)
# Test to verify the fundamental natural frequency of a one element ADComputeShellStress
# BCs: Clamped on one end, free on others.
# Initial perturbation applied to edge of the beam. After that, the shell vibrates freely.
#
# Results have been compared for various thicknesses with the following approximate Results
# (Moose results were obtained with 8 elements along the length)
# Thickness = 0.1. Reference freq: 10.785 Hz, Moose freq: 10.612 Hz
# Thickness = 0.05. Reference freq: 5.393 Hz, Moose freq: 5.335 Hz
# Thickness = 0.025. Reference freq: 2.696 Hz, Moose freq: 2.660 Hz
#
# Reference values have been obtained from Robert Blevins, "Formulas for Dynamics, Acoustics and Vibration",
# Table 5.3 case 11. Formula looks like: f = lambda^2/(2*pi*a^2) * sqrt(E*h^2/(12*(1-nu*nu))), where lambda
# changes as a function of shell dimensions.
# This test uses one single element for speed reasons.
# Here, the shell, instead of being on the XY plane, is oriented at a 45 deg. angle
# with respect to the Y axis.
[Mesh]
type = FileMesh
file = shell_inclined.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
[../]
[./rot_y]
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
# aux variables for dynamics
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[./rot_vel_x]
[../]
[./rot_vel_y]
[../]
[./rot_accel_x]
[../]
[./rot_accel_y]
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
# Kernels for dynamics
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '0'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '0'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '0'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.0
[../]
[]
[Functions]
[./force_function]
type = PiecewiseLinear
x = '0.0 0.01 0.15 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_z
boundary = '2'
functor = force_function
[../]
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[./inertial_force_x]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 0
variable = disp_x
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_y]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 1
variable = disp_y
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_z]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 2
variable = disp_z
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_rot_x]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 3
variable = rot_x
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_rot_y]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 4
variable = rot_y
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.005
dtmin = 0.005
timestep_tolerance = 2e-13
end_time = 0.5
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
(modules/solid_mechanics/examples/bridge/bridge_large_strain.i)
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[./SolidMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
active = 'density_steel stress strain elasticity_tensor_steel'
[./elasticity_tensor_steel]
#Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./elasticity_tensor_concrete]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 16.5e9 #Pa
poissons_ratio = 0.2
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[./density_concrete]
#Defines the density of concrete
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 2400 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
dt = 0.1
num_steps = 1
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/truss/truss_3d_action.i)
[Mesh]
type = FileMesh
file = truss_3d.e
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0.0
[../]
[./fixx2]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 2
function = x2
[../]
[./fixx3]
type = DirichletBC
variable = disp_x
preset = false
boundary = 3
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./fixy2]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = y2
[../]
[./fixy3]
type = DirichletBC
variable = disp_y
preset = false
boundary = 3
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[./fixz3]
type = DirichletBC
variable = disp_z
preset = false
boundary = 3
value = 0
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = '1 2'
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
dt = 1
num_steps = 3
end_time = 3
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block]
truss = true
add_variables = true
displacements = 'disp_x disp_y disp_z'
area = area
block = '1 2'
save_in = 'react_x react_y react_z'
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = '1 2'
youngs_modulus = 1e6
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Outputs]
file_base = 'truss_3d_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/radial_disp_aux/sphere_3d_cartesian.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a sphere subjected to uniform thermal
# expansion represented using a 3D Cartesian model.
[Mesh]
type = FileMesh
file = sphere_sector_3d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = SECOND
family = LAGRANGE
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
expression = t+300.0
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementSphereAux
variable = rad_disp
origin = '0 0 0'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/partitioners/block_weighted_partitioner/block_weighted_partitioner.i)
[Mesh]
type = FileMesh
file = block_weighted_partitioner.e
[Partitioner]
type = BlockWeightedPartitioner
block = '1 2 3'
weight = '3 1 10'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = Newton
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[npid]
family = Lagrange
order = first
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[npid_aux]
type = ProcessorIDAux
variable = npid
execute_on = 'INITIAL'
[]
[]
(test/tests/materials/output/output_block_displaced.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
displacements = 'disp disp'
[]
[Functions]
[disp_fn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[disp]
[]
[]
[AuxKernels]
[disp_ak]
type = FunctionAux
variable = disp
function = disp_fn
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[]
[]
[Materials]
[block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property tensor_property'
outputs = exodus
variable = u
[]
[block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property tensor_property'
outputs = exodus
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[exodus]
type = Exodus
use_displaced = true
sequence = false
[]
[]
(modules/solid_mechanics/test/tests/beam/fric_constraint/2_block_common_cross.i)
# Test for LineElementAction on multiple blocks by placing parameters
# common to all blocks outside of the individual action blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = test_fric_cross.e
#displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1 3'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1 2 3'
value = 0.0
[../]
[./move_z4]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = pull
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0'
y = '0.0 0.0 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 5e-5
l_max_its = 10
dt = 1
dtmin = 1
end_time = 13
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
# parameters common to all blocks
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
y_orientation = '0.0 1.0 0.0'
[./block_1]
Iy = 1e-5
Iz = 1e-5
block = 1
[../]
[./block_2]
Iy = 8e-4
Iz = 8e-4
block = '2 3'
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2 3'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2 3'
[../]
[]
[Constraints]
[./tie_z]
type = NodalFrictionalConstraint
normal_force = 0.006
tangential_penalty = 100
friction_coefficient = 0.5
boundary = 6
secondary = 4
variable = disp_z
[../]
[./tie_z2]
type = NodalFrictionalConstraint
normal_force = 0.006
tangential_penalty = 100
friction_coefficient = 0.2
boundary = 6
secondary = 5
variable = disp_z
[../]
[]
[Postprocessors]
[./disp_x_1]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x_2]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_z_1]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[../]
[./disp_z_2]
type = NodalVariableValue
nodeid = 2
variable = disp_z
[../]
[]
[Outputs]
#file_base = '2_block_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/ad_pressure/pressure_test.i)
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 1.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[./Side2]
boundary = 2
function = zeroRamp
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
factor = 2.0
[../]
[./Side3]
boundary = 3
function = rampUnramp
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ADComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ADComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
block = 1
[../]
[./stress]
type = ADComputeLinearElasticStress
block = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/restrictable/check_error/check_error.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
block = '1 2'
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = '1'
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = '2'
prop_names = 'a'
prop_values = '10'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/solid_mechanics/test/tests/beam/static/euler_finite_rot_z.i)
# Large strain/large rotation cantilever beam test
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# Poisson's ratio (nu) = -0.99995
# shear coefficient (k) = 1.0
# Area (A) = 1.0
# Iy = Iz = 0.16
# The dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha ia quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in z
# large rotations + small strain = -0.92 m in x and 2.38 m in z
# large rotations + large strain = -0.954 m in x and 2.37 m in z (exact -1.0 m in x and 2.4 m in z)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = UserForcingFunctorNodalKernel
variable = disp_z
boundary = 2
functor = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeFiniteBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
large_strain = true
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_z
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/truss/truss_hex_action.i)
# This test is designed to check
# whether truss element works well with other multi-dimensional element
# e.g. the hex element in this case, by assigning different block number
# to different types of elements.
[Mesh]
type = FileMesh
file = truss_hex.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./fixx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[./fixDummyHex_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0
[../]
[./fixDummyHex_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0
[../]
[./fixDummyHex_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '0 -2 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area1]
type = ConstantAux
block = 1
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[./area2]
type = ConstantAux
block = 2
variable = area
value = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[SolidMechanics]
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block]
truss = true
displacements = 'disp_x disp_y disp_z'
area = area
block = '1 2'
save_in = 'react_x react_y react_z'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1000
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1000
[../]
[./linelast]
type = LinearElasticTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
youngs_modulus = 1e6
[../]
[]
[Outputs]
file_base = 'truss_hex_out'
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/two_pipe_sub.i)
[Mesh]
type = FileMesh
file = two_pipe.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[./var]
order = CONSTANT
family = MONOMIAL
block = p1
[../]
[]
[ICs]
[./var]
type = FunctionIC
variable = var
function = setvar
block = p1
[../]
[]
[Functions]
[./setvar]
type = ParsedFunction
expression = '1 + z * z'
[../]
[]
[UserObjects]
[./sub_app_uo]
type = LayeredAverage
direction = z
variable = var
num_layers = 10
execute_on = TIMESTEP_END
block = p1
[../]
[]
[Executioner]
type = Transient
[]
(modules/richards/test/tests/dirac/bh07.i)
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh07
execute_on = 'initial timestep_end final'
time_step_interval = 10000
exodus = true
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/action/no_action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
stabilize_strain = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[cauchy_stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[cauchy_stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
exodus = true
csv = false
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz_cross_section.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the global YZ plane, at 45 deg. angle; with in-plane loading
# perpendicular to the beam axis. Cross section moment of inertia about
# local z axis has been decreased 3 times to test for correct local section
# orientation.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0047296333
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 0.7071067812e-4
[../]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = -0.7071067812e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_y
[../]
[./disp_z]
type = PointValue
point = '0 2.8284271 2.8284271'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/stabilization/cook_small.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 10.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 250.0
poissons_ratio = 0.4999999
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
l_tol = 1e-10
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/stress_recovery/stress_concentration/stress_concentration.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = FileMesh
file = geo.msh
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx_recovered]
order = FIRST
family = LAGRANGE
[]
[stress_yy_recovered]
order = FIRST
family = LAGRANGE
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[]
[stress_xx_recovered]
type = NodalPatchRecoveryAux
variable = stress_xx_recovered
nodal_patch_recovery_uo = stress_xx_patch
execute_on = 'TIMESTEP_END'
[]
[stress_yy_recovered]
type = NodalPatchRecoveryAux
variable = stress_yy_recovered
nodal_patch_recovery_uo = stress_yy_patch
execute_on = 'TIMESTEP_END'
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[]
[Materials]
[strain]
type = ComputeSmallStrain
[]
[Cijkl]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 2.1e+5
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[BCs]
[top_xdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = 0
[]
[top_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = 0.01
[]
[bottom_xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'bottom'
function = 0
[]
[bottom_ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom'
function = 0
[]
[]
[UserObjects]
[stress_xx_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '0 0'
execute_on = 'TIMESTEP_END'
[]
[stress_yy_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '1 1'
execute_on = 'TIMESTEP_END'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = default
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
nl_rel_tol = 1e-14
l_max_its = 100
nl_max_its = 30
[]
[Outputs]
time_step_interval = 1
exodus = true
print_linear_residuals = false
[]
(modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i)
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = SolidMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./dil]
type = SolidMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = SolidMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial2_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
time_step_interval = 1
[../]
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is inclined on the YZ plane at 45 deg.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_x
[../]
# [./disp_y]
# type = PointValue
# point = '2.8284271 2.8284271 0.0'
# variable = disp_y
# [../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/geomsearch/quadrature_penetration_locator/1d_quadrature_penetration.i)
[Mesh]
type = FileMesh
file = 1d_penetration.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/restrictable/block_api_test/block_restrictable.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
block = '1 2'
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = '1'
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = '2'
prop_names = 'a'
prop_values = '10'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/theis/th_lumped_01.i)
# fully-saturated
# production
# lumped
[Mesh]
type = FileMesh
file = th01_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '0.5 1 2 10'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pressure
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pressure
point = '50 0 0'
execute_on = timestep_end
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-6 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = th_lumped_01
csv = true
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# The beam centerline is positioned on the global XZ plane at a 45deg. angle.
# Loading is along the global Y axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xz.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '2.8284271 0.0 2.8284271'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial3.i)
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = SolidMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = SolidMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc_psi]
type = SolidMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = SolidMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-10
nl_rel_tol = 1E-12
l_tol = 1E-2
l_max_its = 50
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial3
exodus = true
[./csv]
type = CSV
[../]
[]
(modules/misc/test/tests/fracture_flow/single.i)
# Models fluid advecting down a single fracture sitting at x=0, and 0<=y<=3.
#
[Mesh]
type = FileMesh
file = 'single.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_init]
type = ConstantIC
variable = u
value = 0
[../]
[]
[BCs]
[./inj]
type = DirichletBC
boundary = 1
variable = u
value = 1
[../]
[]
[Kernels]
[./matrix_dt]
type = CoefTimeDerivative
variable = u
Coefficient = 0.2 # matrix porosity
block = 1
[../]
[./matrix_diff]
type = AnisotropicDiffusion
variable = u
block = 1
tensor_coeff = '0.002 0 0 0 0 0 0 0 0' # matrix porosity * matrix diffusivity
[../]
[./fracture_dt]
type = CoefTimeDerivative
variable = u
Coefficient = 0.1 # fracture half-aperture * fracture porosity
block = 2
[../]
[./fracture_advect]
type = Convection
variable = u
block = 2
velocity = '0 0.08 0' # fracture half-aperture * velocity in fracture
[../]
[]
[Preconditioning]
[./standard]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 2e-1
end_time = 1.0
solve_type = Newton
nl_rel_tol = 1E-12
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/abaqus_input/testcube_elem_id.i)
[Mesh]
type = FileMesh
file = testcube_elem_id_in.inp
[]
(modules/solid_mechanics/test/tests/radial_disp_aux/cylinder_2d_cartesian.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a cylinder subjected to uniform thermal
# expansion represented using a 2D Cartesian model.
[Mesh]
type = FileMesh
file = circle_sector_2d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
expression = t+300.0
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementCylinderAux
variable = rad_disp
origin = '0 0 0'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(modules/richards/test/tests/theis/th01.i)
# fully-saturated
# production
[Mesh]
type = FileMesh
file = th01_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '0.5 1 2 10'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pressure
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pressure
point = '50 0 0'
execute_on = timestep_end
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-6 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = th01
csv = true
[]
(modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial2.i)
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = SolidMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = SolidMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc_psi]
type = SolidMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = SolidMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-9
nl_rel_tol = 1E-11
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial2
exodus = true
[./csv]
type = CSV
[../]
[]
(test/tests/auxkernels/current_boundary_id/current_boundary_id.i)
#
# This is used to create the mesh but it does not work with --distributed-mesh flag
# and the parallel test bombs.
#
#[Mesh]
# type = MeshGeneratorMesh
#
# [./cartesian]
# type = CartesianMeshGenerator
# dim = 2
# dx = '1 1'
# ix = '10 10'
# dy = '1'
# iy = '10'
# subdomain_id = '1 2'
# [../]
#
# [./interior_bc]
# type = SideSetsBetweenSubdomainsGenerator
# primary_block = 1
# paired_block = 2
# new_boundary = 12
# input = cartesian
# [../]
#[]
[Mesh]
type = FileMesh
file = current_boundary_id_in.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./u]
[../]
[]
[Executioner]
type = Steady
[]
[AuxVariables]
[./id1]
family = MONOMIAL
order = CONSTANT
[]
[./id2]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[./id1]
type = BIDAux
variable = id1
boundary = 'top'
[../]
[./id2]
type = BIDAux
variable = id2
boundary = '12'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/patch_update_strategy/auto.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = auto
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower.i)
# checking that the PorousFlowDarcyVelocityComponentLowerDimensional AuxKernel works as expected
# for the fully-saturated case (relative-permeability = 1)
# The fractured_block.e has size = 10x10x10, and a fracture running through its
# centre, with normal = (0, -sin(20deg), cos(20deg))
# Porepressure is initialised to grad(P) = (0, 0, 1)
# Fluid_density = 2
# viscosity = 10
# relative_permeability = 1
# permeability = (5, 5, 5) (in the bulk)
# permeability = (10, 10, 10) (in the fracture)
# aperture = 1
# gravity = (1, 0.5, 0.2)
# So Darcy velocity in the bulk = (1, 0.5, -0.3)
# in the fracture grad(P) = (0, 0.3213938, 0.11697778)
# In the fracture the projected gravity vector is
# tangential_gravity = (1, 0.5057899, 0.18409245)
# So the Darcy velocity in the fracture = (2, 0.690186, 0.251207)
[Mesh]
type = FileMesh
file = fractured_block.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '1 0.5 0.2'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pinit]
type = FunctionIC
function = z
variable = pp
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[AuxVariables]
[bulk_vel_x]
order = CONSTANT
family = MONOMIAL
[]
[bulk_vel_y]
order = CONSTANT
family = MONOMIAL
[]
[bulk_vel_z]
order = CONSTANT
family = MONOMIAL
[]
[fracture_vel_x]
order = CONSTANT
family = MONOMIAL
block = 3
[]
[fracture_vel_y]
order = CONSTANT
family = MONOMIAL
block = 3
[]
[fracture_vel_z]
order = CONSTANT
family = MONOMIAL
block = 3
[]
[]
[AuxKernels]
[bulk_vel_x]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_x
component = x
fluid_phase = 0
[]
[bulk_vel_y]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_y
component = y
fluid_phase = 0
[]
[bulk_vel_z]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_z
component = z
fluid_phase = 0
[]
[fracture_vel_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_x
component = x
fluid_phase = 0
[]
[fracture_vel_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_y
component = y
fluid_phase = 0
[]
[fracture_vel_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_z
component = z
fluid_phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1E16
viscosity = 10
density0 = 2
thermal_expansion = 0
[]
[]
[Postprocessors]
[bulk_vel_x]
type = ElementAverageValue
block = 1
variable = bulk_vel_x
[]
[bulk_vel_y]
type = ElementAverageValue
block = 1
variable = bulk_vel_y
[]
[bulk_vel_z]
type = ElementAverageValue
block = 1
variable = bulk_vel_z
[]
[fracture_vel_x]
type = ElementAverageValue
block = 3
variable = fracture_vel_x
[]
[fracture_vel_y]
type = ElementAverageValue
block = 3
variable = fracture_vel_y
[]
[fracture_vel_z]
type = ElementAverageValue
block = 3
variable = fracture_vel_z
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
block = '1 2'
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '10 0 0 0 10 0 0 0 10'
block = 3
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/radial_disp_aux/cylinder_3d_cartesian.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a cylinder subjected to uniform thermal
# expansion represented using a 3D Cartesian model.
[Mesh]
type = FileMesh
file = cylinder_sector_3d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = SECOND
family = LAGRANGE
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
expression = t+300.0
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementCylinderAux
variable = rad_disp
origin = '0 0 0'
axis_vector = '0 0 1'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = '3 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/auxkernels/solution_aux/solution_aux_direct.i)
[Mesh]
type = FileMesh
file = build_out_0001_mesh.xda
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./initial_cond_aux]
type = SolutionAux
solution = soln
variable = u_aux
execute_on = initial
direct = true
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
system_variables = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/sampled_output/over_sampling_second_file.i)
[Mesh]
type = FileMesh
# Read in and work with a second order mesh
file = wedge18_mesh.e
# If we have an oversample mesh file, we haven not yet implemented
# synchronization of its partitioning with the problem mesh, so we
# need to keep the problem mesh replicated.
parallel_type = replicated
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 4'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 3
[]
[Outputs]
file_base = out_wedge
[./oversample]
type = Exodus
file_base = out_wedge_oversample
file = wedge6_mesh.e
[../]
[]
(modules/solid_mechanics/test/tests/beam/action/2_block_common.i)
# Test for LineElementAction on multiple blocks by placing parameters
# common to all blocks outside of the individual action blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = 2_beam_block.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_1]
type = ConstantRate
variable = disp_y
boundary = 2
rate = 1e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
# parameters common to all blocks
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
y_orientation = '0.0 1.0 0.0'
[./block_1]
Iy = 1e-5
Iz = 1e-5
block = 1
[../]
[./block_2]
Iy = 2e-5
Iz = 2e-5
block = 2
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2'
[../]
[]
[Postprocessors]
[./disp_y_1]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[../]
[./disp_y_2]
type = PointValue
point = '1.0 1.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
file_base = '2_block_out'
exodus = true
[]
(modules/combined/test/tests/poro_mechanics/borehole_lowres.i)
# Poroelastic response of a borehole.
#
# LOWRES VERSION: this version does not give perfect agreement with the analytical solution
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_lowres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
coupled_variables = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
expression = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.3
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_lowres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_lowres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_lowres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_lowres_t
type = CSV
[../]
[]
(test/tests/geomsearch/patch_update_strategy/never.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = never
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/output/output_block.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[]
[]
[Materials]
[block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property tensor_property'
outputs = exodus
variable = u
[]
[block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property tensor_property'
outputs = exodus
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = aux_nonlinear_solution_adapt_out_0004_mesh.xda
parallel_type = replicated
[]
[Adaptivity]
marker = error_frac
steps = 2
[./Indicators]
[./jump_indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./error_frac]
type = ErrorFractionMarker
indicator = jump_indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]
(test/tests/geomsearch/2d_interior_boundary_penetration_locator/2d_interior_boundary_penetration_locator.i)
[Mesh]
type = FileMesh
file = meshed_gap.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./gap_distance]
[../]
[./gap_value]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = gap_distance
boundary = 2
paired_boundary = 3
[../]
[./gap_value]
type = GapValueAux
variable = gap_value
boundary = 2
paired_variable = u
paired_boundary = 3
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i)
# This example problem demonstrates coupling heat conduction with mechanics.
# A circular domain has as uniform heat source that increases with time
# and a fixed temperature on the outer boundary, resulting in a temperature gradient.
# This results in heterogeneous thermal expansion, where it is pinned in the center.
# Looking at the hoop stress demonstrates why fuel pellets have radial cracks
# that extend from the outer boundary to about halfway through the radius.
# The problem is run with length units of microns.
[Mesh]
#Circle mesh has a radius of 1000 units
type = FileMesh
file = circle.e
uniform_refine = 1
[]
[Variables]
# We solve for the temperature and the displacements
[./T]
initial_condition = 800
scaling = 1e7
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./radial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./hoop_stress]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'TensorMechanics htcond Q_function'
[./htcond] #Heat conduction equation
type = HeatConduction
variable = T
[../]
[./TensorMechanics] #Action that creates equations for disp_x and disp_y
displacements = 'disp_x disp_y'
[../]
[./Q_function] #Heat generation term
type = BodyForce
variable = T
value = 1
function = 0.8e-9*t
[../]
[]
[AuxKernels]
[./radial_stress] #Calculates radial stress from cartesian
type = CylindricalRankTwoAux
variable = radial_stress
rank_two_tensor = stress
index_j = 0
index_i = 0
center_point = '0 0 0'
[../]
[./hoop_stress] #Calculates hoop stress from cartesian
type = CylindricalRankTwoAux
variable = hoop_stress
rank_two_tensor = stress
index_j = 1
index_i = 1
center_point = '0 0 0'
[../]
[]
[BCs]
[./outer_T] #Temperature on outer edge is fixed at 800K
type = DirichletBC
variable = T
boundary = 1
value = 800
[../]
[./outer_x] #Displacements in the x-direction are fixed in the center
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./outer_y] #Displacements in the y-direction are fixed in the center
type = DirichletBC
variable = disp_y
boundary = 2
value = 0
[../]
[]
[Materials]
[./thcond] #Thermal conductivity is set to 5 W/mK
type = GenericConstantMaterial
block = 1
prop_names = 'thermal_conductivity'
prop_values = '5e-6'
[../]
[./iso_C] #Sets isotropic elastic constants
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '2.15e5 0.74e5'
block = 1
[../]
[./strain] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
block = 1
eigenstrain_names = eigenstrain
[../]
[./stress] #We use linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 273
block = 1
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 10
nl_abs_tol = 1e-9
l_tol = 1e-04
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/materials/has_material/has_boundary_prop.i)
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
active = 'u_diff'
[./u_diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = MatTestNeumannBC
variable = u
boundary = 2
mat_prop = 'right_bc'
has_check = true
[../]
[]
[Materials]
[./right_bc]
type = GenericConstantMaterial
boundary = 2
prop_names = 'right_bc'
prop_values = '2.0'
[../]
[./other]
type = GenericConstantMaterial
boundary = 1
prop_names = 'other_value'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i)
# exploring CONSTANT MONOMIAL
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
# try with and without the CONSTANT MONOMIAL to see that
# CONSTANT MONOMIAL yields the correct result that pressure(x=0) is unchanged
# but LINEAR LAGRANGE changes pressure(x=0) since pressure is not lumped at x=0
# (the x=0 eqn is a*dot(p0)+b*dot(p10)=0, and x=10 eqn a*dot(p10)+b*dot(p20)=desorption,
# and since dot(p10)>0, we get dot(p0)<0)
family = MONOMIAL
order = CONSTANT
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./rock]
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
[../]
[./lang_stuff]
type = LangmuirMaterial
block = centre_block
mat_desorption_time_const = 0.1
mat_adsorption_time_const = 0.1
mat_langmuir_density = 1
mat_langmuir_pressure = 1
pressure_var = pressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[]
[Outputs]
file_base = langmuir_lumping_problem
[]
(modules/chemical_reactions/test/tests/desorption/langmuir_jac2.i)
# testing whether when we have a centre block containing 'conc' which is a CONSTANT MONOMIAL, we get the correct Jacobian
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = RandomIC
variable = pressure
min = -1
max = 1
[../]
[./conc_ic]
type = RandomIC
variable = conc
min = -1
max = 1
block = centre_block
[../]
[]
[Kernels]
[./p_dot] # this is just so a kernel is defined everywhere
type = TimeDerivative
variable = pressure
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./nothing] # when any block contains a material, all blocks need to
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
prop_names = ''
prop_values = ''
[../]
[./langmuir_params]
type = MollifiedLangmuirMaterial
block = centre_block
one_over_desorption_time_const = 0.813E-10
one_over_adsorption_time_const = 0.813E-10
langmuir_density = 2.34
langmuir_pressure = 1.5
pressure_var = pressure
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = langmuir_jac2
[]
(test/tests/kernels/ode/coupled_ode_td_var_ic_from_mesh.i)
[Mesh]
type = FileMesh
file = 'coupled_ode_td_out.e'
[]
[Variables]
[f]
family = SCALAR
order = FIRST
initial_from_file_var = f
initial_from_file_timestep = 'LATEST'
[]
[f_times_mult]
family = SCALAR
order = FIRST
initial_from_file_var = f_times_mult
initial_from_file_timestep = 'LATEST'
[]
[]
[ScalarKernels]
[dT]
type = CoupledODETimeDerivative
variable = f
v = f_times_mult
[]
[src]
type = ParsedODEKernel
variable = f
expression = '-1'
[]
[f_times_mult_1]
type = ParsedODEKernel
variable = f_times_mult
expression = 'f_times_mult'
[]
[f_times_mult_2]
type = ParsedODEKernel
variable = f_times_mult
expression = '-f * g'
coupled_variables = 'f g'
[]
[]
[AuxVariables]
[g]
family = SCALAR
order = FIRST
[]
[]
[Functions]
[function_g]
type = ParsedFunction
expression = '(1 + t)'
[]
[]
[AuxScalarKernels]
[set_g]
type = FunctionScalarAux
function = function_g
variable = g
execute_on = 'linear initial'
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 3
nl_abs_tol = 1e-9
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/parent_uo_transfer.i)
# Test for multi app vector postprocessor to aux variable transfer
# Master App contains 2 beams, one starting at (1.5, 2.0, 2.0) and
# another starting at (2.5, 0.0, 3.0). Both beams extend for
# 0.150080 m along the y direction.
# Each subApp contains a 2D model of width 0.5 m and height 0.150080 m.
# A time varying temperature profile is assigned to each 2D model and
# the resulting yy strain along the right boundary (x = 0.5) is
# transferred to the beam model using the multi app transfer. The subApps
# are positioned in the [MultiApp] block such that the origin of the beams
# coincides with the origin of the subApp.
# For each master beam node/element, the MultiAppUserObjectTransfer finds
# the subApp where this node belongs, projects this node to the right
# boundary of the subApp and assigns the value corresponding to the
# projected point.
# Result: The y displacement of the beam should equal the y
# displacement along the right boundary of the 2D model.
[Mesh]
type = FileMesh
file = 2_beams_new.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e9
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.5
Ay = 0.0
Az = 0.0
Iy = 0.01
Iz = 0.01
y_orientation = '0.0 0.0 1.0'
eigenstrain_names = 'thermal'
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[./thermal]
type = ComputeEigenstrainBeamFromVariable
displacement_eigenstrain_variables = 'zero1 to_var zero2'
eigenstrain_name = thermal
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[AuxVariables]
[./to_var]
[../]
[./zero1]
[../]
[./zero2]
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = CombinedApp
positions = '1.5 2.0 2.0 2.5 0.0 3.0'
input_files = 'subapp1_uo_transfer.i subapp2_uo_transfer.i'
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppUserObjectTransfer
user_object = axial_str
from_multi_app = sub
variable = to_var
all_master_nodes_contained_in_sub_app = true
[../]
[]
[Postprocessors]
[./pos1]
type = PointValue
variable = disp_y
point = '1.5 2.150080 2.0'
[../]
[./pos2]
type = PointValue
variable = disp_y
point = '2.5 0.150080 3.0'
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/action/2_block.i)
# Test for LineElementAction on multiple blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = 2_beam_block.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_1]
type = ConstantRate
variable = disp_y
boundary = 2
rate = 1e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block_1]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
Iy = 1e-5
Iz = 1e-5
y_orientation = '0.0 1.0 0.0'
block = 1
[../]
[./block_2]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
Iy = 2e-5
Iz = 2e-5
y_orientation = '0.0 1.0 0.0'
block = 2
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2'
[../]
[]
[Postprocessors]
[./disp_y_1]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[../]
[./disp_y_2]
type = PointValue
point = '1.0 1.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/theis/th21.i)
# two-phase, fully-saturated
# production
[Mesh]
type = FileMesh
file = th01_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '0.5 1 2 10'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_pressure
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pwater
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pwater
point = '50 0 0'
execute_on = timestep_end
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-6 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = th21
csv = true
[]
(python/chigger/tests/input/mug_blocks.i)
[Mesh]
type = FileMesh
file = mug.e
[]
[MeshModifiers]
[./subdomains]
type = SubdomainBoundingBox
top_right = '3 3 3'
bottom_left = '0 -3 -2.1'
block_id = '76'
[../]
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux_elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
# Couple a variable into the convection kernel using local_name = simulationg_name syntax
type = Convection
variable = convected
velocity = '1 1 1'
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./diff_t]
type = TimeDerivative
variable = diffused
[../]
[./conv_t]
type = TimeDerivative
variable = convected
block = '76'
[../]
[]
[BCs]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = bottom
value = 1
[../]
[./top_convected]
type = DirichletBC
variable = convected
boundary = top
value = 0
[../]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = bottom
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = top
value = 0
[../]
[]
[Postprocessors]
[./func_pp]
type = FunctionValuePostprocessor
function = 2*t
[../]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
num_steps = 20
solve_type = PJFNK
dt = 0.1
[]
[Outputs]
exodus = true
[]
[ICs]
[./aux_ic]
variable = aux_elem
max = 10
seed = 2
type = RandomIC
[../]
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/total/convergence/L/large.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/auxkernels/element_aux_boundary/element_aux_boundary.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./real_property]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./real_property]
type = MaterialRealAux
variable = real_property
property = real_property
boundary = '1 2'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./boundary_1]
type = OutputTestMaterial
boundary = 1
real_factor = 2
variable = u
[../]
[./boundary_2]
type = OutputTestMaterial
boundary = 2
real_factor = 2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/sub.i)
# Derived from the example '3D_volumetric_cylindrical' with the following differences:
#
# 1) The model mesh is refined in the MasterApp by 1
# 2) Mesh adaptivity is enabled for the SubApp
# 3) Output from the SubApp is enabled so that the mesh changes can be visualized
[Mesh]
type = FileMesh
file = cyl-tet.e
[]
[Adaptivity]
marker = errorfrac
steps = 2
[./Indicators]
[./error]
type = GradientJumpIndicator
variable = s
outputs = none
[../]
[../]
[./Markers]
[./errorfrac]
type = ErrorFractionMarker
refine = 0.4
coarsen = 0.1
indicator = error
outputs = none
[../]
[../]
[]
# Non-copy transfers only work with AuxVariable, but nothing will be solved without a variable
# defined. The solution is to define an empty variable tha does nothing, but causes MOOSE to solve
# the AuxKernels that we need.
[Variables]
[./empty]
[../]
[]
[AuxVariables]
[./s]
order = FIRST
family = LAGRANGE
[../]
[./m_in]
order = FIRST
family = LAGRANGE
[../]
[]
# We must have a kernel for every variable, hence this null kernel to match the variable 'empty'
[Kernels]
[./null_kernel]
type = NullKernel
variable = empty
[../]
[]
[AuxKernels]
[./reconstruct_m_in]
type = FunctionSeriesToAux
function = FX_Basis_Value_Sub
variable = m_in
[../]
[./calculate_s] # Something to make 's' change each time, but allow a converging solution
type = ParsedAux
variable = s
coupled_variables = m_in
expression = '2*exp(-m_in/0.8)'
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXVolumeUserObject
function = FX_Basis_Value_Sub
variable = s
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
file_base = sub
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_direct.i)
[Mesh]
type = FileMesh
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
direct = true
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/coarse.i)
# Flow and solute transport along a fracture embedded in a porous matrix
# The fracture is represented by lower dimensional elements
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m = phi * a
# fracture permeability = 1.8e-11 which is based on k=3e-8 from a**2/12, and k*a = 3e-8*6e-4
# matrix porosity = 0.1
# matrix permeanility = 1e-20
[Mesh]
type = FileMesh
file = 'coarse.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity_x]
family = MONOMIAL
order = CONSTANT
block = 'fracture'
[]
[velocity_y]
family = MONOMIAL
order = CONSTANT
block = 'fracture'
[]
[]
[AuxKernels]
[velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[]
[velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[]
[]
[ICs]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[pp_matrix]
type = ConstantIC
variable = pp
value = 1E6
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[]
[bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = massfrac0
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro_fracture]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'fracture'
[]
[poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[]
[diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[]
[diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # 1.8e-11 = a * kf
block = 'fracture'
[]
[permeability_matrix]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 10
dt = 1
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
[]
[VectorPostprocessors]
[xmass]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 41
variable = massfrac0
outputs = csv
[]
[]
[Outputs]
[csv]
type = CSV
execute_on = 'final'
[]
[]
(test/tests/bcs/periodic/auto_dir_repeated_id.i)
[Mesh]
type = FileMesh
file = auto_dir_repeated_id.e
dim = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dot]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./z_all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = 'z_all'
function = 'z'
[../]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 1
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/solid_mechanics/examples/piston/piston_params.i)
## This example is documented on YouTube at:
## https://www.youtube.com/watch?v=L9plLYkAbvQ
##
## Additional files (e.g. the CAD model, results)
## can be downloaded freely from Zenodo at:
## https://doi.org/10.5281/zenodo.3886965
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
# Read in mesh from file
type = FileMesh
file = piston_coarse.e
[]
# This is where mesh adaptivity magic happens
[Adaptivity]
steps = 1
max_h_level = 3
cycles_per_step = 1
initial_marker = uniform
marker = errorFraction
[Markers]
[uniform]
type = UniformMarker
mark = refine
[]
[errorFraction]
type = ErrorFractionMarker
coarsen = 0.5
indicator = gradientJump
refine = 0.5
[]
[]
[Indicators]
[gradientJump]
type = GradientJumpIndicator
variable = disp_y
[]
[]
[]
[Physics/SolidMechanics/QuasiStatic]
# Parameters that apply to all subblocks are specified at this level.
# They can be overwritten in the subblocks.
add_variables = true
incremental = false
strain = SMALL
generate_output = 'vonmises_stress'
[block]
block = 1
[]
[]
[BCs]
[Pressure]
[load]
# Applies the pressure
boundary = load_surf
function = 't*550e5'
[]
[]
[symmetry_x]
# Applies symmetry on the xmin faces
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = 0.0
[]
[hold_y]
# Anchors the bottom against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = 0.0
[]
[symmetry_z]
# Applies symmetry on the zmin faces
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor_steel]
# Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[]
[stress]
# Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 1
[]
[]
[Preconditioning]
[SMP]
# Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[]
[]
[Executioner]
# We solve a steady state problem using Newton's iteration
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/richards/test/tests/theis/th22.i)
# two-phase, fully-saturated
# production
[Mesh]
type = FileMesh
file = th02_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1 2 4 20'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_pressure
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pwater
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pwater
point = '50 0 0'
execute_on = timestep_end
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-7 1E-10 20 1E-10 1E-100'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = th22
csv = true
[]
(modules/combined/test/tests/chemical_reactions_richards/langmuir_jac3.i)
# testing whether when we have a centre block containing 'conc' which is a CONSTANT MONOMIAL, and two-phase Richards flow, we get the correct Jacobian
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1.1E-5'
gravity = '0 0 -10'
linear_shape_fcns = true
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityMethane20degC
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.2
n = 3
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E+1
[../]
[]
[Variables]
[./pwater]
[../]
[./pgas]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./water]
type = ConstantIC
variable = pwater
value = 0.0
[../]
[./gas]
type = RandomIC
variable = pgas
min = 0
max = 5E5
[../]
[./conc_ic]
type = RandomIC
variable = conc
min = 0
max = 20
block = centre_block
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pgas
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pgas
conc_var = conc
[../]
[]
[Materials]
[./all_blocks]
type = RichardsMaterial
block = 'left_block centre_block right_block'
mat_porosity = 0.02
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[../]
[./langmuir_params]
type = LangmuirMaterial
block = centre_block
one_over_desorption_time_const = 0.813
one_over_adsorption_time_const = 0.813
langmuir_density = 20.0
langmuir_pressure = 1.5E6
pressure_var = pgas
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3 # get rid of the large c_dot contribution
[]
[Outputs]
execute_on = 'timestep_end'
file_base = langmuir_jac3
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_y.i)
# Test for small strain Euler beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is along the Y axis and loading along global X axis
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_y_mesh.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-1.0 0.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 4.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '0.0 4.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart1.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = cubesource.e
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
execute_on = 'initial timestep_begin'
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 5
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(test/tests/mesh/side_list_from_node_list/side_list_from_node_list.i)
[Mesh]
type = FileMesh
file = square_nodesets_only.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/fric_constraint/2_block_common_cross_stick.i)
# Test for LineElementAction on multiple blocks by placing parameters
# common to all blocks outside of the individual action blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = test_fric_cross.e
#displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1 3'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1 2 3'
value = 0.0
[../]
[./move_z4]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = pull
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0'
y = '0.0 0.0 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 5e-5
l_max_its = 10
dt = 1
dtmin = 1
end_time = 13
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
# parameters common to all blocks
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
y_orientation = '0.0 1.0 0.0'
[./block_1]
Iy = 1e-5
Iz = 1e-5
block = 1
[../]
[./block_2]
Iy = 8e-4
Iz = 8e-4
block = '2 3'
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2 3'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2 3'
[../]
[]
[Constraints]
[./tie_z]
type = NodalStickConstraint
penalty = 1e8
boundary = 6
secondary = 4
variable = disp_z
formulation = kinematic
[../]
[./tie_z2]
type = NodalStickConstraint
penalty = 1e8
boundary = 6
secondary = 5
variable = disp_z
formulation = kinematic
[../]
[]
[Postprocessors]
[./disp_x_1]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x_2]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_z_1]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[../]
[./disp_z_2]
type = NodalVariableValue
nodeid = 2
variable = disp_z
[../]
[]
[Outputs]
#file_base = '2_block_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/total/action/no_action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[cauchy_stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[cauchy_stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/materials/output/block_via_outputs.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 10
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Materials]
[block_1]
type = OutputTestMaterial
block = 1
variable = u
[]
[block_2]
type = OutputTestMaterial
block = 2
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[out]
type = Exodus
output_material_properties = true
show_material_properties = real_property
[]
[]
(test/tests/mesh/splitting/grid_from_file.i)
[Mesh]
type = FileMesh
file = grid_from_file.e
[Partitioner]
type = GridPartitioner
nx = 2
ny = 2
nz = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
(test/tests/functions/solution_function/solution_function_exodus_test.i)
# [Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
# []
[Mesh]
type = FileMesh
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[./sourcen]
type = SolutionFunction
scale_factor = 2.0
solution = cube_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
timestep = 2
system_variables = source_nodal
mesh = cubesource.e
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/postprocessors/nodal_extreme_value/nodal_extreme_pps_test.i)
[Mesh]
type = FileMesh
file = trapezoid.e
uniform_refine = 1
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = -x*cos(pi/3)
[../]
[./tr_y]
type = ParsedFunction
expression = x*sin(pi/3)
[../]
[./itr_x]
type = ParsedFunction
expression = -x/cos(pi/3)
[../]
[./itr_y]
type = ParsedFunction
expression = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = -1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
# active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 4
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[../]
[]
[Postprocessors]
[./max_nodal_pps]
type = NodalExtremeValue
variable = u
[../]
[./max_node_id]
type = NodalMaxValueId
variable = u
[../]
[./min_nodal_pps]
type = NodalExtremeValue
variable = u
value_type = min
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/element_quality_aux/element_quality_aux.i)
[Mesh]
type = FileMesh
file = mesh.e
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[quality]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[qa]
type = ElementQualityAux
variable = quality
metric = SHAPE
[]
[]
(modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i)
[Mesh]
type = FileMesh
file = crack_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Physics]
[./SolidMechanics]
[./QuasiStatic]
[./All]
add_variables = true
strain = Finite
additional_generate_output = stress_yy
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
use_displaced_mesh = true
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = '0.0001*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 300
slope = 1000
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 10.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.08 1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = '1.0e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./viscop_damage]
type = HyperElasticPhaseFieldIsoDamage
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
numerical_stiffness = false
damage_stiffness = 1e-8
c = c
F_name = E_el
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/dirac/bh_fu_07.i)
#fullyupwind
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
fully_upwind = true
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh_fu_07
execute_on = 'initial timestep_end final'
time_step_interval = 10000
exodus = true
[]
(test/tests/misc/line_source/line_source.i)
[Mesh]
type = FileMesh
file = line_source_cube.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = bulk
[../]
[./heating]
type = BodyForce
variable = u
function = 1
block = heater
[../]
[]
[BCs]
[./outside]
type = DirichletBC
variable = u
boundary = outside
value = 0
[../]
[]
[Materials]
[./diffusivity]
type = GenericConstantMaterial
block = 'bulk heater'
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./total_flux]
type = SideDiffusiveFluxIntegral
variable = u
boundary = outside
diffusivity = diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart2.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = cubesource.e
parallel_type = replicated
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
[]
[AuxVariables]
[nn]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[nn]
type = SolutionAux
variable = nn
solution = soln
[]
[]
[UserObjects]
[soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[]
[]
[BCs]
[stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 5
start_time = 2.5
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Problem]
restart_file_base = solution_aux_exodus_interp_restart1_out_cp/0005
# There are initial conditions overwriting the restart on the nonlinear variables
# However this test is targeted at the auxiliary variable initialized from the solution uo so it's ok
allow_initial_conditions_with_restart = true
[]
(modules/solid_mechanics/test/tests/lagrangian/action/simple_test.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
order = second
[]
[disp_y]
order = second
[]
[disp_z]
order = second
[]
[]
[Mesh]
type = FileMesh
file = 'second.exo'
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = FINITE
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz mechanical_strain_xx mechanical_strain_yy mechanical_strain_zz mechanical_strain_xy '
'mechanical_strain_xz mechanical_strain_yz'
[]
[]
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
csv = false
[]
(test/tests/materials/derivative_material_interface/ad_multiblock.i)
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./c]
[../]
[]
[Materials]
[./mat1]
type = ADDefaultMatPropConsumerMaterial
block = 1
[../]
[./mat2]
type = ADDefaultMatPropConsumerMaterial
block = 2
[../]
[./mat1b]
type = ADDefaultMatPropConsumerMaterial
mat_prop = prop2
block = 1
[../]
[./mat2b]
type = ADDefaultMatPropConsumerMaterial
mat_prop = prop2
block = 2
[../]
[./generic]
type = ADGenericConstantMaterial
block = '1 2'
prop_names = prop3
prop_values = 9
[../]
[./mat1c]
type = ADDefaultMatPropConsumerMaterial
mat_prop = prop3
block = 1
[../]
[./mat2c]
type = ADDefaultMatPropConsumerMaterial
mat_prop = prop3
block = 2
[../]
[]
[Kernels]
[./kern1]
type = ADDefaultMatPropConsumerKernel
variable = c
block = 1
[../]
[./kern2]
type = ADDefaultMatPropConsumerKernel
variable = c
block = 2
[../]
[./kern1b]
type = ADDefaultMatPropConsumerKernel
variable = c
mat_prop = prop3
block = 1
[../]
[./kern2b]
type = ADDefaultMatPropConsumerKernel
variable = c
mat_prop = prop3
block = 2
[../]
[]
[Executioner]
type = Steady
[]
[Debug]
show_material_props = true
[]
[Problem]
solve = false
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/desorption/desorption01.i)
# Illustrates desorption works as planned.
#
# A mesh contains 3 elements in arranged in a line.
# The central element contains desorped fluid.
# This desorps to the nodes of that element.
#
# In the central element, of volume V, the following occurs.
# The initial porepressure=1, and concentration=1.
# The initial mass of fluid is
# V * (2 * porosity * density + (1 - porosity) * concentration)
# = V * 1.289547
# Notice the factor of "2" in the porespace contribution:
# it is because the porepressure is evaluated at nodes, so
# the nodes on the exterior of the centre_block have
# nodal-volume contributions from the elements not in centre_block.
#
# The mass-conservation equation reads
# 2 * porosity * density + (1 - porosity) * concentration = 1.289547
# and the desorption equation reads
# d( (1-porosity)C )/dt = - (1/tau)(C - dens_L * P / (P_L + P))
# where C = concentration, P = porepressure, P_L = Langmuir pressure
# dens_L = Langmuir density, tau = time constant.
# Using the mass-conservation equation in the desorption equation
# yields a nonlinear equation of P. For dt=1, and the numerical values
# given below this yields
# P = 1.83697
# and
# C = 0.676616
# The desired result is achieved by MOOSE
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[]
[]
[ICs]
[p_ic]
type = ConstantIC
variable = pp
value = 1.0
[]
[conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[]
[]
[Kernels]
[porespace_mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[desorped_mass_dot]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = pp
[]
[desorped_mass_dot_conc_var]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = conc
[]
[flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp conc'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
viscosity = 1
density0 = 1
thermal_expansion = 0
[]
[]
[Materials]
[lang_stuff]
type = LangmuirMaterial
block = centre_block
one_over_adsorption_time_const = 10.0
one_over_desorption_time_const = 10.0
langmuir_density = 1
langmuir_pressure = 1
pressure_var = pp
conc_var = conc
[]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/action/action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = UPDATED
volumetric_locking_correction = true
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
[out]
type = Exodus
file_base = 'blah'
[]
[]
(test/tests/mesh/abaqus_input/testcube_elset_name_ws.i)
[Mesh]
type = FileMesh
file = testcube_elset_name_ws_in.inp
[]
(modules/solid_mechanics/test/tests/coupled_pressure/coupled_pressure_test.i)
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
# The pressure is computed as an auxiliary variable. It should give the same result
# as pressure_test.i
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = FileMesh
file = pressure_test.e
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 2.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[AuxVariables]
[./pressure_1]
[../]
[./pressure_2]
[../]
[./pressure_3]
[../]
[]
[AuxKernels]
[./side1_pressure_ak]
type = FunctionAux
variable = pressure_1
boundary = 1
function = rampConstant
[../]
[./side2_pressure_ak]
type = FunctionAux
variable = pressure_2
boundary = 2
function = zeroRamp
[../]
[./side3_pressure_ak]
type = FunctionAux
variable = pressure_3
boundary = 3
function = rampUnramp
[../]
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[./all]
strain = SMALL
add_variables = true
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./CoupledPressure]
[./Side1]
boundary = '1'
pressure = pressure_1
displacements = 'disp_x disp_y disp_z'
[../]
[./Side2]
boundary = '2'
pressure = pressure_2
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[./side3_x]
type = CoupledPressureBC
variable = 'disp_x'
boundary = '3'
pressure = pressure_3
component = 0
[../]
[./side3_y]
type = CoupledPressureBC
variable = 'disp_y'
boundary = '3'
pressure = pressure_3
component = 1
[../]
[./side3_z]
type = CoupledPressureBC
variable = 'disp_z'
boundary = '3'
pressure = pressure_3
component = 2
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/constraints/tied_value_constraint/tied_value_constraint_test.i)
# [Debug]
# show_top_residuals = 5
# []
[Mesh]
type = FileMesh
file = constraint_test.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
# active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Constraints]
[./value]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[../]
[]
[Preconditioning]
# active = 'FDP'
active = ''
[./FDP]
# full = true
# off_diag_row = 'v'
# off_diag_column = 'u'
type = FDP
[../]
[]
[Executioner]
# l_tol = 1e-1
# l_tol = 1e-
# nl_rel_tol = 1e-14
type = Steady
solve_type = NEWTON
l_max_its = 100
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_cross_section.i)
# Test for small strain Euler beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the global YZ plane at a 45 deg. angle. The cross section geometry
# is non-symmetric
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0047296333
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_x
[../]
# [./disp_y]
# type = PointValue
# point = '2.8284271 2.8284271 0.0'
# variable = disp_y
# [../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/solid_mechanics/test/tests/beam/static/euler_finite_rot_y.i)
# Large strain/large rotation cantilever beam test
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# shear coefficient (k) = 1.0
# Poisson's ratio (nu) = -0.99995
# Area (A) = 1.0
# Iy = Iz = 0.16
# The dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha is quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in y
# large rotations + small strain = -0.92 m in x and 2.38 m in y
# large rotations + large strain = -0.954 m in x and 2.37 m in y (exact -1.0 m in x and 2.4 m in y)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = 2
functor = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeFiniteBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
large_strain = true
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_z
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i)
# Basic example coupling a master and sub app in a 3D cylindrical mesh from an input file
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable, the recommended approach.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = FileMesh
file = cyl-tet.e
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the XY plane and the loading is in-plane, perpendicular to the
# beam longitudinal axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 0.7071067812e-4
[../]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = -0.7071067812e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_y
[../]
[./disp_z]
type = PointValue
point = '0 2.8284271 2.8284271'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_z.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is along the z axis
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_z_mesh.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 0.0 4.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '0.0 0.0 4.0'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/geomsearch/patch_update_strategy/always.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = always
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/truss/truss_2d.i)
#
# Truss in two dimensional space
#
# The truss is made of five equilateral triangles supported at each end.
# The truss starts at (0,0). At (1,0), there is a point load of 25.
# The reactions are therefore
# Ryleft = 2/3 * 25 = 16.7
# Ryright = 1/3 * 25 = 8.33
# The area of each member is 0.8.
# Statics gives the stress in each member. For example, for element 6 (from
# (0,0) to (1/2,sqrt(3)/2)), the force is
# f = 2/3 * 25 * 2/sqrt(3) = 100/3/sqrt(3) (compressive)
# and the stress is
# s = -100/3/sqrt(3)/0.8 = -24.06
#
[Mesh]
type = FileMesh
file = truss_2d.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixy4]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '1 0 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = 1
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = 1
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = 1
variable = area
value = 0.8
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./solid_x]
type = StressDivergenceTensorsTruss
block = 1
displacements = 'disp_x disp_y'
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[./solid_y]
type = StressDivergenceTensorsTruss
block = 1
displacements = 'disp_x disp_y'
component = 1
variable = disp_y
area = area
save_in = react_y
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = 1
youngs_modulus = 1e6
displacements = 'disp_x disp_y'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/output/output_boundary.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Materials]
[block]
type = OutputTestMaterial
block = '1 2'
output_properties = tensor_property
variable = u
outputs = exodus
[]
[boundary_1]
type = OutputTestMaterial
boundary = 1
output_properties = real_property
outputs = exodus
variable = u
real_factor = 2
[]
[boundary_2]
type = OutputTestMaterial
boundary = 2
output_properties = 'real_property vector_property'
real_factor = 2
variable = u
outputs = exodus
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/radial_disp_aux/sphere_2d_axisymmetric.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a sphere subjected to uniform thermal
# expansion represented using a 2D axisymmetric model.
[Mesh]
type = FileMesh
file = circle_sector_2d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
expression = t+300.0
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementSphereAux
variable = rad_disp
origin = '0 0 0'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/controls/time_periods/constraints/constraints.i)
[Mesh]
type = FileMesh
file = constraints.e
# NearestNodeLocator, which is needed by TiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[]
[Problem]
use_hash_table_matrix_assembly = true
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[]
[]
[Constraints]
[complete]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[]
[lower]
type = TiedValueConstraint
variable = u
secondary = inside_right_lower
primary = inside_left_lower
primary_variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 40
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[constraints]
type = TimePeriod
disable_objects = 'Constraints/lower Constraint::complete'
start_time = '0.0 2.0'
end_time = '2.0 4.0'
execute_on = 'initial timestep_begin'
[]
[]
(test/tests/constraints/coupled_tied_value_constraint/coupled_tied_value_constraint.i)
[Mesh]
type = FileMesh
file = split_blocks.e
# NearestNodeLocator, which is needed by CoupledTiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[]
[Problem]
use_hash_table_matrix_assembly = true
[]
[Variables]
[./u]
block = left
[../]
[./v]
block = right
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
block = left
[../]
[./diff_v]
type = Diffusion
variable = v
block = right
[../]
[]
[BCs]
active = 'right left'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 4
value = 1
[../]
[]
[Constraints]
[./value]
type = CoupledTiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = v
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_max_its = 100
nl_max_its = 2
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i)
# Derived from the example '3D_volumetric_cylindrical' with the following differences:
#
# 1) The model mesh is refined in the MasterApp by 1
# 2) Mesh adaptivity is enabled for the SubApp
# 3) Output from the SubApp is enabled so that the mesh changes can be visualized
[Mesh]
type = FileMesh
file = cyl-tet.e
uniform_refine = 1
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
output_sub_cycles = true
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/restart/duplicate_node/duplicate_node.i)
[Mesh]
type = FileMesh
# Contains multiple nodes in the same positions
file = duplicate_nodes.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i)
# Using a single-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
type = FileMesh
# The gold mesh is used to reduce the number of large files in the MOOSE repository.
# The porepressure is not read from the gold mesh
file = 'gold/fine_thick_fracture_steady_out.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e6
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # the true permeability is used without scaling by aperture
block = 'fracture'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
# controls for nonlinear iterations
nl_abs_tol = 1e-9
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/total/convergence/L/small.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp.i)
[Mesh]
type = FileMesh
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/solid_mechanics/test/tests/truss/truss_3d.i)
[Mesh]
type = FileMesh
file = truss_3d.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0.0
[../]
[./fixx2]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 2
function = x2
[../]
[./fixx3]
type = DirichletBC
variable = disp_x
preset = false
boundary = 3
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./fixy2]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = y2
[../]
[./fixy3]
type = DirichletBC
variable = disp_y
preset = false
boundary = 3
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[./fixz3]
type = DirichletBC
variable = disp_z
preset = false
boundary = 3
value = 0
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = '1 2'
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
dt = 1
num_steps = 3
end_time = 3
[]
[Kernels]
[./solid_x]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[./solid_y]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 1
variable = disp_y
area = area
save_in = react_y
[../]
[./solid_z]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 2
variable = disp_z
area = area
save_in = react_z
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = '1 2'
youngs_modulus = 1e6
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/void2d_iso.i)
[Mesh]
type = FileMesh
file = void2d_mesh.xda
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Physics]
[./SolidMechanics]
[./QuasiStatic]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = stress_yy
[../]
[../]
[../]
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[Functions]
[./tfunc]
type = ParsedFunction
expression = t
[../]
[./void_prop_func]
type = ParsedFunction
expression = 'rad:=0.2;m:=50;r:=sqrt(x^2+y^2);1-exp(-(r/rad)^m)+1e-8'
[../]
[./gb_prop_func]
type = ParsedFunction
expression = 'rad:=0.2;thk:=0.05;m:=50;sgnx:=1-exp(-(x/rad)^m);v:=sgnx*exp(-(y/thk)^m);0.005*(1-v)+0.001*v'
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tfunc
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.01 0.1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = 'gb_prop_func'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
elasticity_tensor_prefactor = void_prop_func
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
property_name = fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm lu 1'
nl_rel_tol = 1e-9
nl_max_its = 10
l_tol = 1e-4
l_max_its = 40
dt = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/sub.i)
# Basic example coupling a master and sub app in a 3D cylindrical mesh from an input file
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable, the recommended approach.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = FileMesh
file = cyl-tet.e
[]
# Non-copy transfers only work with AuxVariable, but nothing will be solved without a variable
# defined. The solution is to define an empty variable tha does nothing, but causes MOOSE to solve
# the AuxKernels that we need.
[Variables]
[./empty]
[../]
[]
[AuxVariables]
[./s]
order = FIRST
family = LAGRANGE
[../]
[./m_in]
order = FIRST
family = LAGRANGE
[../]
[]
# We must have a kernel for every variable, hence this null kernel to match the variable 'empty'
[Kernels]
[./null_kernel]
type = NullKernel
variable = empty
[../]
[]
[AuxKernels]
[./reconstruct_m_in]
type = FunctionSeriesToAux
function = FX_Basis_Value_Sub
variable = m_in
[../]
[./calculate_s] # Something to make 's' change each time, but allow a converging solution
type = ParsedAux
variable = s
coupled_variables = m_in
expression = '2*exp(-m_in/0.8)'
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXVolumeUserObject
function = FX_Basis_Value_Sub
variable = s
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/solid_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i)
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = SolidMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./dil]
type = SolidMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = SolidMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
use_custom_returnMap = false
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial3_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
time_step_interval = 1
[../]
[]
(modules/solid_mechanics/test/tests/pressure/pressure_test.i)
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 1.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
[../]
[./Side2]
boundary = 2
function = zeroRamp
displacements = 'disp_x disp_y disp_z'
factor = 2.0
[../]
[./Side3]
boundary = 3
function = rampUnramp
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
block = 1
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz_force_xz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# The beam centerline is positioned on the global XZ plane at a 45deg. angle.
# Loading is along on the XZ plane perpendicular to beam centerline.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xz.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 0.70710678e-4
[../]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = -0.70710678e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '2.8284271 0.0 2.8284271'
variable = disp_x
[../]
[./disp_z]
type = PointValue
point = '2.8284271 0.0 2.8284271'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/kernels/ode/coupled_ode_td_auxvar_ic_from_mesh.i)
[Mesh]
type = FileMesh
file = 'coupled_ode_td_out.e'
[]
[Variables]
[f]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[f_times_mult]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[]
[ScalarKernels]
[dT]
type = CoupledODETimeDerivative
variable = f
v = f_times_mult
[]
[src]
type = ParsedODEKernel
variable = f
expression = '-1'
[]
[f_times_mult_1]
type = ParsedODEKernel
variable = f_times_mult
expression = 'f_times_mult'
[]
[f_times_mult_2]
type = ParsedODEKernel
variable = f_times_mult
expression = '-f * g'
coupled_variables = 'f g'
[]
[]
[AuxVariables]
[g]
family = SCALAR
order = FIRST
initial_from_file_var = g
initial_from_file_timestep = 'LATEST'
[]
[]
[Functions]
[function_g]
type = ParsedFunction
expression = '(1 + t)'
[]
[]
[AuxScalarKernels]
[set_g]
type = FunctionScalarAux
function = function_g
variable = g
execute_on = 'timestep_end'
[]
[]
[Problem]
# There are initial conditions overwriting the restart on the nonlinear variables
# However this test is targeted at the auxiliary variable restart so it's ok
allow_initial_conditions_with_restart = true
[]
[Executioner]
type = Transient
dt = 1
num_steps = 3
nl_abs_tol = 1e-9
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy_force_xy.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the XY plane with load applied along the Z axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xy.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-0.7071067812 0.7071067812 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 0.7071067812e-4
[../]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = -0.7071067812e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '2.8284271 2.8284271 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '2.8284271 2.8284271 0.0'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/richards/test/tests/excav/ex02.i)
###########################################
# #
# THIS EXAMPLE CONTAINS AN EXCAVATION #
# #
###########################################
# Easiest way of figuring out what's happening:
# Run this example, load into paraview, take
# a slice through (0,0,0) with normal (0,0,1),
# colour by pressure and play the animation.
# This mesh has an interior sideset called excav_bdy
[Mesh]
type = FileMesh
file = ex01_input.e
[]
# This is a boundary condition acting on excav_bdy
# All it does is to set the pressure to p_excav=0
# at places on excav_bdy wherever excav_fcn tells it to.
[BCs]
[./excav_bdy]
type = RichardsExcav
boundary = excav_bdy
p_excav = 0.0
variable = pressure
excav_geom_function = excav_fcn
[../]
[]
[Functions]
# excav_fcn controls where to set pressure=p_excav
# You supply start and end positions and times and
# by a linear interpolation these define the position
# of the coal face at all times
[./excav_fcn]
type = RichardsExcavGeom
start_posn = '0 -500 0'
start_time = 0
end_posn = '0 500 0'
end_time = 3E7
active_length = 1E4
[../]
# mass_bal_fcn calculates the mass balance
[./mass_bal_fcn]
type = ParsedFunction
expression = abs((mi-fout-mf)/2/(mi+mf))
symbol_names = 'mi mf fout'
symbol_values = 'mass_init mass_final flux_out'
[../]
# initial pressure - unimportant in this example
[./initial_pressure]
type = ParsedFunction
expression = -10000*(z-100)
[../]
[]
# following is needed by postprocessors, kernels, etc
# unimportant in this example
[GlobalParams]
richardsVarNames_UO = PPNames
[]
# following does the calculation of relevant
# masses and mass-flux to the excavation
[Postprocessors]
# note that this is calculated at beginning of timestep
[./mass_init]
type = RichardsMass
variable = pressure
execute_on = timestep_begin
[../]
# note this is calculated at end of timestep
[./mass_final]
type = RichardsMass
variable = pressure
execute_on = timestep_end
[../]
# this is what calculates the mass flux to the excavation
# it is calculating it for boundary=excav_bdy, and the
# excavation time-dependence is set through the excav_fcn
[./flux_out]
type = RichardsExcavFlow
boundary = excav_bdy
variable = pressure
excav_geom_function = excav_fcn
[../]
# mass_bal just outputs the result to screen
[./mass_bal]
type = FunctionValuePostprocessor
function = mass_bal_fcn
[../]
[]
######################################
# #
# THE FOLLOWING STUFF IS STANDARD #
# #
######################################
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E+2
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = '1 2 3 4'
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
gravity = '0 0 -10'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 3E7
dt = 1E6
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ex02
exodus = true
[]
(test/tests/ics/check_error/two_ics_on_same_block.i)
[Mesh]
type = FileMesh
file = 'rectangle.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./block]
type = ConstantIC
variable = u
block = 1
value = 0.5
[../]
[./block2]
type = ConstantIC
variable = u
block = 1
value = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Executioner]
type = Steady
[]
(test/tests/materials/derivative_material_interface/multiblock.i)
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./c]
[../]
[]
[Materials]
[./mat1]
type = DefaultMatPropConsumerMaterial
block = 1
[../]
[./mat2]
type = DefaultMatPropConsumerMaterial
block = 2
[../]
[./mat1b]
type = DefaultMatPropConsumerMaterial
mat_prop = prop2
block = 1
[../]
[./mat2b]
type = DefaultMatPropConsumerMaterial
mat_prop = prop2
block = 2
[../]
[./generic]
type = GenericConstantMaterial
block = '1 2'
prop_names = prop3
prop_values = 9
[../]
[./mat1c]
type = DefaultMatPropConsumerMaterial
mat_prop = prop3
block = 1
[../]
[./mat2c]
type = DefaultMatPropConsumerMaterial
mat_prop = prop3
block = 2
[../]
[]
[Kernels]
[./kern1]
type = DefaultMatPropConsumerKernel
variable = c
block = 1
[../]
[./kern2]
type = DefaultMatPropConsumerKernel
variable = c
block = 2
[../]
[./kern1b]
type = DefaultMatPropConsumerKernel
variable = c
mat_prop = prop3
block = 1
[../]
[./kern2b]
type = DefaultMatPropConsumerKernel
variable = c
mat_prop = prop3
block = 2
[../]
[]
[Executioner]
type = Steady
[]
[Debug]
show_material_props = true
[]
[Problem]
solve = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/cns/step/step.i)
# Navier-Stokes (or Euler) flow of an ideal gas over a step.
#
# Note: this problem is not currently a regression test for the
# Navier-Stokes module since it is in some sense ill-posed. As
# discussed in [0], the sharp corner of the step (both forward and
# backward-facing) introduces a singularity in the first derivative of
# the velocity and pressure fields, and therefore produces large
# numerical errors in the neighborhood of these points. Physically,
# this numerical error can be interpreted as causing an artificial
# "boundary layer" to form just above the step, as well as a spurious
# production of entropy even though the flow remains subsonic.
# Nevertheless, the forward-facing step problem in particular remains
# a challenging and well-document test problem for flow solvers, and
# this input file is included to help facilitate its development and
# employment by users of the module.
#
# [0]: Woodward and Colella, "The numerical simulation of
# two-dimenstional fluid flow with strong shocks," Journal of
# Computational Physics 54(1), pp. 115-173, 1984
[Mesh]
type = FileMesh
file = step.e
dim = 2
# uniform_refine = 3
[]
[FluidProperties]
[ideal_gas]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Modules]
[CompressibleNavierStokes]
# steady-state or transient
equation_type = transient
# fluid
fluid_properties = ideal_gas
# boundary conditions
stagnation_boundary = left
stagnation_pressure = 120192.995549849 # Pa, Mach=0.5 at 1 atm
stagnation_temperature = 315 # K, Mach=0.5 at 1 atm
stagnation_flow_direction = '1 0'
no_penetration_boundary = 'top bottom step_top step_left step_right'
static_pressure_boundary = 'right'
static_pressure = 101325 # Pa
# variable types, scalings and initial conditions
family = LAGRANGE
order = FIRST
total_energy_scaling = 9.869232667160121e-6
initial_pressure = 101325.
initial_temperature = 300.
initial_velocity = '173.594354746921 0 0' # Mach 0.5: = 0.5*sqrt(gamma*R*T)
[]
[]
[Materials]
[fluid]
type = Air
block = 1
rho = rho
rhou = rhou
rhov = rhov
rhoE = rhoE
vel_x = vel_x
vel_y = vel_y
temperature = temperature
enthalpy = enthalpy
# This value is not used in the Euler equations, but it *is* used
# by the stabilization parameter computation, which it decreases
# the amount of artificial viscosity added, so it's best to use a
# realistic value.
dynamic_viscosity = 0.0
fluid_properties = ideal_gas
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 5.e-5
dtmin = 1.e-5
start_time = 0.0
num_steps = 10000
nl_rel_tol = 1e-5
nl_abs_tol = 1e-9
# nl_abs_step_tol = 1e-15
nl_max_its = 5
l_tol = 1e-4 # Relative linear tolerance for each Krylov solve
l_max_its = 100 # Number of linear iterations for each Krylov solve
# Specify the order as FIRST, otherwise you will get warnings in DEBUG mode...
[Quadrature]
type = TRAP
order = FIRST
[]
[]
[Outputs]
file_base = step_out
time_step_interval = 1
exodus = true
[]
(test/tests/ics/check_error/two_ics_on_same_block_global.i)
[Mesh]
type = FileMesh
file = 'rectangle.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./block]
type = ConstantIC
variable = u
value = 2
[../]
[./block2]
type = ConstantIC
variable = u
value = 0.5
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Executioner]
type = Steady
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_except.i)
# Exception testing for PorousFlowDarcyVelocityComponentLowerDimensional
# Checking that an error is produced if the AuxVariable is not defined only on
# lower-dimensional elements
[Mesh]
type = FileMesh
file = fractured_block.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '1 0.5 0.2'
[]
[Variables]
[pp]
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[AuxVariables]
[fracture_vel_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[fracture_vel_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_x
component = x
fluid_phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1E16
viscosity = 10
density0 = 2
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/updated/stabilization/cook_large.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 0.1
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 416666611.0991259
mu = 8300.33333888888926
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_max_its = 500
nl_abs_tol = 1e-5
nl_rel_tol = 1e-6
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/truss/truss_hex.i)
# This test is designed to check
# whether truss element works well with other multi-dimensional element
# e.g. the hex element in this case, by assigning different brock number
# to different types of elements.
[Mesh]
type = FileMesh
file = truss_hex.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./fixx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[./fixDummyHex_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0
[../]
[./fixDummyHex_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0
[../]
[./fixDummyHex_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '0 -2 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area1]
type = ConstantAux
block = 1
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[./area2]
type = ConstantAux
block = 2
variable = area
value = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./truss_x]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
area = area
save_in = react_x
[../]
[./truss_y]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_y
component = 1
displacements = 'disp_x disp_y disp_z'
area = area
save_in = react_y
[../]
[./truss_z]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_z
component = 2
displacements = 'disp_x disp_y disp_z'
area = area
save_in = react_z
[../]
[SolidMechanics]
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
# [./hex_x]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_x
# component = 0
# displacements = 'disp_x disp_y disp_z'
# [../]
# [./hex_y]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_y
# component = 1
# displacements = 'disp_x disp_y disp_z'
# [../]
# [./hex_z]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_z
# component = 2
# displacements = 'disp_x disp_y disp_z'
# [../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1000
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1000
[../]
[./linelast]
type = LinearElasticTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
youngs_modulus = 1e6
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/shell/static/inclined_straintest_local_stress.i)
# Static test for the inclined shell element.
# A single shell element is oriented at a 45 deg. angle with respect to the Y axis.
# One end of the shell is fixed and an axial deformation to the shell element is
# applied at the other end by resolving the deformation into Y and Z direction.
# The local stresses are computed and stored in aux variables.
# The local stress_22 should be zero (because of plane stress condition).
[Mesh]
type = FileMesh
file = shell_inclined.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[rot_x]
[]
[rot_y]
[]
[]
[AuxVariables]
[stress_00]
order = CONSTANT
family = MONOMIAL
[]
[stress_11]
order = CONSTANT
family = MONOMIAL
[]
[stress_22]
order = CONSTANT
family = MONOMIAL
[]
[stress_01]
order = CONSTANT
family = MONOMIAL
[]
[stress_02]
order = CONSTANT
family = MONOMIAL
[]
[stress_12]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_00]
type = RankTwoAux
variable = stress_00
rank_two_tensor = local_stress_t_points_0
index_i = 0
index_j = 0
execute_on = TIMESTEP_END
[]
[stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = local_stress_t_points_0
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[]
[stress_22]
type = RankTwoAux
variable = stress_22
rank_two_tensor = local_stress_t_points_0
index_i = 2
index_j = 2
execute_on = TIMESTEP_END
[]
[stress_01]
type = RankTwoAux
variable = stress_01
rank_two_tensor = local_stress_t_points_0
index_i = 0
index_j = 1
execute_on = TIMESTEP_END
[]
[stress_02]
type = RankTwoAux
variable = stress_02
rank_two_tensor = local_stress_t_points_0
index_i = 0
index_j = 2
execute_on = TIMESTEP_END
[]
[stress_12]
type = RankTwoAux
variable = stress_12
rank_two_tensor = local_stress_t_points_0
index_i = 1
index_j = 2
execute_on = TIMESTEP_END
[]
[]
[BCs]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = '0'
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = '0'
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = '0'
value = 0.0
[]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.0
[]
[dispz]
type = FunctionDirichletBC
variable = disp_z
boundary = '2'
function = force_function
[]
[dispy]
type = FunctionDirichletBC
variable = disp_y
boundary = '2'
function = force_function
[]
[]
[Functions]
[force_function]
type = PiecewiseLinear
x = '0.0 1'
y = '0.0 0.33535534'
[]
[]
[Kernels]
[solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[]
[solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[]
[solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[]
[solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[]
[solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 5
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[]
[strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[]
[stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[]
[]
[Postprocessors]
[stress_11_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_11
[]
[stress_12_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_12
[]
[stress_00_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_00
[]
[stress_01_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_01
[]
[stress_02_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_02
[]
[stress_22_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_22
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 1
dtmin = 0.01
timestep_tolerance = 2e-13
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/pressure/pressure_control_test.i)
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '1. 1. 1.'
scale_factor = 1.0
[]
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[]
[Pressure]
[Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
control_tags = 'tag_pressure'
[]
[Side2]
boundary = 2
function = rampConstant
displacements = 'disp_x disp_y disp_z'
factor = 2.0
control_tags = 'tag_pressure'
[]
[Side3]
boundary = 3
function = rampConstant
displacements = 'disp_x disp_y disp_z'
control_tags = 'tag_pressure'
[]
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 0.5e6
# To facilitate examining results:
# deformation only shows in one direction
poissons_ratio = 0
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Controls]
# Turn Pressure on some boundaries for step 2, off at step 3
[pressure_crank]
type = TimePeriod
enable_objects = 'BCs/Pressure/Side1'
disable_objects = 'BCs/Pressure/Side2 BCs/Pressure/Side3'
# Side1 for initial and second time step
start_time = 0
# Then both Side2 and Side3
end_time = 0.9
# All Pressure are controlled outside of the period as well
reverse_on_false = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 3
end_time = 2.0
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[controls]
type = ControlOutput
show_active_objects = false
[]
[]
(modules/richards/test/tests/theis/th_lumped_22.i)
# two-phase, fully-saturated
# production
# lumped
[Mesh]
type = FileMesh
file = th02_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1 2 4 20'
x = '0 1 10 100'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_pressure
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[DiracKernels]
[./bh]
type = RichardsPolyLineSink
pressures = '-1E9 1E9'
fluxes = '200 200'
point_file = th01.points
SumQuantityUO = total_outflow_mass
variable = pwater
[../]
[]
[Postprocessors]
[./flow_report]
type = RichardsPlotQuantity
uo = total_outflow_mass
[../]
[./p50]
type = PointValue
variable = pwater
point = '50 0 0'
execute_on = timestep_end
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E5
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
mat_porosity = 0.1
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 2E-7 1E-10 20 1E-10 1E-100'
[../]
[]
[Executioner]
type = Transient
end_time = 100
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = th_lumped_22
csv = true
[]
(test/tests/materials/has_material/has_block_prop.i)
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
active = 'u_diff'
[./u_diff]
type = MatCoefDiffusion
variable = u
block = '1 2'
conductivity = k
[../]
[]
[BCs]
[./left]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 0
[../]
[]
[Materials]
[./right]
type = GenericConstantMaterial
block = 2
prop_names = 'k k_right'
prop_values = '1 2'
[../]
[./left]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = '0.1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/richards/test/tests/excav/ex01.i)
###########################################
# #
# THIS EXAMPLE CONTAINS AN EXCAVATION #
# #
###########################################
# Easiest way of figuring out what's happening:
# Run this example, load into paraview, take
# a slice through (0,0,0) with normal (0,0,1),
# colour by pressure and play the animation.
# This mesh has an interior sideset called excav_bdy
[Mesh]
type = FileMesh
file = ex01_input.e
[]
# This is a boundary condition acting on excav_bdy
# All it does is to set the pressure to p_excav=0
# at places on excav_bdy wherever excav_fcn tells it to.
[BCs]
[./excav_bdy]
type = RichardsExcav
boundary = excav_bdy
p_excav = 0.0
variable = pressure
excav_geom_function = excav_fcn
[../]
[]
[Functions]
# excav_fcn controls where to set pressure=p_excav
# You supply start and end positions and times and
# by a linear interpolation these define the position
# of the coal face at all times
[./excav_fcn]
type = RichardsExcavGeom
start_posn = '0 -500 0'
start_time = 0
end_posn = '0 -300 0'
end_time = 6E6
active_length = 1E4
[../]
# mass_bal_fcn calculates the mass balance
[./mass_bal_fcn]
type = ParsedFunction
expression = abs((mi-fout-mf)/2/(mi+mf))
symbol_names = 'mi mf fout'
symbol_values = 'mass_init mass_final flux_out'
[../]
# initial pressure - unimportant in this example
[./initial_pressure]
type = ParsedFunction
expression = -10000*(z-100)
[../]
[]
# following is needed by postprocessors, kernels, etc
# unimportant in this example
[GlobalParams]
richardsVarNames_UO = PPNames
[]
# following does the calculation of relevant
# masses and mass-flux to the excavation
[Postprocessors]
# note that this is calculated at beginning of timestep
[./mass_init]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_begin'
[../]
# note this is calculated at end of timestep
[./mass_final]
type = RichardsMass
variable = pressure
execute_on = timestep_end
[../]
# this is what calculates the mass flux to the excavation
# it is calculating it for boundary=excav_bdy, and the
# excavation time-dependence is set through the excav_fcn
[./flux_out]
type = RichardsExcavFlow
boundary = excav_bdy
variable = pressure
excav_geom_function = excav_fcn
[../]
# mass_bal just outputs the result to screen
[./mass_bal]
type = FunctionValuePostprocessor
function = mass_bal_fcn
[../]
[]
######################################
# #
# THE FOLLOWING STUFF IS STANDARD #
# #
######################################
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E+2
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = '1 2 3 4'
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
gravity = '0 0 -10'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-13 1E-14 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 6E6
dt = 3E6
solve_type = NEWTON
[]
[Outputs]
file_base = ex01
exodus = true
[]
(modules/solid_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined.i)
# Test to verify the fundamental natural frequency of a one element ADComputeShellStress
# BCs: Clamped on one end, free on others.
# Initial perturbation applied to edge of the beam. After that, the shell vibrates freely.
#
# Results have been compared for various thicknesses with the following approximate Results
# (Moose results were obtained with 8 elements along the length)
# Thickness = 0.1. Reference freq: 10.785 Hz, Moose freq: 10.612 Hz
# Thickness = 0.05. Reference freq: 5.393 Hz, Moose freq: 5.335 Hz
# Thickness = 0.025. Reference freq: 2.696 Hz, Moose freq: 2.660 Hz
#
# Reference values have been obtained from Robert Blevins, "Formulas for Dynamics, Acoustics and Vibration",
# Table 5.3 case 11. Formula looks like: f = lambda^2/(2*pi*a^2) * sqrt(E*h^2/(12*(1-nu*nu))), where lambda
# changes as a function of shell dimensions.
# This test uses one single element for speed reasons.
# Here, the shell, instead of being on the XY plane, is oriented at a 45 deg. angle
# with respect to the Y axis.
[Mesh]
type = FileMesh
file = shell_inclined.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
[../]
[./rot_y]
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
# aux variables for dynamics
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[./rot_vel_x]
[../]
[./rot_vel_y]
[../]
[./rot_accel_x]
[../]
[./rot_accel_y]
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
# Kernels for dynamics
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '0'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '0'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '0'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.0
[../]
[]
[Functions]
[./force_function]
type = PiecewiseLinear
x = '0.0 0.01 0.15 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_z
boundary = '2'
functor = force_function
[../]
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[./inertial_force_x]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 0
variable = disp_x
thickness = 0.1
[../]
[./inertial_force_y]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 1
variable = disp_y
thickness = 0.1
[../]
[./inertial_force_z]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 2
variable = disp_z
thickness = 0.1
[../]
[./inertial_force_rot_x]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 3
variable = rot_x
thickness = 0.1
[../]
[./inertial_force_rot_y]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 4
variable = rot_y
thickness = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.005
dtmin = 0.005
timestep_tolerance = 2e-13
end_time = 0.5
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
(modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm3.i)
# Assign porosity and permeability variables from constant AuxVariables read from the mesh
# to create a heterogeneous model
[Mesh]
type = FileMesh
file = 'gold/constant_poroperm2_out.e'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 -10'
[]
[Problem]
allow_initial_conditions_with_restart = true
[]
[Variables]
[ppwater]
initial_condition = 1e6
[]
[]
[AuxVariables]
[poro]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = poro
[]
[permxx]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permxx
[]
[permxy]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permxy
[]
[permxz]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permxz
[]
[permyx]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permyx
[]
[permyy]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permyy
[]
[permyz]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permyz
[]
[permzx]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permzx
[]
[permzy]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permzy
[]
[permzz]
family = MONOMIAL
order = CONSTANT
initial_from_file_var = permzz
[]
[poromat]
family = MONOMIAL
order = CONSTANT
[]
[permxxmat]
family = MONOMIAL
order = CONSTANT
[]
[permxymat]
family = MONOMIAL
order = CONSTANT
[]
[permxzmat]
family = MONOMIAL
order = CONSTANT
[]
[permyxmat]
family = MONOMIAL
order = CONSTANT
[]
[permyymat]
family = MONOMIAL
order = CONSTANT
[]
[permyzmat]
family = MONOMIAL
order = CONSTANT
[]
[permzxmat]
family = MONOMIAL
order = CONSTANT
[]
[permzymat]
family = MONOMIAL
order = CONSTANT
[]
[permzzmat]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[poromat]
type = PorousFlowPropertyAux
property = porosity
variable = poromat
[]
[permxxmat]
type = PorousFlowPropertyAux
property = permeability
variable = permxxmat
column = 0
row = 0
[]
[permxymat]
type = PorousFlowPropertyAux
property = permeability
variable = permxymat
column = 1
row = 0
[]
[permxzmat]
type = PorousFlowPropertyAux
property = permeability
variable = permxzmat
column = 2
row = 0
[]
[permyxmat]
type = PorousFlowPropertyAux
property = permeability
variable = permyxmat
column = 0
row = 1
[]
[permyymat]
type = PorousFlowPropertyAux
property = permeability
variable = permyymat
column = 1
row = 1
[]
[permyzmat]
type = PorousFlowPropertyAux
property = permeability
variable = permyzmat
column = 2
row = 1
[]
[permzxmat]
type = PorousFlowPropertyAux
property = permeability
variable = permzxmat
column = 0
row = 2
[]
[permzymat]
type = PorousFlowPropertyAux
property = permeability
variable = permzymat
column = 1
row = 2
[]
[permzzmat]
type = PorousFlowPropertyAux
property = permeability
variable = permzzmat
column = 2
row = 2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = ppwater
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 1e-3
thermal_expansion = 0
cv = 2
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = ppwater
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = poro
[]
[permeability]
type = PorousFlowPermeabilityConstFromVar
perm_xx = permxx
perm_xy = permxy
perm_xz = permxz
perm_yx = permyx
perm_yy = permyy
perm_yz = permyz
perm_zx = permzx
perm_zy = permzy
perm_zz = permzz
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Postprocessors]
[mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 100
dt = 100
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
file_base = constant_poroperm2_out
[]
(test/tests/restrictable/boundary_api_test/boundary_restrictable.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = BndTestDirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
boundary = 1
prop_names = 'a'
prop_values = '1'
[../]
[./mat1]
type = GenericConstantMaterial
boundary = 2
prop_names = 'a b'
prop_values = '10 20'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/outputs/sampled_output/over_sampling_test_file.i)
[Mesh]
type = FileMesh
file = square_3x3.e
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_fn
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
file_base = out_file
exodus = true
[./oversampling]
file_base = out_file_oversample
type = Exodus
refinements = 3
[../]
[]
(modules/porous_flow/test/tests/desorption/desorption02.i)
# Illustrates desorption works as planned.
#
# A mesh contains 3 elements in arranged in a line.
# The central element contains desorped fluid.
# This desorps to the nodes of that element.
#
# In the central element, of volume V, the following occurs.
# The initial porepressure=1, and concentration=1.
# The initial mass of fluid is
# V * (2 * porosity * density + (1 - porosity) * concentration)
# = V * 1.289547
# Notice the factor of "2" in the porespace contribution:
# it is because the porepressure is evaluated at nodes, so
# the nodes on the exterior of the centre_block have
# nodal-volume contributions from the elements not in centre_block.
#
# The mass-conservation equation reads
# 2 * porosity * density + (1 - porosity) * concentration = 1.289547
# and the desorption equation reads
# d( (1-porosity)C )/dt = - (1/tau)(C - dens_L * P / (P_L + P))
# where C = concentration, P = porepressure, P_L = Langmuir pressure
# dens_L = Langmuir density, tau = time constant.
# Using the mass-conservation equation in the desorption equation
# yields a nonlinear equation of P. For dt=1, and the numerical values
# given below this yields
# P = 1.83697
# and
# C = 0.676616
# The desired result is achieved by MOOSE
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[]
[]
[ICs]
[p_ic]
type = ConstantIC
variable = pp
value = 1.0
[]
[conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[]
[]
[Kernels]
[porespace_mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[fluid_flow]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '0 0 0'
[]
[desorped_mass_dot]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = pp
[]
[desorped_mass_dot_conc_var]
type = PorousFlowDesorpedMassTimeDerivative
block = centre_block
conc_var = conc
variable = conc
[]
[flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp conc'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
viscosity = 1
density0 = 1
thermal_expansion = 0
[]
[]
[Materials]
[lang_stuff]
type = LangmuirMaterial
block = centre_block
one_over_adsorption_time_const = 10.0
one_over_desorption_time_const = 10.0
langmuir_density = 1
langmuir_pressure = 1
pressure_var = pp
conc_var = conc
[]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 1
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
(test/tests/restrictable/internal_side_user_object/internal_side_user_object.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Postprocessors]
[./all_pp]
type = NumInternalSides
execute_on = 'initial timestep_end'
[../]
[./block_1_pp]
type = NumInternalSides
block = 1
execute_on = 'initial timestep_end'
[../]
[./block_2_pp]
type = NumInternalSides
block = 2
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/misc/dont_overghost/test_properly_ghosted.i)
[Mesh]
type = FileMesh
file = constraints.e
# NearestNodeLocator, which is needed by TiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[]
[Problem]
use_hash_table_matrix_assembly = true
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[]
[]
[Constraints]
[complete]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[]
[lower]
type = TiedValueConstraint
variable = u
secondary = inside_right_lower
primary = inside_left_lower
primary_variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[test_time_type]
type = TestVectorType
system = nl
vector = TIME
vector_type = ghosted
[]
[test_nontime_type]
type = TestVectorType
system = nl
vector = NONTIME
vector_type = ghosted
[]
[]
(modules/solid_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the XY plane with load applied along the Z axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xy.e
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-0.7071067812 0.7071067812 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_z]
type = PointValue
point = '2.8284271 2.8284271 0.0'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i)
# Using a mixed-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
type = FileMesh
# The gold mesh is used to reduce the number of large files in the MOOSE repository.
# The porepressure is not read from the gold mesh
file = 'gold/fine_steady_out.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e6
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m. 1.8e-11 = kf * a
block = 'fracture'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
# controls for nonlinear iterations
nl_abs_tol = 1e-9
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_2D.i)
# checking that the PorousFlowDarcyVelocityComponentLowerDimensional AuxKernel works as expected in 1D+2D situation
# for the fully-saturated case (relative-permeability = 1)
# The 1_frac_in_2D_example.e has size 0.3x0.2x0, and a fracture running through its
# centre, with normal = (0, 1, 0)
# Porepressure is initialised to grad(P) = (1, 2, 0)
# Fluid_density = 2
# viscosity = 10
# relative_permeability = 1
# permeability = (5, 5, 5) (in the bulk, measured in m^2)
# permeability = (10, 10, 10) (in the fracture, measured in m^3)
# aperture = 0.01
# gravity = (1, 0.5, 0)
# So Darcy velocity in the bulk = (0.5, -0.5, 0)
# in the fracture grad(P) = (1, 0, 0)
# In the fracture the projected gravity vector is
# tangential_gravity = (1, 0, 0)
# So the Darcy velocity in the fracture = (100, 0, 0)
[Mesh]
type = FileMesh
file = 1_frac_in_2D_example.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '1 0.5 0'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pinit]
type = FunctionIC
function = 'x+2*y'
variable = pp
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[AuxVariables]
[bulk_vel_x]
order = CONSTANT
family = MONOMIAL
block = '2 3'
[]
[bulk_vel_y]
order = CONSTANT
family = MONOMIAL
block = '2 3'
[]
[bulk_vel_z]
order = CONSTANT
family = MONOMIAL
block = '2 3'
[]
[fracture_vel_x]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[fracture_vel_y]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[fracture_vel_z]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[]
[AuxKernels]
[bulk_vel_x]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_x
component = x
fluid_phase = 0
[]
[bulk_vel_y]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_y
component = y
fluid_phase = 0
[]
[bulk_vel_z]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_z
component = z
fluid_phase = 0
[]
[fracture_vel_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_x
component = x
fluid_phase = 0
aperture = 0.01
[]
[fracture_vel_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_y
component = y
fluid_phase = 0
aperture = 0.01
[]
[fracture_vel_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_z
component = z
fluid_phase = 0
aperture = 0.01
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1E16
viscosity = 10
density0 = 2
thermal_expansion = 0
[]
[]
[Postprocessors]
[bulk_vel_x]
type = PointValue
variable = bulk_vel_x
point = '0 -0.05 0'
[]
[bulk_vel_y]
type = PointValue
variable = bulk_vel_y
point = '0 -0.05 0'
[]
[bulk_vel_z]
type = PointValue
variable = bulk_vel_z
point = '0 -0.05 0'
[]
[fracture_vel_x]
type = PointValue
point = '0 0 0'
variable = fracture_vel_x
[]
[fracture_vel_y]
type = PointValue
point = '0 0 0'
variable = fracture_vel_y
[]
[fracture_vel_z]
type = PointValue
point = '0 0 0'
variable = fracture_vel_z
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
block = '2 3'
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '10 0 0 0 10 0 0 0 10'
block = 1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
csv = true
[]
(test/tests/geomsearch/patch_update_strategy/always-grid-sequence.i)
[Mesh]
type = FileMesh
file = long_range_coarse.e
dim = 2
patch_update_strategy = always
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
solution_variables = 'u'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = 'nonlinear timestep_end'
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = FunctionDirichletBC
variable = u
boundary = 'lefttop righttop'
function = 't'
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 'leftbottom rightbottom'
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 3
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_grids = 2
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[num_nl]
type = NumNonlinearIterations
[]
[total_nl]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[]
(modules/porous_flow/test/tests/dirackernels/bh07.i)
# Comparison with analytical solution for cylindrically-symmetric situation
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[]
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[fflux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[fix_outer]
type = DirichletBC
boundary = perimeter
variable = pp
value = 1E7
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
[]
[relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = pp
SumQuantityUO = borehole_total_outflow_mass
point_file = bh07.bh
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
re_constant = 0.1594 # use Chen and Zhang version
character = 2 # double the strength because bh07.bh only fills half the mesh
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[]
[fluid_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
variable = pp
start_point = '0 0 0'
end_point = '300 0 0'
sort_by = x
num_points = 300
execute_on = timestep_end
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 1E3
solve_type = NEWTON
[TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = bh07
[along_line]
type = CSV
execute_on = final
[]
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(modules/richards/test/tests/dirac/bh_lumped_07.i)
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
expression = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh_lumped_07
execute_on = 'initial timestep_end final'
time_step_interval = 10000
exodus = true
[]
(modules/solid_mechanics/test/tests/lagrangian/cartesian/total/action/action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = true
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
[out]
type = Exodus
file_base = 'blah'
[]
[]
(framework/include/mfem/mesh/MFEMMesh.h)
// This file is part of the MOOSE framework
// https://mooseframework.inl.gov
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#ifdef MFEM_ENABLED
// This file is part of the MOOSE framework
// https://mooseframework.inl.gov
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "FileMesh.h"
#include "libmesh/ignore_warnings.h"
#include <mfem.hpp>
#include "libmesh/restore_warnings.h"
/**
* MFEMMesh
*
* MFEMMesh inherits a MOOSE mesh class which allows us to work with
* other MOOSE objects. It contains a pointer to the parallel MFEM mesh.
*/
class MFEMMesh : public FileMesh
{
public:
static InputParameters validParams();
MFEMMesh(const InputParameters & parameters);
virtual ~MFEMMesh();
/**
* Accessors for the _mfem_par_mesh object. If the mesh has
* not been build, the methods will call the appropriate protected methods to
* build them.
*/
mfem::ParMesh & getMFEMParMesh() { return *_mfem_par_mesh; }
const mfem::ParMesh & getMFEMParMesh() const;
/**
* Copy a shared_ptr to the mfem::ParMesh object.
*/
std::shared_ptr<mfem::ParMesh> getMFEMParMeshPtr() { return _mfem_par_mesh; }
/**
* Build MFEM ParMesh and a placeholder MOOSE mesh.
*/
void buildMesh() override;
/**
* Clones the mesh.
*/
std::unique_ptr<MooseMesh> safeClone() const override;
/**
* Returns true if mesh displacement is required.
*/
bool shouldDisplace() const { return _mesh_displacement_variable.has_value(); }
/**
* Returns an optional reference to displacement variable name.
*/
std::optional<std::reference_wrapper<std::string const>> getMeshDisplacementVariable() const
{
return _mesh_displacement_variable;
}
/**
* Displace the nodes of the mesh by the given displacement.
* Does not update FE spaces for variables.
*/
void displace(mfem::GridFunction const & displacement);
bool isDistributedMesh() const override { return true; }
unsigned int dimension() const override { return _mfem_par_mesh->Dimension(); }
unsigned int spatialDimension() const override { return _mfem_par_mesh->SpaceDimension(); }
SubdomainID nSubdomains() const override { return _mfem_par_mesh->attributes.Size(); }
dof_id_type nActiveElem() const override { return _mfem_par_mesh->GetGlobalNE(); }
dof_id_type nActiveLocalElem() const override { return _mfem_par_mesh->GetNE(); }
private:
/**
* Builds a placeholder mesh when no MOOSE mesh is required.
*/
void buildDummyMooseMesh();
/**
* Performs a uniform refinement on the chosen mesh nref times.
*/
void uniformRefinement(mfem::Mesh & mesh, const unsigned int nref) const;
/**
* Holds name of variable used for mesh displacement, if set.
*/
std::optional<std::string> _mesh_displacement_variable;
/**
* Smart pointers to mfem::ParMesh object. Do not access directly.
* Use the accessors instead.
*/
std::shared_ptr<mfem::ParMesh> _mfem_par_mesh{nullptr};
};
inline const mfem::ParMesh &
MFEMMesh::getMFEMParMesh() const
{
return const_cast<MFEMMesh *>(this)->getMFEMParMesh();
}
#endif