https://mooseframework.inl.gov
Classes | Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Static Private Member Functions | Private Attributes | Friends | List of all members
FEProblemBase Class Referenceabstract

Specialization of SubProblem for solving nonlinear equations plus auxiliary equations. More...

#include <FEProblemBase.h>

Inheritance diagram for FEProblemBase:
[legend]

Classes

class  CreateTaggedMatrixKey
 
class  CurrentResidualVectorTagsKey
 Class that is used as a parameter to set/clearCurrentResidualVectorTags that allows only blessed classes to call said methods. More...
 

Public Types

enum  CoverageCheckMode {
  CoverageCheckMode::FALSE, CoverageCheckMode::TRUE, CoverageCheckMode::OFF, CoverageCheckMode::ON,
  CoverageCheckMode::SKIP_LIST, CoverageCheckMode::ONLY_LIST
}
 
using DataFileParameterType = DataFileName
 The parameter type this interface expects for a data file name. More...
 

Public Member Functions

 FEProblemBase (const InputParameters &parameters)
 
virtual ~FEProblemBase ()
 
virtual libMesh::EquationSystemses () override
 
virtual MooseMeshmesh () override
 
virtual const MooseMeshmesh () const override
 
const MooseMeshmesh (bool use_displaced) const override
 
void setCoordSystem (const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
 
void setAxisymmetricCoordAxis (const MooseEnum &rz_coord_axis)
 
void setCoupling (Moose::CouplingType type)
 Set the coupling between variables TODO: allow user-defined coupling. More...
 
Moose::CouplingType coupling () const
 
void setCouplingMatrix (std::unique_ptr< libMesh::CouplingMatrix > cm, const unsigned int nl_sys_num)
 Set custom coupling matrix. More...
 
void setCouplingMatrix (libMesh::CouplingMatrix *cm, const unsigned int nl_sys_num)
 
const libMesh::CouplingMatrixcouplingMatrix (const unsigned int nl_sys_num) const override
 The coupling matrix defining what blocks exist in the preconditioning matrix. More...
 
void setNonlocalCouplingMatrix ()
 Set custom coupling matrix for variables requiring nonlocal contribution. More...
 
bool areCoupled (const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
 
bool hasUOAuxStateCheck () const
 Whether or not MOOSE will perform a user object/auxiliary kernel state check. More...
 
bool checkingUOAuxState () const
 Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e. More...
 
void trustUserCouplingMatrix ()
 Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix. More...
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & nonlocalCouplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
virtual bool hasVariable (const std::string &var_name) const override
 Whether or not this problem has the variable. More...
 
bool hasSolverVariable (const std::string &var_name) const
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
MooseVariableFieldBasegetActualFieldVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariableField which may be in any system. More...
 
virtual MooseVariablegetStandardVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariable which may be in any system. More...
 
virtual VectorMooseVariablegetVectorVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested VectorMooseVariable which may be in any system. More...
 
virtual ArrayMooseVariablegetArrayVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested ArrayMooseVariable which may be in any system. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const override
 Returns a Boolean indicating whether any system contains a variable with the name provided. More...
 
virtual MooseVariableScalargetScalarVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the scalar variable reference from whichever system contains it. More...
 
virtual libMesh::SystemgetSystem (const std::string &var_name) override
 Returns the equation system containing the variable provided. More...
 
virtual void setActiveElementalMooseVariables (const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
 Set the MOOSE variables to be reinited on each element. More...
 
virtual void clearActiveElementalMooseVariables (const THREAD_ID tid) override
 Clear the active elemental MooseVariableFEBase. More...
 
virtual void clearActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void createQRules (libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
 
void bumpVolumeQRuleOrder (libMesh::Order order, SubdomainID block)
 Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower. More...
 
void bumpAllQRuleOrder (libMesh::Order order, SubdomainID block)
 
unsigned int getMaxQps () const
 
libMesh::Order getMaxScalarOrder () const
 
void checkNonlocalCoupling ()
 
void checkUserObjectJacobianRequirement (THREAD_ID tid)
 
void setVariableAllDoFMap (const std::vector< const MooseVariableFEBase *> &moose_vars)
 
const std::vector< const MooseVariableFEBase * > & getUserObjectJacobianVariables (const THREAD_ID tid) const
 
virtual Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) override
 
virtual const Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) const override
 
virtual std::vector< VariableName > getVariableNames ()
 Returns a list of all the variables in the problem (both from the NL and Aux systems. More...
 
void initialSetup () override
 
void checkDuplicatePostprocessorVariableNames ()
 
void timestepSetup () override
 
void customSetup (const ExecFlagType &exec_type) override
 
void residualSetup () override
 
void jacobianSetup () override
 
virtual void prepare (const Elem *elem, const THREAD_ID tid) override
 
virtual void prepareFace (const Elem *elem, const THREAD_ID tid) override
 
virtual void prepare (const Elem *elem, unsigned int ivar, unsigned int jvar, const std::vector< dof_id_type > &dof_indices, const THREAD_ID tid) override
 
virtual void setCurrentSubdomainID (const Elem *elem, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, const THREAD_ID tid)
 
virtual void prepareAssembly (const THREAD_ID tid) override
 
virtual void addGhostedElem (dof_id_type elem_id) override
 Will make sure that all dofs connected to elem_id are ghosted to this processor. More...
 
virtual void addGhostedBoundary (BoundaryID boundary_id) override
 Will make sure that all necessary elements from boundary_id are ghosted to this processor. More...
 
virtual void ghostGhostedBoundaries () override
 Causes the boundaries added using addGhostedBoundary to actually be ghosted. More...
 
virtual void sizeZeroes (unsigned int size, const THREAD_ID tid)
 
virtual bool reinitDirac (const Elem *elem, const THREAD_ID tid) override
 Returns true if the Problem has Dirac kernels it needs to compute on elem. More...
 
virtual void reinitElem (const Elem *elem, const THREAD_ID tid) override
 
virtual void reinitElemPhys (const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid) override
 
void reinitElemFace (const Elem *elem, unsigned int side, BoundaryID, const THREAD_ID tid)
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitLowerDElem (const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 
virtual void reinitNode (const Node *node, const THREAD_ID tid) override
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNeighbor (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitElemNeighborAndLowerD (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitScalars (const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
 fills the VariableValue arrays for scalar variables from the solution vector More...
 
virtual void reinitOffDiagScalars (const THREAD_ID tid) override
 
virtual void getDiracElements (std::set< const Elem *> &elems) override
 Fills "elems" with the elements that should be looped over for Dirac Kernels. More...
 
virtual void clearDiracInfo () override
 Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in. More...
 
virtual void subdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void neighborSubdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void newAssemblyArray (std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
 
virtual void initNullSpaceVectors (const InputParameters &parameters, std::vector< std::shared_ptr< NonlinearSystemBase >> &nl)
 
virtual void init () override
 
virtual void solve (const unsigned int nl_sys_num)
 
virtual void solveLinearSystem (const unsigned int linear_sys_num, const Moose::PetscSupport::PetscOptions *po=nullptr)
 Build and solve a linear system. More...
 
virtual void setException (const std::string &message)
 Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve(). More...
 
virtual bool hasException ()
 Whether or not an exception has occurred. More...
 
virtual void checkExceptionAndStopSolve (bool print_message=true)
 Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut. More...
 
virtual bool solverSystemConverged (const unsigned int solver_sys_num) override
 
virtual unsigned int nNonlinearIterations (const unsigned int nl_sys_num) const override
 
virtual unsigned int nLinearIterations (const unsigned int nl_sys_num) const override
 
virtual Real finalNonlinearResidual (const unsigned int nl_sys_num) const override
 
virtual bool computingPreSMOResidual (const unsigned int nl_sys_num) const override
 Returns true if the problem is in the process of computing it's initial residual. More...
 
virtual std::string solverTypeString (unsigned int solver_sys_num=0)
 Return solver type as a human readable string. More...
 
virtual bool startedInitialSetup ()
 Returns true if we are in or beyond the initialSetup stage. More...
 
virtual void onTimestepBegin () override
 
virtual void onTimestepEnd () override
 
virtual Realtime () const
 
virtual RealtimeOld () const
 
virtual inttimeStep () const
 
virtual Realdt () const
 
virtual RealdtOld () const
 
Real getTimeFromStateArg (const Moose::StateArg &state) const
 Returns the time associated with the requested state. More...
 
virtual void transient (bool trans)
 
virtual bool isTransient () const override
 
virtual void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void addPredictor (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void copySolutionsBackwards ()
 
virtual void advanceState ()
 Advance all of the state holding vectors / datastructures so that we can move to the next timestep. More...
 
virtual void restoreSolutions ()
 
virtual void saveOldSolutions ()
 Allocate vectors and save old solutions into them. More...
 
virtual void restoreOldSolutions ()
 Restore old solutions from the backup vectors and deallocate them. More...
 
void needSolutionState (unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
 Declare that we need up to old (1) or older (2) solution states for a given type of iteration. More...
 
virtual void outputStep (ExecFlagType type)
 Output the current step. More...
 
virtual void postExecute ()
 Method called at the end of the simulation. More...
 
void forceOutput ()
 Indicates that the next call to outputStep should be forced. More...
 
virtual void initPetscOutputAndSomeSolverSettings ()
 Reinitialize PETSc output for proper linear/nonlinear iteration display. More...
 
Moose::PetscSupport::PetscOptionsgetPetscOptions ()
 Retrieve a writable reference the PETSc options (used by PetscSupport) More...
 
void logAdd (const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
 Output information about the object just added to the problem. More...
 
virtual void addFunction (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual bool hasFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual FunctiongetFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual void addMeshDivision (const std::string &type, const std::string &name, InputParameters &params)
 Add a MeshDivision. More...
 
MeshDivisiongetMeshDivision (const std::string &name, const THREAD_ID tid=0) const
 Get a MeshDivision. More...
 
virtual void addConvergence (const std::string &type, const std::string &name, InputParameters &parameters)
 Adds a Convergence object. More...
 
virtual ConvergencegetConvergence (const std::string &name, const THREAD_ID tid=0) const
 Gets a Convergence object. More...
 
virtual const std::vector< std::shared_ptr< Convergence > > & getConvergenceObjects (const THREAD_ID tid=0) const
 Gets the Convergence objects. More...
 
virtual bool hasConvergence (const std::string &name, const THREAD_ID tid=0) const
 Returns true if the problem has a Convergence object of the given name. More...
 
bool needToAddDefaultNonlinearConvergence () const
 Returns true if the problem needs to add the default nonlinear convergence. More...
 
bool needToAddDefaultMultiAppFixedPointConvergence () const
 Returns true if the problem needs to add the default fixed point convergence. More...
 
bool needToAddDefaultSteadyStateConvergence () const
 Returns true if the problem needs to add the default steady-state detection convergence. More...
 
void setNeedToAddDefaultNonlinearConvergence ()
 Sets _need_to_add_default_nonlinear_convergence to true. More...
 
void setNeedToAddDefaultMultiAppFixedPointConvergence ()
 Sets _need_to_add_default_multiapp_fixed_point_convergence to true. More...
 
void setNeedToAddDefaultSteadyStateConvergence ()
 Sets _need_to_add_default_steady_state_convergence to true. More...
 
bool hasSetMultiAppFixedPointConvergenceName () const
 Returns true if the problem has set the fixed point convergence name. More...
 
bool hasSetSteadyStateConvergenceName () const
 Returns true if the problem has set the steady-state detection convergence name. More...
 
virtual void addDefaultNonlinearConvergence (const InputParameters &params)
 Adds the default nonlinear Convergence associated with the problem. More...
 
virtual bool onlyAllowDefaultNonlinearConvergence () const
 Returns true if an error will result if the user supplies 'nonlinear_convergence'. More...
 
void addDefaultMultiAppFixedPointConvergence (const InputParameters &params)
 Adds the default fixed point Convergence associated with the problem. More...
 
void addDefaultSteadyStateConvergence (const InputParameters &params)
 Adds the default steady-state detection Convergence. More...
 
virtual void addLineSearch (const InputParameters &)
 add a MOOSE line search More...
 
virtual void lineSearch ()
 execute MOOSE line search More...
 
LineSearchgetLineSearch () override
 getter for the MOOSE line search More...
 
virtual void addDistribution (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import distributions. More...
 
virtual DistributiongetDistribution (const std::string &name)
 
virtual void addSampler (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import Samplers. More...
 
virtual SamplergetSampler (const std::string &name, const THREAD_ID tid=0)
 
NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num)
 
const NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num) const
 
void setCurrentNonlinearSystem (const unsigned int nl_sys_num)
 
NonlinearSystemBasecurrentNonlinearSystem ()
 
const NonlinearSystemBasecurrentNonlinearSystem () const
 
virtual const SystemBasesystemBaseNonlinear (const unsigned int sys_num) const override
 Return the nonlinear system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseNonlinear (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseSolver (const unsigned int sys_num) const override
 Return the solver system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseSolver (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseAuxiliary () const override
 Return the auxiliary system object as a base class reference. More...
 
virtual SystemBasesystemBaseAuxiliary () override
 
virtual NonlinearSystemgetNonlinearSystem (const unsigned int sys_num)
 
virtual const SystemBasegetSystemBase (const unsigned int sys_num) const
 Get constant reference to a system in this problem. More...
 
virtual SystemBasegetSystemBase (const unsigned int sys_num)
 Get non-constant reference to a system in this problem. More...
 
LinearSystemgetLinearSystem (unsigned int sys_num)
 Get non-constant reference to a linear system. More...
 
const LinearSystemgetLinearSystem (unsigned int sys_num) const
 Get a constant reference to a linear system. More...
 
SolverSystemgetSolverSystem (unsigned int sys_num)
 Get non-constant reference to a solver system. More...
 
const SolverSystemgetSolverSystem (unsigned int sys_num) const
 Get a constant reference to a solver system. More...
 
void setCurrentLinearSystem (unsigned int sys_num)
 Set the current linear system pointer. More...
 
LinearSystemcurrentLinearSystem ()
 Get a non-constant reference to the current linear system. More...
 
const LinearSystemcurrentLinearSystem () const
 Get a constant reference to the current linear system. More...
 
virtual const SystemBasesystemBaseLinear (unsigned int sys_num) const override
 Get a constant base class reference to a linear system. More...
 
virtual SystemBasesystemBaseLinear (unsigned int sys_num) override
 Get a non-constant base class reference to a linear system. More...
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding a non-linear variable. More...
 
virtual void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 
virtual void setInputParametersFEProblem (InputParameters &parameters)
 
virtual void addAuxVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding an auxiliary variable. More...
 
virtual void addAuxVariable (const std::string &var_name, const libMesh::FEType &type, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxArrayVariable (const std::string &var_name, const libMesh::FEType &type, unsigned int components, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarVariable (const std::string &var_name, libMesh::Order order, Real scale_factor=1., const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addAuxScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
AuxiliarySystemgetAuxiliarySystem ()
 
virtual void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInterfaceKernel (const std::string &fv_ik_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 Add an initial condition for a finite volume variables. More...
 
void projectSolution ()
 
unsigned short getCurrentICState ()
 Retrieves the current initial condition state. More...
 
void projectInitialConditionOnCustomRange (libMesh::ConstElemRange &elem_range, ConstBndNodeRange &bnd_node_range)
 Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
virtual void addMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addMaterialHelper (std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addFunctorMaterial (const std::string &functor_material_name, const std::string &name, InputParameters &parameters)
 
void prepareMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props, const SubdomainID blk_id, const THREAD_ID tid)
 Add the MooseVariables and the material properties that the current materials depend on to the dependency list. More...
 
void reinitMaterials (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true)
 
void reinitMaterialsFace (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on element faces More...
 
void reinitMaterialsNeighbor (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on the neighboring element face More...
 
void reinitMaterialsBoundary (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on a boundary More...
 
void reinitMaterialsInterface (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true)
 
virtual void swapBackMaterials (const THREAD_ID tid)
 
virtual void swapBackMaterialsFace (const THREAD_ID tid)
 
virtual void swapBackMaterialsNeighbor (const THREAD_ID tid)
 
void setActiveMaterialProperties (const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
 Record and set the material properties required by the current computing thread. More...
 
bool hasActiveMaterialProperties (const THREAD_ID tid) const
 Method to check whether or not a list of active material roperties has been set. More...
 
void clearActiveMaterialProperties (const THREAD_ID tid)
 Clear the active material properties. More...
 
template<typename T >
std::vector< std::shared_ptr< T > > addObject (const std::string &type, const std::string &name, InputParameters &parameters, const bool threaded=true, const std::string &var_param_name="variable")
 Method for creating and adding an object to the warehouse. More...
 
virtual void addPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addVectorPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addReporter (const std::string &type, const std::string &name, InputParameters &parameters)
 Add a Reporter object to the simulation. More...
 
const ReporterDatagetReporterData () const
 Provides const access the ReporterData object. More...
 
ReporterDatagetReporterData (ReporterData::WriteKey)
 Provides non-const access the ReporterData object that is used to store reporter values. More...
 
virtual std::vector< std::shared_ptr< UserObject > > addUserObject (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 
const ExecuteMooseObjectWarehouse< UserObject > & getUserObjects () const
 
template<class T >
T & getUserObject (const std::string &name, unsigned int tid=0) const
 Get the user object by its name. More...
 
const UserObjectgetUserObjectBase (const std::string &name, const THREAD_ID tid=0) const
 Get the user object by its name. More...
 
const PositionsgetPositionsObject (const std::string &name) const
 Get the Positions object by its name. More...
 
bool hasUserObject (const std::string &name) const
 Check if there if a user object of given name. More...
 
bool hasPostprocessorValueByName (const PostprocessorName &name) const
 Whether or not a Postprocessor value exists by a given name. More...
 
const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name, std::size_t t_index=0) const
 Get a read-only reference to the value associated with a Postprocessor that exists. More...
 
void setPostprocessorValueByName (const PostprocessorName &name, const PostprocessorValue &value, std::size_t t_index=0)
 Set the value of a PostprocessorValue. More...
 
bool hasPostprocessor (const std::string &name) const
 Deprecated. More...
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, std::size_t t_index=0) const
 Get a read-only reference to the vector value associated with the VectorPostprocessor. More...
 
void setVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, const VectorPostprocessorValue &value, std::size_t t_index=0)
 Set the value of a VectorPostprocessor vector. More...
 
const VectorPostprocessorgetVectorPostprocessorObjectByName (const std::string &object_name, const THREAD_ID tid=0) const
 Return the VPP object given the name. More...
 
virtual void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 
void setupDampers ()
 
bool hasDampers ()
 Whether or not this system has dampers. More...
 
virtual void addIndicator (const std::string &indicator_name, const std::string &name, InputParameters &parameters)
 
virtual void addMarker (const std::string &marker_name, const std::string &name, InputParameters &parameters)
 
virtual void addMultiApp (const std::string &multi_app_name, const std::string &name, InputParameters &parameters)
 Add a MultiApp to the problem. More...
 
std::shared_ptr< MultiAppgetMultiApp (const std::string &multi_app_name) const
 Get a MultiApp object by name. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (ExecFlagType type, Transfer::DIRECTION direction) const
 Get Transfers by ExecFlagType and direction. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (Transfer::DIRECTION direction) const
 
const ExecuteMooseObjectWarehouse< Transfer > & getMultiAppTransferWarehouse (Transfer::DIRECTION direction) const
 Return the complete warehouse for MultiAppTransfer object for the given direction. More...
 
void execMultiAppTransfers (ExecFlagType type, Transfer::DIRECTION direction)
 Execute MultiAppTransfers associated with execution flag and direction. More...
 
bool execMultiApps (ExecFlagType type, bool auto_advance=true)
 Execute the MultiApps associated with the ExecFlagType. More...
 
void finalizeMultiApps ()
 
void incrementMultiAppTStep (ExecFlagType type)
 Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType. More...
 
void advanceMultiApps (ExecFlagType type)
 Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose. More...
 
void finishMultiAppStep (ExecFlagType type, bool recurse_through_multiapp_levels=false)
 Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType. More...
 
void backupMultiApps (ExecFlagType type)
 Backup the MultiApps associated with the ExecFlagType. More...
 
void restoreMultiApps (ExecFlagType type, bool force=false)
 Restore the MultiApps associated with the ExecFlagType. More...
 
Real computeMultiAppsDT (ExecFlagType type)
 Find the smallest timestep over all MultiApps. More...
 
virtual void addTransfer (const std::string &transfer_name, const std::string &name, InputParameters &parameters)
 Add a Transfer to the problem. More...
 
void execTransfers (ExecFlagType type)
 Execute the Transfers associated with the ExecFlagType. More...
 
Real computeResidualL2Norm (NonlinearSystemBase &sys)
 Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
Real computeResidualL2Norm (LinearSystem &sys)
 Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual Real computeResidualL2Norm ()
 Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual void computeResidualSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
void computeResidual (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
virtual void computeResidual (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const unsigned int nl_sys_num)
 Form a residual with default tags (nontime, time, residual). More...
 
void computeResidualAndJacobian (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a residual and Jacobian with default tags. More...
 
virtual void computeResidualTag (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag. More...
 
virtual void computeResidualType (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag and "residual" tag. More...
 
virtual void computeResidualInternal (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const std::set< TagID > &tags)
 Form a residual vector for a set of tags. More...
 
virtual void computeResidualTags (const std::set< TagID > &tags)
 Form multiple residual vectors and each is associated with one tag. More...
 
virtual void computeJacobianSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a Jacobian matrix. More...
 
virtual void computeJacobian (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
 Form a Jacobian matrix with the default tag (system). More...
 
virtual void computeJacobianTag (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, TagID tag)
 Form a Jacobian matrix for a given tag. More...
 
virtual void computeJacobianInternal (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
 Form a Jacobian matrix for multiple tags. More...
 
virtual void computeJacobianTags (const std::set< TagID > &tags)
 Form multiple matrices, and each is associated with a tag. More...
 
virtual void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
virtual void computeJacobianBlock (libMesh::SparseMatrix< libMesh::Number > &jacobian, libMesh::System &precond_system, unsigned int ivar, unsigned int jvar)
 Really not a good idea to use this. More...
 
virtual void computeLinearSystemSys (libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
 Assemble both the right hand side and the system matrix of a given linear system. More...
 
void computeLinearSystemTags (const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
 Assemble the current linear system given a set of vector and matrix tags. More...
 
virtual Real computeDamping (const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)
 
virtual bool shouldUpdateSolution ()
 Check to see whether the problem should update the solution. More...
 
virtual bool updateSolution (NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
 Update the solution. More...
 
virtual void predictorCleanup (NumericVector< libMesh::Number > &ghosted_solution)
 Perform cleanup tasks after application of predictor to solution vector. More...
 
virtual void computeBounds (libMesh::NonlinearImplicitSystem &sys, NumericVector< libMesh::Number > &lower, NumericVector< libMesh::Number > &upper)
 
virtual void computeNearNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeTransposeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computePostCheck (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &old_soln, NumericVector< libMesh::Number > &search_direction, NumericVector< libMesh::Number > &new_soln, bool &changed_search_direction, bool &changed_new_soln)
 
virtual void computeIndicatorsAndMarkers ()
 
virtual void computeIndicators ()
 
virtual void computeMarkers ()
 
virtual void addResidual (const THREAD_ID tid) override
 
virtual void addResidualNeighbor (const THREAD_ID tid) override
 
virtual void addResidualLower (const THREAD_ID tid) override
 
virtual void addResidualScalar (const THREAD_ID tid=0)
 
virtual void cacheResidual (const THREAD_ID tid) override
 
virtual void cacheResidualNeighbor (const THREAD_ID tid) override
 
virtual void addCachedResidual (const THREAD_ID tid) override
 
virtual void addCachedResidualDirectly (NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
 Allows for all the residual contributions that are currently cached to be added directly into the vector passed in. More...
 
virtual void setResidual (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidualNeighbor (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void addJacobian (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addJacobianNeighborLowerD (const THREAD_ID tid) override
 
virtual void addJacobianLowerD (const THREAD_ID tid) override
 
virtual void addJacobianBlockTags (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid) override
 
virtual void addJacobianScalar (const THREAD_ID tid=0)
 
virtual void addJacobianOffDiagScalar (unsigned int ivar, const THREAD_ID tid=0)
 
virtual void cacheJacobian (const THREAD_ID tid) override
 
virtual void cacheJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addCachedJacobian (const THREAD_ID tid) override
 
virtual void prepareShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareFaceShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareNeighborShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void addDisplacedProblem (std::shared_ptr< DisplacedProblem > displaced_problem)
 
virtual std::shared_ptr< const DisplacedProblemgetDisplacedProblem () const
 
virtual std::shared_ptr< DisplacedProblemgetDisplacedProblem ()
 
virtual void updateGeomSearch (GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
 
virtual void updateMortarMesh ()
 
void createMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
 
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces (bool on_displaced) const
 
virtual void possiblyRebuildGeomSearchPatches ()
 
virtual GeometricSearchDatageomSearchData () override
 
void setRestartFile (const std::string &file_name)
 Communicate to the Resurector the name of the restart filer. More...
 
const MaterialPropertyRegistrygetMaterialPropertyRegistry () const
 
const InitialConditionWarehousegetInitialConditionWarehouse () const
 Return InitialCondition storage. More...
 
const FVInitialConditionWarehousegetFVInitialConditionWarehouse () const
 Return FVInitialCondition storage. More...
 
SolverParamssolverParams (unsigned int solver_sys_num=0)
 Get the solver parameters. More...
 
const SolverParamssolverParams (unsigned int solver_sys_num=0) const
 const version More...
 
Adaptivityadaptivity ()
 
virtual void initialAdaptMesh ()
 
virtual bool adaptMesh ()
 
unsigned int getNumCyclesCompleted ()
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
void initXFEM (std::shared_ptr< XFEMInterface > xfem)
 Create XFEM controller object. More...
 
std::shared_ptr< XFEMInterfacegetXFEM ()
 Get a pointer to the XFEM controller object. More...
 
bool haveXFEM ()
 Find out whether the current analysis is using XFEM. More...
 
virtual bool updateMeshXFEM ()
 Update the mesh due to changing XFEM cuts. More...
 
virtual void meshChanged (bool intermediate_change, bool contract_mesh, bool clean_refinement_flags)
 Update data after a mesh change. More...
 
void notifyWhenMeshChanges (MeshChangedInterface *mci)
 Register an object that derives from MeshChangedInterface to be notified when the mesh changes. More...
 
void notifyWhenMeshDisplaces (MeshDisplacedInterface *mdi)
 Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated. More...
 
void initElementStatefulProps (const libMesh::ConstElemRange &elem_range, const bool threaded)
 Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
virtual void checkProblemIntegrity ()
 Method called to perform a series of sanity checks before a simulation is run. More...
 
void registerRandomInterface (RandomInterface &random_interface, const std::string &name)
 
void setConstJacobian (bool state)
 Set flag that Jacobian is constant (for optimization purposes) More...
 
void setKernelCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setKernelCoverageCheck (bool flag)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setMaterialCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setMaterialCoverageCheck (bool flag)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setParallelBarrierMessaging (bool flag)
 Toggle parallel barrier messaging (defaults to on). More...
 
void setVerboseProblem (bool verbose)
 Make the problem be verbose. More...
 
bool verboseMultiApps () const
 Whether or not to use verbose printing for MultiApps. More...
 
void parentOutputPositionChanged ()
 Calls parentOutputPositionChanged() on all sub apps. More...
 
unsigned int subspaceDim (const std::string &prefix) const
 Dimension of the subspace spanned by vectors with a given prefix. More...
 
const MaterialWarehousegetMaterialWarehouse () const
 
const MaterialWarehousegetRegularMaterialsWarehouse () const
 
const MaterialWarehousegetDiscreteMaterialWarehouse () const
 
const MaterialWarehousegetInterfaceMaterialsWarehouse () const
 
std::shared_ptr< MaterialBasegetMaterial (std::string name, Moose::MaterialDataType type, const THREAD_ID tid=0, bool no_warn=false)
 Return a pointer to a MaterialBase object. More...
 
MaterialDatagetMaterialData (Moose::MaterialDataType type, const THREAD_ID tid=0) const
 
bool restoreOriginalNonzeroPattern () const
 
bool errorOnJacobianNonzeroReallocation () const
 Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc. More...
 
void setErrorOnJacobianNonzeroReallocation (bool state)
 
bool preserveMatrixSparsityPattern () const
 Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve. More...
 
void setPreserveMatrixSparsityPattern (bool preserve)
 Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved. More...
 
bool ignoreZerosInJacobian () const
 Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern. More...
 
void setIgnoreZerosInJacobian (bool state)
 Set whether the zeros in the Jacobian should be dropped from the sparsity pattern. More...
 
bool acceptInvalidSolution () const
 Whether or not to accept the solution based on its invalidity. More...
 
bool allowInvalidSolution () const
 Whether to accept / allow an invalid solution. More...
 
bool showInvalidSolutionConsole () const
 Whether or not to print out the invalid solutions summary table in console. More...
 
bool immediatelyPrintInvalidSolution () const
 Whether or not the solution invalid warnings are printed out immediately. More...
 
bool hasTimeIntegrator () const
 Returns whether or not this Problem has a TimeIntegrator. More...
 
virtual void execute (const ExecFlagType &exec_type)
 Convenience function for performing execution of MOOSE systems. More...
 
virtual void executeAllObjects (const ExecFlagType &exec_type)
 
virtual ExecutorgetExecutor (const std::string &name)
 
virtual void computeUserObjects (const ExecFlagType &type, const Moose::AuxGroup &group)
 Call compute methods on UserObjects. More...
 
virtual void computeUserObjectByName (const ExecFlagType &type, const Moose::AuxGroup &group, const std::string &name)
 Compute an user object with the given name. More...
 
void needsPreviousNewtonIteration (bool state)
 Set a flag that indicated that user required values for the previous Newton iterate. More...
 
bool needsPreviousNewtonIteration () const
 Check to see whether we need to compute the variable values of the previous Newton iterate. More...
 
ExecuteMooseObjectWarehouse< Control > & getControlWarehouse ()
 Reference to the control logic warehouse. More...
 
void executeControls (const ExecFlagType &exec_type)
 Performs setup and execute calls for Control objects. More...
 
void executeSamplers (const ExecFlagType &exec_type)
 Performs setup and execute calls for Sampler objects. More...
 
virtual void updateActiveObjects ()
 Update the active objects in the warehouses. More...
 
void reportMooseObjectDependency (MooseObject *a, MooseObject *b)
 Register a MOOSE object dependency so we can either order operations properly or report when we cannot. More...
 
ExecuteMooseObjectWarehouse< MultiApp > & getMultiAppWarehouse ()
 
bool hasJacobian () const
 Returns _has_jacobian. More...
 
bool constJacobian () const
 Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed) More...
 
void addOutput (const std::string &, const std::string &, InputParameters &)
 Adds an Output object. More...
 
TheWarehousetheWarehouse () const
 
void setSNESMFReuseBase (bool reuse, bool set_by_user)
 If or not to reuse the base vector for matrix-free calculation. More...
 
bool useSNESMFReuseBase ()
 Return a flag that indicates if we are reusing the vector base. More...
 
void skipExceptionCheck (bool skip_exception_check)
 Set a flag that indicates if we want to skip exception and stop solve. More...
 
bool isSNESMFReuseBaseSetbyUser ()
 Return a flag to indicate if _snesmf_reuse_base is set by users. More...
 
bool & petscOptionsInserted ()
 If PETSc options are already inserted. More...
 
PetscOptions & petscOptionsDatabase ()
 
virtual void setUDotRequested (const bool u_dot_requested)
 Set boolean flag to true to store solution time derivative. More...
 
virtual void setUDotDotRequested (const bool u_dotdot_requested)
 Set boolean flag to true to store solution second time derivative. More...
 
virtual void setUDotOldRequested (const bool u_dot_old_requested)
 Set boolean flag to true to store old solution time derivative. More...
 
virtual void setUDotDotOldRequested (const bool u_dotdot_old_requested)
 Set boolean flag to true to store old solution second time derivative. More...
 
virtual bool uDotRequested ()
 Get boolean flag to check whether solution time derivative needs to be stored. More...
 
virtual bool uDotDotRequested ()
 Get boolean flag to check whether solution second time derivative needs to be stored. More...
 
virtual bool uDotOldRequested ()
 Get boolean flag to check whether old solution time derivative needs to be stored. More...
 
virtual bool uDotDotOldRequested ()
 Get boolean flag to check whether old solution second time derivative needs to be stored. More...
 
void haveADObjects (bool have_ad_objects) override
 Method for setting whether we have any ad objects. More...
 
bool shouldSolve () const
 
const MortarDatamortarData () const
 Returns the mortar data object. More...
 
MortarDatamortarData ()
 
virtual bool hasNeighborCoupling () const
 Whether the simulation has neighbor coupling. More...
 
virtual bool hasMortarCoupling () const
 Whether the simulation has mortar coupling. More...
 
void computingNonlinearResid (bool computing_nonlinear_residual) final
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
void setCurrentlyComputingResidual (bool currently_computing_residual) final
 Set whether or not the problem is in the process of computing the residual. More...
 
void numGridSteps (unsigned int num_grid_steps)
 Set the number of steps in a grid sequences. More...
 
void uniformRefine ()
 uniformly refine the problem mesh(es). More...
 
void automaticScaling (bool automatic_scaling) override
 Automatic scaling setter. More...
 
virtual void reinitElemFaceRef (const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data. More...
 
virtual void reinitNeighborFaceRef (const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data. More...
 
bool fvBCsIntegrityCheck () const
 
void fvBCsIntegrityCheck (bool fv_bcs_integrity_check)
 
void getFVMatsAndDependencies (SubdomainID block_id, std::vector< std::shared_ptr< MaterialBase >> &face_materials, std::vector< std::shared_ptr< MaterialBase >> &neighbor_materials, std::set< MooseVariableFieldBase *> &variables, const THREAD_ID tid)
 Get the materials and variables potentially needed for FV. More...
 
void resizeMaterialData (Moose::MaterialDataType data_type, unsigned int nqp, const THREAD_ID tid)
 Resize material data. More...
 
bool haveDisplaced () const override final
 Whether we have a displaced problem in our simulation. More...
 
bool hasLinearConvergenceObjects () const
 Whether we have linear convergence objects. More...
 
void setNonlinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the nonlinear convergence object name(s) if there is one. More...
 
void setLinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the linear convergence object name(s) if there is one. More...
 
void setMultiAppFixedPointConvergenceName (const ConvergenceName &convergence_name)
 Sets the MultiApp fixed point convergence object name if there is one. More...
 
void setSteadyStateConvergenceName (const ConvergenceName &convergence_name)
 Sets the steady-state detection convergence object name if there is one. More...
 
const std::vector< ConvergenceName > & getNonlinearConvergenceNames () const
 Gets the nonlinear system convergence object name(s). More...
 
const std::vector< ConvergenceName > & getLinearConvergenceNames () const
 Gets the linear convergence object name(s). More...
 
const ConvergenceName & getMultiAppFixedPointConvergenceName () const
 Gets the MultiApp fixed point convergence object name. More...
 
const ConvergenceName & getSteadyStateConvergenceName () const
 Gets the steady-state detection convergence object name. More...
 
void computingScalingJacobian (bool computing_scaling_jacobian)
 Setter for whether we're computing the scaling jacobian. More...
 
bool computingScalingJacobian () const override final
 Getter for whether we're computing the scaling jacobian. More...
 
void computingScalingResidual (bool computing_scaling_residual)
 Setter for whether we're computing the scaling residual. More...
 
bool computingScalingResidual () const override final
 
MooseAppCoordTransformcoordTransform ()
 
virtual std::size_t numNonlinearSystems () const override
 
virtual std::size_t numLinearSystems () const override
 
virtual std::size_t numSolverSystems () const override
 
bool isSolverSystemNonlinear (const unsigned int sys_num)
 Check if the solver system is nonlinear. More...
 
virtual unsigned int currentNlSysNum () const override
 
virtual unsigned int currentLinearSysNum () const override
 
virtual unsigned int nlSysNum (const NonlinearSystemName &nl_sys_name) const override
 
unsigned int linearSysNum (const LinearSystemName &linear_sys_name) const override
 
unsigned int solverSysNum (const SolverSystemName &solver_sys_name) const override
 
unsigned int systemNumForVariable (const VariableName &variable_name) const
 
bool getFailNextNonlinearConvergenceCheck () const
 Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
bool getFailNextSystemConvergenceCheck () const
 Whether it will fail the next system convergence check(s), triggering failed step behavior. More...
 
void setFailNextNonlinearConvergenceCheck ()
 Skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
void setFailNextSystemConvergenceCheck ()
 Tell the problem that the system(s) cannot be considered converged next time convergence is checked. More...
 
void resetFailNextNonlinearConvergenceCheck ()
 Tell the problem that the nonlinear convergence check(s) may proceed as normal. More...
 
void resetFailNextSystemConvergenceCheck ()
 Tell the problem that the system convergence check(s) may proceed as normal. More...
 
void setExecutionPrinting (const ExecFlagEnum &print_exec)
 
bool shouldPrintExecution (const THREAD_ID tid) const
 Check whether the problem should output execution orders at this time. More...
 
void reinitMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced)
 Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics. More...
 
virtual const std::vector< VectorTag > & currentResidualVectorTags () const override
 Return the residual vector tags we are currently computing. More...
 
void setCurrentResidualVectorTags (const std::set< TagID > &vector_tags)
 Set the current residual vector tag data structure based on the passed in tag IDs. More...
 
void clearCurrentResidualVectorTags ()
 Clear the current residual vector tag data structure. More...
 
void clearCurrentJacobianMatrixTags ()
 Clear the current Jacobian matrix tag data structure ... More...
 
virtual void needFV () override
 marks this problem as including/needing finite volume functionality. More...
 
virtual bool haveFV () const override
 returns true if this problem includes/needs finite volume functionality. More...
 
virtual bool hasNonlocalCoupling () const override
 Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian. More...
 
bool identifyVariableGroupsInNL () const
 Whether to identify variable groups in nonlinear systems. More...
 
virtual void setCurrentLowerDElem (const Elem *const lower_d_elem, const THREAD_ID tid) override
 Set the current lower dimensional element. More...
 
virtual void setCurrentBoundaryID (BoundaryID bid, const THREAD_ID tid) override
 sets the current boundary ID in assembly More...
 
const std::vector< NonlinearSystemName > & getNonlinearSystemNames () const
 
const std::vector< LinearSystemName > & getLinearSystemNames () const
 
const std::vector< SolverSystemName > & getSolverSystemNames () const
 
virtual const libMesh::CouplingMatrixnonlocalCouplingMatrix (const unsigned i) const override
 
virtual bool checkNonlocalCouplingRequirement () const override
 
virtual Moose::FEBackend feBackend () const
 
void createTagMatrices (CreateTaggedMatrixKey)
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const=0
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
virtual void haveADObjects (bool have_ad_objects)
 Method for setting whether we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
virtual void computingNonlinearResid (const bool computing_nonlinear_residual)
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
virtual void automaticScaling (bool automatic_scaling)
 Automatic scaling setter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
virtual bool nlConverged (const unsigned int nl_sys_num)
 
virtual bool converged (const unsigned int sys_num)
 Eventually we want to convert this virtual over to taking a solver system number argument. More...
 
bool defaultGhosting ()
 Whether or not the user has requested default ghosting ot be on. More...
 
virtual TagID addVectorTag (const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
 Create a Tag. More...
 
void addNotZeroedVectorTag (const TagID tag)
 Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are. More...
 
bool vectorTagNotZeroed (const TagID tag) const
 Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are. More...
 
virtual const VectorTaggetVectorTag (const TagID tag_id) const
 Get a VectorTag from a TagID. More...
 
std::vector< VectorTaggetVectorTags (const std::set< TagID > &tag_ids) const
 
virtual const std::vector< VectorTag > & getVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 Return all vector tags, where a tag is represented by a map from name to ID. More...
 
virtual TagID getVectorTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName vectorTagName (const TagID tag) const
 Retrieve the name associated with a TagID. More...
 
virtual bool vectorTagExists (const TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual bool vectorTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists by using Tag name. More...
 
virtual unsigned int numVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 The total number of tags, which can be limited to the tag type. More...
 
virtual Moose::VectorTagType vectorTagType (const TagID tag_id) const
 
virtual TagID addMatrixTag (TagName tag_name)
 Create a Tag. More...
 
virtual TagID getMatrixTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName matrixTagName (TagID tag)
 Retrieve the name associated with a TagID. More...
 
virtual bool matrixTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists. More...
 
virtual bool matrixTagExists (TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual unsigned int numMatrixTags () const
 The total number of tags. More...
 
virtual std::map< TagName, TagID > & getMatrixTags ()
 Return all matrix tags in the system, where a tag is represented by a map from name to ID. More...
 
virtual bool hasLinearVariable (const std::string &var_name) const
 Whether or not this problem has this linear variable. More...
 
virtual bool hasAuxiliaryVariable (const std::string &var_name) const
 Whether or not this problem has this auxiliary variable. More...
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables (const THREAD_ID tid) const
 Get the MOOSE variables to be reinited on each element. More...
 
virtual bool hasActiveElementalMooseVariables (const THREAD_ID tid) const
 Whether or not a list of active elemental moose variables has been set. More...
 
Moose::CoordinateSystemType getCoordSystem (SubdomainID sid) const
 
unsigned int getAxisymmetricRadialCoord () const
 Returns the desired radial direction for RZ coordinate transformation. More...
 
virtual DiracKernelInfodiracKernelInfo ()
 
virtual void setResidual (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void setResidualNeighbor (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const libMesh::DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)=0
 
void reinitNeighborLowerDElem (const Elem *elem, const THREAD_ID tid=0)
 reinitialize a neighboring lower dimensional element More...
 
void reinitMortarElem (const Elem *elem, const THREAD_ID tid=0)
 Reinit a mortar element to obtain a valid JxW. More...
 
virtual void storeSubdomainMatPropName (SubdomainID block_id, const std::string &name)
 Adds the given material property to a storage map based on block ids. More...
 
virtual void storeBoundaryMatPropName (BoundaryID boundary_id, const std::string &name)
 Adds the given material property to a storage map based on boundary ids. More...
 
virtual void storeSubdomainZeroMatProp (SubdomainID block_id, const MaterialPropertyName &name)
 Adds to a map based on block ids of material properties for which a zero value can be returned. More...
 
virtual void storeBoundaryZeroMatProp (BoundaryID boundary_id, const MaterialPropertyName &name)
 Adds to a map based on boundary ids of material properties for which a zero value can be returned. More...
 
virtual void storeSubdomainDelayedCheckMatProp (const std::string &requestor, SubdomainID block_id, const std::string &name)
 Adds to a map based on block ids of material properties to validate. More...
 
virtual void storeBoundaryDelayedCheckMatProp (const std::string &requestor, BoundaryID boundary_id, const std::string &name)
 Adds to a map based on boundary ids of material properties to validate. More...
 
virtual void checkBlockMatProps ()
 Checks block material properties integrity. More...
 
virtual void checkBoundaryMatProps ()
 Checks boundary material properties integrity. More...
 
virtual void markMatPropRequested (const std::string &)
 Helper method for adding a material property name to the _material_property_requested set. More...
 
virtual bool isMatPropRequested (const std::string &prop_name) const
 Find out if a material property has been requested by any object. More...
 
void addConsumedPropertyName (const MooseObjectName &obj_name, const std::string &prop_name)
 Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput. More...
 
const std::map< MooseObjectName, std::set< std::string > > & getConsumedPropertyMap () const
 Return the map that tracks the object with consumed material properties. More...
 
virtual std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBlockMaterialProperty (SubdomainID block_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBoundaryMaterialProperty (BoundaryID boundary_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< dof_id_type > & ghostedElems ()
 Return the list of elements that should have their DoFs ghosted to this processor. More...
 
const bool & currentlyComputingJacobian () const
 Returns true if the problem is in the process of computing the Jacobian. More...
 
void setCurrentlyComputingJacobian (const bool currently_computing_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
const bool & currentlyComputingResidualAndJacobian () const
 Returns true if the problem is in the process of computing the residual and the Jacobian. More...
 
void setCurrentlyComputingResidualAndJacobian (bool currently_computing_residual_and_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
virtual bool safeAccessTaggedMatrices () const
 Is it safe to access the tagged matrices. More...
 
virtual bool safeAccessTaggedVectors () const
 Is it safe to access the tagged vectors. More...
 
const std::set< TagID > & getActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
void addAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
 Add an algebraic ghosting functor to this problem's DofMaps. More...
 
void addCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
 Add a coupling functor to this problem's DofMaps. More...
 
void removeAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf)
 Remove an algebraic ghosting functor from this problem's DofMaps. More...
 
void removeCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf)
 Remove a coupling ghosting functor from this problem's DofMaps. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
void hasScalingVector (const unsigned int nl_sys_num)
 Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector. More...
 
void clearAllDofIndices ()
 Clear dof indices from variables in nl and aux systems. More...
 
template<typename T >
const Moose::Functor< T > & getFunctor (const std::string &name, const THREAD_ID tid, const std::string &requestor_name, bool requestor_is_ad)
 
bool hasFunctor (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor corresponding to name on the thread id tid More...
 
template<typename T >
bool hasFunctorWithType (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor of type T corresponding to name on the thread id tid More...
 
template<typename T >
void addFunctor (const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
 add a functor to the problem functor container More...
 
template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & addPiecewiseByBlockLambdaFunctor (const std::string &name, PolymorphicLambda my_lammy, const std::set< ExecFlagType > &clearance_schedule, const MooseMesh &mesh, const std::set< SubdomainID > &block_ids, const THREAD_ID tid)
 Add a functor that has block-wise lambda definitions, e.g. More...
 
void setFunctorOutput (bool set_output)
 Setter for debug functor output. More...
 
template<typename T >
void registerUnfilledFunctorRequest (T *functor_interface, const std::string &functor_name, const THREAD_ID tid)
 Register an unfulfilled functor request. More...
 
void reinitFVFace (const THREAD_ID tid, const FaceInfo &fi)
 reinitialize the finite volume assembly data for the provided face and thread More...
 
void preparePRefinement ()
 Prepare DofMap and Assembly classes with our p-refinement information. More...
 
bool doingPRefinement () const
 
bool havePRefinement () const
 Query whether p-refinement has been requested at any point during the simulation. More...
 
template<typename T >
MooseVariableFEBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &systems, const SystemBase &aux) const
 
void _setCLIOption ()
 For Internal Use. More...
 
virtual void terminateSolve ()
 Allow objects to request clean termination of the solve. More...
 
virtual bool isSolveTerminationRequested () const
 Check of termination has been requested. More...
 
const ConsoleStreamconsole () const
 Return console handle. More...
 
virtual bool enabled () const
 Return the enabled status of the object. More...
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 Get another shared pointer to this object that has the same ownership group. More...
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 Get the MooseApp this class is associated with. More...
 
const std::string & type () const
 Get the type of this class. More...
 
const std::string & name () const
 Get the name of the class. More...
 
std::string typeAndName () const
 Get the class's combined type and name; useful in error handling. More...
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
MooseObjectName uniqueName () const
 
const InputParametersparameters () const
 Get the parameters of the object. More...
 
const hit::Node * getHitNode () const
 
bool hasBase () const
 
const std::string & getBase () const
 
template<typename T >
const T & getParam (const std::string &name) const
 Retrieve a parameter for the object. More...
 
template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 Retrieve two parameters and provide pair of parameters for the object. More...
 
template<typename T >
const T * queryParam (const std::string &name) const
 Query a parameter for the object. More...
 
template<typename T >
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 Retrieve a renamed parameter for the object. More...
 
template<typename T >
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 Verifies that the requested parameter exists and is not NULL and returns it to the caller. More...
 
bool isParamValid (const std::string &name) const
 Test if the supplied parameter is valid. More...
 
bool isParamSetByUser (const std::string &name) const
 Test if the supplied parameter is set by a user, as opposed to not set or set to default. More...
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 Connect controllable parameter of this action with the controllable parameters of the objects added by this action. More...
 
template<typename... Args>
void paramError (const std::string &param, Args... args) const
 Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramWarning (const std::string &param, Args... args) const
 Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramInfo (const std::string &param, Args... args) const
 Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
std::string messagePrefix (const bool hit_prefix=true) const
 
std::string errorPrefix (const std::string &) const
 Deprecated message prefix; the error type is no longer used. More...
 
template<typename... Args>
void mooseError (Args &&... args) const
 Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available. More...
 
template<typename... Args>
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
template<typename... Args>
void mooseErrorNonPrefixed (Args &&... args) const
 Emits an error without the prefixing included in mooseError(). More...
 
template<typename... Args>
void mooseWarning (Args &&... args) const
 Emits a warning prefixed with object name and type. More...
 
template<typename... Args>
void mooseWarningNonPrefixed (Args &&... args) const
 Emits a warning without the prefixing included in mooseWarning(). More...
 
template<typename... Args>
void mooseDeprecated (Args &&... args) const
 
template<typename... Args>
void mooseInfo (Args &&... args) const
 
void callMooseError (std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
 External method for calling moose error with added object context. More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
std::string getDataFileName (const std::string &param) const
 Deprecated method. More...
 
std::string getDataFileNameByName (const std::string &relative_path) const
 Deprecated method. More...
 
std::string getDataFilePath (const std::string &relative_path) const
 Returns the path of a data file for a given relative file path. More...
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
const libMesh::ConstElemRangegetEvaluableElementRange ()
 In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}. More...
 
const libMesh::ConstElemRangegetNonlinearEvaluableElementRange ()
 
const libMesh::ConstElemRangegetCurrentAlgebraicElementRange ()
 These are the element and nodes that contribute to the jacobian and residual for this local processor. More...
 
const libMesh::ConstNodeRangegetCurrentAlgebraicNodeRange ()
 
const ConstBndNodeRangegetCurrentAlgebraicBndNodeRange ()
 
void setCurrentAlgebraicElementRange (libMesh::ConstElemRange *range)
 These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor. More...
 
void setCurrentAlgebraicNodeRange (libMesh::ConstNodeRange *range)
 
void setCurrentAlgebraicBndNodeRange (ConstBndNodeRange *range)
 
void allowOutput (bool state)
 Ability to enable/disable all output calls. More...
 
template<typename T >
void allowOutput (bool state)
 
bool hasMultiApps () const
 Returns whether or not the current simulation has any multiapps. More...
 
bool hasMultiApps (ExecFlagType type) const
 
bool hasMultiApp (const std::string &name) const
 
const AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced) const
 Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains. More...
 
AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced)
 
const MaterialPropertyStoragegetMaterialPropertyStorage ()
 Return a reference to the material property storage. More...
 
const MaterialPropertyStoragegetBndMaterialPropertyStorage ()
 
const MaterialPropertyStoragegetNeighborMaterialPropertyStorage ()
 
const MooseObjectWarehouse< Indicator > & getIndicatorWarehouse ()
 Return indicator/marker storage. More...
 
const MooseObjectWarehouse< InternalSideIndicatorBase > & getInternalSideIndicatorWarehouse ()
 
const MooseObjectWarehouse< Marker > & getMarkerWarehouse ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 These methods are used to determine whether stateful material properties need to be stored on internal sides. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 
bool needSubdomainMaterialOnSide (SubdomainID subdomain_id, const THREAD_ID tid)
 
const ExecFlagTypegetCurrentExecuteOnFlag () const
 Return/set the current execution flag. More...
 
void setCurrentExecuteOnFlag (const ExecFlagType &)
 

Static Public Member Functions

static InputParameters validParams ()
 
static void selectVectorTagsFromSystem (const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
 Select the vector tags which belong to a specific system. More...
 
static void selectMatrixTagsFromSystem (const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
 Select the matrix tags which belong to a specific system. More...
 
static void callMooseError (MooseApp *const app, const InputParameters &params, std::string msg, const bool with_prefix, const hit::Node *node)
 External method for calling moose error with added object context. More...
 
template<typename T >
static void objectSetupHelper (const std::vector< T *> &objects, const ExecFlagType &exec_flag)
 Helpers for calling the necessary setup/execute functions for the supplied objects. More...
 
template<typename T >
static void objectExecuteHelper (const std::vector< T *> &objects)
 

Public Attributes

std::map< std::string, std::vector< dof_id_type > > _var_dof_map
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 
std::vector< Real_real_zero
 Convenience zeros. More...
 
std::vector< VariableValue_scalar_zero
 
std::vector< VariableValue_zero
 
std::vector< VariablePhiValue_phi_zero
 
std::vector< MooseArray< ADReal > > _ad_zero
 
std::vector< VariableGradient_grad_zero
 
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
 
std::vector< VariablePhiGradient_grad_phi_zero
 
std::vector< VariableSecond_second_zero
 
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
 
std::vector< VariablePhiSecond_second_phi_zero
 
std::vector< Point > _point_zero
 
std::vector< VectorVariableValue_vector_zero
 
std::vector< VectorVariableCurl_vector_curl_zero
 

Static Public Attributes

static const std::string type_param = "_type"
 The name of the parameter that contains the object type. More...
 
static const std::string name_param = "_object_name"
 The name of the parameter that contains the object name. More...
 
static const std::string unique_name_param = "_unique_name"
 The name of the parameter that contains the unique object name. More...
 
static const std::string app_param = "_moose_app"
 The name of the parameter that contains the MooseApp. More...
 
static const std::string moose_base_param = "_moose_base"
 The name of the parameter that contains the moose system base. More...
 

Protected Member Functions

virtual void meshChanged ()
 Deprecated. More...
 
void createTagVectors ()
 Create extra tagged vectors and matrices. More...
 
void createTagSolutions ()
 Create extra tagged solution vectors. More...
 
virtual void meshDisplaced ()
 Update data after a mesh displaced. More...
 
void computeSystems (const ExecFlagType &type)
 Do generic system computations. More...
 
bool duplicateVariableCheck (const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
 Helper to check for duplicate variable names across systems or within a single system. More...
 
void computeUserObjectsInternal (const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
 
void checkDisplacementOrders ()
 Verify that SECOND order mesh uses SECOND order displacements. More...
 
void checkUserObjects ()
 
void checkDependMaterialsHelper (const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
 Helper method for checking Material object dependency. More...
 
void checkCoordinateSystems ()
 Verify that there are no element type/coordinate type conflicts. More...
 
void reinitBecauseOfGhostingOrNewGeomObjects (bool mortar_changed=false)
 Call when it is possible that the needs for ghosted elements has changed. More...
 
void addObjectParamsHelper (InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
 Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject(). More...
 
template<typename T >
MooseVariableFieldBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
 Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available. More...
 
bool verifyVectorTags () const
 Verify the integrity of _vector_tags and _typed_vector_tags. More...
 
void markFamilyPRefinement (const InputParameters &params)
 Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 
template<typename T , typename... Args>
T & declareRestartableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declares a piece of "managed" restartable data and initialize it. More...
 
template<typename T , typename... Args>
const T & getRestartableData (const std::string &data_name) const
 Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "recoverable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 Declare a piece of data as "restartable". More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 Declare a piece of data as "restartable". More...
 
std::string restartableName (const std::string &data_name) const
 Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix. More...
 

Protected Attributes

MooseMesh_mesh
 
bool _initialized
 
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
 Nonlinear system(s) convergence name(s) More...
 
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
 Linear system(s) convergence name(s) (if any) More...
 
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
 MultiApp fixed point convergence name. More...
 
std::optional< ConvergenceName > _steady_state_convergence_name
 Steady-state detection convergence name. More...
 
std::set< TagID_fe_vector_tags
 
std::set< TagID_fe_matrix_tags
 
std::set< TagID_linear_vector_tags
 Temporary storage for filtered vector tags for linear systems. More...
 
std::set< TagID_linear_matrix_tags
 Temporary storage for filtered matrix tags for linear systems. More...
 
const bool & _solve
 Whether or not to actually solve the nonlinear system. More...
 
bool _transient
 
Real_time
 
Real_time_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _need_to_add_default_nonlinear_convergence
 Flag that the problem needs to add the default nonlinear convergence. More...
 
bool _need_to_add_default_multiapp_fixed_point_convergence
 Flag that the problem needs to add the default fixed point convergence. More...
 
bool _need_to_add_default_steady_state_convergence
 Flag that the problem needs to add the default steady convergence. More...
 
const std::vector< LinearSystemName > _linear_sys_names
 The linear system names. More...
 
const std::size_t _num_linear_sys
 The number of linear systems. More...
 
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
 The vector of linear systems. More...
 
std::map< LinearSystemName, unsigned int_linear_sys_name_to_num
 Map from linear system name to number. More...
 
LinearSystem_current_linear_sys
 The current linear system that we are solving. More...
 
const bool _using_default_nl
 Boolean to check if we have the default nonlinear system. More...
 
const std::vector< NonlinearSystemName > _nl_sys_names
 The nonlinear system names. More...
 
const std::size_t _num_nl_sys
 The number of nonlinear systems. More...
 
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
 The nonlinear systems. More...
 
std::map< NonlinearSystemName, unsigned int_nl_sys_name_to_num
 Map from nonlinear system name to number. More...
 
NonlinearSystemBase_current_nl_sys
 The current nonlinear system that we are solving. More...
 
SolverSystem_current_solver_sys
 The current solver system. More...
 
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
 Combined container to base pointer of every solver system. More...
 
std::map< SolverVariableName, unsigned int_solver_var_to_sys_num
 Map connecting variable names with their respective solver systems. More...
 
std::map< SolverSystemName, unsigned int_solver_sys_name_to_num
 Map connecting solver system names with their respective systems. More...
 
std::vector< SolverSystemName > _solver_sys_names
 The union of nonlinear and linear system names. More...
 
std::shared_ptr< AuxiliarySystem_aux
 The auxiliary system. More...
 
Moose::CouplingType _coupling
 Type of variable coupling. More...
 
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
 Coupling matrix for variables. More...
 
std::map< std::string, unsigned int_subspace_dim
 Dimension of the subspace spanned by the vectors with a given prefix. More...
 
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
 The Assembly objects. More...
 
MooseObjectWarehouse< MeshDivision_mesh_divisions
 Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best. More...
 
MooseObjectWarehouse< Function_functions
 functions More...
 
MooseObjectWarehouse< Convergence_convergences
 convergence warehouse More...
 
MooseObjectWarehouse< KernelBase_nonlocal_kernels
 nonlocal kernels More...
 
MooseObjectWarehouse< IntegratedBCBase_nonlocal_integrated_bcs
 nonlocal integrated_bcs More...
 
MaterialPropertyRegistry _material_prop_registry
 
MaterialPropertyStorage_material_props
 
MaterialPropertyStorage_bnd_material_props
 
MaterialPropertyStorage_neighbor_material_props
 
MooseObjectWarehouse< Marker_markers
 
ReporterData _reporter_data
 
ExecuteMooseObjectWarehouse< UserObject_all_user_objects
 
ExecuteMooseObjectWarehouse< MultiApp_multi_apps
 MultiApp Warehouse. More...
 
ExecuteMooseObjectWarehouse< TransientMultiApp_transient_multi_apps
 Storage for TransientMultiApps (only needed for calling 'computeDT') More...
 
ExecuteMooseObjectWarehouse< Transfer_transfers
 Normal Transfers. More...
 
ExecuteMooseObjectWarehouse< Transfer_to_multi_app_transfers
 Transfers executed just before MultiApps to transfer data to them. More...
 
ExecuteMooseObjectWarehouse< Transfer_from_multi_app_transfers
 Transfers executed just after MultiApps to transfer data from them. More...
 
ExecuteMooseObjectWarehouse< Transfer_between_multi_app_transfers
 Transfers executed just before MultiApps to transfer data between them. More...
 
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
 A map of objects that consume random numbers. More...
 
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
 Cache for calculating materials on interface. More...
 
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
 Objects to be notified when the mesh changes. More...
 
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
 Objects to be notified when the mesh displaces. More...
 
Adaptivity _adaptivity
 
unsigned int _cycles_completed
 
std::shared_ptr< XFEMInterface_xfem
 Pointer to XFEM controller. More...
 
MooseMesh_displaced_mesh
 
std::shared_ptr< DisplacedProblem_displaced_problem
 
GeometricSearchData _geometric_search_data
 
MortarData _mortar_data
 
bool _reinit_displaced_elem
 Whether to call DisplacedProblem::reinitElem when this->reinitElem is called. More...
 
bool _reinit_displaced_face
 Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called. More...
 
bool _reinit_displaced_neighbor
 Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called. More...
 
bool _input_file_saved
 whether input file has been written More...
 
bool _has_dampers
 Whether or not this system has any Dampers associated with it. More...
 
bool _has_constraints
 Whether or not this system has any Constraints. More...
 
bool _snesmf_reuse_base
 If or not to resuse the base vector for matrix-free calculation. More...
 
bool _skip_exception_check
 If or not skip 'exception and stop solve'. More...
 
bool _snesmf_reuse_base_set_by_user
 If or not _snesmf_reuse_base is set by user. More...
 
bool _has_initialized_stateful
 Whether nor not stateful materials have been initialized. More...
 
bool _const_jacobian
 true if the Jacobian is constant More...
 
bool _has_jacobian
 Indicates if the Jacobian was computed. More...
 
bool _needs_old_newton_iter
 Indicates that we need to compute variable values for previous Newton iteration. More...
 
bool _previous_nl_solution_required
 Indicates we need to save the previous NL iteration variable values. More...
 
bool _has_nonlocal_coupling
 Indicates if nonlocal coupling is required/exists. More...
 
bool _calculate_jacobian_in_uo
 
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
 
std::vector< unsigned char > _has_active_material_properties
 Whether there are active material properties on each thread. More...
 
std::vector< SolverParams_solver_params
 
CoverageCheckMode _kernel_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active kernel. More...
 
std::vector< SubdomainName > _kernel_coverage_blocks
 
const bool _boundary_restricted_node_integrity_check
 whether to perform checking of boundary restricted nodal object variable dependencies, e.g. More...
 
const bool _boundary_restricted_elem_integrity_check
 whether to perform checking of boundary restricted elemental object variable dependencies, e.g. More...
 
CoverageCheckMode _material_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active material. More...
 
std::vector< SubdomainName > _material_coverage_blocks
 
bool _fv_bcs_integrity_check
 Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset. More...
 
const bool _material_dependency_check
 Determines whether a check to verify material dependencies on every subdomain. More...
 
const bool _uo_aux_state_check
 Whether or not checking the state of uo/aux evaluation. More...
 
unsigned int _max_qps
 Maximum number of quadrature points used in the problem. More...
 
libMesh::Order _max_scalar_order
 Maximum scalar variable order. More...
 
bool _has_time_integrator
 Indicates whether or not this executioner has a time integrator (during setup) More...
 
bool _has_exception
 Whether or not an exception has occurred. More...
 
bool _parallel_barrier_messaging
 Whether or not information about how many transfers have completed is printed. More...
 
MooseEnum _verbose_setup
 Whether or not to be verbose during setup. More...
 
bool _verbose_multiapps
 Whether or not to be verbose with multiapps. More...
 
bool _verbose_restore
 Whether or not to be verbose on solution restoration post a failed time step. More...
 
std::string _exception_message
 The error message to go with an exception. More...
 
ExecFlagType _current_execute_on_flag
 Current execute_on flag. More...
 
ExecuteMooseObjectWarehouse< Control_control_warehouse
 The control logic warehouse. More...
 
Moose::PetscSupport::PetscOptions _petsc_options
 PETSc option storage. More...
 
PetscOptions _petsc_option_data_base
 
bool _is_petsc_options_inserted
 If or not PETSc options have been added to database. More...
 
std::shared_ptr< LineSearch_line_search
 
std::unique_ptr< libMesh::ConstElemRange_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_nl_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_aux_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_current_algebraic_elem_range
 
std::unique_ptr< libMesh::ConstNodeRange_current_algebraic_node_range
 
std::unique_ptr< ConstBndNodeRange_current_algebraic_bnd_node_range
 
bool _using_ad_mat_props
 Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property. More...
 
unsigned short _current_ic_state
 
const bool _use_hash_table_matrix_assembly
 Whether to assemble matrices using hash tables instead of preallocating matrix memory. More...
 
std::map< TagName, TagID_matrix_tag_name_to_tag_id
 The currently declared tags. More...
 
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
 Reverse map. More...
 
Factory_factory
 The Factory for building objects. More...
 
DiracKernelInfo _dirac_kernel_info
 
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
 Map of material properties (block_id -> list of properties) More...
 
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
 Map for boundary material properties (boundary_id -> list of properties) More...
 
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
 Set of properties returned as zero properties. More...
 
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
 
std::set< std::string > _material_property_requested
 set containing all material property names that have been requested by getMaterialProperty* More...
 
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
 This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) More...
 
std::vector< unsigned int_has_active_elemental_moose_variables
 Whether or not there is currently a list of active elemental moose variables. More...
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
 
bool _default_ghosting
 Whether or not to use default libMesh coupling. More...
 
std::set< dof_id_type_ghosted_elems
 Elements that should have Dofs ghosted to the local processor. More...
 
bool _currently_computing_jacobian
 Flag to determine whether the problem is currently computing Jacobian. More...
 
bool _currently_computing_residual_and_jacobian
 Flag to determine whether the problem is currently computing the residual and Jacobian. More...
 
bool _computing_nonlinear_residual
 Whether the non-linear residual is being evaluated. More...
 
bool _currently_computing_residual
 Whether the residual is being evaluated. More...
 
bool _safe_access_tagged_matrices
 Is it safe to retrieve data from tagged matrices. More...
 
bool _safe_access_tagged_vectors
 Is it safe to retrieve data from tagged vectors. More...
 
bool _have_ad_objects
 AD flag indicating whether any AD objects have been added. More...
 
std::unordered_set< TagID_not_zeroed_tagged_vectors
 the list of vector tags that will not be zeroed when all other tags are More...
 
bool _cli_option_found
 True if the CLI option is found. More...
 
bool _color_output
 True if we're going to attempt to write color output. More...
 
bool _termination_requested
 True if termination of the solve has been requested. More...
 
const bool & _enabled
 Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects. More...
 
MooseApp_app
 The MOOSE application this is associated with. More...
 
ActionFactory_action_factory
 Builds Actions. More...
 
const std::string & _type
 The type of this class. More...
 
const std::string & _name
 The name of this class. More...
 
const InputParameters_pars
 The object's parameters. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseApp_restartable_app
 Reference to the application. More...
 
const std::string _restartable_system_name
 The system name this object is in. More...
 
const THREAD_ID _restartable_tid
 The thread ID for this object. More...
 
const bool _restartable_read_only
 Flag for toggling read only status (see ReporterData) More...
 
InitialConditionWarehouse _ics
 
FVInitialConditionWarehouse _fv_ics
 
ScalarInitialConditionWarehouse _scalar_ics
 
MaterialWarehouse _materials
 
MaterialWarehouse _interface_materials
 
MaterialWarehouse _discrete_materials
 
MaterialWarehouse _all_materials
 
MooseObjectWarehouse< Indicator_indicators
 
MooseObjectWarehouse< InternalSideIndicatorBase_internal_side_indicators
 
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
 Data structures of the requested material properties. More...
 
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
 

Private Member Functions

void setResidualObjectParamsAndLog (const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
 Set the subproblem and system parameters for residual objects and log their addition. More...
 
void handleException (const std::string &calling_method)
 Handle exceptions. More...
 
std::vector< MortarUserObject * > getMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
 Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID, and displaced parameters, given some initial set. More...
 
std::vector< MortarUserObject * > getMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced)
 Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID, and displaced parameters from the entire active mortar user object set. More...
 
virtual std::pair< bool, unsigned intdetermineSolverSystem (const std::string &var_name, bool error_if_not_found=false) const override
 Determine what solver system the provided variable name lies in. More...
 
void checkICRestartError (const std::string &ic_name, const std::string &name, const VariableName &var_name)
 Checks if the variable of the initial condition is getting restarted and errors for specific cases. More...
 
void addAnyRedistributers ()
 
void updateMaxQps ()
 
void joinAndFinalize (TheWarehouse::Query query, bool isgen=false)
 
virtual void resetState ()
 Reset state of this object in preparation for the next evaluation. More...
 

Static Private Member Functions

static SolverParams makeLinearSolverParams ()
 Make basic solver params for linear solves. More...
 

Private Attributes

Restartable::ManagedValue< RestartableEquationSystems_req
 The EquationSystems object, wrapped for restart. More...
 
bool _error_on_jacobian_nonzero_reallocation
 Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed. More...
 
const bool _restore_original_nonzero_pattern
 Whether we should restore the original nonzero pattern for every Jacobian evaluation. More...
 
bool _ignore_zeros_in_jacobian
 Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern. More...
 
bool _preserve_matrix_sparsity_pattern
 Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually. More...
 
const bool _force_restart
 
const bool _allow_ics_during_restart
 
const bool _skip_nl_system_check
 
bool _fail_next_system_convergence_check
 
const bool _allow_invalid_solution
 
const bool _show_invalid_solution_console
 
const bool & _immediately_print_invalid_solution
 
bool _started_initial_setup
 At or beyond initialSteup stage. More...
 
bool _has_internal_edge_residual_objects
 Whether the problem has dgkernels or interface kernels. More...
 
bool _u_dot_requested
 Whether solution time derivative needs to be stored. More...
 
bool _u_dotdot_requested
 Whether solution second time derivative needs to be stored. More...
 
bool _u_dot_old_requested
 Whether old solution time derivative needs to be stored. More...
 
bool _u_dotdot_old_requested
 Whether old solution second time derivative needs to be stored. More...
 
bool _has_mortar
 Whether the simulation requires mortar coupling. More...
 
unsigned int _num_grid_steps
 Number of steps in a grid sequence. More...
 
bool _trust_user_coupling_matrix = false
 Whether to trust the user coupling matrix no matter what. More...
 
bool _computing_scaling_jacobian = false
 Flag used to indicate whether we are computing the scaling Jacobian. More...
 
bool _computing_scaling_residual = false
 Flag used to indicate whether we are computing the scaling Residual. More...
 
bool _checking_uo_aux_state = false
 Flag used to indicate whether we are doing the uo/aux state check in execute. More...
 
ExecFlagEnum _print_execution_on
 When to print the execution of loops. More...
 
const bool _identify_variable_groups_in_nl
 Whether to identify variable groups in nonlinear systems. This affects dof ordering. More...
 
std::vector< VectorTag_current_residual_vector_tags
 A data member to store the residual vector tag(s) passed into computeResidualTag(s). More...
 
bool _have_fv = false
 Whether we are performing some calculations with finite volume discretizations. More...
 
const bool _regard_general_exceptions_as_errors
 If we catch an exception during residual/Jacobian evaluaton for which we don't have specific handling, immediately error instead of allowing the time step to be cut. More...
 
std::vector< libMesh::CouplingMatrix_nonlocal_cm
 nonlocal coupling matrix More...
 
bool _requires_nonlocal_coupling
 nonlocal coupling requirement flag More...
 

Friends

class AuxiliarySystem
 
class NonlinearSystemBase
 
class MooseEigenSystem
 
class Resurrector
 
class Restartable
 
class DisplacedProblem
 
void Moose::PetscSupport::setSinglePetscOption (const std::string &name, const std::string &value, FEProblemBase *const problem)
 

Detailed Description

Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.

Definition at line 132 of file FEProblemBase.h.

Member Typedef Documentation

◆ DataFileParameterType

using DataFileInterface::DataFileParameterType = DataFileName
inherited

The parameter type this interface expects for a data file name.

Definition at line 27 of file DataFileInterface.h.

Member Enumeration Documentation

◆ CoverageCheckMode

Enumerator
FALSE 
TRUE 
OFF 
ON 
SKIP_LIST 
ONLY_LIST 

Definition at line 140 of file FEProblemBase.h.

141  {
142  FALSE,
143  TRUE,
144  OFF,
145  ON,
146  SKIP_LIST,
147  ONLY_LIST,
148  };

Constructor & Destructor Documentation

◆ FEProblemBase()

FEProblemBase::FEProblemBase ( const InputParameters parameters)

Definition at line 389 of file FEProblemBase.C.

391  Restartable(this, "FEProblemBase"),
392  _mesh(*getCheckedPointerParam<MooseMesh *>("mesh")),
393  _req(declareManagedRestartableDataWithContext<RestartableEquationSystems>(
394  "equation_systems", nullptr, _mesh)),
395  _initialized(false),
396  _solve(getParam<bool>("solve")),
397  _transient(false),
398  _time(declareRestartableData<Real>("time")),
399  _time_old(declareRestartableData<Real>("time_old")),
400  _t_step(declareRecoverableData<int>("t_step")),
401  _dt(declareRestartableData<Real>("dt")),
402  _dt_old(declareRestartableData<Real>("dt_old")),
406  _linear_sys_names(getParam<std::vector<LinearSystemName>>("linear_sys_names")),
409  _current_linear_sys(nullptr),
410  _using_default_nl(!isParamSetByUser("nl_sys_names")),
412  ? getParam<std::vector<NonlinearSystemName>>("nl_sys_names")
413  : std::vector<NonlinearSystemName>()),
414  _num_nl_sys(_nl_sys_names.size()),
415  _nl(_num_nl_sys, nullptr),
416  _current_nl_sys(nullptr),
418  _aux(nullptr),
420  _mesh_divisions(/*threaded=*/true),
422  "material_props", &_mesh, _material_prop_registry)),
424  "bnd_material_props", &_mesh, _material_prop_registry)),
426  "neighbor_material_props", &_mesh, _material_prop_registry)),
428  // TODO: delete the following line after apps have been updated to not call getUserObjects
429  _all_user_objects(_app.getExecuteOnEnum()),
430  _multi_apps(_app.getExecuteOnEnum()),
431  _transient_multi_apps(_app.getExecuteOnEnum()),
432  _transfers(_app.getExecuteOnEnum(), /*threaded=*/false),
433  _to_multi_app_transfers(_app.getExecuteOnEnum(), /*threaded=*/false),
434  _from_multi_app_transfers(_app.getExecuteOnEnum(), /*threaded=*/false),
435  _between_multi_app_transfers(_app.getExecuteOnEnum(), /*threaded=*/false),
436 #ifdef LIBMESH_ENABLE_AMR
437  _adaptivity(*this),
439 #endif
440  _displaced_mesh(nullptr),
442  _mortar_data(*this),
443  _reinit_displaced_elem(false),
444  _reinit_displaced_face(false),
446  _input_file_saved(false),
447  _has_dampers(false),
448  _has_constraints(false),
449  _snesmf_reuse_base(true),
450  _skip_exception_check(false),
453  _const_jacobian(false),
454  _has_jacobian(false),
455  _needs_old_newton_iter(false),
456  _previous_nl_solution_required(getParam<bool>("previous_nl_solution_required")),
457  _has_nonlocal_coupling(false),
460  getParam<MooseEnum>("kernel_coverage_check").getEnum<CoverageCheckMode>()),
461  _kernel_coverage_blocks(getParam<std::vector<SubdomainName>>("kernel_coverage_block_list")),
463  getParam<bool>("boundary_restricted_node_integrity_check")),
465  getParam<bool>("boundary_restricted_elem_integrity_check")),
467  getParam<MooseEnum>("material_coverage_check").getEnum<CoverageCheckMode>()),
468  _material_coverage_blocks(getParam<std::vector<SubdomainName>>("material_coverage_block_list")),
469  _fv_bcs_integrity_check(getParam<bool>("fv_bcs_integrity_check")),
470  _material_dependency_check(getParam<bool>("material_dependency_check")),
471  _uo_aux_state_check(getParam<bool>("check_uo_aux_state")),
472  _max_qps(std::numeric_limits<unsigned int>::max()),
474  _has_time_integrator(false),
475  _has_exception(false),
476  _parallel_barrier_messaging(getParam<bool>("parallel_barrier_messaging")),
477  _verbose_setup(getParam<MooseEnum>("verbose_setup")),
478  _verbose_multiapps(getParam<bool>("verbose_multiapps")),
479  _verbose_restore(getParam<bool>("verbose_restore")),
481  _control_warehouse(_app.getExecuteOnEnum(), /*threaded=*/false),
483  _line_search(nullptr),
484  _using_ad_mat_props(false),
486  _use_hash_table_matrix_assembly(getParam<bool>("use_hash_table_matrix_assembly")),
488  isParamValid("error_on_jacobian_nonzero_reallocation")
489  ? getParam<bool>("error_on_jacobian_nonzero_reallocation")
491  _restore_original_nonzero_pattern(isParamValid("restore_original_nonzero_pattern")
492  ? getParam<bool>("restore_original_nonzero_pattern")
494  _ignore_zeros_in_jacobian(getParam<bool>("ignore_zeros_in_jacobian")),
496  _force_restart(getParam<bool>("force_restart")),
497  _allow_ics_during_restart(getParam<bool>("allow_initial_conditions_with_restart")),
498  _skip_nl_system_check(getParam<bool>("skip_nl_system_check")),
500  _allow_invalid_solution(getParam<bool>("allow_invalid_solution")),
501  _show_invalid_solution_console(getParam<bool>("show_invalid_solution_console")),
502  _immediately_print_invalid_solution(getParam<bool>("immediately_print_invalid_solution")),
503  _started_initial_setup(false),
505  _u_dot_requested(false),
506  _u_dotdot_requested(false),
507  _u_dot_old_requested(false),
509  _has_mortar(false),
510  _num_grid_steps(0),
512  _identify_variable_groups_in_nl(getParam<bool>("identify_variable_groups_in_nl")),
513  _regard_general_exceptions_as_errors(getParam<bool>("regard_general_exceptions_as_errors")),
515 {
516  auto checkCoverageCheckConflict =
517  [this](const std::string & coverage_check,
518  const CoverageCheckMode & coverage_check_mode,
519  const std::vector<SubdomainName> & coverage_blocks) -> void
520  {
521  if (coverage_check_mode != CoverageCheckMode::FALSE &&
522  coverage_check_mode != CoverageCheckMode::OFF)
523  if (coverage_blocks.size() > 1)
524  if (std::find(coverage_blocks.begin(), coverage_blocks.end(), "ANY_BLOCK_ID") !=
525  coverage_blocks.end())
526  paramError(coverage_check,
527  "The list of blocks used for ",
528  coverage_check,
529  " cannot contain 'ANY_BLOCK_ID' along with other blocks. ");
530  };
531 
532  checkCoverageCheckConflict(
533  "kernel_coverage_check", _kernel_coverage_check, _kernel_coverage_blocks);
534  checkCoverageCheckConflict(
535  "material_coverage_check", _material_coverage_check, _material_coverage_blocks);
536 
537  // Initialize static do_derivatives member. We initialize this to true so that all the
538  // default AD things that we setup early in the simulation actually get their derivative
539  // vectors initalized. We will toggle this to false when doing residual evaluations
540  ADReal::do_derivatives = true;
541 
542  // Disable refinement/coarsening in EquationSystems::reinit because we already do this ourselves
544 
546  // Default constructor fine for nonlinear because it will be populated later by framework
547  // executioner/solve object parameters
548  _solver_params.resize(_num_nl_sys);
549  for (const auto i : index_range(_nl_sys_names))
550  {
551  const auto & name = _nl_sys_names[i];
554  _solver_sys_names.push_back(name);
555  }
556 
557  for (const auto i : index_range(_linear_sys_names))
558  {
559  const auto & name = _linear_sys_names[i];
562  _solver_sys_names.push_back(name);
563  // Unlike for nonlinear these are basically dummy parameters
565  }
566 
567  _nonlocal_cm.resize(numSolverSystems());
568  _cm.resize(numSolverSystems());
569 
570  _time = 0.0;
571  _time_old = 0.0;
572  _t_step = 0;
573  _dt = 0;
574  _dt_old = _dt;
575 
576  unsigned int n_threads = libMesh::n_threads();
577 
578  _real_zero.resize(n_threads, 0.);
579  _scalar_zero.resize(n_threads);
580  _zero.resize(n_threads);
581  _phi_zero.resize(n_threads);
582  _ad_zero.resize(n_threads);
583  _grad_zero.resize(n_threads);
584  _ad_grad_zero.resize(n_threads);
585  _grad_phi_zero.resize(n_threads);
586  _second_zero.resize(n_threads);
587  _ad_second_zero.resize(n_threads);
588  _second_phi_zero.resize(n_threads);
589  _point_zero.resize(n_threads);
590  _vector_zero.resize(n_threads);
591  _vector_curl_zero.resize(n_threads);
592  _uo_jacobian_moose_vars.resize(n_threads);
593 
594  _has_active_material_properties.resize(n_threads, 0);
595 
596  _block_mat_side_cache.resize(n_threads);
597  _bnd_mat_side_cache.resize(n_threads);
598  _interface_mat_side_cache.resize(n_threads);
599 
600  es().parameters.set<FEProblemBase *>("_fe_problem_base") = this;
601 
602  if (isParamValid("restart_file_base"))
603  {
604  std::string restart_file_base = getParam<FileNameNoExtension>("restart_file_base");
605 
606  // This check reverts to old behavior of providing "restart_file_base=" to mean
607  // don't restart... BISON currently relies on this. It could probably be removed.
608  // The new MooseUtils::convertLatestCheckpoint will error out if a checkpoint file
609  // is not found, which I think makes sense. Which means, without this, if you
610  // set "restart_file_base=", you'll get a "No checkpoint file found" error
611  if (restart_file_base.size())
612  {
613  restart_file_base = MooseUtils::convertLatestCheckpoint(restart_file_base);
614  setRestartFile(restart_file_base);
615  }
616  }
617 
618  // // Generally speaking, the mesh is prepared for use, and consequently remote elements are deleted
619  // // well before our Problem(s) are constructed. Historically, in MooseMesh we have a bunch of
620  // // needs_prepare type flags that make it so we never call prepare_for_use (and consequently
621  // // delete_remote_elements) again. So the below line, historically, has had no impact. HOWEVER:
622  // // I've added some code in SetupMeshCompleteAction for deleting remote elements post
623  // // EquationSystems::init. If I execute that code without default ghosting, then I get > 40 MOOSE
624  // // test failures, so we clearly have some simulations that are not yet covered properly by
625  // // relationship managers. Until that is resolved, I am going to retain default geometric ghosting
626  // if (!_default_ghosting)
627  // _mesh.getMesh().remove_ghosting_functor(_mesh.getMesh().default_ghosting());
628 
629 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
630  // Main app should hold the default database to handle system petsc options
631  if (!_app.isUltimateMaster())
632  LibmeshPetscCall(PetscOptionsCreate(&_petsc_option_data_base));
633 #endif
634 
635  if (!_solve)
636  {
637  // If we are not solving, we do not care about seeing unused petsc options
638  Moose::PetscSupport::setSinglePetscOption("-options_left", "0");
639  // We don't want petscSetOptions being called in solve and clearing the option that was just set
641  }
642 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::map< NonlinearSystemName, unsigned int > _nl_sys_name_to_num
Map from nonlinear system name to number.
std::vector< Point > _point_zero
bool _u_dot_requested
Whether solution time derivative needs to be stored.
const bool _regard_general_exceptions_as_errors
If we catch an exception during residual/Jacobian evaluaton for which we don&#39;t have specific handling...
const std::size_t _num_nl_sys
The number of nonlinear systems.
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
std::map< LinearSystemName, unsigned int > _linear_sys_name_to_num
Map from linear system name to number.
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.
static SolverParams makeLinearSolverParams()
Make basic solver params for linear solves.
bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
MaterialPropertyStorage & _bnd_material_props
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
bool _has_jacobian
Indicates if the Jacobian was computed.
bool _has_dampers
Whether or not this system has any Dampers associated with it.
std::vector< SubdomainName > _kernel_coverage_blocks
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
std::vector< SolverParams > _solver_params
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
unsigned int _cycles_completed
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
unsigned short _current_ic_state
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
Stores the stateful material properties computed by materials.
T & declareRestartableDataWithContext(const std::string &data_name, void *context, Args &&... args)
Declare a piece of data as "restartable" and initialize it.
Definition: Restartable.h:294
PetscOptions _petsc_option_data_base
std::vector< SubdomainName > _material_coverage_blocks
std::vector< VariableSecond > _second_zero
std::vector< MooseArray< ADReal > > _ad_zero
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::vector< VectorVariableCurl > _vector_curl_zero
bool _has_exception
Whether or not an exception has occurred.
unsigned int _num_grid_steps
Number of steps in a grid sequence.
bool _needs_old_newton_iter
Indicates that we need to compute variable values for previous Newton iteration.
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)
MaterialPropertyRegistry _material_prop_registry
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
std::map< SolverSystemName, unsigned int > _solver_sys_name_to_num
Map connecting solver system names with their respective systems.
std::string convertLatestCheckpoint(std::string orig)
Replaces "LATEST" placeholders with the latest checkpoint file name.
Definition: MooseUtils.C:153
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
Cache for calculating materials on side.
ExecFlagEnum _print_execution_on
When to print the execution of loops.
auto max(const L &left, const R &right)
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
const bool _skip_nl_system_check
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< VariablePhiGradient > _grad_phi_zero
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
bool _previous_nl_solution_required
Indicates we need to save the previous NL iteration variable values.
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const bool & _immediately_print_invalid_solution
const bool & _solve
Whether or not to actually solve the nonlinear system.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _input_file_saved
whether input file has been written
Moose::CouplingType _coupling
Type of variable coupling.
const bool _allow_ics_during_restart
SubProblem(const InputParameters &parameters)
Definition: SubProblem.C:60
virtual libMesh::EquationSystems & es() override
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
Cache for calculating materials on side.
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const bool _allow_invalid_solution
const bool _boundary_restricted_node_integrity_check
whether to perform checking of boundary restricted nodal object variable dependencies, e.g.
MooseMesh & _mesh
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
Adaptivity _adaptivity
LinearSystem * _current_linear_sys
The current linear system that we are solving.
const bool _force_restart
std::vector< VariablePhiSecond > _second_phi_zero
bool _started_initial_setup
At or beyond initialSteup stage.
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
INVALID_ORDER
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const bool _show_invalid_solution_console
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.
friend class Restartable
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.
std::vector< VariablePhiValue > _phi_zero
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
void setSinglePetscOption(const std::string &name, const std::string &value="", FEProblemBase *const problem=nullptr)
A wrapper function for dealing with different versions of PetscOptionsSetValue.
std::vector< VariableGradient > _grad_zero
const bool _identify_variable_groups_in_nl
Whether to identify variable groups in nonlinear systems. This affects dof ordering.
const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.
T & set(const std::string &)
void setRestartFile(const std::string &file_name)
Communicate to the Resurector the name of the restart filer.
std::vector< VariableValue > _scalar_zero
bool _using_ad_mat_props
Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material ...
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
const bool _material_dependency_check
Determines whether a check to verify material dependencies on every subdomain.
std::vector< VariableValue > _zero
GeometricSearchData _geometric_search_data
std::vector< VectorVariableValue > _vector_zero
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...
MaterialPropertyStorage & _neighbor_material_props
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195
MOOSE now contains C++17 code, so give a reasonable error message stating what the user can do to add...
const std::size_t _num_linear_sys
The number of linear systems.
const bool _use_hash_table_matrix_assembly
Whether to assemble matrices using hash tables instead of preallocating matrix memory.
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.
bool _has_constraints
Whether or not this system has any Constraints.
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...
bool _fail_next_system_convergence_check
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.
const bool _boundary_restricted_elem_integrity_check
whether to perform checking of boundary restricted elemental object variable dependencies, e.g.
bool _const_jacobian
true if the Jacobian is constant
MaterialPropertyStorage & _material_props
libMesh::Order _max_scalar_order
Maximum scalar variable order.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
virtual std::size_t numSolverSystems() const override
Restartable::ManagedValue< RestartableEquationSystems > _req
The EquationSystems object, wrapped for restart.
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
Cache for calculating materials on interface.
bool isParamSetByUser(const std::string &name) const
Test if the supplied parameter is set by a user, as opposed to not set or set to default.
Definition: MooseBase.h:201
const bool _using_default_nl
Boolean to check if we have the default nonlinear system.
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.
void ErrorVector unsigned int
auto index_range(const T &sizable)
MooseEnum _verbose_setup
Whether or not to be verbose during setup.
MooseMesh * _displaced_mesh
bool _has_mortar
Whether the simulation requires mortar coupling.
std::shared_ptr< LineSearch > _line_search
std::vector< Real > _real_zero
Convenience zeros.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ ~FEProblemBase()

FEProblemBase::~FEProblemBase ( )
virtual

Definition at line 781 of file FEProblemBase.C.

782 {
783  // Flush the Console stream, the underlying call to Console::mooseConsole
784  // relies on a call to Output::checkInterval that has references to
785  // _time, etc. If it is not flushed here memory problems arise if you have
786  // an unflushed stream and start destructing things.
787  _console << std::flush;
788 
789  unsigned int n_threads = libMesh::n_threads();
790  for (unsigned int i = 0; i < n_threads; i++)
791  {
792  _zero[i].release();
793  _phi_zero[i].release();
794  _scalar_zero[i].release();
795  _grad_zero[i].release();
796  _grad_phi_zero[i].release();
797  _second_zero[i].release();
798  _second_phi_zero[i].release();
799  _vector_zero[i].release();
800  _vector_curl_zero[i].release();
801  _ad_zero[i].release();
802  _ad_grad_zero[i].release();
803  _ad_second_zero[i].release();
804  }
805 
806 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
807  if (!_app.isUltimateMaster())
808  {
809  auto ierr = PetscOptionsDestroy(&_petsc_option_data_base);
810  // Don't throw on destruction
811  CHKERRABORT(this->comm().get(), ierr);
812  }
813 #endif
814 }
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
unsigned int n_threads()
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
PetscOptions _petsc_option_data_base
const Parallel::Communicator & comm() const
std::vector< VariableSecond > _second_zero
std::vector< MooseArray< ADReal > > _ad_zero
std::vector< VectorVariableCurl > _vector_curl_zero
std::vector< VariablePhiGradient > _grad_phi_zero
std::vector< VariablePhiSecond > _second_phi_zero
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::vector< VariablePhiValue > _phi_zero
std::vector< VariableGradient > _grad_zero
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
std::vector< VectorVariableValue > _vector_zero
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

Member Function Documentation

◆ _setCLIOption()

void Problem::_setCLIOption ( )
inlineinherited

For Internal Use.

Definition at line 32 of file Problem.h.

32 { _cli_option_found = true; }
bool _cli_option_found
True if the CLI option is found.
Definition: Problem.h:52

◆ acceptInvalidSolution()

bool FEProblemBase::acceptInvalidSolution ( ) const

Whether or not to accept the solution based on its invalidity.

If this returns false, it means that an invalid solution was encountered (an error) that was not allowed.

Definition at line 3804 of file FEProblemBase.C.

Referenced by SolverSystem::checkInvalidSolution(), and NonlinearSystem::converged().

3805 {
3806  return allowInvalidSolution() || // invalid solutions are always allowed
3807  !_app.solutionInvalidity().hasInvalidSolutionError(); // if not allowed, check for errors
3808 }
bool hasInvalidSolutionError() const
Whether or not an invalid solution was encountered that was an error.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:172
bool allowInvalidSolution() const
Whether to accept / allow an invalid solution.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ adaptivity()

Adaptivity& FEProblemBase::adaptivity ( )
inline

Definition at line 1735 of file FEProblemBase.h.

Referenced by SteadyBase::execute(), Eigenvalue::execute(), initialAdaptMesh(), and initialSetup().

1735 { return _adaptivity; }
Adaptivity _adaptivity

◆ adaptMesh()

bool FEProblemBase::adaptMesh ( )
virtual
Returns
Whether or not the mesh was changed

Reimplemented in DumpObjectsProblem.

Definition at line 7952 of file FEProblemBase.C.

Referenced by SteadyBase::execute(), Eigenvalue::execute(), and TransientBase::incrementStepOrReject().

7953 {
7954  // reset cycle counter
7955  _cycles_completed = 0;
7956 
7958  return false;
7959 
7960  TIME_SECTION("adaptMesh", 3, "Adapting Mesh");
7961 
7962  unsigned int cycles_per_step = _adaptivity.getCyclesPerStep();
7963 
7964  bool mesh_changed = false;
7965 
7966  for (unsigned int i = 0; i < cycles_per_step; ++i)
7967  {
7968  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
7969  mooseError("HFEM does not support mesh adaptivity currently.");
7970 
7971  // Markers were already computed once by Executioner
7972  if (_adaptivity.getRecomputeMarkersFlag() && i > 0)
7973  computeMarkers();
7974 
7975  bool mesh_changed_this_step;
7976  mesh_changed_this_step = _adaptivity.adaptMesh();
7977 
7978  if (mesh_changed_this_step)
7979  {
7980  mesh_changed = true;
7981 
7982  meshChanged(
7983  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
7985  }
7986  else
7987  {
7988  // If the mesh didn't change, we still need to update the displaced mesh
7989  // to undo the undisplacement performed in Adaptivity::adaptMesh
7990  if (_displaced_problem)
7991  _displaced_problem->updateMesh();
7992 
7993  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
7994  break;
7995  }
7996 
7997  // Show adaptivity progress
7998  _console << std::flush;
7999  }
8000 
8001  // We're done with all intermediate changes; now get systems ready
8002  // for real if necessary.
8003  if (mesh_changed)
8004  es().reinit_systems();
8005 
8006  // Execute multi-apps that need to run after adaptivity, but before the next timestep.
8008 
8009  return mesh_changed;
8010 }
bool adaptMesh(std::string marker_name=std::string())
Adapts the mesh based on the error estimator used.
Definition: Adaptivity.C:131
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
unsigned int _cycles_completed
unsigned int getCyclesPerStep() const
Pull out the number of cycles_per_step previously set through the AdaptivityAction.
Definition: Adaptivity.h:112
virtual void computeMarkers()
virtual void reinit_systems()
bool getRecomputeMarkersFlag() const
Pull out the _recompute_markers_during_cycles flag previously set through the AdaptivityAction.
Definition: Adaptivity.h:125
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1407
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isAdaptivityDue()
Query if an adaptivity step should be performed at the current time / time step.
Definition: Adaptivity.C:393
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
const ExecFlagType EXEC_POST_ADAPTIVITY
Definition: Moose.C:58

◆ addAlgebraicGhostingFunctor()

void SubProblem::addAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf,
bool  to_mesh = true 
)
inherited

Add an algebraic ghosting functor to this problem's DofMaps.

Definition at line 1023 of file SubProblem.C.

1024 {
1025  EquationSystems & eq = es();
1026  const auto n_sys = eq.n_systems();
1027  if (!n_sys)
1028  return;
1029 
1030  eq.get_system(0).get_dof_map().add_algebraic_ghosting_functor(algebraic_gf, to_mesh);
1031  cloneAlgebraicGhostingFunctor(algebraic_gf, to_mesh);
1032 }
unsigned int n_systems() const
void cloneAlgebraicGhostingFunctor(libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided algebraic ghosting functor (corresponding to the nonlinear...
Definition: SubProblem.C:1001
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0

◆ addAnyRedistributers()

void FEProblemBase::addAnyRedistributers ( )
private

Definition at line 5908 of file FEProblemBase.C.

Referenced by initialSetup().

5909 {
5910 #ifdef LIBMESH_ENABLE_AMR
5911  if ((_adaptivity.isOn() || _num_grid_steps) &&
5914  {
5915  // Even on a serialized Mesh, we don't keep our material
5916  // properties serialized, so we'll rely on the callback to
5917  // redistribute() to redistribute properties at the same time
5918  // libMesh is redistributing elements.
5919  auto add_redistributer = [this](MooseMesh & mesh,
5920  const std::string & redistributer_name,
5921  const bool use_displaced_mesh)
5922  {
5923  InputParameters redistribute_params = RedistributeProperties::validParams();
5924  redistribute_params.set<MooseApp *>(MooseBase::app_param) = &_app;
5925  redistribute_params.set<std::string>("for_whom") = this->name();
5926  redistribute_params.set<MooseMesh *>("mesh") = &mesh;
5927  redistribute_params.set<Moose::RelationshipManagerType>("rm_type") =
5929  redistribute_params.set<bool>("use_displaced_mesh") = use_displaced_mesh;
5930  redistribute_params.setHitNode(*parameters().getHitNode(), {});
5931 
5932  std::shared_ptr<RedistributeProperties> redistributer =
5934  "RedistributeProperties", redistributer_name, redistribute_params);
5935 
5938 
5940  redistributer->addMaterialPropertyStorage(_bnd_material_props);
5941 
5943  redistributer->addMaterialPropertyStorage(_neighbor_material_props);
5944 
5945  mesh.getMesh().add_ghosting_functor(redistributer);
5946  };
5947 
5948  add_redistributer(_mesh, "mesh_property_redistributer", false);
5949  if (_displaced_problem)
5950  add_redistributer(_displaced_problem->mesh(), "displaced_mesh_property_redistributer", true);
5951  }
5952 #endif // LIBMESH_ENABLE_AMR
5953 }
static const std::string app_param
The name of the parameter that contains the MooseApp.
Definition: MooseBase.h:59
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
MaterialPropertyStorage & _bnd_material_props
RelationshipManagerType
Main types of Relationship Managers.
Definition: MooseTypes.h:964
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for MOOSE-based applications.
Definition: MooseApp.h:96
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
unsigned int _num_grid_steps
Number of steps in a grid sequence.
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
MooseMesh wraps a libMesh::Mesh object and enhances its capabilities by caching additional data and s...
Definition: MooseMesh.h:88
MooseMesh & _mesh
Adaptivity _adaptivity
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void addMaterialPropertyStorage(MaterialPropertyStorage &mat_props)
Pushes the given pair ( mat_data , mat_props ) onto our list of _materials data to redistribute each ...
virtual MooseMesh & mesh() override
std::shared_ptr< DisplacedProblem > _displaced_problem
void setHitNode(const std::string &param, const hit::Node &node, const SetParamHitNodeKey)
Sets the hit node associated with the parameter param to node.
MaterialPropertyStorage & _neighbor_material_props
const hit::Node * getHitNode() const
Definition: MooseBase.h:132
MaterialPropertyStorage & _material_props
static InputParameters validParams()
RedistributeProperties is used for its redistribute() callback, which ensures that any stateful prope...
void add_ghosting_functor(GhostingFunctor &ghosting_functor)

◆ addAuxArrayVariable()

void FEProblemBase::addAuxArrayVariable ( const std::string &  var_name,
const libMesh::FEType type,
unsigned int  components,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtual

Definition at line 3185 of file FEProblemBase.C.

3189 {
3190  parallel_object_only();
3191 
3192  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3193 
3194  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3195  return;
3196 
3197  InputParameters params = _factory.getValidParams("ArrayMooseVariable");
3198  params.set<FEProblemBase *>("_fe_problem_base") = this;
3200  params.set<MooseEnum>("order") = type.order.get_order();
3201  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3202  params.set<unsigned int>("components") = components;
3203 
3204  if (active_subdomains)
3205  for (const SubdomainID & id : *active_subdomains)
3206  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3207 
3208  logAdd("Variable", var_name, "ArrayMooseVariable", params);
3209  _aux->addVariable("ArrayMooseVariable", var_name, params);
3210  if (_displaced_problem)
3211  _displaced_problem->addAuxVariable("ArrayMooseVariable", var_name, params);
3212 
3213  markFamilyPRefinement(params);
3214 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxKernel()

void FEProblemBase::addAuxKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 3251 of file FEProblemBase.C.

3254 {
3255  parallel_object_only();
3256 
3257  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3258  {
3259  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3260  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3261  parameters.set<SystemBase *>("_nl_sys") = &_displaced_problem->solverSys(0);
3262  if (!parameters.get<std::vector<BoundaryName>>("boundary").empty())
3263  _reinit_displaced_face = true;
3264  else
3265  _reinit_displaced_elem = true;
3266  }
3267  else
3268  {
3269  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3270  {
3271  // We allow AuxKernels to request that they use_displaced_mesh,
3272  // but then be overridden when no displacements variables are
3273  // provided in the Mesh block. If that happened, update the value
3274  // of use_displaced_mesh appropriately for this AuxKernel.
3275  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3276  parameters.set<bool>("use_displaced_mesh") = false;
3277  }
3278 
3279  parameters.set<SubProblem *>("_subproblem") = this;
3280  parameters.set<SystemBase *>("_sys") = _aux.get();
3281  parameters.set<SystemBase *>("_nl_sys") = _solver_systems[0].get();
3282  }
3283 
3284  logAdd("AuxKernel", name, kernel_name, parameters);
3285  _aux->addKernel(kernel_name, name, parameters);
3286 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarKernel()

void FEProblemBase::addAuxScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3289 of file FEProblemBase.C.

3292 {
3293  parallel_object_only();
3294 
3295  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3296  {
3297  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3298  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3299  }
3300  else
3301  {
3302  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3303  {
3304  // We allow AuxScalarKernels to request that they use_displaced_mesh,
3305  // but then be overridden when no displacements variables are
3306  // provided in the Mesh block. If that happened, update the value
3307  // of use_displaced_mesh appropriately for this AuxScalarKernel.
3308  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3309  parameters.set<bool>("use_displaced_mesh") = false;
3310  }
3311 
3312  parameters.set<SubProblem *>("_subproblem") = this;
3313  parameters.set<SystemBase *>("_sys") = _aux.get();
3314  }
3315 
3316  logAdd("AuxScalarKernel", name, kernel_name, parameters);
3317  _aux->addScalarKernel(kernel_name, name, parameters);
3318 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarVariable()

void FEProblemBase::addAuxScalarVariable ( const std::string &  var_name,
libMesh::Order  order,
Real  scale_factor = 1.,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtual

Definition at line 3217 of file FEProblemBase.C.

3221 {
3222  parallel_object_only();
3223 
3224  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3225 
3226  if (order > _max_scalar_order)
3227  _max_scalar_order = order;
3228 
3229  FEType type(order, SCALAR);
3230  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3231  return;
3232 
3233  InputParameters params = _factory.getValidParams("MooseVariableScalar");
3234  params.set<FEProblemBase *>("_fe_problem_base") = this;
3236 
3237  params.set<MooseEnum>("order") = type.order.get_order();
3238  params.set<MooseEnum>("family") = "SCALAR";
3239  params.set<std::vector<Real>>("scaling") = {1};
3240  if (active_subdomains)
3241  for (const SubdomainID & id : *active_subdomains)
3242  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3243 
3244  logAdd("ScalarVariable", var_name, "MooseVariableScalar", params);
3245  _aux->addVariable("MooseVariableScalar", var_name, params);
3246  if (_displaced_problem)
3247  _displaced_problem->addAuxVariable("MooseVariableScalar", var_name, params);
3248 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ addAuxVariable() [1/2]

void FEProblemBase::addAuxVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters params 
)
virtual

Canonical method for adding an auxiliary variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in MFEMProblem.

Definition at line 3114 of file FEProblemBase.C.

Referenced by AddElementalFieldAction::init(), and AddAuxVariableAction::init().

3117 {
3118  parallel_object_only();
3119 
3120  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
3121  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
3122  const auto fe_type = FEType(order, family);
3123 
3124  const auto active_subdomains_vector =
3125  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
3126  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
3127  active_subdomains_vector.end());
3128 
3129  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ true, &active_subdomains))
3130  return;
3131 
3132  params.set<FEProblemBase *>("_fe_problem_base") = this;
3134 
3135  logAdd("AuxVariable", var_name, var_type, params);
3136  _aux->addVariable(var_type, var_name, params);
3137  if (_displaced_problem)
3138  // MooseObjects need to be unique so change the name here
3139  _displaced_problem->addAuxVariable(var_type, var_name, params);
3140 
3141  markFamilyPRefinement(params);
3142 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1737
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxVariable() [2/2]

void FEProblemBase::addAuxVariable ( const std::string &  var_name,
const libMesh::FEType type,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtual

Definition at line 3145 of file FEProblemBase.C.

3148 {
3149  parallel_object_only();
3150 
3151  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3152 
3153  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3154  return;
3155 
3156  std::string var_type;
3157  if (type == FEType(0, MONOMIAL))
3158  var_type = "MooseVariableConstMonomial";
3159  else if (type.family == SCALAR)
3160  var_type = "MooseVariableScalar";
3161  else if (FEInterface::field_type(type) == TYPE_VECTOR)
3162  var_type = "VectorMooseVariable";
3163  else
3164  var_type = "MooseVariable";
3165 
3166  InputParameters params = _factory.getValidParams(var_type);
3167  params.set<FEProblemBase *>("_fe_problem_base") = this;
3169  params.set<MooseEnum>("order") = type.order.get_order();
3170  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3171 
3172  if (active_subdomains)
3173  for (const SubdomainID & id : *active_subdomains)
3174  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3175 
3176  logAdd("AuxVariable", var_name, var_type, params);
3177  _aux->addVariable(var_type, var_name, params);
3178  if (_displaced_problem)
3179  _displaced_problem->addAuxVariable("MooseVariable", var_name, params);
3180 
3181  markFamilyPRefinement(params);
3182 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addBoundaryCondition()

void FEProblemBase::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 3043 of file FEProblemBase.C.

Referenced by DiffusionCG::addBoundaryConditionsFromComponents(), and DiffusionCG::addFEBCs().

3046 {
3047  parallel_object_only();
3048 
3049  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3050  if (!isSolverSystemNonlinear(nl_sys_num))
3051  mooseError(
3052  "You are trying to add a BoundaryCondition to a linear variable/system, which is not "
3053  "supported at the moment!");
3054 
3056  bc_name, name, parameters, nl_sys_num, "BoundaryCondition", _reinit_displaced_face);
3057  _nl[nl_sys_num]->addBoundaryCondition(bc_name, name, parameters);
3058 }
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addCachedJacobian()

void FEProblemBase::addCachedJacobian ( const THREAD_ID  tid)
overridevirtual

◆ addCachedResidual()

void FEProblemBase::addCachedResidual ( const THREAD_ID  tid)
overridevirtual

◆ addCachedResidualDirectly()

void FEProblemBase::addCachedResidualDirectly ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
virtual

Allows for all the residual contributions that are currently cached to be added directly into the vector passed in.

Parameters
residualThe vector to add the cached contributions to.
tidThe thread id.

Definition at line 1887 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

1888 {
1890  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1892 
1894  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1896 
1897  // We do this because by adding the cached residual directly, we cannot ensure that all of the
1898  // cached residuals are emptied after only the two add calls above
1899  _assembly[tid][_current_nl_sys->number()]->clearCachedResiduals(Assembly::GlobalDataKey{});
1900 
1901  if (_displaced_problem)
1902  _displaced_problem->addCachedResidualDirectly(residual, tid);
1903 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916
TagID nonTimeVectorTag() const override
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
TagID timeVectorTag() const override
Ideally, we should not need this API.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addConstraint()

void FEProblemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3061 of file FEProblemBase.C.

3064 {
3065  parallel_object_only();
3066 
3067  _has_constraints = true;
3068 
3069  auto determine_var_param_name = [&parameters, this]()
3070  {
3071  if (parameters.isParamValid("variable"))
3072  return "variable";
3073  else
3074  {
3075  // must be a mortar constraint
3076  const bool has_secondary_var = parameters.isParamValid("secondary_variable");
3077  const bool has_primary_var = parameters.isParamValid("primary_variable");
3078  if (!has_secondary_var && !has_primary_var)
3079  mooseError(
3080  "Either a 'secondary_variable' or 'primary_variable' parameter must be supplied for '",
3082  "'");
3083  return has_secondary_var ? "secondary_variable" : "primary_variable";
3084  }
3085  };
3086 
3087  const auto nl_sys_num =
3088  determineSolverSystem(parameters.varName(determine_var_param_name(), name), true).second;
3089  if (!isSolverSystemNonlinear(nl_sys_num))
3090  mooseError("You are trying to add a Constraint to a linear variable/system, which is not "
3091  "supported at the moment!");
3092 
3093  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3094  {
3095  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3096  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3097  _reinit_displaced_face = true;
3098  }
3099  else
3100  {
3101  // It might _want_ to use a displaced mesh... but we're not so set it to false
3102  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3103  parameters.set<bool>("use_displaced_mesh") = false;
3104 
3105  parameters.set<SubProblem *>("_subproblem") = this;
3106  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3107  }
3108 
3109  logAdd("Constraint", name, c_name, parameters);
3110  _nl[nl_sys_num]->addConstraint(c_name, name, parameters);
3111 }
const std::string & getObjectName() const
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_constraints
Whether or not this system has any Constraints.
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addConsumedPropertyName()

void SubProblem::addConsumedPropertyName ( const MooseObjectName obj_name,
const std::string &  prop_name 
)
inherited

Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput.

Definition at line 736 of file SubProblem.C.

Referenced by MaterialPropertyInterface::addConsumedPropertyName().

737 {
738  _consumed_material_properties[obj_name].insert(prop_name);
739 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ addConvergence()

void FEProblemBase::addConvergence ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a Convergence object.

Definition at line 2518 of file FEProblemBase.C.

Referenced by addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), addDefaultNonlinearConvergence(), and addDefaultSteadyStateConvergence().

2521 {
2522  parallel_object_only();
2523 
2524  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2525  {
2526  std::shared_ptr<Convergence> conv = _factory.create<Convergence>(type, name, parameters, tid);
2527  _convergences.addObject(conv, tid);
2528  }
2529 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
virtual std::unique_ptr< Base > create()=0
Base class for convergence criteria.
Definition: Convergence.h:21
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addCouplingGhostingFunctor()

void SubProblem::addCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf,
bool  to_mesh = true 
)
inherited

Add a coupling functor to this problem's DofMaps.

Definition at line 1056 of file SubProblem.C.

1057 {
1058  const auto num_nl_sys = numNonlinearSystems();
1059  if (!num_nl_sys)
1060  return;
1061 
1062  systemBaseNonlinear(0).system().get_dof_map().add_coupling_functor(coupling_gf, to_mesh);
1063  cloneCouplingGhostingFunctor(coupling_gf, to_mesh);
1064 }
void cloneCouplingGhostingFunctor(libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided coupling ghosting functor (corresponding to the nonlinear ...
Definition: SubProblem.C:1035
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void add_coupling_functor(GhostingFunctor &coupling_functor, bool to_mesh=true)
virtual std::size_t numNonlinearSystems() const =0
const DofMap & get_dof_map() const

◆ addDamper()

void FEProblemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 5143 of file FEProblemBase.C.

5146 {
5147  parallel_object_only();
5148 
5149  const auto nl_sys_num =
5150  parameters.isParamValid("variable")
5151  ? determineSolverSystem(parameters.varName("variable", name), true).second
5152  : (unsigned int)0;
5153 
5154  if (!isSolverSystemNonlinear(nl_sys_num))
5155  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
5156  "supported at the moment!");
5157 
5158  parameters.set<SubProblem *>("_subproblem") = this;
5159  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
5160 
5161  _has_dampers = true;
5162  logAdd("Damper", name, damper_name, parameters);
5163  _nl[nl_sys_num]->addDamper(damper_name, name, parameters);
5164 }
bool _has_dampers
Whether or not this system has any Dampers associated with it.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addDefaultMultiAppFixedPointConvergence()

void FEProblemBase::addDefaultMultiAppFixedPointConvergence ( const InputParameters params)

Adds the default fixed point Convergence associated with the problem.

This is called if the user does not supply 'multiapp_fixed_point_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2544 of file FEProblemBase.C.

2545 {
2546  const std::string class_name = "DefaultMultiAppFixedPointConvergence";
2547  InputParameters params = _factory.getValidParams(class_name);
2548  params.applyParameters(params_to_apply);
2549  params.applyParameters(parameters());
2550  params.set<bool>("added_as_default") = true;
2552 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.
const ConvergenceName & getMultiAppFixedPointConvergenceName() const
Gets the MultiApp fixed point convergence object name.

◆ addDefaultNonlinearConvergence()

void FEProblemBase::addDefaultNonlinearConvergence ( const InputParameters params)
virtual

Adds the default nonlinear Convergence associated with the problem.

This is called if the user does not supply 'nonlinear_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Reimplemented in ReferenceResidualProblem.

Definition at line 2532 of file FEProblemBase.C.

2533 {
2534  const std::string class_name = "DefaultNonlinearConvergence";
2535  InputParameters params = _factory.getValidParams(class_name);
2536  params.applyParameters(params_to_apply);
2537  params.applyParameters(parameters());
2538  params.set<bool>("added_as_default") = true;
2539  for (const auto & conv_name : getNonlinearConvergenceNames())
2540  addConvergence(class_name, conv_name, params);
2541 }
const std::vector< ConvergenceName > & getNonlinearConvergenceNames() const
Gets the nonlinear system convergence object name(s).
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDefaultSteadyStateConvergence()

void FEProblemBase::addDefaultSteadyStateConvergence ( const InputParameters params)

Adds the default steady-state detection Convergence.

This is called if the user does not supply 'steady_state_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2555 of file FEProblemBase.C.

2556 {
2557  const std::string class_name = "DefaultSteadyStateConvergence";
2558  InputParameters params = _factory.getValidParams(class_name);
2559  params.applyParameters(params_to_apply);
2560  params.applyParameters(parameters());
2561  params.set<bool>("added_as_default") = true;
2562  addConvergence(class_name, getSteadyStateConvergenceName(), params);
2563 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
const ConvergenceName & getSteadyStateConvergenceName() const
Gets the steady-state detection convergence object name.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDGKernel()

void FEProblemBase::addDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3361 of file FEProblemBase.C.

3364 {
3365  parallel_object_only();
3366 
3367  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3368  if (!isSolverSystemNonlinear(nl_sys_num))
3369  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
3370  "supported at the moment!");
3371 
3372  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3373  {
3374  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3375  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3377  }
3378  else
3379  {
3380  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3381  {
3382  // We allow DGKernels to request that they use_displaced_mesh,
3383  // but then be overridden when no displacements variables are
3384  // provided in the Mesh block. If that happened, update the value
3385  // of use_displaced_mesh appropriately for this DGKernel.
3386  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3387  parameters.set<bool>("use_displaced_mesh") = false;
3388  }
3389 
3390  parameters.set<SubProblem *>("_subproblem") = this;
3391  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3392  }
3393 
3394  logAdd("DGKernel", name, dg_kernel_name, parameters);
3395  _nl[nl_sys_num]->addDGKernel(dg_kernel_name, name, parameters);
3396 
3398 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addDiracKernel()

void FEProblemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3321 of file FEProblemBase.C.

3324 {
3325  parallel_object_only();
3326 
3327  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3328  if (!isSolverSystemNonlinear(nl_sys_num))
3329  mooseError("You are trying to add a DiracKernel to a linear variable/system, which is not "
3330  "supported at the moment!");
3331 
3332  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3333  {
3334  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3335  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3336  _reinit_displaced_elem = true;
3337  }
3338  else
3339  {
3340  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3341  {
3342  // We allow DiracKernels to request that they use_displaced_mesh,
3343  // but then be overridden when no displacements variables are
3344  // provided in the Mesh block. If that happened, update the value
3345  // of use_displaced_mesh appropriately for this DiracKernel.
3346  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3347  parameters.set<bool>("use_displaced_mesh") = false;
3348  }
3349 
3350  parameters.set<SubProblem *>("_subproblem") = this;
3351  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3352  }
3353 
3354  logAdd("DiracKernel", name, kernel_name, parameters);
3355  _nl[nl_sys_num]->addDiracKernel(kernel_name, name, parameters);
3356 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addDisplacedProblem()

void FEProblemBase::addDisplacedProblem ( std::shared_ptr< DisplacedProblem displaced_problem)
virtual

Definition at line 7766 of file FEProblemBase.C.

7767 {
7768  parallel_object_only();
7769 
7772 }
std::shared_ptr< DisplacedProblem > displaced_problem
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ addDistribution()

void FEProblemBase::addDistribution ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

The following functions will enable MOOSE to have the capability to import distributions.

Definition at line 2684 of file FEProblemBase.C.

2687 {
2688  parameters.set<std::string>("type") = type;
2689  addObject<Distribution>(type, name, parameters, /* threaded = */ false);
2690 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ addFunction()

void FEProblemBase::addFunction ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 2492 of file FEProblemBase.C.

Referenced by MFEMProblem::addFunction(), and getFunction().

2495 {
2496  parallel_object_only();
2497 
2498  parameters.set<SubProblem *>("_subproblem") = this;
2499 
2500  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2501  {
2502  std::shared_ptr<Function> func = _factory.create<Function>(type, name, parameters, tid);
2503  logAdd("Function", name, type, parameters);
2504  _functions.addObject(func, tid);
2505 
2506  if (auto * const functor = dynamic_cast<Moose::FunctorBase<Real> *>(func.get()))
2507  {
2508  this->addFunctor(name, *functor, tid);
2509  if (_displaced_problem)
2510  _displaced_problem->addFunctor(name, *functor, tid);
2511  }
2512  else
2513  mooseError("Unrecognized function functor type");
2514  }
2515 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFunctor()

template<typename T >
void SubProblem::addFunctor ( const std::string &  name,
const Moose::FunctorBase< T > &  functor,
const THREAD_ID  tid 
)
inherited

add a functor to the problem functor container

Definition at line 1375 of file SubProblem.h.

Referenced by addFunction(), SubProblem::addPiecewiseByBlockLambdaFunctor(), addUserObject(), and SystemBase::addVariable().

1378 {
1379  constexpr bool added_functor_is_ad =
1380  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1381 
1382  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1383 
1384  auto & functor_to_request_info = _functor_to_request_info[tid];
1385  auto & functors = _functors[tid];
1386  auto it = functors.find("wraps_" + name);
1387  if (it != functors.end())
1388  {
1389  // We have this functor already. If it's a null functor, we want to replace it with the valid
1390  // functor we have now. If it's not then we'll add a new entry into the multimap and then we'll
1391  // error later if a user requests a functor because their request is ambiguous. This is the
1392  // reason that the functors container is a multimap: for nice error messages
1393  auto * const existing_wrapper_base =
1394  added_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get();
1395  auto * const existing_wrapper = dynamic_cast<Moose::Functor<T> *>(existing_wrapper_base);
1396  if (existing_wrapper && existing_wrapper->template wrapsType<Moose::NullFunctor<T>>())
1397  {
1398  // Sanity check
1399  auto [request_info_it, request_info_end_it] = functor_to_request_info.equal_range(name);
1400  if (request_info_it == request_info_end_it)
1401  mooseError("We are wrapping a NullFunctor but we don't have any unfilled functor request "
1402  "info. This doesn't make sense.");
1403 
1404  // Check for valid requests
1405  while (request_info_it != request_info_end_it)
1406  {
1407  auto & [requested_functor_is_ad, requestor_is_ad] = request_info_it->second;
1408  if (!requested_functor_is_ad && requestor_is_ad && added_functor_is_ad)
1409  mooseError("We are requesting a non-AD functor '" + name +
1410  "' from an AD object, but the true functor is AD. This means we could be "
1411  "dropping important derivatives. We will not allow this");
1412  // We're going to eventually check whether we've fulfilled all functor requests and our
1413  // check will be that the multimap is empty. This request is fulfilled, so erase it from the
1414  // map now
1415  request_info_it = functor_to_request_info.erase(request_info_it);
1416  }
1417 
1418  // Ok we didn't have the functor before, so we will add it now
1419  std::get<0>(it->second) =
1421  existing_wrapper->assign(functor);
1422  // Finally we create the non-AD or AD complement of the just added functor
1423  if constexpr (added_functor_is_ad)
1424  {
1425  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1426  auto * const existing_non_ad_wrapper_base = std::get<1>(it->second).get();
1427  auto * const existing_non_ad_wrapper =
1428  dynamic_cast<Moose::Functor<NonADType> *>(existing_non_ad_wrapper_base);
1429  mooseAssert(existing_non_ad_wrapper->template wrapsType<Moose::NullFunctor<NonADType>>(),
1430  "Both members of pair should have been wrapping a NullFunctor");
1431  existing_non_ad_wrapper->assign(
1432  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1433  }
1434  else
1435  {
1436  typedef typename Moose::ADType<T>::type ADType;
1437  auto * const existing_ad_wrapper_base = std::get<2>(it->second).get();
1438  auto * const existing_ad_wrapper =
1439  dynamic_cast<Moose::Functor<ADType> *>(existing_ad_wrapper_base);
1440  mooseAssert(existing_ad_wrapper->template wrapsType<Moose::NullFunctor<ADType>>(),
1441  "Both members of pair should have been wrapping a NullFunctor");
1442  existing_ad_wrapper->assign(std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1443  }
1444  return;
1445  }
1446  else if (!existing_wrapper)
1447  {
1448  // Functor was emplaced but the cast failed. This could be a double definition with
1449  // different types, or it could be a request with one type then a definition with another
1450  // type. Either way it is going to error later, but it is cleaner to catch it now
1451  mooseError("Functor '",
1452  name,
1453  "' is being added with return type '",
1454  MooseUtils::prettyCppType<T>(),
1455  "' but it has already been defined or requested with return type '",
1456  existing_wrapper_base->returnType(),
1457  "'.");
1458  }
1459  }
1460 
1461  // We are a new functor, create the opposite ADType one and store it with other functors
1462  if constexpr (added_functor_is_ad)
1463  {
1464  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1465  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<NonADType>>(
1466  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1467  auto new_ad_wrapper = std::make_unique<Moose::Functor<T>>(functor);
1468  _functors[tid].emplace("wraps_" + name,
1469  std::make_tuple(SubProblem::TrueFunctorIs::AD,
1470  std::move(new_non_ad_wrapper),
1471  std::move(new_ad_wrapper)));
1472  }
1473  else
1474  {
1475  typedef typename Moose::ADType<T>::type ADType;
1476  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<T>>((functor));
1477  auto new_ad_wrapper = std::make_unique<Moose::Functor<ADType>>(
1478  std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1479  _functors[tid].emplace("wraps_" + name,
1480  std::make_tuple(SubProblem::TrueFunctorIs::NONAD,
1481  std::move(new_non_ad_wrapper),
1482  std::move(new_ad_wrapper)));
1483  }
1484 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1155
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
Wraps non-AD functors such that they can be used in objects that have requested the functor as AD...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...

◆ addFunctorMaterial()

void FEProblemBase::addFunctorMaterial ( const std::string &  functor_material_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 3811 of file FEProblemBase.C.

3814 {
3815  parallel_object_only();
3816 
3817  auto add_functor_materials = [&](const auto & parameters, const auto & name)
3818  {
3819  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
3820  {
3821  // Create the general Block/Boundary MaterialBase object
3822  std::shared_ptr<MaterialBase> material =
3823  _factory.create<MaterialBase>(functor_material_name, name, parameters, tid);
3824  logAdd("FunctorMaterial", name, functor_material_name, parameters);
3825  _all_materials.addObject(material, tid);
3826  _materials.addObject(material, tid);
3827  }
3828  };
3829 
3830  parameters.set<SubProblem *>("_subproblem") = this;
3831  add_functor_materials(parameters, name);
3832  if (_displaced_problem)
3833  {
3834  auto disp_params = parameters;
3835  disp_params.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3836  add_functor_materials(disp_params, name + "_displaced");
3837  }
3838 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ addFVBC()

void FEProblemBase::addFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3415 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVBCs().

3418 {
3419  addObject<FVBoundaryCondition>(fv_bc_name, name, parameters);
3420 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addFVInitialCondition()

void FEProblemBase::addFVInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Add an initial condition for a finite volume variables.

Parameters
ic_nameThe name of the boundary condition object
nameThe user-defined name from the input file
parametersThe input parameters for construction

Definition at line 3584 of file FEProblemBase.C.

3587 {
3588  parallel_object_only();
3589 
3590  // before we start to mess with the initial condition, we need to check parameters for errors.
3592  const std::string & var_name = parameters.get<VariableName>("variable");
3593 
3594  // Forbid initial conditions on a restarted problem, as they would override the restart
3595  checkICRestartError(ic_name, name, var_name);
3596 
3597  parameters.set<SubProblem *>("_subproblem") = this;
3598 
3599  // field IC
3600  if (hasVariable(var_name))
3601  {
3602  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3603  {
3604  auto & var = getVariable(
3606  parameters.set<SystemBase *>("_sys") = &var.sys();
3607  std::shared_ptr<FVInitialConditionBase> ic;
3608  if (var.isFV())
3609  ic = _factory.create<FVInitialCondition>(ic_name, name, parameters, tid);
3610  else
3611  mooseError(
3612  "Your variable for an FVInitialCondition needs to be an a finite volume variable!");
3613  _fv_ics.addObject(ic, tid);
3614  }
3615  }
3616  else
3617  mooseError("Variable '",
3618  var_name,
3619  "' requested in finite volume initial condition '",
3620  name,
3621  "' does not exist.");
3622 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
void addObject(std::shared_ptr< FVInitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
FVInitialConditionWarehouse _fv_ics
This is a template class that implements the workhorse compute and computeNodal methods.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFVInterfaceKernel()

void FEProblemBase::addFVInterfaceKernel ( const std::string &  fv_ik_name,
const std::string &  name,
InputParameters parameters 
)
virtual

We assume that variable1 and variable2 can live on different systems, in this case the user needs to create two interface kernels with flipped variables and parameters

Definition at line 3423 of file FEProblemBase.C.

3426 {
3429  addObject<FVInterfaceKernel>(
3430  fv_ik_name, name, parameters, /*threaded=*/true, /*variable_param_name=*/"variable1");
3431 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addFVKernel()

void FEProblemBase::addFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3401 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVKernels().

3404 {
3405  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3406  // FVElementalKernels are computed in the historically finite element threaded loops. They rely
3407  // on Assembly data like _current_elem. When we call reinit on the FEProblemBase we will only
3408  // reinit the DisplacedProblem and its associated Assembly objects if we mark this boolean as
3409  // true
3410  _reinit_displaced_elem = true;
3411  addObject<FVKernel>(fv_kernel_name, name, parameters);
3412 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addGhostedBoundary()

void FEProblemBase::addGhostedBoundary ( BoundaryID  boundary_id)
overridevirtual

Will make sure that all necessary elements from boundary_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2089 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedBoundary().

2090 {
2091  _mesh.addGhostedBoundary(boundary_id);
2092  if (_displaced_problem)
2093  _displaced_mesh->addGhostedBoundary(boundary_id);
2094 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void addGhostedBoundary(BoundaryID boundary_id)
This will add the boundary ids to be ghosted to this processor.
Definition: MooseMesh.C:3229
MooseMesh * _displaced_mesh

◆ addGhostedElem()

void FEProblemBase::addGhostedElem ( dof_id_type  elem_id)
overridevirtual

Will make sure that all dofs connected to elem_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2082 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedElem(), and NodalPatchRecovery::NodalPatchRecovery().

2083 {
2084  if (_mesh.elemPtr(elem_id)->processor_id() != processor_id())
2085  _ghosted_elems.insert(elem_id);
2086 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
MooseMesh & _mesh
processor_id_type processor_id() const
processor_id_type processor_id() const

◆ addHDGKernel()

void FEProblemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 2957 of file FEProblemBase.C.

2960 {
2961  parallel_object_only();
2962  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2963  if (!isSolverSystemNonlinear(nl_sys_num))
2964  mooseError("You are trying to add a HDGKernel to a linear variable/system, which is not "
2965  "supported at the moment!");
2967  kernel_name, name, parameters, nl_sys_num, "HDGKernel", _reinit_displaced_elem);
2968 
2969  _nl[nl_sys_num]->addHDGKernel(kernel_name, name, parameters);
2970 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addIndicator()

void FEProblemBase::addIndicator ( const std::string &  indicator_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 5174 of file FEProblemBase.C.

5177 {
5178  parallel_object_only();
5179 
5180  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5181  {
5182  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5183  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5184  _reinit_displaced_elem = true;
5185  }
5186  else
5187  {
5188  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5189  {
5190  // We allow Indicators to request that they use_displaced_mesh,
5191  // but then be overridden when no displacements variables are
5192  // provided in the Mesh block. If that happened, update the value
5193  // of use_displaced_mesh appropriately for this Indicator.
5194  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5195  parameters.set<bool>("use_displaced_mesh") = false;
5196  }
5197 
5198  parameters.set<SubProblem *>("_subproblem") = this;
5199  parameters.set<SystemBase *>("_sys") = _aux.get();
5200  }
5201 
5202  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5203  {
5204  std::shared_ptr<Indicator> indicator =
5205  _factory.create<Indicator>(indicator_name, name, parameters, tid);
5206  logAdd("Indicator", name, indicator_name, parameters);
5207  std::shared_ptr<InternalSideIndicatorBase> isi =
5209  if (isi)
5211  else
5212  _indicators.addObject(indicator, tid);
5213  }
5214 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseObjectWarehouse< Indicator > _indicators
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInitialCondition()

void FEProblemBase::addInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 3524 of file FEProblemBase.C.

Referenced by DiffusionPhysicsBase::addInitialConditions(), and DiffusionPhysicsBase::addInitialConditionsFromComponents().

3527 {
3528  parallel_object_only();
3529 
3530  // before we start to mess with the initial condition, we need to check parameters for errors.
3532  const std::string & var_name = parameters.get<VariableName>("variable");
3533 
3534  // Forbid initial conditions on a restarted problem, as they would override the restart
3535  checkICRestartError(ic_name, name, var_name);
3536 
3537  parameters.set<SubProblem *>("_subproblem") = this;
3538 
3539  // field IC
3540  if (hasVariable(var_name))
3541  {
3542  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3543  {
3546  parameters.set<SystemBase *>("_sys") = &var.sys();
3547  std::shared_ptr<InitialConditionBase> ic;
3548  if (dynamic_cast<MooseVariable *>(&var))
3549  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3550  else if (dynamic_cast<VectorMooseVariable *>(&var))
3551  ic = _factory.create<VectorInitialCondition>(ic_name, name, parameters, tid);
3552  else if (dynamic_cast<ArrayMooseVariable *>(&var))
3553  ic = _factory.create<ArrayInitialCondition>(ic_name, name, parameters, tid);
3554  else if (dynamic_cast<MooseVariableFVReal *>(&var))
3555  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3556  else if (dynamic_cast<MooseLinearVariableFVReal *>(&var))
3557  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3558  else
3559  mooseError("Your FE variable in initial condition ",
3560  name,
3561  " must be either of scalar or vector type");
3562  logAdd("IC", name, ic_name, parameters);
3563  _ics.addObject(ic, tid);
3564  }
3565  }
3566 
3567  // scalar IC
3568  else if (hasScalarVariable(var_name))
3569  {
3570  MooseVariableScalar & var = getScalarVariable(0, var_name);
3571  parameters.set<SystemBase *>("_sys") = &var.sys();
3572  std::shared_ptr<ScalarInitialCondition> ic =
3574  logAdd("ScalarIC", name, ic_name, parameters);
3575  _scalar_ics.addObject(ic);
3576  }
3577 
3578  else
3579  mooseError(
3580  "Variable '", var_name, "' requested in initial condition '", name, "' does not exist.");
3581 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
This is a template class that implements the workhorse compute and computeNodal methods.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
This class provides an interface for common operations on field variables of both FE and FV types wit...
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
ScalarInitialConditionWarehouse _scalar_ics
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
virtual MooseVariableScalar & getScalarVariable(const THREAD_ID tid, const std::string &var_name) override
Returns the scalar variable reference from whichever system contains it.
void addObject(std::shared_ptr< InitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
InitialConditions are objects that set the initial value of variables.
InitialConditionWarehouse _ics
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for scalar variables (they are different).
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true)
Adds an object to the storage structure.
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
SystemBase & sys()
Get the system this variable is part of.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInterfaceKernel()

void FEProblemBase::addInterfaceKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3452 of file FEProblemBase.C.

3455 {
3456  parallel_object_only();
3457 
3458  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3459  if (!isSolverSystemNonlinear(nl_sys_num))
3460  mooseError("You are trying to add a InterfaceKernel to a linear variable/system, which is not "
3461  "supported at the moment!");
3462 
3463  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3464  {
3465  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3466  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3468  }
3469  else
3470  {
3471  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3472  {
3473  // We allow InterfaceKernels to request that they use_displaced_mesh,
3474  // but then be overridden when no displacements variables are
3475  // provided in the Mesh block. If that happened, update the value
3476  // of use_displaced_mesh appropriately for this InterfaceKernel.
3477  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3478  parameters.set<bool>("use_displaced_mesh") = false;
3479  }
3480 
3481  parameters.set<SubProblem *>("_subproblem") = this;
3482  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3483  }
3484 
3485  logAdd("InterfaceKernel", name, interface_kernel_name, parameters);
3486  _nl[nl_sys_num]->addInterfaceKernel(interface_kernel_name, name, parameters);
3487 
3489 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addInterfaceMaterial()

void FEProblemBase::addInterfaceMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3849 of file FEProblemBase.C.

3852 {
3854 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
MaterialWarehouse _interface_materials
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addJacobian()

void FEProblemBase::addJacobian ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1926 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1927 {
1928  _assembly[tid][_current_nl_sys->number()]->addJacobian(Assembly::GlobalDataKey{});
1930  _assembly[tid][_current_nl_sys->number()]->addJacobianNonlocal(Assembly::GlobalDataKey{});
1931  if (_displaced_problem)
1932  {
1933  _displaced_problem->addJacobian(tid);
1935  _displaced_problem->addJacobianNonlocal(tid);
1936  }
1937 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianBlockTags()

void FEProblemBase::addJacobianBlockTags ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
virtual

Definition at line 2001 of file FEProblemBase.C.

Referenced by ComputeJacobianBlocksThread::postElement().

2008 {
2009  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockTags(
2010  jacobian, ivar, jvar, dof_map, dof_indices, Assembly::GlobalDataKey{}, tags);
2011 
2013  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2014  {
2015  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2016  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockNonlocalTags(
2017  jacobian,
2018  ivar,
2019  jvar,
2020  dof_map,
2021  dof_indices,
2022  jv.allDofIndices(),
2024  tags);
2025  }
2026 
2027  if (_displaced_problem)
2028  {
2029  _displaced_problem->addJacobianBlockTags(jacobian, ivar, jvar, dof_map, dof_indices, tags, tid);
2031  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2032  {
2033  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2034  _displaced_problem->addJacobianBlockNonlocal(
2035  jacobian, ivar, jvar, dof_map, dof_indices, jv.allDofIndices(), tags, tid);
2036  }
2037  }
2038 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
This class provides an interface for common operations on field variables of both FE and FV types wit...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::vector< dof_id_type > & allDofIndices() const
Get all global dofindices for the variable.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianLowerD()

void FEProblemBase::addJacobianLowerD ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1956 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateLower(), and ComputeJacobianThread::accumulateLower().

1957 {
1958  _assembly[tid][_current_nl_sys->number()]->addJacobianLowerD(Assembly::GlobalDataKey{});
1959  if (_displaced_problem)
1960  _displaced_problem->addJacobianLowerD(tid);
1961 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianNeighbor() [1/3]

virtual void SubProblem::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const libMesh::DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
pure virtualinherited

Implemented in DisplacedProblem.

◆ addJacobianNeighbor() [2/3]

void FEProblemBase::addJacobianNeighbor ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1940 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeJacobianThread::accumulateNeighbor(), and ComputeJacobianBlocksThread::postInternalSide().

1941 {
1942  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighbor(Assembly::GlobalDataKey{});
1943  if (_displaced_problem)
1944  _displaced_problem->addJacobianNeighbor(tid);
1945 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianNeighbor() [3/3]

virtual void FEProblemBase::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap &  dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
overridevirtual

◆ addJacobianNeighborLowerD()

void FEProblemBase::addJacobianNeighborLowerD ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1948 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighborLower(), and ComputeJacobianThread::accumulateNeighborLower().

1949 {
1950  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighborLowerD(Assembly::GlobalDataKey{});
1951  if (_displaced_problem)
1952  _displaced_problem->addJacobianNeighborLowerD(tid);
1953 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianOffDiagScalar()

void FEProblemBase::addJacobianOffDiagScalar ( unsigned int  ivar,
const THREAD_ID  tid = 0 
)
virtual

Definition at line 1970 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

1971 {
1972  _assembly[tid][_current_nl_sys->number()]->addJacobianOffDiagScalar(ivar,
1974 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianScalar()

void FEProblemBase::addJacobianScalar ( const THREAD_ID  tid = 0)
virtual

Definition at line 1964 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

1965 {
1966  _assembly[tid][_current_nl_sys->number()]->addJacobianScalar(Assembly::GlobalDataKey{});
1967 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addKernel()

void FEProblemBase::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 2941 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEKernels().

2944 {
2945  parallel_object_only();
2946  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2947  if (!isSolverSystemNonlinear(nl_sys_num))
2948  mooseError("You are trying to add a Kernel to a linear variable/system, which is not "
2949  "supported at the moment!");
2951  kernel_name, name, parameters, nl_sys_num, "Kernel", _reinit_displaced_elem);
2952 
2953  _nl[nl_sys_num]->addKernel(kernel_name, name, parameters);
2954 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addLinearFVBC()

void FEProblemBase::addLinearFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3442 of file FEProblemBase.C.

3445 {
3446  addObject<LinearFVBoundaryCondition>(bc_name, name, parameters);
3447 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addLinearFVKernel()

void FEProblemBase::addLinearFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3434 of file FEProblemBase.C.

3437 {
3438  addObject<LinearFVKernel>(kernel_name, name, parameters);
3439 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addLineSearch()

virtual void FEProblemBase::addLineSearch ( const InputParameters )
inlinevirtual

add a MOOSE line search

Reimplemented in DumpObjectsProblem, and FEProblem.

Definition at line 712 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

713  {
714  mooseError("Line search not implemented for this problem type yet.");
715  }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addMarker()

void FEProblemBase::addMarker ( const std::string &  marker_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 5217 of file FEProblemBase.C.

5220 {
5221  parallel_object_only();
5222 
5223  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5224  {
5225  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5226  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5227  _reinit_displaced_elem = true;
5228  }
5229  else
5230  {
5231  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5232  {
5233  // We allow Markers to request that they use_displaced_mesh,
5234  // but then be overridden when no displacements variables are
5235  // provided in the Mesh block. If that happened, update the value
5236  // of use_displaced_mesh appropriately for this Marker.
5237  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5238  parameters.set<bool>("use_displaced_mesh") = false;
5239  }
5240 
5241  parameters.set<SubProblem *>("_subproblem") = this;
5242  parameters.set<SystemBase *>("_sys") = _aux.get();
5243  }
5244 
5245  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5246  {
5247  std::shared_ptr<Marker> marker = _factory.create<Marker>(marker_name, name, parameters, tid);
5248  logAdd("Marker", name, marker_name, parameters);
5249  _markers.addObject(marker, tid);
5250  }
5251 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Definition: Marker.h:41
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMaterial()

void FEProblemBase::addMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 3841 of file FEProblemBase.C.

Referenced by ComponentMaterialPropertyInterface::addMaterials().

3844 {
3845  addMaterialHelper({&_materials}, mat_name, name, parameters);
3846 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MaterialWarehouse _materials

◆ addMaterialHelper()

void FEProblemBase::addMaterialHelper ( std::vector< MaterialWarehouse *>  warehouse,
const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3857 of file FEProblemBase.C.

Referenced by addInterfaceMaterial(), and addMaterial().

3861 {
3862  parallel_object_only();
3863 
3864  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3865  {
3866  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3868  }
3869  else
3870  {
3871  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3872  {
3873  // We allow Materials to request that they use_displaced_mesh,
3874  // but then be overridden when no displacements variables are
3875  // provided in the Mesh block. If that happened, update the value
3876  // of use_displaced_mesh appropriately for this Material.
3877  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3878  parameters.set<bool>("use_displaced_mesh") = false;
3879  }
3880 
3881  parameters.set<SubProblem *>("_subproblem") = this;
3882  }
3883 
3884  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
3885  {
3886  // Create the general Block/Boundary MaterialBase object
3887  std::shared_ptr<MaterialBase> material =
3888  _factory.create<MaterialBase>(mat_name, name, parameters, tid);
3889  logAdd("Material", name, mat_name, parameters);
3890  bool discrete = !material->getParam<bool>("compute");
3891 
3892  // If the object is boundary restricted or if it is a functor material we do not create the
3893  // neighbor and face objects
3894  if (material->boundaryRestricted() || dynamic_cast<FunctorMaterial *>(material.get()))
3895  {
3896  _all_materials.addObject(material, tid);
3897  if (discrete)
3898  _discrete_materials.addObject(material, tid);
3899  else
3900  for (auto && warehouse : warehouses)
3901  warehouse->addObject(material, tid);
3902  }
3903 
3904  // Non-boundary restricted require face and neighbor objects
3905  else
3906  {
3907  // TODO: we only need to do this if we have needs for face materials (e.g.
3908  // FV, DG, etc.) - but currently we always do it. Figure out how to fix
3909  // this.
3910 
3911  // The name of the object being created, this is changed multiple times as objects are
3912  // created below
3913  std::string object_name;
3914 
3915  // Create a copy of the supplied parameters to the setting for "_material_data_type" isn't
3916  // used from a previous tid loop
3917  InputParameters current_parameters = parameters;
3918 
3919  // face material
3920  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
3922  object_name = name + "_face";
3923  std::shared_ptr<MaterialBase> face_material =
3924  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
3925 
3926  // neighbor material
3927  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
3929  current_parameters.set<bool>("_neighbor") = true;
3930  object_name = name + "_neighbor";
3931  std::shared_ptr<MaterialBase> neighbor_material =
3932  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
3933 
3934  // Store the material objects
3935  _all_materials.addObjects(material, neighbor_material, face_material, tid);
3936 
3937  if (discrete)
3938  _discrete_materials.addObjects(material, neighbor_material, face_material, tid);
3939  else
3940  for (auto && warehouse : warehouses)
3941  warehouse->addObjects(material, neighbor_material, face_material, tid);
3942 
3943  // Names of all controllable parameters for this Material object
3944  const std::string & base = parameters.getBase();
3945  MooseObjectParameterName name(MooseObjectName(base, material->name()), "*");
3946  const auto param_names =
3948 
3949  // Connect parameters of the primary Material object to those on the face and neighbor
3950  // objects
3951  for (const auto & p_name : param_names)
3952  {
3953  MooseObjectParameterName primary_name(MooseObjectName(base, material->name()),
3954  p_name.parameter());
3955  MooseObjectParameterName face_name(MooseObjectName(base, face_material->name()),
3956  p_name.parameter());
3957  MooseObjectParameterName neighbor_name(MooseObjectName(base, neighbor_material->name()),
3958  p_name.parameter());
3960  primary_name, face_name, false);
3962  primary_name, neighbor_name, false);
3963  }
3964  }
3965  }
3966 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addControllableParameterConnection(const MooseObjectParameterName &primary, const MooseObjectParameterName &secondary, bool error_on_empty=true)
Method for linking control parameters of different names.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2900
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
MaterialDataType
MaterialData types.
Definition: MooseTypes.h:692
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & getBase() const
std::vector< MooseObjectParameterName > getControllableParameterNames(const MooseObjectParameterName &input) const
Return a vector of parameters names matching the supplied name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
FunctorMaterials compute functor material properties.
virtual std::unique_ptr< Base > create()=0
void addObjects(std::shared_ptr< MaterialBase > block, std::shared_ptr< MaterialBase > neighbor, std::shared_ptr< MaterialBase > face, THREAD_ID tid=0)
A special method unique to this class for adding Block, Neighbor, and Face material objects...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
MaterialWarehouse _discrete_materials
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A class for storing an input parameter name.
A class for storing the names of MooseObject by tag and object name.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMatrixTag()

TagID SubProblem::addMatrixTag ( TagName  tag_name)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated

Reimplemented in DisplacedProblem.

Definition at line 311 of file SubProblem.C.

Referenced by DisplacedProblem::addMatrixTag(), createTagMatrices(), LinearSystem::LinearSystem(), and NonlinearSystemBase::NonlinearSystemBase().

312 {
313  auto tag_name_upper = MooseUtils::toUpper(tag_name);
314  auto existing_tag = _matrix_tag_name_to_tag_id.find(tag_name_upper);
315  if (existing_tag == _matrix_tag_name_to_tag_id.end())
316  {
317  auto tag_id = _matrix_tag_name_to_tag_id.size();
318 
319  _matrix_tag_name_to_tag_id[tag_name_upper] = tag_id;
320 
321  _matrix_tag_id_to_tag_name[tag_id] = tag_name_upper;
322  }
323 
324  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
325 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ addMeshDivision()

void FEProblemBase::addMeshDivision ( const std::string &  type,
const std::string &  name,
InputParameters params 
)
virtual

Add a MeshDivision.

Definition at line 2639 of file FEProblemBase.C.

2642 {
2643  parallel_object_only();
2644  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
2645  parameters.set<SubProblem *>("_subproblem") = this;
2646  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2647  {
2648  std::shared_ptr<MeshDivision> func = _factory.create<MeshDivision>(type, name, parameters, tid);
2649  _mesh_divisions.addObject(func, tid);
2650  }
2651 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMultiApp()

void FEProblemBase::addMultiApp ( const std::string &  multi_app_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Add a MultiApp to the problem.

Definition at line 5254 of file FEProblemBase.C.

5257 {
5258  parallel_object_only();
5259 
5260  parameters.set<MPI_Comm>("_mpi_comm") = _communicator.get();
5261 
5262  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5263  {
5264  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5265  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5266  _reinit_displaced_elem = true;
5267  }
5268  else
5269  {
5270  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5271  {
5272  // We allow MultiApps to request that they use_displaced_mesh,
5273  // but then be overridden when no displacements variables are
5274  // provided in the Mesh block. If that happened, update the value
5275  // of use_displaced_mesh appropriately for this MultiApp.
5276  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5277  parameters.set<bool>("use_displaced_mesh") = false;
5278  }
5279 
5280  parameters.set<SubProblem *>("_subproblem") = this;
5281  parameters.set<SystemBase *>("_sys") = _aux.get();
5282  }
5283 
5284  std::shared_ptr<MultiApp> multi_app = _factory.create<MultiApp>(multi_app_name, name, parameters);
5285  logAdd("MultiApp", name, multi_app_name, parameters);
5286  multi_app->setupPositions();
5287 
5288  _multi_apps.addObject(multi_app);
5289 
5290  // Store TransientMultiApp objects in another container, this is needed for calling computeDT
5291  std::shared_ptr<TransientMultiApp> trans_multi_app =
5293  if (trans_multi_app)
5294  _transient_multi_apps.addObject(trans_multi_app);
5295 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
MultiApp Implementation for Transient Apps.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A MultiApp represents one or more MOOSE applications that are running simultaneously.
Definition: MultiApp.h:112

◆ addNodalKernel()

void FEProblemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 2973 of file FEProblemBase.C.

2976 {
2977  parallel_object_only();
2978 
2979  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2980  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
2981  {
2982  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
2983  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
2984  _reinit_displaced_elem = true;
2985  }
2986  else
2987  {
2988  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
2989  {
2990  // We allow NodalKernels to request that they use_displaced_mesh,
2991  // but then be overridden when no displacements variables are
2992  // provided in the Mesh block. If that happened, update the value
2993  // of use_displaced_mesh appropriately for this NodalKernel.
2994  if (parameters.have_parameter<bool>("use_displaced_mesh"))
2995  parameters.set<bool>("use_displaced_mesh") = false;
2996  }
2997 
2998  parameters.set<SubProblem *>("_subproblem") = this;
2999  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3000  }
3001  logAdd("NodalKernel", name, kernel_name, parameters);
3002  _nl[nl_sys_num]->addNodalKernel(kernel_name, name, parameters);
3003 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addNotZeroedVectorTag()

void SubProblem::addNotZeroedVectorTag ( const TagID  tag)
inherited

Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that will be manually managed

Definition at line 149 of file SubProblem.C.

Referenced by createTagVectors().

150 {
151  _not_zeroed_tagged_vectors.insert(tag);
152 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ addObject()

template<typename T >
std::vector< std::shared_ptr< T > > FEProblemBase::addObject ( const std::string &  type,
const std::string &  name,
InputParameters parameters,
const bool  threaded = true,
const std::string &  var_param_name = "variable" 
)

Method for creating and adding an object to the warehouse.

Template Parameters
TThe base object type (registered in the Factory)
Parameters
typeString type of the object (registered in the Factory)
nameName for the object to be created
parametersInputParameters for the object
threadedWhether or not to create n_threads copies of the object
var_param_nameThe name of the parameter on the object which holds the primary variable.
Returns
A vector of shared_ptrs to the added objects

Definition at line 3155 of file FEProblemBase.h.

3160 {
3161  parallel_object_only();
3162 
3163  logAdd(MooseUtils::prettyCppType<T>(), name, type, parameters);
3164  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
3165  addObjectParamsHelper(parameters, name, var_param_name);
3166 
3167  const auto n_threads = threaded ? libMesh::n_threads() : 1;
3168  std::vector<std::shared_ptr<T>> objects(n_threads);
3169  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
3170  {
3171  std::shared_ptr<T> obj = _factory.create<T>(type, name, parameters, tid);
3172  theWarehouse().add(obj);
3173  objects[tid] = std::move(obj);
3174  }
3175 
3176  return objects;
3177 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::shared_ptr< MooseObject > create(const std::string &obj_name, const std::string &name, const InputParameters &parameters, THREAD_ID tid=0, bool print_deprecated=true)
Definition: Factory.C:111
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addObjectParamsHelper()

void FEProblemBase::addObjectParamsHelper ( InputParameters params,
const std::string &  object_name,
const std::string &  var_param_name = "variable" 
)
protected

Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().

This is needed due to header includes/forward declaration issues

Definition at line 4199 of file FEProblemBase.C.

Referenced by addObject(), and addUserObject().

4202 {
4203  // Due to objects like SolutionUserObject which manipulate libmesh objects
4204  // and variables directly at the back end, we need a default option here
4205  // which is going to be the pointer to the first solver system within this
4206  // problem
4207  unsigned int sys_num = 0;
4208  if (parameters.isParamValid(var_param_name))
4209  {
4210  const auto variable_name = parameters.varName(var_param_name, object_name);
4211  if (this->hasVariable(variable_name) || this->hasScalarVariable(variable_name))
4212  sys_num = getSystem(parameters.varName(var_param_name, object_name)).number();
4213  }
4214 
4215  if (_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4216  parameters.get<bool>("use_displaced_mesh"))
4217  {
4218  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4219  if (sys_num == _aux->number())
4220  parameters.set<SystemBase *>("_sys") = &_displaced_problem->systemBaseAuxiliary();
4221  else
4222  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(sys_num);
4223  }
4224  else
4225  {
4226  // The object requested use_displaced_mesh, but it was overridden
4227  // due to there being no displacements variables in the [Mesh] block.
4228  // If that happened, update the value of use_displaced_mesh appropriately.
4229  if (!_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4230  parameters.get<bool>("use_displaced_mesh"))
4231  parameters.set<bool>("use_displaced_mesh") = false;
4232 
4233  parameters.set<SubProblem *>("_subproblem") = this;
4234 
4235  if (sys_num == _aux->number())
4236  parameters.set<SystemBase *>("_sys") = _aux.get();
4237  else
4238  parameters.set<SystemBase *>("_sys") = _solver_systems[sys_num].get();
4239  }
4240 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addOutput()

void FEProblemBase::addOutput ( const std::string &  object_type,
const std::string &  object_name,
InputParameters parameters 
)

Adds an Output object.

Definition at line 8815 of file FEProblemBase.C.

8818 {
8819  parallel_object_only();
8820 
8821  // Get a reference to the OutputWarehouse
8822  OutputWarehouse & output_warehouse = _app.getOutputWarehouse();
8823 
8824  // Reject the reserved names for objects not built by MOOSE
8825  if (!parameters.get<bool>("_built_by_moose") && output_warehouse.isReservedName(object_name))
8826  mooseError("The name '", object_name, "' is a reserved name for output objects");
8827 
8828  // Check that an object by the same name does not already exist; this must be done before the
8829  // object is created to avoid getting misleading errors from the Parser
8830  if (output_warehouse.hasOutput(object_name))
8831  mooseError("An output object named '", object_name, "' already exists");
8832 
8833  // Add a pointer to the FEProblemBase class
8834  parameters.addPrivateParam<FEProblemBase *>("_fe_problem_base", this);
8835 
8836  // Create common parameter exclude list
8837  std::vector<std::string> exclude;
8838  if (object_type == "Console")
8839  {
8840  exclude.push_back("execute_on");
8841 
8842  // --show-input should enable the display of the input file on the screen
8843  if (_app.getParam<bool>("show_input") && parameters.get<bool>("output_screen"))
8844  parameters.set<ExecFlagEnum>("execute_input_on") = EXEC_INITIAL;
8845  }
8846  // Need this because Checkpoint::validParams changes the default value of
8847  // execute_on
8848  else if (object_type == "Checkpoint")
8849  exclude.push_back("execute_on");
8850 
8851  // Apply the common parameters loaded with Outputs input syntax
8852  const InputParameters * common = output_warehouse.getCommonParameters();
8853  if (common)
8854  parameters.applyParameters(*common, exclude);
8855  if (common && std::find(exclude.begin(), exclude.end(), "execute_on") != exclude.end() &&
8856  common->isParamSetByUser("execute_on") && object_type != "Console")
8858  "'execute_on' parameter specified in [Outputs] block is ignored for object '" +
8859  object_name +
8860  "'.\nDefine this object in its own sub-block of [Outputs] to modify its "
8861  "execution schedule.");
8862 
8863  // Set the correct value for the binary flag for XDA/XDR output
8864  if (object_type == "XDR")
8865  parameters.set<bool>("_binary") = true;
8866  else if (object_type == "XDA")
8867  parameters.set<bool>("_binary") = false;
8868 
8869  // Adjust the checkpoint suffix if auto recovery was enabled
8870  if (object_name == "auto_recovery_checkpoint")
8871  parameters.set<std::string>("suffix") = "auto_recovery";
8872 
8873  // Create the object and add it to the warehouse
8874  std::shared_ptr<Output> output = _factory.create<Output>(object_type, object_name, parameters);
8875  logAdd("Output", object_name, object_type, parameters);
8876  output_warehouse.addOutput(output);
8877 }
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
void addPrivateParam(const std::string &name, const T &value)
These method add a parameter to the InputParameters object which can be retrieved like any other para...
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
bool isReservedName(const std::string &name)
Test if the given name is reserved.
bool hasOutput(const std::string &name) const
Returns true if the output object exists.
void mooseInfoRepeated(Args &&... args)
Emit an informational message with the given stringified, concatenated args.
Definition: MooseError.h:408
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Based class for output objects.
Definition: Output.h:43
virtual std::unique_ptr< Base > create()=0
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
Class for storing and utilizing output objects.
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
const InputParameters * getCommonParameters() const
Get a reference to the common output parameters.
void addOutput(std::shared_ptr< Output > output)
Adds an existing output object to the warehouse.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ addPiecewiseByBlockLambdaFunctor()

template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & SubProblem::addPiecewiseByBlockLambdaFunctor ( const std::string &  name,
PolymorphicLambda  my_lammy,
const std::set< ExecFlagType > &  clearance_schedule,
const MooseMesh mesh,
const std::set< SubdomainID > &  block_ids,
const THREAD_ID  tid 
)
inherited

Add a functor that has block-wise lambda definitions, e.g.

the evaluations of the functor are based on a user-provided lambda expression.

Parameters
nameThe name of the functor to add
my_lammyThe lambda expression that will be called when the functor is evaluated
clearance_scheduleHow often to clear functor evaluations. The default value is always, which means that the functor will be re-evaluated every time it is called. If it is something other than always, than cached values may be returned
meshThe mesh on which this functor operates
block_idsThe blocks on which the lambda expression is defined
tidThe thread on which the functor we are adding will run
Returns
The added functor

Definition at line 1338 of file SubProblem.h.

Referenced by FunctorMaterial::addFunctorPropertyByBlocks().

1344 {
1345  auto & pbblf_functors = _pbblf_functors[tid];
1346 
1347  auto [it, first_time_added] =
1348  pbblf_functors.emplace(name,
1349  std::make_unique<PiecewiseByBlockLambdaFunctor<T>>(
1350  name, my_lammy, clearance_schedule, mesh, block_ids));
1351 
1352  auto * functor = dynamic_cast<PiecewiseByBlockLambdaFunctor<T> *>(it->second.get());
1353  if (!functor)
1354  {
1355  if (first_time_added)
1356  mooseError("This should be impossible. If this was the first time we added the functor, then "
1357  "the dynamic cast absolutely should have succeeded");
1358  else
1359  mooseError("Attempted to add a lambda functor with the name '",
1360  name,
1361  "' but another lambda functor of that name returns a different type");
1362  }
1363 
1364  if (first_time_added)
1365  addFunctor(name, *functor, tid);
1366  else
1367  // The functor already exists
1368  functor->setFunctor(mesh, block_ids, my_lammy);
1369 
1370  return *functor;
1371 }
virtual MooseMesh & mesh()=0
A material property that is evaluated on-the-fly via calls to various overloads of operator() ...
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::map< std::string, std::unique_ptr< Moose::FunctorAbstract > > > _pbblf_functors
Container to hold PiecewiseByBlockLambdaFunctors.
Definition: SubProblem.h:1147
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addPostprocessor()

void FEProblemBase::addPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Reimplemented in MFEMProblem.

Definition at line 4243 of file FEProblemBase.C.

Referenced by MFEMProblem::addPostprocessor(), and DiffusionPhysicsBase::addPostprocessors().

4246 {
4247  // Check for name collision
4248  if (hasUserObject(name))
4249  mooseError("A ",
4251  " already exists. You may not add a Postprocessor by the same name.");
4252 
4253  addUserObject(pp_name, name, parameters);
4254 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addPredictor()

void FEProblemBase::addPredictor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 6789 of file FEProblemBase.C.

Referenced by AB2PredictorCorrector::AB2PredictorCorrector().

6792 {
6793  parallel_object_only();
6794 
6796  mooseError("Vector bounds cannot be used with LinearSystems!");
6797 
6798  parameters.set<SubProblem *>("_subproblem") = this;
6799  std::shared_ptr<Predictor> predictor = _factory.create<Predictor>(type, name, parameters);
6800  logAdd("Predictor", name, type, parameters);
6801 
6802  for (auto & nl : _nl)
6803  nl->setPredictor(predictor);
6804 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
virtual std::size_t numNonlinearSystems() const override
Base class for predictors.
Definition: Predictor.h:28
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual std::size_t numLinearSystems() const override

◆ addReporter()

void FEProblemBase::addReporter ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

Add a Reporter object to the simulation.

Parameters
typeC++ object type to construct
nameA uniquely identifying object name
parametersComplete parameters for the object to be created.

For an example use, refer to AddReporterAction.C/h

Definition at line 4271 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer().

4274 {
4275  // Check for name collision
4276  if (hasUserObject(name))
4277  mooseError("A ",
4279  " already exists. You may not add a Reporter by the same name.");
4280 
4282 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addResidual()

void FEProblemBase::addResidual ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1826 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1827 {
1828  _assembly[tid][_current_nl_sys->number()]->addResidual(Assembly::GlobalDataKey{},
1830 
1831  if (_displaced_problem)
1832  _displaced_problem->addResidual(tid);
1833 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualLower()

void FEProblemBase::addResidualLower ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1846 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateLower(), ComputeResidualAndJacobianThread::accumulateLower(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1847 {
1848  _assembly[tid][_current_nl_sys->number()]->addResidualLower(Assembly::GlobalDataKey{},
1850 
1851  if (_displaced_problem)
1852  _displaced_problem->addResidualLower(tid);
1853 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualNeighbor()

void FEProblemBase::addResidualNeighbor ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1836 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateNeighbor(), ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1837 {
1838  _assembly[tid][_current_nl_sys->number()]->addResidualNeighbor(Assembly::GlobalDataKey{},
1840 
1841  if (_displaced_problem)
1842  _displaced_problem->addResidualNeighbor(tid);
1843 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualScalar()

void FEProblemBase::addResidualScalar ( const THREAD_ID  tid = 0)
virtual

Definition at line 1856 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1857 {
1858  _assembly[tid][_current_nl_sys->number()]->addResidualScalar(Assembly::GlobalDataKey{},
1860 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addSampler()

void FEProblemBase::addSampler ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

The following functions will enable MOOSE to have the capability to import Samplers.

Definition at line 2707 of file FEProblemBase.C.

2710 {
2711  const auto samplers = addObject<Sampler>(type, name, parameters);
2712  for (auto & sampler : samplers)
2713  sampler->init();
2714 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ addScalarKernel()

void FEProblemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 3006 of file FEProblemBase.C.

3009 {
3010  parallel_object_only();
3011 
3012  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3013  if (!isSolverSystemNonlinear(nl_sys_num))
3014  mooseError("You are trying to add a ScalarKernel to a linear variable/system, which is not "
3015  "supported at the moment!");
3016 
3017  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3018  {
3019  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3020  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3021  }
3022  else
3023  {
3024  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3025  {
3026  // We allow ScalarKernels to request that they use_displaced_mesh,
3027  // but then be overridden when no displacements variables are
3028  // provided in the Mesh block. If that happened, update the value
3029  // of use_displaced_mesh appropriately for this ScalarKernel.
3030  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3031  parameters.set<bool>("use_displaced_mesh") = false;
3032  }
3033 
3034  parameters.set<SubProblem *>("_subproblem") = this;
3035  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3036  }
3037 
3038  logAdd("ScalarKernel", name, kernel_name, parameters);
3039  _nl[nl_sys_num]->addScalarKernel(kernel_name, name, parameters);
3040 }
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTimeIntegrator()

void FEProblemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 6754 of file FEProblemBase.C.

Referenced by TransientBase::setupTimeIntegrator().

6757 {
6758  parallel_object_only();
6759 
6760  parameters.set<SubProblem *>("_subproblem") = this;
6761  logAdd("TimeIntegrator", name, type, parameters);
6762  _aux->addTimeIntegrator(type, name + ":aux", parameters);
6763  for (auto & sys : _solver_systems)
6764  sys->addTimeIntegrator(type, name + ":" + sys->name(), parameters);
6765  _has_time_integrator = true;
6766 
6767  // add vectors to store u_dot, u_dotdot, udot_old, u_dotdot_old and
6768  // solution vectors older than 2 time steps, if requested by the time
6769  // integrator
6770  _aux->addDotVectors();
6771  for (auto & nl : _nl)
6772  {
6773  nl->addDotVectors();
6774 
6775  auto tag_udot = nl->getTimeIntegrators()[0]->uDotFactorTag();
6776  if (!nl->hasVector(tag_udot))
6777  nl->associateVectorToTag(*nl->solutionUDot(), tag_udot);
6778  auto tag_udotdot = nl->getTimeIntegrators()[0]->uDotDotFactorTag();
6779  if (!nl->hasVector(tag_udotdot) && uDotDotRequested())
6780  nl->associateVectorToTag(*nl->solutionUDotDot(), tag_udotdot);
6781  }
6782 
6783  if (_displaced_problem)
6784  // Time integrator does not exist when displaced problem is created.
6785  _displaced_problem->addTimeIntegrator();
6786 }
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTransfer()

void FEProblemBase::addTransfer ( const std::string &  transfer_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Add a Transfer to the problem.

Reimplemented in MFEMProblem.

Definition at line 5600 of file FEProblemBase.C.

Referenced by MFEMProblem::addTransfer().

5603 {
5604  parallel_object_only();
5605 
5606  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5607  {
5608  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5609  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5610  _reinit_displaced_elem = true;
5611  }
5612  else
5613  {
5614  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5615  {
5616  // We allow Transfers to request that they use_displaced_mesh,
5617  // but then be overridden when no displacements variables are
5618  // provided in the Mesh block. If that happened, update the value
5619  // of use_displaced_mesh appropriately for this Transfer.
5620  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5621  parameters.set<bool>("use_displaced_mesh") = false;
5622  }
5623 
5624  parameters.set<SubProblem *>("_subproblem") = this;
5625  parameters.set<SystemBase *>("_sys") = _aux.get();
5626  }
5627 
5628  // Handle the "SAME_AS_MULTIAPP" execute option. The get method is used to test for the
5629  // flag so the set by user flag is not reset, calling set with the true flag causes the set
5630  // by user status to be reset, which should only be done if the EXEC_SAME_AS_MULTIAPP is
5631  // being applied to the object.
5633  {
5634  ExecFlagEnum & exec_enum = parameters.set<ExecFlagEnum>("execute_on", true);
5635  std::shared_ptr<MultiApp> multiapp;
5636  if (parameters.isParamValid("multi_app"))
5637  multiapp = getMultiApp(parameters.get<MultiAppName>("multi_app"));
5638  // This catches the sibling transfer case, where we want to be executing only as often as the
5639  // receiving application. A transfer 'to' a multiapp is executed before that multiapp
5640  else if (parameters.isParamValid("to_multi_app"))
5641  multiapp = getMultiApp(parameters.get<MultiAppName>("to_multi_app"));
5642  else if (parameters.isParamValid("from_multi_app"))
5643  multiapp = getMultiApp(parameters.get<MultiAppName>("from_multi_app"));
5644  // else do nothing because the user has provided invalid input. They should get a nice error
5645  // about this during transfer construction. This necessitates checking for null in this next
5646  // line, however
5647  if (multiapp)
5648  exec_enum = multiapp->getParam<ExecFlagEnum>("execute_on");
5649  }
5650 
5651  // Create the Transfer objects
5652  std::shared_ptr<Transfer> transfer = _factory.create<Transfer>(transfer_name, name, parameters);
5653  logAdd("Transfer", name, transfer_name, parameters);
5654 
5655  // Add MultiAppTransfer object
5656  std::shared_ptr<MultiAppTransfer> multi_app_transfer =
5658  if (multi_app_transfer)
5659  {
5660  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::TO_MULTIAPP))
5661  _to_multi_app_transfers.addObject(multi_app_transfer);
5662  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::FROM_MULTIAPP))
5663  _from_multi_app_transfers.addObject(multi_app_transfer);
5664  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::BETWEEN_MULTIAPP))
5665  _between_multi_app_transfers.addObject(multi_app_transfer);
5666  }
5667  else
5668  _transfers.addObject(transfer);
5669 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::shared_ptr< MultiApp > getMultiApp(const std::string &multi_app_name) const
Get a MultiApp object by name.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Base class for all MultiAppTransfer objects.
const ExecFlagType EXEC_SAME_AS_MULTIAPP
Definition: Moose.C:53
std::shared_ptr< DisplacedProblem > _displaced_problem
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
Base class for all Transfer objects.
Definition: Transfer.h:36
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addUserObject()

std::vector< std::shared_ptr< UserObject > > FEProblemBase::addUserObject ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 4285 of file FEProblemBase.C.

Referenced by MFEMProblem::addAuxKernel(), MFEMProblem::addBoundaryCondition(), MFEMProblem::addFESpace(), MFEMProblem::addFunctorMaterial(), MFEMProblem::addGridFunction(), MFEMProblem::addInitialCondition(), MFEMProblem::addKernel(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), addPostprocessor(), addReporter(), MFEMProblem::addSubMesh(), MFEMProblem::addTransfer(), and addVectorPostprocessor().

4288 {
4289  parallel_object_only();
4290 
4291  std::vector<std::shared_ptr<UserObject>> uos;
4292 
4293  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
4295 
4296  for (const auto tid : make_range(libMesh::n_threads()))
4297  {
4298  // Create the UserObject
4299  std::shared_ptr<UserObject> user_object =
4300  _factory.create<UserObject>(user_object_name, name, parameters, tid);
4301  logAdd("UserObject", name, user_object_name, parameters);
4302  uos.push_back(user_object);
4303 
4304  if (tid != 0)
4305  user_object->setPrimaryThreadCopy(uos[0].get());
4306 
4307  // TODO: delete this line after apps have been updated to not call getUserObjects
4308  _all_user_objects.addObject(user_object, tid);
4309 
4310  theWarehouse().add(user_object);
4311 
4312  // Attempt to create all the possible UserObject types
4313  auto euo = std::dynamic_pointer_cast<ElementUserObject>(user_object);
4314  auto suo = std::dynamic_pointer_cast<SideUserObject>(user_object);
4315  auto isuo = std::dynamic_pointer_cast<InternalSideUserObject>(user_object);
4316  auto iuo = std::dynamic_pointer_cast<InterfaceUserObjectBase>(user_object);
4317  auto nuo = std::dynamic_pointer_cast<NodalUserObject>(user_object);
4318  auto duo = std::dynamic_pointer_cast<DomainUserObject>(user_object);
4319  auto guo = std::dynamic_pointer_cast<GeneralUserObject>(user_object);
4320  auto tguo = std::dynamic_pointer_cast<ThreadedGeneralUserObject>(user_object);
4321  auto muo = std::dynamic_pointer_cast<MortarUserObject>(user_object);
4322 
4323  // Account for displaced mesh use
4324  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4325  {
4326  // Whether to re-init or not depends on the attributes of the base classes.
4327  // For example, InterfaceUOBase has "_current_side_elem" and "_neighbor_elem"
4328  // so it needs to reinit on displaced neighbors and faces
4329  // _reinit_displaced_elem -> _current_elem will be reinited
4330  // _reinit_displaced_face -> _current_elem, lowerD if any and _current_side_elem to be
4331  // reinited _reinit_displaced_neighbor -> _current_elem, lowerD if any and _current_neighbor
4332  // to be reinited Note that as soon as you use materials on the displaced mesh, all three get
4333  // turned on.
4334  if (euo || nuo || duo)
4335  _reinit_displaced_elem = true;
4336  if (suo || duo || isuo || iuo)
4337  _reinit_displaced_face = true;
4338  if (iuo || duo || isuo)
4340  }
4341 
4342  // These objects only require one thread
4343  if ((guo && !tguo) || muo)
4344  break;
4345  }
4346 
4347  // Add as a Functor if it is one. We usually need to add the user object from thread 0 as the
4348  // registered functor for all threads because when user objects are thread joined, generally only
4349  // the primary thread copy ends up with all the data
4350  for (const auto tid : make_range(libMesh::n_threads()))
4351  {
4352  const decltype(uos)::size_type uo_index = uos.front()->needThreadedCopy() ? tid : 0;
4353  if (const auto functor = dynamic_cast<Moose::FunctorBase<Real> *>(uos[uo_index].get()))
4354  {
4355  this->addFunctor(name, *functor, tid);
4356  if (_displaced_problem)
4357  _displaced_problem->addFunctor(name, *functor, tid);
4358  }
4359  }
4360 
4361  return uos;
4362 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
Base class for implementing interface user objects.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for user objects executed one or more sidesets, which may be on the outer boundary of the ...
This user object allows related evaluations on elements, boundaries, internal sides, interfaces in one single place.
Base class for creating new nodally-based mortar user objects.
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
A user object that runs over all the nodes and does an aggregation step to compute a single value...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for user objects executed on all element sides internal to one or more blocks...
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
IntRange< T > make_range(T beg, T end)
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
std::shared_ptr< DisplacedProblem > _displaced_problem
Base class for user-specific data.
Definition: UserObject.h:40
An instance of this object type has one copy per thread that runs on each thread. ...

◆ addVariable()

void FEProblemBase::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters params 
)
virtual

Canonical method for adding a non-linear variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in MFEMProblem.

Definition at line 2846 of file FEProblemBase.C.

Referenced by MFEMProblem::addGridFunction(), DiffusionFV::addSolverVariables(), DiffusionCG::addSolverVariables(), and AddVariableAction::init().

2849 {
2850  parallel_object_only();
2851 
2852  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
2853  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
2854  const auto fe_type = FEType(order, family);
2855 
2856  const auto active_subdomains_vector =
2857  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
2858  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
2859  active_subdomains_vector.end());
2860 
2861  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ false, &active_subdomains))
2862  return;
2863 
2864  params.set<FEProblemBase *>("_fe_problem_base") = this;
2865  params.set<Moose::VarKindType>("_var_kind") = Moose::VarKindType::VAR_SOLVER;
2866  SolverSystemName sys_name = params.get<SolverSystemName>("solver_sys");
2867 
2868  const auto solver_system_number = solverSysNum(sys_name);
2869  logAdd("Variable", var_name, var_type, params);
2870  _solver_systems[solver_system_number]->addVariable(var_type, var_name, params);
2871  if (_displaced_problem)
2872  // MooseObjects need to be unique so change the name here
2873  _displaced_problem->addVariable(var_type, var_name, params, solver_system_number);
2874 
2875  _solver_var_to_sys_num[var_name] = solver_system_number;
2876 
2877  markFamilyPRefinement(params);
2878 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::map< SolverVariableName, unsigned int > _solver_var_to_sys_num
Map connecting variable names with their respective solver systems.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1737
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addVectorPostprocessor()

void FEProblemBase::addVectorPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Definition at line 4257 of file FEProblemBase.C.

Referenced by ExtraIDIntegralReporter::ExtraIDIntegralReporter().

4260 {
4261  // Check for name collision
4262  if (hasUserObject(name))
4263  mooseError("A ",
4265  " already exists. You may not add a VectorPostprocessor by the same name.");
4266 
4267  addUserObject(pp_name, name, parameters);
4268 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addVectorTag()

TagID SubProblem::addVectorTag ( const TagName &  tag_name,
const Moose::VectorTagType  type = Moose::VECTOR_TAG_RESIDUAL 
)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag, but the type must be the same.

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated
typeThe type of the tag

Reimplemented in DisplacedProblem.

Definition at line 92 of file SubProblem.C.

Referenced by DisplacedProblem::addVectorTag(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), createTagSolutions(), createTagVectors(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), LinearSystem::LinearSystem(), SystemBase::needSolutionState(), and NonlinearSystemBase::NonlinearSystemBase().

94 {
96  mooseError("Vector tag type cannot be VECTOR_TAG_ANY");
97 
98  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
99 
100  // First, see if the tag exists already
101  for (const auto & vector_tag : _vector_tags)
102  {
103  mooseAssert(_vector_tags[vector_tag._id] == vector_tag, "Vector tags index mismatch");
104  if (vector_tag._name == tag_name_upper)
105  {
106  if (vector_tag._type != type)
107  mooseError("While attempting to add vector tag with name '",
108  tag_name_upper,
109  "' and type ",
110  type,
111  ",\na tag with the same name but type ",
112  vector_tag._type,
113  " was found.\n\nA tag can only exist with one type.");
114 
115  return vector_tag._id;
116  }
117  }
118 
119  // Doesn't exist - create it
120  const TagID new_tag_id = _vector_tags.size();
121  const TagTypeID new_tag_type_id = _typed_vector_tags[type].size();
122  // Primary storage for all tags where the index in the vector == the tag ID
123  _vector_tags.emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
124  // Secondary storage for each type so that we can have quick access to all tags of a type
125  _typed_vector_tags[type].emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
126  // Name map storage for quick name access
127  _vector_tags_name_map.emplace(tag_name_upper, new_tag_id);
128 
129  // Make sure that _vector_tags, _typed_vector_tags, and _vector_tags_name_map are sane
131 
132  return new_tag_id;
133 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ advanceMultiApps()

void FEProblemBase::advanceMultiApps ( ExecFlagType  type)
inline

Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose.

Definition at line 1327 of file FEProblemBase.h.

1328  {
1329  mooseDeprecated("Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep "
1330  "depending on your purpose");
1332  }
void finishMultiAppStep(ExecFlagType type, bool recurse_through_multiapp_levels=false)
Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ advanceState()

void FEProblemBase::advanceState ( )
virtual

Advance all of the state holding vectors / datastructures so that we can move to the next timestep.

Reimplemented in DumpObjectsProblem.

Definition at line 6604 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), TransientBase::incrementStepOrReject(), NonlinearEigen::init(), TransientMultiApp::setupApp(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), NonlinearEigen::takeStep(), and InversePowerMethod::takeStep().

6605 {
6606  TIME_SECTION("advanceState", 5, "Advancing State");
6607 
6608  for (auto & sys : _solver_systems)
6609  sys->copyOldSolutions();
6610  _aux->copyOldSolutions();
6611 
6612  if (_displaced_problem)
6613  {
6614  for (const auto i : index_range(_solver_systems))
6615  _displaced_problem->solverSys(i).copyOldSolutions();
6616  _displaced_problem->auxSys().copyOldSolutions();
6617  }
6618 
6620 
6622 
6625 
6628 
6631 }
void shift()
Shift the material properties in time.
MaterialPropertyStorage & _bnd_material_props
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void copyValuesBack()
Copies current chain control data values into old values.
MooseApp & getMooseApp() const
Get the MooseApp this class is associated with.
Definition: MooseBase.h:83
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void copyValuesBack()
At the end of a timestep this method is called to copy the values back in time in preparation for the...
Definition: ReporterData.C:17
ChainControlDataSystem & getChainControlDataSystem()
Gets the system that manages the ChainControls.
Definition: MooseApp.h:838
std::shared_ptr< DisplacedProblem > _displaced_problem
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)

◆ allowInvalidSolution()

bool FEProblemBase::allowInvalidSolution ( ) const
inline

Whether to accept / allow an invalid solution.

Definition at line 1986 of file FEProblemBase.h.

Referenced by acceptInvalidSolution().

1986 { return _allow_invalid_solution; }
const bool _allow_invalid_solution

◆ allowOutput() [1/2]

void FEProblemBase::allowOutput ( bool  state)

Ability to enable/disable all output calls.

This is needed by Multiapps and applications to disable output for cases when executioners call other executions and when Multiapps are sub cycling.

Definition at line 6700 of file FEProblemBase.C.

Referenced by TransientMultiApp::resetApp(), and TransientMultiApp::solveStep().

6701 {
6703 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ allowOutput() [2/2]

template<typename T >
void FEProblemBase::allowOutput ( bool  state)

Definition at line 3106 of file FEProblemBase.h.

3107 {
3108  _app.getOutputWarehouse().allowOutput<T>(state);
3109 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ areCoupled()

bool FEProblemBase::areCoupled ( const unsigned int  ivar,
const unsigned int  jvar,
const unsigned int  nl_sys_num 
) const

Definition at line 6150 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

6153 {
6154  return (*_cm[nl_sys])(ivar, jvar);
6155 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ assembly() [1/2]

Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
)
inlineoverridevirtual

Implements SubProblem.

Definition at line 3254 of file FEProblemBase.h.

Referenced by ArrayNodalBC::computeJacobian(), VectorNodalBC::computeJacobian(), NodalBC::computeJacobian(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), VectorNodalBC::computeOffDiagJacobian(), ArrayNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NonlinearSystemBase::constraintJacobians(), initialSetup(), ComputeBoundaryInitialConditionThread::onNode(), MaxQpsThread::operator()(), and reinitScalars().

3255 {
3256  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3257  mooseAssert(sys_num < _assembly[tid].size(),
3258  "System number larger than the assembly container size");
3259  return *_assembly[tid][sys_num];
3260 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ assembly() [2/2]

const Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
) const
inlineoverridevirtual

Implements SubProblem.

Definition at line 3263 of file FEProblemBase.h.

3264 {
3265  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3266  mooseAssert(sys_num < _assembly[tid].size(),
3267  "System number larger than the assembly container size");
3268  return *_assembly[tid][sys_num];
3269 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ automaticScaling() [1/4]

bool SubProblem::automaticScaling ( ) const
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

Referenced by automaticScaling(), and DisplacedProblem::DisplacedProblem().

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122

◆ automaticScaling() [2/4]

bool SubProblem::automaticScaling

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.

◆ automaticScaling() [3/4]

void SubProblem::automaticScaling

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 1155 of file SubProblem.C.

1156 {
1157  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1158  systemBaseNonlinear(nl_sys_num).automaticScaling(automatic_scaling);
1159 }
virtual std::size_t numNonlinearSystems() const override
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.
IntRange< T > make_range(T beg, T end)

◆ automaticScaling() [4/4]

void FEProblemBase::automaticScaling ( bool  automatic_scaling)
overridevirtual

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Reimplemented from SubProblem.

Definition at line 8998 of file FEProblemBase.C.

Referenced by DisplacedProblem::DisplacedProblem(), and FEProblemSolve::FEProblemSolve().

8999 {
9000  if (_displaced_problem)
9001  _displaced_problem->automaticScaling(automatic_scaling);
9002 
9003  SubProblem::automaticScaling(automatic_scaling);
9004 }
bool automaticScaling() const
Automatic scaling getter.
Definition: SubProblem.C:1162
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ backupMultiApps()

void FEProblemBase::backupMultiApps ( ExecFlagType  type)

Backup the MultiApps associated with the ExecFlagType.

Definition at line 5521 of file FEProblemBase.C.

Referenced by initialSetup(), FixedPointSolve::solve(), and MFEMProblemSolve::solve().

5522 {
5523  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5524 
5525  if (multi_apps.size())
5526  {
5527  TIME_SECTION("backupMultiApps", 5, "Backing Up MultiApp");
5528 
5529  if (_verbose_multiapps)
5530  _console << COLOR_CYAN << "\nBacking Up MultiApps on " << type.name() << COLOR_DEFAULT
5531  << std::endl;
5532 
5533  for (const auto & multi_app : multi_apps)
5534  multi_app->backup();
5535 
5537 
5538  if (_verbose_multiapps)
5539  _console << COLOR_CYAN << "Finished Backing Up MultiApps on " << type.name() << "\n"
5540  << COLOR_DEFAULT << std::endl;
5541  }
5542 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ bumpAllQRuleOrder()

void FEProblemBase::bumpAllQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)

Definition at line 6007 of file FEProblemBase.C.

6008 {
6009  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6010  for (const auto i : index_range(_nl))
6011  _assembly[tid][i]->bumpAllQRuleOrder(order, block);
6012 
6013  if (_displaced_problem)
6014  _displaced_problem->bumpAllQRuleOrder(order, block);
6015 
6016  updateMaxQps();
6017 }
unsigned int n_threads()
void bumpAllQRuleOrder(libMesh::Order order, SubdomainID block)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ bumpVolumeQRuleOrder()

void FEProblemBase::bumpVolumeQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)

Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower.

This can only cause the quadrature level to increase. If volume_order is lower than or equal to the current volume/elem quadrature rule order, then nothing is done (i.e. this function is idempotent).

Definition at line 5994 of file FEProblemBase.C.

5995 {
5996  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
5997  for (const auto i : index_range(_nl))
5998  _assembly[tid][i]->bumpVolumeQRuleOrder(order, block);
5999 
6000  if (_displaced_problem)
6001  _displaced_problem->bumpVolumeQRuleOrder(order, block);
6002 
6003  updateMaxQps();
6004 }
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void bumpVolumeQRuleOrder(libMesh::Order order, SubdomainID block)
Increases the element/volume quadrature order for the specified mesh block if and only if the current...
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ cacheJacobian()

void FEProblemBase::cacheJacobian ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 1977 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulate(), NonlinearSystemBase::constraintJacobians(), and ComputeJacobianThread::postElement().

1978 {
1980  if (_displaced_problem)
1981  _displaced_problem->cacheJacobian(tid);
1982 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheJacobian(const THREAD_ID tid)
Definition: SubProblem.C:1312

◆ cacheJacobianNeighbor()

void FEProblemBase::cacheJacobianNeighbor ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 1985 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

1986 {
1988  if (_displaced_problem)
1989  _displaced_problem->cacheJacobianNeighbor(tid);
1990 }
virtual void cacheJacobianNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1320
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidual()

void FEProblemBase::cacheResidual ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 1863 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulate(), ComputeResidualAndJacobianThread::accumulate(), and NonlinearSystemBase::constraintResiduals().

1864 {
1866  if (_displaced_problem)
1867  _displaced_problem->cacheResidual(tid);
1868 }
virtual void cacheResidual(const THREAD_ID tid)
Definition: SubProblem.C:1291
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidualNeighbor()

void FEProblemBase::cacheResidualNeighbor ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 1871 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1872 {
1874  if (_displaced_problem)
1875  _displaced_problem->cacheResidualNeighbor(tid);
1876 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheResidualNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1298

◆ callMooseError() [1/2]

void MooseBase::callMooseError ( std::string  msg,
const bool  with_prefix,
const hit::Node *  node = nullptr 
) const
inherited

External method for calling moose error with added object context.

Parameters
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 102 of file MooseBase.C.

Referenced by InputParameters::callMooseError(), MooseBase::mooseDocumentedError(), MooseBase::mooseError(), and MooseBase::mooseErrorNonPrefixed().

105 {
106  callMooseError(&_app, _pars, msg, with_prefix, node);
107 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ callMooseError() [2/2]

void MooseBase::callMooseError ( MooseApp *const  app,
const InputParameters params,
std::string  msg,
const bool  with_prefix,
const hit::Node *  node 
)
staticinherited

External method for calling moose error with added object context.

Needed so that objects without the MooseBase context (InputParameters) can call errors with context

Parameters
appThe app pointer (if available); adds multiapp context and clears the console
paramsThe parameters, needed to obtain object information
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 110 of file MooseBase.C.

115 {
116  if (!node)
117  node = MooseBase::getHitNode(params);
118 
119  std::string multiapp_prefix = "";
120  if (app)
121  {
122  if (!app->isUltimateMaster())
123  multiapp_prefix = app->name();
125  }
126 
127  if (with_prefix)
128  // False here because the hit context will get processed by the node
129  msg = messagePrefix(params, false) + msg;
130 
131  moose::internal::mooseErrorRaw(msg, multiapp_prefix, node);
132 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
void mooseErrorRaw(std::string msg, const std::string &prefix="", const hit::Node *node=nullptr)
Main callback for emitting a moose error.
Definition: MooseError.C:53
void mooseConsole()
Send current output buffer to Console output objects.
const hit::Node * getHitNode() const
Definition: MooseBase.h:132
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ checkBlockMatProps()

void SubProblem::checkBlockMatProps ( )
virtualinherited

Checks block material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 623 of file SubProblem.C.

Referenced by checkProblemIntegrity().

624 {
625  // Variable for storing all available blocks/boundaries from the mesh
626  std::set<SubdomainID> all_ids(mesh().meshSubdomains());
627 
628  std::stringstream errors;
629 
630  // Loop through the properties to check
631  for (const auto & check_it : _map_block_material_props_check)
632  {
633  // The current id for the property being checked (BoundaryID || BlockID)
634  SubdomainID check_id = check_it.first;
635 
636  std::set<SubdomainID> check_ids = {check_id};
637 
638  // Loop through all the block/boundary ids
639  for (const auto & id : check_ids)
640  {
641  // Loop through all the stored properties
642  for (const auto & prop_it : check_it.second)
643  {
644  // Produce an error if the material property is not defined on the current block/boundary
645  // and any block/boundary
646  // and not is not a zero material property.
647  if (_map_block_material_props[id].count(prop_it.second) == 0 &&
648  _zero_block_material_props[id].count(prop_it.second) == 0)
649  {
650  std::string check_name = restrictionSubdomainCheckName(id);
651  if (check_name.empty())
652  check_name = std::to_string(id);
653  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
654  << "' is not defined on block " << check_name << "\n";
655  }
656  }
657  }
658  }
659 
660  if (!errors.str().empty())
661  mooseError(errors.str());
662 }
virtual MooseMesh & mesh()=0
std::string restrictionSubdomainCheckName(SubdomainID check_id)
Helper functions for checking MaterialProperties.
Definition: SubProblem.C:772
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ checkBoundaryMatProps()

void SubProblem::checkBoundaryMatProps ( )
virtualinherited

Checks boundary material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 665 of file SubProblem.C.

Referenced by checkProblemIntegrity().

666 {
667  // Variable for storing the value for ANY_BOUNDARY_ID
669 
670  // Variable for storing all available blocks/boundaries from the mesh
671  std::set<BoundaryID> all_ids(mesh().getBoundaryIDs());
672 
673  std::stringstream errors;
674 
675  // Loop through the properties to check
676  for (const auto & check_it : _map_boundary_material_props_check)
677  {
678  // The current id for the property being checked (BoundaryID || BlockID)
679  BoundaryID check_id = check_it.first;
680 
681  // In the case when the material being checked has an ID is set to ANY, then loop through all
682  // the possible ids and verify that the material property is defined.
683  std::set<BoundaryID> check_ids{check_id};
684  if (check_id == any_id)
685  check_ids = all_ids;
686 
687  // Loop through all the block/boundary ids
688  for (const auto & id : check_ids)
689  {
690  // Loop through all the stored properties
691  for (const auto & prop_it : check_it.second)
692  {
693  // Produce an error if the material property is not defined on the current block/boundary
694  // and any block/boundary
695  // and not is not a zero material property.
696  if (_map_boundary_material_props[id].count(prop_it.second) == 0 &&
697  _map_boundary_material_props[any_id].count(prop_it.second) == 0 &&
698  _zero_boundary_material_props[id].count(prop_it.second) == 0 &&
699  _zero_boundary_material_props[any_id].count(prop_it.second) == 0)
700  {
701  std::string check_name = restrictionBoundaryCheckName(id);
702  if (check_name.empty())
703  check_name = std::to_string(id);
704  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
705  << "' is not defined on boundary " << check_name << "\n";
706  }
707  }
708  }
709  }
710 
711  if (!errors.str().empty())
712  mooseError(errors.str());
713 }
virtual MooseMesh & mesh()=0
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
std::string restrictionBoundaryCheckName(BoundaryID check_id)
Definition: SubProblem.C:783
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
boundary_id_type BoundaryID
std::vector< BoundaryID > getBoundaryIDs(const libMesh::MeshBase &mesh, const std::vector< BoundaryName > &boundary_name, bool generate_unknown, const std::set< BoundaryID > &mesh_boundary_ids)
Gets the boundary IDs with their names.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ checkCoordinateSystems()

void FEProblemBase::checkCoordinateSystems ( )
protected

Verify that there are no element type/coordinate type conflicts.

Definition at line 8627 of file FEProblemBase.C.

Referenced by checkProblemIntegrity().

8628 {
8630 }
MooseMesh & _mesh
void checkCoordinateSystems()
Performs a sanity check for every element in the mesh.
Definition: MooseMesh.C:4307

◆ checkDependMaterialsHelper()

void FEProblemBase::checkDependMaterialsHelper ( const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &  materials_map)
protected

Helper method for checking Material object dependency.

See also
checkProblemIntegrity

These two sets are used to make sure that all dependent props on a block are actually supplied

Definition at line 8502 of file FEProblemBase.C.

Referenced by checkProblemIntegrity().

8504 {
8505  for (const auto & it : materials_map)
8506  {
8508  std::set<std::string> block_depend_props, block_supplied_props;
8509 
8510  for (const auto & mat1 : it.second)
8511  {
8512  const std::set<std::string> & depend_props = mat1->getRequestedItems();
8513  block_depend_props.insert(depend_props.begin(), depend_props.end());
8514 
8515  auto & alldeps = mat1->getMatPropDependencies(); // includes requested stateful props
8516  for (auto & dep : alldeps)
8517  if (const auto name = _material_props.queryStatefulPropName(dep))
8518  block_depend_props.insert(*name);
8519 
8520  // See if any of the active materials supply this property
8521  for (const auto & mat2 : it.second)
8522  {
8523  const std::set<std::string> & supplied_props = mat2->MaterialBase::getSuppliedItems();
8524  block_supplied_props.insert(supplied_props.begin(), supplied_props.end());
8525  }
8526  }
8527 
8528  // Add zero material properties specific to this block and unrestricted
8529  block_supplied_props.insert(_zero_block_material_props[it.first].begin(),
8530  _zero_block_material_props[it.first].end());
8531 
8532  // Error check to make sure all properties consumed by materials are supplied on this block
8533  std::set<std::string> difference;
8534  std::set_difference(block_depend_props.begin(),
8535  block_depend_props.end(),
8536  block_supplied_props.begin(),
8537  block_supplied_props.end(),
8538  std::inserter(difference, difference.end()));
8539 
8540  if (!difference.empty())
8541  {
8542  std::ostringstream oss;
8543  oss << "One or more Material Properties were not supplied on block ";
8544  const std::string & subdomain_name = _mesh.getSubdomainName(it.first);
8545  if (subdomain_name.length() > 0)
8546  oss << subdomain_name << " (" << it.first << ")";
8547  else
8548  oss << it.first;
8549  oss << ":\n";
8550  for (const auto & name : difference)
8551  oss << name << "\n";
8552  mooseError(oss.str());
8553  }
8554  }
8555 
8556  // This loop checks that materials are not supplied by multiple Material objects
8557  for (const auto & it : materials_map)
8558  {
8559  const auto & materials = it.second;
8560  std::set<std::string> inner_supplied, outer_supplied;
8561 
8562  for (const auto & outer_mat : materials)
8563  {
8564  // Storage for properties for this material (outer) and all other materials (inner)
8565  outer_supplied = outer_mat->getSuppliedItems();
8566  inner_supplied.clear();
8567 
8568  // Property to material map for error reporting
8569  std::map<std::string, std::set<std::string>> prop_to_mat;
8570  for (const auto & name : outer_supplied)
8571  prop_to_mat[name].insert(outer_mat->name());
8572 
8573  for (const auto & inner_mat : materials)
8574  {
8575  if (outer_mat == inner_mat)
8576  continue;
8577 
8578  // Check whether these materials are an AD pair
8579  auto outer_mat_type = outer_mat->type();
8580  auto inner_mat_type = inner_mat->type();
8581  removeSubstring(outer_mat_type, "<RESIDUAL>");
8582  removeSubstring(outer_mat_type, "<JACOBIAN>");
8583  removeSubstring(inner_mat_type, "<RESIDUAL>");
8584  removeSubstring(inner_mat_type, "<JACOBIAN>");
8585  if (outer_mat_type == inner_mat_type && outer_mat_type != outer_mat->type() &&
8586  inner_mat_type != inner_mat->type())
8587  continue;
8588 
8589  inner_supplied.insert(inner_mat->getSuppliedItems().begin(),
8590  inner_mat->getSuppliedItems().end());
8591 
8592  for (const auto & inner_supplied_name : inner_supplied)
8593  prop_to_mat[inner_supplied_name].insert(inner_mat->name());
8594  }
8595 
8596  // Test that a property isn't supplied on multiple blocks
8597  std::set<std::string> intersection;
8598  std::set_intersection(outer_supplied.begin(),
8599  outer_supplied.end(),
8600  inner_supplied.begin(),
8601  inner_supplied.end(),
8602  std::inserter(intersection, intersection.end()));
8603 
8604  if (!intersection.empty())
8605  {
8606  std::ostringstream oss;
8607  oss << "The following material properties are declared on block " << it.first
8608  << " by multiple materials:\n";
8609  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << "Material Property"
8610  << "Material Objects\n";
8611  for (const auto & outer_name : intersection)
8612  {
8613  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << outer_name;
8614  for (const auto & inner_name : prop_to_mat[outer_name])
8615  oss << inner_name << " ";
8616  oss << '\n';
8617  }
8618 
8619  mooseError(oss.str());
8620  break;
8621  }
8622  }
8623  }
8624 }
std::string indent(unsigned int spaces)
Create empty string for indenting.
Definition: ConsoleUtils.C:41
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1763
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::optional< std::string > queryStatefulPropName(const unsigned int id) const
MooseMesh & _mesh
void removeSubstring(std::string &main, const std::string &sub)
find, erase, length algorithm for removing a substring from a string
Definition: MooseUtils.C:1296
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _material_props
for(PetscInt i=0;i< nvars;++i)

◆ checkDisplacementOrders()

void FEProblemBase::checkDisplacementOrders ( )
protected

Verify that SECOND order mesh uses SECOND order displacements.

Definition at line 8426 of file FEProblemBase.C.

Referenced by checkProblemIntegrity().

8427 {
8428  if (_displaced_problem)
8429  {
8430  bool mesh_has_second_order_elements = false;
8431  for (const auto & elem : as_range(_displaced_mesh->activeLocalElementsBegin(),
8433  {
8434  if (elem->default_order() == SECOND)
8435  {
8436  mesh_has_second_order_elements = true;
8437  break;
8438  }
8439  }
8440 
8441  // We checked our local elements, so take the max over all processors.
8442  _displaced_mesh->comm().max(mesh_has_second_order_elements);
8443 
8444  // If the Mesh has second order elements, make sure the
8445  // displacement variables are second-order.
8446  if (mesh_has_second_order_elements)
8447  {
8448  const std::vector<std::string> & displacement_variables =
8449  _displaced_problem->getDisplacementVarNames();
8450 
8451  for (const auto & var_name : displacement_variables)
8452  {
8453  MooseVariableFEBase & mv =
8454  _displaced_problem->getVariable(/*tid=*/0,
8455  var_name,
8458  if (mv.order() != SECOND)
8459  mooseError("Error: mesh has SECOND order elements, so all displacement variables must be "
8460  "SECOND order.");
8461  }
8462  }
8463  }
8464 }
const Parallel::Communicator & comm() const
This class provides an interface for common operations on field variables of both FE and FV types wit...
SECOND
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
MeshBase::element_iterator activeLocalElementsBegin()
Calls active_local_nodes_begin/end() on the underlying libMesh mesh object.
Definition: MooseMesh.C:3051
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
void max(const T &r, T &o, Request &req) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
const MeshBase::element_iterator activeLocalElementsEnd()
Definition: MooseMesh.C:3057
MooseMesh * _displaced_mesh

◆ checkDuplicatePostprocessorVariableNames()

void FEProblemBase::checkDuplicatePostprocessorVariableNames ( )

Definition at line 1478 of file FEProblemBase.C.

Referenced by checkProblemIntegrity().

1479 {
1480  for (const auto & pp : _reporter_data.getPostprocessorNames())
1481  if (hasScalarVariable(pp))
1482  mooseError("Postprocessor \"" + pp +
1483  "\" has the same name as a scalar variable in the system.");
1484 }
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
ReporterData _reporter_data
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< std::string > getPostprocessorNames() const
Return a list of all postprocessor names.
Definition: ReporterData.C:71

◆ checkExceptionAndStopSolve()

void FEProblemBase::checkExceptionAndStopSolve ( bool  print_message = true)
virtual

Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut.

Notes:

  • The exception have be registered by calling setException() prior to calling this.
  • This is collective on MPI, and must be called simultaneously by all processors!
  • If called when the solve can be interruped, it will do so and also throw a MooseException, which must be handled.
  • If called at a stage in the execution when the solve cannot be interupted (i.e., there is no solve active), it will generate an error and terminate the application.
  • DO NOT CALL THIS IN A THREADED REGION! This is meant to be called just after a threaded section.
Parameters
print_messagewhether to print a message with exception information

Definition at line 6432 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), handleException(), and DisplacedProblem::updateMesh().

6433 {
6435  return;
6436 
6437  TIME_SECTION("checkExceptionAndStopSolve", 5);
6438 
6439  // See if any processor had an exception. If it did, get back the
6440  // processor that the exception occurred on.
6441  unsigned int processor_id;
6442 
6444 
6445  if (_has_exception)
6446  {
6448 
6451  {
6452  // Print the message
6453  if (_communicator.rank() == 0 && print_message)
6454  {
6455  _console << "\n" << _exception_message << "\n";
6456  if (isTransient())
6457  _console
6458  << "To recover, the solution will fail and then be re-attempted with a reduced time "
6459  "step.\n"
6460  << std::endl;
6461  }
6462 
6463  // Stop the solve -- this entails setting
6464  // SNESSetFunctionDomainError() or directly inserting NaNs in the
6465  // residual vector to let PETSc >= 3.6 return DIVERGED_NANORINF.
6466  if (_current_nl_sys)
6468 
6469  if (_current_linear_sys)
6471 
6472  // and close Aux system (we MUST do this here; see #11525)
6473  _aux->solution().close();
6474 
6475  // We've handled this exception, so we no longer have one.
6476  _has_exception = false;
6477 
6478  // Force the next non-linear convergence check to fail (and all further residual evaluation
6479  // to be skipped).
6481 
6482  // Repropagate the exception, so it can be caught at a higher level, typically
6483  // this is NonlinearSystem::computeResidual().
6485  }
6486  else
6487  mooseError("The following parallel-communicated exception was detected during " +
6488  Moose::stringify(_current_execute_on_flag) + " evaluation:\n" +
6490  "\nBecause this did not occur during residual evaluation, there"
6491  " is no way to handle this, so the solution is aborting.\n");
6492  }
6493 }
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close) override
Quit the current solve as soon as possible.
Definition: LinearSystem.C:326
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
ExecFlagType _current_execute_on_flag
Current execute_on flag.
processor_id_type rank() const
bool _has_exception
Whether or not an exception has occurred.
const Parallel::Communicator & _communicator
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
void maxloc(T &r, unsigned int &max_id) const
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::string _exception_message
The error message to go with an exception.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
Quit the current solve as soon as possible.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< TagID > _fe_vector_tags
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
virtual bool isTransient() const override
bool _fail_next_system_convergence_check
processor_id_type processor_id() const

◆ checkICRestartError()

void FEProblemBase::checkICRestartError ( const std::string &  ic_name,
const std::string &  name,
const VariableName &  var_name 
)
private

Checks if the variable of the initial condition is getting restarted and errors for specific cases.

Parameters
ic_nameThe name of the initial condition
var_nameThe name of the variable

Definition at line 3492 of file FEProblemBase.C.

Referenced by addFVInitialCondition(), and addInitialCondition().

3495 {
3497  {
3498  std::string restart_method = "";
3499  if (_app.isRestarting())
3500  restart_method =
3501  "a checkpoint restart, by IC object '" + ic_name + "' for variable '" + name + "'";
3502  else if (_app.getExReaderForRestart())
3503  {
3504  std::vector<std::string> restarted_vars = _app.getExReaderForRestart()->get_elem_var_names();
3505  const auto nodal_vars = _app.getExReaderForRestart()->get_nodal_var_names();
3506  const auto global_vars = _app.getExReaderForRestart()->get_global_var_names();
3507  restarted_vars.insert(restarted_vars.end(), nodal_vars.begin(), nodal_vars.end());
3508  restarted_vars.insert(restarted_vars.end(), global_vars.begin(), global_vars.end());
3509 
3510  if (std::find(restarted_vars.begin(), restarted_vars.end(), var_name) != restarted_vars.end())
3511  restart_method = "an Exodus restart, by IC object '" + ic_name + "' for variable '" + name +
3512  "' that is also being restarted";
3513  }
3514  if (!restart_method.empty())
3515  mooseError(
3516  "Initial conditions have been specified during ",
3517  restart_method,
3518  ".\nThis is only allowed if you specify 'allow_initial_conditions_with_restart' to "
3519  "the [Problem], as initial conditions can override restarted fields");
3520  }
3521 }
const std::vector< std::string > & get_global_var_names()
bool isRestarting() const
Whether or not this is a "restart" calculation.
Definition: MooseApp.C:1807
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const bool _allow_ics_during_restart
libMesh::ExodusII_IO * getExReaderForRestart() const
Get the Exodus reader to restart variables from an Exodus mesh file.
Definition: MooseApp.h:436
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const std::vector< std::string > & get_elem_var_names()
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const std::vector< std::string > & get_nodal_var_names()

◆ checkingUOAuxState()

bool FEProblemBase::checkingUOAuxState ( ) const
inline

Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e.

the check has been activated by users through Problem/check_uo_aux_state input parameter.

Definition at line 197 of file FEProblemBase.h.

Referenced by MemoryUsage::execute(), VectorMemoryUsage::execute(), PerfGraphData::finalize(), MemoryUsage::finalize(), and VectorMemoryUsage::finalize().

197 { return _checking_uo_aux_state; }
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.

◆ checkNonlocalCoupling()

void FEProblemBase::checkNonlocalCoupling ( )
Returns
Flag indicating nonlocal coupling exists or not.

Definition at line 1603 of file FEProblemBase.C.

Referenced by initialSetup().

1604 {
1605  TIME_SECTION("checkNonlocalCoupling", 5, "Checking Nonlocal Coupling");
1606 
1607  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1608  for (auto & nl : _nl)
1609  {
1610  const auto & all_kernels = nl->getKernelWarehouse();
1611  const auto & kernels = all_kernels.getObjects(tid);
1612  for (const auto & kernel : kernels)
1613  {
1614  std::shared_ptr<NonlocalKernel> nonlocal_kernel =
1616  if (nonlocal_kernel)
1617  {
1620  _nonlocal_kernels.addObject(kernel, tid);
1621  }
1622  }
1623  const MooseObjectWarehouse<IntegratedBCBase> & all_integrated_bcs =
1624  nl->getIntegratedBCWarehouse();
1625  const auto & integrated_bcs = all_integrated_bcs.getObjects(tid);
1626  for (const auto & integrated_bc : integrated_bcs)
1627  {
1628  std::shared_ptr<NonlocalIntegratedBC> nonlocal_integrated_bc =
1630  if (nonlocal_integrated_bc)
1631  {
1634  _nonlocal_integrated_bcs.addObject(integrated_bc, tid);
1635  }
1636  }
1637  }
1638 }
unsigned int n_threads()
NonlocalIntegratedBC is used for solving integral terms in integro-differential equations.
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
NonlocalKernel is used for solving integral terms in integro-differential equations.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ checkNonlocalCouplingRequirement()

bool FEProblemBase::checkNonlocalCouplingRequirement ( ) const
overridevirtual
Returns
whether there will be nonlocal coupling at any point in the simulation, e.g. whether there are any active or inactive nonlocal kernels or boundary conditions

Implements SubProblem.

Definition at line 9428 of file FEProblemBase.C.

Referenced by DisplacedProblem::checkNonlocalCouplingRequirement(), ComputeJacobianThread::compute(), ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

9429 {
9431 }
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag

◆ checkProblemIntegrity()

void FEProblemBase::checkProblemIntegrity ( )
virtual

Method called to perform a series of sanity checks before a simulation is run.

This method doesn't return when errors are found, instead it generally calls mooseError() directly.

If a material is specified for any block in the simulation, then all blocks must have a material specified.

unsigned int is necessary to print SubdomainIDs in the statement below

vector is necessary to get the subdomain names

Reimplemented in EigenProblem.

Definition at line 8254 of file FEProblemBase.C.

Referenced by EigenProblem::checkProblemIntegrity().

8255 {
8256  TIME_SECTION("checkProblemIntegrity", 5);
8257 
8258  // Subdomains specified by the "Problem/block" parameter
8259  const auto & subdomain_names = getParam<std::vector<SubdomainName>>("block");
8260  auto mesh_subdomains_vec = MooseMeshUtils::getSubdomainIDs(_mesh, subdomain_names);
8261  std::set<SubdomainID> mesh_subdomains(mesh_subdomains_vec.begin(), mesh_subdomains_vec.end());
8262 
8263  // Check kernel coverage of subdomains (blocks) in the mesh
8266  {
8267  std::set<SubdomainID> blocks;
8270  blocks = mesh_subdomains;
8272  {
8273  blocks = mesh_subdomains;
8274  for (const auto & subdomain_name : _kernel_coverage_blocks)
8275  {
8276  const auto id = _mesh.getSubdomainID(subdomain_name);
8277  if (id == Moose::INVALID_BLOCK_ID)
8278  paramError("kernel_coverage_block_list",
8279  "Subdomain \"",
8280  subdomain_name,
8281  "\" not found in mesh.");
8282  blocks.erase(id);
8283  }
8284  }
8286  for (const auto & subdomain_name : _kernel_coverage_blocks)
8287  {
8288  const auto id = _mesh.getSubdomainID(subdomain_name);
8289  if (id == Moose::INVALID_BLOCK_ID)
8290  paramError("kernel_coverage_block_list",
8291  "Subdomain \"",
8292  subdomain_name,
8293  "\" not found in mesh.");
8294  blocks.insert(id);
8295  }
8296  if (!blocks.empty())
8297  for (auto & nl : _nl)
8298  nl->checkKernelCoverage(blocks);
8299  }
8300 
8301  // Check materials
8302  {
8303 #ifdef LIBMESH_ENABLE_AMR
8304  if ((_adaptivity.isOn() || _num_grid_steps) &&
8307  {
8308  _console << "Using EXPERIMENTAL Stateful Material Property projection with Adaptivity!\n"
8309  << std::flush;
8310  }
8311 #endif
8312 
8313  std::set<SubdomainID> local_mesh_subs(mesh_subdomains);
8314 
8317  {
8322  bool check_material_coverage = false;
8323  std::set<SubdomainID> ids = _all_materials.getActiveBlocks();
8324  for (const auto & id : ids)
8325  {
8326  local_mesh_subs.erase(id);
8327  check_material_coverage = true;
8328  }
8329 
8330  // did the user limit the subdomains to be checked?
8332  {
8333  for (const auto & subdomain_name : _material_coverage_blocks)
8334  {
8335  const auto id = _mesh.getSubdomainID(subdomain_name);
8336  if (id == Moose::INVALID_BLOCK_ID)
8337  paramError("material_coverage_block_list",
8338  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8339  local_mesh_subs.erase(id);
8340  }
8341  }
8343  {
8344  std::set<SubdomainID> blocks(local_mesh_subs);
8345  for (const auto & subdomain_name : _material_coverage_blocks)
8346  {
8347  const auto id = _mesh.getSubdomainID(subdomain_name);
8348  if (id == Moose::INVALID_BLOCK_ID)
8349  paramError("material_coverage_block_list",
8350  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8351  blocks.erase(id);
8352  }
8353  for (const auto id : blocks)
8354  local_mesh_subs.erase(id);
8355  }
8356 
8357  // also exclude mortar spaces from the material check
8358  auto && mortar_subdomain_ids = _mortar_data.getMortarSubdomainIDs();
8359  for (auto subdomain_id : mortar_subdomain_ids)
8360  local_mesh_subs.erase(subdomain_id);
8361 
8362  // Check Material Coverage
8363  if (check_material_coverage && !local_mesh_subs.empty())
8364  {
8365  std::stringstream extra_subdomain_ids;
8367  std::copy(local_mesh_subs.begin(),
8368  local_mesh_subs.end(),
8369  std::ostream_iterator<unsigned int>(extra_subdomain_ids, " "));
8371  std::vector<SubdomainID> local_mesh_subs_vec(local_mesh_subs.begin(),
8372  local_mesh_subs.end());
8373 
8374  mooseError("The following blocks from your input mesh do not contain an active material: " +
8375  extra_subdomain_ids.str() +
8376  "(names: " + Moose::stringify(_mesh.getSubdomainNames(local_mesh_subs_vec)) +
8377  ")\nWhen ANY mesh block contains a Material object, "
8378  "all blocks must contain a Material object.\n");
8379  }
8380  }
8381 
8382  // Check material properties on blocks and boundaries
8385 
8386  // Check that material properties exist when requested by other properties on a given block
8387  const auto & materials = _all_materials.getActiveObjects();
8388  for (const auto & material : materials)
8389  material->checkStatefulSanity();
8390 
8391  // auto mats_to_check = _materials.getActiveBlockObjects();
8392  // const auto & discrete_materials = _discrete_materials.getActiveBlockObjects();
8393  // for (const auto & map_it : discrete_materials)
8394  // for (const auto & container_element : map_it.second)
8395  // mats_to_check[map_it.first].push_back(container_element);
8398  }
8399 
8400  checkUserObjects();
8401 
8402  // Verify that we don't have any Element type/Coordinate Type conflicts
8404 
8405  // Coordinate transforms are only intended for use with MultiApps at this time. If you are not
8406  // using multiapps but still require these, contact a moose developer
8408  !hasMultiApps())
8409  mooseError("Coordinate transformation parameters, listed below, are only to be used in the "
8410  "context of application to application field transfers at this time. The mesh is "
8411  "not modified by these parameters within an application.\n"
8412  "You should likely use a 'TransformGenerator' in the [Mesh] block to achieve the "
8413  "desired mesh modification.\n\n",
8415 
8416  // If using displacements, verify that the order of the displacement
8417  // variables matches the order of the elements in the displaced
8418  // mesh.
8420 
8421  // Check for postprocessor names with same name as a scalar variable
8423 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
MaterialPropertyStorage & _bnd_material_props
void checkDependMaterialsHelper(const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
Helper method for checking Material object dependency.
static InputParameters validParams()
Describes the parameters this object can take to setup transformations.
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
char ** blocks
std::vector< SubdomainName > _kernel_coverage_blocks
std::vector< SubdomainName > _material_coverage_blocks
unsigned int _num_grid_steps
Number of steps in a grid sequence.
std::vector< subdomain_id_type > getSubdomainIDs(const libMesh::MeshBase &mesh, const std::vector< SubdomainName > &subdomain_name)
Get the associated subdomainIDs for the subdomain names that are passed in.
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
const bool _skip_nl_system_check
const SubdomainID INVALID_BLOCK_ID
Definition: MooseTypes.C:20
virtual void checkBoundaryMatProps()
Checks boundary material properties integrity.
Definition: SubProblem.C:665
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const bool & _solve
Whether or not to actually solve the nonlinear system.
std::set< SubdomainID > getActiveBlocks(THREAD_ID tid=0) const
Return a set of active SubdomainsIDs.
bool hasScalingOrRotationTransformation() const
Returns true if the app has scaling and/or rotation transformation.
void checkUserObjects()
void checkDisplacementOrders()
Verify that SECOND order mesh uses SECOND order displacements.
MortarData _mortar_data
MooseMesh & _mesh
virtual void checkBlockMatProps()
Checks block material properties integrity.
Definition: SubProblem.C:623
Adaptivity _adaptivity
const std::set< SubdomainID > & getMortarSubdomainIDs() const
Returns the mortar covered subdomains.
Definition: MortarData.h:84
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1769
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1888
void checkDuplicatePostprocessorVariableNames()
const bool _material_dependency_check
Determines whether a check to verify material dependencies on every subdomain.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...
MaterialPropertyStorage & _neighbor_material_props
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool hasMultiApps() const
Returns whether or not the current simulation has any multiapps.
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...
MaterialPropertyStorage & _material_props
MaterialWarehouse _all_materials
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1731
void checkCoordinateSystems()
Verify that there are no element type/coordinate type conflicts.

◆ checkUserObjectJacobianRequirement()

void FEProblemBase::checkUserObjectJacobianRequirement ( THREAD_ID  tid)

Definition at line 1641 of file FEProblemBase.C.

Referenced by initialSetup().

1642 {
1643  std::set<const MooseVariableFEBase *> uo_jacobian_moose_vars;
1644  {
1645  std::vector<ShapeElementUserObject *> objs;
1646  theWarehouse()
1647  .query()
1649  .condition<AttribThread>(tid)
1650  .queryInto(objs);
1651 
1652  for (const auto & uo : objs)
1653  {
1654  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1655  const auto & mv_deps = uo->jacobianMooseVariables();
1656  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1657  }
1658  }
1659  {
1660  std::vector<ShapeSideUserObject *> objs;
1661  theWarehouse()
1662  .query()
1664  .condition<AttribThread>(tid)
1665  .queryInto(objs);
1666  for (const auto & uo : objs)
1667  {
1668  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1669  const auto & mv_deps = uo->jacobianMooseVariables();
1670  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1671  }
1672  }
1673 
1674  _uo_jacobian_moose_vars[tid].assign(uo_jacobian_moose_vars.begin(), uo_jacobian_moose_vars.end());
1675  std::sort(
1676  _uo_jacobian_moose_vars[tid].begin(), _uo_jacobian_moose_vars[tid].end(), sortMooseVariables);
1677 }
bool _calculate_jacobian_in_uo
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ checkUserObjects()

void FEProblemBase::checkUserObjects ( )
protected

Definition at line 8467 of file FEProblemBase.C.

Referenced by checkProblemIntegrity().

8468 {
8469  // Check user_objects block coverage
8470  std::set<SubdomainID> mesh_subdomains = _mesh.meshSubdomains();
8471  std::set<SubdomainID> user_objects_blocks;
8472 
8473  // gather names of all user_objects that were defined in the input file
8474  // and the blocks that they are defined on
8475  std::set<std::string> names;
8476 
8477  std::vector<UserObject *> objects;
8479 
8480  for (const auto & obj : objects)
8481  names.insert(obj->name());
8482 
8483  // See if all referenced blocks are covered
8484  std::set<SubdomainID> difference;
8485  std::set_difference(user_objects_blocks.begin(),
8486  user_objects_blocks.end(),
8487  mesh_subdomains.begin(),
8488  mesh_subdomains.end(),
8489  std::inserter(difference, difference.end()));
8490 
8491  if (!difference.empty())
8492  {
8493  std::ostringstream oss;
8494  oss << "One or more UserObjects is referencing a nonexistent block:\n";
8495  for (const auto & id : difference)
8496  oss << id << "\n";
8497  mooseError(oss.str());
8498  }
8499 }
TheWarehouse & theWarehouse() const
MooseMesh & _mesh
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3171

◆ clearActiveElementalMooseVariables()

void FEProblemBase::clearActiveElementalMooseVariables ( const THREAD_ID  tid)
overridevirtual

Clear the active elemental MooseVariableFEBase.

If there are no active variables then they will all be reinited. Call this after finishing the computation that was using a restricted set of MooseVariableFEBases

Parameters
tidThe thread id

Reimplemented from SubProblem.

Definition at line 5836 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::post(), ComputeMarkerThread::post(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

5837 {
5839 
5840  if (_displaced_problem)
5841  _displaced_problem->clearActiveElementalMooseVariables(tid);
5842 }
virtual void clearActiveElementalMooseVariables(const THREAD_ID tid)
Clear the active elemental MooseVariableFieldBase.
Definition: SubProblem.C:466
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5845 of file FEProblemBase.C.

5846 {
5848 
5849  if (_displaced_problem)
5850  _displaced_problem->clearActiveFEVariableCoupleableMatrixTags(tid);
5851 }
virtual void clearActiveFEVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:384
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableVectorTags()

void FEProblemBase::clearActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5854 of file FEProblemBase.C.

5855 {
5857 
5858  if (_displaced_problem)
5859  _displaced_problem->clearActiveFEVariableCoupleableVectorTags(tid);
5860 }
virtual void clearActiveFEVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:378
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveMaterialProperties()

void FEProblemBase::clearActiveMaterialProperties ( const THREAD_ID  tid)

Clear the active material properties.

Should be called at the end of every computing thread

Parameters
tidThe thread id

Definition at line 5902 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

5903 {
5905 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ clearActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5863 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

5864 {
5866 
5867  if (_displaced_problem)
5868  _displaced_problem->clearActiveScalarVariableCoupleableMatrixTags(tid);
5869 }
virtual void clearActiveScalarVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:425
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::clearActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5872 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

5873 {
5875 
5876  if (_displaced_problem)
5877  _displaced_problem->clearActiveScalarVariableCoupleableVectorTags(tid);
5878 }
virtual void clearActiveScalarVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:419
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearAllDofIndices()

void SubProblem::clearAllDofIndices ( )
inherited

Clear dof indices from variables in nl and aux systems.

Definition at line 1177 of file SubProblem.C.

Referenced by solve().

1178 {
1179  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1182 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
void clearAllDofIndices()
Clear all dof indices from moose variables.
Definition: SystemBase.C:1605

◆ clearCurrentJacobianMatrixTags()

void FEProblemBase::clearCurrentJacobianMatrixTags ( )
inline

Clear the current Jacobian matrix tag data structure ...

if someone creates it

Definition at line 2465 of file FEProblemBase.h.

Referenced by resetState().

2465 {}

◆ clearCurrentResidualVectorTags()

void FEProblemBase::clearCurrentResidualVectorTags ( )
inline

Clear the current residual vector tag data structure.

Definition at line 3300 of file FEProblemBase.h.

Referenced by CrankNicolson::init(), and resetState().

3301 {
3303 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ clearDiracInfo()

void FEProblemBase::clearDiracInfo ( )
overridevirtual

Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in.

Implements SubProblem.

Definition at line 2462 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2463 {
2465 
2466  if (_displaced_problem)
2467  _displaced_problem->clearDiracInfo();
2468 }
void clearPoints()
Remove all of the current points and elements.
std::shared_ptr< DisplacedProblem > _displaced_problem
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ computeBounds()

void FEProblemBase::computeBounds ( libMesh::NonlinearImplicitSystem sys,
NumericVector< libMesh::Number > &  lower,
NumericVector< libMesh::Number > &  upper 
)
virtual

Definition at line 7440 of file FEProblemBase.C.

Referenced by Moose::compute_bounds().

7443 {
7444  try
7445  {
7446  try
7447  {
7448  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7449  "I expect these system numbers to be the same");
7450 
7451  if (!_current_nl_sys->hasVector("lower_bound") || !_current_nl_sys->hasVector("upper_bound"))
7452  return;
7453 
7454  TIME_SECTION("computeBounds", 1, "Computing Bounds");
7455 
7456  NumericVector<Number> & _lower = _current_nl_sys->getVector("lower_bound");
7457  NumericVector<Number> & _upper = _current_nl_sys->getVector("upper_bound");
7458  _lower.swap(lower);
7459  _upper.swap(upper);
7460  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
7462 
7463  _aux->residualSetup();
7465  _lower.swap(lower);
7466  _upper.swap(upper);
7467  }
7468  catch (...)
7469  {
7470  handleException("computeBounds");
7471  }
7472  }
7473  catch (MooseException & e)
7474  {
7475  mooseError("Irrecoverable exception: " + std::string(e.what()));
7476  }
7477  catch (...)
7478  {
7479  mooseError("Unexpected exception type");
7480  }
7481 }
virtual const char * what() const
Get out the error message.
unsigned int n_threads()
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916
unsigned int number() const
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
Provides a way for users to bail out of the current solve.
virtual void swap(NumericVector< T > &v)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925
MaterialWarehouse _all_materials
void computeSystems(const ExecFlagType &type)
Do generic system computations.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeDamping()

Real FEProblemBase::computeDamping ( const NumericVector< libMesh::Number > &  soln,
const NumericVector< libMesh::Number > &  update 
)
virtual

Definition at line 7719 of file FEProblemBase.C.

Referenced by computePostCheck().

7721 {
7722  // Default to no damping
7723  Real damping = 1.0;
7724 
7725  if (_has_dampers)
7726  {
7727  TIME_SECTION("computeDamping", 1, "Computing Damping");
7728 
7729  // Save pointer to the current solution
7730  const NumericVector<Number> * _saved_current_solution = _current_nl_sys->currentSolution();
7731 
7733  // For now, do not re-compute auxiliary variables. Doing so allows a wild solution increment
7734  // to get to the material models, which may not be able to cope with drastically different
7735  // values. Once more complete dependency checking is in place, auxiliary variables (and
7736  // material properties) will be computed as needed by dampers.
7737  // _aux.compute();
7738  damping = _current_nl_sys->computeDamping(soln, update);
7739 
7740  // restore saved solution
7741  _current_nl_sys->setSolution(*_saved_current_solution);
7742  }
7743 
7744  return damping;
7745 }
Real computeDamping(const NumericVector< Number > &solution, const NumericVector< Number > &update)
Compute damping.
bool _has_dampers
Whether or not this system has any Dampers associated with it.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ computeIndicators()

void FEProblemBase::computeIndicators ( )
virtual

Reimplemented in DumpObjectsProblem.

Definition at line 4484 of file FEProblemBase.C.

Referenced by computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and initialAdaptMesh().

4485 {
4486  // Initialize indicator aux variable fields
4488  {
4489  TIME_SECTION("computeIndicators", 1, "Computing Indicators");
4490 
4491  // Internal side indicators may lead to creating a much larger sparsity pattern than dictated by
4492  // the actual finite element scheme (e.g. CFEM)
4493  const auto old_do_derivatives = ADReal::do_derivatives;
4494  ADReal::do_derivatives = false;
4495 
4496  std::vector<std::string> fields;
4497 
4498  // Indicator Fields
4499  const auto & indicators = _indicators.getActiveObjects();
4500  for (const auto & indicator : indicators)
4501  fields.push_back(indicator->name());
4502 
4503  // InternalSideIndicator Fields
4504  const auto & internal_indicators = _internal_side_indicators.getActiveObjects();
4505  for (const auto & internal_indicator : internal_indicators)
4506  fields.push_back(internal_indicator->name());
4507 
4508  _aux->zeroVariables(fields);
4509 
4510  // compute Indicators
4511  ComputeIndicatorThread cit(*this);
4513  _aux->solution().close();
4514  _aux->update();
4515 
4516  ComputeIndicatorThread finalize_cit(*this, true);
4518  _aux->solution().close();
4519  _aux->update();
4520 
4521  ADReal::do_derivatives = old_do_derivatives;
4522  }
4523 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseObjectWarehouse< Indicator > _indicators
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const

◆ computeIndicatorsAndMarkers()

void FEProblemBase::computeIndicatorsAndMarkers ( )
virtual

Definition at line 4477 of file FEProblemBase.C.

4478 {
4480  computeMarkers();
4481 }
virtual void computeMarkers()
virtual void computeIndicators()

◆ computeJacobian()

void FEProblemBase::computeJacobian ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const unsigned int  nl_sys_num 
)
virtual

Form a Jacobian matrix with the default tag (system).

Definition at line 7275 of file FEProblemBase.C.

Referenced by computeJacobianSys().

7278 {
7279  setCurrentNonlinearSystem(nl_sys_num);
7280 
7281  _fe_matrix_tags.clear();
7282 
7283  auto & tags = getMatrixTags();
7284  for (auto & tag : tags)
7285  _fe_matrix_tags.insert(tag.second);
7286 
7287  computeJacobianInternal(soln, jacobian, _fe_matrix_tags);
7288 }
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
virtual void computeJacobianInternal(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
Form a Jacobian matrix for multiple tags.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
std::set< TagID > _fe_matrix_tags

◆ computeJacobianBlock()

void FEProblemBase::computeJacobianBlock ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
libMesh::System precond_system,
unsigned int  ivar,
unsigned int  jvar 
)
virtual

Really not a good idea to use this.

It computes just one block of the Jacobian into a smaller matrix. Calling this in a loop is EXTREMELY ineffecient! Try to use computeJacobianBlocks() instead!

Parameters
jacobianThe matrix you want to fill
precond_systemThe libMesh::system of the preconditioning system
ivarthe block-row of the Jacobian
jvarthe block-column of the Jacobian

Definition at line 7428 of file FEProblemBase.C.

7432 {
7433  JacobianBlock jac_block(precond_system, jacobian, ivar, jvar);
7434  std::vector<JacobianBlock *> blocks = {&jac_block};
7435  mooseAssert(_current_nl_sys, "This should be non-null");
7437 }
Helper class for holding the preconditioning blocks to fill.
char ** blocks
virtual void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149

◆ computeJacobianBlocks()

void FEProblemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const unsigned int  nl_sys_num 
)
virtual

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Reimplemented in EigenProblem.

Definition at line 7408 of file FEProblemBase.C.

Referenced by computeJacobianBlock(), and PhysicsBasedPreconditioner::setup().

7410 {
7411  TIME_SECTION("computeTransientImplicitJacobian", 2);
7412  setCurrentNonlinearSystem(nl_sys_num);
7413 
7414  if (_displaced_problem)
7415  {
7417  _displaced_problem->updateMesh();
7418  }
7419 
7421 
7425 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
std::shared_ptr< DisplacedProblem > _displaced_problem
void computeSystems(const ExecFlagType &type)
Do generic system computations.

◆ computeJacobianInternal()

void FEProblemBase::computeJacobianInternal ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const std::set< TagID > &  tags 
)
virtual

Form a Jacobian matrix for multiple tags.

It should not be called directly by users.

Definition at line 7291 of file FEProblemBase.C.

Referenced by computeJacobian().

7294 {
7295  TIME_SECTION("computeJacobianInternal", 1);
7296 
7298 
7300 
7301  computeJacobianTags(tags);
7302 
7304 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianSys()

void FEProblemBase::computeJacobianSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
virtual

Form a Jacobian matrix.

It is called by Libmesh.

Definition at line 7253 of file FEProblemBase.C.

Referenced by Moose::compute_jacobian(), and NonlinearSystem::computeScalingJacobian().

7256 {
7257  computeJacobian(soln, jacobian, sys.number());
7258 }
unsigned int number() const
virtual void computeJacobian(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
Form a Jacobian matrix with the default tag (system).

◆ computeJacobianTag()

void FEProblemBase::computeJacobianTag ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
TagID  tag 
)
virtual

Form a Jacobian matrix for a given tag.

Definition at line 7261 of file FEProblemBase.C.

Referenced by ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

7264 {
7266 
7267  _current_nl_sys->associateMatrixToTag(jacobian, tag);
7268 
7269  computeJacobianTags({tag});
7270 
7272 }
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianTags()

void FEProblemBase::computeJacobianTags ( const std::set< TagID > &  tags)
virtual

Form multiple matrices, and each is associated with a tag.

Definition at line 7307 of file FEProblemBase.C.

Referenced by EigenProblem::computeJacobianAB(), computeJacobianInternal(), EigenProblem::computeJacobianTag(), computeJacobianTag(), and EigenProblem::computeMatricesTags().

7308 {
7309  try
7310  {
7311  try
7312  {
7313  if (!_has_jacobian || !_const_jacobian)
7314  {
7315  TIME_SECTION("computeJacobianTags", 5, "Computing Jacobian");
7316 
7317  for (auto tag : tags)
7318  if (_current_nl_sys->hasMatrix(tag))
7319  {
7320  auto & matrix = _current_nl_sys->getMatrix(tag);
7323  else
7324  matrix.zero();
7326  // PETSc algorithms require diagonal allocations regardless of whether there is
7327  // non-zero diagonal dependence. With global AD indexing we only add non-zero
7328  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7329  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7330  matrix.add(index, index, 0);
7331  }
7332 
7333  _aux->zeroVariablesForJacobian();
7334 
7335  unsigned int n_threads = libMesh::n_threads();
7336 
7337  // Random interface objects
7338  for (const auto & it : _random_data_objects)
7339  it.second->updateSeeds(EXEC_NONLINEAR);
7340 
7343  if (_displaced_problem)
7344  _displaced_problem->setCurrentlyComputingJacobian(true);
7345 
7348 
7349  for (unsigned int tid = 0; tid < n_threads; tid++)
7350  reinitScalars(tid);
7351 
7353 
7354  _aux->jacobianSetup();
7355 
7356  if (_displaced_problem)
7357  {
7359  _displaced_problem->updateMesh();
7360  }
7361 
7362  for (unsigned int tid = 0; tid < n_threads; tid++)
7363  {
7366  }
7367 
7369 
7371 
7373 
7375 
7377 
7379 
7380  // For explicit Euler calculations for example we often compute the Jacobian one time and
7381  // then re-use it over and over. If we're performing automatic scaling, we don't want to
7382  // use that kernel, diagonal-block only Jacobian for our actual matrix when performing
7383  // solves!
7385  _has_jacobian = true;
7386  }
7387  }
7388  catch (...)
7389  {
7390  handleException("computeJacobianTags");
7391  }
7392  }
7393  catch (const MooseException &)
7394  {
7395  // The buck stops here, we have already handled the exception by
7396  // calling the system's stopSolve() method, it is now up to PETSc to return a
7397  // "diverged" reason during the next solve.
7398  }
7399  catch (...)
7400  {
7401  mooseError("Unexpected exception type");
7402  }
7403 
7404  resetState();
7405 }
virtual void restore_original_nonzero_pattern()
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
bool _has_jacobian
Indicates if the Jacobian was computed.
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
bool computingScalingJacobian() const
Whether we are computing an initial Jacobian for automatic variable scaling.
Definition: SystemBase.C:1544
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool has_static_condensation() const
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void jacobianSetup(THREAD_ID tid=0) const
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _const_jacobian
true if the Jacobian is constant
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeLinearSystemSys()

void FEProblemBase::computeLinearSystemSys ( libMesh::LinearImplicitSystem sys,
libMesh::SparseMatrix< libMesh::Number > &  system_matrix,
NumericVector< libMesh::Number > &  rhs,
const bool  compute_gradients = true 
)
virtual

Assemble both the right hand side and the system matrix of a given linear system.

Parameters
sysThe linear system which should be assembled
system_matrixThe sparse matrix which should hold the system matrix
rhsThe vector which should hold the right hand side
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7484 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), and computeResidualL2Norm().

7488 {
7489  TIME_SECTION("computeLinearSystemSys", 5);
7490 
7492 
7495 
7496  // We are using the residual tag system for right hand sides so we fetch everything
7497  const auto & vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7498 
7499  // We filter out tags which do not have associated vectors in the current
7500  // system. This is essential to be able to use system-dependent vector tags.
7503 
7507  compute_gradients);
7508 
7513  // We reset the tags to the default containers for further operations
7518 }
TagID rightHandSideVectorTag() const
Definition: LinearSystem.h:114
virtual TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
Definition: LinearSystem.h:115
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
SparseMatrix< Number > & getSystemMatrix()
Fetching the system matrix from the libmesh system.
Definition: LinearSystem.h:126
std::set< TagID > _linear_matrix_tags
Temporary storage for filtered matrix tags for linear systems.
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
NumericVector< Number > & getRightHandSideVector()
Fetching the right hand side vector from the libmesh system.
Definition: LinearSystem.h:119
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
static void selectMatrixTagsFromSystem(const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
Select the matrix tags which belong to a specific system.
Definition: SubProblem.C:300
void computeLinearSystemTags(const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Assemble the current linear system given a set of vector and matrix tags.
unsigned int linearSysNum(const LinearSystemName &linear_sys_name) const override
const std::string & name() const
std::set< TagID > _linear_vector_tags
Temporary storage for filtered vector tags for linear systems.

◆ computeLinearSystemTags()

void FEProblemBase::computeLinearSystemTags ( const NumericVector< libMesh::Number > &  soln,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags,
const bool  compute_gradients = true 
)

Assemble the current linear system given a set of vector and matrix tags.

Parameters
solnThe solution which should be used for the system assembly
vector_tagsThe vector tags for the right hand side
matrix_tagsThe matrix tags for the matrix
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7521 of file FEProblemBase.C.

Referenced by computeLinearSystemSys().

7525 {
7526  TIME_SECTION("computeLinearSystemTags", 5, "Computing Linear System");
7527 
7529 
7530  for (auto tag : matrix_tags)
7531  {
7532  auto & matrix = _current_linear_sys->getMatrix(tag);
7533  matrix.zero();
7534  }
7535 
7536  unsigned int n_threads = libMesh::n_threads();
7537 
7539 
7540  // Random interface objects
7541  for (const auto & it : _random_data_objects)
7542  it.second->updateSeeds(EXEC_NONLINEAR);
7543 
7546 
7548 
7549  _aux->jacobianSetup();
7550 
7551  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7552  {
7554  }
7555 
7556  try
7557  {
7559  }
7560  catch (MooseException & e)
7561  {
7562  _console << "\nA MooseException was raised during Auxiliary variable computation.\n"
7563  << "The next solve will fail, the timestep will be reduced, and we will try again.\n"
7564  << std::endl;
7565 
7566  // We know the next solve is going to fail, so there's no point in
7567  // computing anything else after this. Plus, using incompletely
7568  // computed AuxVariables in subsequent calculations could lead to
7569  // other errors or unhandled exceptions being thrown.
7570  return;
7571  }
7572 
7575 
7577 
7578  _current_linear_sys->computeLinearSystemTags(vector_tags, matrix_tags, compute_gradients);
7579 
7580  // Reset execution flag as after this point we are no longer on LINEAR
7582 
7583  // These are the relevant parts of resetState()
7586 }
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void zero()=0
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
MooseObjectWarehouse< Function > _functions
functions
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void computeLinearSystemTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Compute the right hand side and the system matrix of the system for given tags.
Definition: LinearSystem.C:141
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMarkers()

void FEProblemBase::computeMarkers ( )
virtual

Reimplemented in DumpObjectsProblem.

Definition at line 4526 of file FEProblemBase.C.

Referenced by adaptMesh(), computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and initialAdaptMesh().

4527 {
4528  if (_markers.hasActiveObjects())
4529  {
4530  TIME_SECTION("computeMarkers", 1, "Computing Markers");
4531 
4532  std::vector<std::string> fields;
4533 
4534  // Marker Fields
4535  const auto & markers = _markers.getActiveObjects();
4536  for (const auto & marker : markers)
4537  fields.push_back(marker->name());
4538 
4539  _aux->zeroVariables(fields);
4540 
4542 
4543  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
4544  {
4545  const auto & markers = _markers.getActiveObjects(tid);
4546  for (const auto & marker : markers)
4547  marker->markerSetup();
4548  }
4549 
4550  ComputeMarkerThread cmt(*this);
4552 
4553  _aux->solution().close();
4554  _aux->update();
4555  }
4556 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
unsigned int n_threads()
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void updateErrorVectors()
Update the ErrorVectors that have been requested through calls to getErrorVector().
Definition: Adaptivity.C:372
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
Adaptivity _adaptivity
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMultiAppsDT()

Real FEProblemBase::computeMultiAppsDT ( ExecFlagType  type)

Find the smallest timestep over all MultiApps.

Definition at line 5573 of file FEProblemBase.C.

Referenced by TransientBase::constrainDTFromMultiApp().

5574 {
5575  const auto & multi_apps = _transient_multi_apps[type].getActiveObjects();
5576 
5577  Real smallest_dt = std::numeric_limits<Real>::max();
5578 
5579  for (const auto & multi_app : multi_apps)
5580  smallest_dt = std::min(smallest_dt, multi_app->computeDT());
5581 
5582  return smallest_dt;
5583 }
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
auto max(const L &left, const R &right)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto min(const L &left, const R &right)

◆ computeNearNullSpace()

void FEProblemBase::computeNearNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtual

Definition at line 7589 of file FEProblemBase.C.

Referenced by Moose::compute_nearnullspace().

7591 {
7592  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7593  "I expect these system numbers to be the same");
7594 
7595  sp.clear();
7596  for (unsigned int i = 0; i < subspaceDim("NearNullSpace"); ++i)
7597  {
7598  std::stringstream postfix;
7599  postfix << "_" << i;
7600  std::string modename = "NearNullSpace" + postfix.str();
7601  sp.push_back(&_current_nl_sys->getVector(modename));
7602  }
7603 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computeNullSpace()

void FEProblemBase::computeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtual

Definition at line 7606 of file FEProblemBase.C.

Referenced by Moose::compute_nullspace().

7608 {
7609  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7610  "I expect these system numbers to be the same");
7611  sp.clear();
7612  for (unsigned int i = 0; i < subspaceDim("NullSpace"); ++i)
7613  {
7614  std::stringstream postfix;
7615  postfix << "_" << i;
7616  sp.push_back(&_current_nl_sys->getVector("NullSpace" + postfix.str()));
7617  }
7618 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computePostCheck()

void FEProblemBase::computePostCheck ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  old_soln,
NumericVector< libMesh::Number > &  search_direction,
NumericVector< libMesh::Number > &  new_soln,
bool &  changed_search_direction,
bool &  changed_new_soln 
)
virtual

Definition at line 7636 of file FEProblemBase.C.

Referenced by Moose::compute_postcheck().

7642 {
7643  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7644  "I expect these system numbers to be the same");
7645 
7646  // This function replaces the old PetscSupport::dampedCheck() function.
7647  //
7648  // 1.) Recreate code in PetscSupport::dampedCheck() for constructing
7649  // ghosted "soln" and "update" vectors.
7650  // 2.) Call FEProblemBase::computeDamping() with these ghost vectors.
7651  // 3.) Recreate the code in PetscSupport::dampedCheck() to actually update
7652  // the solution vector based on the damping, and set the "changed" flags
7653  // appropriately.
7654 
7655  TIME_SECTION("computePostCheck", 2, "Computing Post Check");
7656 
7658 
7659  // MOOSE's FEProblemBase doesn't update the solution during the
7660  // postcheck, but FEProblemBase-derived classes might.
7662  {
7663  // We need ghosted versions of new_soln and search_direction (the
7664  // ones we get from libmesh/PETSc are PARALLEL vectors. To make
7665  // our lives simpler, we use the same ghosting pattern as the
7666  // system's current_local_solution to create new ghosted vectors.
7667 
7668  // Construct zeroed-out clones with the same ghosted dofs as the
7669  // System's current_local_solution.
7670  std::unique_ptr<NumericVector<Number>> ghosted_solution =
7671  sys.current_local_solution->zero_clone(),
7672  ghosted_search_direction =
7673  sys.current_local_solution->zero_clone();
7674 
7675  // Copy values from input vectors into clones with ghosted values.
7676  *ghosted_solution = new_soln;
7677  *ghosted_search_direction = search_direction;
7678 
7679  if (_has_dampers)
7680  {
7681  // Compute the damping coefficient using the ghosted vectors
7682  Real damping = computeDamping(*ghosted_solution, *ghosted_search_direction);
7683 
7684  // If some non-trivial damping was computed, update the new_soln
7685  // vector accordingly.
7686  if (damping < 1.0)
7687  {
7688  new_soln = old_soln;
7689  new_soln.add(-damping, search_direction);
7690  changed_new_soln = true;
7691  }
7692  }
7693 
7694  if (shouldUpdateSolution())
7695  {
7696  // Update the ghosted copy of the new solution, if necessary.
7697  if (changed_new_soln)
7698  *ghosted_solution = new_soln;
7699 
7700  bool updated_solution = updateSolution(new_soln, *ghosted_solution);
7701  if (updated_solution)
7702  changed_new_soln = true;
7703  }
7704  }
7705 
7707  {
7709  _aux->copyCurrentIntoPreviousNL();
7710  }
7711 
7712  // MOOSE doesn't change the search_direction
7713  changed_search_direction = false;
7714 
7716 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void setPreviousNewtonSolution(const NumericVector< Number > &soln)
bool _has_dampers
Whether or not this system has any Dampers associated with it.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual bool shouldUpdateSolution()
Check to see whether the problem should update the solution.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual bool updateSolution(NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
Update the solution.
virtual void add(const numeric_index_type i, const T value)=0
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual Real computeDamping(const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)

◆ computeResidual() [1/2]

void FEProblemBase::computeResidual ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)

This function is called by Libmesh to form a residual.

This is deprecated. We should remove this as soon as RattleSnake is fixed.

Referenced by computeResidualL2Norm(), computeResidualSys(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

◆ computeResidual() [2/2]

virtual void FEProblemBase::computeResidual ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const unsigned int  nl_sys_num 
)
virtual

Form a residual with default tags (nontime, time, residual).

◆ computeResidualAndJacobian()

void FEProblemBase::computeResidualAndJacobian ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)

Form a residual and Jacobian with default tags.

Definition at line 6898 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobian::residual_and_jacobian().

6901 {
6902  try
6903  {
6904  try
6905  {
6906  // vector tags
6908  const auto & residual_vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
6909 
6910  mooseAssert(_fe_vector_tags.empty(),
6911  "This should be empty indicating a clean starting state");
6912  // We filter out tags which do not have associated vectors in the current nonlinear
6913  // system. This is essential to be able to use system-dependent residual tags.
6915 
6917 
6918  // matrix tags
6919  {
6920  _fe_matrix_tags.clear();
6921 
6922  auto & tags = getMatrixTags();
6923  for (auto & tag : tags)
6924  _fe_matrix_tags.insert(tag.second);
6925  }
6926 
6928 
6931 
6932  for (const auto tag : _fe_matrix_tags)
6933  if (_current_nl_sys->hasMatrix(tag))
6934  {
6935  auto & matrix = _current_nl_sys->getMatrix(tag);
6936  matrix.zero();
6938  // PETSc algorithms require diagonal allocations regardless of whether there is non-zero
6939  // diagonal dependence. With global AD indexing we only add non-zero
6940  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
6941  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
6942  matrix.add(index, index, 0);
6943  }
6944 
6945  _aux->zeroVariablesForResidual();
6946 
6947  unsigned int n_threads = libMesh::n_threads();
6948 
6950 
6951  // Random interface objects
6952  for (const auto & it : _random_data_objects)
6953  it.second->updateSeeds(EXEC_LINEAR);
6954 
6958  if (_displaced_problem)
6959  {
6960  _displaced_problem->setCurrentlyComputingResidual(true);
6961  _displaced_problem->setCurrentlyComputingJacobian(true);
6962  _displaced_problem->setCurrentlyComputingResidualAndJacobian(true);
6963  }
6964 
6966 
6968 
6969  for (unsigned int tid = 0; tid < n_threads; tid++)
6970  reinitScalars(tid);
6971 
6973 
6974  _aux->residualSetup();
6975 
6976  if (_displaced_problem)
6977  {
6979  _displaced_problem->updateMesh();
6981  updateMortarMesh();
6982  }
6983 
6984  for (THREAD_ID tid = 0; tid < n_threads; tid++)
6985  {
6988  }
6989 
6991 
6993 
6995 
6997 
7000 
7002 
7005  }
7006  catch (...)
7007  {
7008  handleException("computeResidualAndJacobian");
7009  }
7010  }
7011  catch (const MooseException &)
7012  {
7013  // The buck stops here, we have already handled the exception by
7014  // calling the system's stopSolve() method, it is now up to PETSc to return a
7015  // "diverged" reason during the next solve.
7016  }
7017  catch (...)
7018  {
7019  mooseError("Unexpected exception type");
7020  }
7021 
7022  resetState();
7023  _fe_vector_tags.clear();
7024  _fe_matrix_tags.clear();
7025 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
bool has_static_condensation() const
void setCurrentlyComputingResidualAndJacobian(bool currently_computing_residual_and_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:1493
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
void setCurrentlyComputingJacobian(const bool currently_computing_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:689
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void computeResidualAndJacobianTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Form possibly multiple tag-associated vectors and matrices.
void handleException(const std::string &calling_method)
Handle exceptions.
virtual void zero()=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
TagID residualVectorTag() const override
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
std::set< TagID > _fe_matrix_tags
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< TagID > _fe_vector_tags
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeResidualInternal()

void FEProblemBase::computeResidualInternal ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const std::set< TagID > &  tags 
)
virtual

Form a residual vector for a set of tags.

It should not be called directly by users.

Definition at line 7057 of file FEProblemBase.C.

7060 {
7061  parallel_object_only();
7062 
7063  TIME_SECTION("computeResidualInternal", 1);
7064 
7065  try
7066  {
7068 
7070 
7071  computeResidualTags(tags);
7072 
7074  }
7075  catch (MooseException & e)
7076  {
7077  // If a MooseException propagates all the way to here, it means
7078  // that it was thrown from a MOOSE system where we do not
7079  // (currently) properly support the throwing of exceptions, and
7080  // therefore we have no choice but to error out. It may be
7081  // *possible* to handle exceptions from other systems, but in the
7082  // meantime, we don't want to silently swallow any unhandled
7083  // exceptions here.
7084  mooseError("An unhandled MooseException was raised during residual computation. Please "
7085  "contact the MOOSE team for assistance.");
7086  }
7087 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeResidualL2Norm() [1/3]

Real FEProblemBase::computeResidualL2Norm ( NonlinearSystemBase sys)

Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 6807 of file FEProblemBase.C.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), Residual::getValue(), DefaultMultiAppFixedPointConvergence::initialize(), and DefaultMultiAppFixedPointConvergence::preExecute().

6808 {
6809  _current_nl_sys = &sys;
6810  computeResidual(*sys.currentSolution(), sys.RHS(), sys.number());
6811  return sys.RHS().l2_norm();
6812 }
virtual Real l2_norm() const=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.
virtual NumericVector< Number > & RHS()=0

◆ computeResidualL2Norm() [2/3]

Real FEProblemBase::computeResidualL2Norm ( LinearSystem sys)

Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 6815 of file FEProblemBase.C.

6816 {
6817  _current_linear_sys = &sys;
6818 
6819  // We assemble the current system to check the current residual
6822  *sys.linearImplicitSystem().rhs,
6823  /*compute fresh gradients*/ true);
6824 
6825  // Unfortunate, but we have to allocate a new vector for the residual
6826  auto residual = sys.linearImplicitSystem().rhs->clone();
6827  residual->scale(-1.0);
6828  residual->add_vector(*sys.currentSolution(), *sys.linearImplicitSystem().matrix);
6829  return residual->l2_norm();
6830 }
libMesh::LinearImplicitSystem & linearImplicitSystem()
Return a reference to the stored linear implicit system.
Definition: LinearSystem.h:86
NumericVector< Number > * rhs
virtual std::unique_ptr< NumericVector< T > > clone() const=0
virtual void computeLinearSystemSys(libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
Assemble both the right hand side and the system matrix of a given linear system. ...
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SparseMatrix< Number > * matrix

◆ computeResidualL2Norm() [3/3]

Real FEProblemBase::computeResidualL2Norm ( )
virtual

Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm.

Returns
The L2 norm of the residual

Reimplemented in EigenProblem.

Definition at line 6833 of file FEProblemBase.C.

6834 {
6835  TIME_SECTION("computeResidualL2Norm", 2, "Computing L2 Norm of Residual");
6836 
6837  // We use sum the squared norms of the individual systems and then take the square root of it
6838  Real l2_norm = 0.0;
6839  for (auto sys : _nl)
6840  {
6841  const auto norm = computeResidualL2Norm(*sys);
6842  l2_norm += norm * norm;
6843  }
6844 
6845  for (auto sys : _linear_systems)
6846  {
6847  const auto norm = computeResidualL2Norm(*sys);
6848  l2_norm += norm * norm;
6849  }
6850 
6851  return std::sqrt(l2_norm);
6852 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
auto norm(const T &a) -> decltype(std::abs(a))
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh
virtual Real computeResidualL2Norm()
Computes the residual using whatever is sitting in the current solution vector then returns the L2 no...
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ computeResidualSys()

void FEProblemBase::computeResidualSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
virtual

This function is called by Libmesh to form a residual.

Definition at line 6855 of file FEProblemBase.C.

Referenced by NonlinearSystem::computeScalingResidual(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and NonlinearSystem::solve().

6858 {
6859  parallel_object_only();
6860 
6861  TIME_SECTION("computeResidualSys", 5);
6862 
6863  computeResidual(soln, residual, sys.number());
6864 }
unsigned int number() const
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.

◆ computeResidualTag()

void FEProblemBase::computeResidualTag ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtual

Form a residual vector for a given tag.

Definition at line 7028 of file FEProblemBase.C.

7031 {
7032  try
7033  {
7035 
7036  _current_nl_sys->associateVectorToTag(residual, tag);
7037 
7038  computeResidualTags({tag});
7039 
7041  }
7042  catch (MooseException & e)
7043  {
7044  // If a MooseException propagates all the way to here, it means
7045  // that it was thrown from a MOOSE system where we do not
7046  // (currently) properly support the throwing of exceptions, and
7047  // therefore we have no choice but to error out. It may be
7048  // *possible* to handle exceptions from other systems, but in the
7049  // meantime, we don't want to silently swallow any unhandled
7050  // exceptions here.
7051  mooseError("An unhandled MooseException was raised during residual computation. Please "
7052  "contact the MOOSE team for assistance.");
7053  }
7054 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeResidualTags()

void FEProblemBase::computeResidualTags ( const std::set< TagID > &  tags)
virtual

Form multiple residual vectors and each is associated with one tag.

Definition at line 7173 of file FEProblemBase.C.

Referenced by EigenProblem::computeResidualAB(), computeResidualInternal(), EigenProblem::computeResidualTag(), computeResidualTag(), and computeResidualType().

7174 {
7175  parallel_object_only();
7176 
7177  try
7178  {
7179  try
7180  {
7181  TIME_SECTION("computeResidualTags", 5, "Computing Residual");
7182 
7183  ADReal::do_derivatives = false;
7184 
7186 
7187  _aux->zeroVariablesForResidual();
7188 
7189  unsigned int n_threads = libMesh::n_threads();
7190 
7192 
7193  // Random interface objects
7194  for (const auto & it : _random_data_objects)
7195  it.second->updateSeeds(EXEC_LINEAR);
7196 
7198 
7200 
7201  for (unsigned int tid = 0; tid < n_threads; tid++)
7202  reinitScalars(tid);
7203 
7205 
7206  _aux->residualSetup();
7207 
7208  if (_displaced_problem)
7209  {
7211  _displaced_problem->updateMesh();
7213  updateMortarMesh();
7214  }
7215 
7216  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7217  {
7220  }
7221 
7223 
7225 
7227 
7229 
7232  }
7233  catch (...)
7234  {
7235  handleException("computeResidualTags");
7236  }
7237  }
7238  catch (const MooseException &)
7239  {
7240  // The buck stops here, we have already handled the exception by
7241  // calling the system's stopSolve() method, it is now up to PETSc to return a
7242  // "diverged" reason during the next solve.
7243  }
7244  catch (...)
7245  {
7246  mooseError("Unexpected exception type");
7247  }
7248 
7249  resetState();
7250 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
Provides a way for users to bail out of the current solve.
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeResidualType()

void FEProblemBase::computeResidualType ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtual

Form a residual vector for a given tag and "residual" tag.

Definition at line 7090 of file FEProblemBase.C.

7093 {
7094  TIME_SECTION("computeResidualType", 5);
7095 
7096  try
7097  {
7099 
7101 
7103 
7105  }
7106  catch (MooseException & e)
7107  {
7108  // If a MooseException propagates all the way to here, it means
7109  // that it was thrown from a MOOSE system where we do not
7110  // (currently) properly support the throwing of exceptions, and
7111  // therefore we have no choice but to error out. It may be
7112  // *possible* to handle exceptions from other systems, but in the
7113  // meantime, we don't want to silently swallow any unhandled
7114  // exceptions here.
7115  mooseError("An unhandled MooseException was raised during residual computation. Please "
7116  "contact the MOOSE team for assistance.");
7117  }
7118 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeSystems()

void FEProblemBase::computeSystems ( const ExecFlagType type)
protected

Do generic system computations.

Definition at line 9329 of file FEProblemBase.C.

Referenced by computeBounds(), EigenProblem::computeJacobianBlocks(), computeJacobianBlocks(), computeJacobianTags(), computeLinearSystemTags(), computeResidualAndJacobian(), computeResidualTags(), and execute().

9330 {
9331  // When performing an adjoint solve in the optimization module, the current solver system is the
9332  // adjoint. However, the adjoint solve requires having accurate time derivative calculations for
9333  // the forward system. The cleanest way to handle such uses is just to compute the time
9334  // derivatives for all solver systems instead of trying to guess which ones we need and don't need
9335  for (auto & solver_sys : _solver_systems)
9336  solver_sys->compute(type);
9337 
9338  _aux->compute(type);
9339 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ computeTransposeNullSpace()

void FEProblemBase::computeTransposeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtual

Definition at line 7621 of file FEProblemBase.C.

Referenced by Moose::compute_transpose_nullspace().

7623 {
7624  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7625  "I expect these system numbers to be the same");
7626  sp.clear();
7627  for (unsigned int i = 0; i < subspaceDim("TransposeNullSpace"); ++i)
7628  {
7629  std::stringstream postfix;
7630  postfix << "_" << i;
7631  sp.push_back(&_current_nl_sys->getVector("TransposeNullSpace" + postfix.str()));
7632  }
7633 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computeUserObjectByName()

void FEProblemBase::computeUserObjectByName ( const ExecFlagType type,
const Moose::AuxGroup group,
const std::string &  name 
)
virtual

Compute an user object with the given name.

Definition at line 4776 of file FEProblemBase.C.

Referenced by MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), MultiAppGeneralFieldUserObjectTransfer::execute(), MultiAppUserObjectTransfer::execute(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), and MultiAppConservativeTransfer::postExecute().

4779 {
4780  const auto old_exec_flag = _current_execute_on_flag;
4783  .query()
4784  .condition<AttribSystem>("UserObject")
4785  .condition<AttribExecOns>(type)
4786  .condition<AttribName>(name);
4787  computeUserObjectsInternal(type, group, query);
4788  _current_execute_on_flag = old_exec_flag;
4789 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjects()

void FEProblemBase::computeUserObjects ( const ExecFlagType type,
const Moose::AuxGroup group 
)
virtual

Call compute methods on UserObjects.

Definition at line 4792 of file FEProblemBase.C.

Referenced by computeJacobianTags(), computeLinearSystemTags(), computeResidualAndJacobian(), computeResidualTags(), execute(), and initialSetup().

4793 {
4795  theWarehouse().query().condition<AttribSystem>("UserObject").condition<AttribExecOns>(type);
4796  computeUserObjectsInternal(type, group, query);
4797 }
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjectsInternal()

void FEProblemBase::computeUserObjectsInternal ( const ExecFlagType type,
const Moose::AuxGroup group,
TheWarehouse::Query query 
)
protected

Definition at line 4800 of file FEProblemBase.C.

Referenced by computeUserObjectByName(), and computeUserObjects().

4803 {
4804  try
4805  {
4806  TIME_SECTION("computeUserObjects", 1, "Computing User Objects");
4807 
4808  // Add group to query
4809  if (group == Moose::PRE_IC)
4810  primary_query.condition<AttribPreIC>(true);
4811  else if (group == Moose::PRE_AUX)
4812  primary_query.condition<AttribPreAux>(type);
4813  else if (group == Moose::POST_AUX)
4814  primary_query.condition<AttribPostAux>(type);
4815 
4816  // query everything first to obtain a list of execution groups
4817  std::vector<UserObject *> uos;
4818  primary_query.clone().queryIntoUnsorted(uos);
4819  std::set<int> execution_groups;
4820  for (const auto & uo : uos)
4821  execution_groups.insert(uo->getParam<int>("execution_order_group"));
4822 
4823  // iterate over execution order groups
4824  for (const auto execution_group : execution_groups)
4825  {
4826  auto query = primary_query.clone().condition<AttribExecutionOrderGroup>(execution_group);
4827 
4828  std::vector<GeneralUserObject *> genobjs;
4829  query.clone().condition<AttribInterfaces>(Interfaces::GeneralUserObject).queryInto(genobjs);
4830 
4831  std::vector<UserObject *> userobjs;
4832  query.clone()
4837  .queryInto(userobjs);
4838 
4839  std::vector<UserObject *> tgobjs;
4840  query.clone()
4842  .queryInto(tgobjs);
4843 
4844  std::vector<UserObject *> nodal;
4845  query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).queryInto(nodal);
4846 
4847  std::vector<MortarUserObject *> mortar;
4848  query.clone().condition<AttribInterfaces>(Interfaces::MortarUserObject).queryInto(mortar);
4849 
4850  if (userobjs.empty() && genobjs.empty() && tgobjs.empty() && nodal.empty() && mortar.empty())
4851  continue;
4852 
4853  // Start the timer here since we have at least one active user object
4854  std::string compute_uo_tag = "computeUserObjects(" + Moose::stringify(type) + ")";
4855 
4856  // Perform Residual/Jacobian setups
4857  if (type == EXEC_LINEAR)
4858  {
4859  for (auto obj : userobjs)
4860  obj->residualSetup();
4861  for (auto obj : nodal)
4862  obj->residualSetup();
4863  for (auto obj : mortar)
4864  obj->residualSetup();
4865  for (auto obj : tgobjs)
4866  obj->residualSetup();
4867  for (auto obj : genobjs)
4868  obj->residualSetup();
4869  }
4870  else if (type == EXEC_NONLINEAR)
4871  {
4872  for (auto obj : userobjs)
4873  obj->jacobianSetup();
4874  for (auto obj : nodal)
4875  obj->jacobianSetup();
4876  for (auto obj : mortar)
4877  obj->jacobianSetup();
4878  for (auto obj : tgobjs)
4879  obj->jacobianSetup();
4880  for (auto obj : genobjs)
4881  obj->jacobianSetup();
4882  }
4883 
4884  for (auto obj : userobjs)
4885  obj->initialize();
4886 
4887  // Execute Side/InternalSide/Interface/Elemental/DomainUserObjects
4888  if (!userobjs.empty())
4889  {
4890  // non-nodal user objects have to be run separately before the nodal user objects run
4891  // because some nodal user objects (NodalNormal related) depend on elemental user objects
4892  // :-(
4893  ComputeUserObjectsThread cppt(*this, query);
4895 
4896  // There is one instance in rattlesnake where an elemental user object's finalize depends
4897  // on a side user object having been finalized first :-(
4904  }
4905 
4906  // if any userobject may have written to variables we need to close the aux solution
4907  for (const auto & uo : userobjs)
4908  if (auto euo = dynamic_cast<const ElementUserObject *>(uo);
4909  euo && euo->hasWritableCoupledVariables())
4910  {
4911  _aux->solution().close();
4912  _aux->system().update();
4913  break;
4914  }
4915 
4916  // Execute NodalUserObjects
4917  // BISON has an axial reloc elemental user object that has a finalize func that depends on a
4918  // nodal user object's prev value. So we can't initialize this until after elemental objects
4919  // have been finalized :-(
4920  for (auto obj : nodal)
4921  obj->initialize();
4922  if (query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).count() > 0)
4923  {
4924  ComputeNodalUserObjectsThread cnppt(*this, query);
4927  }
4928 
4929  // if any userobject may have written to variables we need to close the aux solution
4930  for (const auto & uo : nodal)
4931  if (auto nuo = dynamic_cast<const NodalUserObject *>(uo);
4932  nuo && nuo->hasWritableCoupledVariables())
4933  {
4934  _aux->solution().close();
4935  _aux->system().update();
4936  break;
4937  }
4938 
4939  // Execute MortarUserObjects
4940  {
4941  for (auto obj : mortar)
4942  obj->initialize();
4943  if (!mortar.empty())
4944  {
4945  auto create_and_run_mortar_functors = [this, type, &mortar](const bool displaced)
4946  {
4947  // go over mortar interfaces and construct functors
4948  const auto & mortar_interfaces = getMortarInterfaces(displaced);
4949  for (const auto & mortar_interface : mortar_interfaces)
4950  {
4951  const auto primary_secondary_boundary_pair = mortar_interface.first;
4952  auto mortar_uos_to_execute =
4953  getMortarUserObjects(primary_secondary_boundary_pair.first,
4954  primary_secondary_boundary_pair.second,
4955  displaced,
4956  mortar);
4957  const auto & mortar_generation_object = mortar_interface.second;
4958 
4959  auto * const subproblem = displaced
4960  ? static_cast<SubProblem *>(_displaced_problem.get())
4961  : static_cast<SubProblem *>(this);
4962  MortarUserObjectThread muot(mortar_uos_to_execute,
4963  mortar_generation_object,
4964  *subproblem,
4965  *this,
4966  displaced,
4967  subproblem->assembly(0, 0));
4968 
4969  muot();
4970  }
4971  };
4972 
4973  create_and_run_mortar_functors(false);
4974  if (_displaced_problem)
4975  create_and_run_mortar_functors(true);
4976  }
4977  for (auto obj : mortar)
4978  obj->finalize();
4979  }
4980 
4981  // Execute threaded general user objects
4982  for (auto obj : tgobjs)
4983  obj->initialize();
4984  std::vector<GeneralUserObject *> tguos_zero;
4985  query.clone()
4986  .condition<AttribThread>(0)
4987  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject)
4988  .queryInto(tguos_zero);
4989  for (auto obj : tguos_zero)
4990  {
4991  std::vector<GeneralUserObject *> tguos;
4992  auto q = query.clone()
4993  .condition<AttribName>(obj->name())
4994  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject);
4995  q.queryInto(tguos);
4996 
4998  Threads::parallel_reduce(GeneralUserObjectRange(tguos.begin(), tguos.end()), ctguot);
4999  joinAndFinalize(q);
5000  }
5001 
5002  // Execute general user objects
5004  true);
5005  }
5006  }
5007  catch (...)
5008  {
5009  handleException("computeUserObjectsInternal");
5010  }
5011 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
void joinAndFinalize(TheWarehouse::Query query, bool isgen=false)
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:313
Thread to compute threaded general user objects.
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:294
void handleException(const std::string &calling_method)
Handle exceptions.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
StoredRange< std::vector< GeneralUserObject * >::iterator, GeneralUserObject * > GeneralUserObjectRange
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:344
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
query_obj query
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for threaded computation of UserObjects.
std::shared_ptr< DisplacedProblem > _displaced_problem
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
virtual std::unique_ptr< Attribute > clone() const =0
clone creates and returns and identical (deep) copy of this attribute - i.e.

◆ computingNonlinearResid() [1/4]

bool SubProblem::computingNonlinearResid ( ) const
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [2/4]

bool SubProblem::computingNonlinearResid
inline

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [3/4]

virtual void SubProblem::computingNonlinearResid
inline

Set whether or not the problem is in the process of computing the nonlinear residual.

Definition at line 712 of file SubProblem.h.

713  {
714  _computing_nonlinear_residual = computing_nonlinear_residual;
715  }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [4/4]

void FEProblemBase::computingNonlinearResid ( bool  computing_nonlinear_residual)
finalvirtual

Set whether or not the problem is in the process of computing the nonlinear residual.

Reimplemented from SubProblem.

Definition at line 8964 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeScaling(), ComputeFDResidualFunctor::residual(), ComputeResidualFunctor::residual(), and ComputeResidualAndJacobian::residual_and_jacobian().

8965 {
8966  parallel_object_only();
8967 
8968  if (_displaced_problem)
8969  _displaced_problem->computingNonlinearResid(computing_nonlinear_residual);
8970  _computing_nonlinear_residual = computing_nonlinear_residual;
8971 }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ computingPreSMOResidual()

bool FEProblemBase::computingPreSMOResidual ( const unsigned int  nl_sys_num) const
overridevirtual

Returns true if the problem is in the process of computing it's initial residual.

Returns
Whether or not the problem is currently computing the initial residual.

Implements SubProblem.

Definition at line 6588 of file FEProblemBase.C.

Referenced by DisplacedProblem::computingPreSMOResidual().

6589 {
6590  return _nl[nl_sys_num]->computingPreSMOResidual();
6591 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ computingScalingJacobian() [1/2]

void FEProblemBase::computingScalingJacobian ( bool  computing_scaling_jacobian)
inline

Setter for whether we're computing the scaling jacobian.

Definition at line 2345 of file FEProblemBase.h.

Referenced by ComputeJacobianThread::compute(), SolverSystem::compute(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingJacobian().

2346  {
2347  _computing_scaling_jacobian = computing_scaling_jacobian;
2348  }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingJacobian() [2/2]

bool FEProblemBase::computingScalingJacobian ( ) const
inlinefinaloverridevirtual

Getter for whether we're computing the scaling jacobian.

Implements SubProblem.

Definition at line 2350 of file FEProblemBase.h.

2350 { return _computing_scaling_jacobian; }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingResidual() [1/2]

void FEProblemBase::computingScalingResidual ( bool  computing_scaling_residual)
inline

Setter for whether we're computing the scaling residual.

Definition at line 2355 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingResidual().

2356  {
2357  _computing_scaling_residual = computing_scaling_residual;
2358  }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ computingScalingResidual() [2/2]

bool FEProblemBase::computingScalingResidual ( ) const
inlinefinaloverridevirtual
Returns
whether we are currently computing a residual for automatic scaling purposes

Implements SubProblem.

Definition at line 2363 of file FEProblemBase.h.

2363 { return _computing_scaling_residual; }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ connectControllableParams()

void MooseBase::connectControllableParams ( const std::string &  parameter,
const std::string &  object_type,
const std::string &  object_name,
const std::string &  object_parameter 
) const
inherited

Connect controllable parameter of this action with the controllable parameters of the objects added by this action.

Parameters
parameterName of the controllable parameter of this action
object_typeType of the object added by this action.
object_nameName of the object added by this action.
object_parameterName of the parameter of the object.

Definition at line 74 of file MooseBase.C.

78 {
79  auto & factory = _app.getFactory();
80  auto & ip_warehouse = _app.getInputParameterWarehouse();
81 
82  MooseObjectParameterName primary_name(uniqueName(), parameter);
83  const auto base_type = factory.getValidParams(object_type).getBase();
84  MooseObjectParameterName secondary_name(base_type, object_name, object_parameter);
85  ip_warehouse.addControllableParameterConnection(primary_name, secondary_name);
86 
87  const auto & tags = _pars.get<std::vector<std::string>>("control_tags");
88  for (const auto & tag : tags)
89  {
90  if (!tag.empty())
91  {
92  // Only adds the parameter with the different control tags if the derived class
93  // properly registers the parameter to its own syntax
94  MooseObjectParameterName tagged_name(tag, name(), parameter);
95  ip_warehouse.addControllableParameterConnection(
96  tagged_name, secondary_name, /*error_on_empty=*/false);
97  }
98  }
99 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2900
MooseObjectName uniqueName() const
Definition: MooseBase.C:66
Factory & getFactory()
Retrieve a writable reference to the Factory associated with this App.
Definition: MooseApp.h:394
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
A class for storing an input parameter name.

◆ console()

const ConsoleStream& Problem::console ( ) const
inlineinherited

Return console handle.

Definition at line 48 of file Problem.h.

Referenced by Moose::SlepcSupport::mooseSlepcEPSMonitor(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

48 { return _console; }
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ constJacobian()

bool FEProblemBase::constJacobian ( ) const

Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed)

Definition at line 8809 of file FEProblemBase.C.

Referenced by Moose::SlepcSupport::moosePetscSNESFormMatricesTags(), and Moose::SlepcSupport::moosePetscSNESFormMatrixTag().

8810 {
8811  return _const_jacobian;
8812 }
bool _const_jacobian
true if the Jacobian is constant

◆ converged()

virtual bool SubProblem::converged ( const unsigned int  sys_num)
inlinevirtualinherited

Eventually we want to convert this virtual over to taking a solver system number argument.

We will have to first convert apps to use solverSystemConverged, and then once that is done, we can change this signature. Then we can go through the apps again and convert back to this changed API

Definition at line 113 of file SubProblem.h.

Referenced by initialSetup(), EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), DisplacedProblem::solverSystemConverged(), SubProblem::solverSystemConverged(), and AB2PredictorCorrector::step().

113 { return solverSystemConverged(sys_num); }
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ coordTransform()

MooseAppCoordTransform & FEProblemBase::coordTransform ( )
Returns
the coordinate transformation object that describes how to transform this problem's coordinate system into the canonical/reference coordinate system

Definition at line 9200 of file FEProblemBase.C.

9201 {
9202  return mesh().coordTransform();
9203 }
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1888
virtual MooseMesh & mesh() override

◆ copySolutionsBackwards()

void FEProblemBase::copySolutionsBackwards ( )
virtual

Definition at line 6594 of file FEProblemBase.C.

Referenced by initialSetup().

6595 {
6596  TIME_SECTION("copySolutionsBackwards", 3, "Copying Solutions Backward");
6597 
6598  for (auto & sys : _solver_systems)
6599  sys->copySolutionsBackwards();
6600  _aux->copySolutionsBackwards();
6601 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ coupling()

Moose::CouplingType FEProblemBase::coupling ( ) const
inline

Definition at line 165 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), and NonlinearSystemBase::computeJacobianInternal().

165 { return _coupling; }
Moose::CouplingType _coupling
Type of variable coupling.

◆ couplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::couplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)

◆ couplingMatrix()

const libMesh::CouplingMatrix * FEProblemBase::couplingMatrix ( const unsigned int  nl_sys_num) const
inlineoverridevirtual

The coupling matrix defining what blocks exist in the preconditioning matrix.

Implements SubProblem.

Definition at line 3272 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), DisplacedProblem::couplingMatrix(), and DisplacedProblem::init().

3273 {
3274  return _cm[i].get();
3275 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ createMortarInterface()

void FEProblemBase::createMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced,
bool  periodic,
const bool  debug,
const bool  correct_edge_dropping,
const Real  minimum_projection_angle 
)

Definition at line 7796 of file FEProblemBase.C.

7804 {
7805  _has_mortar = true;
7806 
7807  if (on_displaced)
7808  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
7809  primary_secondary_subdomain_pair,
7811  on_displaced,
7812  periodic,
7813  debug,
7814  correct_edge_dropping,
7815  minimum_projection_angle);
7816  else
7817  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
7818  primary_secondary_subdomain_pair,
7819  *this,
7820  on_displaced,
7821  periodic,
7822  debug,
7823  correct_edge_dropping,
7824  minimum_projection_angle);
7825 }
void createMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &subdomain_key, SubProblem &subproblem, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
Create mortar generation object.
Definition: MortarData.C:22
MortarData _mortar_data
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ createQRules()

void FEProblemBase::createQRules ( libMesh::QuadratureType  type,
libMesh::Order  order,
libMesh::Order  volume_order = libMesh::INVALID_ORDER,
libMesh::Order  face_order = libMesh::INVALID_ORDER,
SubdomainID  block = Moose::ANY_BLOCK_ID,
bool  allow_negative_qweights = true 
)
virtual

Definition at line 6020 of file FEProblemBase.C.

6026 {
6027  if (order == INVALID_ORDER)
6028  {
6029  // automatically determine the integration order
6030  order = _solver_systems[0]->getMinQuadratureOrder();
6031  for (const auto i : make_range(std::size_t(1), _solver_systems.size()))
6032  if (order < _solver_systems[i]->getMinQuadratureOrder())
6033  order = _solver_systems[i]->getMinQuadratureOrder();
6034  if (order < _aux->getMinQuadratureOrder())
6035  order = _aux->getMinQuadratureOrder();
6036  }
6037 
6038  if (volume_order == INVALID_ORDER)
6039  volume_order = order;
6040 
6041  if (face_order == INVALID_ORDER)
6042  face_order = order;
6043 
6044  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6045  for (const auto i : index_range(_solver_systems))
6046  _assembly[tid][i]->createQRules(
6047  type, order, volume_order, face_order, block, allow_negative_qweights);
6048 
6049  if (_displaced_problem)
6050  _displaced_problem->createQRules(
6051  type, order, volume_order, face_order, block, allow_negative_qweights);
6052 
6053  updateMaxQps();
6054 }
unsigned int n_threads()
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual void createQRules(libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ createTagMatrices()

void FEProblemBase::createTagMatrices ( CreateTaggedMatrixKey  )

Definition at line 676 of file FEProblemBase.C.

677 {
678  auto & matrices = getParam<std::vector<std::vector<TagName>>>("extra_tag_matrices");
679  for (const auto sys_num : index_range(matrices))
680  for (auto & matrix : matrices[sys_num])
681  {
682  auto tag = addMatrixTag(matrix);
683  _solver_systems[sys_num]->addMatrix(tag);
684  }
685 
686  for (auto & sys : _solver_systems)
687  sys->sizeVariableMatrixData();
688  _aux->sizeVariableMatrixData();
689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:311
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
auto index_range(const T &sizable)

◆ createTagSolutions()

void FEProblemBase::createTagSolutions ( )
protected

Create extra tagged solution vectors.

Definition at line 692 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

693 {
694  for (auto & vector : getParam<std::vector<TagName>>("extra_tag_solutions"))
695  {
696  auto tag = addVectorTag(vector, Moose::VECTOR_TAG_SOLUTION);
697  for (auto & sys : _solver_systems)
698  sys->addVector(tag, false, libMesh::GHOSTED);
699  _aux->addVector(tag, false, libMesh::GHOSTED);
700  }
701 
703  {
704  // We'll populate the zeroth state of the nonlinear iterations with the current solution for
705  // ease of use in doing things like copying solutions backwards. We're just storing pointers in
706  // the solution states containers so populating the zeroth state does not cost us the memory of
707  // a new vector
709  }
710 
712  for (auto & sys : _solver_systems)
713  sys->associateVectorToTag(*sys->system().current_local_solution.get(), tag);
714  _aux->associateVectorToTag(*_aux->system().current_local_solution.get(), tag);
715 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _previous_nl_solution_required
Indicates we need to save the previous NL iteration variable values.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void needSolutionState(unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
Declare that we need up to old (1) or older (2) solution states for a given type of iteration...
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ createTagVectors()

void FEProblemBase::createTagVectors ( )
protected

Create extra tagged vectors and matrices.

Definition at line 654 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

655 {
656  // add vectors and their tags to system
657  auto & vectors = getParam<std::vector<std::vector<TagName>>>("extra_tag_vectors");
658  for (const auto sys_num : index_range(vectors))
659  for (auto & vector : vectors[sys_num])
660  {
661  auto tag = addVectorTag(vector);
662  _solver_systems[sys_num]->addVector(tag, false, libMesh::GHOSTED);
663  }
664 
665  auto & not_zeroed_vectors = getParam<std::vector<std::vector<TagName>>>("not_zeroed_tag_vectors");
666  for (const auto sys_num : index_range(not_zeroed_vectors))
667  for (auto & vector : not_zeroed_vectors[sys_num])
668  {
669  auto tag = addVectorTag(vector);
670  _solver_systems[sys_num]->addVector(tag, false, GHOSTED);
672  }
673 }
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
auto index_range(const T &sizable)
void addNotZeroedVectorTag(const TagID tag)
Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are...
Definition: SubProblem.C:149

◆ currentLinearSysNum()

unsigned int FEProblemBase::currentLinearSysNum ( ) const
overridevirtual
Returns
the current linear system number

Implements SubProblem.

Definition at line 9217 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentLinearSysNum().

9218 {
9219  // If we don't have linear systems this should be an invalid number
9220  unsigned int current_linear_sys_num = libMesh::invalid_uint;
9221  if (_linear_systems.size())
9222  current_linear_sys_num = currentLinearSystem().number();
9223 
9224  return current_linear_sys_num;
9225 }
const unsigned int invalid_uint
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
LinearSystem & currentLinearSystem()
Get a non-constant reference to the current linear system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ currentLinearSystem() [1/2]

LinearSystem & FEProblemBase::currentLinearSystem ( )
inline

Get a non-constant reference to the current linear system.

Definition at line 3240 of file FEProblemBase.h.

Referenced by currentLinearSysNum(), and Moose::PetscSupport::petscLinearConverged().

3241 {
3242  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3243  return *_current_linear_sys;
3244 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentLinearSystem() [2/2]

const LinearSystem & FEProblemBase::currentLinearSystem ( ) const
inline

Get a constant reference to the current linear system.

Definition at line 3247 of file FEProblemBase.h.

3248 {
3249  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3250  return *_current_linear_sys;
3251 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentlyComputingJacobian()

const bool& SubProblem::currentlyComputingJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the Jacobian.

Definition at line 684 of file SubProblem.h.

Referenced by PenetrationLocator::detectPenetration(), ComputeUserObjectsThread::onBoundary(), ComputeUserObjectsThread::onElement(), ComputeUserObjectsThread::printBlockExecutionInformation(), SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ currentlyComputingResidual() [1/2]

const bool& SubProblem::currentlyComputingResidual ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidual() [2/2]

const bool& SubProblem::currentlyComputingResidual
inline

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidualAndJacobian()

const bool & SubProblem::currentlyComputingResidualAndJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual and the Jacobian.

Definition at line 1487 of file SubProblem.h.

Referenced by SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

1488 {
1490 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ currentNlSysNum()

unsigned int FEProblemBase::currentNlSysNum ( ) const
overridevirtual
Returns
the current nonlinear system number

Implements SubProblem.

Definition at line 9206 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentNlSysNum(), jacobianSetup(), and residualSetup().

9207 {
9208  // If we don't have nonlinear systems this should be an invalid number
9209  unsigned int current_nl_sys_num = libMesh::invalid_uint;
9210  if (_nl.size())
9211  current_nl_sys_num = currentNonlinearSystem().number();
9212 
9213  return current_nl_sys_num;
9214 }
const unsigned int invalid_uint
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase & currentNonlinearSystem()
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149

◆ currentNonlinearSystem() [1/2]

NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( )
inline

◆ currentNonlinearSystem() [2/2]

const NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( ) const
inline

Definition at line 3217 of file FEProblemBase.h.

3218 {
3219  mooseAssert(_current_nl_sys, "The nonlinear system is not currently set");
3220  return *_current_nl_sys;
3221 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.

◆ currentResidualVectorTags()

const std::vector< VectorTag > & FEProblemBase::currentResidualVectorTags ( ) const
inlineoverridevirtual

Return the residual vector tags we are currently computing.

Implements SubProblem.

Definition at line 3288 of file FEProblemBase.h.

Referenced by addResidual(), addResidualLower(), addResidualNeighbor(), addResidualScalar(), and DisplacedProblem::currentResidualVectorTags().

3289 {
3291 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ customSetup()

void FEProblemBase::customSetup ( const ExecFlagType exec_type)
overridevirtual

Reimplemented from SubProblem.

Definition at line 4576 of file FEProblemBase.C.

Referenced by execute().

4577 {
4578  SubProblem::customSetup(exec_type);
4579 
4580  if (_line_search)
4581  _line_search->customSetup(exec_type);
4582 
4583  unsigned int n_threads = libMesh::n_threads();
4584  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4585  {
4586  _all_materials.customSetup(exec_type, tid);
4587  _functions.customSetup(exec_type, tid);
4588  }
4589 
4590  _aux->customSetup(exec_type);
4591  for (auto & nl : _nl)
4592  nl->customSetup(exec_type);
4593 
4594  if (_displaced_problem)
4595  _displaced_problem->customSetup(exec_type);
4596 
4597  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4598  {
4599  _internal_side_indicators.customSetup(exec_type, tid);
4600  _indicators.customSetup(exec_type, tid);
4601  _markers.customSetup(exec_type, tid);
4602  }
4603 
4604  std::vector<UserObject *> userobjs;
4605  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
4606  for (auto obj : userobjs)
4607  obj->customSetup(exec_type);
4608 
4609  _app.getOutputWarehouse().customSetup(exec_type);
4610 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
void customSetup(const ExecFlagType &exec_type)
Calls the setup function for each of the output objects.
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SubProblem.C:1193
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
MooseObjectWarehouse< Indicator > _indicators
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
unsigned int THREAD_ID
Definition: MooseTypes.h:209
std::shared_ptr< LineSearch > _line_search

◆ declareManagedRestartableDataWithContext()

template<typename T , typename... Args>
Restartable::ManagedValue< T > Restartable::declareManagedRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declares a piece of "managed" restartable data and initialize it.

Here, "managed" restartable data means that the caller can destruct this data upon destruction of the return value of this method. Therefore, this ManagedValue<T> wrapper should survive after the final calls to dataStore() for it. That is... at the very end.

This is needed for objects whose destruction ordering is important, and enables natural c++ destruction in reverse construction order of the object that declares it.

See delcareRestartableData and declareRestartableDataWithContext for more information.

Definition at line 276 of file Restartable.h.

279 {
280  auto & data_ptr =
281  declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...);
282  return Restartable::ManagedValue<T>(data_ptr);
283 }
Wrapper class for restartable data that is "managed.
Definition: Restartable.h:42

◆ declareRecoverableData()

template<typename T , typename... Args>
T & Restartable::declareRecoverableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "recoverable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

Note - this data will NOT be restored on Restart!

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 351 of file Restartable.h.

352 {
353  const auto full_name = restartableName(data_name);
354 
356 
357  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
358 }
std::string restartableName(const std::string &data_name) const
Gets the name of a piece of restartable data given a data name, adding the system name and object nam...
Definition: Restartable.C:66
void registerRestartableNameWithFilterOnApp(const std::string &name, Moose::RESTARTABLE_FILTER filter)
Helper function for actually registering the restartable data.
Definition: Restartable.C:59

◆ declareRestartableData()

template<typename T , typename... Args>
T & Restartable::declareRestartableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 269 of file Restartable.h.

270 {
271  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
272 }

◆ declareRestartableDataWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 294 of file Restartable.h.

297 {
298  return declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...).set();
299 }

◆ declareRestartableDataWithObjectName()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectName ( const std::string &  data_name,
const std::string &  object_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
argsArguments to forward to the constructor of the data

Definition at line 323 of file Restartable.h.

326 {
327  return declareRestartableDataWithObjectNameWithContext<T>(
328  data_name, object_name, nullptr, std::forward<Args>(args)...);
329 }

◆ declareRestartableDataWithObjectNameWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectNameWithContext ( const std::string &  data_name,
const std::string &  object_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 333 of file Restartable.h.

337 {
338  std::string old_name = _restartable_name;
339 
340  _restartable_name = object_name;
341 
342  T & value = declareRestartableDataWithContext<T>(data_name, context, std::forward<Args>(args)...);
343 
344  _restartable_name = old_name;
345 
346  return value;
347 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:243
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)

◆ defaultGhosting()

bool SubProblem::defaultGhosting ( )
inlineinherited

Whether or not the user has requested default ghosting ot be on.

Definition at line 144 of file SubProblem.h.

Referenced by AuxiliarySystem::AuxiliarySystem(), DisplacedSystem::DisplacedSystem(), and NonlinearSystemBase::NonlinearSystemBase().

144 { return _default_ghosting; }
bool _default_ghosting
Whether or not to use default libMesh coupling.
Definition: SubProblem.h:1090

◆ determineSolverSystem()

std::pair< bool, unsigned int > FEProblemBase::determineSolverSystem ( const std::string &  var_name,
bool  error_if_not_found = false 
) const
overrideprivatevirtual

Determine what solver system the provided variable name lies in.

Parameters
var_nameThe name of the variable we are doing solver system lookups for
error_if_not_foundWhether to error if the variable name isn't found in any of the solver systems
Returns
A pair in which the first member indicates whether the variable was found in the solver systems and the second member indicates the solver system number in which the variable was found (or an invalid unsigned integer if not found)

Implements SubProblem.

Definition at line 2881 of file FEProblemBase.C.

Referenced by addBoundaryCondition(), addConstraint(), addDamper(), addDGKernel(), addDiracKernel(), addHDGKernel(), addInterfaceKernel(), addKernel(), addNodalKernel(), addScalarKernel(), DisplacedProblem::determineSolverSystem(), and getSystem().

2883 {
2884  auto map_it = _solver_var_to_sys_num.find(var_name);
2885  const bool var_in_sys = map_it != _solver_var_to_sys_num.end();
2886  if (var_in_sys)
2887  mooseAssert(_solver_systems[map_it->second]->hasVariable(var_name) ||
2888  _solver_systems[map_it->second]->hasScalarVariable(var_name),
2889  "If the variable is in our FEProblem solver system map, then it must be in the "
2890  "solver system we expect");
2891  else if (error_if_not_found)
2892  {
2893  if (_aux->hasVariable(var_name) || _aux->hasScalarVariable(var_name))
2894  mooseError("No solver variable named ",
2895  var_name,
2896  " found. Did you specify an auxiliary variable when you meant to specify a "
2897  "solver variable?");
2898  else
2899  mooseError("Unknown variable '",
2900  var_name,
2901  "'. It does not exist in the solver system(s) or auxiliary system");
2902  }
2903 
2904  return std::make_pair(var_in_sys, var_in_sys ? map_it->second : libMesh::invalid_uint);
2905 }
const unsigned int invalid_uint
std::map< SolverVariableName, unsigned int > _solver_var_to_sys_num
Map connecting variable names with their respective solver systems.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ diracKernelInfo()

DiracKernelInfo & SubProblem::diracKernelInfo ( )
virtualinherited

Definition at line 748 of file SubProblem.C.

749 {
750  return _dirac_kernel_info;
751 }
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ doingPRefinement()

bool SubProblem::doingPRefinement ( ) const
inherited
Returns
whether we're doing p-refinement

Definition at line 1361 of file SubProblem.C.

Referenced by meshChanged().

1362 {
1363  return mesh().doingPRefinement();
1364 }
virtual MooseMesh & mesh()=0
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1347

◆ dt()

virtual Real& FEProblemBase::dt ( ) const
inlinevirtual

◆ dtOld()

virtual Real& FEProblemBase::dtOld ( ) const
inlinevirtual

Definition at line 518 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

518 { return _dt_old; }

◆ duplicateVariableCheck()

bool FEProblemBase::duplicateVariableCheck ( const std::string &  var_name,
const libMesh::FEType type,
bool  is_aux,
const std::set< SubdomainID > *const  active_subdomains 
)
protected

Helper to check for duplicate variable names across systems or within a single system.

Definition at line 2735 of file FEProblemBase.C.

Referenced by addAuxArrayVariable(), addAuxScalarVariable(), addAuxVariable(), and addVariable().

2739 {
2740  std::set<SubdomainID> subdomainIDs;
2741  if (active_subdomains->size() == 0)
2742  {
2743  const auto subdomains = _mesh.meshSubdomains();
2744  subdomainIDs.insert(subdomains.begin(), subdomains.end());
2745  }
2746  else
2747  subdomainIDs.insert(active_subdomains->begin(), active_subdomains->end());
2748 
2749  for (auto & sys : _solver_systems)
2750  {
2751  SystemBase * curr_sys_ptr = sys.get();
2752  SystemBase * other_sys_ptr = _aux.get();
2753  std::string error_prefix = "";
2754  if (is_aux)
2755  {
2756  curr_sys_ptr = _aux.get();
2757  other_sys_ptr = sys.get();
2758  error_prefix = "aux";
2759  }
2760 
2761  if (other_sys_ptr->hasVariable(var_name))
2762  mooseError("Cannot have an auxiliary variable and a solver variable with the same name: ",
2763  var_name);
2764 
2765  if (curr_sys_ptr->hasVariable(var_name))
2766  {
2767  const Variable & var =
2768  curr_sys_ptr->system().variable(curr_sys_ptr->system().variable_number(var_name));
2769 
2770  // variable type
2771  if (var.type() != type)
2772  {
2773  const auto stringifyType = [](FEType t)
2774  { return Moose::stringify(t.family) + " of order " + Moose::stringify(t.order); };
2775 
2776  mooseError("Mismatching types are specified for ",
2777  error_prefix,
2778  "variable with name '",
2779  var_name,
2780  "': '",
2781  stringifyType(var.type()),
2782  "' and '",
2783  stringifyType(type),
2784  "'");
2785  }
2786 
2787  // block-restriction
2788  if (!(active_subdomains->size() == 0 && var.active_subdomains().size() == 0))
2789  {
2790  const auto varActiveSubdomains = var.active_subdomains();
2791  std::set<SubdomainID> varSubdomainIDs;
2792  if (varActiveSubdomains.size() == 0)
2793  {
2794  const auto subdomains = _mesh.meshSubdomains();
2795  varSubdomainIDs.insert(subdomains.begin(), subdomains.end());
2796  }
2797  else
2798  varSubdomainIDs.insert(varActiveSubdomains.begin(), varActiveSubdomains.end());
2799 
2800  // Is subdomainIDs a subset of varSubdomainIDs? With this we allow the case that the newly
2801  // requested block restriction is only a subset of the existing one.
2802  const auto isSubset = std::includes(varSubdomainIDs.begin(),
2803  varSubdomainIDs.end(),
2804  subdomainIDs.begin(),
2805  subdomainIDs.end());
2806 
2807  if (!isSubset)
2808  {
2809  // helper function: make a string from a set of subdomain ids
2810  const auto stringifySubdomains = [this](std::set<SubdomainID> subdomainIDs)
2811  {
2812  std::stringstream s;
2813  for (auto const i : subdomainIDs)
2814  {
2815  // do we need to insert a comma?
2816  if (s.tellp() != 0)
2817  s << ", ";
2818 
2819  // insert subdomain name and id -or- only the id (if no name is given)
2820  const auto subdomainName = _mesh.getSubdomainName(i);
2821  if (subdomainName.empty())
2822  s << i;
2823  else
2824  s << subdomainName << " (" << i << ")";
2825  }
2826  return s.str();
2827  };
2828 
2829  const std::string msg = "Mismatching block-restrictions are specified for " +
2830  error_prefix + "variable with name '" + var_name + "': {" +
2831  stringifySubdomains(varSubdomainIDs) + "} and {" +
2832  stringifySubdomains(subdomainIDs) + "}";
2833 
2834  mooseError(msg);
2835  }
2836  }
2837 
2838  return true;
2839  }
2840  }
2841 
2842  return false;
2843 }
const Variable & variable(unsigned int var) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1763
unsigned int variable_number(std::string_view var) const
const std::set< subdomain_id_type > & active_subdomains() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3171
const FEType & type() const

◆ enabled()

virtual bool MooseObject::enabled ( ) const
inlinevirtualinherited

Return the enabled status of the object.

Reimplemented in EigenKernel.

Definition at line 39 of file MooseObject.h.

Referenced by EigenKernel::enabled().

39 { return _enabled; }
const bool & _enabled
Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.
Definition: MooseObject.h:50

◆ errorOnJacobianNonzeroReallocation()

bool FEProblemBase::errorOnJacobianNonzeroReallocation ( ) const
inline

Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc.

Definition at line 1946 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

1947  {
1949  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ errorPrefix()

std::string MooseBase::errorPrefix ( const std::string &  ) const
inlineinherited

Deprecated message prefix; the error type is no longer used.

Definition at line 260 of file MooseBase.h.

260 { return messagePrefix(); }
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ es()

virtual libMesh::EquationSystems& FEProblemBase::es ( )
inlineoverridevirtual

◆ execMultiApps()

bool FEProblemBase::execMultiApps ( ExecFlagType  type,
bool  auto_advance = true 
)

Execute the MultiApps associated with the ExecFlagType.

Definition at line 5416 of file FEProblemBase.C.

Referenced by adaptMesh(), computeJacobianTags(), computeLinearSystemTags(), computeResidualAndJacobian(), computeResidualTags(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), Eigenvalue::execute(), initialSetup(), EigenExecutionerBase::postExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

5417 {
5418  // Active MultiApps
5419  const std::vector<MooseSharedPointer<MultiApp>> & multi_apps =
5421 
5422  // Do anything that needs to be done to Apps before transfers
5423  for (const auto & multi_app : multi_apps)
5424  multi_app->preTransfer(_dt, _time);
5425 
5426  // Execute Transfers _to_ MultiApps
5428 
5429  // Execute Transfers _between_ Multiapps
5431 
5432  // Execute MultiApps
5433  if (multi_apps.size())
5434  {
5435  TIME_SECTION("execMultiApps", 1, "Executing MultiApps", false);
5436 
5437  if (_verbose_multiapps)
5438  _console << COLOR_CYAN << "\nExecuting MultiApps on " << Moose::stringify(type)
5439  << COLOR_DEFAULT << std::endl;
5440 
5441  bool success = true;
5442 
5443  for (const auto & multi_app : multi_apps)
5444  {
5445  success = multi_app->solveStep(_dt, _time, auto_advance);
5446  // no need to finish executing the subapps if one fails
5447  if (!success)
5448  break;
5449  }
5450 
5452 
5453  _communicator.min(success);
5454 
5455  if (!success)
5456  return false;
5457 
5458  if (_verbose_multiapps)
5459  _console << COLOR_CYAN << "Finished Executing MultiApps on " << Moose::stringify(type) << "\n"
5460  << COLOR_DEFAULT << std::endl;
5461  }
5462 
5463  // Execute Transfers _from_ MultiApps
5465 
5466  // If we made it here then everything passed
5467  return true;
5468 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void execMultiAppTransfers(ExecFlagType type, Transfer::DIRECTION direction)
Execute MultiAppTransfers associated with execution flag and direction.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execMultiAppTransfers()

void FEProblemBase::execMultiAppTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
)

Execute MultiAppTransfers associated with execution flag and direction.

Parameters
typeThe execution flag to execute.
directionThe direction (to or from) to transfer.

Definition at line 5316 of file FEProblemBase.C.

Referenced by execMultiApps().

5317 {
5318  bool to_multiapp = direction == MultiAppTransfer::TO_MULTIAPP;
5319  bool from_multiapp = direction == MultiAppTransfer::FROM_MULTIAPP;
5320  std::string string_direction;
5321  if (to_multiapp)
5322  string_direction = " To ";
5323  else if (from_multiapp)
5324  string_direction = " From ";
5325  else
5326  string_direction = " Between ";
5327 
5328  const MooseObjectWarehouse<Transfer> & wh = to_multiapp ? _to_multi_app_transfers[type]
5329  : from_multiapp ? _from_multi_app_transfers[type]
5331 
5332  if (wh.hasActiveObjects())
5333  {
5334  TIME_SECTION("execMultiAppTransfers", 1, "Executing Transfers");
5335 
5336  const auto & transfers = wh.getActiveObjects();
5337 
5338  if (_verbose_multiapps)
5339  {
5340  _console << COLOR_CYAN << "\nTransfers on " << Moose::stringify(type) << string_direction
5341  << "MultiApps" << COLOR_DEFAULT << ":" << std::endl;
5342 
5344  {"Name", "Type", "From", "To"});
5345 
5346  // Build Table of Transfer Info
5347  for (const auto & transfer : transfers)
5348  {
5349  auto multiapp_transfer = dynamic_cast<MultiAppTransfer *>(transfer.get());
5350 
5351  table.addRow(multiapp_transfer->name(),
5352  multiapp_transfer->type(),
5353  multiapp_transfer->getFromName(),
5354  multiapp_transfer->getToName());
5355  }
5356 
5357  // Print it
5358  table.print(_console);
5359  }
5360 
5361  for (const auto & transfer : transfers)
5362  {
5363  transfer->setCurrentDirection(direction);
5364  transfer->execute();
5365  }
5366 
5368 
5369  if (_verbose_multiapps)
5370  _console << COLOR_CYAN << "Transfers on " << Moose::stringify(type) << " Are Finished\n"
5371  << COLOR_DEFAULT << std::endl;
5372  }
5373  else if (_multi_apps[type].getActiveObjects().size())
5374  {
5375  if (_verbose_multiapps)
5376  _console << COLOR_CYAN << "\nNo Transfers on " << Moose::stringify(type) << string_direction
5377  << "MultiApps\n"
5378  << COLOR_DEFAULT << std::endl;
5379  }
5380 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
A class for "pretty printing" a table of data.
Definition: PerfGraph.h:34
void setCurrentDirection(const int direction)
Set this Transfer to be executed in a given direction.
Definition: Transfer.h:89
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const
Base class for all MultiAppTransfer objects.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execTransfers()

void FEProblemBase::execTransfers ( ExecFlagType  type)

Execute the Transfers associated with the ExecFlagType.

Note: This does not execute MultiApp Transfers! Those are executed automatically when MultiApps are executed.

Definition at line 5586 of file FEProblemBase.C.

Referenced by computeJacobianTags(), computeLinearSystemTags(), computeResidualAndJacobian(), computeResidualTags(), initialSetup(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5587 {
5588  if (_transfers[type].hasActiveObjects())
5589  {
5590  TIME_SECTION("execTransfers", 3, "Executing Transfers");
5591 
5592  const auto & transfers = _transfers[type].getActiveObjects();
5593 
5594  for (const auto & transfer : transfers)
5595  transfer->execute();
5596  }
5597 }
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ execute()

void FEProblemBase::execute ( const ExecFlagType exec_type)
virtual

Convenience function for performing execution of MOOSE systems.

Reimplemented in EigenProblem, and DumpObjectsProblem.

Definition at line 4613 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::chebyshev(), FixedPointSolve::examineFixedPointConvergence(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), EigenProblem::execute(), NonlinearEigen::init(), MFEMSteady::init(), Steady::init(), EigenExecutionerBase::init(), TransientBase::init(), initialSetup(), EigenExecutionerBase::makeBXConsistent(), EigenExecutionerBase::normalizeSolution(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), EigenExecutionerBase::postExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), FixedPointSolve::solveStep(), NonlinearEigen::takeStep(), and InversePowerMethod::takeStep().

4614 {
4615  // Set the current flag
4616  setCurrentExecuteOnFlag(exec_type);
4617 
4618  if (exec_type != EXEC_INITIAL)
4619  executeControls(exec_type);
4620 
4621  // intentially call this after executing controls because the setups may rely on the controls
4622  // FIXME: we skip the following flags because they have dedicated setup functions in
4623  // SetupInterface and it may not be appropriate to call them here.
4624  if (!(exec_type == EXEC_INITIAL || exec_type == EXEC_TIMESTEP_BEGIN ||
4625  exec_type == EXEC_SUBDOMAIN || exec_type == EXEC_NONLINEAR || exec_type == EXEC_LINEAR))
4626  customSetup(exec_type);
4627 
4628  // Samplers; EXEC_INITIAL is not called because the Sampler::init() method that is called after
4629  // construction makes the first Sampler::execute() call. This ensures that the random number
4630  // generator object is the correct state prior to any other object (e.g., Transfers) attempts to
4631  // extract data from the Sampler. That is, if the Sampler::execute() call is delayed to here
4632  // then it is not in the correct state for other objects.
4633  if (exec_type != EXEC_INITIAL)
4634  executeSamplers(exec_type);
4635 
4636  // Pre-aux UserObjects
4637  computeUserObjects(exec_type, Moose::PRE_AUX);
4638 
4639  // Systems (includes system time derivative and aux kernel calculations)
4640  computeSystems(exec_type);
4641  // With the auxiliary system solution computed, sync the displaced problem auxiliary solution
4642  // before computation of post-aux user objects. The undisplaced auxiliary system current local
4643  // solution is updated (via System::update) within the AuxiliarySystem class's variable
4644  // computation methods (e.g. computeElementalVarsHelper, computeNodalVarsHelper), so it is safe to
4645  // use it here
4646  if (_displaced_problem)
4647  _displaced_problem->syncAuxSolution(*getAuxiliarySystem().currentSolution());
4648 
4649  // Post-aux UserObjects
4650  computeUserObjects(exec_type, Moose::POST_AUX);
4651 
4652  // Return the current flag to None
4654 
4656  {
4657  // we will only check aux variables and postprocessors
4658  // checking more reporter data can be added in the future if needed
4659  std::unique_ptr<NumericVector<Number>> x = _aux->currentSolution()->clone();
4661 
4662  // call THIS execute one more time for checking the possible states
4663  _checking_uo_aux_state = true;
4664  FEProblemBase::execute(exec_type);
4665  _checking_uo_aux_state = false;
4666 
4667  const Real check_tol = 1e-8;
4668 
4669  const Real xnorm = x->l2_norm();
4670  *x -= *_aux->currentSolution();
4671  if (x->l2_norm() > check_tol * xnorm)
4672  {
4673  const auto & sys = _aux->system();
4674  const unsigned int n_vars = sys.n_vars();
4675  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4676  for (const auto i : make_range(n_vars))
4677  {
4678  const Real vnorm = sys.calculate_norm(*x, i, DISCRETE_L2);
4679  ordered_map.emplace(vnorm, sys.variable_name(i));
4680  }
4681 
4682  std::ostringstream oss;
4683  for (const auto & [error_norm, var_name] : ordered_map)
4684  oss << " {" << var_name << ", " << error_norm << "},\n";
4685 
4686  mooseError("Aux kernels, user objects appear to have states for aux variables on ",
4687  exec_type,
4688  ".\nVariable error norms in descending order:\n",
4689  oss.str());
4690  }
4691 
4693  if (pp_values.size() != new_pp_values.size())
4694  mooseError("Second execution for uo/aux state check should not change the number of "
4695  "real reporter values");
4696 
4697  const Real ppnorm = pp_values.l2_norm();
4698  pp_values -= new_pp_values;
4699  if (pp_values.l2_norm() > check_tol * ppnorm)
4700  {
4701  const auto pp_names = getReporterData().getAllRealReporterFullNames();
4702  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4703  for (const auto i : index_range(pp_names))
4704  ordered_map.emplace(std::abs(pp_values(i)), pp_names[i]);
4705 
4706  std::ostringstream oss;
4707  for (const auto & [error_norm, pp_name] : ordered_map)
4708  oss << " {" << pp_name << ", " << error_norm << "},\n";
4709 
4710  mooseError("Aux kernels, user objects appear to have states for real reporter values on ",
4711  exec_type,
4712  ".\nErrors of real reporter values in descending order:\n",
4713  oss.str());
4714  }
4715  }
4716 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:42
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setCurrentExecuteOnFlag(const ExecFlagType &)
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void execute(const ExecFlagType &exec_type)
Convenience function for performing execution of MOOSE systems.
const ReporterData & getReporterData() const
Provides const access the ReporterData object.
DenseVector< Real > getAllRealReporterValues() const
Get all real reporter values including postprocessor and vector postprocessor values into a dense vec...
Definition: ReporterData.C:81
unsigned int n_vars
Real l2_norm() const
std::vector< std::string > getAllRealReporterFullNames() const
Get full names of all real reporter values Note: For a postprocessor, the full name is the postproces...
Definition: ReporterData.C:106
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
void executeSamplers(const ExecFlagType &exec_type)
Performs setup and execute calls for Sampler objects.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
AuxiliarySystem & getAuxiliarySystem()
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void customSetup(const ExecFlagType &exec_type) override
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual unsigned int size() const override final
std::shared_ptr< DisplacedProblem > _displaced_problem
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
auto index_range(const T &sizable)
void computeSystems(const ExecFlagType &type)
Do generic system computations.
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ executeAllObjects()

void FEProblemBase::executeAllObjects ( const ExecFlagType exec_type)
virtual

Definition at line 4571 of file FEProblemBase.C.

Referenced by Executor::exec().

4572 {
4573 }

◆ executeControls()

void FEProblemBase::executeControls ( const ExecFlagType exec_type)

Performs setup and execute calls for Control objects.

Definition at line 5014 of file FEProblemBase.C.

Referenced by computeJacobianTags(), computeLinearSystemTags(), computeResidualAndJacobian(), computeResidualTags(), execute(), and initialSetup().

5015 {
5016  if (_control_warehouse[exec_type].hasActiveObjects())
5017  {
5018  TIME_SECTION("executeControls", 1, "Executing Controls");
5019 
5021 
5022  auto controls_wh = _control_warehouse[exec_type];
5023  // Add all of the dependencies into the resolver and sort them
5024  for (const auto & it : controls_wh.getActiveObjects())
5025  {
5026  // Make sure an item with no dependencies comes out too!
5027  resolver.addItem(it);
5028 
5029  std::vector<std::string> & dependent_controls = it->getDependencies();
5030  for (const auto & depend_name : dependent_controls)
5031  {
5032  if (controls_wh.hasActiveObject(depend_name))
5033  {
5034  auto dep_control = controls_wh.getActiveObject(depend_name);
5035  resolver.addEdge(dep_control, it);
5036  }
5037  else
5038  mooseError("The Control \"",
5039  depend_name,
5040  "\" was not created, did you make a "
5041  "spelling mistake or forget to include it "
5042  "in your input file?");
5043  }
5044  }
5045 
5046  const auto & ordered_controls = resolver.getSortedValues();
5047 
5048  if (!ordered_controls.empty())
5049  {
5050  _control_warehouse.setup(exec_type);
5051  // Run the controls in the proper order
5052  for (const auto & control : ordered_controls)
5053  control->execute();
5054  }
5055  }
5056 }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
const std::vector< T > & getSortedValues()
This function also returns dependency resolved values but with a simpler single vector interface...
void setup(const ExecFlagType &exec_flag, THREAD_ID tid=0) const
void addEdge(const T &a, const T &b)
Add an edge between nodes &#39;a&#39; and &#39;b&#39;.
void addItem(const T &value)
Add an independent item to the set.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
Class that represents the dependecy as a graph.

◆ executeSamplers()

void FEProblemBase::executeSamplers ( const ExecFlagType exec_type)

Performs setup and execute calls for Sampler objects.

Definition at line 5059 of file FEProblemBase.C.

Referenced by execute().

5060 {
5061  // TODO: This should be done in a threaded loop, but this should be super quick so for now
5062  // do a serial loop.
5063  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5064  {
5065  std::vector<Sampler *> objects;
5066  theWarehouse()
5067  .query()
5068  .condition<AttribSystem>("Sampler")
5069  .condition<AttribThread>(tid)
5070  .condition<AttribExecOns>(exec_type)
5071  .queryInto(objects);
5072 
5073  if (!objects.empty())
5074  {
5075  TIME_SECTION("executeSamplers", 1, "Executing Samplers");
5076  FEProblemBase::objectSetupHelper<Sampler>(objects, exec_type);
5077  FEProblemBase::objectExecuteHelper<Sampler>(objects);
5078  }
5079  }
5080 }
unsigned int n_threads()
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ feBackend()

virtual Moose::FEBackend FEProblemBase::feBackend ( ) const
inlinevirtual

◆ finalizeMultiApps()

void FEProblemBase::finalizeMultiApps ( )

Definition at line 5471 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5472 {
5473  const auto & multi_apps = _multi_apps.getActiveObjects();
5474 
5475  for (const auto & multi_app : multi_apps)
5476  multi_app->finalize();
5477 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ finalNonlinearResidual()

Real FEProblemBase::finalNonlinearResidual ( const unsigned int  nl_sys_num) const
overridevirtual

Reimplemented from SubProblem.

Definition at line 6582 of file FEProblemBase.C.

6583 {
6584  return _nl[nl_sys_num]->finalNonlinearResidual();
6585 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ finishMultiAppStep()

void FEProblemBase::finishMultiAppStep ( ExecFlagType  type,
bool  recurse_through_multiapp_levels = false 
)

Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.

Optionally recurse through all multi-app levels

Definition at line 5499 of file FEProblemBase.C.

Referenced by advanceMultiApps(), TransientBase::execute(), TransientMultiApp::finishStep(), and TransientBase::incrementStepOrReject().

5500 {
5501  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5502 
5503  if (multi_apps.size())
5504  {
5505  if (_verbose_multiapps)
5506  _console << COLOR_CYAN << "\nAdvancing MultiApps on " << type.name() << COLOR_DEFAULT
5507  << std::endl;
5508 
5509  for (const auto & multi_app : multi_apps)
5510  multi_app->finishStep(recurse_through_multiapp_levels);
5511 
5513 
5514  if (_verbose_multiapps)
5515  _console << COLOR_CYAN << "Finished Advancing MultiApps on " << type.name() << "\n"
5516  << COLOR_DEFAULT << std::endl;
5517  }
5518 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ forceOutput()

void FEProblemBase::forceOutput ( )

Indicates that the next call to outputStep should be forced.

This is needed by the MultiApp system, if forceOutput is called the next call to outputStep, regardless of the type supplied to the call, will be executed with EXEC_FORCED.

Forced output will NOT override the allowOutput flag.

Definition at line 6706 of file FEProblemBase.C.

Referenced by TransientMultiApp::solveStep().

6707 {
6709 }
void forceOutput()
Indicates that the next call to outputStep should be forced This is private, users should utilize FEP...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ fvBCsIntegrityCheck() [1/2]

bool FEProblemBase::fvBCsIntegrityCheck ( ) const
inline
Returns
whether to perform a boundary condition integrity check for finite volume

Definition at line 2274 of file FEProblemBase.h.

2274 { return _fv_bcs_integrity_check; }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ fvBCsIntegrityCheck() [2/2]

void FEProblemBase::fvBCsIntegrityCheck ( bool  fv_bcs_integrity_check)
inline
Parameters
fv_bcs_integrity_checkWhether to perform a boundary condition integrity check for finite volume

Definition at line 3278 of file FEProblemBase.h.

3279 {
3281  // the user has requested that we don't check integrity so we will honor that
3282  return;
3283 
3284  _fv_bcs_integrity_check = fv_bcs_integrity_check;
3285 }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ geomSearchData()

virtual GeometricSearchData& FEProblemBase::geomSearchData ( )
inlineoverridevirtual

◆ getActiveElementalMooseVariables()

const std::set< MooseVariableFEBase * > & SubProblem::getActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Get the MOOSE variables to be reinited on each element.

Parameters
tidThe thread id

Definition at line 454 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), prepareMaterials(), and SystemBase::reinitElem().

455 {
457 }
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) ...
Definition: SubProblem.h:1075

◆ getActiveFEVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 390 of file SubProblem.C.

391 {
393 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
Definition: SubProblem.h:1081

◆ getActiveFEVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 396 of file SubProblem.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

397 {
399 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
Definition: SubProblem.h:1083

◆ getActiveScalarVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 431 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit().

432 {
434 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
Definition: SubProblem.h:1085

◆ getActiveScalarVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 437 of file SubProblem.C.

438 {
440 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
Definition: SubProblem.h:1087

◆ getActualFieldVariable()

MooseVariableFieldBase & FEProblemBase::getActualFieldVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtual

Returns the variable reference for requested MooseVariableField which may be in any system.

Implements SubProblem.

Definition at line 5716 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSampleTransfer::execute().

5717 {
5718  for (auto & sys : _solver_systems)
5719  if (sys->hasVariable(var_name))
5720  return sys->getActualFieldVariable<Real>(tid, var_name);
5721  if (_aux->hasVariable(var_name))
5722  return _aux->getActualFieldVariable<Real>(tid, var_name);
5723 
5724  mooseError("Unknown variable " + var_name);
5725 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getArrayVariable()

ArrayMooseVariable & FEProblemBase::getArrayVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtual

Returns the variable reference for requested ArrayMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5740 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), and PointwiseRenormalizeVector::PointwiseRenormalizeVector().

5741 {
5742  for (auto & sys : _solver_systems)
5743  if (sys->hasVariable(var_name))
5744  return sys->getFieldVariable<RealEigenVector>(tid, var_name);
5745  if (_aux->hasVariable(var_name))
5746  return _aux->getFieldVariable<RealEigenVector>(tid, var_name);
5747 
5748  mooseError("Unknown variable " + var_name);
5749 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
Eigen::Matrix< Real, Eigen::Dynamic, 1 > RealEigenVector
Definition: MooseTypes.h:146

◆ getAuxiliarySystem()

AuxiliarySystem& FEProblemBase::getAuxiliarySystem ( )
inline

◆ getAxisymmetricRadialCoord()

unsigned int SubProblem::getAxisymmetricRadialCoord ( ) const
inherited

Returns the desired radial direction for RZ coordinate transformation.

Returns
The coordinate direction for the radial direction

Definition at line 796 of file SubProblem.C.

797 {
798  return mesh().getAxisymmetricRadialCoord();
799 }
virtual MooseMesh & mesh()=0
unsigned int getAxisymmetricRadialCoord() const
Returns the desired radial direction for RZ coordinate transformation.
Definition: MooseMesh.C:4294

◆ getBase()

const std::string& MooseBase::getBase ( ) const
inlineinherited
Returns
The registered base for this object (set via InputParameters::registerBase())

Definition at line 143 of file MooseBase.h.

Referenced by Factory::copyConstruct(), and MooseBase::uniqueParameterName().

143 { return _pars.getBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & getBase() const

◆ getBndMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getBndMaterialPropertyStorage ( )
inline

Definition at line 1694 of file FEProblemBase.h.

1694 { return _bnd_material_props; }
MaterialPropertyStorage & _bnd_material_props

◆ getCheckedPointerParam()

template<typename T >
T MooseBase::getCheckedPointerParam ( const std::string &  name,
const std::string &  error_string = "" 
) const
inherited

Verifies that the requested parameter exists and is not NULL and returns it to the caller.

The template parameter must be a pointer or an error will be thrown.

Definition at line 428 of file MooseBase.h.

429 {
430  return _pars.getCheckedPointerParam<T>(name, error_string);
431 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
T getCheckedPointerParam(const std::string &name, const std::string &error_string="") const
Verifies that the requested parameter exists and is not NULL and returns it to the caller...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getConsumedPropertyMap()

const std::map< MooseObjectName, std::set< std::string > > & SubProblem::getConsumedPropertyMap ( ) const
inherited

Return the map that tracks the object with consumed material properties.

Definition at line 742 of file SubProblem.C.

Referenced by MaterialPropertyDebugOutput::output().

743 {
745 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ getControlWarehouse()

ExecuteMooseObjectWarehouse<Control>& FEProblemBase::getControlWarehouse ( )
inline

Reference to the control logic warehouse.

Definition at line 2066 of file FEProblemBase.h.

Referenced by LibtorchArtificialNeuralNetParameters::initialSetup(), and LibtorchControlValuePostprocessor::initialSetup().

2066 { return _control_warehouse; }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.

◆ getConvergence()

Convergence & FEProblemBase::getConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtual

Gets a Convergence object.

Definition at line 2623 of file FEProblemBase.C.

Referenced by TransientBase::convergedToSteadyState(), FEProblemSolve::convergenceSetup(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), TransientBase::init(), ParsedConvergence::initializeConvergenceSymbol(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

2624 {
2625  auto * const ret = dynamic_cast<Convergence *>(_convergences.getActiveObject(name, tid).get());
2626  if (!ret)
2627  mooseError("The Convergence object '", name, "' does not exist.");
2628 
2629  return *ret;
2630 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
Base class for convergence criteria.
Definition: Convergence.h:21
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getConvergenceObjects()

const std::vector< std::shared_ptr< Convergence > > & FEProblemBase::getConvergenceObjects ( const THREAD_ID  tid = 0) const
virtual

Gets the Convergence objects.

Definition at line 2633 of file FEProblemBase.C.

2634 {
2635  return _convergences.getActiveObjects(tid);
2636 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse

◆ getCoordSystem()

Moose::CoordinateSystemType SubProblem::getCoordSystem ( SubdomainID  sid) const
inherited

Definition at line 1278 of file SubProblem.C.

Referenced by BlockRestrictable::getBlockCoordSystem(), MultiApp::getBoundingBox(), Assembly::reinitLowerDElem(), Assembly::reinitNeighborLowerDElem(), and Assembly::setCoordinateTransformation().

1279 {
1280  return mesh().getCoordSystem(sid);
1281 }
virtual MooseMesh & mesh()=0
Moose::CoordinateSystemType getCoordSystem(SubdomainID sid) const
Get the coordinate system type, e.g.
Definition: MooseMesh.C:4175

◆ getCurrentAlgebraicBndNodeRange()

const ConstBndNodeRange & FEProblemBase::getCurrentAlgebraicBndNodeRange ( )

Definition at line 9358 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::setInitialSolution().

9359 {
9361  return *_mesh.getBoundaryNodeRange();
9362 
9364 }
MooseMesh & _mesh
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289

◆ getCurrentAlgebraicElementRange()

const ConstElemRange & FEProblemBase::getCurrentAlgebraicElementRange ( )

These are the element and nodes that contribute to the jacobian and residual for this local processor.

getCurrentAlgebraicElementRange() returns the element range that contributes to the system getCurrentAlgebraicNodeRange() returns the node range that contributes to the system getCurrentAlgebraicBndNodeRange returns the boundary node ranges that contributes to the system

Definition at line 9342 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::computeScaling().

9343 {
9346 
9348 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range
MooseMesh & _mesh

◆ getCurrentAlgebraicNodeRange()

const ConstNodeRange & FEProblemBase::getCurrentAlgebraicNodeRange ( )

Definition at line 9350 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

9351 {
9353  return *_mesh.getLocalNodeRange();
9354 
9356 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
MooseMesh & _mesh

◆ getCurrentExecuteOnFlag()

const ExecFlagType & FEProblemBase::getCurrentExecuteOnFlag ( ) const

Return/set the current execution flag.

Returns EXEC_NONE when not being executed.

See also
FEProblemBase::execute

Definition at line 4559 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), MultiAppGeneralFieldTransfer::closestToPosition(), MultiAppGeneralFieldNearestLocationTransfer::computeNumSources(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), NearestPositionsDivision::divisionIndex(), PositionsFunctorValueSampler::execute(), PIDTransientControl::execute(), Terminator::execute(), Control::getControllableParameterByName(), Material::getMaterialByName(), MultiAppGeneralFieldNearestLocationTransfer::getNumDivisions(), NumPositions::getValue(), PositionsFunctorValueSampler::initialize(), DistributedPositions::initialize(), TransformedPositions::initialize(), ParsedDownSelectionPositions::initialize(), MultiAppGeneralFieldTransfer::locatePointReceivers(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), NonlinearThread::printGeneralExecutionInformation(), MultiApp::restore(), SolutionInvalidityOutput::shouldOutput(), ElementReporter::shouldStore(), NodalReporter::shouldStore(), GeneralReporter::shouldStore(), and WebServerControl::startServer().

4560 {
4561  return _current_execute_on_flag;
4562 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ getCurrentICState()

unsigned short FEProblemBase::getCurrentICState ( )

Retrieves the current initial condition state.

Returns
current initial condition state

Definition at line 9401 of file FEProblemBase.C.

Referenced by ComputeInitialConditionThread::operator()().

9402 {
9403  return _current_ic_state;
9404 }
unsigned short _current_ic_state

◆ getDataFileName()

std::string DataFileInterface::getDataFileName ( const std::string &  param) const
inherited

Deprecated method.

The data file paths are now automatically set within the InputParameters object, so using getParam<DataFileName>("param_name") is now sufficient.

Definition at line 21 of file DataFileInterface.C.

22 {
23  _parent.mooseDeprecated("getDataFileName() is deprecated. The file path is now directly set "
24  "within the InputParameters.\nUse getParam<DataFileName>(\"",
25  param,
26  "\") instead.");
27  return _parent.getParam<DataFileName>(param);
28 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const ParallelParamObject & _parent

◆ getDataFileNameByName()

std::string DataFileInterface::getDataFileNameByName ( const std::string &  relative_path) const
inherited

Deprecated method.

Use getDataFilePath() instead.

Definition at line 31 of file DataFileInterface.C.

32 {
33  _parent.mooseDeprecated("getDataFileNameByName() is deprecated. Use getDataFilePath(\"",
34  relative_path,
35  "\") instead.");
36  return getDataFilePath(relative_path);
37 }
std::string getDataFilePath(const std::string &relative_path) const
Returns the path of a data file for a given relative file path.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const ParallelParamObject & _parent

◆ getDataFilePath()

std::string DataFileInterface::getDataFilePath ( const std::string &  relative_path) const
inherited

Returns the path of a data file for a given relative file path.

This can be used for hardcoded datafile names and will search the same locations as getDataFileName

Definition at line 40 of file DataFileInterface.C.

Referenced by DataFileInterface::getDataFileNameByName().

41 {
42  // This should only ever be used with relative paths. There is no point to
43  // use this search path with an absolute path.
44  if (std::filesystem::path(relative_path).is_absolute())
45  _parent.mooseWarning("While using getDataFilePath(\"",
46  relative_path,
47  "\"): This API should not be used for absolute paths.");
48 
49  // Throw on error so that if getPath() fails, we can throw an error
50  // with the context of _parent.mooseError()
51  const auto throw_on_error_before = Moose::_throw_on_error;
53  std::optional<std::string> error;
54 
55  // This will search the data paths for this relative path
56  Moose::DataFileUtils::Path found_path;
57  try
58  {
59  found_path = Moose::DataFileUtils::getPath(relative_path);
60  }
61  catch (std::exception & e)
62  {
63  error = e.what();
64  }
65 
66  Moose::_throw_on_error = throw_on_error_before;
67  if (error)
68  _parent.mooseError(*error);
69 
70  mooseAssert(found_path.context == Moose::DataFileUtils::Context::DATA,
71  "Should only ever obtain data");
72  mooseAssert(found_path.data_name, "Should be set");
73 
74  const std::string msg =
75  "Using data file '" + found_path.path + "' from " + *found_path.data_name + " data";
76  _parent.mooseInfo(msg);
77 
78  return found_path.path;
79 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
Context context
Context for the file (where it came from)
Definition: DataFileUtils.h:48
Representation of a data file path.
Definition: DataFileUtils.h:36
Path getPath(std::string path, const std::optional< std::string > &base=std::optional< std::string >())
Get the data path for a given path, searching the registered data.
Definition: DataFileUtils.C:22
std::optional< std::string > data_name
The name of the data registry the file came from (with context == DATA)
Definition: DataFileUtils.h:50
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _throw_on_error
Variable to turn on exceptions during mooseError(), should only be used within MOOSE unit tests or wh...
Definition: Moose.C:780
const ParallelParamObject & _parent

◆ getDiracElements()

void FEProblemBase::getDiracElements ( std::set< const Elem *> &  elems)
overridevirtual

Fills "elems" with the elements that should be looped over for Dirac Kernels.

Implements SubProblem.

Definition at line 2443 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2444 {
2445  // First add in the undisplaced elements
2446  elems = _dirac_kernel_info.getElements();
2447 
2448  if (_displaced_problem)
2449  {
2450  std::set<const Elem *> displaced_elements;
2451  _displaced_problem->getDiracElements(displaced_elements);
2452 
2453  { // Use the ids from the displaced elements to get the undisplaced elements
2454  // and add them to the list
2455  for (const auto & elem : displaced_elements)
2456  elems.insert(_mesh.elemPtr(elem->id()));
2457  }
2458  }
2459 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
std::set< const Elem * > & getElements()
Returns a writeable reference to the _elements container.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ getDiscreteMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getDiscreteMaterialWarehouse ( ) const
inline

Definition at line 1917 of file FEProblemBase.h.

1917 { return _discrete_materials; }
MaterialWarehouse _discrete_materials

◆ getDisplacedProblem() [1/2]

virtual std::shared_ptr<const DisplacedProblem> FEProblemBase::getDisplacedProblem ( ) const
inlinevirtual

◆ getDisplacedProblem() [2/2]

virtual std::shared_ptr<DisplacedProblem> FEProblemBase::getDisplacedProblem ( )
inlinevirtual

Definition at line 1636 of file FEProblemBase.h.

1636 { return _displaced_problem; }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ getDistribution()

Distribution & FEProblemBase::getDistribution ( const std::string &  name)
virtual

Definition at line 2693 of file FEProblemBase.C.

Referenced by DistributionInterface::getDistribution(), and DistributionInterface::getDistributionByName().

2694 {
2695  std::vector<Distribution *> objs;
2696  theWarehouse()
2697  .query()
2698  .condition<AttribSystem>("Distribution")
2699  .condition<AttribName>(name)
2700  .queryInto(objs);
2701  if (objs.empty())
2702  mooseError("Unable to find Distribution with name '" + name + "'");
2703  return *(objs[0]);
2704 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getEvaluableElementRange()

const ConstElemRange & FEProblemBase::getEvaluableElementRange ( )

In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}.

That is, the number of evaluable elements does NOT necessarily equal to the number of local and algebraic ghosting elements. For example, if using a Lagrange basis for all variables, if a non-local, non-algebraically-ghosted element is surrounded by neighbors which are local or algebraically ghosted, then all the nodal (Lagrange) degrees of freedom associated with the non-local, non-algebraically-ghosted element will be evaluable, and hence that element will be considered evaluable.

getNonlinearEvaluableElementRange() returns the evaluable element range based on the nonlinear system dofmap; getAuxliaryEvaluableElementRange() returns the evaluable element range based on the auxiliary system dofmap; getEvaluableElementRange() returns the element range that is evaluable based on both the nonlinear dofmap and the auxliary dofmap.

Definition at line 831 of file FEProblemBase.C.

Referenced by NodalPatchRecoveryBase::finalize().

832 {
834  {
835  std::vector<const DofMap *> dof_maps(es().n_systems());
836  for (const auto i : make_range(es().n_systems()))
837  {
838  const auto & sys = es().get_system(i);
839  dof_maps[i] = &sys.get_dof_map();
840  }
842  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
843  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
844  }
846 }
const T_sys & get_system(std::string_view name) const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
IntRange< T > make_range(T beg, T end)
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range

◆ getExecutor()

virtual Executor& FEProblemBase::getExecutor ( const std::string &  name)
inlinevirtual

Definition at line 2018 of file FEProblemBase.h.

2018 { return _app.getExecutor(name); }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
Executor * getExecutor() const
Definition: MooseApp.h:328

◆ getFailNextNonlinearConvergenceCheck()

bool FEProblemBase::getFailNextNonlinearConvergenceCheck ( ) const
inline

Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2406 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), NonlinearSystem::converged(), Moose::PetscSupport::petscNonlinearConverged(), and ComputeResidualFunctor::residual().

bool getFailNextSystemConvergenceCheck() const
Whether it will fail the next system convergence check(s), triggering failed step behavior...

◆ getFailNextSystemConvergenceCheck()

bool FEProblemBase::getFailNextSystemConvergenceCheck ( ) const
inline

Whether it will fail the next system convergence check(s), triggering failed step behavior.

Definition at line 2408 of file FEProblemBase.h.

Referenced by getFailNextNonlinearConvergenceCheck(), and Moose::PetscSupport::petscLinearConverged().

bool _fail_next_system_convergence_check

◆ getFunction()

Function & FEProblemBase::getFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtual

Definition at line 2572 of file FEProblemBase.C.

Referenced by MFEMProblem::addFunction(), FunctionInterface::getFunction(), FunctionInterface::getFunctionByName(), IterationAdaptiveDT::init(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), and ParsedConvergence::initializeFunctionSymbol().

2573 {
2574  // This thread lock is necessary since this method will create functions
2575  // for all threads if one is missing.
2576  Threads::spin_mutex::scoped_lock lock(get_function_mutex);
2577 
2578  if (!hasFunction(name, tid))
2579  {
2580  // If we didn't find a function, it might be a default function, attempt to construct one now
2581  std::istringstream ss(name);
2582  Real real_value;
2583 
2584  // First see if it's just a constant. If it is, build a ConstantFunction
2585  if (ss >> real_value && ss.eof())
2586  {
2587  InputParameters params = _factory.getValidParams("ConstantFunction");
2588  params.set<Real>("value") = real_value;
2589  addFunction("ConstantFunction", ss.str(), params);
2590  }
2591  else
2592  {
2594  std::string vars = "x,y,z,t,NaN,pi,e";
2595  if (fp.Parse(name, vars) == -1) // -1 for success
2596  {
2597  // It parsed ok, so build a MooseParsedFunction
2598  InputParameters params = _factory.getValidParams("ParsedFunction");
2599  params.set<std::string>("expression") = name;
2600  addFunction("ParsedFunction", name, params);
2601  }
2602  }
2603 
2604  // Try once more
2605  if (!hasFunction(name, tid))
2606  mooseError("Unable to find function " + name);
2607  }
2608 
2609  auto * const ret = dynamic_cast<Function *>(_functions.getActiveObject(name, tid).get());
2610  if (!ret)
2611  mooseError("No function named ", name, " of appropriate type");
2612 
2613  return *ret;
2614 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
Threads::spin_mutex get_function_mutex
char ** vars
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MooseObjectWarehouse< Function > _functions
functions
virtual bool hasFunction(const std::string &name, const THREAD_ID tid=0)

◆ getFunctor()

template<typename T >
const Moose::Functor< T > & SubProblem::getFunctor ( const std::string &  name,
const THREAD_ID  tid,
const std::string &  requestor_name,
bool  requestor_is_ad 
)
inherited
Template Parameters
TThe type that the functor will return when evaluated, e.g. ADReal or Real
Parameters
nameThe name of the functor to retrieve
tidThe thread ID that we are retrieving the functor property for
requestor_nameThe name of the object that is requesting this functor property
requestor_is_adWhether the requesting object is an AD object
Returns
a constant reference to the functor

Definition at line 1214 of file SubProblem.h.

Referenced by FunctorInterface::getFunctorByName().

1218 {
1219  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1220 
1221  // Log the requestor
1222  _functor_to_requestors["wraps_" + name].insert(requestor_name);
1223 
1224  constexpr bool requested_functor_is_ad =
1225  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1226 
1227  auto & functor_to_request_info = _functor_to_request_info[tid];
1228 
1229  // Get the requested functor if we already have it
1230  auto & functors = _functors[tid];
1231  if (auto find_ret = functors.find("wraps_" + name); find_ret != functors.end())
1232  {
1233  if (functors.count("wraps_" + name) > 1)
1234  mooseError("Attempted to get a functor with the name '",
1235  name,
1236  "' but multiple (" + std::to_string(functors.count("wraps_" + name)) +
1237  ") functors match. Make sure that you do not have functor material "
1238  "properties, functions, postprocessors or variables with the same names.");
1239 
1240  auto & [true_functor_is, non_ad_functor, ad_functor] = find_ret->second;
1241  auto & functor_wrapper = requested_functor_is_ad ? *ad_functor : *non_ad_functor;
1242 
1243  auto * const functor = dynamic_cast<Moose::Functor<T> *>(&functor_wrapper);
1244  if (!functor)
1245  mooseError("A call to SubProblem::getFunctor requested a functor named '",
1246  name,
1247  "' that returns the type: '",
1248  libMesh::demangle(typeid(T).name()),
1249  "'. However, that functor already exists and returns a different type: '",
1250  functor_wrapper.returnType(),
1251  "'");
1252 
1253  if (functor->template wrapsType<Moose::NullFunctor<T>>())
1254  // Store for future checking when the actual functor gets added
1255  functor_to_request_info.emplace(name,
1256  std::make_pair(requested_functor_is_ad, requestor_is_ad));
1257  else
1258  {
1259  // We already have the actual functor
1260  if (true_functor_is == SubProblem::TrueFunctorIs::UNSET)
1261  mooseError("We already have the functor; it should not be unset");
1262 
1263  // Check for whether this is a valid request
1264  // We allow auxiliary variables and linear variables to be retrieved as non AD
1265  if (!requested_functor_is_ad && requestor_is_ad &&
1266  true_functor_is == SubProblem::TrueFunctorIs::AD &&
1268  mooseError("The AD object '",
1269  requestor_name,
1270  "' is requesting the functor '",
1271  name,
1272  "' as a non-AD functor even though it is truly an AD functor, which is not "
1273  "allowed, since this may unintentionally drop derivatives.");
1274  }
1275 
1276  return *functor;
1277  }
1278 
1279  // We don't have the functor yet but we could have it in the future. We'll create null functors
1280  // for now
1281  functor_to_request_info.emplace(name, std::make_pair(requested_functor_is_ad, requestor_is_ad));
1282  if constexpr (requested_functor_is_ad)
1283  {
1284  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1285  typedef T ADType;
1286 
1287  auto emplace_ret =
1288  functors.emplace("wraps_" + name,
1289  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1290  std::make_unique<Moose::Functor<NonADType>>(
1291  std::make_unique<Moose::NullFunctor<NonADType>>()),
1292  std::make_unique<Moose::Functor<ADType>>(
1293  std::make_unique<Moose::NullFunctor<ADType>>())));
1294 
1295  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1296  ? std::get<2>(emplace_ret->second)
1297  : std::get<1>(emplace_ret->second)));
1298  }
1299  else
1300  {
1301  typedef T NonADType;
1302  typedef typename Moose::ADType<T>::type ADType;
1303 
1304  auto emplace_ret =
1305  functors.emplace("wraps_" + name,
1306  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1307  std::make_unique<Moose::Functor<NonADType>>(
1308  std::make_unique<Moose::NullFunctor<NonADType>>()),
1309  std::make_unique<Moose::Functor<ADType>>(
1310  std::make_unique<Moose::NullFunctor<ADType>>())));
1311 
1312  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1313  ? std::get<2>(emplace_ret->second)
1314  : std::get<1>(emplace_ret->second)));
1315  }
1316 }
std::map< std::string, std::set< std::string > > _functor_to_requestors
The requestors of functors where the key is the prop name and the value is a set of names of requesto...
Definition: SubProblem.h:1157
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
std::string demangle(const char *name)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
virtual bool hasLinearVariable(const std::string &var_name) const
Whether or not this problem has this linear variable.
Definition: SubProblem.C:802
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...
virtual bool hasAuxiliaryVariable(const std::string &var_name) const
Whether or not this problem has this auxiliary variable.
Definition: SubProblem.C:811

◆ getFVInitialConditionWarehouse()

const FVInitialConditionWarehouse& FEProblemBase::getFVInitialConditionWarehouse ( ) const
inline

Return FVInitialCondition storage.

Definition at line 1721 of file FEProblemBase.h.

Referenced by ComputeFVInitialConditionThread::operator()(), and ComputeFVInitialConditionThread::printGeneralExecutionInformation().

1721 { return _fv_ics; }
FVInitialConditionWarehouse _fv_ics

◆ getFVMatsAndDependencies()

void FEProblemBase::getFVMatsAndDependencies ( SubdomainID  block_id,
std::vector< std::shared_ptr< MaterialBase >> &  face_materials,
std::vector< std::shared_ptr< MaterialBase >> &  neighbor_materials,
std::set< MooseVariableFieldBase *> &  variables,
const THREAD_ID  tid 
)

Get the materials and variables potentially needed for FV.

Parameters
block_idSubdomainID The subdomain id that we want to retrieve materials for
face_materialsThe face materials container that we will fill
neighbor_materialsThe neighbor materials container that we will fill
variablesThe variables container that we will fill that our materials depend on
tidThe thread id

Definition at line 9037 of file FEProblemBase.C.

9043 {
9044  if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9045  {
9046  auto & this_face_mats =
9048  for (std::shared_ptr<MaterialBase> face_mat : this_face_mats)
9049  if (face_mat->ghostable())
9050  {
9051  face_materials.push_back(face_mat);
9052  auto & var_deps = face_mat->getMooseVariableDependencies();
9053  for (auto * var : var_deps)
9054  {
9055  if (!var->isFV())
9056  mooseError(
9057  "Ghostable materials should only have finite volume variables coupled into them.");
9058  else if (face_mat->hasStatefulProperties())
9059  mooseError("Finite volume materials do not currently support stateful properties.");
9060  variables.insert(var);
9061  }
9062  }
9063  }
9064 
9065  if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9066  {
9067  auto & this_neighbor_mats =
9069  for (std::shared_ptr<MaterialBase> neighbor_mat : this_neighbor_mats)
9070  if (neighbor_mat->ghostable())
9071  {
9072  neighbor_materials.push_back(neighbor_mat);
9073 #ifndef NDEBUG
9074  auto & var_deps = neighbor_mat->getMooseVariableDependencies();
9075  for (auto * var : var_deps)
9076  {
9077  if (!var->isFV())
9078  mooseError(
9079  "Ghostable materials should only have finite volume variables coupled into them.");
9080  else if (neighbor_mat->hasStatefulProperties())
9081  mooseError("Finite volume materials do not currently support stateful properties.");
9082  auto pr = variables.insert(var);
9083  mooseAssert(!pr.second,
9084  "We should not have inserted any new variables dependencies from our "
9085  "neighbor materials that didn't exist for our face materials");
9086  }
9087 #endif
9088  }
9089  }
9090 }
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialWarehouse _materials

◆ getHitNode()

const hit::Node* MooseBase::getHitNode ( ) const
inlineinherited
Returns
The block-level hit node for this object, if any

Definition at line 132 of file MooseBase.h.

Referenced by addAnyRedistributers(), MooseBase::callMooseError(), MooseBase::getHitNode(), and MooseBase::messagePrefix().

132 { return getHitNode(_pars); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const hit::Node * getHitNode() const
Definition: MooseBase.h:132

◆ getIndicatorWarehouse()

const MooseObjectWarehouse<Indicator>& FEProblemBase::getIndicatorWarehouse ( )
inline

Return indicator/marker storage.

Definition at line 1705 of file FEProblemBase.h.

1705 { return _indicators; }
MooseObjectWarehouse< Indicator > _indicators

◆ getInitialConditionWarehouse()

const InitialConditionWarehouse& FEProblemBase::getInitialConditionWarehouse ( ) const
inline

Return InitialCondition storage.

Definition at line 1716 of file FEProblemBase.h.

Referenced by ComputeBoundaryInitialConditionThread::onNode(), ComputeInitialConditionThread::operator()(), and ComputeInitialConditionThread::printGeneralExecutionInformation().

1716 { return _ics; }
InitialConditionWarehouse _ics

◆ getInterfaceMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getInterfaceMaterialsWarehouse ( ) const
inline

Definition at line 1918 of file FEProblemBase.h.

1918 { return _interface_materials; }
MaterialWarehouse _interface_materials

◆ getInternalSideIndicatorWarehouse()

const MooseObjectWarehouse<InternalSideIndicatorBase>& FEProblemBase::getInternalSideIndicatorWarehouse ( )
inline

Definition at line 1706 of file FEProblemBase.h.

1707  {
1709  }
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators

◆ getLinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getLinearConvergenceNames ( ) const

Gets the linear convergence object name(s).

Definition at line 9146 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscLinearConverged().

9147 {
9149  return *_linear_convergence_names;
9150  mooseError("The linear convergence name(s) have not been set.");
9151 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ getLinearSystem() [1/2]

LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num)
inline

Get non-constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3224 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Moose::compute_linear_system(), ComputeLinearFVGreenGaussGradientFaceThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Moose::PetscSupport::petscSetDefaults(), and FEProblemSolve::solve().

3225 {
3226  mooseAssert(sys_num < _linear_systems.size(),
3227  "System number greater than the number of linear systems");
3228  return *_linear_systems[sys_num];
3229 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystem() [2/2]

const LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num) const
inline

Get a constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3232 of file FEProblemBase.h.

3233 {
3234  mooseAssert(sys_num < _linear_systems.size(),
3235  "System number greater than the number of linear systems");
3236  return *_linear_systems[sys_num];
3237 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystemNames()

const std::vector<LinearSystemName>& FEProblemBase::getLinearSystemNames ( ) const
inline
Returns
the linear system names in the problem

Definition at line 2487 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), and MultiSystemSolveObject::MultiSystemSolveObject().

2487 { return _linear_sys_names; }
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.

◆ getLineSearch()

LineSearch* FEProblemBase::getLineSearch ( )
inlineoverridevirtual

getter for the MOOSE line search

Implements SubProblem.

Definition at line 725 of file FEProblemBase.h.

Referenced by DisplacedProblem::getLineSearch().

725 { return _line_search.get(); }
std::shared_ptr< LineSearch > _line_search

◆ getMarkerWarehouse()

const MooseObjectWarehouse<Marker>& FEProblemBase::getMarkerWarehouse ( )
inline

Definition at line 1710 of file FEProblemBase.h.

1710 { return _markers; }
MooseObjectWarehouse< Marker > _markers

◆ getMaterial()

std::shared_ptr< MaterialBase > FEProblemBase::getMaterial ( std::string  name,
Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
bool  no_warn = false 
)

Return a pointer to a MaterialBase object.

If no_warn is true, suppress warning about retrieving a material reference potentially during the material's calculation.

This will return enabled or disabled objects, the main purpose is for iterative materials.

Definition at line 3746 of file FEProblemBase.C.

Referenced by MaterialPropertyInterface::getMaterialByName().

3750 {
3751  switch (type)
3752  {
3754  name += "_neighbor";
3755  break;
3757  name += "_face";
3758  break;
3759  default:
3760  break;
3761  }
3762 
3763  std::shared_ptr<MaterialBase> material = _all_materials[type].getActiveObject(name, tid);
3764  if (!no_warn && material->getParam<bool>("compute") && type == Moose::BLOCK_MATERIAL_DATA)
3765  mooseWarning("You are retrieving a Material object (",
3766  material->name(),
3767  "), but its compute flag is set to true. This indicates that MOOSE is "
3768  "computing this property which may not be desired and produce un-expected "
3769  "results.");
3770 
3771  return material;
3772 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
MaterialWarehouse _all_materials

◆ getMaterialData()

MaterialData & FEProblemBase::getMaterialData ( Moose::MaterialDataType  type,
const THREAD_ID  tid = 0 
) const

Definition at line 3775 of file FEProblemBase.C.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and resizeMaterialData().

3776 {
3777  switch (type)
3778  {
3780  return _material_props.getMaterialData(tid);
3787  }
3788 
3789  mooseError("FEProblemBase::getMaterialData(): Invalid MaterialDataType ", type);
3790 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyBlockNames()

std::vector< SubdomainName > SubProblem::getMaterialPropertyBlockNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 489 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBlockNames().

490 {
491  std::set<SubdomainID> blocks = getMaterialPropertyBlocks(prop_name);
492  std::vector<SubdomainName> block_names;
493  block_names.reserve(blocks.size());
494  for (const auto & block_id : blocks)
495  {
496  SubdomainName name;
497  name = mesh().getMesh().subdomain_name(block_id);
498  if (name.empty())
499  {
500  std::ostringstream oss;
501  oss << block_id;
502  name = oss.str();
503  }
504  block_names.push_back(name);
505  }
506 
507  return block_names;
508 }
virtual MooseMesh & mesh()=0
char ** blocks
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
std::string & subdomain_name(subdomain_id_type id)
virtual std::set< SubdomainID > getMaterialPropertyBlocks(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:473

◆ getMaterialPropertyBlocks()

std::set< SubdomainID > SubProblem::getMaterialPropertyBlocks ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 473 of file SubProblem.C.

Referenced by SubProblem::getMaterialPropertyBlockNames(), and MaterialPropertyInterface::getMaterialPropertyBlocks().

474 {
475  std::set<SubdomainID> blocks;
476 
477  for (const auto & it : _map_block_material_props)
478  {
479  const std::set<std::string> & prop_names = it.second;
480  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
481  if (name_it != prop_names.end())
482  blocks.insert(it.first);
483  }
484 
485  return blocks;
486 }
char ** blocks
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ getMaterialPropertyBoundaryIDs()

std::set< BoundaryID > SubProblem::getMaterialPropertyBoundaryIDs ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 525 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryIDs(), and SubProblem::getMaterialPropertyBoundaryNames().

526 {
527  std::set<BoundaryID> boundaries;
528 
529  for (const auto & it : _map_boundary_material_props)
530  {
531  const std::set<std::string> & prop_names = it.second;
532  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
533  if (name_it != prop_names.end())
534  boundaries.insert(it.first);
535  }
536 
537  return boundaries;
538 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ getMaterialPropertyBoundaryNames()

std::vector< BoundaryName > SubProblem::getMaterialPropertyBoundaryNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 541 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryNames().

542 {
543  std::set<BoundaryID> boundaries = getMaterialPropertyBoundaryIDs(prop_name);
544  std::vector<BoundaryName> boundary_names;
545  boundary_names.reserve(boundaries.size());
546  const BoundaryInfo & boundary_info = mesh().getMesh().get_boundary_info();
547 
548  for (const auto & bnd_id : boundaries)
549  {
550  BoundaryName name;
551  if (bnd_id == Moose::ANY_BOUNDARY_ID)
552  name = "ANY_BOUNDARY_ID";
553  else
554  {
555  name = boundary_info.get_sideset_name(bnd_id);
556  if (name.empty())
557  {
558  std::ostringstream oss;
559  oss << bnd_id;
560  name = oss.str();
561  }
562  }
563  boundary_names.push_back(name);
564  }
565 
566  return boundary_names;
567 }
virtual MooseMesh & mesh()=0
virtual std::set< BoundaryID > getMaterialPropertyBoundaryIDs(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:525
const BoundaryInfo & get_boundary_info() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
const std::string & get_sideset_name(boundary_id_type id) const
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ getMaterialPropertyRegistry()

const MaterialPropertyRegistry& FEProblemBase::getMaterialPropertyRegistry ( ) const
inline
Returns
A reference to the material property registry

Definition at line 1683 of file FEProblemBase.h.

Referenced by MaterialBase::checkStatefulSanity().

1684  {
1685  return _material_prop_registry;
1686  }
MaterialPropertyRegistry _material_prop_registry

◆ getMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getMaterialPropertyStorage ( )
inline

Return a reference to the material property storage.

Returns
A const reference to the material property storage

Definition at line 1693 of file FEProblemBase.h.

1693 { return _material_props; }
MaterialPropertyStorage & _material_props

◆ getMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getMaterialWarehouse ( ) const
inline

◆ getMatrixTagID()

TagID SubProblem::getMatrixTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 342 of file SubProblem.C.

Referenced by Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), DisplacedProblem::getMatrixTagID(), TaggingInterface::TaggingInterface(), and TaggingInterface::useMatrixTag().

343 {
344  auto tag_name_upper = MooseUtils::toUpper(tag_name);
345 
346  if (!matrixTagExists(tag_name))
347  mooseError("Matrix tag: ",
348  tag_name,
349  " does not exist. ",
350  "If this is a TimeKernel then this may have happened because you didn't "
351  "specify a Transient Executioner.");
352 
353  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
354 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ getMatrixTags()

virtual std::map<TagName, TagID>& SubProblem::getMatrixTags ( )
inlinevirtualinherited

Return all matrix tags in the system, where a tag is represented by a map from name to ID.

Definition at line 253 of file SubProblem.h.

Referenced by NonlinearSystemBase::computeJacobian(), computeJacobian(), EigenProblem::computeJacobianAB(), NonlinearSystemBase::computeJacobianBlocks(), EigenProblem::computeJacobianTag(), computeLinearSystemSys(), and computeResidualAndJacobian().

253 { return _matrix_tag_name_to_tag_id; }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041

◆ getMaxQps()

unsigned int FEProblemBase::getMaxQps ( ) const
Returns
The maximum number of quadrature points in use on any element in this problem.

Definition at line 1589 of file FEProblemBase.C.

Referenced by MaterialBase::getMaxQps(), MaterialPropertyInterface::getMaxQps(), initialSetup(), reinitDirac(), Material::subdomainSetup(), and updateMaxQps().

1590 {
1592  mooseError("Max QPS uninitialized");
1593  return _max_qps;
1594 }
auto max(const L &left, const R &right)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
unsigned int _max_qps
Maximum number of quadrature points used in the problem.

◆ getMaxScalarOrder()

Order FEProblemBase::getMaxScalarOrder ( ) const
Returns
The maximum order for all scalar variables in this problem's systems.

Definition at line 1597 of file FEProblemBase.C.

Referenced by ScalarCoupleable::coupledScalarOrder(), ScalarCoupleable::getADDefaultValue(), and ScalarCoupleable::getDefaultValue().

1598 {
1599  return _max_scalar_order;
1600 }
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ getMeshDivision()

MeshDivision & FEProblemBase::getMeshDivision ( const std::string &  name,
const THREAD_ID  tid = 0 
) const

Get a MeshDivision.

Definition at line 2654 of file FEProblemBase.C.

Referenced by NestedDivision::NestedDivision().

2655 {
2656  auto * const ret = dynamic_cast<MeshDivision *>(_mesh_divisions.getActiveObject(name, tid).get());
2657  if (!ret)
2658  mooseError("No MeshDivision object named ", name, " of appropriate type");
2659  return *ret;
2660 }
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getMooseApp()

MooseApp& MooseBase::getMooseApp ( ) const
inlineinherited

Get the MooseApp this class is associated with.

Definition at line 83 of file MooseBase.h.

Referenced by ChainControlSetupAction::act(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), advanceState(), ParsedChainControl::buildFunction(), ReporterTransferInterface::checkHasReporterValue(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), Coupleable::checkWritableVar(), ComponentPhysicsInterface::ComponentPhysicsInterface(), Coupleable::Coupleable(), MortarData::createMortarInterface(), EigenProblem::doFreeNonlinearPowerIterations(), Terminator::execute(), FEProblemSolve::FEProblemSolve(), SolutionInvalidInterface::flagInvalidSolutionInternal(), ChainControl::getChainControlDataSystem(), DefaultConvergenceBase::getSharedExecutionerParam(), ChainControlDataPostprocessor::initialSetup(), MaterialPropertyInterface::MaterialPropertyInterface(), MooseVariableDataFV< OutputType >::MooseVariableDataFV(), ProgressOutput::output(), PetscOutputInterface::petscLinearOutput(), PetscOutputInterface::petscNonlinearOutput(), PetscOutputInterface::PetscOutputInterface(), PostprocessorInterface::postprocessorsAdded(), MultiApp::preTransfer(), Reporter::Reporter(), ReporterInterface::reportersAdded(), MultiApp::restore(), and VectorPostprocessorInterface::vectorPostprocessorsAdded().

83 { return _app; }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ getMortarInterface() [1/2]

const AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
) const

Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains.

Definition at line 7828 of file FEProblemBase.C.

7832 {
7834  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
7835 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterface() [2/2]

AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
)

Definition at line 7838 of file FEProblemBase.C.

7842 {
7844  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
7845 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterfaces()

const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & FEProblemBase::getMortarInterfaces ( bool  on_displaced) const

Definition at line 7848 of file FEProblemBase.C.

Referenced by computeUserObjectsInternal(), and NonlinearSystemBase::initialSetup().

7849 {
7850  return _mortar_data.getMortarInterfaces(on_displaced);
7851 }
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
Return all automatic mortar generation objects on either the displaced or undisplaced mesh...
Definition: MortarData.h:73
MortarData _mortar_data

◆ getMortarUserObjects() [1/2]

std::vector< MortarUserObject * > FEProblemBase::getMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced,
const std::vector< MortarUserObject *> &  mortar_uo_superset 
)
private

Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID, and displaced parameters, given some initial set.

Definition at line 9242 of file FEProblemBase.C.

Referenced by computeUserObjectsInternal(), getMortarUserObjects(), and reinitMortarUserObjects().

9246 {
9247  std::vector<MortarUserObject *> mortar_uos;
9248  auto * const subproblem = displaced ? static_cast<SubProblem *>(_displaced_problem.get())
9249  : static_cast<SubProblem *>(this);
9250  for (auto * const obj : mortar_uo_superset)
9251  if (obj->onInterface(primary_boundary_id, secondary_boundary_id) &&
9252  (&obj->getSubProblem() == subproblem))
9253  mortar_uos.push_back(obj);
9254 
9255  return mortar_uos;
9256 }
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ getMortarUserObjects() [2/2]

std::vector< MortarUserObject * > FEProblemBase::getMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced 
)
private

Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID, and displaced parameters from the entire active mortar user object set.

Definition at line 9259 of file FEProblemBase.C.

9262 {
9263  std::vector<MortarUserObject *> mortar_uos;
9264  theWarehouse()
9265  .query()
9267  .queryInto(mortar_uos);
9268  return getMortarUserObjects(primary_boundary_id, secondary_boundary_id, displaced, mortar_uos);
9269 }
TheWarehouse & theWarehouse() const
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getMultiApp()

std::shared_ptr< MultiApp > FEProblemBase::getMultiApp ( const std::string &  multi_app_name) const

Get a MultiApp object by name.

Definition at line 5310 of file FEProblemBase.C.

Referenced by addTransfer(), MultiAppPositions::initialize(), and MultiAppTransfer::MultiAppTransfer().

5311 {
5312  return _multi_apps.getObject(multi_app_name);
5313 }
std::shared_ptr< T > getObject(const std::string &name, THREAD_ID tid=0) const
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getMultiAppFixedPointConvergenceName()

const ConvergenceName & FEProblemBase::getMultiAppFixedPointConvergenceName ( ) const

Gets the MultiApp fixed point convergence object name.

Definition at line 9154 of file FEProblemBase.C.

Referenced by addDefaultMultiAppFixedPointConvergence(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

9155 {
9158  else
9159  mooseError("The fixed point convergence name has not been set.");
9160 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getMultiAppTransferWarehouse()

const ExecuteMooseObjectWarehouse< Transfer > & FEProblemBase::getMultiAppTransferWarehouse ( Transfer::DIRECTION  direction) const

Return the complete warehouse for MultiAppTransfer object for the given direction.

Definition at line 5405 of file FEProblemBase.C.

5406 {
5407  if (direction == MultiAppTransfer::TO_MULTIAPP)
5408  return _to_multi_app_transfers;
5409  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5411  else
5413 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getMultiAppWarehouse()

ExecuteMooseObjectWarehouse<MultiApp>& FEProblemBase::getMultiAppWarehouse ( )
inline

Definition at line 2090 of file FEProblemBase.h.

Referenced by MooseApp::errorCheck().

2090 { return _multi_apps; }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getNeighborMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getNeighborMaterialPropertyStorage ( )
inline

Definition at line 1695 of file FEProblemBase.h.

1696  {
1697  return _neighbor_material_props;
1698  }
MaterialPropertyStorage & _neighbor_material_props

◆ getNonlinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getNonlinearConvergenceNames ( ) const

Gets the nonlinear system convergence object name(s).

Definition at line 9122 of file FEProblemBase.C.

Referenced by ReferenceResidualProblem::addDefaultNonlinearConvergence(), addDefaultNonlinearConvergence(), FEProblemSolve::convergenceSetup(), and Moose::PetscSupport::petscNonlinearConverged().

9123 {
9126  mooseError("The nonlinear system convergence name(s) have not been set.");
9127 }
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getNonlinearEvaluableElementRange()

const ConstElemRange & FEProblemBase::getNonlinearEvaluableElementRange ( )

Definition at line 849 of file FEProblemBase.C.

Referenced by ElemSideNeighborLayersTester::execute().

850 {
852  {
853  std::vector<const DofMap *> dof_maps(_nl.size());
854  for (const auto i : index_range(dof_maps))
855  dof_maps[i] = &_nl[i]->dofMap();
857  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
858  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
859  }
860 
862 }
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
MooseMesh & _mesh
auto index_range(const T &sizable)

◆ getNonlinearSystem()

NonlinearSystem & FEProblemBase::getNonlinearSystem ( const unsigned int  sys_num)
virtual

Reimplemented in FEProblem.

Definition at line 2669 of file FEProblemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), and PNGOutput::makeMeshFunc().

2670 {
2671  mooseDeprecated("FEProblemBase::getNonlinearSystem() is deprecated, please use "
2672  "FEProblemBase::getNonlinearSystemBase() \n");
2673 
2674  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
2675  auto nl_sys = std::dynamic_pointer_cast<NonlinearSystem>(_nl[sys_num]);
2676 
2677  if (!nl_sys)
2678  mooseError("This is not a NonlinearSystem");
2679 
2680  return *nl_sys;
2681 }
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
Nonlinear system to be solved.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getNonlinearSystemBase() [1/2]

NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num)
inline

Definition at line 3180 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Adaptivity::adaptMesh(), DisplacedProblem::addTimeIntegrator(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), Eigenvalue::checkIntegrity(), PseudoTimestep::currentResidualNorm(), DisplacedProblem::DisplacedProblem(), AB2PredictorCorrector::estimateTimeError(), VariableResidual::execute(), MatrixSymmetryCheck::execute(), GreaterThanLessThanPostprocessor::execute(), Executioner::Executioner(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NumResidualEvaluations::getValue(), Residual::getValue(), Adaptivity::init(), ReferenceResidualConvergence::initialSetup(), ActivateElementsUserObjectBase::initSolutions(), Kernel::Kernel(), BoundaryElemIntegrityCheckThread::operator()(), DOFMapOutput::output(), SolutionHistory::output(), ConsoleUtils::outputExecutionInformation(), Console::outputSystemInformation(), Moose::PetscSupport::petscSetDefaults(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Moose::PetscSupport::setLineSearchFromParams(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), AB2PredictorCorrector::step(), DisplacedProblem::syncSolutions(), and Console::writeVariableNorms().

3181 {
3182  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3183  return *_nl[sys_num];
3184 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemBase() [2/2]

const NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num) const
inline

Definition at line 3187 of file FEProblemBase.h.

3188 {
3189  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3190  return *_nl[sys_num];
3191 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemNames()

const std::vector<NonlinearSystemName>& FEProblemBase::getNonlinearSystemNames ( ) const
inline
Returns
the nolinear system names in the problem

Definition at line 2483 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), Console::meshChanged(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputExecutionInformation(), and Console::outputSystemInformation().

2483 { return _nl_sys_names; }
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.

◆ getNumCyclesCompleted()

unsigned int FEProblemBase::getNumCyclesCompleted ( )
inline
Returns
The number of adaptivity cycles completed.

Definition at line 1746 of file FEProblemBase.h.

1746 { return _cycles_completed; }
unsigned int _cycles_completed

◆ getParam() [1/2]

template<typename T >
const T & MooseBase::getParam ( const std::string &  name) const
inherited

Retrieve a parameter for the object.

Parameters
nameThe name of the parameter
Returns
The value of the parameter

Definition at line 384 of file MooseBase.h.

Referenced by CreateDisplacedProblemAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), addOutput(), DiffusionPhysicsBase::addPostprocessors(), ADNodalKernel::ADNodalKernel(), ArrayParsedAux::ArrayParsedAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), ComponentPhysicsInterface::ComponentPhysicsInterface(), FunctorAux::computeValue(), Console::Console(), createTagSolutions(), CutMeshByLevelSetGenerator::CutMeshByLevelSetGenerator(), DebugResidualAux::DebugResidualAux(), AccumulateReporter::declareLateValues(), DerivativeParsedMaterialTempl< is_ad >::DerivativeParsedMaterialTempl(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), EigenKernel::EigenKernel(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), FEProblemSolve::FEProblemSolve(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), ParsedSubdomainGeneratorBase::functionInitialize(), FVInterfaceKernel::FVInterfaceKernel(), BoundaryLayerSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), CoarsenBlockGenerator::generate(), GeneratedMeshGenerator::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), BlockDeletionGenerator::generate(), BreakMeshByBlockGenerator::generate(), MeshExtruderGenerator::generate(), GenericConstantRankTwoTensorTempl< is_ad >::GenericConstantRankTwoTensorTempl(), GenericConstantSymmetricRankTwoTensorTempl< is_ad >::GenericConstantSymmetricRankTwoTensorTempl(), MooseApp::getCheckpointDirectories(), DataFileInterface::getDataFileName(), ExecutorInterface::getExecutor(), GhostingUserObject::GhostingUserObject(), FixedPointIterationAdaptiveDT::init(), TimeSequenceStepper::init(), IterationAdaptiveDT::init(), AdvancedOutput::init(), AttribThread::initFrom(), AttribSysNum::initFrom(), AttribResidualObject::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), Console::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseMesh::MooseMesh(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MultiSystemSolveObject::MultiSystemSolveObject(), NEML2ModelExecutor::NEML2ModelExecutor(), NestedDivision::NestedDivision(), PerfGraphOutput::output(), Console::outputSystemInformation(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedElementDeletionGenerator::ParsedElementDeletionGenerator(), ParsedGenerateNodeset::ParsedGenerateNodeset(), ParsedGenerateSideset::ParsedGenerateSideset(), ParsedMaterialTempl< is_ad >::ParsedMaterialTempl(), ParsedNodeTransformGenerator::ParsedNodeTransformGenerator(), ParsedODEKernel::ParsedODEKernel(), ParsedPostprocessor::ParsedPostprocessor(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), PiecewiseConstantByBlockMaterialTempl< is_ad >::PiecewiseConstantByBlockMaterialTempl(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), Moose::FV::setInterpolationMethod(), SetupMeshAction::setupMesh(), Output::setWallTimeIntervalFromCommandLineParam(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), TimePeriod::TimePeriod(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and VectorOfPostprocessors::VectorOfPostprocessors().

385 {
386  return InputParameters::getParamHelper<T>(name, _pars);
387 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getParam() [2/2]

template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > MooseBase::getParam ( const std::string &  param1,
const std::string &  param2 
) const
inherited

Retrieve two parameters and provide pair of parameters for the object.

Parameters
param1The name of first parameter
param2The name of second parameter
Returns
Vector of pairs of first and second parameters

Definition at line 421 of file MooseBase.h.

422 {
423  return _pars.get<T1, T2>(param1, param2);
424 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.

◆ getPetscOptions()

Moose::PetscSupport::PetscOptions& FEProblemBase::getPetscOptions ( )
inline

◆ getPositionsObject()

const Positions & FEProblemBase::getPositionsObject ( const std::string &  name) const

Get the Positions object by its name.

Parameters
nameThe name of the Positions object being retrieved
Returns
Const reference to the Positions object

Definition at line 4381 of file FEProblemBase.C.

Referenced by DistributedPositions::DistributedPositions(), MultiApp::fillPositions(), ParsedDownSelectionPositions::initialize(), Positions::initialized(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), and TransformedPositions::TransformedPositions().

4382 {
4383  std::vector<Positions *> objs;
4384  theWarehouse()
4385  .query()
4386  .condition<AttribSystem>("UserObject")
4387  .condition<AttribName>(name)
4388  .queryInto(objs);
4389  if (objs.empty())
4390  mooseError("Unable to find Positions object with name '" + name + "'");
4391  mooseAssert(objs.size() == 1, "Should only find one Positions");
4392  return *(objs[0]);
4393 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getPostprocessorValueByName()

const PostprocessorValue & FEProblemBase::getPostprocessorValueByName ( const PostprocessorName &  name,
std::size_t  t_index = 0 
) const

Get a read-only reference to the value associated with a Postprocessor that exists.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for retrieving values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4415 of file FEProblemBase.C.

Referenced by MFEMProblem::addPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appPostprocessorValue(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), EigenProblem::formNorm(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializePostprocessorSymbol(), EigenExecutionerBase::inversePowerIteration(), Exodus::outputPostprocessors(), TableOutput::outputPostprocessorsRow(), EigenProblem::postScaleEigenVector(), and TableOutput::shouldOutputPostprocessorsRow().

4417 {
4419  t_index);
4420 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ getRegularMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getRegularMaterialsWarehouse ( ) const
inline

Definition at line 1916 of file FEProblemBase.h.

Referenced by Moose::Mortar::setupMortarMaterials().

1916 { return _materials; }
MaterialWarehouse _materials

◆ getRenamedParam()

template<typename T >
const T & MooseBase::getRenamedParam ( const std::string &  old_name,
const std::string &  new_name 
) const
inherited

Retrieve a renamed parameter for the object.

This helper makes sure we check both names before erroring, and that only one parameter is passed to avoid silent errors

Parameters
old_namethe old name for the parameter
new_namethe new name for the parameter

Definition at line 398 of file MooseBase.h.

399 {
400  // Most important: accept new parameter
401  if (isParamSetByUser(new_name) && !isParamValid(old_name))
402  return getParam<T>(new_name);
403  // Second most: accept old parameter
404  if (isParamValid(old_name) && !isParamSetByUser(new_name))
405  return getParam<T>(old_name);
406  // Third most: accept default for new parameter
407  if (isParamValid(new_name) && !isParamValid(old_name))
408  return getParam<T>(new_name);
409  // Refuse: no default, no value passed
410  if (!isParamValid(old_name) && !isParamValid(new_name))
411  mooseError("parameter '" + new_name +
412  "' is being retrieved without being set.\nDid you misspell it?");
413  // Refuse: both old and new parameters set by user
414  else
415  mooseError("Parameter '" + new_name + "' may not be provided alongside former parameter '" +
416  old_name + "'");
417 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195
bool isParamSetByUser(const std::string &name) const
Test if the supplied parameter is set by a user, as opposed to not set or set to default.
Definition: MooseBase.h:201

◆ getReporterData() [1/2]

const ReporterData& FEProblemBase::getReporterData ( ) const
inline

Provides const access the ReporterData object.

NOTE: There is a private non-const version of this function that uses a key object only constructable by the correct interfaces. This was done by design to encourage the use of the Reporter and ReporterInterface classes.

Definition at line 1103 of file FEProblemBase.h.

Referenced by ReporterTransferInterface::addReporterTransferMode(), ReporterTransferInterface::checkHasReporterValue(), ReporterTransferInterface::clearVectorReporter(), ConstantPostprocessor::ConstantPostprocessor(), AccumulateReporter::declareAccumulateHelper(), ReporterTransferInterface::declareClone(), AccumulateReporter::declareLateValues(), VectorPostprocessor::declareVector(), ReporterTransferInterface::declareVectorClone(), execute(), PostprocessorInterface::getPostprocessorValueByNameInternal(), VectorPostprocessorInterface::getVectorPostprocessorByNameHelper(), VectorPostprocessorInterface::getVectorPostprocessorContextByNameHelper(), PostprocessorInterface::hasPostprocessorByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterPositions::initialize(), ReporterTimes::initialize(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializeSymbols(), JSONOutput::initialSetup(), PostprocessorInterface::isDefaultPostprocessorValueByName(), ReporterDebugOutput::output(), Receiver::Receiver(), ReporterTransferInterface::resizeReporter(), ReporterTransferInterface::sumVectorReporter(), ReporterTransferInterface::transferFromVectorReporter(), ReporterTransferInterface::transferReporter(), and ReporterTransferInterface::transferToVectorReporter().

1103 { return _reporter_data; }
ReporterData _reporter_data

◆ getReporterData() [2/2]

ReporterData& FEProblemBase::getReporterData ( ReporterData::WriteKey  )
inline

Provides non-const access the ReporterData object that is used to store reporter values.

see ReporterData.h

Definition at line 1110 of file FEProblemBase.h.

1110 { return _reporter_data; }
ReporterData _reporter_data

◆ getRestartableData()

template<typename T , typename... Args>
const T & Restartable::getRestartableData ( const std::string &  data_name) const
protectedinherited

Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object.

Forwarded arguments are not allowed in this case because we assume that the object is restarted and we won't need different constructors to initialize it.

NOTE: This returns a const reference! Make sure you store it in a const reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)

Definition at line 287 of file Restartable.h.

288 {
289  return declareRestartableDataHelper<T>(data_name, nullptr).get();
290 }

◆ getSampler()

Sampler & FEProblemBase::getSampler ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtual

Definition at line 2717 of file FEProblemBase.C.

Referenced by SamplerInterface::getSampler(), and SamplerInterface::getSamplerByName().

2718 {
2719  std::vector<Sampler *> objs;
2720  theWarehouse()
2721  .query()
2722  .condition<AttribSystem>("Sampler")
2723  .condition<AttribThread>(tid)
2724  .condition<AttribName>(name)
2725  .queryInto(objs);
2726  if (objs.empty())
2727  mooseError(
2728  "Unable to find Sampler with name '" + name +
2729  "', if you are attempting to access this object in the constructor of another object then "
2730  "the object being retrieved must occur prior to the caller within the input file.");
2731  return *(objs[0]);
2732 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getScalarVariable()

MooseVariableScalar & FEProblemBase::getScalarVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtual

Returns the scalar variable reference from whichever system contains it.

Implements SubProblem.

Definition at line 5764 of file FEProblemBase.C.

Referenced by addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppScalarToAuxScalarTransfer::execute(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), TableOutput::outputScalarVariables(), and Exodus::outputScalarVariables().

5765 {
5766  for (auto & sys : _solver_systems)
5767  if (sys->hasScalarVariable(var_name))
5768  return sys->getScalarVariable(tid, var_name);
5769  if (_aux->hasScalarVariable(var_name))
5770  return _aux->getScalarVariable(tid, var_name);
5771 
5772  mooseError("Unknown variable " + var_name);
5773 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSharedPtr() [1/2]

std::shared_ptr< MooseObject > MooseObject::getSharedPtr ( )
inherited

Get another shared pointer to this object that has the same ownership group.

Wrapper around shared_from_this().

Definition at line 61 of file MooseObject.C.

Referenced by MFEMProblem::addBoundaryCondition(), MFEMProblem::addKernel(), and MFEMProblem::addMFEMSolver().

62 {
63  try
64  {
65  return shared_from_this();
66  }
67  catch (std::bad_weak_ptr &)
68  {
69  mooseError(not_shared_error);
70  }
71 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSharedPtr() [2/2]

std::shared_ptr< const MooseObject > MooseObject::getSharedPtr ( ) const
inherited

Definition at line 74 of file MooseObject.C.

75 {
76  try
77  {
78  return shared_from_this();
79  }
80  catch (std::bad_weak_ptr &)
81  {
82  mooseError(not_shared_error);
83  }
84 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSolverSystem() [1/2]

SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num)
inline

Get non-constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3194 of file FEProblemBase.h.

Referenced by MooseApp::attachRelationshipManagers(), MooseMesh::cacheFaceInfoVariableOwnership(), MooseMesh::cacheFVElementalDoFs(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputSolverSystemInformation(), Moose::PetscSupport::petscSetDefaultKSPNormType(), and Moose::PetscSupport::petscSetDefaultPCSide().

3195 {
3196  mooseAssert(sys_num < _solver_systems.size(),
3197  "System number greater than the number of solver systems");
3198  return *_solver_systems[sys_num];
3199 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystem() [2/2]

const SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num) const
inline

Get a constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3202 of file FEProblemBase.h.

3203 {
3204  mooseAssert(sys_num < _solver_systems.size(),
3205  "System number greater than the number of solver systems");
3206  return *_solver_systems[sys_num];
3207 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystemNames()

const std::vector<SolverSystemName>& FEProblemBase::getSolverSystemNames ( ) const
inline
Returns
the solver system names in the problem

Definition at line 2491 of file FEProblemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

2491 { return _solver_sys_names; }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.

◆ getStandardVariable()

MooseVariable & FEProblemBase::getStandardVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtual

Returns the variable reference for requested MooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5704 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), and LinearFVKernel::requestVariableCellGradient().

5705 {
5706  for (auto & sys : _solver_systems)
5707  if (sys->hasVariable(var_name))
5708  return sys->getFieldVariable<Real>(tid, var_name);
5709  if (_aux->hasVariable(var_name))
5710  return _aux->getFieldVariable<Real>(tid, var_name);
5711 
5712  mooseError("Unknown variable " + var_name);
5713 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSteadyStateConvergenceName()

const ConvergenceName & FEProblemBase::getSteadyStateConvergenceName ( ) const

Gets the steady-state detection convergence object name.

Definition at line 9163 of file FEProblemBase.C.

Referenced by addDefaultSteadyStateConvergence(), TransientBase::convergedToSteadyState(), and TransientBase::init().

9164 {
9166  return _steady_state_convergence_name.value();
9167  else
9168  mooseError("The steady convergence name has not been set.");
9169 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSystem()

System & FEProblemBase::getSystem ( const std::string &  var_name)
overridevirtual

Returns the equation system containing the variable provided.

Implements SubProblem.

Definition at line 5776 of file FEProblemBase.C.

Referenced by addObjectParamsHelper(), and MultiApp::appTransferVector().

5777 {
5778  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
5779  if (var_in_sys)
5780  return _solver_systems[sys_num]->system();
5781  else if (_aux->hasVariable(var_name) || _aux->hasScalarVariable(var_name))
5782  return _aux->system();
5783  else
5784  mooseError("Unable to find a system containing the variable " + var_name);
5785 }
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSystemBase() [1/2]

const SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num) const
virtual

Get constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 8888 of file FEProblemBase.C.

Referenced by PhysicsBase::copyVariablesFromMesh().

8889 {
8890  if (sys_num < _solver_systems.size())
8891  return *_solver_systems[sys_num];
8892 
8893  return *_aux;
8894 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [2/2]

SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num)
virtual

Get non-constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 8897 of file FEProblemBase.C.

8898 {
8899  if (sys_num < _solver_systems.size())
8900  return *_solver_systems[sys_num];
8901 
8902  return *_aux;
8903 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getTimeFromStateArg()

Real FEProblemBase::getTimeFromStateArg ( const Moose::StateArg state) const

Returns the time associated with the requested state.

Definition at line 6733 of file FEProblemBase.C.

Referenced by Function::evaluate(), Function::evaluateDotHelper(), Function::evaluateGradientHelper(), Function::evaluateHelper(), and ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl().

6734 {
6736  // If we are any iteration type other than time (e.g. nonlinear), then temporally we are still
6737  // in the present time
6738  return time();
6739 
6740  switch (state.state)
6741  {
6742  case 0:
6743  return time();
6744 
6745  case 1:
6746  return timeOld();
6747 
6748  default:
6749  mooseError("Unhandled state ", state.state, " in FEProblemBase::getTimeFromStateArg");
6750  }
6751 }
virtual Real & time() const
SolutionIterationType iteration_type
The solution iteration type, e.g. time or nonlinear.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual Real & timeOld() const
unsigned int state
The state.

◆ getTransfers() [1/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
) const

Get Transfers by ExecFlagType and direction.

Definition at line 5383 of file FEProblemBase.C.

5384 {
5385  if (direction == MultiAppTransfer::TO_MULTIAPP)
5387  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5389  else
5391 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getTransfers() [2/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( Transfer::DIRECTION  direction) const

Definition at line 5394 of file FEProblemBase.C.

5395 {
5396  if (direction == MultiAppTransfer::TO_MULTIAPP)
5398  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5400  else
5402 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getUserObject()

template<class T >
T& FEProblemBase::getUserObject ( const std::string &  name,
unsigned int  tid = 0 
) const
inline

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
Returns
Const reference to the user object

Definition at line 1130 of file FEProblemBase.h.

Referenced by ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ReporterTransferInterface::hideVariableHelper(), EigenExecutionerBase::init(), Eigenvalue::init(), IntegralPreservingFunctionIC::initialSetup(), and EigenExecutionerBase::inversePowerIteration().

1131  {
1132  std::vector<T *> objs;
1133  theWarehouse()
1134  .query()
1135  .condition<AttribSystem>("UserObject")
1136  .condition<AttribThread>(tid)
1137  .condition<AttribName>(name)
1138  .queryInto(objs);
1139  if (objs.empty())
1140  mooseError("Unable to find user object with name '" + name + "'");
1141  return *(objs[0]);
1142  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectBase()

const UserObject & FEProblemBase::getUserObjectBase ( const std::string &  name,
const THREAD_ID  tid = 0 
) const

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
tidThe thread of the user object (defaults to 0)
Returns
Const reference to the user object

Definition at line 4365 of file FEProblemBase.C.

Referenced by MFEMProblem::addBoundaryCondition(), MFEMProblem::addKernel(), addPostprocessor(), addReporter(), addVectorPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appUserObjectBase(), EigenProblem::checkProblemIntegrity(), FunctorAux::computeValue(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectFromFEProblem(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), MultiAppCloneReporterTransfer::initialSetup(), MultiAppConservativeTransfer::initialSetup(), Terminator::initialSetup(), and FunctorIC::value().

4366 {
4367  std::vector<UserObject *> objs;
4368  theWarehouse()
4369  .query()
4370  .condition<AttribSystem>("UserObject")
4371  .condition<AttribThread>(tid)
4372  .condition<AttribName>(name)
4373  .queryInto(objs);
4374  if (objs.empty())
4375  mooseError("Unable to find user object with name '" + name + "'");
4376  mooseAssert(objs.size() == 1, "Should only find one UO");
4377  return *(objs[0]);
4378 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectJacobianVariables()

const std::vector<const MooseVariableFEBase *>& FEProblemBase::getUserObjectJacobianVariables ( const THREAD_ID  tid) const
inline

Definition at line 309 of file FEProblemBase.h.

Referenced by ComputeUserObjectsThread::onBoundary(), and ComputeUserObjectsThread::onElement().

310  {
311  return _uo_jacobian_moose_vars[tid];
312  }
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars

◆ getUserObjects()

const ExecuteMooseObjectWarehouse<UserObject>& FEProblemBase::getUserObjects ( ) const
inline

Definition at line 1117 of file FEProblemBase.h.

1118  {
1120  "This function is deprecated, use theWarehouse().query() to construct a query instead");
1121  return _all_user_objects;
1122  }
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310

◆ getVariable() [1/4]

virtual const MooseVariableFieldBase& SubProblem::getVariable

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

◆ getVariable() [2/4]

virtual MooseVariableFieldBase& SubProblem::getVariable
inline

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariable() [3/4]

const MooseVariableFieldBase & FEProblemBase::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
) const
overridevirtual

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

Implements SubProblem.

Definition at line 5694 of file FEProblemBase.C.

Referenced by addFVInitialCondition(), addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppGeneralFieldShapeEvaluationTransfer::buildMeshFunctions(), CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppProjectionTransfer::execute(), MultiAppGeometricInterpolationTransfer::execute(), MultiAppUserObjectTransfer::execute(), NodalNormalsPreprocessor::execute(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppProjectionTransfer::initialSetup(), AdvancedOutput::initShowHideLists(), SolutionUserObjectBase::pointValueWrapper(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MultiAppProjectionTransfer::projectSolution(), MultiAppDofCopyTransfer::transfer(), and MultiAppShapeEvaluationTransfer::transferVariable().

5698 {
5699  return getVariableHelper(
5700  tid, var_name, expected_var_type, expected_var_field_type, _solver_systems, *_aux);
5701 }
MooseVariableFieldBase & getVariableHelper(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
Helper function called by getVariable that handles the logic for checking whether Variables of the re...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVariable() [4/4]

virtual MooseVariableFieldBase& SubProblem::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
)
inlinevirtualinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const =0
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariableHelper() [1/2]

template<typename T >
MooseVariableFEBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  systems,
const SystemBase aux 
) const
inherited

Definition at line 818 of file SubProblem.C.

824 {
825  // Eventual return value
826  MooseVariableFEBase * var = nullptr;
827 
828  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
829 
830  // First check that the variable is found on the expected system.
831  if (expected_var_type == Moose::VarKindType::VAR_ANY)
832  {
833  if (var_in_sys)
834  var = &(systems[sys_num]->getVariable(tid, var_name));
835  else if (aux.hasVariable(var_name))
836  var = &(aux.getVariable(tid, var_name));
837  else
838  mooseError("Unknown variable " + var_name);
839  }
840  else if (expected_var_type == Moose::VarKindType::VAR_SOLVER && var_in_sys &&
841  systems[sys_num]->hasVariable(var_name))
842  var = &(systems[sys_num]->getVariable(tid, var_name));
843  else if (expected_var_type == Moose::VarKindType::VAR_AUXILIARY && aux.hasVariable(var_name))
844  var = &(aux.getVariable(tid, var_name));
845  else
846  {
847  std::string expected_var_type_string =
848  (expected_var_type == Moose::VarKindType::VAR_SOLVER ? "nonlinear" : "auxiliary");
849  mooseError("No ",
850  expected_var_type_string,
851  " variable named ",
852  var_name,
853  " found. "
854  "Did you specify an auxiliary variable when you meant to specify a nonlinear "
855  "variable (or vice-versa)?");
856  }
857 
858  // Now make sure the var found has the expected field type.
859  if ((expected_var_field_type == Moose::VarFieldType::VAR_FIELD_ANY) ||
860  (expected_var_field_type == var->fieldType()))
861  return *var;
862  else
863  {
864  std::string expected_var_field_type_string =
865  MooseUtils::toLower(Moose::stringify(expected_var_field_type));
866  std::string var_field_type_string = MooseUtils::toLower(Moose::stringify(var->fieldType()));
867 
868  mooseError("No ",
869  expected_var_field_type_string,
870  " variable named ",
871  var_name,
872  " found. "
873  "Did you specify a ",
874  var_field_type_string,
875  " variable when you meant to specify a ",
876  expected_var_field_type_string,
877  " variable?");
878  }
879 }
std::string toLower(const std::string &name)
Convert supplied string to lower case.
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const =0
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual Moose::VarFieldType fieldType() const =0
Field type of this variable.
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getVariableHelper() [2/2]

template<typename T >
MooseVariableFieldBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  nls,
const SystemBase aux 
) const
protectedinherited

Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available.

Referenced by DisplacedProblem::getVariable(), and getVariable().

◆ getVariableNames()

std::vector< VariableName > FEProblemBase::getVariableNames ( )
virtual

Returns a list of all the variables in the problem (both from the NL and Aux systems.

Definition at line 8648 of file FEProblemBase.C.

Referenced by EigenProblem::adjustEigenVector(), and AdvancedOutput::initAvailableLists().

8649 {
8650  std::vector<VariableName> names;
8651 
8652  for (auto & sys : _solver_systems)
8653  {
8654  const std::vector<VariableName> & var_names = sys->getVariableNames();
8655  names.insert(names.end(), var_names.begin(), var_names.end());
8656  }
8657 
8658  const std::vector<VariableName> & aux_var_names = _aux->getVariableNames();
8659  names.insert(names.end(), aux_var_names.begin(), aux_var_names.end());
8660 
8661  return names;
8662 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVectorPostprocessorObjectByName()

const VectorPostprocessor & FEProblemBase::getVectorPostprocessorObjectByName ( const std::string &  object_name,
const THREAD_ID  tid = 0 
) const

Return the VPP object given the name.

Parameters
object_nameThe name of the VPP object
Returns
Desired VPP object

This is used by various output objects as well as the scatter value handling.

See also
CSV.C, XMLOutput.C, VectorPostprocessorInterface.C

Definition at line 4459 of file FEProblemBase.C.

Referenced by VectorPostprocessorInterface::isVectorPostprocessorDistributedByName(), CSV::output(), and XMLOutput::outputVectorPostprocessors().

4461 {
4462  return getUserObject<VectorPostprocessor>(object_name, tid);
4463 }

◆ getVectorPostprocessorValueByName()

const VectorPostprocessorValue & FEProblemBase::getVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
std::size_t  t_index = 0 
) const

Get a read-only reference to the vector value associated with the VectorPostprocessor.

Parameters
object_nameThe name of the VPP object.
vector_nameThe namve of the decalred vector within the object.
Returns
Referent to the vector of data.

Note: This method is only for retrieving values that already exist, the VectorPostprocessor and VectorPostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4440 of file FEProblemBase.C.

Referenced by HistogramVectorPostprocessor::execute().

4443 {
4445  VectorPostprocessorReporterName(object_name, vector_name), t_index);
4446 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ getVectorTag()

const VectorTag & SubProblem::getVectorTag ( const TagID  tag_id) const
virtualinherited

Get a VectorTag from a TagID.

Reimplemented in DisplacedProblem.

Definition at line 161 of file SubProblem.C.

Referenced by addCachedResidualDirectly(), Assembly::cacheResidual(), Assembly::cacheResidualNodes(), DisplacedProblem::getVectorTag(), SubProblem::getVectorTags(), TaggingInterface::prepareVectorTagInternal(), TaggingInterface::prepareVectorTagLower(), TaggingInterface::prepareVectorTagNeighbor(), setResidual(), and setResidualNeighbor().

162 {
163  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
164 
165  if (!vectorTagExists(tag_id))
166  mooseError("Vector tag with ID ", tag_id, " does not exist");
167 
168  return _vector_tags[tag_id];
169 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getVectorTagID()

TagID SubProblem::getVectorTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 203 of file SubProblem.C.

Referenced by Coupleable::coupledVectorTagArrayGradient(), Coupleable::coupledVectorTagArrayGradients(), Coupleable::coupledVectorTagArrayValues(), Coupleable::coupledVectorTagDofValues(), Coupleable::coupledVectorTagGradient(), Coupleable::coupledVectorTagGradients(), Coupleable::coupledVectorTagValues(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), DisplacedProblem::getVectorTagID(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), ReferenceResidualConvergence::ReferenceResidualConvergence(), SolverSystem::setSolution(), TaggingInterface::TaggingInterface(), MultiAppDofCopyTransfer::transfer(), TaggingInterface::useVectorTag(), Coupleable::vectorTagDofValueHelper(), and Coupleable::vectorTagValueHelper().

204 {
205  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
206 
207  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
208  const auto search = _vector_tags_name_map.find(tag_name_upper);
209  if (search != _vector_tags_name_map.end())
210  return search->second;
211 
212  std::string message =
213  tag_name_upper == "TIME"
214  ? ".\n\nThis may occur if "
215  "you have a TimeKernel in your problem but did not specify a transient executioner."
216  : "";
217  mooseError("Vector tag '", tag_name_upper, "' does not exist", message);
218 }
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getVectorTags() [1/2]

std::vector< VectorTag > SubProblem::getVectorTags ( const std::set< TagID > &  tag_ids) const
inherited

Definition at line 172 of file SubProblem.C.

Referenced by computeLinearSystemSys(), EigenProblem::computeResidualAB(), computeResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), DisplacedProblem::getVectorTags(), SubProblem::numVectorTags(), ComputeMortarFunctor::operator()(), and setCurrentResidualVectorTags().

173 {
174  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
175 
176  std::vector<VectorTag> tags;
177  tags.reserve(tag_ids.size());
178  for (const auto & tag_id : tag_ids)
179  tags.push_back(getVectorTag(tag_id));
180  return tags;
181 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161

◆ getVectorTags() [2/2]

const std::vector< VectorTag > & SubProblem::getVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

Return all vector tags, where a tag is represented by a map from name to ID.

Can optionally be limited to a vector tag type.

Reimplemented in DisplacedProblem.

Definition at line 184 of file SubProblem.C.

185 {
186  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
187 
189  return _vector_tags;
190  else
191  return _typed_vector_tags[type];
192 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174

◆ getVectorVariable()

VectorMooseVariable & FEProblemBase::getVectorVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtual

Returns the variable reference for requested VectorMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5728 of file FEProblemBase.C.

5729 {
5730  for (auto & sys : _solver_systems)
5731  if (sys->hasVariable(var_name))
5732  return sys->getFieldVariable<RealVectorValue>(tid, var_name);
5733  if (_aux->hasVariable(var_name))
5734  return _aux->getFieldVariable<RealVectorValue>(tid, var_name);
5735 
5736  mooseError("Unknown variable " + var_name);
5737 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getXFEM()

std::shared_ptr<XFEMInterface> FEProblemBase::getXFEM ( )
inline

Get a pointer to the XFEM controller object.

Definition at line 1763 of file FEProblemBase.h.

1763 { return _xfem; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ ghostedElems()

virtual std::set<dof_id_type>& SubProblem::ghostedElems ( )
inlinevirtualinherited

Return the list of elements that should have their DoFs ghosted to this processor.

Returns
The list

Reimplemented in DisplacedProblem.

Definition at line 672 of file SubProblem.h.

Referenced by SystemBase::augmentSendList(), NearestNodeLocator::findNodes(), DisplacedProblem::ghostedElems(), and NearestNodeLocator::updatePatch().

672 { return _ghosted_elems; }
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093

◆ ghostGhostedBoundaries()

void FEProblemBase::ghostGhostedBoundaries ( )
overridevirtual

Causes the boundaries added using addGhostedBoundary to actually be ghosted.

Implements SubProblem.

Definition at line 2097 of file FEProblemBase.C.

Referenced by DisplacedProblem::ghostGhostedBoundaries(), init(), and meshChanged().

2098 {
2099  TIME_SECTION("ghostGhostedBoundaries", 3, "Ghosting Ghosted Boundaries");
2100 
2102 
2103  if (_displaced_problem)
2105 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void ghostGhostedBoundaries()
Actually do the ghosting of boundaries that need to be ghosted to this processor. ...
Definition: MooseMesh.C:3314
MooseMesh * _displaced_mesh

◆ handleException()

void FEProblemBase::handleException ( const std::string &  calling_method)
private

Handle exceptions.

Note that the result of this call will be a thrown MooseException. The caller of this method must determine how to handle the thrown exception

Definition at line 7121 of file FEProblemBase.C.

Referenced by computeBounds(), computeJacobianTags(), computeResidualAndJacobian(), computeResidualTags(), and computeUserObjectsInternal().

7122 {
7123  auto create_exception_message =
7124  [&calling_method](const std::string & exception_type, const auto & exception)
7125  {
7126  return std::string("A " + exception_type + " was raised during FEProblemBase::" +
7127  calling_method + "\n" + std::string(exception.what()));
7128  };
7129 
7130  try
7131  {
7132  throw;
7133  }
7134  catch (const libMesh::LogicError & e)
7135  {
7136  setException(create_exception_message("libMesh::LogicError", e));
7137  }
7138  catch (const MooseException & e)
7139  {
7140  setException(create_exception_message("MooseException", e));
7141  }
7142  catch (const MetaPhysicL::LogicError & e)
7143  {
7145  }
7146  catch (const libMesh::PetscSolverException & e)
7147  {
7148  // One PETSc solver exception that we cannot currently recover from are new nonzero errors. In
7149  // particular I have observed the following scenario in a parallel test:
7150  // - Both processes throw because of a new nonzero during MOOSE's computeJacobianTags
7151  // - We potentially handle the exceptions nicely here
7152  // - When the matrix is closed in libMesh's libmesh_petsc_snes_solver, there is a new nonzero
7153  // throw which we do not catch here in MOOSE and the simulation terminates. This only appears
7154  // in parallel (and not all the time; a test I was examining threw with distributed mesh, but
7155  // not with replicated). In serial there are no new throws from libmesh_petsc_snes_solver.
7156  // So for uniformity of behavior across serial/parallel, we will choose to abort here and always
7157  // produce a non-zero exit code
7158  mooseError(create_exception_message("libMesh::PetscSolverException", e));
7159  }
7160  catch (const std::exception & e)
7161  {
7162  const auto message = create_exception_message("std::exception", e);
7164  mooseError(message);
7165  else
7166  setException(message);
7167  }
7168 
7170 }
const bool _regard_general_exceptions_as_errors
If we catch an exception during residual/Jacobian evaluaton for which we don&#39;t have specific handling...
virtual void checkExceptionAndStopSolve(bool print_message=true)
Check to see if an exception has occurred on any processor and, if possible, force the solve to fail...
void translateMetaPhysicLError(const MetaPhysicL::LogicError &)
emit a relatively clear error message when we catch a MetaPhysicL logic error
Definition: MooseError.C:118
virtual void setException(const std::string &message)
Set an exception, which is stored at this point by toggling a member variable in this class...
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ hasActiveElementalMooseVariables()

bool SubProblem::hasActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Whether or not a list of active elemental moose variables has been set.

Returns
True if there has been a list of active elemental moose variables set, False otherwise

Definition at line 460 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), and SystemBase::reinitElem().

461 {
463 }
std::vector< unsigned int > _has_active_elemental_moose_variables
Whether or not there is currently a list of active elemental moose variables.
Definition: SubProblem.h:1079

◆ hasActiveMaterialProperties()

bool FEProblemBase::hasActiveMaterialProperties ( const THREAD_ID  tid) const

Method to check whether or not a list of active material roperties has been set.

This method is called by reinitMaterials to determine whether Material computeProperties methods need to be called. If the return is False, this check prevents unnecessary material property computation

Parameters
tidThe thread id
Returns
True if there has been a list of active material properties set, False otherwise

Definition at line 5896 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::onElement(), reinitMaterials(), reinitMaterialsBoundary(), reinitMaterialsFace(), reinitMaterialsInterface(), and reinitMaterialsNeighbor().

5897 {
5898  return _has_active_material_properties[tid];
5899 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ hasAuxiliaryVariable()

bool SubProblem::hasAuxiliaryVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this auxiliary variable.

Definition at line 811 of file SubProblem.C.

Referenced by SubProblem::getFunctor(), and NearestNodeValueAux::NearestNodeValueAux().

812 {
813  return systemBaseAuxiliary().hasVariable(var_name);
814 }
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843

◆ hasBase()

bool MooseBase::hasBase ( ) const
inlineinherited
Returns
Whether or not this object has a registered base (set via InputParameters::registerBase())

Definition at line 138 of file MooseBase.h.

138 { return _pars.hasBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
bool hasBase() const

◆ hasBlockMaterialProperty()

bool SubProblem::hasBlockMaterialProperty ( SubdomainID  block_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 511 of file SubProblem.C.

512 {
513  auto it = _map_block_material_props.find(bid);
514  if (it == _map_block_material_props.end())
515  return false;
516 
517  if (it->second.count(prop_name) > 0)
518  return true;
519  else
520  return false;
521 }
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ hasBoundaryMaterialProperty()

bool SubProblem::hasBoundaryMaterialProperty ( BoundaryID  boundary_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 570 of file SubProblem.C.

571 {
572  auto it = _map_boundary_material_props.find(bid);
573  if (it == _map_boundary_material_props.end())
574  return false;
575 
576  if (it->second.count(prop_name) > 0)
577  return true;
578  else
579  return false;
580 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ hasConvergence()

bool FEProblemBase::hasConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtual

Returns true if the problem has a Convergence object of the given name.

Definition at line 2617 of file FEProblemBase.C.

Referenced by ParsedConvergence::initializeSymbols().

2618 {
2619  return _convergences.hasActiveObject(name, tid);
2620 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasDampers()

bool FEProblemBase::hasDampers ( )
inline

Whether or not this system has dampers.

Definition at line 1267 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::preInit(), and NonlinearSystem::solve().

1267 { return _has_dampers; }
bool _has_dampers
Whether or not this system has any Dampers associated with it.

◆ hasException()

virtual bool FEProblemBase::hasException ( )
inlinevirtual

Whether or not an exception has occurred.

Definition at line 475 of file FEProblemBase.h.

Referenced by NonlinearSystem::converged(), ThreadedElementLoop< ConstElemPointerRange >::keepGoing(), and ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::keepGoing().

475 { return _has_exception; }
bool _has_exception
Whether or not an exception has occurred.

◆ hasFunction()

bool FEProblemBase::hasFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtual

Definition at line 2566 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), FunctorIC::FunctorIC(), getFunction(), FunctionInterface::hasFunctionByName(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), ParsedConvergence::initializeSymbols(), and MooseParsedFunction::initialSetup().

2567 {
2568  return _functions.hasActiveObject(name, tid);
2569 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.
MooseObjectWarehouse< Function > _functions
functions

◆ hasFunctor()

bool SubProblem::hasFunctor ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor corresponding to name on the thread id tid

Definition at line 1270 of file SubProblem.C.

Referenced by FunctorInterface::isFunctor().

1271 {
1272  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1273  auto & functors = _functors[tid];
1274  return (functors.find("wraps_" + name) != functors.end());
1275 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasFunctorWithType()

template<typename T >
bool SubProblem::hasFunctorWithType ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor of type T corresponding to name on the thread id tid

Definition at line 1320 of file SubProblem.h.

1321 {
1322  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1323  auto & functors = _functors[tid];
1324 
1325  const auto & it = functors.find("wraps_" + name);
1326  constexpr bool requested_functor_is_ad =
1327  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1328 
1329  if (it == functors.end())
1330  return false;
1331  else
1332  return dynamic_cast<Moose::Functor<T> *>(
1333  requested_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get());
1334 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1155
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasInitialAdaptivity() [1/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inline

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1751 of file FEProblemBase.h.

1751 { return _adaptivity.getInitialSteps() > 0; }
Adaptivity _adaptivity
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98

◆ hasInitialAdaptivity() [2/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inline

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1756 of file FEProblemBase.h.

1756 { return false; }

◆ hasJacobian()

bool FEProblemBase::hasJacobian ( ) const

Returns _has_jacobian.

Definition at line 8803 of file FEProblemBase.C.

8804 {
8805  return _has_jacobian;
8806 }
bool _has_jacobian
Indicates if the Jacobian was computed.

◆ hasLinearConvergenceObjects()

bool FEProblemBase::hasLinearConvergenceObjects ( ) const

Whether we have linear convergence objects.

Definition at line 9130 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscSetDefaults().

9131 {
9132  // If false,this means we have not set one, not that we are querying this too early
9133  // TODO: once there is a default linear CV object, error on the 'not set' case
9134  return _linear_convergence_names.has_value();
9135 }
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ hasLinearVariable()

bool SubProblem::hasLinearVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this linear variable.

Definition at line 802 of file SubProblem.C.

Referenced by SubProblem::getFunctor().

803 {
804  for (const auto i : make_range(numLinearSystems()))
805  if (systemBaseLinear(i).hasVariable(var_name))
806  return true;
807  return false;
808 }
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
IntRange< T > make_range(T beg, T end)
virtual const SystemBase & systemBaseLinear(const unsigned int sys_num) const =0
Return the linear system object as a base class reference given the system number.
virtual std::size_t numLinearSystems() const =0

◆ hasMortarCoupling()

virtual bool FEProblemBase::hasMortarCoupling ( ) const
inlinevirtual

Whether the simulation has mortar coupling.

Definition at line 2213 of file FEProblemBase.h.

2213 { return _has_mortar; }
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ hasMultiApp()

bool FEProblemBase::hasMultiApp ( const std::string &  name) const

Definition at line 5304 of file FEProblemBase.C.

5305 {
5306  return _multi_apps.hasActiveObject(multi_app_name);
5307 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasMultiApps() [1/2]

bool FEProblemBase::hasMultiApps ( ) const
inline

Returns whether or not the current simulation has any multiapps.

Definition at line 1253 of file FEProblemBase.h.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), checkProblemIntegrity(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), and DefaultMultiAppFixedPointConvergence::preExecute().

1253 { return _multi_apps.hasActiveObjects(); }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasMultiApps() [2/2]

bool FEProblemBase::hasMultiApps ( ExecFlagType  type) const

Definition at line 5298 of file FEProblemBase.C.

5299 {
5300  return _multi_apps[type].hasActiveObjects();
5301 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasNeighborCoupling()

virtual bool FEProblemBase::hasNeighborCoupling ( ) const
inlinevirtual

Whether the simulation has neighbor coupling.

Definition at line 2208 of file FEProblemBase.h.

bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ hasNonlocalCoupling()

virtual bool FEProblemBase::hasNonlocalCoupling ( ) const
inlineoverridevirtual

Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian.

For this to return true, there must be at least one active nonlocal kernel or boundary condition

Implements SubProblem.

Definition at line 2470 of file FEProblemBase.h.

Referenced by DisplacedProblem::hasNonlocalCoupling().

2470 { return _has_nonlocal_coupling; }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.

◆ hasPostprocessor()

bool FEProblemBase::hasPostprocessor ( const std::string &  name) const

Deprecated.

Use hasPostprocessorValueByName

Definition at line 4432 of file FEProblemBase.C.

Referenced by GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl().

4433 {
4434  mooseDeprecated("FEProblemBase::hasPostprocssor is being removed; use "
4435  "hasPostprocessorValueByName instead.");
4437 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
bool hasPostprocessorValueByName(const PostprocessorName &name) const
Whether or not a Postprocessor value exists by a given name.

◆ hasPostprocessorValueByName()

bool FEProblemBase::hasPostprocessorValueByName ( const PostprocessorName &  name) const

Whether or not a Postprocessor value exists by a given name.

Parameters
nameThe name of the Postprocessor
Returns
True if a Postprocessor value exists

Note: You should prioritize the use of PostprocessorInterface::hasPostprocessor and PostprocessorInterface::hasPostprocessorByName over this method when possible.

Definition at line 4409 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), FunctorAux::computeValue(), FunctorExtremaPositions::FunctorExtremaPositions(), hasPostprocessor(), MooseParsedFunction::initialSetup(), and FunctorIC::value().

4410 {
4412 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143
bool hasReporterValue(const ReporterName &reporter_name) const
Return True if a Reporter value with the given type and name have been created.
Definition: ReporterData.h:445

◆ hasScalarVariable()

bool FEProblemBase::hasScalarVariable ( const std::string &  var_name) const
overridevirtual

Returns a Boolean indicating whether any system contains a variable with the name provided.

Implements SubProblem.

Definition at line 5752 of file FEProblemBase.C.

Referenced by addInitialCondition(), addObjectParamsHelper(), EigenProblem::adjustEigenVector(), checkDuplicatePostprocessorVariableNames(), AdvancedOutput::initAvailableLists(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), AdvancedOutput::initShowHideLists(), and Split::setup().

5753 {
5754  for (auto & sys : _solver_systems)
5755  if (sys->hasScalarVariable(var_name))
5756  return true;
5757  if (_aux->hasScalarVariable(var_name))
5758  return true;
5759 
5760  return false;
5761 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ hasScalingVector()

void SubProblem::hasScalingVector ( const unsigned int  nl_sys_num)
inherited

Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector.

Definition at line 1170 of file SubProblem.C.

Referenced by SystemBase::addScalingVector().

1171 {
1172  for (const THREAD_ID tid : make_range(libMesh::n_threads()))
1173  assembly(tid, nl_sys_num).hasScalingVector();
1174 }
unsigned int n_threads()
void hasScalingVector()
signals this object that a vector containing variable scaling factors should be used when doing resid...
Definition: Assembly.C:4574
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ hasSetMultiAppFixedPointConvergenceName()

bool FEProblemBase::hasSetMultiAppFixedPointConvergenceName ( ) const
inline

Returns true if the problem has set the fixed point convergence name.

Definition at line 667 of file FEProblemBase.h.

668  {
669  return _multiapp_fixed_point_convergence_name.has_value();
670  }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ hasSetSteadyStateConvergenceName()

bool FEProblemBase::hasSetSteadyStateConvergenceName ( ) const
inline

Returns true if the problem has set the steady-state detection convergence name.

Definition at line 672 of file FEProblemBase.h.

673  {
674  return _steady_state_convergence_name.has_value();
675  }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ hasSolverVariable()

bool FEProblemBase::hasSolverVariable ( const std::string &  var_name) const

Definition at line 5684 of file FEProblemBase.C.

5685 {
5686  for (auto & sys : _solver_systems)
5687  if (sys->hasVariable(var_name))
5688  return true;
5689 
5690  return false;
5691 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ hasTimeIntegrator()

bool FEProblemBase::hasTimeIntegrator ( ) const
inline

Returns whether or not this Problem has a TimeIntegrator.

Definition at line 1999 of file FEProblemBase.h.

Referenced by TransientBase::setupTimeIntegrator().

1999 { return _has_time_integrator; }
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)

◆ hasUOAuxStateCheck()

bool FEProblemBase::hasUOAuxStateCheck ( ) const
inline

Whether or not MOOSE will perform a user object/auxiliary kernel state check.

Definition at line 189 of file FEProblemBase.h.

189 { return _uo_aux_state_check; }
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.

◆ hasUserObject()

bool FEProblemBase::hasUserObject ( const std::string &  name) const

Check if there if a user object of given name.

Parameters
nameThe name of the user object being checked for
Returns
true if the user object exists, false otherwise

Definition at line 4396 of file FEProblemBase.C.

Referenced by MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), addPostprocessor(), addReporter(), addVectorPostprocessor(), FunctorAux::computeValue(), DistributedPositions::DistributedPositions(), UserObjectInterface::hasUserObjectByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterTransferInterface::hideVariableHelper(), ParsedDownSelectionPositions::initialize(), and TransformedPositions::TransformedPositions().

4397 {
4398  std::vector<UserObject *> objs;
4399  theWarehouse()
4400  .query()
4401  .condition<AttribSystem>("UserObject")
4402  .condition<AttribThread>(0)
4403  .condition<AttribName>(name)
4404  .queryInto(objs);
4405  return !objs.empty();
4406 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ hasVariable()

bool FEProblemBase::hasVariable ( const std::string &  var_name) const
overridevirtual

Whether or not this problem has the variable.

Implements SubProblem.

Definition at line 5672 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), addFVInitialCondition(), DiffusionFV::addFVKernels(), addInitialCondition(), addObjectParamsHelper(), MultiAppTransfer::checkVariable(), FunctorIC::FunctorIC(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MooseParsedFunction::initialSetup(), AdvancedOutput::initShowHideLists(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), and Split::setup().

5673 {
5674  for (auto & sys : _solver_systems)
5675  if (sys->hasVariable(var_name))
5676  return true;
5677  if (_aux->hasVariable(var_name))
5678  return true;
5679 
5680  return false;
5681 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ haveADObjects() [1/4]

bool SubProblem::haveADObjects ( ) const
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

Referenced by computeJacobianTags(), computeResidualAndJacobian(), and init().

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [2/4]

bool SubProblem::haveADObjects
inline

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [3/4]

virtual void SubProblem::haveADObjects
inline

Method for setting whether we have any ad objects.

Definition at line 767 of file SubProblem.h.

767 { _have_ad_objects = have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [4/4]

void FEProblemBase::haveADObjects ( bool  have_ad_objects)
overridevirtual

Method for setting whether we have any ad objects.

Reimplemented from SubProblem.

Definition at line 8880 of file FEProblemBase.C.

8881 {
8882  _have_ad_objects = have_ad_objects;
8883  if (_displaced_problem)
8884  _displaced_problem->SubProblem::haveADObjects(have_ad_objects);
8885 }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveDisplaced()

bool FEProblemBase::haveDisplaced ( ) const
inlinefinaloverridevirtual

Whether we have a displaced problem in our simulation.

Implements SubProblem.

Definition at line 2304 of file FEProblemBase.h.

2304 { return _displaced_problem.get(); }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveFV()

virtual bool FEProblemBase::haveFV ( ) const
inlineoverridevirtual

◆ havePRefinement()

bool SubProblem::havePRefinement ( ) const
inlineinherited

Query whether p-refinement has been requested at any point during the simulation.

Definition at line 1009 of file SubProblem.h.

Referenced by AdvancedOutput::initAvailableLists(), and meshChanged().

1009 { return _have_p_refinement; }
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202

◆ haveXFEM()

bool FEProblemBase::haveXFEM ( )
inline

Find out whether the current analysis is using XFEM.

Definition at line 1766 of file FEProblemBase.h.

Referenced by initialSetup(), FixedPointSolve::solveStep(), TransientBase::takeStep(), and updateMeshXFEM().

1766 { return _xfem != nullptr; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ identifyVariableGroupsInNL()

bool FEProblemBase::identifyVariableGroupsInNL ( ) const
inline

Whether to identify variable groups in nonlinear systems.

This affects dof ordering

Definition at line 2475 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase().

const bool _identify_variable_groups_in_nl
Whether to identify variable groups in nonlinear systems. This affects dof ordering.

◆ ignoreZerosInJacobian()

bool FEProblemBase::ignoreZerosInJacobian ( ) const
inline

Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.

Note that this can make preserving the matrix sparsity pattern impossible.

Definition at line 1971 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

1971 { return _ignore_zeros_in_jacobian; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ immediatelyPrintInvalidSolution()

bool FEProblemBase::immediatelyPrintInvalidSolution ( ) const
inline

Whether or not the solution invalid warnings are printed out immediately.

Definition at line 1996 of file FEProblemBase.h.

Referenced by SolutionInvalidInterface::flagInvalidSolutionInternal().

const bool & _immediately_print_invalid_solution

◆ incrementMultiAppTStep()

void FEProblemBase::incrementMultiAppTStep ( ExecFlagType  type)

Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType.

Definition at line 5489 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject().

5490 {
5491  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5492 
5493  if (multi_apps.size())
5494  for (const auto & multi_app : multi_apps)
5495  multi_app->incrementTStep(_time);
5496 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ init()

void FEProblemBase::init ( )
overridevirtual

Implements Problem.

Reimplemented in FEProblem, and EigenProblem.

Definition at line 6170 of file FEProblemBase.C.

Referenced by EigenProblem::init(), and FEProblem::init().

6171 {
6172  if (_initialized)
6173  return;
6174 
6175  TIME_SECTION("init", 2, "Initializing");
6176 
6177  // call executioner's preProblemInit so that it can do some setups before problem init
6179 
6180  // If we have AD and we are doing global AD indexing, then we should by default set the matrix
6181  // coupling to full. If the user has told us to trust their coupling matrix, then this call will
6182  // not do anything
6185 
6186  for (const auto i : index_range(_nl))
6187  {
6188  auto & nl = _nl[i];
6189  auto & cm = _cm[i];
6190 
6191  unsigned int n_vars = nl->nVariables();
6192  {
6193  TIME_SECTION("fillCouplingMatrix", 3, "Filling Coupling Matrix");
6194 
6195  switch (_coupling)
6196  {
6197  case Moose::COUPLING_DIAG:
6198  cm = std::make_unique<CouplingMatrix>(n_vars);
6199  for (unsigned int i = 0; i < n_vars; i++)
6200  (*cm)(i, i) = 1;
6201  break;
6202 
6203  // for full jacobian
6204  case Moose::COUPLING_FULL:
6205  cm = std::make_unique<CouplingMatrix>(n_vars);
6206  for (unsigned int i = 0; i < n_vars; i++)
6207  for (unsigned int j = 0; j < n_vars; j++)
6208  (*cm)(i, j) = 1;
6209  break;
6210 
6212  // do nothing, _cm was already set through couplingMatrix() call
6213  break;
6214  }
6215  }
6216 
6217  nl->dofMap()._dof_coupling = cm.get();
6218 
6219  // If there are no variables, make sure to pass a nullptr coupling
6220  // matrix, to avoid warnings about non-nullptr yet empty
6221  // CouplingMatrices.
6222  if (n_vars == 0)
6223  nl->dofMap()._dof_coupling = nullptr;
6224 
6225  nl->dofMap().attach_extra_sparsity_function(&extraSparsity, nl.get());
6226  nl->dofMap().attach_extra_send_list_function(&extraSendList, nl.get());
6227  _aux->dofMap().attach_extra_send_list_function(&extraSendList, _aux.get());
6228 
6229  if (!_skip_nl_system_check && _solve && n_vars == 0)
6230  mooseError("No variables specified in nonlinear system '", nl->name(), "'.");
6231  }
6232 
6233  ghostGhostedBoundaries(); // We do this again right here in case new boundaries have been added
6234 
6235  // We may have added element/nodes to the mesh in ghostGhostedBoundaries so we need to update
6236  // all of our mesh information. We need to make sure that mesh information is up-to-date before
6237  // EquationSystems::init because that will call through to updateGeomSearch (for sparsity
6238  // augmentation) and if we haven't added back boundary node information before that latter call,
6239  // then we're screwed. We'll get things like "Unable to find closest node!"
6240  _mesh.meshChanged();
6241  if (_displaced_problem)
6243 
6244  if (_mesh.doingPRefinement())
6245  {
6247  if (_displaced_problem)
6248  _displaced_problem->preparePRefinement();
6249  }
6250 
6251  // do not assemble system matrix for JFNK solve
6252  for (auto & nl : _nl)
6253  if (solverParams(nl->number())._type == Moose::ST_JFNK)
6254  nl->turnOffJacobian();
6255 
6256  for (auto & sys : _solver_systems)
6257  sys->preInit();
6258  _aux->preInit();
6259 
6260  // Build the mortar segment meshes, if they haven't been already, for a couple reasons:
6261  // 1) Get the ghosting correct for both static and dynamic meshes
6262  // 2) Make sure the mortar mesh is built for mortar constraints that live on the static mesh
6263  //
6264  // It is worth-while to note that mortar meshes that live on a dynamic mesh will be built
6265  // during residual and Jacobian evaluation because when displacements are solution variables
6266  // the mortar mesh will move and change during the course of a non-linear solve. We DO NOT
6267  // redo ghosting during non-linear solve, so for purpose 1) the below call has to be made
6268  if (!_mortar_data.initialized())
6269  updateMortarMesh();
6270 
6271  {
6272  TIME_SECTION("EquationSystems::Init", 2, "Initializing Equation Systems");
6273  es().init();
6274  }
6275 
6276  for (auto & sys : _solver_systems)
6277  sys->postInit();
6278  _aux->postInit();
6279 
6280  // Now that the equation system and the dof distribution is done, we can generate the
6281  // finite volume-related parts if needed.
6282  if (haveFV())
6284 
6285  for (auto & sys : _solver_systems)
6286  sys->update();
6287  _aux->update();
6288 
6289  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
6290  for (const auto i : index_range(_nl))
6291  {
6292  mooseAssert(
6293  _cm[i],
6294  "Coupling matrix not set for system "
6295  << i
6296  << ". This should only happen if a preconditioner was not setup for this system");
6297  _assembly[tid][i]->init(_cm[i].get());
6298  }
6299 
6300  if (_displaced_problem)
6301  _displaced_problem->init();
6302 
6303  _initialized = true;
6304 }
void extraSparsity(libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz, void *context)
Free function used for a libMesh callback.
Definition: SystemBase.C:48
unsigned int n_threads()
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
bool globalADIndexing()
Whether we are using global AD indexing.
Definition: ADUtils.h:28
bool initialized() const
Definition: MortarData.h:127
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void preparePRefinement()
Prepare DofMap and Assembly classes with our p-refinement information.
Definition: SubProblem.C:1332
const bool _skip_nl_system_check
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const bool & _solve
Whether or not to actually solve the nonlinear system.
unsigned int n_vars
Moose::CouplingType _coupling
Type of variable coupling.
void extraSendList(std::vector< dof_id_type > &send_list, void *context)
///< Type of coordinate system
Definition: SystemBase.C:40
Jacobian-Free Newton Krylov.
Definition: MooseTypes.h:846
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
Executioner * getExecutioner() const
Retrieve the Executioner for this App.
Definition: MooseApp.C:2123
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
virtual void preProblemInit()
Perform initializations during executing actions right before init_problem task.
Definition: Executioner.h:57
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1347
auto index_range(const T &sizable)
const std::string & _type
The type of this class.
Definition: MooseBase.h:356
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:882
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4072

◆ initElementStatefulProps()

void FEProblemBase::initElementStatefulProps ( const libMesh::ConstElemRange elem_range,
const bool  threaded 
)

Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 8243 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::finalize(), ElementSubdomainModifierBase::initElementStatefulProps(), and initialSetup().

8244 {
8247  if (threaded)
8248  Threads::parallel_reduce(elem_range, cmt);
8249  else
8250  cmt(elem_range, true);
8251 }
MaterialPropertyStorage & _bnd_material_props
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props

◆ initialAdaptMesh()

void FEProblemBase::initialAdaptMesh ( )
virtual

Definition at line 7916 of file FEProblemBase.C.

Referenced by initialSetup().

7917 {
7918  unsigned int n = adaptivity().getInitialSteps();
7919  _cycles_completed = 0;
7920  if (n)
7921  {
7922  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
7923  mooseError("HFEM does not support mesh adaptivity currently.");
7924 
7925  TIME_SECTION("initialAdaptMesh", 2, "Performing Initial Adaptivity");
7926 
7927  for (unsigned int i = 0; i < n; i++)
7928  {
7930  computeMarkers();
7931 
7933  {
7934  meshChanged(
7935  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
7936 
7937  // reproject the initial condition
7938  projectSolution();
7939 
7941  }
7942  else
7943  {
7944  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
7945  return;
7946  }
7947  }
7948  }
7949 }
bool initialAdaptMesh()
Used during initial adaptivity.
Definition: Adaptivity.C:268
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
unsigned int _cycles_completed
virtual void computeMarkers()
void projectSolution()
virtual void computeIndicators()
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1407
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
Adaptivity & adaptivity()

◆ initialSetup()

void FEProblemBase::initialSetup ( )
overridevirtual

If this is a restart run, the user may want to override the start time, which we already set in the constructor. "_time" however will have been "restored" from the restart file. We need to honor the original request of the developer now that the restore has been completed.

If we are not recovering but we are doing restart (_app.getExodusFileRestart() == true) with additional uniform refinements. We have to delay the refinement until this point in time so that the equation systems are initialized and projections can be performed.

Reimplemented from SubProblem.

Definition at line 865 of file FEProblemBase.C.

Referenced by Steady::init(), EigenExecutionerBase::init(), TransientBase::init(), Eigenvalue::init(), and MFEMProblem::initialSetup().

866 {
867  TIME_SECTION("initialSetup", 2, "Performing Initial Setup");
868 
870 
872  mooseError("Checkpoint recovery and restart and exodus restart are all mutually exclusive.");
873 
875  mooseWarning("MOOSE may fail to catch an exception when the \"skip_exception_check\" parameter "
876  "is used. If you receive a terse MPI error during execution, remove this "
877  "parameter and rerun your simulation");
878 
879  // set state flag indicating that we are in or beyond initialSetup.
880  // This can be used to throw errors in methods that _must_ be called at construction time.
881  _started_initial_setup = true;
883 
884  // Setup the solution states (current, old, etc) in each system based on
885  // its default and the states requested of each of its variables
886  for (const auto i : index_range(_solver_systems))
887  {
888  _solver_systems[i]->initSolutionState();
889  if (getDisplacedProblem())
890  getDisplacedProblem()->solverSys(i).initSolutionState();
891  }
892  _aux->initSolutionState();
893  if (getDisplacedProblem())
894  getDisplacedProblem()->auxSys().initSolutionState();
895 
896  // always execute to get the max number of DoF per element and node needed to initialize phi_zero
897  // variables
898  dof_id_type global_max_var_n_dofs_per_elem = 0;
899  for (const auto i : index_range(_solver_systems))
900  {
901  auto & sys = *_solver_systems[i];
902  dof_id_type max_var_n_dofs_per_elem;
903  dof_id_type max_var_n_dofs_per_node;
904  {
905  TIME_SECTION("computingMaxDofs", 3, "Computing Max Dofs Per Element");
906 
907  MaxVarNDofsPerElem mvndpe(*this, sys);
909  max_var_n_dofs_per_elem = mvndpe.max();
910  _communicator.max(max_var_n_dofs_per_elem);
911 
912  MaxVarNDofsPerNode mvndpn(*this, sys);
914  max_var_n_dofs_per_node = mvndpn.max();
915  _communicator.max(max_var_n_dofs_per_node);
916  global_max_var_n_dofs_per_elem =
917  std::max(global_max_var_n_dofs_per_elem, max_var_n_dofs_per_elem);
918  }
919 
920  {
921  TIME_SECTION("assignMaxDofs", 5, "Assigning Maximum Dofs Per Elem");
922 
923  sys.assignMaxVarNDofsPerElem(max_var_n_dofs_per_elem);
925  if (displaced_problem)
926  displaced_problem->solverSys(i).assignMaxVarNDofsPerElem(max_var_n_dofs_per_elem);
927 
928  sys.assignMaxVarNDofsPerNode(max_var_n_dofs_per_node);
929  if (displaced_problem)
930  displaced_problem->solverSys(i).assignMaxVarNDofsPerNode(max_var_n_dofs_per_node);
931  }
932  }
933 
934  {
935  TIME_SECTION("resizingVarValues", 5, "Resizing Variable Values");
936 
937  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
938  {
939  _phi_zero[tid].resize(global_max_var_n_dofs_per_elem, std::vector<Real>(getMaxQps(), 0.));
940  _grad_phi_zero[tid].resize(global_max_var_n_dofs_per_elem,
941  std::vector<RealGradient>(getMaxQps(), RealGradient(0.)));
942  _second_phi_zero[tid].resize(global_max_var_n_dofs_per_elem,
943  std::vector<RealTensor>(getMaxQps(), RealTensor(0.)));
944  }
945  }
946 
947  // Set up stateful material property redistribution, if we suspect
948  // it may be necessary later.
950 
952  {
953  // Only load all of the vectors if we're recovering
955 
956  // This forces stateful material property loading to be an exact one-to-one match
957  if (_app.isRecovering())
959  props->setRecovering();
960 
961  TIME_SECTION("restore", 3, "Restoring from backup");
962 
963  // We could have a cached backup when this app is a sub-app and has been given a Backup
964  if (!_app.hasInitialBackup())
966  else
968 
974  if (_app.isRestarting())
975  {
976  if (_app.hasStartTime())
978  else
979  _time_old = _time;
980  }
981  }
982  else
983  {
985 
986  if (reader)
987  {
988  TIME_SECTION("copyingFromExodus", 3, "Copying Variables From Exodus");
989 
990  for (auto & sys : _solver_systems)
991  sys->copyVars(*reader);
992  _aux->copyVars(*reader);
993  }
994  else
995  {
996  if (_solver_systems[0]->hasVarCopy() || _aux->hasVarCopy())
997  mooseError("Need Exodus reader to restart variables but the reader is not available\n"
998  "Use either FileMesh with an Exodus mesh file or FileMeshGenerator with an "
999  "Exodus mesh file and with use_for_exodus_restart equal to true");
1000  }
1001  }
1002 
1003  // Perform output related setups
1005 
1006  // Flush all output to _console that occur during construction and initialization of objects
1008 
1009  // Build Refinement and Coarsening maps for stateful material projections if necessary
1010  if ((_adaptivity.isOn() || _num_grid_steps) &&
1013  {
1015  mooseError("Stateful neighbor material properties do not work with mesh adaptivity");
1016 
1018  }
1019 
1020  if (!_app.isRecovering())
1021  {
1028  {
1029  if (!_app.isUltimateMaster())
1030  mooseError(
1031  "Doing extra refinements when restarting is NOT supported for sub-apps of a MultiApp");
1032 
1034  }
1035  }
1036 
1037  unsigned int n_threads = libMesh::n_threads();
1038 
1039  // Convergence initial setup
1040  {
1041  TIME_SECTION("convergenceInitialSetup", 5, "Initializing Convergence objects");
1042 
1043  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1045  }
1046 
1047  // UserObject initialSetup
1048  std::set<std::string> depend_objects_ic = _ics.getDependObjects();
1049  std::set<std::string> depend_objects_aux = _aux->getDependObjects();
1050 
1051  // This replaces all prior updateDependObjects calls on the old user object warehouses.
1052  TheWarehouse::Query uo_query = theWarehouse().query().condition<AttribSystem>("UserObject");
1053  std::vector<UserObject *> userobjs;
1054  uo_query.queryInto(userobjs);
1056  theWarehouse(), getAuxiliarySystem(), _app.getExecuteOnEnum(), userobjs, depend_objects_ic);
1057 
1058  std::map<int, std::vector<UserObject *>> group_userobjs;
1059  for (auto obj : userobjs)
1060  group_userobjs[obj->getParam<int>("execution_order_group")].push_back(obj);
1061 
1062  for (auto & [group, objs] : group_userobjs)
1063  for (auto obj : objs)
1064  obj->initialSetup();
1065 
1066  // check if jacobian calculation is done in userobject
1067  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
1069 
1070  // Check whether nonlocal couling is required or not
1074 
1075  {
1076  TIME_SECTION("initializingFunctions", 5, "Initializing Functions");
1077 
1078  // Call the initialSetup methods for functions
1079  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1080  {
1081  reinitScalars(tid); // initialize scalars so they are properly sized for use as input into
1082  // ParsedFunctions
1083  _functions.initialSetup(tid);
1084  }
1085  }
1086 
1087  {
1088  TIME_SECTION("initializingRandomObjects", 5, "Initializing Random Objects");
1089 
1090  // Random interface objects
1091  for (const auto & it : _random_data_objects)
1092  it.second->updateSeeds(EXEC_INITIAL);
1093  }
1094 
1095  if (!_app.isRecovering())
1096  {
1098 
1099  {
1100  TIME_SECTION("ICinitialSetup", 5, "Setting Up Initial Conditions");
1101 
1102  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1103  _ics.initialSetup(tid);
1104 
1106  }
1107 
1108  projectSolution();
1109  }
1110 
1111  // Materials
1113  {
1114  TIME_SECTION("materialInitialSetup", 3, "Setting Up Materials");
1115 
1116  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1117  {
1118  // Sort the Material objects, these will be actually computed by MOOSE in reinit methods.
1119  _materials.sort(tid);
1121 
1122  // Call initialSetup on all material objects
1124 
1125  // Discrete materials may insert additional dependencies on materials during the initial
1126  // setup. Therefore we resolve the dependencies once more, now with the additional
1127  // dependencies due to discrete materials.
1129  {
1130  _materials.sort(tid);
1132  }
1133  }
1134 
1135  {
1136  TIME_SECTION("computingInitialStatefulProps", 3, "Computing Initial Material Values");
1137 
1139 
1143  }
1144  }
1145 
1146  // setRestartInPlace() is set because the property maps have now been setup and we can
1147  // dataLoad() them directly in place
1148  // setRecovering() is set because from now on we require a one-to-one mapping of
1149  // stateful properties because we shouldn't be declaring any more
1151  {
1152  props->setRestartInPlace();
1153  props->setRecovering();
1154  }
1155 
1156  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1157  {
1160  _markers.sort(tid);
1161  _markers.initialSetup(tid);
1162  }
1163 
1164 #ifdef LIBMESH_ENABLE_AMR
1165 
1166  if (!_app.isRecovering())
1167  {
1168  unsigned int n = adaptivity().getInitialSteps();
1169  if (n && !_app.isUltimateMaster() && _app.isRestarting())
1170  mooseError("Cannot perform initial adaptivity during restart on sub-apps of a MultiApp!");
1171 
1172  initialAdaptMesh();
1173  }
1174 
1175 #endif // LIBMESH_ENABLE_AMR
1176 
1177  if (!_app.isRecovering() && !_app.isRestarting())
1178  {
1179  // During initial setup the solution is copied to the older solution states (old, older, etc)
1181 
1182  // Check if there are old state initial conditions
1183  auto ics = _ics.getActiveObjects();
1184  auto fv_ics = _fv_ics.getActiveObjects();
1185  auto scalar_ics = _scalar_ics.getActiveObjects();
1186  unsigned short ic_state_max = 0;
1187 
1188  auto findMax = [&ic_state_max](const auto & obj_list)
1189  {
1190  for (auto ic : obj_list.getActiveObjects())
1191  ic_state_max = std::max(ic_state_max, ic->getState());
1192  };
1193  findMax(_ics);
1194  findMax(_fv_ics);
1195  findMax(_scalar_ics);
1196 
1197  // if there are old state ICs, compute them and write to old states accordingly
1198  if (ic_state_max > 0)
1199  {
1200  // state 0 copy (we'll overwrite current state when evaluating ICs and need to restore it once
1201  // we're done with the old/older state ICs)
1202  std::vector<std::unique_ptr<NumericVector<Real>>> state0_sys_buffers(_solver_systems.size());
1203  std::unique_ptr<NumericVector<Real>> state0_aux_buffer;
1204 
1205  // save state 0
1206  for (const auto i : index_range(_solver_systems))
1207  state0_sys_buffers[i] = _solver_systems[i]->solutionState(0).clone();
1208 
1209  state0_aux_buffer = _aux->solutionState(0).clone();
1210 
1211  // compute old state ICs
1212  for (_current_ic_state = 1; _current_ic_state <= ic_state_max; _current_ic_state++)
1213  {
1214  projectSolution();
1215 
1216  for (auto & sys : _solver_systems)
1217  sys->solutionState(_current_ic_state) = sys->solutionState(0);
1218 
1219  _aux->solutionState(_current_ic_state) = _aux->solutionState(0);
1220  }
1221  _current_ic_state = 0;
1222 
1223  // recover state 0
1224  for (const auto i : index_range(_solver_systems))
1225  {
1226  _solver_systems[i]->solutionState(0) = *state0_sys_buffers[i];
1227  _solver_systems[i]->solutionState(0).close();
1228  _solver_systems[i]->update();
1229  }
1230  _aux->solutionState(0) = *state0_aux_buffer;
1231  _aux->solutionState(0).close();
1232  _aux->update();
1233  }
1234  }
1235 
1236  if (!_app.isRecovering())
1237  {
1238  if (haveXFEM())
1239  updateMeshXFEM();
1240  }
1241 
1242  // Call initialSetup on the solver systems
1243  for (auto & sys : _solver_systems)
1244  sys->initialSetup();
1245 
1246  // Auxilary variable initialSetup calls
1247  _aux->initialSetup();
1248 
1249  if (_displaced_problem)
1250  // initialSetup for displaced systems
1251  _displaced_problem->initialSetup();
1252 
1253  for (auto & sys : _solver_systems)
1254  sys->setSolution(*(sys->system().current_local_solution.get()));
1255 
1256  // Update the nearest node searches (has to be called after the problem is all set up)
1257  // We do this here because this sets up the Element's DoFs to ghost
1259 
1261  if (_displaced_mesh)
1263 
1264  // We need to move the mesh in order to build a map between mortar secondary and primary
1265  // interfaces. This map will then be used by the AgumentSparsityOnInterface ghosting functor to
1266  // know which dofs we need ghosted when we call EquationSystems::reinit
1268  {
1269  _displaced_problem->updateMesh();
1270  // if displacements were applied to the mesh, the mortar mesh should be updated too
1271  updateMortarMesh();
1272  }
1273 
1274  // Possibly reinit one more time to get ghosting correct
1276 
1277  if (_displaced_mesh)
1278  _displaced_problem->updateMesh();
1279 
1280  updateGeomSearch(); // Call all of the rest of the geometric searches
1281 
1282  for (auto & sys : _solver_systems)
1283  {
1284  const auto & tis = sys->getTimeIntegrators();
1285 
1286  {
1287  TIME_SECTION("timeIntegratorInitialSetup", 5, "Initializing Time Integrator");
1288  for (auto & ti : tis)
1289  ti->initialSetup();
1290  }
1291  }
1292 
1293  // HUGE NOTE: MultiApp initialSetup() MUST... I repeat MUST be _after_ main-app restartable data
1294  // has been restored
1295 
1296  // Call initialSetup on the MultiApps
1297  if (_multi_apps.hasObjects())
1298  {
1299  TIME_SECTION("initialSetupMultiApps", 2, "Initializing MultiApps", false);
1301  }
1302 
1303  // Call initialSetup on the transfers
1304  {
1305  TIME_SECTION("initialSetupTransfers", 2, "Initializing Transfers");
1306 
1308 
1309  // Call initialSetup on the MultiAppTransfers to be executed on TO_MULTIAPP
1310  const auto & to_multi_app_objects = _to_multi_app_transfers.getActiveObjects();
1311  for (const auto & transfer : to_multi_app_objects)
1312  {
1313  transfer->setCurrentDirection(Transfer::DIRECTION::TO_MULTIAPP);
1314  transfer->initialSetup();
1315  }
1316 
1317  // Call initialSetup on the MultiAppTransfers to be executed on FROM_MULTIAPP
1318  const auto & from_multi_app_objects = _from_multi_app_transfers.getActiveObjects();
1319  for (const auto & transfer : from_multi_app_objects)
1320  {
1321  transfer->setCurrentDirection(Transfer::DIRECTION::FROM_MULTIAPP);
1322  transfer->initialSetup();
1323  }
1324 
1325  // Call initialSetup on the MultiAppTransfers to be executed on BETWEEN_MULTIAPP
1326  const auto & between_multi_app_objects = _between_multi_app_transfers.getActiveObjects();
1327  for (const auto & transfer : between_multi_app_objects)
1328  {
1329  transfer->setCurrentDirection(Transfer::DIRECTION::BETWEEN_MULTIAPP);
1330  transfer->initialSetup();
1331  }
1332  }
1333 
1335  {
1336  TIME_SECTION("BoundaryRestrictedNodeIntegrityCheck", 5);
1337 
1338  // check that variables are defined along boundaries of boundary restricted nodal objects
1339  ConstBndNodeRange & bnd_nodes = *mesh().getBoundaryNodeRange();
1340  BoundaryNodeIntegrityCheckThread bnict(*this, uo_query);
1341  Threads::parallel_reduce(bnd_nodes, bnict);
1342 
1343  // Nodal bcs aren't threaded
1344  const auto & node_to_elem_map = _mesh.nodeToActiveSemilocalElemMap();
1345  for (const auto & bnode : bnd_nodes)
1346  {
1347  const auto boundary_id = bnode->_bnd_id;
1348  const Node * const node = bnode->_node;
1349 
1350  if (node->processor_id() != this->processor_id())
1351  continue;
1352 
1353  // Only check vertices. Variables may not be defined on non-vertex nodes (think first order
1354  // Lagrange on a second order mesh) and user-code can often handle that
1355  const Elem * const an_elem =
1356  _mesh.getMesh().elem_ptr(libmesh_map_find(node_to_elem_map, node->id()).front());
1357  if (!an_elem->is_vertex(an_elem->get_node_index(node)))
1358  continue;
1359 
1360  const auto & bnd_name = _mesh.getBoundaryName(boundary_id);
1361 
1362  for (auto & nl : _nl)
1363  {
1364  const auto & nodal_bcs = nl->getNodalBCWarehouse();
1365  if (!nodal_bcs.hasBoundaryObjects(boundary_id, 0))
1366  continue;
1367 
1368  const auto & bnd_objects = nodal_bcs.getBoundaryObjects(boundary_id, 0);
1369  for (const auto & bnd_object : bnd_objects)
1370  // Skip if this object uses geometric search because coupled variables may be defined on
1371  // paired boundaries instead of the boundary this node is on
1372  if (!bnd_object->requiresGeometricSearch() &&
1373  bnd_object->checkVariableBoundaryIntegrity())
1374  {
1375  std::set<MooseVariableFieldBase *> vars_to_omit = {
1376  &static_cast<MooseVariableFieldBase &>(
1377  const_cast<MooseVariableBase &>(bnd_object->variable()))};
1378 
1380  *bnd_object, bnd_object->checkAllVariables(*node, vars_to_omit), bnd_name);
1381  }
1382  }
1383  }
1384  }
1385 
1387  {
1388  TIME_SECTION("BoundaryRestrictedElemIntegrityCheck", 5);
1389 
1390  // check that variables are defined along boundaries of boundary restricted elemental objects
1391  ConstBndElemRange & bnd_elems = *mesh().getBoundaryElementRange();
1392  BoundaryElemIntegrityCheckThread beict(*this, uo_query);
1393  Threads::parallel_reduce(bnd_elems, beict);
1394  }
1395 
1396  if (!_app.isRecovering())
1397  {
1399 
1401  if (!converged)
1402  mooseError("failed to converge initial MultiApp");
1403 
1404  // We'll backup the Multiapp here
1406 
1407  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1408  reinitScalars(tid);
1409 
1411 
1412  // The FEProblemBase::execute method doesn't call all the systems on EXEC_INITIAL, but it does
1413  // set/unset the current flag. Therefore, this resets the current flag to EXEC_INITIAL so that
1414  // subsequent calls (e.g., executeControls) have the proper flag.
1416  }
1417 
1418  // Here we will initialize the stateful properties once more since they may have been updated
1419  // during initialSetup by calls to computeProperties.
1420  //
1421  // It's really bad that we don't allow this during restart. It means that we can't add new
1422  // stateful materials
1423  // during restart. This is only happening because this _has_ to be below initial userobject
1424  // execution.
1425  // Otherwise this could be done up above... _before_ restoring restartable data... which would
1426  // allow you to have
1427  // this happen during restart. I honestly have no idea why this has to happen after initial user
1428  // object computation.
1429  // THAT is something we should fix... so I've opened this ticket: #5804
1430  if (!_app.isRecovering() && !_app.isRestarting() &&
1433  {
1434  TIME_SECTION("computeMaterials", 2, "Computing Initial Material Properties");
1435 
1437  }
1438 
1439  // Control Logic
1441 
1442  // Scalar variables need to reinited for the initial conditions to be available for output
1443  for (unsigned int tid = 0; tid < n_threads; tid++)
1444  reinitScalars(tid);
1445 
1446  if (_displaced_mesh)
1447  _displaced_problem->syncSolutions();
1448 
1449  // Writes all calls to _console from initialSetup() methods
1451 
1453  {
1455  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
1456  for (auto & assembly : _assembly[tid])
1458  }
1459 
1460  {
1461  TIME_SECTION("lineSearchInitialSetup", 5, "Initializing Line Search");
1462 
1463  if (_line_search)
1464  _line_search->initialSetup();
1465  }
1466 
1467  // Perform Reporter get/declare check
1469 
1470  // We do this late to allow objects to get late restartable data
1473 
1475 }
void sort(THREAD_ID tid=0)
Sort the objects using the DependencyResolver.
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
MaterialPropertyStorage & _bnd_material_props
void setNonlocalCouplingMatrix()
Set custom coupling matrix for variables requiring nonlocal contribution.
void initialSetup()
Calls the initialSetup function for each of the output objects.
unsigned int n_threads()
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
std::shared_ptr< DisplacedProblem > displaced_problem
unsigned int get_node_index(const Node *node_ptr) const
bool hasObjects(THREAD_ID tid=0) const
Convenience functions for determining if objects exist.
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
const std::map< dof_id_type, std::vector< dof_id_type > > & nodeToActiveSemilocalElemMap()
If not already created, creates a map from every node to all active semilocal elements to which they ...
Definition: MooseMesh.C:1206
bool hasInitialBackup() const
Definition: MooseApp.h:994
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
const ExecFlagEnum & getExecuteOnEnum() const
Return the app level ExecFlagEnum, this contains all the available flags for the app.
Definition: MooseApp.h:987
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
unsigned short _current_ic_state
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
const std::string & getBoundaryName(BoundaryID boundary_id)
Return the name of the boundary given the id.
Definition: MooseMesh.C:1792
std::filesystem::path restartFolderBase(const std::filesystem::path &folder_base) const
The file suffix for restartable data.
Definition: MooseApp.C:3087
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
unsigned int _num_grid_steps
Number of steps in a grid sequence.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
This class provides an interface for common operations on field variables of both FE and FV types wit...
const Parallel::Communicator & _communicator
MaterialWarehouse _interface_materials
Real getStartTime() const
Definition: MooseApp.h:293
void setCurrentExecuteOnFlag(const ExecFlagType &)
void initElementStatefulProps(const libMesh::ConstElemRange &elem_range, const bool threaded)
Initialize stateful properties for elements in a specific elem_range This is needed when elements/bou...
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
bool isRestarting() const
Whether or not this is a "restart" calculation.
Definition: MooseApp.C:1807
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
void projectSolution()
auto max(const L &left, const R &right)
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
ScalarInitialConditionWarehouse _scalar_ics
bool getExodusFileRestart() const
Whether or not we need to use a separate Exodus reader to read the mesh BEFORE we create the mesh...
Definition: MooseApp.h:423
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
virtual void copySolutionsBackwards()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
std::vector< VariablePhiGradient > _grad_phi_zero
void initialSetup(THREAD_ID tid)
Initial setup.
virtual void execute(const ExecFlagType &exec_type)
Convenience function for performing execution of MOOSE systems.
ReporterData _reporter_data
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
dof_id_type id() const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
TheWarehouse & theWarehouse() const
void boundaryIntegrityCheckError(const MooseObject &object, const std::set< MooseVariableFieldBase *> &variables, const BoundaryName &boundary_name)
Compose boundary restricted error message for the provided object, variables, and boundary_name if th...
void checkNonlocalCoupling()
void groupUserObjects(TheWarehouse &w, AuxiliarySystem &aux, const ExecFlagEnum &execute_flags, const std::vector< T *> &objs, const std::set< std::string > &ic_deps)
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool converged(const unsigned int sys_num)
Eventually we want to convert this virtual over to taking a solver system number argument.
Definition: SubProblem.h:113
const bool _boundary_restricted_node_integrity_check
whether to perform checking of boundary restricted nodal object variable dependencies, e.g.
MooseMesh & _mesh
virtual bool updateMeshXFEM()
Update the mesh due to changing XFEM cuts.
void addAnyRedistributers()
void restoreFromInitialBackup(const bool for_restart)
Restores from a "initial" backup, that is, one set in _initial_backup.
Definition: MooseApp.C:1909
Adaptivity _adaptivity
void checkUserObjectJacobianRequirement(THREAD_ID tid)
const bool _force_restart
std::vector< VariablePhiSecond > _second_phi_zero
bool _started_initial_setup
At or beyond initialSteup stage.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
libMesh::ExodusII_IO * getExReaderForRestart() const
Get the Exodus reader to restart variables from an Exodus mesh file.
Definition: MooseApp.h:436
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
unsigned int uniformRefineLevel() const
Returns the level of uniform refinement requested (zero if AMR is disabled).
Definition: MooseMesh.C:3216
AuxiliarySystem & getAuxiliarySystem()
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods.
virtual void updateGeomSearch(GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
void buildRefinementAndCoarseningMaps(Assembly *assembly)
Create the refinement and coarsening maps necessary for projection of stateful material properties wh...
Definition: MooseMesh.C:2462
MooseObjectWarehouse< Indicator > _indicators
void backupMultiApps(ExecFlagType type)
Backup the MultiApps associated with the ExecFlagType.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void uniformRefineWithProjection()
Performs uniform refinement on the meshes in the current object.
Definition: Adaptivity.C:301
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods that handle the extra neighbor and face objects...
void sort(THREAD_ID tid=0)
virtual const Elem * elem_ptr(const dof_id_type i) const=0
virtual void updateMortarMesh()
void restore(const std::filesystem::path &folder_base, const bool for_restart)
Restore an application from file.
Definition: MooseApp.C:1874
std::vector< VariablePhiValue > _phi_zero
InitialConditionWarehouse _ics
MaterialWarehouse _discrete_materials
virtual void initialSetup()
Definition: SubProblem.C:1217
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
bool hasActiveObjects(THREAD_ID tid=0) const
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void max(const T &r, T &o, Request &req) const
void setLoadAllVectors(const bool load_all_vectors)
Sets whether or not all vectors are to be loaded.
virtual bool is_vertex(const unsigned int i) const=0
void initNonlocalCoupling()
Create pair of variables requiring nonlocal jacobian contributions.
Definition: Assembly.C:2647
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
bool hasStartTime() const
Definition: MooseApp.h:288
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
virtual MooseMesh & mesh() override
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
void mooseConsole()
Send current output buffer to Console output objects.
std::set< std::string > getDependObjects() const
Get a list of dependent UserObjects for this exec type.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MaterialPropertyStorage & _neighbor_material_props
std::unique_ptr< Backup > finalizeRestore()
Finalizes (closes) the restoration process done in restore().
Definition: MooseApp.C:1916
libMesh::StoredRange< MooseMesh::const_bnd_elem_iterator, const BndElement * > * getBoundaryElementRange()
Definition: MooseMesh.C:1303
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
void check() const
Perform integrity check for get/declare calls.
Definition: ReporterData.C:162
const bool _boundary_restricted_elem_integrity_check
whether to perform checking of boundary restricted elemental object variable dependencies, e.g.
processor_id_type processor_id() const
MaterialPropertyStorage & _material_props
Adaptivity & adaptivity()
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1801
Restartable::ManagedValue< RestartableEquationSystems > _req
The EquationSystems object, wrapped for restart.
processor_id_type processor_id() const
std::string getRestartRecoverFileBase() const
The file_base for the recovery file.
Definition: MooseApp.h:487
MooseObjectWarehouse< Marker > _markers
FVInitialConditionWarehouse _fv_ics
virtual void initialAdaptMesh()
MaterialWarehouse _all_materials
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289
auto index_range(const T &sizable)
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
MooseMesh * _displaced_mesh
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
Base variable class.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials
uint8_t dof_id_type
std::shared_ptr< LineSearch > _line_search
unsigned int getMaxQps() const
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ initNullSpaceVectors()

void FEProblemBase::initNullSpaceVectors ( const InputParameters parameters,
std::vector< std::shared_ptr< NonlinearSystemBase >> &  nl 
)
virtual

Definition at line 740 of file FEProblemBase.C.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

742 {
743  TIME_SECTION("initNullSpaceVectors", 5, "Initializing Null Space Vectors");
744 
745  unsigned int dimNullSpace = parameters.get<unsigned int>("null_space_dimension");
746  unsigned int dimTransposeNullSpace =
747  parameters.get<unsigned int>("transpose_null_space_dimension");
748  unsigned int dimNearNullSpace = parameters.get<unsigned int>("near_null_space_dimension");
749  for (unsigned int i = 0; i < dimNullSpace; ++i)
750  {
751  std::ostringstream oss;
752  oss << "_" << i;
753  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
754  // builder might march over all nodes
755  for (auto & nl : nls)
756  nl->addVector("NullSpace" + oss.str(), false, libMesh::GHOSTED);
757  }
758  _subspace_dim["NullSpace"] = dimNullSpace;
759  for (unsigned int i = 0; i < dimTransposeNullSpace; ++i)
760  {
761  std::ostringstream oss;
762  oss << "_" << i;
763  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
764  // builder might march over all nodes
765  for (auto & nl : nls)
766  nl->addVector("TransposeNullSpace" + oss.str(), false, libMesh::GHOSTED);
767  }
768  _subspace_dim["TransposeNullSpace"] = dimTransposeNullSpace;
769  for (unsigned int i = 0; i < dimNearNullSpace; ++i)
770  {
771  std::ostringstream oss;
772  oss << "_" << i;
773  // do not project, since this will be recomputed, but make it ghosted, since the near-nullspace
774  // builder might march over all semilocal nodes
775  for (auto & nl : nls)
776  nl->addVector("NearNullSpace" + oss.str(), false, libMesh::GHOSTED);
777  }
778  _subspace_dim["NearNullSpace"] = dimNearNullSpace;
779 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ initPetscOutputAndSomeSolverSettings()

void FEProblemBase::initPetscOutputAndSomeSolverSettings ( )
virtual

Reinitialize PETSc output for proper linear/nonlinear iteration display.

This also may be used for some PETSc-related solver settings

Reimplemented in EigenProblem.

Definition at line 6712 of file FEProblemBase.C.

Referenced by possiblyRebuildGeomSearchPatches(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), and solve().

6713 {
6716 }
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:446
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void solveSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ initXFEM()

void FEProblemBase::initXFEM ( std::shared_ptr< XFEMInterface xfem)

Create XFEM controller object.

Definition at line 8014 of file FEProblemBase.C.

8015 {
8016  _xfem = xfem;
8017  _xfem->setMesh(&_mesh);
8018  if (_displaced_mesh)
8019  _xfem->setDisplacedMesh(_displaced_mesh);
8020 
8021  auto fill_data = [](auto & storage)
8022  {
8023  std::vector<MaterialData *> data(libMesh::n_threads());
8024  for (const auto tid : make_range(libMesh::n_threads()))
8025  data[tid] = &storage.getMaterialData(tid);
8026  return data;
8027  };
8028  _xfem->setMaterialData(fill_data(_material_props));
8029  _xfem->setBoundaryMaterialData(fill_data(_bnd_material_props));
8030 
8031  unsigned int n_threads = libMesh::n_threads();
8032  for (unsigned int i = 0; i < n_threads; ++i)
8033  for (const auto nl_sys_num : index_range(_nl))
8034  {
8035  _assembly[i][nl_sys_num]->setXFEM(_xfem);
8036  if (_displaced_problem)
8037  _displaced_problem->assembly(i, nl_sys_num).setXFEM(_xfem);
8038  }
8039 }
void fill_data(std::map< processor_id_type, std::vector< std::set< unsigned int >>> &data, int M)
MaterialPropertyStorage & _bnd_material_props
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ isMatPropRequested()

bool SubProblem::isMatPropRequested ( const std::string &  prop_name) const
virtualinherited

Find out if a material property has been requested by any object.

Definition at line 730 of file SubProblem.C.

731 {
732  return _material_property_requested.find(prop_name) != _material_property_requested.end();
733 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ isParamSetByUser()

bool MooseBase::isParamSetByUser ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is set by a user, as opposed to not set or set to default.

Parameters
nameThe name of the parameter to test

Definition at line 201 of file MooseBase.h.

Referenced by SetupDebugAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEBCs(), DiffusionPhysicsBase::addInitialConditions(), MFEMMesh::buildMesh(), LibtorchNeuralNetControl::conditionalParameterError(), MooseApp::copyInputs(), DiffusionPhysicsBase::DiffusionPhysicsBase(), ElementSubdomainModifierBase::ElementSubdomainModifierBase(), MooseApp::errorCheck(), MooseBase::getRenamedParam(), DefaultConvergenceBase::getSharedExecutionerParam(), AddVariableAction::init(), PhysicsBase::initializePhysics(), ElementSubdomainModifierBase::initialSetup(), MatrixSymmetryCheck::MatrixSymmetryCheck(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), SolutionInvalidityOutput::output(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), PetscExternalPartitioner::partition(), PiecewiseTabularBase::PiecewiseTabularBase(), MooseMesh::prepare(), SolutionUserObjectBase::readXda(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::runInputFile(), MooseApp::runInputs(), MFEMSolverBase::setPreconditioner(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), TimedSubdomainModifier::TimedSubdomainModifier(), and XYDelaunayGenerator::XYDelaunayGenerator().

202  {
203  return _pars.isParamSetByUser(name);
204  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.

◆ isParamValid()

bool MooseBase::isParamValid ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is valid.

Parameters
nameThe name of the parameter to test

Definition at line 195 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), CopyNodalVarsAction::act(), SetupMeshAction::act(), SetupDebugAction::act(), ComposeTimeStepperAction::act(), CreateDisplacedProblemAction::act(), SetAdaptivityOptionsAction::act(), AddVariableAction::act(), CommonOutputAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), DiffusionPhysicsBase::addInitialConditions(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), DiffusionPhysicsBase::addPostprocessors(), AdvectiveFluxAux::AdvectiveFluxAux(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayVarReductionAux::ArrayVarReductionAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), ParsedChainControl::buildFunction(), GeneratedMesh::buildMesh(), MooseMesh::buildTypedMesh(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), LibmeshPartitioner::clone(), SampledOutput::cloneMesh(), CombinerGenerator::CombinerGenerator(), FunctorAux::computeValue(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), FEProblemSolve::convergenceSetup(), CopyMeshPartitioner::CopyMeshPartitioner(), CSVReaderVectorPostprocessor::CSVReaderVectorPostprocessor(), CutMeshByLevelSetGeneratorBase::CutMeshByLevelSetGeneratorBase(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), DGKernelBase::DGKernelBase(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), PIDTransientControl::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), Exodus::Exodus(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), FunctionDT::FunctionDT(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FVInterfaceKernel::FVInterfaceKernel(), FVMassMatrix::FVMassMatrix(), FileMeshGenerator::generate(), AddMetaDataGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementGenerator::generate(), ExtraNodesetGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), BlockDeletionGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), MeshExtruderGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYZDelaunayGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), SubdomainBoundingBoxGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), PropertyReadFile::getFileNames(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getRenamedParam(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), Terminator::handleMessage(), HFEMDirichletBC::HFEMDirichletBC(), EigenExecutionerBase::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AdvancedOutput::initExecutionTypes(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), MultiAppVariableValueSampleTransfer::initialSetup(), PiecewiseTabularBase::initialSetup(), ParsedConvergence::initialSetup(), SolutionScalarAux::initialSetup(), SolutionAux::initialSetup(), Console::initialSetup(), MooseParsedVectorFunction::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), MooseParsedGradFunction::initialSetup(), MooseParsedFunction::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::IterationAdaptiveDT(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MassMatrix::MassMatrix(), MatCoupledForce::MatCoupledForce(), MatDiffusionBase< Real >::MatDiffusionBase(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMProblemSolve::MFEMProblemSolve(), MooseMesh::MooseMesh(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableFV< Real >::MooseVariableFV(), MortarConstraintBase::MortarConstraintBase(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NodeSetsGeneratorBase::NodeSetsGeneratorBase(), EigenExecutionerBase::normalizeSolution(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), ParsedCurveGenerator::ParsedCurveGenerator(), PetscOutput::PetscOutput(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseTabularBase::PiecewiseTabularBase(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), MooseMesh::prepare(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), SolutionUserObjectBase::readExodusII(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), ReporterPointSource::ReporterPointSource(), PhysicsBase::reportPotentiallyMissedParameters(), ParsedSubdomainMeshGenerator::setBlockName(), MooseMesh::setCoordSystem(), FileOutput::setFileBase(), FileOutput::setFileBaseInternal(), Split::setup(), SideSetsGeneratorBase::setup(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), Output::setWallTimeIntervalFromCommandLineParam(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsGeneratorBase::SideSetsGeneratorBase(), SolutionUserObjectBase::SolutionUserObjectBase(), WebServerControl::startServer(), Terminator::Terminator(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriod::TimePeriod(), MultiAppDofCopyTransfer::transfer(), TransformGenerator::TransformGenerator(), TransientBase::TransientBase(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

195 { return _pars.isParamValid(name); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isSNESMFReuseBaseSetbyUser()

bool FEProblemBase::isSNESMFReuseBaseSetbyUser ( )
inline

Return a flag to indicate if _snesmf_reuse_base is set by users.

Definition at line 2134 of file FEProblemBase.h.

bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.

◆ isSolverSystemNonlinear()

bool FEProblemBase::isSolverSystemNonlinear ( const unsigned int  sys_num)
inline

Check if the solver system is nonlinear.

Definition at line 2378 of file FEProblemBase.h.

Referenced by addBoundaryCondition(), addConstraint(), addDamper(), addDGKernel(), addDiracKernel(), addHDGKernel(), addInterfaceKernel(), addKernel(), addScalarKernel(), and ConsoleUtils::outputExecutionInformation().

2378 { return sys_num < _num_nl_sys; }
const std::size_t _num_nl_sys
The number of nonlinear systems.

◆ isSolveTerminationRequested()

virtual bool Problem::isSolveTerminationRequested ( ) const
inlinevirtualinherited

Check of termination has been requested.

This should be called by transient Executioners in the keepGoing() member.

Definition at line 43 of file Problem.h.

Referenced by WebServerControl::execute(), and TransientBase::keepGoing().

43 { return _termination_requested; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ isTransient()

virtual bool FEProblemBase::isTransient ( ) const
inlineoverridevirtual

◆ jacobianSetup()

void FEProblemBase::jacobianSetup ( )
overridevirtual

Reimplemented from SubProblem.

Definition at line 9186 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::jacobianSetup().

9187 {
9189  // We need to setup all the nonlinear systems other than our current one which actually called
9190  // this method (so we have to make sure we don't go in a circle)
9191  for (const auto i : make_range(numNonlinearSystems()))
9192  if (i != currentNlSysNum())
9193  _nl[i]->jacobianSetup();
9194  // We don't setup the aux sys because that's been done elsewhere
9195  if (_displaced_problem)
9196  _displaced_problem->jacobianSetup();
9197 }
virtual std::size_t numNonlinearSystems() const override
virtual void jacobianSetup()
Definition: SubProblem.C:1209
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ joinAndFinalize()

void FEProblemBase::joinAndFinalize ( TheWarehouse::Query  query,
bool  isgen = false 
)
private

Definition at line 4720 of file FEProblemBase.C.

Referenced by computeUserObjectsInternal().

4721 {
4722  std::vector<UserObject *> objs;
4723  query.queryInto(objs);
4724  if (!isgen)
4725  {
4726  // join all threaded user objects (i.e. not regular general user objects) to the primary
4727  // thread
4728  for (auto obj : objs)
4729  if (obj->primaryThreadCopy())
4730  obj->primaryThreadCopy()->threadJoin(*obj);
4731  }
4732 
4733  query.condition<AttribThread>(0).queryInto(objs);
4734 
4735  // finalize objects and retrieve/store any postprocessor values
4736  for (auto obj : objs)
4737  {
4738  if (isgen && dynamic_cast<ThreadedGeneralUserObject *>(obj))
4739  continue;
4740  if (isgen)
4741  {
4742  // general user objects are not run in their own threaded loop object - so run them here
4743  if (shouldPrintExecution(0))
4744  _console << "[DBG] Initializing, executing & finalizing general UO '" << obj->name()
4745  << "' on " << _current_execute_on_flag.name() << std::endl;
4746  obj->initialize();
4747  obj->execute();
4748  }
4749 
4750  obj->finalize();
4751 
4752  // These have to be stored piecemeal (with every call to this function) because general
4753  // postprocessors (which run last after other userobjects have been completed) might depend on
4754  // them being stored. This wouldn't be a problem if all userobjects satisfied the dependency
4755  // resolver interface and could be sorted appropriately with the general userobjects, but they
4756  // don't.
4757  auto pp = dynamic_cast<const Postprocessor *>(obj);
4758  if (pp)
4759  {
4760  _reporter_data.finalize(obj->name());
4761  setPostprocessorValueByName(obj->name(), pp->getValue());
4762  }
4763 
4764  auto vpp = dynamic_cast<VectorPostprocessor *>(obj);
4765  if (vpp)
4766  _reporter_data.finalize(obj->name());
4767 
4768  // Update Reporter data
4769  auto reporter = dynamic_cast<Reporter *>(obj);
4770  if (reporter)
4771  _reporter_data.finalize(obj->name());
4772  }
4773 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const std::string & name() const
Definition: MooseEnumItem.h:35
void setPostprocessorValueByName(const PostprocessorName &name, const PostprocessorValue &value, std::size_t t_index=0)
Set the value of a PostprocessorValue.
Reporter objects allow for the declaration of arbitrary data types that are aggregate values for a si...
Definition: Reporter.h:47
ReporterData _reporter_data
bool shouldPrintExecution(const THREAD_ID tid) const
Check whether the problem should output execution orders at this time.
void finalize(const std::string &object_name)
Helper function for performing post calculation actions via the ReporterContext objects.
Definition: ReporterData.C:48
Base class for all Postprocessors.
Definition: Postprocessor.h:23
query_obj query
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
Base class for Postprocessors that produce a vector of values.

◆ linearSysNum()

unsigned int FEProblemBase::linearSysNum ( const LinearSystemName &  linear_sys_name) const
overridevirtual
Returns
the linear system number corresponding to the provided linear_sys_name

Implements SubProblem.

Definition at line 6318 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), LinearSystem::computeGradients(), computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and DisplacedProblem::linearSysNum().

6319 {
6320  std::istringstream ss(linear_sys_name);
6321  unsigned int linear_sys_num;
6322  if (!(ss >> linear_sys_num) || !ss.eof())
6323  linear_sys_num = libmesh_map_find(_linear_sys_name_to_num, linear_sys_name);
6324 
6325  return linear_sys_num;
6326 }
std::map< LinearSystemName, unsigned int > _linear_sys_name_to_num
Map from linear system name to number.

◆ lineSearch()

void FEProblemBase::lineSearch ( )
virtual

execute MOOSE line search

Definition at line 2663 of file FEProblemBase.C.

Referenced by ComputeLineSearchObjectWrapper::linesearch().

2664 {
2665  _line_search->lineSearch();
2666 }
std::shared_ptr< LineSearch > _line_search

◆ logAdd()

void FEProblemBase::logAdd ( const std::string &  system,
const std::string &  name,
const std::string &  type,
const InputParameters params 
) const

Output information about the object just added to the problem.

Definition at line 4187 of file FEProblemBase.C.

Referenced by addAuxArrayVariable(), addAuxKernel(), addAuxScalarKernel(), addAuxScalarVariable(), addAuxVariable(), addConstraint(), addDamper(), addDGKernel(), addDiracKernel(), addFunction(), addFunctorMaterial(), addIndicator(), addInitialCondition(), addInterfaceKernel(), addMarker(), addMaterialHelper(), addMultiApp(), addNodalKernel(), addObject(), addOutput(), addPredictor(), addScalarKernel(), addTimeIntegrator(), addTransfer(), addUserObject(), addVariable(), and setResidualObjectParamsAndLog().

4191 {
4192  if (_verbose_setup != "false")
4193  _console << "[DBG] Adding " << system << " '" << name << "' of type " << type << std::endl;
4194  if (_verbose_setup == "extra")
4195  _console << params << std::endl;
4196 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.

◆ makeLinearSolverParams()

SolverParams FEProblemBase::makeLinearSolverParams ( )
staticprivate

Make basic solver params for linear solves.

Definition at line 9413 of file FEProblemBase.C.

Referenced by FEProblemBase().

9414 {
9415  SolverParams solver_params;
9416  solver_params._type = Moose::SolveType::ST_LINEAR;
9418  return solver_params;
9419 }
Moose::LineSearchType _line_search
Definition: SolverParams.h:20
Solving a linear problem.
Definition: MooseTypes.h:849
Moose::SolveType _type
Definition: SolverParams.h:19

◆ markFamilyPRefinement()

void SubProblem::markFamilyPRefinement ( const InputParameters params)
protectedinherited

Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable.

Definition at line 1367 of file SubProblem.C.

Referenced by addAuxArrayVariable(), addAuxVariable(), and addVariable().

1368 {
1369  auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
1370  bool flag = _default_families_without_p_refinement.count(family);
1371  if (params.isParamValid("disable_p_refinement"))
1372  flag = params.get<bool>("disable_p_refinement");
1373 
1374  auto [it, inserted] = _family_for_p_refinement.emplace(family, flag);
1375  if (!inserted && flag != it->second)
1376  mooseError("'disable_p_refinement' not set consistently for variables in ", family);
1377 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
static const std::unordered_set< FEFamily > _default_families_without_p_refinement
The set of variable families by default disable p-refinement.
Definition: SubProblem.h:1207
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ markMatPropRequested()

void SubProblem::markMatPropRequested ( const std::string &  prop_name)
virtualinherited

Helper method for adding a material property name to the _material_property_requested set.

Definition at line 724 of file SubProblem.C.

Referenced by MaterialBase::markMatPropRequested(), and MaterialPropertyInterface::markMatPropRequested().

725 {
726  _material_property_requested.insert(prop_name);
727 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ matrixTagExists() [1/2]

bool SubProblem::matrixTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 328 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), SystemBase::associateMatrixToTag(), Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), SystemBase::disassociateDefaultMatrixTags(), SystemBase::disassociateMatrixFromTag(), SystemBase::getMatrix(), SubProblem::getMatrixTagID(), SystemBase::matrixTagActive(), DisplacedProblem::matrixTagExists(), SystemBase::removeMatrix(), and TaggingInterface::useMatrixTag().

329 {
330  auto tag_name_upper = MooseUtils::toUpper(tag_name);
331 
332  return _matrix_tag_name_to_tag_id.find(tag_name_upper) != _matrix_tag_name_to_tag_id.end();
333 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.

◆ matrixTagExists() [2/2]

bool SubProblem::matrixTagExists ( TagID  tag_id) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 336 of file SubProblem.C.

337 {
338  return _matrix_tag_id_to_tag_name.find(tag_id) != _matrix_tag_id_to_tag_name.end();
339 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ matrixTagName()

TagName SubProblem::matrixTagName ( TagID  tag)
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 357 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), DisplacedProblem::matrixTagName(), and SystemBase::removeMatrix().

358 {
359  return _matrix_tag_id_to_tag_name[tag];
360 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ mesh() [1/3]

virtual MooseMesh& FEProblemBase::mesh ( )
inlineoverridevirtual

Implements SubProblem.

Reimplemented in MFEMProblem.

Definition at line 151 of file FEProblemBase.h.

Referenced by Adaptivity::adaptMesh(), addAnyRedistributers(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), PhysicsBasedPreconditioner::apply(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), SampledOutput::cloneMesh(), LinearSystem::computeGradients(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), ComputeFullJacobianThread::computeOnInternalFace(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), coordTransform(), MultiApp::createApp(), DMMooseGetEmbedding_Private(), ElementsAlongLine::ElementsAlongLine(), ElementsAlongPlane::ElementsAlongPlane(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementsAlongLine::execute(), ElementsAlongPlane::execute(), IntersectionPointsAlongLine::execute(), WorkBalance::execute(), MultiAppUserObjectTransfer::execute(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), FunctionPeriodicBoundary::FunctionPeriodicBoundary(), MultiApp::getBoundingBox(), Exodus::handleExodusIOMeshRenumbering(), NodePositions::initialize(), FunctorPositions::initialize(), FunctorTimes::initialize(), FunctorExtremaPositions::initialize(), ParsedDownSelectionPositions::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), ImageFunction::initialSetup(), initialSetup(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), IntersectionPointsAlongLine::IntersectionPointsAlongLine(), Moose::Mortar::loopOverMortarSegments(), ReporterPointMarker::markerSetup(), MFEMProblem::mesh(), mesh(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), ComputeNodalUserObjectsThread::onNode(), BoundaryNodeIntegrityCheckThread::onNode(), ComputeInitialConditionThread::operator()(), BoundaryElemIntegrityCheckThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Output::Output(), Exodus::outputEmptyTimestep(), ConsoleUtils::outputMeshInformation(), Exodus::outputNodalVariables(), Exodus::outputSetup(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), MeshInfo::possiblyAddSidesetInfo(), MeshInfo::possiblyAddSubdomainInfo(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MaterialPropertyDebugOutput::printMaterialMap(), TopResidualDebugOutput::printTopResiduals(), SolutionUserObjectBase::SolutionUserObjectBase(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), Moose::PetscSupport::storePetscOptions(), MultiAppDofCopyTransfer::transfer(), Checkpoint::updateCheckpointFiles(), and SampledOutput::updateSample().

151 { return _mesh; }
MooseMesh & _mesh

◆ mesh() [2/3]

virtual const MooseMesh& FEProblemBase::mesh ( ) const
inlineoverridevirtual

Implements SubProblem.

Reimplemented in MFEMProblem.

Definition at line 152 of file FEProblemBase.h.

152 { return _mesh; }
MooseMesh & _mesh

◆ mesh() [3/3]

const MooseMesh & FEProblemBase::mesh ( bool  use_displaced) const
overridevirtual

Implements SubProblem.

Definition at line 645 of file FEProblemBase.C.

646 {
647  if (use_displaced && !_displaced_problem)
648  mooseWarning("Displaced mesh was requested but the displaced problem does not exist. "
649  "Regular mesh will be returned");
650  return ((use_displaced && _displaced_problem) ? _displaced_problem->mesh() : mesh());
651 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
virtual MooseMesh & mesh() override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ meshChanged() [1/2]

void FEProblemBase::meshChanged ( bool  intermediate_change,
bool  contract_mesh,
bool  clean_refinement_flags 
)
virtual

Update data after a mesh change.

Iff intermediate_change is true, only perform updates as necessary to prepare for another mesh change immediately-subsequent. An example of data that is not updated during an intermediate change is libMesh System matrix data. An example of data that is updated during an intermediate change is libMesh System vectors. These vectors are projected or restricted based off of adaptive mesh refinement or the changing of element subdomain IDs. The flags contract_mesh and clean_refinement_flags should generally only be set to true when the mesh has changed due to mesh refinement. contract_mesh deletes children of coarsened elements and renumbers nodes and elements. clean_refinement_flags resets refinement flags such that any subsequent calls to System::restrict_vectors or System::prolong_vectors before another AMR step do not mistakenly attempt to re-do the restriction/prolongation which occurred in this method

Definition at line 8069 of file FEProblemBase.C.

Referenced by SidesetAroundSubdomainUpdater::finalize(), ActivateElementsUserObjectBase::finalize(), Exodus::handleExodusIOMeshRenumbering(), ElementSubdomainModifierBase::modify(), and Adaptivity::uniformRefineWithProjection().

8072 {
8073  TIME_SECTION("meshChanged", 3, "Handling Mesh Changes");
8074 
8077  _mesh.cacheChangedLists(); // Currently only used with adaptivity and stateful material
8078  // properties
8079 
8080  // Clear these out because they corresponded to the old mesh
8081  _ghosted_elems.clear();
8083 
8084  // The mesh changed. We notify the MooseMesh first, because
8085  // callbacks (e.g. for sparsity calculations) triggered by the
8086  // EquationSystems reinit may require up-to-date MooseMesh caches.
8087  _mesh.meshChanged();
8088 
8089  // If we're just going to alter the mesh again, all we need to
8090  // handle here is AMR and projections, not full system reinit
8091  if (intermediate_change)
8092  es().reinit_solutions();
8093  else
8094  es().reinit();
8095 
8096  if (contract_mesh)
8097  // Once vectors are restricted, we can delete children of coarsened elements
8098  _mesh.getMesh().contract();
8099  if (clean_refinement_flags)
8100  {
8101  // Finally clear refinement flags so that if someone tries to project vectors again without
8102  // an intervening mesh refinement to clear flags they won't run into trouble
8103  MeshRefinement refinement(_mesh.getMesh());
8104  refinement.clean_refinement_flags();
8105  }
8106 
8107  if (!intermediate_change)
8108  {
8109  // Since the mesh has changed, we need to make sure that we update any of our
8110  // MOOSE-system specific data.
8111  for (auto & sys : _solver_systems)
8112  sys->reinit();
8113  _aux->reinit();
8114  }
8115 
8116  // Updating MooseMesh first breaks other adaptivity code, unless we
8117  // then *again* update the MooseMesh caches. E.g. the definition of
8118  // "active" and "local" may have been *changed* by refinement and
8119  // repartitioning done in EquationSystems::reinit().
8120  _mesh.meshChanged();
8121 
8122  // If we have finite volume variables, we will need to recompute additional elemental/face
8123  // quantities
8126 
8127  // Let the meshChangedInterface notify the mesh changed event before we update the active
8128  // semilocal nodes, because the set of ghosted elements may potentially be updated during a mesh
8129  // changed event.
8130  for (const auto & mci : _notify_when_mesh_changes)
8131  mci->meshChanged();
8132 
8133  // Since the Mesh changed, update the PointLocator object used by DiracKernels.
8135 
8136  // Need to redo ghosting
8138 
8139  if (_displaced_problem)
8140  {
8141  _displaced_problem->meshChanged(contract_mesh, clean_refinement_flags);
8143  }
8144 
8146 
8149 
8150  // Just like we reinitialized our geometric search objects, we also need to reinitialize our
8151  // mortar meshes. Note that this needs to happen after DisplacedProblem::meshChanged because the
8152  // mortar mesh discretization will depend necessarily on the displaced mesh being re-displaced
8153  updateMortarMesh();
8154 
8155  // Nonlinear systems hold the mortar mesh functors. The domains of definition of the mortar
8156  // functors might have changed when the mesh changed.
8157  for (auto & nl_sys : _nl)
8158  nl_sys->reinitMortarFunctors();
8159 
8160  reinitBecauseOfGhostingOrNewGeomObjects(/*mortar_changed=*/true);
8161 
8162  // We need to create new storage for newly active elements, and copy
8163  // stateful properties from the old elements.
8166  {
8167  if (havePRefinement())
8169 
8170  // Prolong properties onto newly refined elements' children
8171  {
8173  /* refine = */ true, *this, _material_props, _bnd_material_props, _assembly);
8174  const auto & range = *_mesh.refinedElementRange();
8175  Threads::parallel_reduce(range, pmp);
8176 
8177  // Concurrent erasure from the shared hash map is not safe while we are reading from it in
8178  // ProjectMaterialProperties, so we handle erasure here. Moreover, erasure based on key is
8179  // not thread safe in and of itself because it is a read-write operation. Note that we do not
8180  // do the erasure for p-refinement because the coarse level element is the same as our active
8181  // refined level element
8182  if (!doingPRefinement())
8183  for (const auto & elem : range)
8184  {
8188  }
8189  }
8190 
8191  // Restrict properties onto newly coarsened elements
8192  {
8194  /* refine = */ false, *this, _material_props, _bnd_material_props, _assembly);
8195  const auto & range = *_mesh.coarsenedElementRange();
8196  Threads::parallel_reduce(range, pmp);
8197  // Note that we do not do the erasure for p-refinement because the coarse level element is the
8198  // same as our active refined level element
8199  if (!doingPRefinement())
8200  for (const auto & elem : range)
8201  {
8202  auto && coarsened_children = _mesh.coarsenedElementChildren(elem);
8203  for (auto && child : coarsened_children)
8204  {
8208  }
8209  }
8210  }
8211  }
8212 
8215 
8216  _has_jacobian = false; // we have to recompute jacobian when mesh changed
8217 
8218  // Now for backwards compatibility with user code that overrode the old no-arg meshChanged we must
8219  // call it here
8220  meshChanged();
8221 }
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool isFiniteVolumeInfoDirty() const
Definition: MooseMesh.h:1304
virtual void meshChanged()
Deprecated.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
MaterialPropertyStorage & _bnd_material_props
bool _has_jacobian
Indicates if the Jacobian was computed.
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void eraseProperty(const Elem *elem)
Remove the property storage and element pointer from internal data structures Use this when elements ...
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void cacheChangedLists()
Cache information about what elements were refined and coarsened in the previous step.
Definition: MooseMesh.C:913
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
ConstElemPointerRange * refinedElementRange() const
Return a range that is suitable for threaded execution over elements that were just refined...
Definition: MooseMesh.C:931
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
bool havePRefinement() const
Query whether p-refinement has been requested at any point during the simulation. ...
Definition: SubProblem.h:1009
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void reinit()
Completely redo all geometric search objects.
bool doingPRefinement() const
Definition: SubProblem.C:1361
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
const std::vector< const Elem * > & coarsenedElementChildren(const Elem *elem) const
Get the newly removed children element ids for an element that was just coarsened.
Definition: MooseMesh.C:943
virtual bool contract()=0
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
MaterialPropertyStorage & _neighbor_material_props
ConstElemPointerRange * coarsenedElementRange() const
Return a range that is suitable for threaded execution over elements that were just coarsened...
Definition: MooseMesh.C:937
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
MaterialPropertyStorage & _material_props
void updatePointLocator(const MooseMesh &mesh)
Called during FEProblemBase::meshChanged() to update the PointLocator object used by the DiracKernels...
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:882
void buildPRefinementAndCoarseningMaps(Assembly *assembly)
Definition: MooseMesh.C:2368
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4072

◆ meshChanged() [2/2]

virtual void FEProblemBase::meshChanged ( )
inlineprotectedvirtual

Deprecated.

Users should switch to overriding the meshChanged which takes arguments

Definition at line 2513 of file FEProblemBase.h.

Referenced by adaptMesh(), initialAdaptMesh(), meshChanged(), timestepSetup(), uniformRefine(), and updateMeshXFEM().

2513 {}

◆ meshDisplaced()

void FEProblemBase::meshDisplaced ( )
protectedvirtual

Update data after a mesh displaced.

Definition at line 8236 of file FEProblemBase.C.

Referenced by DisplacedProblem::updateMesh().

8237 {
8238  for (const auto & mdi : _notify_when_mesh_displaces)
8239  mdi->meshDisplaced();
8240 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ messagePrefix()

std::string MooseBase::messagePrefix ( const bool  hit_prefix = true) const
inlineinherited
Returns
A prefix to be used in messages that contain the input file location associated with this object (if any) and the name and type of the object.

Definition at line 252 of file MooseBase.h.

Referenced by MooseBase::callMooseError(), MooseBase::errorPrefix(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), and MooseBase::mooseWarning().

253  {
254  return messagePrefix(_pars, hit_prefix);
255  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseDeprecated()

template<typename... Args>
void MooseBase::mooseDeprecated ( Args &&...  args) const
inlineinherited

Definition at line 310 of file MooseBase.h.

Referenced by addAuxArrayVariable(), addAuxScalarVariable(), addAuxVariable(), advanceMultiApps(), MultiApp::appProblem(), MooseMesh::buildSideList(), ChangeOverTimestepPostprocessor::ChangeOverTimestepPostprocessor(), AddVariableAction::determineType(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), MooseMesh::elem(), UserForcingFunction::f(), FaceFaceConstraint::FaceFaceConstraint(), FunctionDT::FunctionDT(), RandomICBase::generateRandom(), MooseMesh::getBoundariesToElems(), DataFileInterface::getDataFileName(), DataFileInterface::getDataFileNameByName(), Control::getExecuteOptions(), getNonlinearSystem(), MooseApp::getRecoverFileBase(), getUserObjects(), hasPostprocessor(), MooseApp::hasRecoverFileBase(), MatDiffusionBase< Real >::MatDiffusionBase(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), NodalScalarKernel::NodalScalarKernel(), MooseMesh::node(), FixedPointSolve::numPicardIts(), RelationshipManager::operator>=(), PercentChangePostprocessor::PercentChangePostprocessor(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Residual::Residual(), MooseMesh::setBoundaryToNormalMap(), Exodus::setOutputDimension(), MooseApp::setupOptions(), UserForcingFunction::UserForcingFunction(), and VariableResidual::VariableResidual().

311  {
313  _console, false, true, messagePrefix(true), std::forward<Args>(args)...);
314  }
void mooseDeprecatedStream(S &oss, const bool expired, const bool print_title, Args &&... args)
Definition: MooseError.h:275
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseDocumentedError()

template<typename... Args>
void MooseBase::mooseDocumentedError ( const std::string &  repo_name,
const unsigned int  issue_num,
Args &&...  args 
) const
inlineinherited

Definition at line 273 of file MooseBase.h.

Referenced by ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), DGLowerDKernel::DGLowerDKernel(), HFEMDirichletBC::HFEMDirichletBC(), and LowerDIntegratedBC::LowerDIntegratedBC().

276  {
278  repo_name, issue_num, argumentsToString(std::forward<Args>(args)...)),
279  /* with_prefix = */ true);
280  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102
std::string formatMooseDocumentedError(const std::string &repo_name, const unsigned int issue_num, const std::string &msg)
Formats a documented error.
Definition: MooseError.C:105

◆ mooseError()

template<typename... Args>
void MooseBase::mooseError ( Args &&...  args) const
inlineinherited

Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available.

Definition at line 267 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), PetscExternalPartitioner::_do_partition(), MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), CheckFVBCAction::act(), CheckIntegrityAction::act(), InitProblemAction::act(), AddBoundsVectorsAction::act(), AddVectorPostprocessorAction::act(), AutoCheckpointAction::act(), SetupMeshCompleteAction::act(), CreateExecutionerAction::act(), AddFVICAction::act(), AddICAction::act(), AddMeshGeneratorAction::act(), CreateProblemDefaultAction::act(), CreateProblemAction::act(), CombineComponentsMeshes::act(), SetupMeshAction::act(), SplitMeshAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), ChainControlSetupAction::act(), DeprecatedBlockAction::act(), SetupPredictorAction::act(), SetupTimeStepperAction::act(), CreateDisplacedProblemAction::act(), MaterialDerivativeTestAction::act(), SetAdaptivityOptionsAction::act(), MaterialOutputAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), Action::Action(), adaptMesh(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), MooseVariableFV< Real >::adCurlSln(), MooseVariableFV< Real >::adCurlSlnNeighbor(), AddActionComponentAction::AddActionComponentAction(), MFEMProblem::addBoundaryCondition(), addBoundaryCondition(), DiffusionCG::addBoundaryConditionsFromComponents(), PhysicsComponentInterface::addBoundaryConditionsFromComponents(), addConstraint(), addDamper(), addDGKernel(), addDiracKernel(), DistributedRectilinearMeshGenerator::addElement(), MooseApp::addExecutor(), addFunction(), SubProblem::addFunctor(), addFVInitialCondition(), ADDGKernel::ADDGKernel(), addHDGKernel(), addInitialCondition(), PhysicsComponentInterface::addInitialConditionsFromComponents(), addInterfaceKernel(), MFEMProblem::addKernel(), addKernel(), FEProblem::addLineSearch(), addLineSearch(), MFEMProblem::addMaterial(), MeshGenerator::addMeshSubgenerator(), MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), addOutput(), SubProblem::addPiecewiseByBlockLambdaFunctor(), DiracKernelBase::addPoint(), DistributedRectilinearMeshGenerator::addPoint(), DiracKernelBase::addPointWithValidId(), addPostprocessor(), addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), MooseMesh::addQuadratureNode(), Action::addRelationshipManager(), addReporter(), addScalarKernel(), AddVariableAction::addVariable(), addVectorPostprocessor(), SubProblem::addVectorTag(), MooseLinearVariableFV< Real >::adError(), ADInterfaceKernelTempl< T >::ADInterfaceKernelTempl(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), MooseVariableScalar::adUDot(), Output::advancedExecuteOn(), AdvectiveFluxAux::AdvectiveFluxAux(), MooseVariableBase::allDofIndices(), NEML2ModelExecutor::applyPredictor(), MooseApp::appNameToLibName(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayConstantIC::ArrayConstantIC(), ArrayDGKernel::ArrayDGKernel(), ArrayDiffusion::ArrayDiffusion(), ArrayFunctionIC::ArrayFunctionIC(), ArrayReaction::ArrayReaction(), ArrayTimeDerivative::ArrayTimeDerivative(), MooseApp::attachRelationshipManagers(), AddPeriodicBCAction::autoTranslationBoundaries(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), Axisymmetric2D3DSolutionFunction::Axisymmetric2D3DSolutionFunction(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), BoundingValueElementDamper::BoundingValueElementDamper(), BoundingValueNodalDamper::BoundingValueNodalDamper(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), MooseMesh::buildCoarseningMap(), MultiApp::buildComm(), DistributedRectilinearMeshGenerator::buildCube(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), TimedSubdomainModifier::buildFromParameters(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), MooseMesh::buildLowerDMesh(), TiledMesh::buildMesh(), GeneratedMesh::buildMesh(), SpiralAnnularMesh::buildMesh(), MeshGeneratorMesh::buildMesh(), ImageMeshGenerator::buildMesh3D(), ImageMesh::buildMesh3D(), MooseMesh::buildRefinementMap(), MaterialBase::buildRequiredMaterials(), MooseMesh::buildSideList(), MooseMesh::buildTypedMesh(), MooseMesh::cacheFaceInfoVariableOwnership(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), EigenExecutionerBase::chebyshev(), SubProblem::checkBlockMatProps(), PhysicsBase::checkBlockRestrictionIdentical(), ComponentBoundaryConditionInterface::checkBoundaryConditionsAllRequested(), SubProblem::checkBoundaryMatProps(), PhysicsBase::checkComponentType(), IterationCountConvergence::checkConvergence(), MooseMesh::checkCoordinateSystems(), DiffusionLHDGAssemblyHelper::checkCoupling(), checkDependMaterialsHelper(), checkDisplacementOrders(), checkDuplicatePostprocessorVariableNames(), DefaultConvergenceBase::checkDuplicateSetSharedExecutionerParams(), MooseMesh::checkDuplicateSubdomainNames(), checkExceptionAndStopSolve(), NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), MeshGenerator::checkGetMesh(), ReporterTransferInterface::checkHasReporterValue(), checkICRestartError(), Steady::checkIntegrity(), EigenExecutionerBase::checkIntegrity(), Eigenvalue::checkIntegrity(), DefaultMultiAppFixedPointConvergence::checkIterationType(), DefaultNonlinearConvergence::checkIterationType(), DefaultSteadyStateConvergence::checkIterationType(), ExplicitTimeIntegrator::checkLinearConvergence(), MooseApp::checkMetaDataIntegrity(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), PostprocessorInterface::checkParam(), checkProblemIntegrity(), Sampler::checkReinitStatus(), MooseApp::checkReservedCapability(), MultiAppGeneralFieldNearestLocationTransfer::checkRestrictionsForSource(), MultiAppPostprocessorToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppScalarToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppPostprocessorTransfer::checkSiblingsTransferSupported(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), MultiAppMFEMCopyTransfer::checkSiblingsTransferSupported(), MultiAppCopyTransfer::checkSiblingsTransferSupported(), MultiAppTransfer::checkSiblingsTransferSupported(), MaterialBase::checkStatefulSanity(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), checkUserObjects(), Moose::PetscSupport::checkUserProvidedPetscOption(), DomainUserObject::checkVariable(), MultiAppTransfer::checkVariable(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), LibmeshPartitioner::clone(), MooseMesh::clone(), CombinerGenerator::CombinerGenerator(), ComparisonPostprocessor::comparisonIsTrue(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), ElementH1ErrorFunctionAux::compute(), NodalPatchRecovery::compute(), computeBounds(), VariableCondensationPreconditioner::computeDInverseDiag(), CompositionDT::computeDT(), ArrayDGKernel::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighResidual(), InternalSideIntegralPostprocessor::computeFaceInfoIntegral(), SideIntegralPostprocessor::computeFaceInfoIntegral(), MooseVariableFieldBase::computeFaceValues(), TimeSequenceStepperBase::computeFailedDT(), IterationAdaptiveDT::computeFailedDT(), TimeStepper::computeFailedDT(), MooseMesh::computeFiniteVolumeCoords(), HistogramVectorPostprocessor::computeHistogram(), ArrayKernel::computeJacobian(), ArrayIntegratedBC::computeJacobian(), FVFluxKernel::computeJacobian(), NodalConstraint::computeJacobian(), computeJacobianTags(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), EigenProblem::computeMatricesTags(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), ArrayKernel::computeOffDiagJacobian(), ArrayIntegratedBC::computeOffDiagJacobian(), FVElementalKernel::computeOffDiagJacobian(), MortarScalarBase::computeOffDiagJacobianScalar(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), MaterialBase::computeProperties(), SideFVFluxBCIntegral::computeQpIntegral(), ScalarKernel::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), NodalEqualValueConstraint::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), NodeElemConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), ScalarKernel::computeQpResidual(), MassMatrix::computeQpResidual(), HDGKernel::computeQpResidual(), DiffusionLHDGDirichletBC::computeQpResidual(), NodalEqualValueConstraint::computeQpResidual(), DiffusionLHDGPrescribedGradientBC::computeQpResidual(), IPHDGBC::computeQpResidual(), KernelValue::computeQpResidual(), TorchScriptMaterial::computeQpValues(), InterfaceQpValueUserObject::computeRealValue(), ArrayKernel::computeResidual(), ArrayIntegratedBC::computeResidual(), FVFluxBC::computeResidual(), FVFluxKernel::computeResidual(), NodalConstraint::computeResidual(), FVFluxKernel::computeResidualAndJacobian(), ResidualObject::computeResidualAndJacobian(), computeResidualAndJacobian(), HDGKernel::computeResidualAndJacobianOnSide(), computeResidualInternal(), computeResidualTag(), computeResidualTags(), computeResidualType(), KernelScalarBase::computeScalarOffDiagJacobian(), ADKernelScalarBase::computeScalarQpResidual(), ADMortarScalarBase::computeScalarQpResidual(), MortarScalarBase::computeScalarQpResidual(), KernelScalarBase::computeScalarQpResidual(), TimeStepper::computeStep(), ActuallyExplicitEuler::computeTimeDerivatives(), ExplicitEuler::computeTimeDerivatives(), ImplicitEuler::computeTimeDerivatives(), BDF2::computeTimeDerivatives(), NewmarkBeta::computeTimeDerivatives(), CentralDifference::computeTimeDerivatives(), CrankNicolson::computeTimeDerivatives(), LStableDirk2::computeTimeDerivatives(), LStableDirk3::computeTimeDerivatives(), ImplicitMidpoint::computeTimeDerivatives(), ExplicitTVDRK2::computeTimeDerivatives(), AStableDirk4::computeTimeDerivatives(), LStableDirk4::computeTimeDerivatives(), ExplicitRK2::computeTimeDerivatives(), MultiAppGeometricInterpolationTransfer::computeTransformation(), BuildArrayVariableAux::computeValue(), TagVectorArrayVariableAux::computeValue(), NearestNodeValueAux::computeValue(), ProjectionAux::computeValue(), PenetrationAux::computeValue(), ConcentricCircleMesh::ConcentricCircleMesh(), ConditionalEnableControl::ConditionalEnableControl(), TimeStepper::constrainStep(), LibtorchNeuralNetControl::controlNeuralNet(), TransientBase::convergedToSteadyState(), ParsedConvergence::convertRealToBool(), MooseApp::copyInputs(), CopyMeshPartitioner::CopyMeshPartitioner(), CoupledForceNodalKernel::CoupledForceNodalKernel(), MultiApp::createApp(), MooseApp::createExecutors(), AddVariableAction::createInitialConditionAction(), MooseApp::createRMFromTemplateAndInit(), Function::curl(), MooseVariableFV< Real >::curlPhi(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), SidesetInfoVectorPostprocessor::dataHelper(), ReporterTransferInterface::declareClone(), MeshGenerator::declareMeshProperty(), ReporterTransferInterface::declareVectorClone(), DefaultSteadyStateConvergence::DefaultSteadyStateConvergence(), FunctorRelationshipManager::delete_remote_elements(), MooseMesh::deleteRemoteElements(), BicubicSplineFunction::derivative(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), MooseMesh::detectPairedSidesets(), MooseApp::determineLibtorchDeviceType(), determineSolverSystem(), DGKernel::DGKernel(), MeshDiagnosticsGenerator::diagnosticsLog(), DistributedPositions::DistributedPositions(), Function::div(), FunctorBinnedValuesDivision::divisionIndex(), MooseVariableFV< Real >::divPhi(), FunctorRelationshipManager::dofmap_reinit(), EigenProblem::doFreeNonlinearPowerIterations(), duplicateVariableCheck(), MooseApp::dynamicAllRegistration(), MooseApp::dynamicAppRegistration(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), Eigenvalues::Eigenvalues(), ElementalVariableValue::ElementalVariableValue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementIntegerAux::ElementIntegerAux(), ElementMaterialSampler::ElementMaterialSampler(), ElementQualityAux::ElementQualityAux(), ElementSubdomainModifierBase::ElementSubdomainModifierBase(), ElementUOAux::ElementUOAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), DistributedRectilinearMeshGenerator::elemId(), ProjectionAux::elemOnNodeVariableIsDefinedOn(), EigenKernel::enabled(), MooseApp::errorCheck(), MooseMesh::errorIfDistributedMesh(), MultiAppTransfer::errorIfObjectExecutesOnTransferInSourceApp(), SideIntegralPostprocessor::errorNoFaceInfo(), SideIntegralFunctorPostprocessorTempl< false >::errorNoFaceInfo(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), FixedPointSolve::examineFixedPointConvergence(), MultiAppGeneralFieldTransfer::examineReceivedValueConflicts(), RealToBoolChainControl::execute(), RestartableDataReporter::execute(), DiscreteElementUserObject::execute(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppScalarToAuxScalarTransfer::execute(), NodalValueSampler::execute(), PositionsFunctorValueSampler::execute(), MultiAppPostprocessorInterpolationTransfer::execute(), MultiAppPostprocessorTransfer::execute(), ElementQualityChecker::execute(), MultiAppVariableValueSampleTransfer::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), FindValueOnLine::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppMFEMCopyTransfer::execute(), MultiAppCopyTransfer::execute(), MultiAppGeometricInterpolationTransfer::execute(), MultiAppUserObjectTransfer::execute(), InterfaceQpUserObjectBase::execute(), WebServerControl::execute(), TransientBase::execute(), LeastSquaresFit::execute(), VectorPostprocessorComparison::execute(), LeastSquaresFitHistory::execute(), Eigenvalue::execute(), TimeExtremeValue::execute(), DomainUserObject::execute(), execute(), executeControls(), MooseApp::executeExecutioner(), MultiAppVectorPostprocessorTransfer::executeFromMultiapp(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), Exodus::Exodus(), ExplicitSSPRungeKutta::ExplicitSSPRungeKutta(), MultiAppGeneralFieldTransfer::extractOutgoingPoints(), NEML2ModelExecutor::extractOutputs(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), NEML2ModelExecutor::fillInputs(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), VerifyNodalUniqueID::finalize(), VerifyElementUniqueID::finalize(), DiscreteElementUserObject::finalize(), ElementQualityChecker::finalize(), MemoryUsage::finalize(), PointSamplerBase::finalize(), DiscreteVariableResidualNorm::finalize(), NearestPointAverage::finalize(), NearestPointIntegralVariablePostprocessor::finalize(), MooseApp::finalizeRestore(), Transfer::find_sys(), BreakMeshByBlockGeneratorBase::findFreeBoundaryId(), FunctionDT::FunctionDT(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FunctionScalarAux::FunctionScalarAux(), FunctionScalarIC::FunctionScalarIC(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVMassMatrix::FVMassMatrix(), FVMatAdvection::FVMatAdvection(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), GapValueAux::GapValueAux(), WorkBalance::gather(), ElementOrderConversionGenerator::generate(), SideSetsFromNormalsGenerator::generate(), SmoothMeshGenerator::generate(), SubdomainPerElementGenerator::generate(), TiledMeshGenerator::generate(), BlockToMeshConverterGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), MoveNodeGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), SideSetsFromPointsGenerator::generate(), StitchMeshGenerator::generate(), GeneratedMeshGenerator::generate(), FlipSidesetGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), MeshDiagnosticsGenerator::generate(), MeshRepairGenerator::generate(), SideSetsFromBoundingBoxGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CombinerGenerator::generate(), MeshCollectionGenerator::generate(), AdvancedExtruderGenerator::generate(), AllSideSetsByNormalsGenerator::generate(), MeshExtruderGenerator::generate(), ParsedGenerateNodeset::generate(), SpiralAnnularMeshGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), CutMeshByLevelSetGeneratorBase::generate(), SubdomainBoundingBoxGenerator::generate(), PatternedMeshGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), BoundingBoxNodeSetGenerator::generate(), MeshGenerator::generateData(), GeneratedMesh::GeneratedMesh(), GeneratedMeshGenerator::GeneratedMeshGenerator(), MeshGenerator::generateInternal(), CircularBoundaryCorrectionGenerator::generateRadialCorrectionFactor(), RandomICBase::generateRandom(), GenericConstantMaterialTempl< is_ad >::GenericConstantMaterialTempl(), GenericConstantVectorMaterialTempl< is_ad >::GenericConstantVectorMaterialTempl(), GenericFunctionMaterialTempl< is_ad >::GenericFunctionMaterialTempl(), GenericFunctionVectorMaterialTempl< is_ad >::GenericFunctionVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), DisplacedProblem::getActualFieldVariable(), getActualFieldVariable(), DisplacedProblem::getArrayVariable(), getArrayVariable(), MooseMesh::getAxisymmetricRadialCoord(), MFEMFESpace::getBasis(), NEML2BatchIndexGenerator::getBatchIndex(), MooseMesh::getBlockConnectedBlocks(), VariableOldValueBounds::getBound(), MooseMesh::getBoundaryID(), MultiApp::getBoundingBox(), ChainControl::getChainControlDataByName(), MooseMesh::getCoarseningMap(), MultiApp::getCommandLineArgs(), MooseVariableBase::getContinuity(), Control::getControllableParameterByName(), getConvergence(), MooseMesh::getCoordSystem(), PhysicsBase::getCoupledPhysics(), PropertyReadFile::getData(), DataFileInterface::getDataFilePath(), TransfiniteMeshGenerator::getDiscreteEdge(), getDistribution(), MooseVariableBase::getDofIndices(), VariableCondensationPreconditioner::getDofToCondense(), TransfiniteMeshGenerator::getEdge(), GhostingUserObject::getElementalValue(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), PropertyReadFile::getElementData(), MooseMesh::getElementIDIndex(), Material::getElementIDNeighbor(), Material::getElementIDNeighborByName(), MooseMesh::getElemIDMapping(), MooseMesh::getElemIDsOnBlocks(), MultiAppFieldTransfer::getEquationSystem(), MultiApp::getExecutioner(), MooseApp::getExecutor(), MFEMVectorFESpace::getFECName(), MultiAppTransfer::getFromMultiApp(), MultiAppTransfer::getFromMultiAppInfo(), getFunction(), SubProblem::getFunctor(), getFVMatsAndDependencies(), MooseMesh::getGeneralAxisymmetricCoordAxis(), DistributedRectilinearMeshGenerator::getGhostNeighbors(), DistributedRectilinearMeshGenerator::getIndices(), getLinearConvergenceNames(), SolutionUserObjectBase::getLocalVarIndex(), Material::getMaterialByName(), getMaterialData(), SubProblem::getMatrixTagID(), AnnularMesh::getMaxInDimension(), GeneratedMesh::getMaxInDimension(), getMaxQps(), getMeshDivision(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), AnnularMesh::getMinInDimension(), GeneratedMesh::getMinInDimension(), MultiAppTransfer::getMultiApp(), getMultiAppFixedPointConvergenceName(), DistributedRectilinearMeshGenerator::getNeighbors(), Times::getNextTime(), MooseMesh::getNodeBlockIds(), PropertyReadFile::getNodeData(), MooseMesh::getNodeList(), getNonlinearConvergenceNames(), EigenProblem::getNonlinearEigenSystem(), getNonlinearSystem(), NEML2ModelExecutor::getOutput(), NEML2ModelExecutor::getOutputDerivative(), NEML2ModelExecutor::getOutputParameterDerivative(), MooseMesh::getPairedBoundaryMapping(), MaterialOutputAction::getParams(), ImageMeshGenerator::GetPixelInfo(), ImageMesh::GetPixelInfo(), PlaneIDMeshGenerator::getPlaneID(), Positions::getPosition(), Positions::getPositions(), getPositionsObject(), Positions::getPositionsVector2D(), Positions::getPositionsVector3D(), Positions::getPositionsVector4D(), PostprocessorInterface::getPostprocessorValueByNameInternal(), Times::getPreviousTime(), ComponentMaterialPropertyInterface::getPropertyValue(), InterfaceQpUserObjectBase::getQpValue(), MooseMesh::getRefinementMap(), MooseBase::getRenamedParam(), ReporterInterface::getReporterContextBaseByName(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), MooseApp::getRMClone(), getSampler(), WebServerControl::getScalarJSONValue(), DisplacedProblem::getScalarVariable(), getScalarVariable(), MooseObject::getSharedPtr(), InterfaceQpUserObjectBase::getSideAverageValue(), PhysicsBase::getSolverSystem(), DisplacedProblem::getStandardVariable(), getStandardVariable(), getSteadyStateConvergenceName(), MooseMesh::getSubdomainBoundaryIds(), TimedSubdomainModifier::getSubdomainIDAndCheck(), DisplacedProblem::getSystem(), getSystem(), Times::getTimeAtIndex(), getTimeFromStateArg(), TransientBase::getTimeIntegratorNames(), Times::getTimes(), MultiAppTransfer::getToMultiApp(), MultiAppTransfer::getToMultiAppInfo(), MooseMesh::getUniqueCoordSystem(), getUserObject(), getUserObjectBase(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorComponent::getValue(), NumRelationshipManagers::getValue(), Residual::getValue(), SideAverageValue::getValue(), JSONFileReader::getValue(), LineValueSampler::getValue(), FindValueOnLine::getValueAtPoint(), SubProblem::getVariableHelper(), JSONFileReader::getVector(), VectorPostprocessorInterface::getVectorPostprocessorName(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), DisplacedProblem::getVectorVariable(), getVectorVariable(), GhostingFromUOAux::GhostingFromUOAux(), MultiApp::globalAppToLocal(), MooseParsedVectorFunction::gradient(), Function::gradient(), handleException(), Terminator::handleMessage(), MooseVariableBase::hasDoFsOnNodes(), PostprocessorInterface::hasPostprocessor(), PostprocessorInterface::hasPostprocessorByName(), ReporterInterface::hasReporterValue(), ReporterInterface::hasReporterValueByName(), VectorPostprocessorInterface::hasVectorPostprocessor(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), HDGKernel::HDGKernel(), TransientBase::incrementStepOrReject(), FixedPointIterationAdaptiveDT::init(), CrankNicolson::init(), CSVTimeSequenceStepper::init(), EigenExecutionerBase::init(), ExplicitTimeIntegrator::init(), TransientBase::init(), FEProblem::init(), AddAuxVariableAction::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AddVariableAction::init(), MooseMesh::init(), Sampler::init(), init(), MultiApp::init(), initialAdaptMesh(), NestedDivision::initialize(), DistributedPositions::initialize(), ReporterPositions::initialize(), TransformedPositions::initialize(), ElementGroupCentroidPositions::initialize(), FunctorPositions::initialize(), ReporterTimes::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), ParsedConvergence::initializeConstantSymbol(), PhysicsBase::initializePhysics(), SteffensenSolve::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), ChainControlDataPostprocessor::initialSetup(), IntegralPreservingFunctionIC::initialSetup(), PiecewiseLinearBase::initialSetup(), MultiAppConservativeTransfer::initialSetup(), FullSolveMultiApp::initialSetup(), PiecewiseLinear::initialSetup(), CoarsenedPiecewiseLinear::initialSetup(), LinearFVDiffusion::initialSetup(), LinearFVAdvection::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), SolutionScalarAux::initialSetup(), ExplicitTimeIntegrator::initialSetup(), SolutionAux::initialSetup(), ReferenceResidualConvergence::initialSetup(), NodalVariableValue::initialSetup(), Axisymmetric2D3DSolutionFunction::initialSetup(), Exodus::initialSetup(), CSV::initialSetup(), MooseParsedFunction::initialSetup(), SolutionUserObjectBase::initialSetup(), initialSetup(), SubProblem::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initShowHideLists(), Function::integral(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), InterfaceTimeKernel::InterfaceTimeKernel(), InternalSideIndicatorBase::InternalSideIndicatorBase(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), EigenExecutionerBase::inversePowerIteration(), InversePowerMethod::InversePowerMethod(), Sampler::isAdaptiveSamplingCompleted(), MooseMesh::isBoundaryFullyExternalToSubdomains(), MooseVariableBase::isNodal(), IterationAdaptiveDT::IterationAdaptiveDT(), IterationCountConvergence::IterationCountConvergence(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), MooseApp::libNameToAppName(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationPostprocessor::LinearCombinationPostprocessor(), LinearNodalConstraint::LinearNodalConstraint(), LineMaterialSamplerBase< Real >::LineMaterialSamplerBase(), LineSearch::lineSearch(), LineValueSampler::LineValueSampler(), MooseApp::loadLibraryAndDependencies(), MultiAppGeneralFieldTransfer::locatePointReceivers(), LowerBoundNodalKernel::LowerBoundNodalKernel(), MooseLinearVariableFV< Real >::lowerDError(), PNGOutput::makePNG(), ReporterPointMarker::markerSetup(), SubProblem::markFamilyPRefinement(), MassMatrix::MassMatrix(), Material::Material(), MaterialRealTensorValueAuxTempl< is_ad >::MaterialRealTensorValueAuxTempl(), MaterialRealVectorValueAuxTempl< T, is_ad, is_functor >::MaterialRealVectorValueAuxTempl(), MaterialStdVectorRealGradientAux::MaterialStdVectorRealGradientAux(), Distribution::median(), FunctorRelationshipManager::mesh_reinit(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshExtruderGenerator::MeshExtruderGenerator(), MeshRepairGenerator::MeshRepairGenerator(), SetupMeshAction::modifyParamsForUseSplit(), MeshMetaDataInterface::mooseErrorInternal(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), MooseMesh::MooseMesh(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableConstMonomial::MooseVariableConstMonomial(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NearestNodeDistanceAux::NearestNodeDistanceAux(), needsPreviousNewtonIteration(), NewmarkBeta::NewmarkBeta(), NodalConstraint::NodalConstraint(), MooseVariableFV< Real >::nodalDofIndex(), MooseVariableFV< Real >::nodalDofIndexNeighbor(), MooseLinearVariableFV< Real >::nodalError(), MooseVariableFV< Real >::nodalMatrixTagValue(), NodalPatchRecoveryBase::nodalPatchRecovery(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalScalarKernel::NodalScalarKernel(), MooseVariableFV< Real >::nodalValueArray(), MooseVariableFV< Real >::nodalValueOldArray(), MooseVariableFV< Real >::nodalValueOlderArray(), NodalVariableValue::NodalVariableValue(), MooseVariableFV< Real >::nodalVectorTagValue(), DistributedRectilinearMeshGenerator::nodeId(), MooseVariableFV< Real >::numberOfDofsNeighbor(), NumDOFs::NumDOFs(), NumFailedTimeSteps::NumFailedTimeSteps(), DistributedRectilinearMeshGenerator::numNeighbors(), NumNonlinearIterations::NumNonlinearIterations(), NumVars::NumVars(), Output::onInterval(), FunctorRelationshipManager::operator()(), RelationshipManager::operator==(), ActionComponent::outerSurfaceArea(), ActionComponent::outerSurfaceBoundaries(), XDA::output(), SolutionHistory::output(), Exodus::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), AdvancedOutput::outputInput(), MooseApp::outputMachineReadableData(), AdvancedOutput::outputNodalVariables(), AdvancedOutput::outputPostprocessors(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), Exodus::outputSetup(), AdvancedOutput::outputSystemInformation(), Console::outputVectorPostprocessors(), AdvancedOutput::outputVectorPostprocessors(), DistributedRectilinearMeshGenerator::paritionSquarely(), PiecewiseBilinear::parse(), ParsedConvergence::ParsedConvergence(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), MultiAppConservativeTransfer::performAdjustment(), ExplicitTimeIntegrator::performExplicitSolve(), PetscExternalPartitioner::PetscExternalPartitioner(), MooseVariableFV< Real >::phiLowerSize(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseMulticonstant::PiecewiseMulticonstant(), PiecewiseMultiInterpolation::PiecewiseMultiInterpolation(), PiecewiseTabularBase::PiecewiseTabularBase(), CutMeshByLevelSetGeneratorBase::pointPairLevelSetInterception(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessorByName(), LStableDirk2::postResidual(), LStableDirk3::postResidual(), ImplicitMidpoint::postResidual(), ExplicitTVDRK2::postResidual(), LStableDirk4::postResidual(), AStableDirk4::postResidual(), ExplicitRK2::postResidual(), EigenProblem::postScaleEigenVector(), VariableCondensationPreconditioner::preallocateCondensedJacobian(), ADKernelValueTempl< T >::precomputeQpJacobian(), Predictor::Predictor(), TransientBase::preExecute(), MooseMesh::prepare(), MooseMesh::prepared(), FixedPointSolve::printFixedPointConvergenceReason(), PseudoTimestep::PseudoTimestep(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readExodusII(), SolutionUserObjectBase::readXda(), CoarsenBlockGenerator::recursiveCoarsen(), MooseApp::recursivelyCreateExecutors(), FunctorRelationshipManager::redistribute(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseApp::registerRestartableData(), MooseApp::registerRestartableNameWithFilter(), Sampler::reinit(), RelativeSolutionDifferenceNorm::RelativeSolutionDifferenceNorm(), MFEMTransient::relativeSolutionDifferenceNorm(), MooseApp::removeRelationshipManager(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::restore(), RinglebMesh::RinglebMesh(), RinglebMeshGenerator::RinglebMeshGenerator(), MooseApp::run(), MooseApp::runInputs(), PiecewiseMultiInterpolation::sample(), ScalarComponentIC::ScalarComponentIC(), MortarScalarBase::scalarVariable(), DistributedRectilinearMeshGenerator::scaleNodalPositions(), BicubicSplineFunction::secondDerivative(), MooseVariableFV< Real >::secondPhi(), MooseVariableFV< Real >::secondPhiFace(), MooseVariableFV< Real >::secondPhiFaceNeighbor(), MooseVariableFV< Real >::secondPhiNeighbor(), FunctorRelationshipManager::set_mesh(), MooseVariableBase::setActiveTags(), DistributedRectilinearMeshGenerator::setBoundaryNames(), MooseMesh::setCoordSystem(), setCoupling(), PiecewiseBase::setData(), FileOutput::setFileBaseInternal(), MooseMesh::setGeneralAxisymmetricCoordAxes(), FEProblemSolve::setInnerSolve(), MeshGenerator::setMeshProperty(), MooseApp::setMFEMDevice(), FVPointValueConstraint::setMyElem(), setNonlocalCouplingMatrix(), Sampler::setNumberOfCols(), Sampler::setNumberOfRandomSeeds(), Sampler::setNumberOfRows(), Exodus::setOutputDimensionInExodusWriter(), AddPeriodicBCAction::setPeriodicVars(), MFEMSolverBase::setPreconditioner(), MultiAppGeneralFieldTransfer::setSolutionVectorValues(), Split::setup(), TransientMultiApp::setupApp(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), TimeSequenceStepperBase::setupSequence(), TransientBase::setupTimeIntegrator(), TimePeriodBase::setupTimes(), IntegratedBCBase::shouldApply(), PhysicsBase::shouldCreateIC(), PhysicsBase::shouldCreateTimeDerivative(), PhysicsBase::shouldCreateVariable(), SideAdvectiveFluxIntegralTempl< is_ad >::SideAdvectiveFluxIntegralTempl(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsFromNormalsGenerator::SideSetsFromNormalsGenerator(), SideSetsFromPointsGenerator::SideSetsFromPointsGenerator(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), MooseVariableBase::sizeMatrixTagData(), SolutionTimeAdaptiveDT::SolutionTimeAdaptiveDT(), SolutionUserObjectBase::SolutionUserObjectBase(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TimeIntegrator::solve(), solverSysNum(), FullSolveMultiApp::solveStep(), SpatialAverageBase::SpatialAverageBase(), UserObject::spatialPoints(), NearestPointIntegralVariablePostprocessor::spatialValue(), NearestPointAverage::spatialValue(), MeshDivisionFunctorReductionVectorPostprocessor::spatialValue(), UserObject::spatialValue(), SpiralAnnularMesh::SpiralAnnularMesh(), SpiralAnnularMeshGenerator::SpiralAnnularMeshGenerator(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), WebServerControl::stringifyJSONType(), MultiAppGeometricInterpolationTransfer::subdomainIDsNode(), Constraint::subdomainSetup(), NodalUserObject::subdomainSetup(), GeneralUserObject::subdomainSetup(), MaterialBase::subdomainSetup(), swapBackMaterialsNeighbor(), DisplacedProblem::systemBaseLinear(), Console::systemInfoFlags(), systemNumForVariable(), TerminateChainControl::terminate(), Terminator::Terminator(), CutMeshByLevelSetGeneratorBase::tet4ElemCutter(), ThreadedGeneralUserObject::threadJoin(), DiscreteElementUserObject::threadJoin(), GeneralUserObject::threadJoin(), Function::timeDerivative(), TimedSubdomainModifier::TimedSubdomainModifier(), TimeExtremeValue::TimeExtremeValue(), Function::timeIntegral(), MooseLinearVariableFV< Real >::timeIntegratorError(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriodBase::TimePeriodBase(), VectorPostprocessorVisualizationAux::timestepSetup(), WebServerControl::toMiniJson(), MultiAppDofCopyTransfer::transfer(), MultiAppMFEMCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransformedPositions::TransformedPositions(), trustUserCouplingMatrix(), MooseVariableScalar::uDot(), MooseVariableScalar::uDotDot(), MooseVariableScalar::uDotDotOld(), uDotDotOldRequested(), MooseVariableScalar::uDotOld(), uDotOldRequested(), MooseBase::uniqueName(), Positions::unrollMultiDPositions(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), Checkpoint::updateCheckpointFiles(), EqualValueBoundaryConstraint::updateConstrainedNodes(), SolutionUserObjectBase::updateExodusBracketingTimeIndices(), updateMaxQps(), MFEMHypreADS::updateSolver(), MFEMHypreAMS::updateSolver(), MFEMHypreBoomerAMG::updateSolver(), MFEMOperatorJacobiSmoother::updateSolver(), MFEMHypreFGMRES::updateSolver(), MFEMCGSolver::updateSolver(), MFEMHyprePCG::updateSolver(), MFEMGMRESSolver::updateSolver(), MFEMHypreGMRES::updateSolver(), MFEMSuperLU::updateSolver(), UpperBoundNodalKernel::UpperBoundNodalKernel(), NearestPointIntegralVariablePostprocessor::userObjectValue(), NearestPointAverage::userObjectValue(), BoundingBoxIC::value(), PiecewiseConstantFromCSV::value(), IntegralPreservingFunctionIC::value(), Axisymmetric2D3DSolutionFunction::value(), Function::value(), ValueRangeMarker::ValueRangeMarker(), ValueThresholdMarker::ValueThresholdMarker(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VariableTimeIntegrationAux::VariableTimeIntegrationAux(), AddVariableAction::variableType(), VariableValueVolumeHistogram::VariableValueVolumeHistogram(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), VectorNodalBC::VectorNodalBC(), SubProblem::vectorTagName(), SubProblem::vectorTagType(), MooseParsedGradFunction::vectorValue(), MooseParsedFunction::vectorValue(), Function::vectorValue(), SubProblem::verifyVectorTags(), ActionComponent::volume(), VTKOutput::VTKOutput(), WebServerControl::WebServerControl(), MooseApp::writeRestartableMetaData(), DOFMapOutput::writeStreamToFile(), and Console::writeStreamToFile().

268  {
269  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ true);
270  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102

◆ mooseErrorNonPrefixed()

template<typename... Args>
void MooseBase::mooseErrorNonPrefixed ( Args &&...  args) const
inlineinherited

Emits an error without the prefixing included in mooseError().

Definition at line 286 of file MooseBase.h.

287  {
288  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ false);
289  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102

◆ mooseInfo()

template<typename... Args>
void MooseBase::mooseInfo ( Args &&...  args) const
inlineinherited

Definition at line 317 of file MooseBase.h.

Referenced by SetupRecoverFileBaseAction::act(), AStableDirk4::AStableDirk4(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MultiAppGeneralFieldNearestLocationTransfer::evaluateInterpValuesNearestNode(), PIDTransientControl::execute(), Executioner::Executioner(), ExplicitRK2::ExplicitRK2(), ExplicitTVDRK2::ExplicitTVDRK2(), DataFileInterface::getDataFilePath(), MFEMScalarFESpace::getFECName(), MultiAppTransfer::getPointInTargetAppFrame(), ImplicitMidpoint::ImplicitMidpoint(), ParsedDownSelectionPositions::initialize(), PropertyReadFile::initialize(), MultiAppGeneralFieldTransfer::initialSetup(), InversePowerMethod::InversePowerMethod(), LStableDirk2::LStableDirk2(), LStableDirk3::LStableDirk3(), LStableDirk4::LStableDirk4(), PNGOutput::makeMeshFunc(), NonlinearEigen::NonlinearEigen(), SolutionInvalidityOutput::output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramInfo(), ProjectionAux::ProjectionAux(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MFEMDataCollection::registerFields(), setRestartFile(), MooseApp::setupOptions(), SolutionUserObjectBase::SolutionUserObjectBase(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TransientBase::takeStep(), and TransientBase::TransientBase().

318  {
319  moose::internal::mooseInfoStream(_console, messagePrefix(true), std::forward<Args>(args)...);
320  }
void mooseInfoStream(S &oss, Args &&... args)
Definition: MooseError.h:268
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseWarning()

template<typename... Args>
void MooseBase::mooseWarning ( Args &&...  args) const
inlineinherited

Emits a warning prefixed with object name and type.

Definition at line 295 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), AddKernelAction::act(), MeshOnlyAction::act(), AddFunctionAction::act(), MaterialOutputAction::act(), CommonOutputAction::act(), MFEMProblem::addFunction(), MooseMesh::addPeriodicVariable(), DiracKernelBase::addPoint(), BoundaryMarker::BoundaryMarker(), DistributedRectilinearMeshGenerator::buildCube(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), CartesianMeshGenerator::CartesianMeshGenerator(), CheckOutputAction::checkConsoleOutput(), MultiAppTransfer::checkMultiAppExecuteOn(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), SampledOutput::cloneMesh(), MultiAppGeneralFieldTransfer::closestToPosition(), VariableValueElementSubdomainModifier::computeSubdomainID(), GapValueAux::computeValue(), MultiApp::createApp(), DebugResidualAux::DebugResidualAux(), MeshDiagnosticsGenerator::diagnosticsLog(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), ElementMaterialSampler::ElementMaterialSampler(), Postprocessor::evaluateDotWarning(), MeshDivisionFunctorReductionVectorPostprocessor::execute(), ElementQualityChecker::finalize(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), SubdomainPerElementGenerator::generate(), StitchMeshGenerator::generate(), ParsedGenerateSideset::generate(), MultiAppTransfer::getAppInfo(), FunctorBinnedValuesDivision::getBinIndex(), DataFileInterface::getDataFilePath(), PointSamplerBase::getLocalElemContainingPoint(), getMaterial(), LineValueSampler::getValue(), Terminator::handleMessage(), IndicatorMarker::IndicatorMarker(), CartesianGridDivision::initialize(), CylindricalGridDivision::initialize(), SphericalGridDivision::initialize(), ElementGroupCentroidPositions::initialize(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), BoundsBase::initialSetup(), ReferenceResidualConvergence::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), LeastSquaresFit::LeastSquaresFit(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseApp::loadLibraryAndDependencies(), mesh(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), NewmarkBeta::NewmarkBeta(), NodalPatchRecovery::NodalPatchRecovery(), NonlocalIntegratedBC::NonlocalIntegratedBC(), NonlocalKernel::NonlocalKernel(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramWarning(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), Executioner::problem(), PropertyReadFile::readData(), TestSourceStepper::rejectStep(), PhysicsBase::reportPotentiallyMissedParameters(), MaterialBase::resetQpProperties(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), MooseMesh::setCoordSystem(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), sizeZeroes(), TransientMultiApp::solveStep(), Tecplot::Tecplot(), TimeDerivativeAux::TimeDerivativeAux(), Checkpoint::updateCheckpointFiles(), SampledOutput::updateSample(), PiecewiseConstantFromCSV::value(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

296  {
297  moose::internal::mooseWarningStream(_console, messagePrefix(true), std::forward<Args>(args)...);
298  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:220
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseWarningNonPrefixed()

template<typename... Args>
void MooseBase::mooseWarningNonPrefixed ( Args &&...  args) const
inlineinherited

Emits a warning without the prefixing included in mooseWarning().

Definition at line 304 of file MooseBase.h.

305  {
306  moose::internal::mooseWarningStream(_console, std::forward<Args>(args)...);
307  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:220
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ mortarData() [1/2]

const MortarData& FEProblemBase::mortarData ( ) const
inline

Returns the mortar data object.

Definition at line 2202 of file FEProblemBase.h.

2202 { return _mortar_data; }
MortarData _mortar_data

◆ mortarData() [2/2]

MortarData& FEProblemBase::mortarData ( )
inline

Definition at line 2203 of file FEProblemBase.h.

2203 { return _mortar_data; }
MortarData _mortar_data

◆ name()

const std::string& MooseBase::name ( ) const
inlineinherited

Get the name of the class.

Returns
The name of the class

Definition at line 99 of file MooseBase.h.

Referenced by AddElementalFieldAction::act(), CopyNodalVarsAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), DeprecatedBlockAction::act(), SetupTimeIntegratorAction::act(), AddActionComponentAction::act(), SetupResidualDebugAction::act(), DisplayGhostingAction::act(), MaterialOutputAction::act(), AddPeriodicBCAction::act(), addAnyRedistributers(), Executioner::addAttributeReporter(), MFEMProblem::addAuxKernel(), addAuxKernel(), addAuxScalarKernel(), DisplacedProblem::addAuxVariable(), MFEMProblem::addBoundaryCondition(), addBoundaryCondition(), PhysicsComponentInterface::addComponent(), addConstraint(), addConvergence(), addDamper(), Registry::addDataFilePath(), addDGKernel(), addDiracKernel(), addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), MFEMProblem::addFESpace(), MFEMProblem::addFunction(), addFunction(), SubProblem::addFunctor(), MFEMProblem::addFunctorMaterial(), addFunctorMaterial(), FunctorMaterial::addFunctorProperty(), FunctorMaterial::addFunctorPropertyByBlocks(), addFVBC(), addFVInitialCondition(), addFVInterfaceKernel(), addFVKernel(), ADDGKernel::ADDGKernel(), addHDGKernel(), addIndicator(), MFEMProblem::addInitialCondition(), addInitialCondition(), addInterfaceKernel(), addInterfaceMaterial(), DiffusionLHDGKernel::additionalROVariables(), IPHDGAssemblyHelper::additionalROVariables(), MFEMProblem::addKernel(), addKernel(), addLinearFVBC(), addLinearFVKernel(), addMarker(), addMaterial(), addMaterialHelper(), ComponentMaterialPropertyInterface::addMaterials(), addMeshDivision(), MooseApp::addMeshGenerator(), ComponentMeshTransformHelper::addMeshGenerators(), CylinderComponent::addMeshGenerators(), MeshGenerator::addMeshSubgenerator(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), addMultiApp(), addNodalKernel(), InitialConditionWarehouse::addObject(), addObject(), ComponentPhysicsInterface::addPhysics(), SubProblem::addPiecewiseByBlockLambdaFunctor(), MFEMProblem::addPostprocessor(), addPostprocessor(), InitialConditionBase::addPostprocessorDependencyHelper(), UserObject::addPostprocessorDependencyHelper(), addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), Action::addRelationshipManager(), addReporter(), addSampler(), addScalarKernel(), addTimeIntegrator(), MFEMProblem::addTransfer(), addTransfer(), addUserObject(), InitialConditionBase::addUserObjectDependencyHelper(), UserObject::addUserObjectDependencyHelper(), AuxKernelTempl< Real >::addUserObjectDependencyHelper(), DisplacedProblem::addVariable(), addVectorPostprocessor(), UserObject::addVectorPostprocessorDependencyHelper(), MooseLinearVariableFV< Real >::adError(), Output::advancedExecuteOn(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), MooseVariableBase::allDofIndices(), MooseApp::appBinaryName(), MooseApp::appendMeshGenerator(), Registry::appNameFromAppPath(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayDGKernel::ArrayDGKernel(), ArrayParsedAux::ArrayParsedAux(), PhysicsBase::assignBlocks(), AStableDirk4::AStableDirk4(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), MultiApp::backup(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), MFEMFESpace::buildFEC(), PiecewiseTabularBase::buildFromFile(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), MooseBase::callMooseError(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), PhysicsBase::checkBlockRestrictionIdentical(), PhysicsBase::checkComponentType(), ParsedConvergence::checkConvergence(), DefaultNonlinearConvergence::checkConvergence(), checkDependMaterialsHelper(), SamplerBase::checkForStandardFieldVariableType(), ReporterTransferInterface::checkHasReporterValue(), checkICRestartError(), Material::checkMaterialProperty(), MooseApp::checkMetaDataIntegrity(), Damper::checkMinDamping(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), Checkpoint::checkpointInfo(), DomainUserObject::checkVariable(), BlockRestrictable::checkVariable(), Coupleable::checkWritableVar(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), MaterialBase::computeProperties(), computeUserObjectByName(), VectorPostprocessorVisualizationAux::computeValue(), MooseBase::connectControllableParams(), ConstantPostprocessor::ConstantPostprocessor(), Coupleable::coupledName(), CommonOutputAction::create(), MultiApp::createApp(), MooseApp::createExecutors(), MeshGeneratorSystem::createMeshGeneratorOrder(), MooseApp::createRecoverablePerfGraph(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), DebugResidualAux::DebugResidualAux(), MaterialBase::declareADProperty(), MeshGenerator::declareMeshesForSubByName(), MeshGenerator::declareNullMeshName(), MaterialBase::declareProperty(), DOFMapOutput::demangle(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), Registry::determineDataFilePath(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DomainUserObject::DomainUserObject(), DumpObjectsProblem::dumpObjectHelper(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementMaterialSampler::ElementMaterialSampler(), ElementValueSampler::ElementValueSampler(), EigenKernel::enabled(), MooseMesh::errorIfDistributedMesh(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), SideValueSampler::execute(), RestartableDataReporter::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), WebServerControl::execute(), MultiAppGeneralFieldTransfer::execute(), ActionWarehouse::executeActionsWithAction(), Exodus::Exodus(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), PointSamplerBase::finalize(), ChainControl::fullControlDataName(), FunctionArrayAux::FunctionArrayAux(), FunctionDT::FunctionDT(), FunctionIC::functionName(), FVFunctionIC::functionName(), FunctorPositions::FunctorPositions(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), GapValueAux::GapValueAux(), MooseServer::gatherDocumentSymbols(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), StitchBoundaryMeshGenerator::generate(), StitchMeshGenerator::generate(), BreakMeshByBlockGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), MeshGenerator::generateInternal(), InterfaceMaterial::getADMaterialProperty(), Material::getADMaterialProperty(), MultiAppTransfer::getAppInfo(), MultiApp::getBoundingBox(), MooseBase::getCheckedPointerParam(), MooseApp::getCheckpointDirectories(), Control::getControllableParameterByName(), Control::getControllableValue(), Control::getControllableValueByName(), getConvergence(), Registry::getDataFilePath(), UserObject::getDependObjects(), DistributionInterface::getDistribution(), getDistribution(), DistributionInterface::getDistributionByName(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), MultiApp::getExecutioner(), MooseApp::getExecutor(), getExecutor(), OutputWarehouse::getFileNumbers(), getFunction(), SubProblem::getFunctor(), NodalPatchRecovery::getGenericMaterialProperty(), InterfaceMaterial::getGenericMaterialProperty(), Material::getGenericMaterialProperty(), AuxKernelTempl< Real >::getGenericMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialPropertyByName(), Material::getGenericOptionalMaterialProperty(), MaterialBase::getGenericZeroMaterialProperty(), MFEMProblem::getGridFunction(), SolutionUserObjectBase::getLocalVarIndex(), Marker::getMarkerValue(), Material::getMaterial(), getMaterial(), Material::getMaterialByName(), NodalPatchRecovery::getMaterialProperty(), InterfaceMaterial::getMaterialProperty(), Material::getMaterialProperty(), AuxKernelTempl< Real >::getMaterialProperty(), SubProblem::getMaterialPropertyBlockNames(), SubProblem::getMaterialPropertyBoundaryNames(), NodalPatchRecovery::getMaterialPropertyOld(), InterfaceMaterial::getMaterialPropertyOld(), Material::getMaterialPropertyOld(), AuxKernelTempl< Real >::getMaterialPropertyOld(), NodalPatchRecovery::getMaterialPropertyOlder(), InterfaceMaterial::getMaterialPropertyOlder(), Material::getMaterialPropertyOlder(), AuxKernelTempl< Real >::getMaterialPropertyOlder(), MFEMGeneralUserObject::getMatrixCoefficient(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MeshGenerator::getMesh(), getMeshDivision(), MeshGenerator::getMeshesByName(), MooseApp::getMeshGenerator(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), ActionWarehouse::getMooseAppName(), MultiAppTransfer::getMultiApp(), InterfaceMaterial::getNeighborADMaterialProperty(), InterfaceMaterial::getNeighborMaterialProperty(), InterfaceMaterial::getNeighborMaterialPropertyOld(), InterfaceMaterial::getNeighborMaterialPropertyOlder(), MooseServer::getObjectParameters(), Material::getOptionalADMaterialProperty(), Material::getOptionalMaterialProperty(), Material::getOptionalMaterialPropertyOld(), Material::getOptionalMaterialPropertyOlder(), OutputWarehouse::getOutput(), MooseBase::getParam(), getPositionsObject(), getPostprocessorValueByName(), ComponentMaterialPropertyInterface::getPropertyValue(), ReporterData::getReporterInfo(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), getSampler(), MFEMGeneralUserObject::getScalarCoefficient(), MFEMGeneralUserObject::getScalarCoefficientByName(), TransientBase::getTimeStepperName(), ProjectedStatefulMaterialStorageAction::getTypeEnum(), getUserObject(), getUserObjectBase(), MFEMGeneralUserObject::getVectorCoefficient(), MFEMGeneralUserObject::getVectorCoefficientByName(), Terminator::handleMessage(), Control::hasControllableParameterByName(), hasConvergence(), hasFunction(), SubProblem::hasFunctor(), SubProblem::hasFunctorWithType(), MooseApp::hasMeshGenerator(), AdvancedOutput::hasOutputHelper(), hasPostprocessor(), hasPostprocessorValueByName(), MooseApp::hasRelationshipManager(), MooseApp::hasRestartableDataMap(), MooseApp::hasRestartableMetaData(), hasUserObject(), IterationAdaptiveDT::init(), AddVariableAction::init(), AdvancedOutput::init(), AdvancedOutput::initExecutionTypes(), AttribName::initFrom(), NestedDivision::initialize(), TransformedPositions::initialize(), BoundaryRestrictable::initializeBoundaryRestrictable(), JSONOutput::initialSetup(), SideFVFluxBCIntegral::initialSetup(), SolutionScalarAux::initialSetup(), MultiAppProjectionTransfer::initialSetup(), NodalVariableValue::initialSetup(), Console::initialSetup(), SolutionUserObjectBase::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), Function::integral(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), MeshGenerator::isChildMeshGenerator(), DerivativeMaterialInterface< MortarScalarBase >::isNotObjectVariable(), MeshGenerator::isNullMeshName(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MeshGenerator::isParentMeshGenerator(), LinearCombinationFunction::LinearCombinationFunction(), logAdd(), MooseLinearVariableFV< Real >::lowerDError(), Marker::Marker(), MaterialBase::markMatPropRequested(), MatDiffusionBase< Real >::MatDiffusionBase(), Material::Material(), MaterialDerivativeTestKernelBase< Real >::MaterialDerivativeTestKernelBase(), Distribution::median(), MemoryUsageReporter::MemoryUsageReporter(), MeshGenerator::meshPropertyPrefix(), MooseBase::messagePrefix(), OutputWarehouse::mooseConsole(), MooseVariableBase::MooseVariableBase(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MooseLinearVariableFV< Real >::nodalError(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalValueSampler::NodalValueSampler(), Registry::objData(), MeshGenerator::Comparator::operator()(), ProgressOutput::output(), DOFMapOutput::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), ConsoleUtils::outputExecutionInformation(), MaterialOutputAction::outputHelper(), AdvancedOutput::outputInput(), AdvancedOutput::outputNodalVariables(), Exodus::outputPostprocessors(), AdvancedOutput::outputPostprocessors(), TableOutput::outputReporter(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), AdvancedOutput::outputSystemInformation(), AdvancedOutput::outputVectorPostprocessors(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), ComponentPhysicsInterface::physicsExists(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), MooseApp::possiblyLoadRestartableMetaData(), PhysicsBase::prefix(), MooseMesh::prepare(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), PerfGraphLivePrint::printStats(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), Receiver::Receiver(), Executor::Result::record(), AppFactory::reg(), Registry::registerObjectsTo(), registerRandomInterface(), MooseApp::registerRestartableDataMapName(), MooseApp::registerRestartableNameWithFilter(), GlobalParamsAction::remove(), MaterialBase::resetQpProperties(), MultiApp::restore(), ScalarComponentIC::ScalarComponentIC(), MultiApp::setAppOutputFileBase(), MooseMesh::setBoundaryName(), Control::setControllableValue(), Control::setControllableValueByName(), GlobalParamsAction::setDoubleIndexParam(), OutputWarehouse::setFileNumbers(), GlobalParamsAction::setParam(), setPostprocessorValueByName(), setResidualObjectParamsAndLog(), GlobalParamsAction::setScalarParam(), MooseMesh::setSubdomainName(), GlobalParamsAction::setTripleIndexParam(), NodeSetsGeneratorBase::setup(), Split::setup(), SideSetsGeneratorBase::setup(), TransientMultiApp::setupApp(), GlobalParamsAction::setVectorParam(), FullSolveMultiApp::showStatusMessage(), SideSetExtruderGenerator::SideSetExtruderGenerator(), TransientMultiApp::solveStep(), UserObject::spatialValue(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), SubProblem::storeBoundaryDelayedCheckMatProp(), SubProblem::storeBoundaryMatPropName(), MaterialBase::storeBoundaryZeroMatProp(), SubProblem::storeBoundaryZeroMatProp(), SubProblem::storeSubdomainDelayedCheckMatProp(), SubProblem::storeSubdomainMatPropName(), MaterialBase::storeSubdomainZeroMatProp(), SubProblem::storeSubdomainZeroMatProp(), ConstraintWarehouse::subdomainsCovered(), MaterialBase::subdomainSetup(), TaggingInterface::TaggingInterface(), MooseLinearVariableFV< Real >::timeIntegratorError(), VectorPostprocessorVisualizationAux::timestepSetup(), to_json(), MultiAppDofCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransientMultiApp::TransientMultiApp(), MooseServer::traverseParseTreeAndFillSymbols(), MooseBase::typeAndName(), MooseBase::uniqueParameterName(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), UserObject::UserObject(), UserObjectInterface::userObjectName(), ParsedAux::validateGenericVectorNames(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), Convergence::verboseOutput(), AdvancedOutput::wantOutput(), Coupleable::writableCoupledValue(), Coupleable::writableVariable(), Console::write(), and MooseApp::writeRestartableMetaData().

100  {
101  mooseAssert(_name.size(), "Empty name");
102  return _name;
103  }
const std::string & _name
The name of this class.
Definition: MooseBase.h:359

◆ needBoundaryMaterialOnSide()

bool FEProblemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)

These methods are used to determine whether stateful material properties need to be stored on internal sides.

There are five situations where this may be the case: 1) DGKernels 2) IntegratedBCs 3)InternalSideUserObjects 4)ElementalAuxBCs 5)InterfaceUserObjects

Method 1:

Parameters
bnd_idthe boundary id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Method 2:

Parameters
subdomain_idthe subdomain id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Definition at line 8690 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onBoundary(), and ProjectMaterialProperties::onBoundary().

8691 {
8692  if (_bnd_mat_side_cache[tid].find(bnd_id) == _bnd_mat_side_cache[tid].end())
8693  {
8694  auto & bnd_mat_side_cache = _bnd_mat_side_cache[tid][bnd_id];
8695  bnd_mat_side_cache = false;
8696 
8697  if (_aux->needMaterialOnSide(bnd_id))
8698  {
8699  bnd_mat_side_cache = true;
8700  return true;
8701  }
8702  else
8703  for (auto & nl : _nl)
8704  if (nl->needBoundaryMaterialOnSide(bnd_id, tid))
8705  {
8706  bnd_mat_side_cache = true;
8707  return true;
8708  }
8709 
8710  if (theWarehouse()
8711  .query()
8712  .condition<AttribThread>(tid)
8713  .condition<AttribInterfaces>(Interfaces::SideUserObject)
8714  .condition<AttribBoundaries>(bnd_id)
8715  .count() > 0)
8716  {
8717  bnd_mat_side_cache = true;
8718  return true;
8719  }
8720  }
8721 
8722  return _bnd_mat_side_cache[tid][bnd_id];
8723 }
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
Cache for calculating materials on side.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needFV()

virtual void FEProblemBase::needFV ( )
inlineoverridevirtual

marks this problem as including/needing finite volume functionality.

Implements SubProblem.

Definition at line 2467 of file FEProblemBase.h.

Referenced by DiffusionFV::initializePhysicsAdditional(), and DisplacedProblem::needFV().

2467 { _have_fv = true; }
bool _have_fv
Whether we are performing some calculations with finite volume discretizations.

◆ needInterfaceMaterialOnSide()

bool FEProblemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)

Definition at line 8726 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface().

8727 {
8728  if (_interface_mat_side_cache[tid].find(bnd_id) == _interface_mat_side_cache[tid].end())
8729  {
8730  auto & interface_mat_side_cache = _interface_mat_side_cache[tid][bnd_id];
8731  interface_mat_side_cache = false;
8732 
8733  for (auto & nl : _nl)
8734  if (nl->needInterfaceMaterialOnSide(bnd_id, tid))
8735  {
8736  interface_mat_side_cache = true;
8737  return true;
8738  }
8739 
8740  if (theWarehouse()
8741  .query()
8742  .condition<AttribThread>(tid)
8743  .condition<AttribInterfaces>(Interfaces::InterfaceUserObject)
8744  .condition<AttribBoundaries>(bnd_id)
8745  .count() > 0)
8746  {
8747  interface_mat_side_cache = true;
8748  return true;
8749  }
8750  else if (_interface_materials.hasActiveBoundaryObjects(bnd_id, tid))
8751  {
8752  interface_mat_side_cache = true;
8753  return true;
8754  }
8755  }
8756  return _interface_mat_side_cache[tid][bnd_id];
8757 }
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
Cache for calculating materials on interface.

◆ needSolutionState()

void FEProblemBase::needSolutionState ( unsigned int  oldest_needed,
Moose::SolutionIterationType  iteration_type 
)

Declare that we need up to old (1) or older (2) solution states for a given type of iteration.

Parameters
oldest_neededoldest solution state needed
iteration_typethe type of iteration for which old/older states are needed

Definition at line 718 of file FEProblemBase.C.

Referenced by createTagSolutions().

719 {
720  for (auto & sys : _solver_systems)
721  sys->needSolutionState(state, iteration_type);
722  _aux->needSolutionState(state, iteration_type);
723 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ needsPreviousNewtonIteration() [1/2]

void FEProblemBase::needsPreviousNewtonIteration ( bool  state)

Set a flag that indicated that user required values for the previous Newton iterate.

Definition at line 8795 of file FEProblemBase.C.

Referenced by Coupleable::coupledGradientPreviousNL(), Coupleable::coupledNodalValuePreviousNL(), Coupleable::coupledSecondPreviousNL(), Coupleable::coupledValuePreviousNL(), and NonlinearSystem::solve().

8796 {
8798  mooseError("Previous nonlinear solution is required but not added through "
8799  "Problem/previous_nl_solution_required=true");
8800 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needsPreviousNewtonIteration() [2/2]

bool FEProblemBase::needsPreviousNewtonIteration ( ) const

Check to see whether we need to compute the variable values of the previous Newton iterate.

Returns
true if the user required values of the previous Newton iterate

Definition at line 8789 of file FEProblemBase.C.

8790 {
8792 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needSubdomainMaterialOnSide()

bool FEProblemBase::needSubdomainMaterialOnSide ( SubdomainID  subdomain_id,
const THREAD_ID  tid 
)

Definition at line 8760 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::subdomainChanged(), and ProjectMaterialProperties::subdomainChanged().

8761 {
8762  if (_block_mat_side_cache[tid].find(subdomain_id) == _block_mat_side_cache[tid].end())
8763  {
8764  _block_mat_side_cache[tid][subdomain_id] = false;
8765 
8766  for (auto & nl : _nl)
8767  if (nl->needSubdomainMaterialOnSide(subdomain_id, tid))
8768  {
8769  _block_mat_side_cache[tid][subdomain_id] = true;
8770  return true;
8771  }
8772 
8773  if (theWarehouse()
8774  .query()
8775  .condition<AttribThread>(tid)
8776  .condition<AttribInterfaces>(Interfaces::InternalSideUserObject)
8777  .condition<AttribSubdomains>(subdomain_id)
8778  .count() > 0)
8779  {
8780  _block_mat_side_cache[tid][subdomain_id] = true;
8781  return true;
8782  }
8783  }
8784 
8785  return _block_mat_side_cache[tid][subdomain_id];
8786 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
Cache for calculating materials on side.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needToAddDefaultMultiAppFixedPointConvergence()

bool FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence ( ) const
inline

Returns true if the problem needs to add the default fixed point convergence.

Definition at line 642 of file FEProblemBase.h.

643  {
645  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ needToAddDefaultNonlinearConvergence()

bool FEProblemBase::needToAddDefaultNonlinearConvergence ( ) const
inline

Returns true if the problem needs to add the default nonlinear convergence.

Definition at line 637 of file FEProblemBase.h.

638  {
640  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ needToAddDefaultSteadyStateConvergence()

bool FEProblemBase::needToAddDefaultSteadyStateConvergence ( ) const
inline

Returns true if the problem needs to add the default steady-state detection convergence.

Definition at line 647 of file FEProblemBase.h.

648  {
650  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ neighborSubdomainSetup()

void FEProblemBase::neighborSubdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtual

Definition at line 2486 of file FEProblemBase.C.

Referenced by ThreadedFaceLoop< RangeType >::neighborSubdomainChanged().

2487 {
2488  _all_materials.neighborSubdomainSetup(subdomain, tid);
2489 }
virtual void neighborSubdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials

◆ newAssemblyArray()

void FEProblemBase::newAssemblyArray ( std::vector< std::shared_ptr< SolverSystem >> &  solver_systems)
virtual

Definition at line 726 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

727 {
728  unsigned int n_threads = libMesh::n_threads();
729 
730  _assembly.resize(n_threads);
731  for (const auto i : make_range(n_threads))
732  {
733  _assembly[i].resize(solver_systems.size());
734  for (const auto j : index_range(solver_systems))
735  _assembly[i][j] = std::make_unique<Assembly>(*solver_systems[j], i);
736  }
737 }
unsigned int n_threads()
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
auto index_range(const T &sizable)

◆ nlConverged()

bool SubProblem::nlConverged ( const unsigned int  nl_sys_num)
virtualinherited
Returns
whether the given nonlinear system nl_sys_num is converged.

Definition at line 716 of file SubProblem.C.

717 {
718  mooseAssert(nl_sys_num < numNonlinearSystems(),
719  "The nonlinear system number is higher than the number of systems we have!");
720  return solverSystemConverged(nl_sys_num);
721 }
virtual std::size_t numNonlinearSystems() const =0
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ nLinearIterations()

unsigned int FEProblemBase::nLinearIterations ( const unsigned int  nl_sys_num) const
overridevirtual

Reimplemented from SubProblem.

Definition at line 6576 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6577 {
6578  return _nl[nl_sys_num]->nLinearIterations();
6579 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nlSysNum()

unsigned int FEProblemBase::nlSysNum ( const NonlinearSystemName &  nl_sys_name) const
overridevirtual
Returns
the nonlinear system number corresponding to the provided nl_sys_name

Implements SubProblem.

Definition at line 6307 of file FEProblemBase.C.

Referenced by DisplacedProblem::nlSysNum().

6308 {
6309  std::istringstream ss(nl_sys_name);
6310  unsigned int nl_sys_num;
6311  if (!(ss >> nl_sys_num) || !ss.eof())
6312  nl_sys_num = libmesh_map_find(_nl_sys_name_to_num, nl_sys_name);
6313 
6314  return nl_sys_num;
6315 }
std::map< NonlinearSystemName, unsigned int > _nl_sys_name_to_num
Map from nonlinear system name to number.

◆ nNonlinearIterations()

unsigned int FEProblemBase::nNonlinearIterations ( const unsigned int  nl_sys_num) const
overridevirtual

Reimplemented from SubProblem.

Definition at line 6570 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6571 {
6572  return _nl[nl_sys_num]->nNonlinearIterations();
6573 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nonlocalCouplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::nonlocalCouplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)

Definition at line 6164 of file FEProblemBase.C.

Referenced by ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

6165 {
6166  return _assembly[tid][nl_sys]->nonlocalCouplingEntries();
6167 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ nonlocalCouplingMatrix()

const libMesh::CouplingMatrix & FEProblemBase::nonlocalCouplingMatrix ( const unsigned  i) const
overridevirtual
Returns
the nonlocal coupling matrix for the i'th nonlinear system

Implements SubProblem.

Definition at line 9422 of file FEProblemBase.C.

Referenced by DisplacedProblem::nonlocalCouplingMatrix().

9423 {
9424  return _nonlocal_cm[i];
9425 }
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix

◆ notifyWhenMeshChanges()

void FEProblemBase::notifyWhenMeshChanges ( MeshChangedInterface mci)

Register an object that derives from MeshChangedInterface to be notified when the mesh changes.

Definition at line 8224 of file FEProblemBase.C.

Referenced by MeshChangedInterface::MeshChangedInterface().

8225 {
8226  _notify_when_mesh_changes.push_back(mci);
8227 }
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.

◆ notifyWhenMeshDisplaces()

void FEProblemBase::notifyWhenMeshDisplaces ( MeshDisplacedInterface mdi)

Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated.

Definition at line 8230 of file FEProblemBase.C.

Referenced by MeshDisplacedInterface::MeshDisplacedInterface().

8231 {
8232  _notify_when_mesh_displaces.push_back(mdi);
8233 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ numGridSteps()

void FEProblemBase::numGridSteps ( unsigned int  num_grid_steps)
inline

Set the number of steps in a grid sequences.

Definition at line 2224 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2224 { _num_grid_steps = num_grid_steps; }
unsigned int _num_grid_steps
Number of steps in a grid sequence.

◆ numLinearSystems()

virtual std::size_t FEProblemBase::numLinearSystems ( ) const
inlineoverridevirtual

◆ numMatrixTags()

virtual unsigned int SubProblem::numMatrixTags ( ) const
inlinevirtualinherited

◆ numNonlinearSystems()

virtual std::size_t FEProblemBase::numNonlinearSystems ( ) const
inlineoverridevirtual

◆ numSolverSystems()

virtual std::size_t FEProblemBase::numSolverSystems ( ) const
inlineoverridevirtual

◆ numVectorTags()

unsigned int SubProblem::numVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

The total number of tags, which can be limited to the tag type.

Reimplemented in DisplacedProblem.

Definition at line 195 of file SubProblem.C.

Referenced by NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeResidualInternal(), ComputeResidualThread::determineObjectWarehouses(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), MooseVariableScalar::MooseVariableScalar(), DisplacedProblem::numVectorTags(), ComputeNodalKernelBcsThread::pre(), and ComputeNodalKernelsThread::pre().

196 {
197  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
198 
199  return getVectorTags(type).size();
200 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ objectExecuteHelper()

template<typename T >
void FEProblemBase::objectExecuteHelper ( const std::vector< T *> &  objects)
static

Definition at line 3147 of file FEProblemBase.h.

3148 {
3149  for (T * obj_ptr : objects)
3150  obj_ptr->execute();
3151 }

◆ objectSetupHelper()

template<typename T >
void FEProblemBase::objectSetupHelper ( const std::vector< T *> &  objects,
const ExecFlagType exec_flag 
)
static

Helpers for calling the necessary setup/execute functions for the supplied objects.

Definition at line 3113 of file FEProblemBase.h.

3114 {
3115  if (exec_flag == EXEC_INITIAL)
3116  {
3117  for (T * obj_ptr : objects)
3118  obj_ptr->initialSetup();
3119  }
3120 
3121  else if (exec_flag == EXEC_TIMESTEP_BEGIN)
3122  {
3123  for (const auto obj_ptr : objects)
3124  obj_ptr->timestepSetup();
3125  }
3126  else if (exec_flag == EXEC_SUBDOMAIN)
3127  {
3128  for (const auto obj_ptr : objects)
3129  obj_ptr->subdomainSetup();
3130  }
3131 
3132  else if (exec_flag == EXEC_NONLINEAR)
3133  {
3134  for (const auto obj_ptr : objects)
3135  obj_ptr->jacobianSetup();
3136  }
3137 
3138  else if (exec_flag == EXEC_LINEAR)
3139  {
3140  for (const auto obj_ptr : objects)
3141  obj_ptr->residualSetup();
3142  }
3143 }
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ onlyAllowDefaultNonlinearConvergence()

virtual bool FEProblemBase::onlyAllowDefaultNonlinearConvergence ( ) const
inlinevirtual

Returns true if an error will result if the user supplies 'nonlinear_convergence'.

Some problems are strongly tied to their convergence, and it does not make sense to use any convergence other than their default and additionally would be error-prone.

Reimplemented in ReferenceResidualProblem.

Definition at line 691 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

691 { return false; }

◆ onTimestepBegin()

void FEProblemBase::onTimestepBegin ( )
overridevirtual

Implements SubProblem.

Definition at line 6719 of file FEProblemBase.C.

Referenced by MFEMTransient::takeStep(), and TransientBase::takeStep().

6720 {
6721  TIME_SECTION("onTimestepBegin", 2);
6722 
6723  for (auto & nl : _nl)
6724  nl->onTimestepBegin();
6725 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ onTimestepEnd()

void FEProblemBase::onTimestepEnd ( )
overridevirtual

◆ outputStep()

void FEProblemBase::outputStep ( ExecFlagType  type)
virtual

Output the current step.

Will ensure that everything is in the proper state to be outputted. Then tell the OutputWarehouse to do its thing

Parameters
typeThe type execution flag (see Moose.h)

Reimplemented in DumpObjectsProblem.

Definition at line 6682 of file FEProblemBase.C.

Referenced by TransientBase::endStep(), MFEMSteady::execute(), TransientBase::execute(), SteadyBase::execute(), Eigenvalue::execute(), InversePowerMethod::init(), NonlinearEigen::init(), EigenExecutionerBase::postExecute(), TransientBase::preExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), and FixedPointSolve::solveStep().

6683 {
6684  TIME_SECTION("outputStep", 1, "Outputting");
6685 
6687 
6688  for (auto & sys : _solver_systems)
6689  sys->update();
6690  _aux->update();
6691 
6692  if (_displaced_problem)
6693  _displaced_problem->syncSolutions();
6695 
6697 }
void outputStep(ExecFlagType type)
Calls the outputStep method for each output object.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void setCurrentExecuteOnFlag(const ExecFlagType &)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::shared_ptr< DisplacedProblem > _displaced_problem
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ paramError()

template<typename... Args>
void MooseBase::paramError ( const std::string &  param,
Args...  args 
) const
inherited

Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseError - only printing a message using the given args.

Definition at line 435 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), AutoCheckpointAction::act(), SetupDebugAction::act(), CommonOutputAction::act(), AddPeriodicBCAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), NEML2ModelExecutor::addGatheredParameter(), NEML2ModelExecutor::addGatheredVariable(), ADDGKernel::ADDGKernel(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), ReporterPointSource::addPoints(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ADNodalKernel::ADNodalKernel(), ADPenaltyPeriodicSegmentalConstraint::ADPenaltyPeriodicSegmentalConstraint(), ADPeriodicSegmentalConstraint::ADPeriodicSegmentalConstraint(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), AdvectiveFluxAux::AdvectiveFluxAux(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), ArrayBodyForce::ArrayBodyForce(), ArrayDGKernel::ArrayDGKernel(), ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayDirichletBC::ArrayDirichletBC(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), ArrayParsedAux::ArrayParsedAux(), ArrayPenaltyDirichletBC::ArrayPenaltyDirichletBC(), ArrayVacuumBC::ArrayVacuumBC(), ArrayVarReductionAux::ArrayVarReductionAux(), ParsedSubdomainIDsGenerator::assignElemSubdomainID(), AuxKernelTempl< Real >::AuxKernelTempl(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BlockDeletionGenerator::BlockDeletionGenerator(), BlockWeightedPartitioner::BlockWeightedPartitioner(), BoundsBase::BoundsBase(), BreakMeshByBlockGenerator::BreakMeshByBlockGenerator(), BuildArrayVariableAux::BuildArrayVariableAux(), PiecewiseTabularBase::buildFromFile(), MFEMMesh::buildMesh(), CartesianGridDivision::CartesianGridDivision(), checkComponent(), MeshGenerator::checkGetMesh(), ComponentInitialConditionInterface::checkInitialConditionsAllRequested(), BatchMeshGeneratorAction::checkInputParameterType(), PhysicsBase::checkIntegrityEarly(), PostprocessorInterface::checkParam(), checkProblemIntegrity(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), Coupleable::checkVar(), MultiAppTransfer::checkVariable(), CircularBoundaryCorrectionGenerator::CircularBoundaryCorrectionGenerator(), CircularBoundaryCorrectionGenerator::circularCenterCalculator(), MultiAppGeneralFieldTransfer::closestToPosition(), CoarsenBlockGenerator::CoarsenBlockGenerator(), CombinerGenerator::CombinerGenerator(), ComponentInitialConditionInterface::ComponentInitialConditionInterface(), ComponentMaterialPropertyInterface::ComponentMaterialPropertyInterface(), CompositionDT::CompositionDT(), FunctorAux::computeValue(), ConcentricCircleMeshGenerator::ConcentricCircleMeshGenerator(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), ConstantVectorPostprocessor::ConstantVectorPostprocessor(), ContainsPointAux::ContainsPointAux(), CopyValueAux::CopyValueAux(), Coupleable::Coupleable(), CoupledForceTempl< is_ad >::CoupledForceTempl(), CoupledValueFunctionMaterialTempl< is_ad >::CoupledValueFunctionMaterialTempl(), MultiApp::createApp(), MeshGeneratorSystem::createMeshGenerator(), CylindricalGridDivision::CylindricalGridDivision(), DebugResidualAux::DebugResidualAux(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), AccumulateReporter::declareLateValues(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DGLowerDKernel::DGLowerDKernel(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementLengthAux::ElementLengthAux(), ElementLpNormAux::ElementLpNormAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), ElementValueSampler::ElementValueSampler(), ElementVectorL2Error::ElementVectorL2Error(), EqualValueEmbeddedConstraintTempl< is_ad >::EqualValueEmbeddedConstraintTempl(), ReporterPointSource::errorCheck(), StitchMeshGeneratorBase::errorMissingBoundary(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), ExtraElementIDAux::ExtraElementIDAux(), ExtraElementIntegerDivision::ExtraElementIntegerDivision(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileMeshGenerator::FileMeshGenerator(), FillBetweenCurvesGenerator::FillBetweenCurvesGenerator(), FillBetweenSidesetsGenerator::FillBetweenSidesetsGenerator(), ReporterPointSource::fillPoint(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), InternalSideIndicatorBase::finalize(), ForcingFunctionAux::ForcingFunctionAux(), FullSolveMultiApp::FullSolveMultiApp(), FunctionArrayAux::FunctionArrayAux(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FunctorADConverterTempl< T >::FunctorADConverterTempl(), FunctorAux::FunctorAux(), FunctorBinnedValuesDivision::FunctorBinnedValuesDivision(), FunctorCoordinatesFunctionAux::FunctorCoordinatesFunctionAux(), FunctorElementalGradientAuxTempl< is_ad >::FunctorElementalGradientAuxTempl(), FunctorExtremaPositions::FunctorExtremaPositions(), FunctorIC::FunctorIC(), FunctorPositions::FunctorPositions(), FunctorVectorElementalAuxTempl< is_ad >::FunctorVectorElementalAuxTempl(), FVAdvection::FVAdvection(), FVFluxBC::FVFluxBC(), FVInterfaceKernel::FVInterfaceKernel(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), FVTwoVarContinuityConstraint::FVTwoVarContinuityConstraint(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), ExtraNodesetGenerator::generate(), AddMetaDataGenerator::generate(), ElementsToTetrahedronsConverter::generate(), BlockToMeshConverterGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenSidesetsGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BlockDeletionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), AdvancedExtruderGenerator::generate(), CircularBoundaryCorrectionGenerator::generate(), CombinerGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedCurveGenerator::generate(), ParsedExtraElementIDGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), BreakMeshByElementGenerator::generate(), CutMeshByLevelSetGeneratorBase::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), PatternedMeshGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), GeneratedMeshGenerator::GeneratedMeshGenerator(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), PropertyReadFile::getBlockData(), ComponentBoundaryConditionInterface::getBoundaryCondition(), MultiApp::getCommandLineArgs(), PropertyReadFile::getData(), PropertyReadFile::getFileNames(), Sampler::getGlobalSamples(), ComponentInitialConditionInterface::getInitialCondition(), NEML2Action::getInputParameterMapping(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), Sampler::getLocalSamples(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), Sampler::getNextLocalRow(), FEProblemSolve::getParamFromNonlinearSystemVectorParam(), PostprocessorInterface::getPostprocessorNameInternal(), PostprocessorInterface::getPostprocessorValueInternal(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), UserObjectInterface::getUserObjectBase(), UserObjectInterface::getUserObjectName(), HFEMDirichletBC::HFEMDirichletBC(), AddVariableAction::init(), MultiApp::init(), DistributedPositions::initialize(), BlockWeightedPartitioner::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), PhysicsBase::initializePhysics(), JSONOutput::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), SideFVFluxBCIntegral::initialSetup(), ElementSubdomainModifierBase::initialSetup(), MultiAppVariableValueSamplePostprocessorTransfer::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), HistogramVectorPostprocessor::initialSetup(), ReferenceResidualConvergence::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), LibtorchControlValuePostprocessor::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), SampledOutput::initSample(), AddMetaDataGenerator::inputChecker(), IntegratedBC::IntegratedBC(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceValueUserObjectAux::InterfaceValueUserObjectAux(), InternalSideIndicatorBase::InternalSideIndicatorBase(), InterpolatedStatefulMaterialTempl< T >::InterpolatedStatefulMaterialTempl(), InversePowerMethod::InversePowerMethod(), IterationAdaptiveDT::IterationAdaptiveDT(), MultiApp::keepSolutionDuringRestore(), Kernel::Kernel(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationFunction::LinearCombinationFunction(), LinearFVAdvectionDiffusionFunctorRobinBC::LinearFVAdvectionDiffusionFunctorRobinBC(), LowerDIntegratedBC::LowerDIntegratedBC(), PNGOutput::makeMeshFunc(), MatCoupledForce::MatCoupledForce(), MaterialADConverterTempl< T >::MaterialADConverterTempl(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MatrixSymmetryCheck::MatrixSymmetryCheck(), PatternedMeshGenerator::mergeSubdomainNameMaps(), MeshCollectionGenerator::MeshCollectionGenerator(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshDivisionAux::MeshDivisionAux(), MeshGenerator::MeshGenerator(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMGenericFunctorMaterial::MFEMGenericFunctorMaterial(), MFEMGenericFunctorVectorMaterial::MFEMGenericFunctorVectorMaterial(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), UserObjectInterface::mooseObjectError(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MortarConstraintBase::MortarConstraintBase(), MortarNodalAuxKernelTempl< ComputeValueType >::MortarNodalAuxKernelTempl(), MultiApp::moveApp(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorToAuxScalarTransfer::MultiAppPostprocessorToAuxScalarTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppProjectionTransfer::MultiAppProjectionTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppScalarToAuxScalarTransfer::MultiAppScalarToAuxScalarTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiAppVectorPostprocessorTransfer::MultiAppVectorPostprocessorTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NearestNodeValueAux::NearestNodeValueAux(), NEML2Action::NEML2Action(), NestedDivision::NestedDivision(), NodalBC::NodalBC(), NodalEqualValueConstraint::NodalEqualValueConstraint(), NodalKernel::NodalKernel(), NodalPatchRecoveryAux::NodalPatchRecoveryAux(), NodalValueSampler::NodalValueSampler(), Output::Output(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), ParsedPostprocessor::ParsedPostprocessor(), PatternedMeshGenerator::PatternedMeshGenerator(), PenaltyPeriodicSegmentalConstraint::PenaltyPeriodicSegmentalConstraint(), PeriodicSegmentalConstraint::PeriodicSegmentalConstraint(), PIDTransientControl::PIDTransientControl(), PlaneDeletionGenerator::PlaneDeletionGenerator(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), PolyLineMeshGenerator::PolyLineMeshGenerator(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessor(), LibmeshPartitioner::prepareBlocksForSubdomainPartitioner(), ProjectedMaterialPropertyNodalPatchRecoveryAux::ProjectedMaterialPropertyNodalPatchRecoveryAux(), ProjectionAux::ProjectionAux(), PropertyReadFile::PropertyReadFile(), RandomIC::RandomIC(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readXda(), ReferenceResidualConvergence::ReferenceResidualConvergence(), RefineBlockGenerator::RefineBlockGenerator(), RefineSidesetGenerator::RefineSidesetGenerator(), RenameBlockGenerator::RenameBlockGenerator(), RenameBoundaryGenerator::RenameBoundaryGenerator(), ReporterPointSource::ReporterPointSource(), restoreSolutions(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), setLinearConvergenceNames(), setNonlinearConvergenceNames(), MooseMesh::setPartitioner(), NodeSetsGeneratorBase::setup(), SideSetsGeneratorBase::setup(), NEML2Action::setupDerivativeMappings(), NEML2Action::setupParameterDerivativeMappings(), TimeSequenceStepperBase::setupSequence(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), SideValueSampler::SideValueSampler(), SingleRankPartitioner::SingleRankPartitioner(), SphericalGridDivision::SphericalGridDivision(), StitchBoundaryMeshGenerator::StitchBoundaryMeshGenerator(), StitchMeshGenerator::StitchMeshGenerator(), SymmetryTransformGenerator::SymmetryTransformGenerator(), Terminator::Terminator(), TimeDerivativeAux::TimeDerivativeAux(), Transfer::Transfer(), TransformGenerator::TransformGenerator(), TransientMultiApp::TransientMultiApp(), ParsedCurveGenerator::tSectionSpaceDefiner(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), UserObject::UserObject(), Checkpoint::validateExecuteOn(), ParsedAux::validateGenericVectorNames(), ParsedMaterialBase::validateVectorNames(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VolumeAux::VolumeAux(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), XYMeshLineCutter::XYMeshLineCutter(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

436 {
437  _pars.paramError(param, std::forward<Args>(args)...);
438 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...

◆ parameters()

const InputParameters& MooseBase::parameters ( ) const
inlineinherited

Get the parameters of the object.

Returns
The parameters of the object

Definition at line 127 of file MooseBase.h.

Referenced by MeshOnlyAction::act(), SplitMeshAction::act(), SetupDebugAction::act(), AddActionComponentAction::act(), CommonOutputAction::act(), Action::Action(), addAnyRedistributers(), MFEMProblem::addAuxKernel(), addAuxKernel(), addAuxScalarKernel(), MFEMProblem::addAuxVariable(), DisplacedProblem::addAuxVariable(), MFEMProblem::addBoundaryCondition(), addBoundaryCondition(), addConstraint(), addConvergence(), addDamper(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), addDefaultSteadyStateConvergence(), addDGKernel(), addDiracKernel(), addDistribution(), MFEMProblem::addFESpace(), MFEMProblem::addFunction(), addFunction(), MFEMProblem::addFunctorMaterial(), addFunctorMaterial(), addFVBC(), addFVInitialCondition(), addFVInterfaceKernel(), addFVKernel(), MFEMProblem::addGridFunction(), addHDGKernel(), addIndicator(), MFEMProblem::addInitialCondition(), addInitialCondition(), DiffusionPhysicsBase::addInitialConditions(), addInterfaceKernel(), addInterfaceMaterial(), MFEMProblem::addKernel(), addKernel(), addLinearFVBC(), addLinearFVKernel(), FEProblem::addLineSearch(), addMarker(), addMaterial(), addMaterialHelper(), addMeshDivision(), MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), addMultiApp(), addNodalKernel(), addObject(), addObjectParamsHelper(), addOutput(), MFEMProblem::addPostprocessor(), addPostprocessor(), addPredictor(), addReporter(), addSampler(), addScalarKernel(), MFEMProblem::addSubMesh(), addTimeIntegrator(), MFEMProblem::addTransfer(), addTransfer(), addUserObject(), MFEMProblem::addVariable(), DisplacedProblem::addVariable(), addVectorPostprocessor(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), AdvancedOutput::AdvancedOutput(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), Action::associateWithParameter(), AuxKernelTempl< Real >::AuxKernelTempl(), AuxScalarKernel::AuxScalarKernel(), BoundsBase::BoundsBase(), MooseMesh::buildTypedMesh(), PostprocessorInterface::checkParam(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), SampledOutput::cloneMesh(), LibtorchNeuralNetControl::conditionalParameterError(), Console::Console(), CommonOutputAction::create(), MultiApp::createApp(), Postprocessor::declareValue(), DumpObjectsProblem::deduceNecessaryParameters(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DumpObjectsProblem::dumpObjectHelper(), DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementMaterialSampler::ElementMaterialSampler(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), Executor::Executor(), Exodus::Exodus(), FEProblem::FEProblem(), FixedPointSolve::FixedPointSolve(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), GapValueAux::GapValueAux(), ParsedSubdomainGeneratorBase::generate(), ActionWarehouse::getCurrentActionName(), ExecutorInterface::getExecutor(), Material::getMaterial(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorInterface::getVectorPostprocessorName(), GhostingUserObject::GhostingUserObject(), MeshGeneratorSystem::hasDataDrivenAllowed(), AttribSystem::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), FullSolveMultiApp::initialSetup(), initNullSpaceVectors(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), isValid(), IterationAdaptiveDT::IterationAdaptiveDT(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MFEMCGSolver::MFEMCGSolver(), MFEMGMRESSolver::MFEMGMRESSolver(), MFEMHypreADS::MFEMHypreADS(), MFEMHypreAMS::MFEMHypreAMS(), MFEMHypreBoomerAMG::MFEMHypreBoomerAMG(), MFEMHypreFGMRES::MFEMHypreFGMRES(), MFEMHypreGMRES::MFEMHypreGMRES(), MFEMHyprePCG::MFEMHyprePCG(), MFEMOperatorJacobiSmoother::MFEMOperatorJacobiSmoother(), MFEMSuperLU::MFEMSuperLU(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiApp::MultiApp(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NodeFaceConstraint::NodeFaceConstraint(), ConsoleUtils::outputLegacyInformation(), OverlayMeshGenerator::OverlayMeshGenerator(), MooseServer::parseDocumentForDiagnostics(), PenetrationAux::PenetrationAux(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), NEML2Action::printSummary(), ProjectedStatefulMaterialStorageAction::processProperty(), PropertyReadFile::PropertyReadFile(), PseudoTimestep::PseudoTimestep(), RandomIC::RandomIC(), ReferenceResidualConvergence::ReferenceResidualConvergence(), InputParameterWarehouse::removeInputParameters(), FEProblem::setInputParametersFEProblem(), setInputParametersFEProblem(), setResidualObjectParamsAndLog(), SideSetsGeneratorBase::setup(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), Moose::PetscSupport::storePetscOptions(), DumpObjectsProblem::stringifyParameters(), TaggingInterface::TaggingInterface(), Transfer::Transfer(), TransientBase::TransientBase(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), and MooseApp::~MooseApp().

127 { return _pars; }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362

◆ paramInfo()

template<typename... Args>
void MooseBase::paramInfo ( const std::string &  param,
Args...  args 
) const
inherited

Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseInfo - only printing a message using the given args.

Definition at line 449 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), ComboMarker::ComboMarker(), Control::Control(), FunctorIC::FunctorIC(), and TransientMultiApp::TransientMultiApp().

450 {
451  mooseInfo(_pars.paramMessage(param, std::forward<Args>(args)...));
452 }
std::string paramMessage(const std::string &param, Args... args) const
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362

◆ paramWarning()

template<typename... Args>
void MooseBase::paramWarning ( const std::string &  param,
Args...  args 
) const
inherited

Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseWarning - only printing a message using the given args.

Definition at line 442 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), EigenProblem::checkProblemIntegrity(), CombinerGenerator::copyIntoMesh(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), MultiAppNearestNodeTransfer::execute(), FEProblemSolve::FEProblemSolve(), UniqueExtraIDMeshGenerator::generate(), PlaneIDMeshGenerator::generate(), Terminator::initialSetup(), SampledOutput::initSample(), MooseMesh::MooseMesh(), setPreserveMatrixSparsityPattern(), and Terminator::Terminator().

443 {
444  mooseWarning(_pars.paramMessage(param, std::forward<Args>(args)...));
445 }
std::string paramMessage(const std::string &param, Args... args) const
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ parentOutputPositionChanged()

void FEProblemBase::parentOutputPositionChanged ( )

Calls parentOutputPositionChanged() on all sub apps.

Definition at line 4466 of file FEProblemBase.C.

Referenced by TransientBase::parentOutputPositionChanged().

4467 {
4468  for (const auto & it : _multi_apps)
4469  {
4470  const auto & objects = it.second.getActiveObjects();
4471  for (const auto & obj : objects)
4472  obj->parentOutputPositionChanged();
4473  }
4474 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:166

◆ petscOptionsDatabase()

PetscOptions& FEProblemBase::petscOptionsDatabase ( )
inline

Definition at line 2142 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2142 { return _petsc_option_data_base; }
PetscOptions _petsc_option_data_base

◆ petscOptionsInserted()

bool& FEProblemBase::petscOptionsInserted ( )
inline

If PETSc options are already inserted.

Definition at line 2139 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2139 { return _is_petsc_options_inserted; }
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.

◆ possiblyRebuildGeomSearchPatches()

void FEProblemBase::possiblyRebuildGeomSearchPatches ( )
virtual

Definition at line 7854 of file FEProblemBase.C.

Referenced by solve().

7855 {
7856  if (_displaced_problem) // Only need to do this if things are moving...
7857  {
7858  TIME_SECTION("possiblyRebuildGeomSearchPatches", 5, "Rebuilding Geometric Search Patches");
7859 
7860  switch (_mesh.getPatchUpdateStrategy())
7861  {
7862  case Moose::Never:
7863  break;
7864  case Moose::Iteration:
7865  // Update the list of ghosted elements at the start of the time step
7868 
7869  _displaced_problem->geomSearchData().updateGhostedElems();
7871 
7872  // The commands below ensure that the sparsity of the Jacobian matrix is
7873  // augmented at the start of the time step using neighbor nodes from the end
7874  // of the previous time step.
7875 
7877 
7878  // This is needed to reinitialize PETSc output
7880 
7881  break;
7882 
7883  case Moose::Auto:
7884  {
7885  Real max = _displaced_problem->geomSearchData().maxPatchPercentage();
7887 
7888  // If we haven't moved very far through the patch
7889  if (max < 0.4)
7890  break;
7891  }
7892  libmesh_fallthrough();
7893 
7894  // Let this fall through if things do need to be updated...
7895  case Moose::Always:
7896  // Flush output here to see the message before the reinitialization, which could take a
7897  // while
7898  _console << "\n\nUpdating geometric search patches\n" << std::endl;
7899 
7902 
7903  _displaced_problem->geomSearchData().clearNearestNodeLocators();
7905 
7907 
7908  // This is needed to reinitialize PETSc output
7910  }
7911  }
7912 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
auto max(const L &left, const R &right)
void updateGhostedElems()
Updates the list of ghosted elements at the start of each time step for the nonlinear iteration patch...
MooseMesh & _mesh
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
void max(const T &r, T &o, Request &req) const
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
const Moose::PatchUpdateType & getPatchUpdateStrategy() const
Get the current patch update strategy.
Definition: MooseMesh.C:3413
void clearNearestNodeLocators()
Clear out the Penetration Locators so they will redo the search.
MooseMesh * _displaced_mesh

◆ postExecute()

void FEProblemBase::postExecute ( )
virtual

Method called at the end of the simulation.

Definition at line 5480 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5481 {
5482  const auto & multi_apps = _multi_apps.getActiveObjects();
5483 
5484  for (const auto & multi_app : multi_apps)
5485  multi_app->postExecute();
5486 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ predictorCleanup()

void FEProblemBase::predictorCleanup ( NumericVector< libMesh::Number > &  ghosted_solution)
virtual

Perform cleanup tasks after application of predictor to solution vector.

Parameters
ghosted_solutionGhosted solution vector

Definition at line 7761 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::setInitialSolution().

7762 {
7763 }

◆ prepare() [1/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
const THREAD_ID  tid 
)
overridevirtual

◆ prepare() [2/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
unsigned int  ivar,
unsigned int  jvar,
const std::vector< dof_id_type > &  dof_indices,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

◆ prepareAssembly()

void FEProblemBase::prepareAssembly ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 1811 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), NonlinearSystemBase::reinitNodeFace(), and NonlinearSystemBase::setConstraintSecondaryValues().

1812 {
1813  _assembly[tid][_current_nl_sys->number()]->prepare();
1815  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
1816 
1818  {
1819  _displaced_problem->prepareAssembly(tid);
1821  _displaced_problem->prepareNonlocal(tid);
1822  }
1823 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ prepareFace()

void FEProblemBase::prepareFace ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 1725 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onInterface(), and ComputeUserObjectsThread::onInternalSide().

1726 {
1727  for (auto & nl : _nl)
1728  nl->prepareFace(tid, true);
1729  _aux->prepareFace(tid, false);
1730 
1732  _displaced_problem->prepareFace(_displaced_mesh->elemPtr(elem->id()), tid);
1733 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ prepareFaceShapes()

void FEProblemBase::prepareFaceShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2070 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary().

2071 {
2072  _assembly[tid][_current_nl_sys->number()]->copyFaceShapes(var);
2073 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ prepareMaterials()

void FEProblemBase::prepareMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props,
const SubdomainID  blk_id,
const THREAD_ID  tid 
)

Add the MooseVariables and the material properties that the current materials depend on to the dependency list.

Parameters
consumer_needed_mat_propsThe material properties needed by consumer objects (other than the materials themselves)
blk_idThe subdomain ID for which we are preparing our list of needed vars and props
tidThe thread ID we are preparing the requirements for

This MUST be done after the moose variable dependency list has been set for all the other objects using the setActiveElementalMooseVariables API!

Definition at line 3969 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

3972 {
3973  std::set<MooseVariableFEBase *> needed_moose_vars;
3974  std::unordered_set<unsigned int> needed_mat_props;
3975 
3976  if (_all_materials.hasActiveBlockObjects(blk_id, tid))
3977  {
3978  _all_materials.updateVariableDependency(needed_moose_vars, tid);
3979  _all_materials.updateBlockMatPropDependency(blk_id, needed_mat_props, tid);
3980  }
3981 
3982  const auto & ids = _mesh.getSubdomainBoundaryIds(blk_id);
3983  for (const auto id : ids)
3984  {
3985  _materials.updateBoundaryVariableDependency(id, needed_moose_vars, tid);
3986  _materials.updateBoundaryMatPropDependency(id, needed_mat_props, tid);
3987  }
3988 
3989  const auto & current_active_elemental_moose_variables = getActiveElementalMooseVariables(tid);
3990  needed_moose_vars.insert(current_active_elemental_moose_variables.begin(),
3991  current_active_elemental_moose_variables.end());
3992 
3993  needed_mat_props.insert(consumer_needed_mat_props.begin(), consumer_needed_mat_props.end());
3994 
3995  setActiveElementalMooseVariables(needed_moose_vars, tid);
3996  setActiveMaterialProperties(needed_mat_props, tid);
3997 }
void updateVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
Update variable dependency vector.
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::set< BoundaryID > & getSubdomainBoundaryIds(const SubdomainID subdomain_id) const
Get the list of boundary ids associated with the given subdomain id.
Definition: MooseMesh.C:3497
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
Set the MOOSE variables to be reinited on each element.
MooseMesh & _mesh
void updateBoundaryMatPropDependency(std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBlockMatPropDependency(SubdomainID id, std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBoundaryVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
MaterialWarehouse _all_materials
MaterialWarehouse _materials

◆ prepareNeighborShapes()

void FEProblemBase::prepareNeighborShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2076 of file FEProblemBase.C.

2077 {
2078  _assembly[tid][_current_nl_sys->number()]->copyNeighborShapes(var);
2079 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preparePRefinement()

void SubProblem::preparePRefinement ( )
inherited

Prepare DofMap and Assembly classes with our p-refinement information.

Definition at line 1332 of file SubProblem.C.

Referenced by init().

1333 {
1334  std::unordered_set<FEFamily> disable_families;
1335  for (const auto & [family, flag] : _family_for_p_refinement)
1336  if (flag)
1337  disable_families.insert(family);
1338 
1339  for (const auto tid : make_range(libMesh::n_threads()))
1340  for (const auto s : make_range(numNonlinearSystems()))
1341  assembly(tid, s).havePRefinement(disable_families);
1342 
1343  auto & eq = es();
1344  for (const auto family : disable_families)
1345  for (const auto i : make_range(eq.n_systems()))
1346  {
1347  auto & system = eq.get_system(i);
1348  auto & dof_map = system.get_dof_map();
1349  for (const auto vg : make_range(system.n_variable_groups()))
1350  {
1351  const auto & var_group = system.variable_group(vg);
1352  if (var_group.type().family == family)
1353  dof_map.should_p_refine(vg, false);
1354  }
1355  }
1356 
1357  _have_p_refinement = true;
1358 }
unsigned int n_threads()
virtual libMesh::EquationSystems & es()=0
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
void havePRefinement(const std::unordered_set< FEFamily > &disable_p_refinement_for_families)
Indicate that we have p-refinement.
Definition: Assembly.C:4859
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ prepareShapes()

void FEProblemBase::prepareShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2064 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onElement().

2065 {
2066  _assembly[tid][_current_nl_sys->number()]->copyShapes(var);
2067 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preserveMatrixSparsityPattern()

bool FEProblemBase::preserveMatrixSparsityPattern ( ) const
inline

Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve.

This is usually the Jacobian.

Definition at line 1960 of file FEProblemBase.h.

bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...

◆ projectInitialConditionOnCustomRange()

void FEProblemBase::projectInitialConditionOnCustomRange ( libMesh::ConstElemRange elem_range,
ConstBndNodeRange bnd_node_range 
)

Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 3693 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::applyIC(), and ActivateElementsUserObjectBase::initSolutions().

3695 {
3696  ComputeInitialConditionThread cic(*this);
3697  Threads::parallel_reduce(elem_range, cic);
3698 
3699  // Need to close the solution vector here so that boundary ICs take precendence
3700  for (auto & nl : _nl)
3701  nl->solution().close();
3702  _aux->solution().close();
3703 
3705  Threads::parallel_reduce(bnd_nodes, cbic);
3706 
3707  for (auto & nl : _nl)
3708  nl->solution().close();
3709  _aux->solution().close();
3710 
3711  // Also, load values into the SCALAR dofs
3712  // Note: We assume that all SCALAR dofs are on the
3713  // processor with highest ID
3714  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3715  {
3716  const auto & ics = _scalar_ics.getActiveObjects();
3717  for (const auto & ic : ics)
3718  {
3719  MooseVariableScalar & var = ic->variable();
3720  var.reinit();
3721 
3722  DenseVector<Number> vals(var.order());
3723  ic->compute(vals);
3724 
3725  const unsigned int n_SCALAR_dofs = var.dofIndices().size();
3726  for (unsigned int i = 0; i < n_SCALAR_dofs; i++)
3727  {
3728  const dof_id_type global_index = var.dofIndices()[i];
3729  var.sys().solution().set(global_index, vals(i));
3730  var.setValue(i, vals(i));
3731  }
3732  }
3733  }
3734 
3735  for (auto & nl : _nl)
3736  {
3737  nl->solution().close();
3738  nl->solution().localize(*nl->system().current_local_solution, nl->dofMap().get_send_list());
3739  }
3740 
3741  _aux->solution().close();
3742  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3743 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
Class for scalar variables (they are different).
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
uint8_t dof_id_type

◆ projectSolution()

void FEProblemBase::projectSolution ( )

Definition at line 3625 of file FEProblemBase.C.

Referenced by initialAdaptMesh(), and initialSetup().

3626 {
3627  TIME_SECTION("projectSolution", 2, "Projecting Initial Solutions")
3628 
3629  FloatingPointExceptionGuard fpe_guard(_app);
3630 
3631  ConstElemRange & elem_range = *_mesh.getActiveLocalElementRange();
3632  ComputeInitialConditionThread cic(*this);
3633  Threads::parallel_reduce(elem_range, cic);
3634 
3635  if (haveFV())
3636  {
3638  ElemInfoRange elem_info_range(_mesh.ownedElemInfoBegin(), _mesh.ownedElemInfoEnd());
3639 
3640  ComputeFVInitialConditionThread cfvic(*this);
3641  Threads::parallel_reduce(elem_info_range, cfvic);
3642  }
3643 
3644  // Need to close the solution vector here so that boundary ICs take precendence
3645  for (auto & nl : _nl)
3646  nl->solution().close();
3647  _aux->solution().close();
3648 
3649  // now run boundary-restricted initial conditions
3650  ConstBndNodeRange & bnd_nodes = *_mesh.getBoundaryNodeRange();
3652  Threads::parallel_reduce(bnd_nodes, cbic);
3653 
3654  for (auto & nl : _nl)
3655  nl->solution().close();
3656  _aux->solution().close();
3657 
3658  // Also, load values into the SCALAR dofs
3659  // Note: We assume that all SCALAR dofs are on the
3660  // processor with highest ID
3661  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3662  {
3663  const auto & ics = _scalar_ics.getActiveObjects();
3664  for (const auto & ic : ics)
3665  {
3666  MooseVariableScalar & var = ic->variable();
3667  var.reinit();
3668 
3669  DenseVector<Number> vals(var.order());
3670  ic->compute(vals);
3671 
3672  const unsigned int n_SCALAR_dofs = var.dofIndices().size();
3673  for (unsigned int i = 0; i < n_SCALAR_dofs; i++)
3674  {
3675  const dof_id_type global_index = var.dofIndices()[i];
3676  var.sys().solution().set(global_index, vals(i));
3677  var.setValue(i, vals(i));
3678  }
3679  }
3680  }
3681 
3682  for (auto & sys : _solver_systems)
3683  {
3684  sys->solution().close();
3685  sys->solution().localize(*sys->system().current_local_solution, sys->dofMap().get_send_list());
3686  }
3687 
3688  _aux->solution().close();
3689  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3690 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Scope guard for starting and stopping Floating Point Exception Trapping.
elem_info_iterator ownedElemInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1528
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
MooseMesh & _mesh
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
if(!dmm->_nl) SETERRQ(PETSC_COMM_WORLD
Class for scalar variables (they are different).
elem_info_iterator ownedElemInfoEnd()
Definition: MooseMesh.C:1536
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289
uint8_t dof_id_type

◆ queryParam()

template<typename T >
const T * MooseBase::queryParam ( const std::string &  name) const
inherited

Query a parameter for the object.

If the parameter is not valid, nullptr will be returned

Parameters
nameThe name of the parameter
Returns
A pointer to the parameter value, if it exists

Definition at line 391 of file MooseBase.h.

392 {
393  return isParamValid(name) ? &getParam<T>(name) : nullptr;
394 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195

◆ registerRandomInterface()

void FEProblemBase::registerRandomInterface ( RandomInterface random_interface,
const std::string &  name 
)

Definition at line 8680 of file FEProblemBase.C.

Referenced by RandomInterface::setRandomResetFrequency().

8681 {
8682  auto insert_pair = moose_try_emplace(
8683  _random_data_objects, name, std::make_unique<RandomData>(*this, random_interface));
8684 
8685  auto random_data_ptr = insert_pair.first->second.get();
8686  random_interface.setRandomDataPointer(random_data_ptr);
8687 }
std::pair< typename M::iterator, bool > moose_try_emplace(M &m, const typename M::key_type &k, Args &&... args)
Function to mirror the behavior of the C++17 std::map::try_emplace() method (no hint).
Definition: Moose.h:98
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
void setRandomDataPointer(RandomData *random_data)

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerUnfilledFunctorRequest()

template<typename T >
void SubProblem::registerUnfilledFunctorRequest ( T *  functor_interface,
const std::string &  functor_name,
const THREAD_ID  tid 
)
inherited

Register an unfulfilled functor request.

◆ reinitBecauseOfGhostingOrNewGeomObjects()

void FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects ( bool  mortar_changed = false)
protected

Call when it is possible that the needs for ghosted elements has changed.

Parameters
mortar_changedWhether an update of mortar data has been requested since the last EquationSystems (re)initialization

Definition at line 5116 of file FEProblemBase.C.

Referenced by initialSetup(), meshChanged(), and possiblyRebuildGeomSearchPatches().

5117 {
5118  TIME_SECTION("reinitBecauseOfGhostingOrNewGeomObjects",
5119  3,
5120  "Reinitializing Because of Geometric Search Objects");
5121 
5122  // Need to see if _any_ processor has ghosted elems or geometry objects.
5123  bool needs_reinit = !_ghosted_elems.empty();
5124  needs_reinit = needs_reinit || !_geometric_search_data._nearest_node_locators.empty() ||
5125  (_mortar_data.hasObjects() && mortar_changed);
5126  needs_reinit =
5127  needs_reinit || (_displaced_problem &&
5128  (!_displaced_problem->geomSearchData()._nearest_node_locators.empty() ||
5129  (_mortar_data.hasDisplacedObjects() && mortar_changed)));
5130  _communicator.max(needs_reinit);
5131 
5132  if (needs_reinit)
5133  {
5134  // Call reinit to get the ghosted vectors correct now that some geometric search has been done
5135  es().reinit();
5136 
5137  if (_displaced_mesh)
5138  _displaced_problem->es().reinit();
5139  }
5140 }
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
bool hasObjects() const
Returns whether we have any active AutomaticMortarGeneration objects.
Definition: MortarData.h:104
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
void max(const T &r, T &o, Request &req) const
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
MooseMesh * _displaced_mesh

◆ reinitDirac()

bool FEProblemBase::reinitDirac ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtual

Returns true if the Problem has Dirac kernels it needs to compute on elem.

The maximum number of qps can rise if several Dirac points are added to a single element. In that case we need to resize the zeros to compensate.

Implements SubProblem.

Definition at line 2115 of file FEProblemBase.C.

Referenced by ComputeDiracThread::onElement().

2116 {
2117  std::vector<Point> & points = _dirac_kernel_info.getPoints()[elem].first;
2118 
2119  unsigned int n_points = points.size();
2120 
2121  if (n_points)
2122  {
2123  if (n_points > _max_qps)
2124  {
2125  _max_qps = n_points;
2126 
2131  unsigned int max_qpts = getMaxQps();
2132  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
2133  {
2134  // the highest available order in libMesh is 43
2135  _scalar_zero[tid].resize(FORTYTHIRD, 0);
2136  _zero[tid].resize(max_qpts, 0);
2137  _grad_zero[tid].resize(max_qpts, RealGradient(0.));
2138  _second_zero[tid].resize(max_qpts, RealTensor(0.));
2139  _vector_zero[tid].resize(max_qpts, RealGradient(0.));
2140  _vector_curl_zero[tid].resize(max_qpts, RealGradient(0.));
2141  }
2142  }
2143 
2144  for (const auto i : index_range(_nl))
2145  {
2146  _assembly[tid][i]->reinitAtPhysical(elem, points);
2147  _nl[i]->prepare(tid);
2148  }
2149  _aux->prepare(tid);
2150 
2151  reinitElem(elem, tid);
2152  }
2153 
2154  _assembly[tid][_current_nl_sys->number()]->prepare();
2156  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
2157 
2158  bool have_points = n_points > 0;
2160  {
2161  have_points |= _displaced_problem->reinitDirac(_displaced_mesh->elemPtr(elem->id()), tid);
2163  _displaced_problem->prepareNonlocal(tid);
2164  }
2165 
2166  return have_points;
2167 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
unsigned int n_threads()
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< VariableSecond > _second_zero
std::vector< VectorVariableCurl > _vector_curl_zero
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MultiPointMap & getPoints()
Returns a writeable reference to the _points container.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::vector< VariableGradient > _grad_zero
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< VectorVariableValue > _vector_zero
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh
unsigned int getMaxQps() const

◆ reinitElem()

void FEProblemBase::reinitElem ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2170 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeElemDampingThread::onElement(), ComputeIndicatorThread::onElement(), ComputeMaterialsObjectThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeInitialConditionThread::operator()(), reinitDirac(), and reinitElemPhys().

2171 {
2172  for (auto & sys : _solver_systems)
2173  sys->reinitElem(elem, tid);
2174  _aux->reinitElem(elem, tid);
2175 
2177  _displaced_problem->reinitElem(_displaced_mesh->elemPtr(elem->id()), tid);
2178 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemFace() [1/2]

void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
BoundaryID  ,
const THREAD_ID  tid 
)

◆ reinitElemFace() [2/2]

virtual void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

◆ reinitElemFaceRef()

void FEProblemBase::reinitElemFaceRef ( const Elem elem,
unsigned int  side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtual

reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9007 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9013 {
9014  SubProblem::reinitElemFaceRef(elem, side, tolerance, pts, weights, tid);
9015 
9016  if (_displaced_problem)
9017  _displaced_problem->reinitElemFaceRef(
9018  _displaced_mesh->elemPtr(elem->id()), side, tolerance, pts, weights, tid);
9019 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
dof_id_type id() const
virtual void reinitElemFaceRef(const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given element on a given side at a given set of reference points and the...
Definition: SubProblem.C:882
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemNeighborAndLowerD()

void FEProblemBase::reinitElemNeighborAndLowerD ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2356 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInternalSide(), and NonlinearThread::onInternalSide().

2359 {
2360  reinitNeighbor(elem, side, tid);
2361 
2362  const Elem * lower_d_elem = _mesh.getLowerDElem(elem, side);
2363  if (lower_d_elem && _mesh.interiorLowerDBlocks().count(lower_d_elem->subdomain_id()) > 0)
2364  reinitLowerDElem(lower_d_elem, tid);
2365  else
2366  {
2367  // with mesh refinement, lower-dimensional element might be defined on neighbor side
2368  auto & neighbor = _assembly[tid][0]->neighbor();
2369  auto & neighbor_side = _assembly[tid][0]->neighborSide();
2370  const Elem * lower_d_elem_neighbor = _mesh.getLowerDElem(neighbor, neighbor_side);
2371  if (lower_d_elem_neighbor &&
2372  _mesh.interiorLowerDBlocks().count(lower_d_elem_neighbor->subdomain_id()) > 0)
2373  {
2374  auto qps = _assembly[tid][0]->qPointsFaceNeighbor().stdVector();
2375  std::vector<Point> reference_points;
2376  FEMap::inverse_map(
2377  lower_d_elem_neighbor->dim(), lower_d_elem_neighbor, qps, reference_points);
2378  reinitLowerDElem(lower_d_elem_neighbor, tid, &reference_points);
2379  }
2380  }
2381 
2383  _displaced_problem->reinitElemNeighborAndLowerD(
2384  _displaced_mesh->elemPtr(elem->id()), side, tid);
2385 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
const Elem * getLowerDElem(const Elem *, unsigned short int) const
Returns a const pointer to a lower dimensional element that corresponds to a side of a higher dimensi...
Definition: MooseMesh.C:1701
dof_id_type id() const
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
virtual unsigned short dim() const=0
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void reinitNeighbor(const Elem *elem, unsigned int side, const THREAD_ID tid) override
MooseMesh * _displaced_mesh

◆ reinitElemPhys()

void FEProblemBase::reinitElemPhys ( const Elem elem,
const std::vector< Point > &  phys_points_in_elem,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2181 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

2184 {
2185  mooseAssert(_mesh.queryElemPtr(elem->id()) == elem,
2186  "Are you calling this method with a displaced mesh element?");
2187 
2188  for (const auto i : index_range(_solver_systems))
2189  {
2190  _assembly[tid][i]->reinitAtPhysical(elem, phys_points_in_elem);
2191  _solver_systems[i]->prepare(tid);
2192  _assembly[tid][i]->prepare();
2194  _assembly[tid][i]->prepareNonlocal();
2195  }
2196  _aux->prepare(tid);
2197 
2198  reinitElem(elem, tid);
2199 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual Elem * queryElemPtr(const dof_id_type i)
Definition: MooseMesh.C:3125
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
auto index_range(const T &sizable)

◆ reinitFVFace()

void SubProblem::reinitFVFace ( const THREAD_ID  tid,
const FaceInfo fi 
)
inherited

reinitialize the finite volume assembly data for the provided face and thread

Definition at line 1284 of file SubProblem.C.

1285 {
1286  for (const auto nl : make_range(numNonlinearSystems()))
1287  assembly(tid, nl).reinitFVFace(fi);
1288 }
void reinitFVFace(const FaceInfo &fi)
Definition: Assembly.C:1855
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitLowerDElem()

void FEProblemBase::reinitLowerDElem ( const Elem lower_d_elem,
const THREAD_ID  tid,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtual

Reimplemented from SubProblem.

Definition at line 2229 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::prepareFace(), and reinitElemNeighborAndLowerD().

2233 {
2234  SubProblem::reinitLowerDElem(lower_d_elem, tid, pts, weights);
2235 
2237  _displaced_problem->reinitLowerDElem(
2238  _displaced_mesh->elemPtr(lower_d_elem->id()), tid, pts, weights);
2239 }
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr)
Definition: SubProblem.C:957
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitMaterials()

void FEProblemBase::reinitMaterials ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)

Definition at line 4000 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeDiracThread::onElement(), and ComputeUserObjectsThread::onElement().

4001 {
4002  if (hasActiveMaterialProperties(tid))
4003  {
4004  auto && elem = _assembly[tid][0]->elem();
4005  unsigned int n_points = _assembly[tid][0]->qRule()->n_points();
4006 
4007  auto & material_data = _material_props.getMaterialData(tid);
4008  material_data.resize(n_points);
4009 
4010  // Only swap if requested
4011  if (swap_stateful)
4012  material_data.swap(*elem);
4013 
4014  if (_discrete_materials.hasActiveBlockObjects(blk_id, tid))
4015  material_data.reset(_discrete_materials.getActiveBlockObjects(blk_id, tid));
4016 
4017  if (_materials.hasActiveBlockObjects(blk_id, tid))
4018  material_data.reinit(_materials.getActiveBlockObjects(blk_id, tid));
4019  }
4020 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsBoundary()

void FEProblemBase::reinitMaterialsBoundary ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)

reinit materials on a boundary

Parameters
boundary_idThe boundary on which to reinit corresponding materials
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4093 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4097 {
4098  if (hasActiveMaterialProperties(tid))
4099  {
4100  auto && elem = _assembly[tid][0]->elem();
4101  unsigned int side = _assembly[tid][0]->side();
4102  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4103 
4104  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4105  bnd_material_data.resize(n_points);
4106 
4107  if (swap_stateful && !bnd_material_data.isSwapped())
4108  bnd_material_data.swap(*elem, side);
4109 
4110  if (_discrete_materials.hasActiveBoundaryObjects(boundary_id, tid))
4111  bnd_material_data.reset(_discrete_materials.getActiveBoundaryObjects(boundary_id, tid));
4112 
4113  if (reinit_mats)
4114  bnd_material_data.reinit(*reinit_mats);
4115  else if (_materials.hasActiveBoundaryObjects(boundary_id, tid))
4116  bnd_material_data.reinit(_materials.getActiveBoundaryObjects(boundary_id, tid));
4117  }
4118 }
MaterialPropertyStorage & _bnd_material_props
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFace()

void FEProblemBase::reinitMaterialsFace ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)

reinit materials on element faces

Parameters
blk_idThe subdomain on which the element owning the face lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4023 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearThread::prepareFace().

4027 {
4028  if (hasActiveMaterialProperties(tid))
4029  {
4030  auto && elem = _assembly[tid][0]->elem();
4031  unsigned int side = _assembly[tid][0]->side();
4032  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4033 
4034  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4035  bnd_material_data.resize(n_points);
4036 
4037  if (swap_stateful && !bnd_material_data.isSwapped())
4038  bnd_material_data.swap(*elem, side);
4039 
4040  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4041  bnd_material_data.reset(
4042  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4043 
4044  if (reinit_mats)
4045  bnd_material_data.reinit(*reinit_mats);
4046  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4047  bnd_material_data.reinit(
4048  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4049  }
4050 }
MaterialPropertyStorage & _bnd_material_props
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsInterface()

void FEProblemBase::reinitMaterialsInterface ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)

Definition at line 4121 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), and ComputeUserObjectsThread::onInterface().

4124 {
4125  if (hasActiveMaterialProperties(tid))
4126  {
4127  const Elem * const & elem = _assembly[tid][0]->elem();
4128  unsigned int side = _assembly[tid][0]->side();
4129  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4130 
4131  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4132  bnd_material_data.resize(n_points);
4133 
4134  if (swap_stateful && !bnd_material_data.isSwapped())
4135  bnd_material_data.swap(*elem, side);
4136 
4137  if (_interface_materials.hasActiveBoundaryObjects(boundary_id, tid))
4138  bnd_material_data.reinit(_interface_materials.getActiveBoundaryObjects(boundary_id, tid));
4139  }
4140 }
MaterialPropertyStorage & _bnd_material_props
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ reinitMaterialsNeighbor()

void FEProblemBase::reinitMaterialsNeighbor ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)

reinit materials on the neighboring element face

Parameters
blk_idThe subdomain on which the neighbor element lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4053 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearSystemBase::reinitNodeFace().

4057 {
4058  if (hasActiveMaterialProperties(tid))
4059  {
4060  // NOTE: this will not work with h-adaptivity
4061  // lindsayad: why not?
4062 
4063  const Elem * neighbor = _assembly[tid][0]->neighbor();
4064  unsigned int neighbor_side = neighbor->which_neighbor_am_i(_assembly[tid][0]->elem());
4065 
4066  mooseAssert(neighbor, "neighbor should be non-null");
4067  mooseAssert(blk_id == neighbor->subdomain_id(),
4068  "The provided blk_id " << blk_id << " and neighbor subdomain ID "
4069  << neighbor->subdomain_id() << " do not match.");
4070 
4071  unsigned int n_points = _assembly[tid][0]->qRuleNeighbor()->n_points();
4072 
4073  auto & neighbor_material_data = _neighbor_material_props.getMaterialData(tid);
4074  neighbor_material_data.resize(n_points);
4075 
4076  // Only swap if requested
4077  if (swap_stateful)
4078  neighbor_material_data.swap(*neighbor, neighbor_side);
4079 
4080  if (_discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4081  neighbor_material_data.reset(
4082  _discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4083 
4084  if (reinit_mats)
4085  neighbor_material_data.reinit(*reinit_mats);
4086  else if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4087  neighbor_material_data.reinit(
4088  _materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4089  }
4090 }
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
subdomain_id_type subdomain_id() const
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMortarElem()

void SubProblem::reinitMortarElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

Reinit a mortar element to obtain a valid JxW.

Definition at line 994 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

995 {
996  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
997  assembly(tid, nl_sys_num).reinitMortarElem(elem);
998 }
void reinitMortarElem(const Elem *elem)
reinitialize a mortar segment mesh element in order to get a proper JxW
Definition: Assembly.C:2402
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitMortarUserObjects()

void FEProblemBase::reinitMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced 
)

Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics.

Definition at line 9272 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9275 {
9276  const auto mortar_uos =
9277  getMortarUserObjects(primary_boundary_id, secondary_boundary_id, displaced);
9278  for (auto * const mortar_uo : mortar_uos)
9279  {
9280  mortar_uo->setNormals();
9281  mortar_uo->reinit();
9282  }
9283 }
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...

◆ reinitNeighbor()

void FEProblemBase::reinitNeighbor ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2317 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and reinitElemNeighborAndLowerD().

2318 {
2319  setNeighborSubdomainID(elem, side, tid);
2320 
2321  const Elem * neighbor = elem->neighbor_ptr(side);
2322  unsigned int neighbor_side = neighbor->which_neighbor_am_i(elem);
2323 
2324  for (const auto i : index_range(_nl))
2325  {
2326  _assembly[tid][i]->reinitElemAndNeighbor(elem, side, neighbor, neighbor_side);
2327  _nl[i]->prepareNeighbor(tid);
2328  // Called during stateful material property evaluation outside of solve
2329  _assembly[tid][i]->prepareNeighbor();
2330  }
2331  _aux->prepareNeighbor(tid);
2332 
2333  for (auto & nl : _nl)
2334  {
2335  nl->reinitElemFace(elem, side, tid);
2336  nl->reinitNeighborFace(neighbor, neighbor_side, tid);
2337  }
2338  _aux->reinitElemFace(elem, side, tid);
2339  _aux->reinitNeighborFace(neighbor, neighbor_side, tid);
2340 
2342  {
2343  // There are cases like for cohesive zone modeling without significant sliding where we cannot
2344  // use FEInterface::inverse_map in Assembly::reinitElemAndNeighbor in the displaced problem
2345  // because the physical points coming from the element don't actually lie on the neighbor.
2346  // Moreover, what's the point of doing another physical point inversion in other cases? We only
2347  // care about the reference points which we can just take from the undisplaced computation
2348  const auto & displaced_ref_pts = _assembly[tid][0]->qRuleNeighbor()->get_points();
2349 
2350  _displaced_problem->reinitNeighbor(
2351  _displaced_mesh->elemPtr(elem->id()), side, tid, &displaced_ref_pts);
2352  }
2353 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
unsigned int which_neighbor_am_i(const Elem *e) const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const Elem * neighbor_ptr(unsigned int i) const
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNeighborFaceRef()

void FEProblemBase::reinitNeighborFaceRef ( const Elem neighbor_elem,
unsigned int  neighbor_side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtual

reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9022 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9028 {
9029  SubProblem::reinitNeighborFaceRef(neighbor_elem, neighbor_side, tolerance, pts, weights, tid);
9030 
9031  if (_displaced_problem)
9032  _displaced_problem->reinitNeighborFaceRef(
9033  _displaced_mesh->elemPtr(neighbor_elem->id()), neighbor_side, tolerance, pts, weights, tid);
9034 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
virtual void reinitNeighborFaceRef(const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given neighbor element on a given side at a given set of reference point...
Definition: SubProblem.C:921
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitNeighborLowerDElem()

void SubProblem::reinitNeighborLowerDElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

reinitialize a neighboring lower dimensional element

Definition at line 987 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

988 {
989  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
990  assembly(tid, nl_sys_num).reinitNeighborLowerDElem(elem);
991 }
void reinitNeighborLowerDElem(const Elem *elem)
reinitialize a neighboring lower dimensional element
Definition: Assembly.C:2381
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitNeighborPhys() [1/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
unsigned int  neighbor_side,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtual

◆ reinitNeighborPhys() [2/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

◆ reinitNode()

void FEProblemBase::reinitNode ( const Node node,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2242 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), NonlinearSystemBase::computeResidualInternal(), ComputeNodalUserObjectsThread::onNode(), ComputeNodalDampingThread::onNode(), ComputeNodalKernelsThread::onNode(), and ComputeNodalKernelJacobiansThread::onNode().

2243 {
2245  _displaced_problem->reinitNode(&_displaced_mesh->nodeRef(node->id()), tid);
2246 
2247  for (const auto i : index_range(_nl))
2248  {
2249  _assembly[tid][i]->reinit(node);
2250  _nl[i]->reinitNode(node, tid);
2251  }
2252  _aux->reinitNode(node, tid);
2253 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:834
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodeFace()

void FEProblemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2256 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), ComputeNodalKernelBcsThread::onNode(), ComputeNodalKernelBCJacobiansThread::onNode(), NonlinearSystemBase::reinitNodeFace(), NonlinearSystemBase::setConstraintSecondaryValues(), and NonlinearSystemBase::setInitialSolution().

2257 {
2259  _displaced_problem->reinitNodeFace(&_displaced_mesh->nodeRef(node->id()), bnd_id, tid);
2260 
2261  for (const auto i : index_range(_nl))
2262  {
2263  _assembly[tid][i]->reinit(node);
2264  _nl[i]->reinitNodeFace(node, bnd_id, tid);
2265  }
2266  _aux->reinitNodeFace(node, bnd_id, tid);
2267 }
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:834
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodes()

void FEProblemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2270 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2271 {
2273  _displaced_problem->reinitNodes(nodes, tid);
2274 
2275  for (auto & nl : _nl)
2276  nl->reinitNodes(nodes, tid);
2277  _aux->reinitNodes(nodes, tid);
2278 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitNodesNeighbor()

void FEProblemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 2281 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2282 {
2284  _displaced_problem->reinitNodesNeighbor(nodes, tid);
2285 
2286  for (auto & nl : _nl)
2287  nl->reinitNodesNeighbor(nodes, tid);
2288  _aux->reinitNodesNeighbor(nodes, tid);
2289 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitOffDiagScalars()

void FEProblemBase::reinitOffDiagScalars ( const THREAD_ID  tid)
overridevirtual

Implements SubProblem.

Definition at line 2309 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians(), NonlinearSystemBase::constraintJacobians(), and NonlinearThread::onElement().

2310 {
2311  _assembly[tid][_current_nl_sys->number()]->prepareOffDiagScalar();
2312  if (_displaced_problem)
2313  _displaced_problem->reinitOffDiagScalars(tid);
2314 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitScalars()

void FEProblemBase::reinitScalars ( const THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
overridevirtual

fills the VariableValue arrays for scalar variables from the solution vector

Parameters
tidThe thread id
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Implements SubProblem.

Definition at line 2292 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), computeJacobianTags(), computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), computeResidualTags(), NonlinearSystemBase::computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), and initialSetup().

2293 {
2294  TIME_SECTION("reinitScalars", 3, "Reinitializing Scalar Variables");
2295 
2297  _displaced_problem->reinitScalars(tid, reinit_for_derivative_reordering);
2298 
2299  for (auto & nl : _nl)
2300  nl->reinitScalars(tid, reinit_for_derivative_reordering);
2301  _aux->reinitScalars(tid, reinit_for_derivative_reordering);
2302 
2303  // This is called outside of residual/Jacobian call-backs
2304  for (auto & assembly : _assembly[tid])
2306 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void prepareScalar()
Definition: Assembly.C:2945
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ removeAlgebraicGhostingFunctor()

void SubProblem::removeAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf)
inherited

Remove an algebraic ghosting functor from this problem's DofMaps.

Definition at line 1067 of file SubProblem.C.

1068 {
1069  EquationSystems & eq = es();
1070  const auto n_sys = eq.n_systems();
1071  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1072 
1073  const bool found_in_root_sys =
1074  std::find(nl_dof_map.algebraic_ghosting_functors_begin(),
1075  nl_dof_map.algebraic_ghosting_functors_end(),
1076  &algebraic_gf) != nl_dof_map.algebraic_ghosting_functors_end();
1077 
1078 #ifndef NDEBUG
1079  const bool found_in_our_map =
1080  _root_alg_gf_to_sys_clones.find(&algebraic_gf) != _root_alg_gf_to_sys_clones.end();
1081  mooseAssert(found_in_root_sys == found_in_our_map,
1082  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1083  "it in our gf to clones map");
1084 #endif
1085 
1086  if (found_in_root_sys) // libMesh yells if we try to remove
1087  // something that's not there
1088  nl_dof_map.remove_algebraic_ghosting_functor(algebraic_gf);
1089 
1090  auto it = _root_alg_gf_to_sys_clones.find(&algebraic_gf);
1091  if (it == _root_alg_gf_to_sys_clones.end())
1092  return;
1093 
1094  auto & clones_vec = it->second;
1095  mooseAssert((n_sys - 1) == clones_vec.size(),
1096  "The size of the gf clones vector doesn't match the number of systems minus one");
1097  if (clones_vec.empty())
1098  {
1099  mooseAssert(n_sys == 1, "The clones vector should only be empty if there is only one system");
1100  return;
1101  }
1102 
1103  for (const auto i : make_range(n_sys))
1104  eq.get_system(i + 1).get_dof_map().remove_algebraic_ghosting_functor(*clones_vec[i]);
1105 
1106  _root_alg_gf_to_sys_clones.erase(it->first);
1107 }
unsigned int n_systems() const
GhostingFunctorIterator algebraic_ghosting_functors_begin() const
GhostingFunctorIterator algebraic_ghosting_functors_end() const
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_alg_gf_to_sys_clones
A map from a root algebraic ghosting functor, e.g.
Definition: SubProblem.h:1192
IntRange< T > make_range(T beg, T end)
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)

◆ removeCouplingGhostingFunctor()

void SubProblem::removeCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf)
inherited

Remove a coupling ghosting functor from this problem's DofMaps.

Definition at line 1110 of file SubProblem.C.

1111 {
1112  EquationSystems & eq = es();
1113  const auto num_nl_sys = numNonlinearSystems();
1114  if (!num_nl_sys)
1115  return;
1116 
1117  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1118  const bool found_in_root_sys = std::find(nl_dof_map.coupling_functors_begin(),
1119  nl_dof_map.coupling_functors_end(),
1120  &coupling_gf) != nl_dof_map.coupling_functors_end();
1121 
1122 #ifndef NDEBUG
1123  const bool found_in_our_map =
1125  mooseAssert(found_in_root_sys == found_in_our_map,
1126  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1127  "it in our gf to clones map");
1128 #endif
1129 
1130  if (found_in_root_sys) // libMesh yells if we try to remove
1131  // something that's not there
1132  nl_dof_map.remove_coupling_functor(coupling_gf);
1133 
1134  auto it = _root_coupling_gf_to_sys_clones.find(&coupling_gf);
1135  if (it == _root_coupling_gf_to_sys_clones.end())
1136  return;
1137 
1138  auto & clones_vec = it->second;
1139  mooseAssert((num_nl_sys - 1) == clones_vec.size(),
1140  "The size of the gf clones vector doesn't match the number of systems minus one");
1141  if (clones_vec.empty())
1142  {
1143  mooseAssert(num_nl_sys == 1,
1144  "The clones vector should only be empty if there is only one nonlinear system");
1145  return;
1146  }
1147 
1148  for (const auto i : make_range(num_nl_sys))
1149  eq.get_system(i + 1).get_dof_map().remove_coupling_functor(*clones_vec[i]);
1150 
1151  _root_coupling_gf_to_sys_clones.erase(it->first);
1152 }
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_coupling_gf_to_sys_clones
A map from a root coupling ghosting functor, e.g.
Definition: SubProblem.h:1199
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
GhostingFunctorIterator coupling_functors_end() const
void remove_coupling_functor(GhostingFunctor &coupling_functor)
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
GhostingFunctorIterator coupling_functors_begin() const

◆ reportMooseObjectDependency()

void FEProblemBase::reportMooseObjectDependency ( MooseObject a,
MooseObject b 
)

Register a MOOSE object dependency so we can either order operations properly or report when we cannot.

a -> b (a depends on b)

Definition at line 5110 of file FEProblemBase.C.

5111 {
5112  //<< "Object " << a->name() << " -> " << b->name() << std::endl;
5113 }

◆ resetFailNextNonlinearConvergenceCheck()

void FEProblemBase::resetFailNextNonlinearConvergenceCheck ( )
inline

Tell the problem that the nonlinear convergence check(s) may proceed as normal.

Definition at line 2416 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscNonlinearConverged().

void resetFailNextSystemConvergenceCheck()
Tell the problem that the system convergence check(s) may proceed as normal.

◆ resetFailNextSystemConvergenceCheck()

void FEProblemBase::resetFailNextSystemConvergenceCheck ( )
inline

Tell the problem that the system convergence check(s) may proceed as normal.

Definition at line 2418 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscLinearConverged(), and resetFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ resetState()

void FEProblemBase::resetState ( )
privatevirtual

Reset state of this object in preparation for the next evaluation.

Definition at line 6496 of file FEProblemBase.C.

Referenced by computeJacobianTags(), computeResidualAndJacobian(), and computeResidualTags().

6497 {
6498  // Our default state is to allow computing derivatives
6499  ADReal::do_derivatives = true;
6501 
6502  // Clear the VectorTags and MatrixTags
6505 
6508 
6512  if (_displaced_problem)
6513  {
6514  _displaced_problem->setCurrentlyComputingResidual(false);
6515  _displaced_problem->setCurrentlyComputingJacobian(false);
6516  _displaced_problem->setCurrentlyComputingResidualAndJacobian(false);
6517  }
6518 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
void clearCurrentResidualVectorTags()
Clear the current residual vector tag data structure.
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setCurrentlyComputingResidualAndJacobian(bool currently_computing_residual_and_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:1493
void setCurrentlyComputingJacobian(const bool currently_computing_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:689
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
void clearCurrentJacobianMatrixTags()
Clear the current Jacobian matrix tag data structure ...
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108

◆ residualSetup()

void FEProblemBase::residualSetup ( )
overridevirtual

Reimplemented from SubProblem.

Definition at line 9172 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::residualSetup().

9173 {
9175  // We need to setup all the nonlinear systems other than our current one which actually called
9176  // this method (so we have to make sure we don't go in a circle)
9177  for (const auto i : make_range(numNonlinearSystems()))
9178  if (i != currentNlSysNum())
9179  _nl[i]->residualSetup();
9180  // We don't setup the aux sys because that's been done elsewhere
9181  if (_displaced_problem)
9182  _displaced_problem->residualSetup();
9183 }
virtual std::size_t numNonlinearSystems() const override
virtual void residualSetup()
Definition: SubProblem.C:1201
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ resizeMaterialData()

void FEProblemBase::resizeMaterialData ( Moose::MaterialDataType  data_type,
unsigned int  nqp,
const THREAD_ID  tid 
)

Resize material data.

Parameters
data_typeThe type of material data to resize
nqpThe number of quadrature points to resize for
tidThe thread ID

Definition at line 9093 of file FEProblemBase.C.

9096 {
9097  getMaterialData(data_type, tid).resize(nqp);
9098 }
MPI_Datatype data_type
MaterialData & getMaterialData(Moose::MaterialDataType type, const THREAD_ID tid=0) const
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ restartableName()

std::string Restartable::restartableName ( const std::string &  data_name) const
protectedinherited

Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix.

This should only be used in this interface and in testing.

Definition at line 66 of file Restartable.C.

Referenced by Restartable::declareRecoverableData(), and Restartable::declareRestartableDataHelper().

67 {
68  return _restartable_system_name + "/" + _restartable_name + "/" + data_name;
69 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:243
const std::string _restartable_system_name
The system name this object is in.
Definition: Restartable.h:230

◆ restoreMultiApps()

void FEProblemBase::restoreMultiApps ( ExecFlagType  type,
bool  force = false 
)

Restore the MultiApps associated with the ExecFlagType.

Parameters
forceForce restoration because something went wrong with the solve

Definition at line 5545 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject(), and FixedPointSolve::solve().

5546 {
5547  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5548 
5549  if (multi_apps.size())
5550  {
5551  if (_verbose_multiapps)
5552  {
5553  if (force)
5554  _console << COLOR_CYAN << "\nRestoring Multiapps on " << type.name()
5555  << " because of solve failure!" << COLOR_DEFAULT << std::endl;
5556  else
5557  _console << COLOR_CYAN << "\nRestoring MultiApps on " << type.name() << COLOR_DEFAULT
5558  << std::endl;
5559  }
5560 
5561  for (const auto & multi_app : multi_apps)
5562  multi_app->restore(force);
5563 
5565 
5566  if (_verbose_multiapps)
5567  _console << COLOR_CYAN << "Finished Restoring MultiApps on " << type.name() << "\n"
5568  << COLOR_DEFAULT << std::endl;
5569  }
5570 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ restoreOldSolutions()

void FEProblemBase::restoreOldSolutions ( )
virtual

Restore old solutions from the backup vectors and deallocate them.

Definition at line 6672 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6673 {
6674  TIME_SECTION("restoreOldSolutions", 5, "Restoring Old Solutions");
6675 
6676  for (auto & sys : _solver_systems)
6677  sys->restoreOldSolutions();
6678  _aux->restoreOldSolutions();
6679 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ restoreOriginalNonzeroPattern()

bool FEProblemBase::restoreOriginalNonzeroPattern ( ) const
inline
Returns
Whether the original matrix nonzero pattern is restored before each Jacobian assembly

Definition at line 1940 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal().

const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.

◆ restoreSolutions()

void FEProblemBase::restoreSolutions ( )
virtual

Definition at line 6634 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::initSolutions(), TimeStepper::rejectStep(), and updateMeshXFEM().

6635 {
6636  TIME_SECTION("restoreSolutions", 5, "Restoring Solutions");
6637 
6638  if (!_not_zeroed_tagged_vectors.empty())
6639  paramError("not_zeroed_tag_vectors",
6640  "There is currently no way to restore not-zeroed vectors.");
6641 
6642  for (auto & sys : _solver_systems)
6643  {
6644  if (_verbose_restore)
6645  _console << "Restoring solutions on system " << sys->name() << "..." << std::endl;
6646  sys->restoreSolutions();
6647  }
6648 
6649  if (_verbose_restore)
6650  _console << "Restoring solutions on Auxiliary system..." << std::endl;
6651  _aux->restoreSolutions();
6652 
6653  if (_verbose_restore)
6654  _console << "Restoring postprocessor, vector-postprocessor, and reporter data..." << std::endl;
6656 
6657  if (_displaced_problem)
6658  _displaced_problem->updateMesh();
6659 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
void restoreState(bool verbose=false)
When a time step fails, this method is called to revert the current reporter values to their old stat...
Definition: ReporterData.C:24

◆ safeAccessTaggedMatrices()

virtual bool SubProblem::safeAccessTaggedMatrices ( ) const
inlinevirtualinherited

Is it safe to access the tagged matrices.

Reimplemented in DisplacedProblem.

Definition at line 731 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedMatrices().

bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108

◆ safeAccessTaggedVectors()

virtual bool SubProblem::safeAccessTaggedVectors ( ) const
inlinevirtualinherited

Is it safe to access the tagged vectors.

Reimplemented in DisplacedProblem.

Definition at line 734 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedVectors().

734 { return _safe_access_tagged_vectors; }
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111

◆ saveOldSolutions()

void FEProblemBase::saveOldSolutions ( )
virtual

Allocate vectors and save old solutions into them.

Definition at line 6662 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6663 {
6664  TIME_SECTION("saveOldSolutions", 5, "Saving Old Solutions");
6665 
6666  for (auto & sys : _solver_systems)
6667  sys->saveOldSolutions();
6668  _aux->saveOldSolutions();
6669 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ selectMatrixTagsFromSystem()

void SubProblem::selectMatrixTagsFromSystem ( const SystemBase system,
const std::map< TagName, TagID > &  input_matrix_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the matrix tags which belong to a specific system.

Parameters
systemReference to the system
input_matrix_tagsA map of matrix tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 300 of file SubProblem.C.

Referenced by computeLinearSystemSys().

303 {
304  selected_tags.clear();
305  for (const auto & matrix_tag_pair : input_matrix_tags)
306  if (system.hasMatrix(matrix_tag_pair.second))
307  selected_tags.insert(matrix_tag_pair.second);
308 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360

◆ selectVectorTagsFromSystem()

void SubProblem::selectVectorTagsFromSystem ( const SystemBase system,
const std::vector< VectorTag > &  input_vector_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the vector tags which belong to a specific system.

Parameters
systemReference to the system
input_vector_tagsA vector of vector tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 289 of file SubProblem.C.

Referenced by computeLinearSystemSys(), computeResidualAndJacobian(), and ComputeResidualAndJacobianThread::determineObjectWarehouses().

292 {
293  selected_tags.clear();
294  for (const auto & vector_tag : input_vector_tags)
295  if (system.hasVector(vector_tag._id))
296  selected_tags.insert(vector_tag._id);
297 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916

◆ setActiveElementalMooseVariables()

void FEProblemBase::setActiveElementalMooseVariables ( const std::set< MooseVariableFEBase *> &  moose_vars,
const THREAD_ID  tid 
)
overridevirtual

Set the MOOSE variables to be reinited on each element.

Parameters
moose_varsA set of variables that need to be reinited each time reinit() is called.
tidThe thread id

Reimplemented from SubProblem.

Definition at line 5826 of file FEProblemBase.C.

Referenced by prepareMaterials(), ComputeMarkerThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

5828 {
5830 
5831  if (_displaced_problem)
5832  _displaced_problem->setActiveElementalMooseVariables(moose_vars, tid);
5833 }
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFieldBase *> &moose_vars, const THREAD_ID tid)
Set the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:443
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::setActiveFEVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5788 of file FEProblemBase.C.

5789 {
5791 
5792  if (_displaced_problem)
5793  _displaced_problem->setActiveFEVariableCoupleableMatrixTags(mtags, tid);
5794 }
virtual void setActiveFEVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:363
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableVectorTags()

void FEProblemBase::setActiveFEVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtual

◆ setActiveMaterialProperties()

void FEProblemBase::setActiveMaterialProperties ( const std::unordered_set< unsigned int > &  mat_prop_ids,
const THREAD_ID  tid 
)

Record and set the material properties required by the current computing thread.

Parameters
mat_prop_idsThe set of material properties required by the current computing thread.
tidThe thread id

Definition at line 5881 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), prepareMaterials(), NodalPatchRecovery::reinitPatch(), NonlinearSystemBase::setConstraintSecondaryValues(), and ComputeDiracThread::subdomainChanged().

5883 {
5884  // mark active properties in every material
5885  for (auto & mat : _all_materials.getObjects(tid))
5886  mat->setActiveProperties(mat_prop_ids);
5887  for (auto & mat : _all_materials[Moose::FACE_MATERIAL_DATA].getObjects(tid))
5888  mat->setActiveProperties(mat_prop_ids);
5889  for (auto & mat : _all_materials[Moose::NEIGHBOR_MATERIAL_DATA].getObjects(tid))
5890  mat->setActiveProperties(mat_prop_ids);
5891 
5892  _has_active_material_properties[tid] = !mat_prop_ids.empty();
5893 }
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.
MaterialWarehouse _all_materials

◆ setActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::setActiveScalarVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5806 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

5808 {
5810 
5811  if (_displaced_problem)
5812  _displaced_problem->setActiveScalarVariableCoupleableMatrixTags(mtags, tid);
5813 }
virtual void setActiveScalarVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:402
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::setActiveScalarVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtual

Reimplemented from SubProblem.

Definition at line 5816 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

5818 {
5820 
5821  if (_displaced_problem)
5822  _displaced_problem->setActiveScalarVariableCoupleableVectorTags(vtags, tid);
5823 }
virtual void setActiveScalarVariableCoupleableVectorTags(std::set< TagID > &vtags, const THREAD_ID tid)
Definition: SubProblem.C:409
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setAxisymmetricCoordAxis()

void FEProblemBase::setAxisymmetricCoordAxis ( const MooseEnum rz_coord_axis)

Definition at line 825 of file FEProblemBase.C.

826 {
827  _mesh.setAxisymmetricCoordAxis(rz_coord_axis);
828 }
MooseMesh & _mesh
void setAxisymmetricCoordAxis(const MooseEnum &rz_coord_axis)
For axisymmetric simulations, set the symmetry coordinate axis.
Definition: MooseMesh.C:4213

◆ setConstJacobian()

void FEProblemBase::setConstJacobian ( bool  state)
inline

Set flag that Jacobian is constant (for optimization purposes)

Parameters
stateTrue if the Jacobian is constant, false otherwise

Definition at line 1819 of file FEProblemBase.h.

Referenced by ExplicitEuler::preSolve(), ExplicitTVDRK2::preSolve(), and ExplicitRK2::preSolve().

1819 { _const_jacobian = state; }
bool _const_jacobian
true if the Jacobian is constant

◆ setCoordSystem()

void FEProblemBase::setCoordSystem ( const std::vector< SubdomainName > &  blocks,
const MultiMooseEnum coord_sys 
)

Definition at line 817 of file FEProblemBase.C.

819 {
820  TIME_SECTION("setCoordSystem", 5, "Setting Coordinate System");
821  _mesh.setCoordSystem(blocks, coord_sys);
822 }
char ** blocks
MooseMesh & _mesh
void setCoordSystem(const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
Set the coordinate system for the provided blocks to coord_sys.
Definition: MooseMesh.C:4081

◆ setCoupling()

void FEProblemBase::setCoupling ( Moose::CouplingType  type)

Set the coupling between variables TODO: allow user-defined coupling.

Parameters
typeType of coupling

Definition at line 6057 of file FEProblemBase.C.

Referenced by init(), setCouplingMatrix(), and Moose::SlepcSupport::setEigenProblemSolverParams().

6058 {
6060  {
6062  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6063  "haven't been provided a coupling matrix!");
6064 
6065  // We've been told to trust the user coupling matrix, so we're going to leave things alone
6066  return;
6067  }
6068 
6069  _coupling = type;
6070 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ setCouplingMatrix() [1/2]

void FEProblemBase::setCouplingMatrix ( std::unique_ptr< libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)

Set custom coupling matrix.

Parameters
cmcoupling matrix to be set
nl_sys_numwhich nonlinear system we are setting the coupling matrix for

Definition at line 6081 of file FEProblemBase.C.

Referenced by MoosePreconditioner::setCouplingMatrix().

6082 {
6084  _cm[i] = std::move(cm);
6085 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCouplingMatrix() [2/2]

void FEProblemBase::setCouplingMatrix ( libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)

Definition at line 6073 of file FEProblemBase.C.

6074 {
6075  // TODO: Deprecate method
6077  _cm[i].reset(cm);
6078 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCurrentAlgebraicBndNodeRange()

void FEProblemBase::setCurrentAlgebraicBndNodeRange ( ConstBndNodeRange range)

Definition at line 9389 of file FEProblemBase.C.

9390 {
9391  if (!range)
9392  {
9394  return;
9395  }
9396 
9397  _current_algebraic_bnd_node_range = std::make_unique<ConstBndNodeRange>(*range);
9398 }
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range

◆ setCurrentAlgebraicElementRange()

void FEProblemBase::setCurrentAlgebraicElementRange ( libMesh::ConstElemRange range)

These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor.

setCurrentAlgebraicElementRange() sets the element range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicNodeRange() sets the node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicBndNodeRange() sets the boundary node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

Parameters
rangeA pointer to the const range object representing the algebraic elements, nodes, or boundary nodes.

Definition at line 9367 of file FEProblemBase.C.

9368 {
9369  if (!range)
9370  {
9372  return;
9373  }
9374 
9375  _current_algebraic_elem_range = std::make_unique<ConstElemRange>(*range);
9376 }
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range

◆ setCurrentAlgebraicNodeRange()

void FEProblemBase::setCurrentAlgebraicNodeRange ( libMesh::ConstNodeRange range)

Definition at line 9378 of file FEProblemBase.C.

9379 {
9380  if (!range)
9381  {
9383  return;
9384  }
9385 
9386  _current_algebraic_node_range = std::make_unique<ConstNodeRange>(*range);
9387 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range

◆ setCurrentBoundaryID()

void FEProblemBase::setCurrentBoundaryID ( BoundaryID  bid,
const THREAD_ID  tid 
)
overridevirtual

sets the current boundary ID in assembly

Reimplemented from SubProblem.

Definition at line 9303 of file FEProblemBase.C.

9304 {
9306  if (_displaced_problem)
9307  _displaced_problem->setCurrentBoundaryID(bid, tid);
9308 }
virtual void setCurrentBoundaryID(BoundaryID bid, const THREAD_ID tid)
sets the current boundary ID in assembly
Definition: SubProblem.C:789
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setCurrentExecuteOnFlag()

void FEProblemBase::setCurrentExecuteOnFlag ( const ExecFlagType flag)

Definition at line 4565 of file FEProblemBase.C.

Referenced by execute(), initialSetup(), and outputStep().

4566 {
4567  _current_execute_on_flag = flag;
4568 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ setCurrentLinearSystem()

void FEProblemBase::setCurrentLinearSystem ( unsigned int  sys_num)

Set the current linear system pointer.

Parameters
sys_numThe number of linear system

Definition at line 9320 of file FEProblemBase.C.

Referenced by computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and solveLinearSystem().

9321 {
9322  mooseAssert(sys_num < _linear_systems.size(),
9323  "System number greater than the number of linear systems");
9324  _current_linear_sys = _linear_systems[sys_num].get();
9326 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ setCurrentLowerDElem()

void FEProblemBase::setCurrentLowerDElem ( const Elem *const  lower_d_elem,
const THREAD_ID  tid 
)
overridevirtual

Set the current lower dimensional element.

This can be null

Reimplemented from SubProblem.

Definition at line 9294 of file FEProblemBase.C.

9295 {
9296  SubProblem::setCurrentLowerDElem(lower_d_elem, tid);
9297  if (_displaced_problem)
9298  _displaced_problem->setCurrentLowerDElem(
9299  lower_d_elem ? _displaced_mesh->elemPtr(lower_d_elem->id()) : nullptr, tid);
9300 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
virtual void setCurrentLowerDElem(const Elem *const lower_d_elem, const THREAD_ID tid)
Set the current lower dimensional element.
Definition: SubProblem.C:1380
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ setCurrentlyComputingJacobian()

void SubProblem::setCurrentlyComputingJacobian ( const bool  currently_computing_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 689 of file SubProblem.h.

Referenced by computeResidualAndJacobian(), and resetState().

690  {
691  _currently_computing_jacobian = currently_computing_jacobian;
692  }
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ setCurrentlyComputingResidual()

void FEProblemBase::setCurrentlyComputingResidual ( bool  currently_computing_residual)
finalvirtual

Set whether or not the problem is in the process of computing the residual.

Reimplemented from SubProblem.

Definition at line 8974 of file FEProblemBase.C.

Referenced by computeResidualAndJacobian(), NonlinearSystemBase::computeResidualTags(), and resetState().

8975 {
8976  if (_displaced_problem)
8977  _displaced_problem->setCurrentlyComputingResidual(currently_computing_residual);
8978  _currently_computing_residual = currently_computing_residual;
8979 }
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ setCurrentlyComputingResidualAndJacobian()

void SubProblem::setCurrentlyComputingResidualAndJacobian ( bool  currently_computing_residual_and_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 1493 of file SubProblem.h.

Referenced by computeResidualAndJacobian(), and resetState().

1495 {
1496  _currently_computing_residual_and_jacobian = currently_computing_residual_and_jacobian;
1497 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ setCurrentNonlinearSystem()

void FEProblemBase::setCurrentNonlinearSystem ( const unsigned int  nl_sys_num)

Definition at line 9311 of file FEProblemBase.C.

Referenced by computeJacobian(), EigenProblem::computeJacobianAB(), EigenProblem::computeJacobianBlocks(), computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), EigenProblem::computeMatricesTags(), EigenProblem::computeResidualTag(), NonlinearSystemBase::computeResidualTags(), FEProblem::FEProblem(), EigenProblem::solve(), and solve().

9312 {
9313  mooseAssert(nl_sys_num < _nl.size(),
9314  "System number greater than the number of nonlinear systems");
9315  _current_nl_sys = _nl[nl_sys_num].get();
9317 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.

◆ setCurrentResidualVectorTags()

void FEProblemBase::setCurrentResidualVectorTags ( const std::set< TagID > &  vector_tags)
inline

Set the current residual vector tag data structure based on the passed in tag IDs.

Definition at line 3294 of file FEProblemBase.h.

Referenced by computeResidualAndJacobian(), computeResidualTags(), and CrankNicolson::init().

3295 {
3297 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ setCurrentSubdomainID()

void FEProblemBase::setCurrentSubdomainID ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtual

Implements SubProblem.

Definition at line 1772 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementalVariableValue::execute(), and ComputeInitialConditionThread::operator()().

1773 {
1774  SubdomainID did = elem->subdomain_id();
1775  for (const auto i : index_range(_solver_systems))
1776  {
1777  _assembly[tid][i]->setCurrentSubdomainID(did);
1778  if (_displaced_problem &&
1780  _displaced_problem->assembly(tid, i).setCurrentSubdomainID(did);
1781  }
1782 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ setErrorOnJacobianNonzeroReallocation()

void FEProblemBase::setErrorOnJacobianNonzeroReallocation ( bool  state)
inline

Definition at line 1951 of file FEProblemBase.h.

1952  {
1954  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ setException()

void FEProblemBase::setException ( const std::string &  message)
virtual

Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve().

Parameters
messageThe error message describing the exception, which will get printed when checkExceptionAndStopSolve() is called

Definition at line 6425 of file FEProblemBase.C.

Referenced by ComputeThreadedGeneralUserObjectsThread::caughtMooseException(), ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::caughtMooseException(), ThreadedFaceLoop< RangeType >::caughtMooseException(), NonlinearSystemBase::computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), AuxiliarySystem::computeMortarNodalVars(), handleException(), ComputeMortarFunctor::operator()(), and DisplacedProblem::updateMesh().

6426 {
6427  _has_exception = true;
6428  _exception_message = message;
6429 }
bool _has_exception
Whether or not an exception has occurred.
std::string _exception_message
The error message to go with an exception.

◆ setExecutionPrinting()

void FEProblemBase::setExecutionPrinting ( const ExecFlagEnum print_exec)
inline

Definition at line 2424 of file FEProblemBase.h.

2424 { _print_execution_on = print_exec; }
ExecFlagEnum _print_execution_on
When to print the execution of loops.

◆ setFailNextNonlinearConvergenceCheck()

void FEProblemBase::setFailNextNonlinearConvergenceCheck ( )
inline

Skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2411 of file FEProblemBase.h.

Referenced by Terminator::execute().

void setFailNextSystemConvergenceCheck()
Tell the problem that the system(s) cannot be considered converged next time convergence is checked...

◆ setFailNextSystemConvergenceCheck()

void FEProblemBase::setFailNextSystemConvergenceCheck ( )
inline

Tell the problem that the system(s) cannot be considered converged next time convergence is checked.

Definition at line 2413 of file FEProblemBase.h.

Referenced by setFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ setFunctorOutput()

void SubProblem::setFunctorOutput ( bool  set_output)
inlineinherited

Setter for debug functor output.

Definition at line 924 of file SubProblem.h.

924 { _output_functors = set_output; }
bool _output_functors
Whether to output a list of the functors used and requested (currently only at initialSetup) ...
Definition: SubProblem.h:1164

◆ setIgnoreZerosInJacobian()

void FEProblemBase::setIgnoreZerosInJacobian ( bool  state)
inline

Set whether the zeros in the Jacobian should be dropped from the sparsity pattern.

Definition at line 1974 of file FEProblemBase.h.

1974 { _ignore_zeros_in_jacobian = state; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ setInputParametersFEProblem()

virtual void FEProblemBase::setInputParametersFEProblem ( InputParameters parameters)
inlinevirtual

Reimplemented in FEProblem.

Definition at line 845 of file FEProblemBase.h.

Referenced by FEProblem::setInputParametersFEProblem().

846  {
847  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
848  }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.

◆ setKernelCoverageCheck() [1/2]

void FEProblemBase::setKernelCoverageCheck ( CoverageCheckMode  mode)
inline

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1825 of file FEProblemBase.h.

1825 { _kernel_coverage_check = mode; }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setKernelCoverageCheck() [2/2]

void FEProblemBase::setKernelCoverageCheck ( bool  flag)
inline

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1831 of file FEProblemBase.h.

1832  {
1834  }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setLinearConvergenceNames()

void FEProblemBase::setLinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)

Sets the linear convergence object name(s) if there is one.

Definition at line 9138 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9139 {
9140  if (convergence_names.size() != numLinearSystems())
9141  paramError("linear_convergence", "There must be one convergence object per linear system");
9142  _linear_convergence_names = convergence_names;
9143 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)
virtual std::size_t numLinearSystems() const override

◆ setMaterialCoverageCheck() [1/2]

void FEProblemBase::setMaterialCoverageCheck ( CoverageCheckMode  mode)
inline

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1842 of file FEProblemBase.h.

1842 { _material_coverage_check = mode; }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMaterialCoverageCheck() [2/2]

void FEProblemBase::setMaterialCoverageCheck ( bool  flag)
inline

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1850 of file FEProblemBase.h.

1851  {
1853  }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMultiAppFixedPointConvergenceName()

void FEProblemBase::setMultiAppFixedPointConvergenceName ( const ConvergenceName &  convergence_name)

Sets the MultiApp fixed point convergence object name if there is one.

Definition at line 9110 of file FEProblemBase.C.

Referenced by FixedPointSolve::FixedPointSolve().

9111 {
9112  _multiapp_fixed_point_convergence_name = convergence_name;
9113 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ setNeedToAddDefaultMultiAppFixedPointConvergence()

void FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence ( )
inline

Sets _need_to_add_default_multiapp_fixed_point_convergence to true.

Definition at line 657 of file FEProblemBase.h.

Referenced by FixedPointSolve::FixedPointSolve().

658  {
660  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ setNeedToAddDefaultNonlinearConvergence()

void FEProblemBase::setNeedToAddDefaultNonlinearConvergence ( )
inline

Sets _need_to_add_default_nonlinear_convergence to true.

Definition at line 652 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

653  {
655  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ setNeedToAddDefaultSteadyStateConvergence()

void FEProblemBase::setNeedToAddDefaultSteadyStateConvergence ( )
inline

Sets _need_to_add_default_steady_state_convergence to true.

Definition at line 662 of file FEProblemBase.h.

Referenced by TransientBase::TransientBase().

663  {
665  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ setNeighborSubdomainID() [1/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtual

◆ setNeighborSubdomainID() [2/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
const THREAD_ID  tid 
)
virtual

◆ setNonlinearConvergenceNames()

void FEProblemBase::setNonlinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)

Sets the nonlinear convergence object name(s) if there is one.

Definition at line 9101 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9102 {
9103  if (convergence_names.size() != numNonlinearSystems())
9104  paramError("nonlinear_convergence",
9105  "There must be one convergence object per nonlinear system");
9106  _nonlinear_convergence_names = convergence_names;
9107 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
virtual std::size_t numNonlinearSystems() const override
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)

◆ setNonlocalCouplingMatrix()

void FEProblemBase::setNonlocalCouplingMatrix ( )

Set custom coupling matrix for variables requiring nonlocal contribution.

Definition at line 6098 of file FEProblemBase.C.

Referenced by initialSetup().

6099 {
6100  TIME_SECTION("setNonlocalCouplingMatrix", 5, "Setting Nonlocal Coupling Matrix");
6101 
6102  if (_nl.size() > 1)
6103  mooseError("Nonlocal kernels are weirdly stored on the FEProblem so we don't currently support "
6104  "multiple nonlinear systems with nonlocal kernels.");
6105 
6106  for (const auto nl_sys_num : index_range(_nl))
6107  {
6108  auto & nl = _nl[nl_sys_num];
6109  auto & nonlocal_cm = _nonlocal_cm[nl_sys_num];
6110  unsigned int n_vars = nl->nVariables();
6111  nonlocal_cm.resize(n_vars);
6112  const auto & vars = nl->getVariables(0);
6113  const auto & nonlocal_kernel = _nonlocal_kernels.getObjects();
6114  const auto & nonlocal_integrated_bc = _nonlocal_integrated_bcs.getObjects();
6115  for (const auto & ivar : vars)
6116  {
6117  for (const auto & kernel : nonlocal_kernel)
6118  {
6119  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6120  if (i == kernel->variable().number())
6121  for (const auto & jvar : vars)
6122  {
6123  const auto it = _var_dof_map.find(jvar->name());
6124  if (it != _var_dof_map.end())
6125  {
6126  unsigned int j = jvar->number();
6127  nonlocal_cm(i, j) = 1;
6128  }
6129  }
6130  }
6131  for (const auto & integrated_bc : nonlocal_integrated_bc)
6132  {
6133  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6134  if (i == integrated_bc->variable().number())
6135  for (const auto & jvar : vars)
6136  {
6137  const auto it = _var_dof_map.find(jvar->name());
6138  if (it != _var_dof_map.end())
6139  {
6140  unsigned int j = jvar->number();
6141  nonlocal_cm(i, j) = 1;
6142  }
6143  }
6144  }
6145  }
6146  }
6147 }
char ** vars
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
unsigned int n_vars
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
auto index_range(const T &sizable)
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ setParallelBarrierMessaging()

void FEProblemBase::setParallelBarrierMessaging ( bool  flag)
inline

Toggle parallel barrier messaging (defaults to on).

Definition at line 1858 of file FEProblemBase.h.

1858 { _parallel_barrier_messaging = flag; }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.

◆ setPostprocessorValueByName()

void FEProblemBase::setPostprocessorValueByName ( const PostprocessorName &  name,
const PostprocessorValue value,
std::size_t  t_index = 0 
)

Set the value of a PostprocessorValue.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for setting values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

WARNING! This method should be used with caution. It exists to allow Transfers and other similar objects to modify Postprocessor values. It is not intended for general use.

Definition at line 4423 of file FEProblemBase.C.

Referenced by MultiAppPostprocessorTransfer::execute(), PIDTransientControl::execute(), joinAndFinalize(), SecantSolve::transformPostprocessors(), SteffensenSolve::transformPostprocessors(), and PicardSolve::transformPostprocessors().

4426 {
4428  PostprocessorReporterName(name), value, t_index);
4429 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ setPreserveMatrixSparsityPattern()

void FEProblemBase::setPreserveMatrixSparsityPattern ( bool  preserve)

Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved.

This global setting can be retrieved by kernels, notably those using AD, to decide whether to take additional care to preserve the sparsity pattern

Definition at line 3793 of file FEProblemBase.C.

3794 {
3795  if (_ignore_zeros_in_jacobian && preserve)
3796  paramWarning(
3797  "ignore_zeros_in_jacobian",
3798  "We likely cannot preserve the sparsity pattern if ignoring zeros in the Jacobian, which "
3799  "leads to removing those entries from the Jacobian sparsity pattern");
3801 }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.
bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...
void paramWarning(const std::string &param, Args... args) const
Emits a warning prefixed with the file and line number of the given param (from the input file) along...
Definition: MooseBase.h:442

◆ setResidual() [1/2]

virtual void SubProblem::setResidual ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidual() [2/2]

void FEProblemBase::setResidual ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtual

Definition at line 1906 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1907 {
1908  _assembly[tid][_current_nl_sys->number()]->setResidual(
1909  residual,
1911  getVectorTag(_nl[_current_nl_sys->number()]->residualVectorTag()));
1912  if (_displaced_problem)
1913  _displaced_problem->setResidual(residual, tid);
1914 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ setResidualNeighbor() [1/2]

virtual void SubProblem::setResidualNeighbor ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidualNeighbor() [2/2]

void FEProblemBase::setResidualNeighbor ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtual

Definition at line 1917 of file FEProblemBase.C.

1918 {
1919  _assembly[tid][_current_nl_sys->number()]->setResidualNeighbor(
1921  if (_displaced_problem)
1922  _displaced_problem->setResidualNeighbor(residual, tid);
1923 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
TagID residualVectorTag() const override
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ setResidualObjectParamsAndLog()

void FEProblemBase::setResidualObjectParamsAndLog ( const std::string &  ro_name,
const std::string &  name,
InputParameters params,
const unsigned int  nl_sys_num,
const std::string &  base_name,
bool &  reinit_displaced 
)
private

Set the subproblem and system parameters for residual objects and log their addition.

Parameters
ro_nameThe type of the residual object
nameThe name of the residual object
parametersThe residual object parameters
nl_sys_numThe nonlinear system that the residual object belongs to
base_nameThe base type of the residual object, e.g. Kernel, BoundaryCondition, etc.
reinit_displacedA data member indicating whether a geometric concept should be reinit'd for the displaced problem. Examples of valid data members to pass in are _reinit_displaced_elem and _reinit_displaced_face

Definition at line 2908 of file FEProblemBase.C.

Referenced by addBoundaryCondition(), addHDGKernel(), and addKernel().

2914 {
2915  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
2916  {
2917  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
2918  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
2919  reinit_displaced = true;
2920  }
2921  else
2922  {
2923  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
2924  {
2925  // We allow Kernels to request that they use_displaced_mesh,
2926  // but then be overridden when no displacements variables are
2927  // provided in the Mesh block. If that happened, update the value
2928  // of use_displaced_mesh appropriately for this Kernel.
2929  if (parameters.have_parameter<bool>("use_displaced_mesh"))
2930  parameters.set<bool>("use_displaced_mesh") = false;
2931  }
2932 
2933  parameters.set<SubProblem *>("_subproblem") = this;
2934  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
2935  }
2936 
2937  logAdd(base_name, name, ro_name, parameters);
2938 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setRestartFile()

void FEProblemBase::setRestartFile ( const std::string &  file_name)

Communicate to the Resurector the name of the restart filer.

Parameters
file_nameThe file name for restarting from

Definition at line 8633 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and FEProblemBase().

8634 {
8635  if (_app.isRecovering())
8636  {
8637  mooseInfo("Restart file ", file_name, " is NOT being used since we are performing recovery.");
8638  }
8639  else
8640  {
8641  _app.setRestart(true);
8642  _app.setRestartRecoverFileBase(file_name);
8643  mooseInfo("Using ", file_name, " for restart.");
8644  }
8645 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
void setRestartRecoverFileBase(const std::string &file_base)
mutator for recover_base (set by RecoverBaseAction)
Definition: MooseApp.h:499
void setRestart(bool value)
Sets the restart/recover flags.
Definition: MooseApp.C:2912
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1801

◆ setSNESMFReuseBase()

void FEProblemBase::setSNESMFReuseBase ( bool  reuse,
bool  set_by_user 
)
inline

If or not to reuse the base vector for matrix-free calculation.

Definition at line 2113 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2114  {
2115  _snesmf_reuse_base = reuse, _snesmf_reuse_base_set_by_user = set_by_user;
2116  }
bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ setSteadyStateConvergenceName()

void FEProblemBase::setSteadyStateConvergenceName ( const ConvergenceName &  convergence_name)

Sets the steady-state detection convergence object name if there is one.

Definition at line 9116 of file FEProblemBase.C.

Referenced by TransientBase::TransientBase().

9117 {
9118  _steady_state_convergence_name = convergence_name;
9119 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ setUDotDotOldRequested()

virtual void FEProblemBase::setUDotDotOldRequested ( const bool  u_dotdot_old_requested)
inlinevirtual

Set boolean flag to true to store old solution second time derivative.

Definition at line 2161 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2162  {
2163  _u_dotdot_old_requested = u_dotdot_old_requested;
2164  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.

◆ setUDotDotRequested()

virtual void FEProblemBase::setUDotDotRequested ( const bool  u_dotdot_requested)
inlinevirtual

Set boolean flag to true to store solution second time derivative.

Definition at line 2149 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2150  {
2151  _u_dotdot_requested = u_dotdot_requested;
2152  }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ setUDotOldRequested()

virtual void FEProblemBase::setUDotOldRequested ( const bool  u_dot_old_requested)
inlinevirtual

Set boolean flag to true to store old solution time derivative.

Definition at line 2155 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2156  {
2157  _u_dot_old_requested = u_dot_old_requested;
2158  }
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ setUDotRequested()

virtual void FEProblemBase::setUDotRequested ( const bool  u_dot_requested)
inlinevirtual

Set boolean flag to true to store solution time derivative.

Definition at line 2146 of file FEProblemBase.h.

Referenced by TimeIntegrator::TimeIntegrator().

2146 { _u_dot_requested = u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ setupDampers()

void FEProblemBase::setupDampers ( )

Definition at line 5167 of file FEProblemBase.C.

5168 {
5169  for (auto & nl : _nl)
5170  nl->setupDampers();
5171 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ setVariableAllDoFMap()

void FEProblemBase::setVariableAllDoFMap ( const std::vector< const MooseVariableFEBase *> &  moose_vars)

Definition at line 1680 of file FEProblemBase.C.

Referenced by initialSetup(), and meshChanged().

1681 {
1682  for (unsigned int i = 0; i < moose_vars.size(); ++i)
1683  {
1684  VariableName var_name = moose_vars[i]->name();
1685  auto & sys = _solver_systems[moose_vars[i]->sys().number()];
1686  sys->setVariableGlobalDoFs(var_name);
1687  _var_dof_map[var_name] = sys->getVariableGlobalDoFs();
1688  }
1689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674

◆ setVectorPostprocessorValueByName()

void FEProblemBase::setVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
const VectorPostprocessorValue value,
std::size_t  t_index = 0 
)

Set the value of a VectorPostprocessor vector.

Parameters
object_nameThe name of the VPP object
vector_nameThe name of the declared vector
valueThe data to apply to the vector
t_indexFlag for getting current (0), old (1), or older (2) values

Definition at line 4449 of file FEProblemBase.C.

4453 {
4455  VectorPostprocessorReporterName(object_name, vector_name), value, t_index);
4456 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ setVerboseProblem()

void FEProblemBase::setVerboseProblem ( bool  verbose)

Make the problem be verbose.

Definition at line 9286 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and PhysicsBase::initializePhysics().

9287 {
9288  _verbose_setup = verbose ? "true" : "false";
9289  _verbose_multiapps = verbose;
9290  _verbose_restore = verbose;
9291 }
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ shouldPrintExecution()

bool FEProblemBase::shouldPrintExecution ( const THREAD_ID  tid) const

Check whether the problem should output execution orders at this time.

Definition at line 9228 of file FEProblemBase.C.

Referenced by joinAndFinalize(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

9229 {
9230  // For now, only support printing from thread 0
9231  if (tid != 0)
9232  return false;
9233 
9236  return true;
9237  else
9238  return false;
9239 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_ALWAYS
Definition: Moose.C:51
ExecFlagEnum _print_execution_on
When to print the execution of loops.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.

◆ shouldSolve()

bool FEProblemBase::shouldSolve ( ) const
inline

Definition at line 2197 of file FEProblemBase.h.

Referenced by FEProblemSolve::solve(), MFEMProblemSolve::solve(), and TransientBase::TransientBase().

2197 { return _solve; }
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ shouldUpdateSolution()

bool FEProblemBase::shouldUpdateSolution ( )
virtual

Check to see whether the problem should update the solution.

Returns
true if the problem should update the solution, false otherwise

Definition at line 7748 of file FEProblemBase.C.

Referenced by computePostCheck(), and NonlinearSystem::solve().

7749 {
7750  return false;
7751 }

◆ showInvalidSolutionConsole()

bool FEProblemBase::showInvalidSolutionConsole ( ) const
inline

Whether or not to print out the invalid solutions summary table in console.

Definition at line 1991 of file FEProblemBase.h.

Referenced by SolverSystem::checkInvalidSolution().

const bool _show_invalid_solution_console

◆ sizeZeroes()

void FEProblemBase::sizeZeroes ( unsigned int  size,
const THREAD_ID  tid 
)
virtual

Definition at line 2108 of file FEProblemBase.C.

2109 {
2110  mooseDoOnce(mooseWarning(
2111  "This function is deprecated and no longer performs any function. Please do not call it."));
2112 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ skipExceptionCheck()

void FEProblemBase::skipExceptionCheck ( bool  skip_exception_check)
inline

Set a flag that indicates if we want to skip exception and stop solve.

Definition at line 2126 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2127  {
2128  _skip_exception_check = skip_exception_check;
2129  }
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.

◆ solve()

void FEProblemBase::solve ( const unsigned int  nl_sys_num)
virtual

Reimplemented in DumpObjectsProblem, EigenProblem, and ExternalProblem.

Definition at line 6363 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), and AB2PredictorCorrector::step().

6364 {
6365  TIME_SECTION("solve", 1, "Solving", false);
6366 
6367  setCurrentNonlinearSystem(nl_sys_num);
6368 
6369  // This prevents stale dof indices from lingering around and possibly leading to invalid reads
6370  // and writes. Dof indices may be made stale through operations like mesh adaptivity
6372  if (_displaced_problem)
6373  _displaced_problem->clearAllDofIndices();
6374 
6375  // Setup the output system for printing linear/nonlinear iteration information and some solver
6376  // settings, including setting matrix prefixes. This must occur before petscSetOptions
6378 
6379 #if PETSC_RELEASE_LESS_THAN(3, 12, 0)
6381  _petsc_options, _solver_params); // Make sure the PETSc options are setup for this app
6382 #else
6383  // Now this database will be the default
6384  // Each app should have only one database
6385  if (!_app.isUltimateMaster())
6386  LibmeshPetscCall(PetscOptionsPush(_petsc_option_data_base));
6387  // We did not add PETSc options to database yet
6389  {
6390  // Insert options for all systems all at once
6393  }
6394 #endif
6395 
6396  // set up DM which is required if use a field split preconditioner
6397  // We need to setup DM every "solve()" because libMesh destroy SNES after solve()
6398  // Do not worry, DM setup is very cheap
6400 
6402 
6403  // reset flag so that residual evaluation does not get skipped
6404  // and the next non-linear iteration does not automatically fail with
6405  // "DIVERGED_NANORINF", when we throw an exception and stop solve
6407 
6408  if (_solve)
6409  {
6412  }
6413 
6414  // sync solutions in displaced problem
6415  if (_displaced_problem)
6416  _displaced_problem->syncSolutions();
6417 
6418 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
6419  if (!_app.isUltimateMaster())
6420  LibmeshPetscCall(PetscOptionsPop());
6421 #endif
6422 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
std::vector< SolverParams > _solver_params
void setupDM()
Setup the PETSc DM object (when appropriate)
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
PetscOptions _petsc_option_data_base
void clearAllDofIndices()
Clear dof indices from variables in nl and aux systems.
Definition: SubProblem.C:1177
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1235
const bool & _solve
Whether or not to actually solve the nonlinear system.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
A function for setting the PETSc options in PETSc from the options supplied to MOOSE.
Definition: PetscSupport.C:230
virtual void solve() override=0
Solve the system (using libMesh magic)
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _fail_next_system_convergence_check
virtual void possiblyRebuildGeomSearchPatches()
Moose::PetscSupport::PetscOptions _petsc_options
PETSc option storage.

◆ solveLinearSystem()

void FEProblemBase::solveLinearSystem ( const unsigned int  linear_sys_num,
const Moose::PetscSupport::PetscOptions po = nullptr 
)
virtual

Build and solve a linear system.

Parameters
linear_sys_numThe number of the linear system (1,..,num. of lin. systems)
poThe petsc options for the solve, if not supplied, the defaults are used

Reimplemented in DumpObjectsProblem.

Definition at line 6521 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

6523 {
6524  TIME_SECTION("solve", 1, "Solving", false);
6525 
6526  setCurrentLinearSystem(linear_sys_num);
6527 
6528  const Moose::PetscSupport::PetscOptions & options = po ? *po : _petsc_options;
6529  auto & solver_params = _solver_params[numNonlinearSystems() + linear_sys_num];
6530 
6531  // Set custom convergence criteria
6533 
6534 #if PETSC_RELEASE_LESS_THAN(3, 12, 0)
6535  LibmeshPetscCall(Moose::PetscSupport::petscSetOptions(
6536  options, solver_params)); // Make sure the PETSc options are setup for this app
6537 #else
6538  // Now this database will be the default
6539  // Each app should have only one database
6540  if (!_app.isUltimateMaster())
6541  LibmeshPetscCall(PetscOptionsPush(_petsc_option_data_base));
6542 
6543  // We did not add PETSc options to database yet
6545  {
6546  Moose::PetscSupport::petscSetOptions(options, solver_params, this);
6548  }
6549 #endif
6550 
6551  if (_solve)
6553 
6554 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
6555  if (!_app.isUltimateMaster())
6556  LibmeshPetscCall(PetscOptionsPop());
6557 #endif
6558 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
virtual std::size_t numNonlinearSystems() const override
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:446
std::vector< SolverParams > _solver_params
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
A struct for storing the various types of petsc options and values.
Definition: PetscSupport.h:44
PetscOptions _petsc_option_data_base
const bool & _solve
Whether or not to actually solve the nonlinear system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
virtual void solve() override
Solve the system (using libMesh magic)
Definition: LinearSystem.C:299
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
A function for setting the PETSc options in PETSc from the options supplied to MOOSE.
Definition: PetscSupport.C:230
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
Moose::PetscSupport::PetscOptions _petsc_options
PETSc option storage.

◆ solverParams() [1/2]

SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0)

Get the solver parameters.

Definition at line 8665 of file FEProblemBase.C.

Referenced by NonlinearEigenSystem::attachPreconditioner(), SolverSystem::compute(), SlepcEigenSolverConfiguration::configure_solver(), Eigenvalue::Eigenvalue(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), FEProblemSolve::FEProblemSolve(), EigenProblem::init(), ExplicitTimeIntegrator::init(), init(), EigenProblem::isNonlinearEigenvalueSolver(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), ConsoleUtils::outputExecutionInformation(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), Eigenvalue::prepareSolverOptions(), NonlinearSystem::residualAndJacobianTogether(), Moose::SlepcSupport::setEigenProblemSolverParams(), Moose::PetscSupport::setLineSearchFromParams(), Moose::PetscSupport::setMFFDTypeFromParams(), Moose::PetscSupport::setSinglePetscOption(), Moose::PetscSupport::setSolveTypeFromParams(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), EigenProblem::solve(), solverParams(), EigenProblem::solverTypeString(), solverTypeString(), and Moose::SlepcSupport::storeSolveType().

8666 {
8667  mooseAssert(solver_sys_num < numSolverSystems(),
8668  "Solver system number '" << solver_sys_num << "' is out of bounds. We have '"
8669  << numSolverSystems() << "' solver systems");
8670  return _solver_params[solver_sys_num];
8671 }
std::vector< SolverParams > _solver_params
virtual std::size_t numSolverSystems() const override

◆ solverParams() [2/2]

const SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0) const

const version

Definition at line 8674 of file FEProblemBase.C.

8675 {
8676  return const_cast<FEProblemBase *>(this)->solverParams(solver_sys_num);
8677 }
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ solverSysNum()

unsigned int FEProblemBase::solverSysNum ( const SolverSystemName &  solver_sys_name) const
overridevirtual
Returns
the solver system number corresponding to the provided solver_sys_name

Implements SubProblem.

Definition at line 6329 of file FEProblemBase.C.

Referenced by addVariable(), MultiSystemSolveObject::MultiSystemSolveObject(), and DisplacedProblem::solverSysNum().

6330 {
6331  std::istringstream ss(solver_sys_name);
6332  unsigned int solver_sys_num;
6333  if (!(ss >> solver_sys_num) || !ss.eof())
6334  {
6335  const auto & search = _solver_sys_name_to_num.find(solver_sys_name);
6336  if (search == _solver_sys_name_to_num.end())
6337  mooseError("The solver system number was requested for system '" + solver_sys_name,
6338  "' but this system does not exist in the Problem. Systems can be added to the "
6339  "problem using the 'nl_sys_names' parameter.\nSystems in the Problem: " +
6341  solver_sys_num = search->second;
6342  }
6343 
6344  return solver_sys_num;
6345 }
std::map< SolverSystemName, unsigned int > _solver_sys_name_to_num
Map connecting solver system names with their respective systems.
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ solverSystemConverged()

bool FEProblemBase::solverSystemConverged ( const unsigned int  sys_num)
overridevirtual
Returns
whether the given solver system sys_num is converged

Reimplemented from SubProblem.

Reimplemented in EigenProblem.

Definition at line 6561 of file FEProblemBase.C.

6562 {
6563  if (_solve)
6564  return _solver_systems[sys_num]->converged();
6565  else
6566  return true;
6567 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ solverTypeString()

std::string FEProblemBase::solverTypeString ( unsigned int  solver_sys_num = 0)
virtual

Return solver type as a human readable string.

Reimplemented in MFEMProblem, and EigenProblem.

Definition at line 9407 of file FEProblemBase.C.

Referenced by ConsoleUtils::outputExecutionInformation().

9408 {
9409  return Moose::stringify(solverParams(solver_sys_num)._type);
9410 }
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
const std::string & _type
The type of this class.
Definition: MooseBase.h:356

◆ startedInitialSetup()

virtual bool FEProblemBase::startedInitialSetup ( )
inlinevirtual

Returns true if we are in or beyond the initialSetup stage.

Definition at line 509 of file FEProblemBase.h.

Referenced by NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), and MaterialPropertyInterface::checkExecutionStage().

509 { return _started_initial_setup; }
bool _started_initial_setup
At or beyond initialSteup stage.

◆ storeBoundaryDelayedCheckMatProp()

void SubProblem::storeBoundaryDelayedCheckMatProp ( const std::string &  requestor,
BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties to validate.

Parameters
requestorThe MOOSE object name requesting the material property
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 615 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

618 {
619  _map_boundary_material_props_check[boundary_id].insert(std::make_pair(requestor, name));
620 }
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeBoundaryMatPropName()

void SubProblem::storeBoundaryMatPropName ( BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on boundary ids.

This is method is called from within the Material class when the property is first registered.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 589 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

590 {
591  _map_boundary_material_props[boundary_id].insert(name);
592 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeBoundaryZeroMatProp()

void SubProblem::storeBoundaryZeroMatProp ( BoundaryID  boundary_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 601 of file SubProblem.C.

Referenced by MaterialBase::storeBoundaryZeroMatProp().

602 {
603  _zero_boundary_material_props[boundary_id].insert(name);
604 }
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeSubdomainDelayedCheckMatProp()

void SubProblem::storeSubdomainDelayedCheckMatProp ( const std::string &  requestor,
SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on block ids of material properties to validate.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 607 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

610 {
611  _map_block_material_props_check[block_id].insert(std::make_pair(requestor, name));
612 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070

◆ storeSubdomainMatPropName()

void SubProblem::storeSubdomainMatPropName ( SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on block ids.

This is method is called from within the Material class when the property is first registered.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 583 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

584 {
585  _map_block_material_props[block_id].insert(name);
586 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ storeSubdomainZeroMatProp()

void SubProblem::storeSubdomainZeroMatProp ( SubdomainID  block_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on block ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 595 of file SubProblem.C.

Referenced by MaterialBase::storeSubdomainZeroMatProp().

596 {
597  _zero_block_material_props[block_id].insert(name);
598 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058

◆ subdomainSetup()

void FEProblemBase::subdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtual

Definition at line 2471 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), ComputeUserObjectsThread::subdomainChanged(), and ThreadedFaceLoop< RangeType >::subdomainChanged().

2472 {
2473  _all_materials.subdomainSetup(subdomain, tid);
2474  // Call the subdomain methods of the output system, these are not threaded so only call it once
2475  if (tid == 0)
2477 
2478  for (auto & nl : _nl)
2479  nl->subdomainSetup(subdomain, tid);
2480 
2481  // FIXME: call displaced_problem->subdomainSetup() ?
2482  // When adding possibility with materials being evaluated on displaced mesh
2483 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void subdomainSetup()
Calls the subdomainSetup function for each of the output objects.
virtual void subdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ subspaceDim()

unsigned int FEProblemBase::subspaceDim ( const std::string &  prefix) const
inline

Dimension of the subspace spanned by vectors with a given prefix.

Parameters
prefixPrefix of the vectors spanning the subspace.

Definition at line 1900 of file FEProblemBase.h.

Referenced by computeNearNullSpace(), computeNullSpace(), and computeTransposeNullSpace().

1901  {
1902  if (_subspace_dim.count(prefix))
1903  return _subspace_dim.find(prefix)->second;
1904  else
1905  return 0;
1906  }
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ swapBackMaterials()

void FEProblemBase::swapBackMaterials ( const THREAD_ID  tid)
virtual

Definition at line 4143 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), LineMaterialSamplerBase< Real >::execute(), ComputeMarkerThread::onElement(), ComputeElemAuxVarsThread< AuxKernelType >::onElement(), ComputeIndicatorThread::onElement(), NonlinearThread::onElement(), and ComputeUserObjectsThread::onElement().

4144 {
4145  auto && elem = _assembly[tid][0]->elem();
4147 }
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ swapBackMaterialsFace()

void FEProblemBase::swapBackMaterialsFace ( const THREAD_ID  tid)
virtual

Definition at line 4150 of file FEProblemBase.C.

Referenced by NonlinearThread::onBoundary(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4151 {
4152  auto && elem = _assembly[tid][0]->elem();
4153  unsigned int side = _assembly[tid][0]->side();
4154  _bnd_material_props.getMaterialData(tid).swapBack(*elem, side);
4155 }
MaterialPropertyStorage & _bnd_material_props
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ swapBackMaterialsNeighbor()

void FEProblemBase::swapBackMaterialsNeighbor ( const THREAD_ID  tid)
virtual

Definition at line 4158 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4159 {
4160  // NOTE: this will not work with h-adaptivity
4161  const Elem * neighbor = _assembly[tid][0]->neighbor();
4162  unsigned int neighbor_side =
4163  neighbor ? neighbor->which_neighbor_am_i(_assembly[tid][0]->elem()) : libMesh::invalid_uint;
4164 
4165  if (!neighbor)
4166  {
4167  if (haveFV())
4168  {
4169  // If neighbor is null, then we're on the neighbor side of a mesh boundary, e.g. we're off
4170  // the mesh in ghost-land. If we're using the finite volume method, then variable values and
4171  // consequently material properties have well-defined values in this ghost region outside of
4172  // the mesh and we really do want to reinit our neighbor materials in this case. Since we're
4173  // off in ghost land it's safe to do swaps with `MaterialPropertyStorage` using the elem and
4174  // elem_side keys
4175  neighbor = _assembly[tid][0]->elem();
4176  neighbor_side = _assembly[tid][0]->side();
4177  mooseAssert(neighbor, "We should have an appropriate value for elem coming from Assembly");
4178  }
4179  else
4180  mooseError("neighbor is null in Assembly!");
4181  }
4182 
4183  _neighbor_material_props.getMaterialData(tid).swapBack(*neighbor, neighbor_side);
4184 }
const unsigned int invalid_uint
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ systemBaseAuxiliary() [1/2]

const SystemBase & FEProblemBase::systemBaseAuxiliary ( ) const
overridevirtual

Return the auxiliary system object as a base class reference.

Implements SubProblem.

Definition at line 8952 of file FEProblemBase.C.

Referenced by PhysicsBase::copyVariablesFromMesh(), and MFEMProblem::getAuxVariableNames().

8953 {
8954  return *_aux;
8955 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseAuxiliary() [2/2]

SystemBase & FEProblemBase::systemBaseAuxiliary ( )
overridevirtual

Implements SubProblem.

Definition at line 8958 of file FEProblemBase.C.

8959 {
8960  return *_aux;
8961 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseLinear() [1/2]

const SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num) const
overridevirtual

Get a constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 8920 of file FEProblemBase.C.

8921 {
8922  mooseAssert(sys_num < _linear_systems.size(),
8923  "System number greater than the number of linear systems");
8924  return *_linear_systems[sys_num];
8925 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseLinear() [2/2]

SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num)
overridevirtual

Get a non-constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 8928 of file FEProblemBase.C.

8929 {
8930  mooseAssert(sys_num < _linear_systems.size(),
8931  "System number greater than the number of linear systems");
8932  return *_linear_systems[sys_num];
8933 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseNonlinear() [1/2]

const SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num) const
overridevirtual

Return the nonlinear system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 8906 of file FEProblemBase.C.

8907 {
8908  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
8909  return *_nl[sys_num];
8910 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseNonlinear() [2/2]

SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num)
overridevirtual

Implements SubProblem.

Definition at line 8913 of file FEProblemBase.C.

8914 {
8915  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
8916  return *_nl[sys_num];
8917 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseSolver() [1/2]

const SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num) const
overridevirtual

Return the solver system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 8936 of file FEProblemBase.C.

8937 {
8938  mooseAssert(sys_num < _solver_systems.size(),
8939  "System number greater than the number of solver systems");
8940  return *_solver_systems[sys_num];
8941 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemBaseSolver() [2/2]

SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num)
overridevirtual

Implements SubProblem.

Definition at line 8944 of file FEProblemBase.C.

8945 {
8946  mooseAssert(sys_num < _solver_systems.size(),
8947  "System number greater than the number of solver systems");
8948  return *_solver_systems[sys_num];
8949 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemNumForVariable()

unsigned int FEProblemBase::systemNumForVariable ( const VariableName &  variable_name) const
Returns
the system number for the provided variable_name Can be nonlinear or auxiliary

Definition at line 6348 of file FEProblemBase.C.

6349 {
6350  for (const auto & solver_sys : _solver_systems)
6351  if (solver_sys->hasVariable(variable_name))
6352  return solver_sys->number();
6353  mooseAssert(_aux, "Should have an auxiliary system");
6354  if (_aux->hasVariable(variable_name))
6355  return _aux->number();
6356 
6357  mooseError("Variable '",
6358  variable_name,
6359  "' was not found in any solver (nonlinear/linear) or auxiliary system");
6360 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ terminateSolve()

virtual void Problem::terminateSolve ( )
inlinevirtualinherited

Allow objects to request clean termination of the solve.

Definition at line 37 of file Problem.h.

Referenced by WebServerControl::execute(), Terminator::execute(), and TerminateChainControl::terminate().

37 { _termination_requested = true; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ theWarehouse()

TheWarehouse& FEProblemBase::theWarehouse ( ) const
inline

Definition at line 2108 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), NonlinearSystemBase::addKernel(), NonlinearSystemBase::addNodalKernel(), addObject(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), addUserObject(), NonlinearSystemBase::checkKernelCoverage(), checkUserObjectJacobianRequirement(), checkUserObjects(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), computeUserObjectByName(), computeUserObjects(), LinearSystem::containsTimeKernel(), NonlinearSystemBase::customSetup(), customSetup(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), executeSamplers(), ComputeLinearFVElementalThread::fetchBlockSystemContributionObjects(), ComputeLinearFVFaceThread::fetchBlockSystemContributionObjects(), getDistribution(), getMortarUserObjects(), getPositionsObject(), getSampler(), CompositionDT::getTimeSteppers(), getUserObject(), getUserObjectBase(), hasUserObject(), SideFVFluxBCIntegral::initialSetup(), ExplicitTimeIntegrator::initialSetup(), LinearSystem::initialSetup(), NonlinearSystemBase::initialSetup(), initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), needBoundaryMaterialOnSide(), needInterfaceMaterialOnSide(), needSubdomainMaterialOnSide(), JSONOutput::outputReporters(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), ComputeLinearFVElementalThread::setupSystemContributionObjects(), ComputeLinearFVFaceThread::setupSystemContributionObjects(), NonlinearThread::subdomainChanged(), NonlinearSystemBase::timestepSetup(), and timestepSetup().

2108 { return _app.theWarehouse(); }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
TheWarehouse & theWarehouse()
Definition: MooseApp.h:130

◆ time()

virtual Real& FEProblemBase::time ( ) const
inlinevirtual

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeOld()

virtual Real& FEProblemBase::timeOld ( ) const
inlinevirtual

◆ timeStep()

virtual int& FEProblemBase::timeStep ( ) const
inlinevirtual

◆ timestepSetup()

void FEProblemBase::timestepSetup ( )
overridevirtual

Reimplemented from SubProblem.

Definition at line 1487 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), and TransientBase::takeStep().

1488 {
1490 
1491  if (_t_step > 1 && _num_grid_steps)
1492  {
1493  libMesh::MeshRefinement mesh_refinement(_mesh);
1494  std::unique_ptr<libMesh::MeshRefinement> displaced_mesh_refinement(nullptr);
1495  if (_displaced_mesh)
1496  displaced_mesh_refinement = std::make_unique<libMesh::MeshRefinement>(*_displaced_mesh);
1497 
1498  for (MooseIndex(_num_grid_steps) i = 0; i < _num_grid_steps; ++i)
1499  {
1500  if (_displaced_problem)
1501  // If the DisplacedProblem is active, undisplace the DisplacedMesh in preparation for
1502  // refinement. We can't safely refine the DisplacedMesh directly, since the Hilbert keys
1503  // computed on the inconsistenly-displaced Mesh are different on different processors,
1504  // leading to inconsistent Hilbert keys. We must do this before the undisplaced Mesh is
1505  // coarsensed, so that the element and node numbering is still consistent. We also have to
1506  // make sure this is done during every step of coarsening otherwise different partitions
1507  // will be generated for the reference and displaced meshes (even for replicated)
1508  _displaced_problem->undisplaceMesh();
1509 
1510  mesh_refinement.uniformly_coarsen();
1511  if (_displaced_mesh)
1512  displaced_mesh_refinement->uniformly_coarsen();
1513 
1514  // Mark this as an intermediate change because we do not yet want to reinit_systems. E.g. we
1515  // need things to happen in the following order for the undisplaced problem:
1516  // u1) EquationSystems::reinit_solutions. This will restrict the solution vectors and then
1517  // contract the mesh
1518  // u2) MooseMesh::meshChanged. This will update the node/side lists and other
1519  // things which needs to happen after the contraction
1520  // u3) GeometricSearchData::reinit. Once the node/side lists are updated we can perform our
1521  // geometric searches which will aid in determining sparsity patterns
1522  //
1523  // We do these things for the displaced problem (if it exists)
1524  // d1) EquationSystems::reinit. Restrict the displaced problem vector copies and then contract
1525  // the mesh. It's safe to do a full reinit with the displaced because there are no
1526  // matrices that sparsity pattern calculations will be conducted for
1527  // d2) MooseMesh::meshChanged. This will update the node/side lists and other
1528  // things which needs to happen after the contraction
1529  // d3) UpdateDisplacedMeshThread::operator(). Re-displace the mesh using the *displaced*
1530  // solution vector copy because we don't know the state of the reference solution vector.
1531  // It's safe to use the displaced copy because we are outside of a non-linear solve,
1532  // and there is no concern about differences between solution and current_local_solution
1533  // d4) GeometricSearchData::reinit. With the node/side lists updated and the mesh
1534  // re-displaced, we can perform our geometric searches, which will aid in determining the
1535  // sparsity pattern of the matrix held by the libMesh::ImplicitSystem held by the
1536  // NonlinearSystem held by this
1537  meshChanged(
1538  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
1539  }
1540 
1541  // u4) Now that all the geometric searches have been done (both undisplaced and displaced),
1542  // we're ready to update the sparsity pattern
1543  es().reinit_systems();
1544  }
1545 
1546  if (_line_search)
1547  _line_search->timestepSetup();
1548 
1549  // Random interface objects
1550  for (const auto & it : _random_data_objects)
1551  it.second->updateSeeds(EXEC_TIMESTEP_BEGIN);
1552 
1553  unsigned int n_threads = libMesh::n_threads();
1554  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1555  {
1558  }
1559 
1560  _aux->timestepSetup();
1561  for (auto & sys : _solver_systems)
1562  sys->timestepSetup();
1563 
1564  if (_displaced_problem)
1565  // timestepSetup for displaced systems
1566  _displaced_problem->timestepSetup();
1567 
1568  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1569  {
1572  _markers.timestepSetup(tid);
1573  }
1574 
1575  std::vector<UserObject *> userobjs;
1576  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
1577  for (auto obj : userobjs)
1578  obj->timestepSetup();
1579 
1580  // Timestep setup of output objects
1582 
1585  _has_nonlocal_coupling = true;
1586 }
virtual void meshChanged()
Deprecated.
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
virtual void timestepSetup(THREAD_ID tid=0) const
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
unsigned int _num_grid_steps
Number of steps in a grid sequence.
virtual void reinit_systems()
TheWarehouse & theWarehouse() const
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
virtual void timestepSetup(THREAD_ID tid=0) const
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
MooseObjectWarehouse< Indicator > _indicators
virtual void timestepSetup()
Definition: SubProblem.C:1185
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
void timestepSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
MooseMesh * _displaced_mesh
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
std::shared_ptr< LineSearch > _line_search
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ transient()

virtual void FEProblemBase::transient ( bool  trans)
inlinevirtual

Definition at line 524 of file FEProblemBase.h.

Referenced by EigenExecutionerBase::EigenExecutionerBase(), and TransientBase::TransientBase().

524 { _transient = trans; }

◆ trustUserCouplingMatrix()

void FEProblemBase::trustUserCouplingMatrix ( )

Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix.

See https://github.com/idaholab/moose/issues/16395 for detailed background

Definition at line 6088 of file FEProblemBase.C.

Referenced by SingleMatrixPreconditioner::SingleMatrixPreconditioner().

6089 {
6091  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6092  "haven't been provided a coupling matrix!");
6093 
6095 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ type()

const std::string& MooseBase::type ( ) const
inlineinherited

Get the type of this class.

Returns
the name of the type of this class

Definition at line 89 of file MooseBase.h.

Referenced by CreateProblemDefaultAction::act(), SetupDebugAction::act(), MaterialDerivativeTestAction::act(), MaterialOutputAction::act(), addAuxArrayVariable(), addAuxScalarVariable(), addAuxVariable(), addConvergence(), addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), MFEMProblem::addFunction(), addFunction(), addMeshDivision(), MooseApp::addMeshGenerator(), MeshGenerator::addMeshSubgenerator(), addObject(), MFEMProblem::addPostprocessor(), addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), addReporter(), addSampler(), addTimeIntegrator(), MooseServer::addValuesToList(), DisplacedProblem::addVectorTag(), SubProblem::addVectorTag(), advanceMultiApps(), MooseApp::appendMeshGenerator(), AuxKernelTempl< Real >::AuxKernelTempl(), backupMultiApps(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BoundaryPreservedMarker::BoundaryPreservedMarker(), DistributedRectilinearMeshGenerator::buildCube(), MooseMesh::buildHRefinementAndCoarseningMaps(), MooseMesh::buildLowerDMesh(), MooseMesh::buildPRefinementAndCoarseningMaps(), PhysicsBase::checkComponentType(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), ADDGKernel::computeElemNeighJacobian(), DGKernel::computeElemNeighJacobian(), ElemElemConstraint::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighJacobian(), ADDGKernel::computeElemNeighResidual(), DGKernel::computeElemNeighResidual(), ElemElemConstraint::computeElemNeighResidual(), ArrayDGKernel::computeElemNeighResidual(), LowerDIntegratedBC::computeLowerDJacobian(), ArrayLowerDIntegratedBC::computeLowerDJacobian(), DGLowerDKernel::computeLowerDJacobian(), ArrayDGLowerDKernel::computeLowerDJacobian(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayHFEMDirichletBC::computeLowerDQpJacobian(), ArrayHFEMDiffusion::computeLowerDQpJacobian(), HFEMDirichletBC::computeLowerDQpJacobian(), HFEMDiffusion::computeLowerDQpJacobian(), ArrayHFEMDirichletBC::computeLowerDQpOffDiagJacobian(), HFEMDirichletBC::computeLowerDQpOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDQpOffDiagJacobian(), ArrayDGLowerDKernel::computeLowerDQpOffDiagJacobian(), computeMultiAppsDT(), ADDGKernel::computeOffDiagElemNeighJacobian(), DGKernel::computeOffDiagElemNeighJacobian(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), DGConvection::computeQpJacobian(), ScalarKernel::computeQpJacobian(), InterfaceDiffusion::computeQpJacobian(), InterfaceReaction::computeQpJacobian(), ArrayDGDiffusion::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), DGDiffusion::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), HFEMTestJump::computeQpOffDiagJacobian(), HFEMTrialJump::computeQpOffDiagJacobian(), ArrayDGKernel::computeQpOffDiagJacobian(), ArrayHFEMDiffusion::computeQpResidual(), DGConvection::computeQpResidual(), HFEMDiffusion::computeQpResidual(), ScalarKernel::computeQpResidual(), InterfaceDiffusion::computeQpResidual(), ADMatInterfaceReaction::computeQpResidual(), InterfaceReaction::computeQpResidual(), ADDGAdvection::computeQpResidual(), ArrayDGDiffusion::computeQpResidual(), CoupledTiedValueConstraint::computeQpResidual(), TiedValueConstraint::computeQpResidual(), DGDiffusion::computeQpResidual(), LinearNodalConstraint::computeQpResidual(), ADDGDiffusion::computeQpResidual(), HFEMTestJump::computeQpResidual(), HFEMTrialJump::computeQpResidual(), EqualValueBoundaryConstraint::computeQpResidual(), computeSystems(), computeUserObjectByName(), computeUserObjects(), computeUserObjectsInternal(), DisplacedProblem::createQRules(), createQRules(), MooseApp::createRecoverablePerfGraph(), DumpObjectsProblem::deduceNecessaryParameters(), DumpObjectsProblem::dumpObjectHelper(), duplicateVariableCheck(), execMultiApps(), execMultiAppTransfers(), execTransfers(), WebServerControl::execute(), SteadyBase::execute(), ActionWarehouse::executeActionsWithAction(), finishMultiAppStep(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), MooseServer::gatherDocumentReferencesLocations(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), PatternedMeshGenerator::generate(), MeshGenerator::generateInternal(), MultiAppTransfer::getAppInfo(), TransfiniteMeshGenerator::getEdge(), ElementGenerator::getElemType(), MooseServer::getInputLookupDefinitionNodes(), getMaterial(), getMaterialData(), MaterialOutputAction::getParams(), ReporterData::getReporterInfo(), getTransfers(), DisplacedProblem::getVectorTags(), SubProblem::getVectorTags(), CommonOutputAction::hasConsole(), hasMultiApps(), AdvancedOutput::hasOutput(), incrementMultiAppTStep(), AdvancedOutput::initAvailableLists(), FunctorPositions::initialize(), FunctorTimes::initialize(), MultiAppConservativeTransfer::initialSetup(), LinearFVAdvection::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), LinearFVDiffusion::initialSetup(), ArrayDGDiffusion::initQpResidual(), AdvancedOutput::initShowHideLists(), RelationshipManager::isType(), logAdd(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MFEMProblem::mesh(), MooseObject::MooseObject(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), DisplacedProblem::numVectorTags(), SubProblem::numVectorTags(), Console::output(), AdvancedOutput::output(), ConsoleUtils::outputExecutionInformation(), SampledOutput::outputStep(), Output::outputStep(), outputStep(), MooseServer::parseDocumentForDiagnostics(), MooseMesh::prepare(), ProjectedStatefulMaterialStorageAction::processProperty(), MooseApp::recursivelyCreateExecutors(), SolutionInvalidInterface::registerInvalidSolutionInternal(), restoreMultiApps(), MeshRepairGenerator::separateSubdomainsByElementType(), setCoupling(), MooseApp::setupOptions(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), WebServerControl::startServer(), Reporter::store(), MooseBase::typeAndName(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), DisplacedProblem::updateGeomSearch(), updateGeomSearch(), UserObjectInterface::userObjectType(), and AdvancedOutput::wantOutput().

90  {
91  mooseAssert(_type.size(), "Empty type");
92  return _type;
93  }
const std::string & _type
The type of this class.
Definition: MooseBase.h:356

◆ typeAndName()

std::string MooseBase::typeAndName ( ) const
inherited

Get the class's combined type and name; useful in error handling.

Returns
The type and name of this class in the form '<type()> "<name()>"'.

Definition at line 54 of file MooseBase.C.

Referenced by addPostprocessor(), MaterialPropertyStorage::addProperty(), addReporter(), addVectorPostprocessor(), MeshGeneratorSystem::dataDrivenError(), ReporterContext< std::vector< T > >::finalize(), and ReporterData::getReporterInfo().

55 {
56  return type() + std::string(" \"") + name() + std::string("\"");
57 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ uDotDotOldRequested()

virtual bool FEProblemBase::uDotDotOldRequested ( )
inlinevirtual

Get boolean flag to check whether old solution second time derivative needs to be stored.

Definition at line 2184 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2185  {
2187  mooseError("FEProblemBase: When requesting old second time derivative of solution, current "
2188  "second time derivation of solution should also be stored. Please set "
2189  "`u_dotdot_requested` to true using setUDotDotRequested.");
2190  return _u_dotdot_old_requested;
2191  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotDotRequested()

virtual bool FEProblemBase::uDotDotRequested ( )
inlinevirtual

Get boolean flag to check whether solution second time derivative needs to be stored.

Definition at line 2170 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors(), and addTimeIntegrator().

2170 { return _u_dotdot_requested; }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotOldRequested()

virtual bool FEProblemBase::uDotOldRequested ( )
inlinevirtual

Get boolean flag to check whether old solution time derivative needs to be stored.

Definition at line 2173 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2174  {
2176  mooseError("FEProblemBase: When requesting old time derivative of solution, current time "
2177  "derivative of solution should also be stored. Please set `u_dot_requested` to "
2178  "true using setUDotRequested.");
2179 
2180  return _u_dot_old_requested;
2181  }
bool _u_dot_requested
Whether solution time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ uDotRequested()

virtual bool FEProblemBase::uDotRequested ( )
inlinevirtual

Get boolean flag to check whether solution time derivative needs to be stored.

Definition at line 2167 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2167 { return _u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ uniformRefine()

void FEProblemBase::uniformRefine ( )

uniformly refine the problem mesh(es).

This will also prolong the the solution, and in order for that to be safe, we can only perform one refinement at a time

Definition at line 8982 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

8983 {
8984  // ResetDisplacedMeshThread::onNode looks up the reference mesh by ID, so we need to make sure
8985  // we undisplace before adapting the reference mesh
8986  if (_displaced_problem)
8987  _displaced_problem->undisplaceMesh();
8988 
8990  if (_displaced_problem)
8992 
8993  meshChanged(
8994  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
8995 }
virtual void meshChanged()
Deprecated.
static void uniformRefine(MooseMesh *mesh, unsigned int level=libMesh::invalid_uint)
Performs uniform refinement of the passed Mesh object.
Definition: Adaptivity.C:274
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ uniqueName()

MooseObjectName MooseBase::uniqueName ( ) const
inherited
Returns
The unique name for accessing input parameters of this object in the InputParameterWarehouse

Definition at line 66 of file MooseBase.C.

Referenced by MooseBase::connectControllableParams(), and Action::uniqueActionName().

67 {
68  if (!_pars.have_parameter<std::string>(unique_name_param))
69  mooseError("uniqueName(): Object does not have a unique name");
70  return MooseObjectName(_pars.get<std::string>(unique_name_param));
71 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
static const std::string unique_name_param
The name of the parameter that contains the unique object name.
Definition: MooseBase.h:57
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
A class for storing the names of MooseObject by tag and object name.

◆ uniqueParameterName()

MooseObjectParameterName MooseBase::uniqueParameterName ( const std::string &  parameter_name) const
inherited
Returns
The unique parameter name of a valid parameter of this object for accessing parameter controls

Definition at line 60 of file MooseBase.C.

61 {
62  return MooseObjectParameterName(getBase(), name(), parameter_name);
63 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
A class for storing an input parameter name.
const std::string & getBase() const
Definition: MooseBase.h:143

◆ updateActiveObjects()

void FEProblemBase::updateActiveObjects ( )
virtual

Update the active objects in the warehouses.

Reimplemented in DumpObjectsProblem.

Definition at line 5083 of file FEProblemBase.C.

Referenced by MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5084 {
5085  TIME_SECTION("updateActiveObjects", 5, "Updating Active Objects");
5086 
5087  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5088  {
5089  for (auto & nl : _nl)
5090  nl->updateActive(tid);
5091  _aux->updateActive(tid);
5094  _markers.updateActive(tid);
5096  _materials.updateActive(tid);
5098  }
5099 
5107 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
void updateActive(THREAD_ID tid=0) override
Updates the active objects storage.
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void updateActive(THREAD_ID tid=0)
Update the active status of Kernels.
MooseObjectWarehouse< Indicator > _indicators
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
MaterialWarehouse _discrete_materials
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ updateGeomSearch()

void FEProblemBase::updateGeomSearch ( GeometricSearchData::GeometricSearchType  type = GeometricSearchData::ALL)
overridevirtual

Implements SubProblem.

Definition at line 7775 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::augmentSparsity(), and initialSetup().

7776 {
7777  TIME_SECTION("updateGeometricSearch", 3, "Updating Geometric Search");
7778 
7780 
7781  if (_displaced_problem)
7782  _displaced_problem->updateGeomSearch(type);
7783 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void update(GeometricSearchType type=ALL)
Update all of the search objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data

◆ updateMaxQps()

void FEProblemBase::updateMaxQps ( )
private

Definition at line 5956 of file FEProblemBase.C.

Referenced by bumpAllQRuleOrder(), bumpVolumeQRuleOrder(), and createQRules().

5957 {
5958  // Find the maximum number of quadrature points
5959  {
5960  MaxQpsThread mqt(*this);
5962  _max_qps = mqt.max();
5963 
5964  // If we have more shape functions or more quadrature points on
5965  // another processor, then we may need to handle those elements
5966  // ourselves later after repartitioning.
5968  }
5969 
5970  unsigned int max_qpts = getMaxQps();
5971  if (max_qpts > Moose::constMaxQpsPerElem)
5972  mooseError("Max quadrature points per element assumptions made in some code (e.g. Coupleable ",
5973  "and MaterialPropertyInterface classes) have been violated.\n",
5974  "Complain to Moose developers to have constMaxQpsPerElem increased from ",
5976  " to ",
5977  max_qpts);
5978  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
5979  {
5980  // the highest available order in libMesh is 43
5981  _scalar_zero[tid].resize(FORTYTHIRD, 0);
5982  _zero[tid].resize(max_qpts, 0);
5983  _ad_zero[tid].resize(max_qpts, 0);
5984  _grad_zero[tid].resize(max_qpts, RealGradient(0.));
5985  _ad_grad_zero[tid].resize(max_qpts, ADRealGradient(0));
5986  _second_zero[tid].resize(max_qpts, RealTensor(0.));
5987  _ad_second_zero[tid].resize(max_qpts, ADRealTensorValue(0));
5988  _vector_zero[tid].resize(max_qpts, RealGradient(0.));
5989  _vector_curl_zero[tid].resize(max_qpts, RealGradient(0.));
5990  }
5991 }
This class determines the maximum number of Quadrature Points and Shape Functions used for a given si...
Definition: MaxQpsThread.h:27
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
unsigned int n_threads()
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
constexpr std::size_t constMaxQpsPerElem
This is used for places where we initialize some qp-sized data structures that would end up being siz...
Definition: MooseTypes.h:230
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< VariableSecond > _second_zero
std::vector< MooseArray< ADReal > > _ad_zero
std::vector< VectorVariableCurl > _vector_curl_zero
const Parallel::Communicator & _communicator
libMesh::TensorValue< ADReal > ADRealTensorValue
Definition: MooseTypes.h:372
MooseMesh & _mesh
std::vector< VariableGradient > _grad_zero
void max(const T &r, T &o, Request &req) const
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
ADRealVectorValue ADRealGradient
Definition: MooseTypes.h:370
std::vector< VectorVariableValue > _vector_zero
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
unsigned int getMaxQps() const

◆ updateMeshXFEM()

bool FEProblemBase::updateMeshXFEM ( )
virtual

Update the mesh due to changing XFEM cuts.

Definition at line 8042 of file FEProblemBase.C.

Referenced by initialSetup(), and FixedPointSolve::solveStep().

8043 {
8044  TIME_SECTION("updateMeshXFEM", 5, "Updating XFEM");
8045 
8046  bool updated = false;
8047  if (haveXFEM())
8048  {
8049  if (_xfem->updateHeal())
8050  // XFEM exodiff tests rely on a given numbering because they cannot use map = true due to
8051  // having coincident elements. While conceptually speaking we do not need to contract the
8052  // mesh, we need its call to renumber_nodes_and_elements in order to preserve these tests
8053  meshChanged(
8054  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8055 
8056  updated = _xfem->update(_time, _nl, *_aux);
8057  if (updated)
8058  {
8059  meshChanged(
8060  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8061  _xfem->initSolution(_nl, *_aux);
8062  restoreSolutions();
8063  }
8064  }
8065  return updated;
8066 }
virtual void meshChanged()
Deprecated.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void restoreSolutions()
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ updateMortarMesh()

void FEProblemBase::updateMortarMesh ( )
virtual

Definition at line 7786 of file FEProblemBase.C.

Referenced by computeResidualAndJacobian(), computeResidualTags(), init(), initialSetup(), and meshChanged().

7787 {
7788  TIME_SECTION("updateMortarMesh", 5, "Updating Mortar Mesh");
7789 
7790  FloatingPointExceptionGuard fpe_guard(_app);
7791 
7792  _mortar_data.update();
7793 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MortarData _mortar_data
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void update()
Builds mortar segment meshes for each mortar interface.
Definition: MortarData.C:149

◆ updateSolution()

bool FEProblemBase::updateSolution ( NumericVector< libMesh::Number > &  vec_solution,
NumericVector< libMesh::Number > &  ghosted_solution 
)
virtual

Update the solution.

Parameters
vec_solutionLocal solution vector that gets modified by this method
ghosted_solutionGhosted solution vector
Returns
true if the solution was modified, false otherwise

Definition at line 7754 of file FEProblemBase.C.

Referenced by computePostCheck().

7756 {
7757  return false;
7758 }

◆ useSNESMFReuseBase()

bool FEProblemBase::useSNESMFReuseBase ( )
inline

Return a flag that indicates if we are reusing the vector base.

Definition at line 2121 of file FEProblemBase.h.

Referenced by NonlinearSystem::potentiallySetupFiniteDifferencing().

2121 { return _snesmf_reuse_base; }
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ validParams()

InputParameters FEProblemBase::validParams ( )
static

Definition at line 150 of file FEProblemBase.C.

Referenced by ExternalProblem::validParams(), FEProblem::validParams(), EigenProblem::validParams(), and DumpObjectsProblem::validParams().

151 {
153  params.addParam<unsigned int>("null_space_dimension", 0, "The dimension of the nullspace");
154  params.addParam<unsigned int>(
155  "transpose_null_space_dimension", 0, "The dimension of the transpose nullspace");
156  params.addParam<unsigned int>(
157  "near_null_space_dimension", 0, "The dimension of the near nullspace");
158  params.addParam<bool>("solve",
159  true,
160  "Whether or not to actually solve the Nonlinear system. "
161  "This is handy in the case that all you want to do is "
162  "execute AuxKernels, Transfers, etc. without actually "
163  "solving anything");
164  params.addParam<bool>("use_nonlinear",
165  true,
166  "Determines whether to use a Nonlinear vs a "
167  "Eigenvalue system (Automatically determined based "
168  "on executioner)");
169  params.addParam<bool>("error_on_jacobian_nonzero_reallocation",
170  "This causes PETSc to error if it had to reallocate memory in the Jacobian "
171  "matrix due to not having enough nonzeros");
172  params.addParam<bool>("ignore_zeros_in_jacobian",
173  false,
174  "Do not explicitly store zero values in "
175  "the Jacobian matrix if true");
176  params.addParam<bool>("force_restart",
177  false,
178  "EXPERIMENTAL: If true, a sub_app may use a "
179  "restart file instead of using of using the master "
180  "backup file");
181  params.addDeprecatedParam<bool>("skip_additional_restart_data",
182  false,
183  "True to skip additional data in equation system for restart.",
184  "This parameter is no longer used, as we do not load additional "
185  "vectors by default with restart");
186  params.addParam<bool>("skip_nl_system_check",
187  false,
188  "True to skip the NonlinearSystem check for work to do (e.g. Make sure "
189  "that there are variables to solve for).");
190  params.addParam<bool>("allow_initial_conditions_with_restart",
191  false,
192  "True to allow the user to specify initial conditions when restarting. "
193  "Initial conditions can override any restarted field");
194 
195  auto coverage_check_description = [](std::string scope, std::string list_param_name)
196  {
197  return "Controls, if and how a " + scope +
198  " subdomain coverage check is performed. "
199  "With 'TRUE' or 'ON' all subdomains are checked (the default). Setting 'FALSE' or 'OFF' "
200  "will disable the check for all subdomains. "
201  "To exclude a predefined set of subdomains 'SKIP_LIST' is to "
202  "be used, while the subdomains to skip are to be defined in the parameter '" +
203  list_param_name +
204  "'. To limit the check to a list of subdomains, 'ONLY_LIST' is to "
205  "be used (again, using the parameter '" +
206  list_param_name + "').";
207  };
208 
209  params.addParam<std::vector<SubdomainName>>(
210  "block",
211  {"ANY_BLOCK_ID"},
212  "List of subdomains for kernel coverage and material coverage checks. Setting this parameter "
213  "is equivalent to setting 'kernel_coverage_block_list' and 'material_coverage_block_list' as "
214  "well as using 'ONLY_LIST' as the coverage check mode.");
215 
216  MooseEnum kernel_coverage_check_modes("FALSE TRUE OFF ON SKIP_LIST ONLY_LIST", "TRUE");
217  params.addParam<MooseEnum>("kernel_coverage_check",
218  kernel_coverage_check_modes,
219  coverage_check_description("kernel", "kernel_coverage_block_list"));
220  params.addParam<std::vector<SubdomainName>>(
221  "kernel_coverage_block_list",
222  {},
223  "List of subdomains for kernel coverage check. The meaning of this list is controlled by the "
224  "parameter 'kernel_coverage_check' (whether this is the list of subdomains to be checked, "
225  "not to be checked or not taken into account).");
226  params.addParam<bool>(
227  "boundary_restricted_node_integrity_check",
228  true,
229  "Set to false to disable checking of boundary restricted nodal object variable dependencies, "
230  "e.g. are the variable dependencies defined on the selected boundaries?");
231  params.addParam<bool>("boundary_restricted_elem_integrity_check",
232  true,
233  "Set to false to disable checking of boundary restricted elemental object "
234  "variable dependencies, e.g. are the variable dependencies defined on the "
235  "selected boundaries?");
236  MooseEnum material_coverage_check_modes("FALSE TRUE OFF ON SKIP_LIST ONLY_LIST", "TRUE");
237  params.addParam<MooseEnum>(
238  "material_coverage_check",
239  material_coverage_check_modes,
240  coverage_check_description("material", "material_coverage_block_list"));
241  params.addParam<std::vector<SubdomainName>>(
242  "material_coverage_block_list",
243  {},
244  "List of subdomains for material coverage check. The meaning of this list is controlled by "
245  "the parameter 'material_coverage_check' (whether this is the list of subdomains to be "
246  "checked, not to be checked or not taken into account).");
247 
248  params.addParam<bool>("fv_bcs_integrity_check",
249  true,
250  "Set to false to disable checking of overlapping Dirichlet and Flux BCs "
251  "and/or multiple DirichletBCs per sideset");
252 
253  params.addParam<bool>(
254  "material_dependency_check", true, "Set to false to disable material dependency check");
255  params.addParam<bool>("parallel_barrier_messaging",
256  false,
257  "Displays messaging from parallel "
258  "barrier notifications when executing "
259  "or transferring to/from Multiapps "
260  "(default: false)");
261 
262  MooseEnum verbosity("false true extra", "false");
263  params.addParam<MooseEnum>("verbose_setup",
264  verbosity,
265  "Set to 'true' to have the problem report on any object created. Set "
266  "to 'extra' to also display all parameters.");
267  params.addParam<bool>("verbose_multiapps",
268  false,
269  "Set to True to enable verbose screen printing related to MultiApps");
270  params.addParam<bool>(
271  "verbose_restore",
272  false,
273  "Set to True to enable verbose screen printing related to solution restoration");
274 
275  params.addParam<FileNameNoExtension>("restart_file_base",
276  "File base name used for restart (e.g. "
277  "<path>/<filebase> or <path>/LATEST to "
278  "grab the latest file available)");
279 
280  params.addParam<std::vector<std::vector<TagName>>>(
281  "extra_tag_vectors",
282  {},
283  "Extra vectors to add to the system that can be filled by objects which compute residuals "
284  "and Jacobians (Kernels, BCs, etc.) by setting tags on them. The outer index is for which "
285  "nonlinear system the extra tag vectors should be added for");
286 
287  params.addParam<std::vector<std::vector<TagName>>>(
288  "not_zeroed_tag_vectors",
289  {},
290  "Extra vector tags which the sytem will not zero when other vector tags are zeroed. "
291  "The outer index is for which nonlinear system the extra tag vectors should be added for");
292 
293  params.addParam<std::vector<std::vector<TagName>>>(
294  "extra_tag_matrices",
295  {},
296  "Extra matrices to add to the system that can be filled "
297  "by objects which compute residuals and Jacobians "
298  "(Kernels, BCs, etc.) by setting tags on them. The outer index is for which "
299  "nonlinear system the extra tag vectors should be added for");
300 
301  params.addParam<std::vector<TagName>>(
302  "extra_tag_solutions",
303  {},
304  "Extra solution vectors to add to the system that can be used by "
305  "objects for coupling variable values stored in them.");
306 
307  params.addParam<bool>("previous_nl_solution_required",
308  false,
309  "True to indicate that this calculation requires a solution vector for "
310  "storing the previous nonlinear iteration.");
311 
312  params.addParam<std::vector<NonlinearSystemName>>(
313  "nl_sys_names", std::vector<NonlinearSystemName>{"nl0"}, "The nonlinear system names");
314 
315  params.addParam<std::vector<LinearSystemName>>("linear_sys_names", {}, "The linear system names");
316 
317  params.addParam<bool>("check_uo_aux_state",
318  false,
319  "True to turn on a check that no state presents during the evaluation of "
320  "user objects and aux kernels");
321 
322  params.addPrivateParam<MooseMesh *>("mesh");
323 
324  params.declareControllable("solve");
325 
326  params.addParam<bool>(
327  "allow_invalid_solution",
328  false,
329  "Set to true to allow convergence even though the solution has been marked as 'invalid'");
330  params.addParam<bool>("show_invalid_solution_console",
331  true,
332  "Set to true to show the invalid solution occurance summary in console");
333  params.addParam<bool>("immediately_print_invalid_solution",
334  false,
335  "Whether or not to report invalid solution warnings at the time the "
336  "warning is produced instead of after the calculation");
337 
338  params.addParam<bool>(
339  "identify_variable_groups_in_nl",
340  true,
341  "Whether to identify variable groups in nonlinear systems. This affects dof ordering");
342 
343  params.addParam<bool>(
344  "regard_general_exceptions_as_errors",
345  false,
346  "If we catch an exception during residual/Jacobian evaluaton for which we don't have "
347  "specific handling, immediately error instead of allowing the time step to be cut");
348 
349  params.addParam<bool>("use_hash_table_matrix_assembly",
350  false,
351  "Whether to assemble matrices using hash tables instead of preallocating "
352  "matrix memory. This can be a good option if the sparsity pattern changes "
353  "throughout the course of the simulation.");
354  params.addParam<bool>(
355  "restore_original_nonzero_pattern",
356  "Whether we should reset matrix memory for every Jacobian evaluation. This option is useful "
357  "if the sparsity pattern is constantly changing and you are using hash table assembly or if "
358  "you wish to continually restore the matrix to the originally preallocated sparsity pattern "
359  "computed by relationship managers.");
360 
361  params.addParamNamesToGroup(
362  "skip_nl_system_check kernel_coverage_check kernel_coverage_block_list "
363  "boundary_restricted_node_integrity_check "
364  "boundary_restricted_elem_integrity_check material_coverage_check "
365  "material_coverage_block_list fv_bcs_integrity_check "
366  "material_dependency_check check_uo_aux_state error_on_jacobian_nonzero_reallocation",
367  "Simulation checks");
368  params.addParamNamesToGroup("use_nonlinear previous_nl_solution_required nl_sys_names "
369  "ignore_zeros_in_jacobian identify_variable_groups_in_nl "
370  "use_hash_table_matrix_assembly restore_original_nonzero_pattern",
371  "Nonlinear system(s)");
372  params.addParamNamesToGroup(
373  "restart_file_base force_restart allow_initial_conditions_with_restart", "Restart");
374  params.addParamNamesToGroup(
375  "verbose_setup verbose_multiapps verbose_restore parallel_barrier_messaging", "Verbosity");
376  params.addParamNamesToGroup(
377  "null_space_dimension transpose_null_space_dimension near_null_space_dimension",
378  "Null space removal");
379  params.addParamNamesToGroup(
380  "extra_tag_vectors extra_tag_matrices extra_tag_solutions not_zeroed_tag_vectors",
381  "Contribution to tagged field data");
382  params.addParamNamesToGroup(
383  "allow_invalid_solution show_invalid_solution_console immediately_print_invalid_solution",
384  "Solution validity control");
385 
386  return params;
387 }
void addDeprecatedParam(const std::string &name, const T &value, const std::string &doc_string, const std::string &deprecation_message)
void addPrivateParam(const std::string &name, const T &value)
These method add a parameter to the InputParameters object which can be retrieved like any other para...
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
MooseMesh wraps a libMesh::Mesh object and enhances its capabilities by caching additional data and s...
Definition: MooseMesh.h:88
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void addParam(const std::string &name, const S &value, const std::string &doc_string)
These methods add an optional parameter and a documentation string to the InputParameters object...
static InputParameters validParams()
Definition: SubProblem.C:36
void declareControllable(const std::string &name, std::set< ExecFlagType > execute_flags={})
Declare the given parameters as controllable.
void addParamNamesToGroup(const std::string &space_delim_names, const std::string group_name)
This method takes a space delimited list of parameter names and adds them to the specified group name...

◆ vectorTagExists() [1/2]

virtual bool SubProblem::vectorTagExists ( const TagID  tag_id) const
inlinevirtualinherited

◆ vectorTagExists() [2/2]

bool SubProblem::vectorTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists by using Tag name.

Reimplemented in DisplacedProblem.

Definition at line 136 of file SubProblem.C.

137 {
138  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
139 
140  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
141  for (const auto & vector_tag : _vector_tags)
142  if (vector_tag._name == tag_name_upper)
143  return true;
144 
145  return false;
146 }
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241

◆ vectorTagName()

TagName SubProblem::vectorTagName ( const TagID  tag) const
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 221 of file SubProblem.C.

Referenced by SystemBase::closeTaggedVector(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), SystemBase::removeVector(), NonlinearSystemBase::residualGhosted(), DisplacedProblem::vectorTagName(), and SystemBase::zeroTaggedVector().

222 {
223  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
224  if (!vectorTagExists(tag_id))
225  mooseError("Vector tag with ID ", tag_id, " does not exist");
226 
227  return _vector_tags[tag_id]._name;
228 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ vectorTagNotZeroed()

bool SubProblem::vectorTagNotZeroed ( const TagID  tag) const
inherited

Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that is currently being checked
Returns
false if the tag is not within the set of vectors that are intended to not be zero or if the set is empty. returns true otherwise

Definition at line 155 of file SubProblem.C.

Referenced by SystemBase::zeroTaggedVector().

156 {
157  return _not_zeroed_tagged_vectors.count(tag);
158 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ vectorTagType()

Moose::VectorTagType SubProblem::vectorTagType ( const TagID  tag_id) const
virtualinherited

Reimplemented in DisplacedProblem.

Definition at line 231 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit(), TaggingInterface::TaggingInterface(), and DisplacedProblem::vectorTagType().

232 {
233  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
234  if (!vectorTagExists(tag_id))
235  mooseError("Vector tag with ID ", tag_id, " does not exist");
236 
237  return _vector_tags[tag_id]._type;
238 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ verboseMultiApps()

bool FEProblemBase::verboseMultiApps ( ) const
inline

Whether or not to use verbose printing for MultiApps.

Definition at line 1866 of file FEProblemBase.h.

Referenced by MultiApp::backup(), MultiApp::createApp(), MultiApp::restore(), FullSolveMultiApp::showStatusMessage(), and TransientMultiApp::solveStep().

1866 { return _verbose_multiapps; }
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ verifyVectorTags()

bool SubProblem::verifyVectorTags ( ) const
protectedinherited

Verify the integrity of _vector_tags and _typed_vector_tags.

Definition at line 241 of file SubProblem.C.

Referenced by SubProblem::addVectorTag(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), SubProblem::getVectorTags(), SubProblem::numVectorTags(), SubProblem::vectorTagExists(), SubProblem::vectorTagName(), and SubProblem::vectorTagType().

242 {
243  for (TagID tag_id = 0; tag_id < _vector_tags.size(); ++tag_id)
244  {
245  const auto & vector_tag = _vector_tags[tag_id];
246 
247  if (vector_tag._id != tag_id)
248  mooseError("Vector tag ", vector_tag._id, " id mismatch in _vector_tags");
249  if (vector_tag._type == Moose::VECTOR_TAG_ANY)
250  mooseError("Vector tag '", vector_tag._name, "' has type VECTOR_TAG_ANY");
251 
252  const auto search = _vector_tags_name_map.find(vector_tag._name);
253  if (search == _vector_tags_name_map.end())
254  mooseError("Vector tag ", vector_tag._id, " is not in _vector_tags_name_map");
255  else if (search->second != tag_id)
256  mooseError("Vector tag ", vector_tag._id, " has incorrect id in _vector_tags_name_map");
257 
258  unsigned int found_in_type = 0;
259  for (TagTypeID tag_type_id = 0; tag_type_id < _typed_vector_tags[vector_tag._type].size();
260  ++tag_type_id)
261  {
262  const auto & vector_tag_type = _typed_vector_tags[vector_tag._type][tag_type_id];
263  if (vector_tag_type == vector_tag)
264  {
265  ++found_in_type;
266  if (vector_tag_type._type_id != tag_type_id)
267  mooseError("Type ID for Vector tag ", tag_id, " is incorrect");
268  }
269  }
270 
271  if (found_in_type == 0)
272  mooseError("Vector tag ", tag_id, " not found in _typed_vector_tags");
273  if (found_in_type > 1)
274  mooseError("Vector tag ", tag_id, " found multiple times in _typed_vector_tags");
275  }
276 
277  unsigned int num_typed_vector_tags = 0;
278  for (const auto & typed_vector_tags : _typed_vector_tags)
279  num_typed_vector_tags += typed_vector_tags.size();
280  if (num_typed_vector_tags != _vector_tags.size())
281  mooseError("Size mismatch between _vector_tags and _typed_vector_tags");
282  if (_vector_tags_name_map.size() != _vector_tags.size())
283  mooseError("Size mismatch between _vector_tags and _vector_tags_name_map");
284 
285  return true;
286 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

Friends And Related Function Documentation

◆ AuxiliarySystem

friend class AuxiliarySystem
friend

Definition at line 3047 of file FEProblemBase.h.

◆ DisplacedProblem

friend class DisplacedProblem
friend

Definition at line 3052 of file FEProblemBase.h.

◆ Moose::PetscSupport::setSinglePetscOption

void Moose::PetscSupport::setSinglePetscOption ( const std::string &  name,
const std::string &  value,
FEProblemBase *const  problem 
)
friend

◆ MooseEigenSystem

friend class MooseEigenSystem
friend

Definition at line 3049 of file FEProblemBase.h.

◆ NonlinearSystemBase

friend class NonlinearSystemBase
friend

Definition at line 3048 of file FEProblemBase.h.

◆ Restartable

friend class Restartable
friend

Definition at line 3051 of file FEProblemBase.h.

◆ Resurrector

friend class Resurrector
friend

Definition at line 3050 of file FEProblemBase.h.

Member Data Documentation

◆ _action_factory

ActionFactory& ParallelParamObject::_action_factory
protectedinherited

◆ _active_elemental_moose_variables

std::vector<std::set<MooseVariableFieldBase *> > SubProblem::_active_elemental_moose_variables
protectedinherited

This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem)

Definition at line 1075 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::getActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _active_fe_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_matrix_tags
protectedinherited

◆ _active_fe_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_vector_tags
protectedinherited

◆ _active_sc_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_matrix_tags
protectedinherited

◆ _active_sc_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_vector_tags
protectedinherited

◆ _ad_grad_zero

std::vector<MooseArray<ADRealVectorValue> > FEProblemBase::_ad_grad_zero

Definition at line 2053 of file FEProblemBase.h.

Referenced by FEProblemBase(), updateMaxQps(), and ~FEProblemBase().

◆ _ad_second_zero

std::vector<MooseArray<ADRealTensorValue> > FEProblemBase::_ad_second_zero

Definition at line 2056 of file FEProblemBase.h.

Referenced by FEProblemBase(), updateMaxQps(), and ~FEProblemBase().

◆ _ad_zero

std::vector<MooseArray<ADReal> > FEProblemBase::_ad_zero

Definition at line 2051 of file FEProblemBase.h.

Referenced by FEProblemBase(), updateMaxQps(), and ~FEProblemBase().

◆ _adaptivity

Adaptivity FEProblemBase::_adaptivity
protected

◆ _all_materials

MaterialWarehouse FEProblemBase::_all_materials
protected

◆ _all_user_objects

ExecuteMooseObjectWarehouse<UserObject> FEProblemBase::_all_user_objects
protected

Definition at line 2711 of file FEProblemBase.h.

Referenced by addUserObject(), and getUserObjects().

◆ _allow_ics_during_restart

const bool FEProblemBase::_allow_ics_during_restart
private

Definition at line 3022 of file FEProblemBase.h.

Referenced by checkICRestartError().

◆ _allow_invalid_solution

const bool FEProblemBase::_allow_invalid_solution
private

Definition at line 3025 of file FEProblemBase.h.

Referenced by allowInvalidSolution().

◆ _app

MooseApp& MooseBase::_app
protectedinherited

The MOOSE application this is associated with.

Definition at line 353 of file MooseBase.h.

◆ _assembly

std::vector<std::vector<std::unique_ptr<Assembly> > > FEProblemBase::_assembly
protected

◆ _aux

std::shared_ptr<AuxiliarySystem> FEProblemBase::_aux
protected

The auxiliary system.

Definition at line 2648 of file FEProblemBase.h.

Referenced by addAuxArrayVariable(), addAuxKernel(), addAuxScalarKernel(), addAuxScalarVariable(), addAuxVariable(), addIndicator(), addMarker(), addMultiApp(), addObjectParamsHelper(), addTimeIntegrator(), addTransfer(), advanceState(), checkExceptionAndStopSolve(), computeBounds(), computeIndicators(), computeJacobianTags(), computeLinearSystemTags(), computeMarkers(), computePostCheck(), computeResidualAndJacobian(), computeResidualTags(), computeSystems(), computeUserObjectsInternal(), copySolutionsBackwards(), createQRules(), createTagMatrices(), createTagSolutions(), customSetup(), determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), duplicateVariableCheck(), EigenProblem::EigenProblem(), execute(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), getActualFieldVariable(), getArrayVariable(), getAuxiliarySystem(), getScalarVariable(), getStandardVariable(), getSystem(), getSystemBase(), getVariable(), getVariableNames(), getVectorVariable(), hasScalarVariable(), hasVariable(), init(), initialSetup(), meshChanged(), needBoundaryMaterialOnSide(), needSolutionState(), outputStep(), prepareFace(), projectInitialConditionOnCustomRange(), projectSolution(), reinitDirac(), reinitElem(), reinitElemPhys(), reinitNeighbor(), reinitNode(), reinitNodeFace(), reinitNodes(), reinitNodesNeighbor(), reinitScalars(), restoreOldSolutions(), restoreSolutions(), saveOldSolutions(), systemBaseAuxiliary(), systemNumForVariable(), timestepSetup(), updateActiveObjects(), and updateMeshXFEM().

◆ _aux_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_aux_evaluable_local_elem_range
protected

Definition at line 2928 of file FEProblemBase.h.

◆ _between_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_between_multi_app_transfers
protected

Transfers executed just before MultiApps to transfer data between them.

Definition at line 2729 of file FEProblemBase.h.

Referenced by addTransfer(), execMultiAppTransfers(), getMultiAppTransferWarehouse(), getTransfers(), initialSetup(), and updateActiveObjects().

◆ _block_mat_side_cache

std::vector<std::unordered_map<SubdomainID, bool> > FEProblemBase::_block_mat_side_cache
protected

Cache for calculating materials on side.

Definition at line 2735 of file FEProblemBase.h.

Referenced by FEProblemBase(), and needSubdomainMaterialOnSide().

◆ _bnd_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_bnd_mat_side_cache
protected

Cache for calculating materials on side.

Definition at line 2738 of file FEProblemBase.h.

Referenced by FEProblemBase(), and needBoundaryMaterialOnSide().

◆ _bnd_material_props

MaterialPropertyStorage& FEProblemBase::_bnd_material_props
protected

◆ _boundary_restricted_elem_integrity_check

const bool FEProblemBase::_boundary_restricted_elem_integrity_check
protected

whether to perform checking of boundary restricted elemental object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 2867 of file FEProblemBase.h.

Referenced by initialSetup().

◆ _boundary_restricted_node_integrity_check

const bool FEProblemBase::_boundary_restricted_node_integrity_check
protected

whether to perform checking of boundary restricted nodal object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 2863 of file FEProblemBase.h.

Referenced by initialSetup().

◆ _calculate_jacobian_in_uo

bool FEProblemBase::_calculate_jacobian_in_uo
protected

◆ _checking_uo_aux_state

bool FEProblemBase::_checking_uo_aux_state = false
private

Flag used to indicate whether we are doing the uo/aux state check in execute.

Definition at line 3071 of file FEProblemBase.h.

Referenced by checkingUOAuxState(), and execute().

◆ _cli_option_found

bool Problem::_cli_option_found
protectedinherited

True if the CLI option is found.

Definition at line 52 of file Problem.h.

Referenced by Problem::_setCLIOption().

◆ _cm

std::vector<std::unique_ptr<libMesh::CouplingMatrix> > FEProblemBase::_cm
protected

Coupling matrix for variables.

Definition at line 2651 of file FEProblemBase.h.

Referenced by areCoupled(), couplingMatrix(), FEProblemBase(), init(), and setCouplingMatrix().

◆ _color_output

bool Problem::_color_output
protectedinherited

True if we're going to attempt to write color output.

Definition at line 55 of file Problem.h.

◆ _computing_nonlinear_residual

bool SubProblem::_computing_nonlinear_residual
protectedinherited

Whether the non-linear residual is being evaluated.

Definition at line 1102 of file SubProblem.h.

Referenced by SubProblem::computingNonlinearResid(), and computingNonlinearResid().

◆ _computing_scaling_jacobian

bool FEProblemBase::_computing_scaling_jacobian = false
private

Flag used to indicate whether we are computing the scaling Jacobian.

Definition at line 3065 of file FEProblemBase.h.

Referenced by computingScalingJacobian().

◆ _computing_scaling_residual

bool FEProblemBase::_computing_scaling_residual = false
private

Flag used to indicate whether we are computing the scaling Residual.

Definition at line 3068 of file FEProblemBase.h.

Referenced by computingScalingResidual().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), NonlinearSystemBase::computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), computeLinearSystemTags(), NonlinearSystemBase::computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), execMultiApps(), execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), InversePowerMethod::init(), NonlinearEigen::init(), initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), EigenExecutionerBase::inversePowerIteration(), joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), restoreMultiApps(), restoreSolutions(), NonlinearSystemBase::setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), NonlinearSystem::solve(), FixedPointSolve::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and ~FEProblemBase().

◆ _const_jacobian

bool FEProblemBase::_const_jacobian
protected

true if the Jacobian is constant

Definition at line 2835 of file FEProblemBase.h.

Referenced by computeJacobianTags(), constJacobian(), and setConstJacobian().

◆ _control_warehouse

ExecuteMooseObjectWarehouse<Control> FEProblemBase::_control_warehouse
protected

The control logic warehouse.

Definition at line 2913 of file FEProblemBase.h.

Referenced by executeControls(), getControlWarehouse(), and updateActiveObjects().

◆ _convergences

MooseObjectWarehouse<Convergence> FEProblemBase::_convergences
protected

convergence warehouse

Definition at line 2669 of file FEProblemBase.h.

Referenced by addConvergence(), getConvergence(), getConvergenceObjects(), hasConvergence(), and initialSetup().

◆ _coupling

Moose::CouplingType FEProblemBase::_coupling
protected

Type of variable coupling.

Definition at line 2650 of file FEProblemBase.h.

Referenced by coupling(), init(), setCoupling(), and trustUserCouplingMatrix().

◆ _current_algebraic_bnd_node_range

std::unique_ptr<ConstBndNodeRange> FEProblemBase::_current_algebraic_bnd_node_range
protected

◆ _current_algebraic_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_current_algebraic_elem_range
protected

◆ _current_algebraic_node_range

std::unique_ptr<libMesh::ConstNodeRange> FEProblemBase::_current_algebraic_node_range
protected

Definition at line 2931 of file FEProblemBase.h.

Referenced by getCurrentAlgebraicNodeRange(), and setCurrentAlgebraicNodeRange().

◆ _current_execute_on_flag

ExecFlagType FEProblemBase::_current_execute_on_flag
protected

◆ _current_ic_state

unsigned short FEProblemBase::_current_ic_state
protected

Definition at line 2939 of file FEProblemBase.h.

Referenced by getCurrentICState(), and initialSetup().

◆ _current_linear_sys

LinearSystem* FEProblemBase::_current_linear_sys
protected

◆ _current_nl_sys

NonlinearSystemBase* FEProblemBase::_current_nl_sys
protected

◆ _current_residual_vector_tags

std::vector<VectorTag> FEProblemBase::_current_residual_vector_tags
private

A data member to store the residual vector tag(s) passed into computeResidualTag(s).

This data member will be used when APIs like cacheResidual, addCachedResiduals, etc. are called

Definition at line 3082 of file FEProblemBase.h.

Referenced by clearCurrentResidualVectorTags(), currentResidualVectorTags(), and setCurrentResidualVectorTags().

◆ _current_solver_sys

SolverSystem* FEProblemBase::_current_solver_sys
protected

The current solver system.

Definition at line 2633 of file FEProblemBase.h.

Referenced by setCurrentLinearSystem(), and setCurrentNonlinearSystem().

◆ _currently_computing_jacobian

bool SubProblem::_currently_computing_jacobian
protectedinherited

Flag to determine whether the problem is currently computing Jacobian.

Definition at line 1096 of file SubProblem.h.

Referenced by EigenProblem::computeJacobianBlocks(), computeJacobianBlocks(), computeJacobianTags(), SubProblem::currentlyComputingJacobian(), and SubProblem::setCurrentlyComputingJacobian().

◆ _currently_computing_residual

bool SubProblem::_currently_computing_residual
protectedinherited

Whether the residual is being evaluated.

Definition at line 1105 of file SubProblem.h.

Referenced by SubProblem::currentlyComputingResidual(), SubProblem::setCurrentlyComputingResidual(), and setCurrentlyComputingResidual().

◆ _currently_computing_residual_and_jacobian

bool SubProblem::_currently_computing_residual_and_jacobian
protectedinherited

Flag to determine whether the problem is currently computing the residual and Jacobian.

Definition at line 1099 of file SubProblem.h.

Referenced by SubProblem::currentlyComputingResidualAndJacobian(), and SubProblem::setCurrentlyComputingResidualAndJacobian().

◆ _cycles_completed

unsigned int FEProblemBase::_cycles_completed
protected

Definition at line 2794 of file FEProblemBase.h.

Referenced by adaptMesh(), getNumCyclesCompleted(), and initialAdaptMesh().

◆ _default_ghosting

bool SubProblem::_default_ghosting
protectedinherited

Whether or not to use default libMesh coupling.

Definition at line 1090 of file SubProblem.h.

Referenced by SubProblem::defaultGhosting().

◆ _dirac_kernel_info

DiracKernelInfo SubProblem::_dirac_kernel_info
protectedinherited

◆ _discrete_materials

MaterialWarehouse FEProblemBase::_discrete_materials
protected

◆ _displaced_mesh

MooseMesh* FEProblemBase::_displaced_mesh
protected

◆ _displaced_problem

std::shared_ptr<DisplacedProblem> FEProblemBase::_displaced_problem
protected

Definition at line 2802 of file FEProblemBase.h.

Referenced by adaptMesh(), addAnyRedistributers(), addAuxArrayVariable(), addAuxKernel(), addAuxScalarKernel(), addAuxScalarVariable(), addAuxVariable(), addCachedJacobian(), addCachedResidual(), addCachedResidualDirectly(), addConstraint(), addDGKernel(), addDiracKernel(), addDisplacedProblem(), addFunction(), addFunctorMaterial(), addFVKernel(), addGhostedBoundary(), addIndicator(), addInterfaceKernel(), addJacobian(), addJacobianBlockTags(), addJacobianLowerD(), addJacobianNeighbor(), addJacobianNeighborLowerD(), addMarker(), addMaterialHelper(), addMultiApp(), addNodalKernel(), addObjectParamsHelper(), addResidual(), addResidualLower(), addResidualNeighbor(), addScalarKernel(), addTimeIntegrator(), addTransfer(), addUserObject(), addVariable(), advanceState(), automaticScaling(), bumpAllQRuleOrder(), bumpVolumeQRuleOrder(), cacheJacobian(), cacheJacobianNeighbor(), cacheResidual(), cacheResidualNeighbor(), checkDisplacementOrders(), clearActiveElementalMooseVariables(), clearActiveFEVariableCoupleableMatrixTags(), clearActiveFEVariableCoupleableVectorTags(), clearActiveScalarVariableCoupleableMatrixTags(), clearActiveScalarVariableCoupleableVectorTags(), clearDiracInfo(), EigenProblem::computeJacobianBlocks(), computeJacobianBlocks(), computeJacobianTags(), computeResidualAndJacobian(), computeResidualTags(), computeUserObjectsInternal(), computingNonlinearResid(), createMortarInterface(), createQRules(), customSetup(), execute(), getDiracElements(), getDisplacedProblem(), getMortarUserObjects(), ghostGhostedBoundaries(), haveADObjects(), haveDisplaced(), init(), initialSetup(), initXFEM(), jacobianSetup(), mesh(), meshChanged(), outputStep(), possiblyRebuildGeomSearchPatches(), prepareAssembly(), prepareFace(), reinitBecauseOfGhostingOrNewGeomObjects(), reinitDirac(), reinitElem(), reinitElemFaceRef(), reinitElemNeighborAndLowerD(), reinitLowerDElem(), reinitNeighbor(), reinitNeighborFaceRef(), reinitNode(), reinitNodeFace(), reinitNodes(), reinitNodesNeighbor(), reinitOffDiagScalars(), reinitScalars(), resetState(), residualSetup(), restoreSolutions(), setActiveElementalMooseVariables(), setActiveFEVariableCoupleableMatrixTags(), setActiveFEVariableCoupleableVectorTags(), setActiveScalarVariableCoupleableMatrixTags(), setActiveScalarVariableCoupleableVectorTags(), setCurrentBoundaryID(), setCurrentLowerDElem(), setCurrentlyComputingResidual(), setCurrentSubdomainID(), setResidual(), setResidualNeighbor(), setResidualObjectParamsAndLog(), EigenProblem::solve(), solve(), timestepSetup(), uniformRefine(), and updateGeomSearch().

◆ _dt

Real& FEProblemBase::_dt
protected

Definition at line 2589 of file FEProblemBase.h.

Referenced by dt(), execMultiApps(), and FEProblemBase().

◆ _dt_old

Real& FEProblemBase::_dt_old
protected

Definition at line 2590 of file FEProblemBase.h.

Referenced by dtOld(), and FEProblemBase().

◆ _enabled

const bool& MooseObject::_enabled
protectedinherited

Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.

Definition at line 50 of file MooseObject.h.

Referenced by MooseObject::enabled().

◆ _error_on_jacobian_nonzero_reallocation

bool FEProblemBase::_error_on_jacobian_nonzero_reallocation
private

Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed.

Definition at line 3010 of file FEProblemBase.h.

Referenced by errorOnJacobianNonzeroReallocation(), and setErrorOnJacobianNonzeroReallocation().

◆ _evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_evaluable_local_elem_range
protected

Definition at line 2926 of file FEProblemBase.h.

Referenced by getEvaluableElementRange(), and meshChanged().

◆ _exception_message

std::string FEProblemBase::_exception_message
protected

The error message to go with an exception.

Definition at line 2907 of file FEProblemBase.h.

Referenced by checkExceptionAndStopSolve(), and setException().

◆ _factory

Factory& SubProblem::_factory
protectedinherited

◆ _fail_next_system_convergence_check

bool FEProblemBase::_fail_next_system_convergence_check
private

◆ _fe_matrix_tags

std::set<TagID> FEProblemBase::_fe_matrix_tags
protected

◆ _fe_vector_tags

std::set<TagID> FEProblemBase::_fe_vector_tags
protected

◆ _force_restart

const bool FEProblemBase::_force_restart
private

Definition at line 3021 of file FEProblemBase.h.

Referenced by initialSetup().

◆ _from_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_from_multi_app_transfers
protected

Transfers executed just after MultiApps to transfer data from them.

Definition at line 2726 of file FEProblemBase.h.

Referenced by addTransfer(), execMultiAppTransfers(), getMultiAppTransferWarehouse(), getTransfers(), initialSetup(), and updateActiveObjects().

◆ _functions

MooseObjectWarehouse<Function> FEProblemBase::_functions
protected

◆ _fv_bcs_integrity_check

bool FEProblemBase::_fv_bcs_integrity_check
protected

Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset.

Definition at line 2874 of file FEProblemBase.h.

Referenced by fvBCsIntegrityCheck().

◆ _fv_ics

FVInitialConditionWarehouse FEProblemBase::_fv_ics
protected

◆ _geometric_search_data

GeometricSearchData FEProblemBase::_geometric_search_data
protected

◆ _ghosted_elems

std::set<dof_id_type> SubProblem::_ghosted_elems
protectedinherited

Elements that should have Dofs ghosted to the local processor.

Definition at line 1093 of file SubProblem.h.

Referenced by addGhostedElem(), SubProblem::ghostedElems(), initialSetup(), meshChanged(), possiblyRebuildGeomSearchPatches(), and reinitBecauseOfGhostingOrNewGeomObjects().

◆ _grad_phi_zero

std::vector<VariablePhiGradient> FEProblemBase::_grad_phi_zero

Definition at line 2054 of file FEProblemBase.h.

Referenced by FEProblemBase(), initialSetup(), and ~FEProblemBase().

◆ _grad_zero

std::vector<VariableGradient> FEProblemBase::_grad_zero

Definition at line 2052 of file FEProblemBase.h.

Referenced by FEProblemBase(), reinitDirac(), updateMaxQps(), and ~FEProblemBase().

◆ _has_active_elemental_moose_variables

std::vector<unsigned int> SubProblem::_has_active_elemental_moose_variables
protectedinherited

Whether or not there is currently a list of active elemental moose variables.

Definition at line 1079 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::hasActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _has_active_material_properties

std::vector<unsigned char> FEProblemBase::_has_active_material_properties
protected

Whether there are active material properties on each thread.

Definition at line 2853 of file FEProblemBase.h.

Referenced by clearActiveMaterialProperties(), FEProblemBase(), hasActiveMaterialProperties(), and setActiveMaterialProperties().

◆ _has_constraints

bool FEProblemBase::_has_constraints
protected

Whether or not this system has any Constraints.

Definition at line 2820 of file FEProblemBase.h.

Referenced by addConstraint(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

◆ _has_dampers

bool FEProblemBase::_has_dampers
protected

Whether or not this system has any Dampers associated with it.

Definition at line 2817 of file FEProblemBase.h.

Referenced by addDamper(), computeDamping(), computePostCheck(), and hasDampers().

◆ _has_exception

bool FEProblemBase::_has_exception
protected

Whether or not an exception has occurred.

Definition at line 2892 of file FEProblemBase.h.

Referenced by checkExceptionAndStopSolve(), hasException(), and setException().

◆ _has_initialized_stateful

bool FEProblemBase::_has_initialized_stateful
protected

Whether nor not stateful materials have been initialized.

Definition at line 2832 of file FEProblemBase.h.

Referenced by initialSetup(), and meshChanged().

◆ _has_internal_edge_residual_objects

bool FEProblemBase::_has_internal_edge_residual_objects
private

Whether the problem has dgkernels or interface kernels.

Definition at line 3033 of file FEProblemBase.h.

Referenced by addDGKernel(), addInterfaceKernel(), hasNeighborCoupling(), and initialSetup().

◆ _has_jacobian

bool FEProblemBase::_has_jacobian
protected

Indicates if the Jacobian was computed.

Definition at line 2838 of file FEProblemBase.h.

Referenced by computeJacobianTags(), hasJacobian(), and meshChanged().

◆ _has_mortar

bool FEProblemBase::_has_mortar
private

Whether the simulation requires mortar coupling.

Definition at line 3055 of file FEProblemBase.h.

Referenced by createMortarInterface(), and hasMortarCoupling().

◆ _has_nonlocal_coupling

bool FEProblemBase::_has_nonlocal_coupling
protected

Indicates if nonlocal coupling is required/exists.

Definition at line 2847 of file FEProblemBase.h.

Referenced by addJacobian(), addJacobianBlockTags(), hasNonlocalCoupling(), prepareAssembly(), reinitDirac(), reinitElemPhys(), and timestepSetup().

◆ _has_time_integrator

bool FEProblemBase::_has_time_integrator
protected

Indicates whether or not this executioner has a time integrator (during setup)

Definition at line 2889 of file FEProblemBase.h.

Referenced by addTimeIntegrator(), and hasTimeIntegrator().

◆ _have_ad_objects

bool SubProblem::_have_ad_objects
protectedinherited

AD flag indicating whether any AD objects have been added.

Definition at line 1114 of file SubProblem.h.

Referenced by DisplacedProblem::haveADObjects(), SubProblem::haveADObjects(), and haveADObjects().

◆ _have_fv

bool FEProblemBase::_have_fv = false
private

Whether we are performing some calculations with finite volume discretizations.

Definition at line 3085 of file FEProblemBase.h.

Referenced by haveFV(), and needFV().

◆ _ics

InitialConditionWarehouse FEProblemBase::_ics
protected

Initial condition storage

Definition at line 2679 of file FEProblemBase.h.

Referenced by addInitialCondition(), getInitialConditionWarehouse(), and initialSetup().

◆ _identify_variable_groups_in_nl

const bool FEProblemBase::_identify_variable_groups_in_nl
private

Whether to identify variable groups in nonlinear systems. This affects dof ordering.

Definition at line 3077 of file FEProblemBase.h.

Referenced by identifyVariableGroupsInNL().

◆ _ignore_zeros_in_jacobian

bool FEProblemBase::_ignore_zeros_in_jacobian
private

Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

Definition at line 3017 of file FEProblemBase.h.

Referenced by ignoreZerosInJacobian(), setIgnoreZerosInJacobian(), and setPreserveMatrixSparsityPattern().

◆ _immediately_print_invalid_solution

const bool& FEProblemBase::_immediately_print_invalid_solution
private

Definition at line 3027 of file FEProblemBase.h.

Referenced by immediatelyPrintInvalidSolution().

◆ _indicators

MooseObjectWarehouse<Indicator> FEProblemBase::_indicators
protected

◆ _initialized

bool FEProblemBase::_initialized
protected

Definition at line 2561 of file FEProblemBase.h.

Referenced by init().

◆ _input_file_saved

bool FEProblemBase::_input_file_saved
protected

whether input file has been written

Definition at line 2814 of file FEProblemBase.h.

◆ _interface_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_interface_mat_side_cache
protected

Cache for calculating materials on interface.

Definition at line 2741 of file FEProblemBase.h.

Referenced by FEProblemBase(), and needInterfaceMaterialOnSide().

◆ _interface_materials

MaterialWarehouse FEProblemBase::_interface_materials
protected

◆ _internal_side_indicators

MooseObjectWarehouse<InternalSideIndicatorBase> FEProblemBase::_internal_side_indicators
protected

◆ _is_petsc_options_inserted

bool FEProblemBase::_is_petsc_options_inserted
protected

If or not PETSc options have been added to database.

Definition at line 2922 of file FEProblemBase.h.

Referenced by FEProblemBase(), petscOptionsInserted(), solve(), and solveLinearSystem().

◆ _kernel_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_kernel_coverage_blocks
protected

Definition at line 2859 of file FEProblemBase.h.

Referenced by checkProblemIntegrity(), and FEProblemBase().

◆ _kernel_coverage_check

CoverageCheckMode FEProblemBase::_kernel_coverage_check
protected

Determines whether and which subdomains are to be checked to ensure that they have an active kernel.

Definition at line 2858 of file FEProblemBase.h.

Referenced by checkProblemIntegrity(), FEProblemBase(), and setKernelCoverageCheck().

◆ _line_search

std::shared_ptr<LineSearch> FEProblemBase::_line_search
protected

◆ _linear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_linear_convergence_names
protected

Linear system(s) convergence name(s) (if any)

Definition at line 2566 of file FEProblemBase.h.

Referenced by getLinearConvergenceNames(), hasLinearConvergenceObjects(), and setLinearConvergenceNames().

◆ _linear_matrix_tags

std::set<TagID> FEProblemBase::_linear_matrix_tags
protected

Temporary storage for filtered matrix tags for linear systems.

Definition at line 2580 of file FEProblemBase.h.

Referenced by computeLinearSystemSys().

◆ _linear_sys_name_to_num

std::map<LinearSystemName, unsigned int> FEProblemBase::_linear_sys_name_to_num
protected

Map from linear system name to number.

Definition at line 2609 of file FEProblemBase.h.

Referenced by FEProblemBase(), and linearSysNum().

◆ _linear_sys_names

const std::vector<LinearSystemName> FEProblemBase::_linear_sys_names
protected

◆ _linear_systems

std::vector<std::shared_ptr<LinearSystem> > FEProblemBase::_linear_systems
protected

◆ _linear_vector_tags

std::set<TagID> FEProblemBase::_linear_vector_tags
protected

Temporary storage for filtered vector tags for linear systems.

Definition at line 2577 of file FEProblemBase.h.

Referenced by computeLinearSystemSys().

◆ _map_block_material_props

std::map<SubdomainID, std::set<std::string> > SubProblem::_map_block_material_props
protectedinherited

Map of material properties (block_id -> list of properties)

Definition at line 1052 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), SubProblem::getMaterialPropertyBlocks(), SubProblem::hasBlockMaterialProperty(), and SubProblem::storeSubdomainMatPropName().

◆ _map_block_material_props_check

std::map<SubdomainID, std::multimap<std::string, std::string> > SubProblem::_map_block_material_props_check
protectedinherited

Data structures of the requested material properties.

We store them in a map from boundary/block id to multimap. Each of the multimaps is a list of requestor object names to material property names.

Definition at line 1070 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), and SubProblem::storeSubdomainDelayedCheckMatProp().

◆ _map_boundary_material_props

std::map<BoundaryID, std::set<std::string> > SubProblem::_map_boundary_material_props
protectedinherited

Map for boundary material properties (boundary_id -> list of properties)

Definition at line 1055 of file SubProblem.h.

Referenced by SubProblem::checkBoundaryMatProps(), SubProblem::getMaterialPropertyBoundaryIDs(), SubProblem::hasBoundaryMaterialProperty(), and SubProblem::storeBoundaryMatPropName().

◆ _map_boundary_material_props_check

std::map<BoundaryID, std::multimap<std::string, std::string> > SubProblem::_map_boundary_material_props_check
protectedinherited

◆ _markers

MooseObjectWarehouse<Marker> FEProblemBase::_markers
protected

◆ _material_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_material_coverage_blocks
protected

Definition at line 2871 of file FEProblemBase.h.

Referenced by checkProblemIntegrity(), and FEProblemBase().

◆ _material_coverage_check

CoverageCheckMode FEProblemBase::_material_coverage_check
protected

Determines whether and which subdomains are to be checked to ensure that they have an active material.

Definition at line 2870 of file FEProblemBase.h.

Referenced by checkProblemIntegrity(), FEProblemBase(), and setMaterialCoverageCheck().

◆ _material_dependency_check

const bool FEProblemBase::_material_dependency_check
protected

Determines whether a check to verify material dependencies on every subdomain.

Definition at line 2877 of file FEProblemBase.h.

Referenced by checkProblemIntegrity().

◆ _material_prop_registry

MaterialPropertyRegistry FEProblemBase::_material_prop_registry
protected

Definition at line 2685 of file FEProblemBase.h.

Referenced by getMaterialPropertyRegistry().

◆ _material_property_requested

std::set<std::string> SubProblem::_material_property_requested
protectedinherited

set containing all material property names that have been requested by getMaterialProperty*

Definition at line 1062 of file SubProblem.h.

Referenced by SubProblem::isMatPropRequested(), and SubProblem::markMatPropRequested().

◆ _material_props

MaterialPropertyStorage& FEProblemBase::_material_props
protected

◆ _materials

MaterialWarehouse FEProblemBase::_materials
protected

◆ _matrix_tag_id_to_tag_name

std::map<TagID, TagName> SubProblem::_matrix_tag_id_to_tag_name
protectedinherited

Reverse map.

Definition at line 1044 of file SubProblem.h.

Referenced by SubProblem::addMatrixTag(), SubProblem::matrixTagExists(), and SubProblem::matrixTagName().

◆ _matrix_tag_name_to_tag_id

std::map<TagName, TagID> SubProblem::_matrix_tag_name_to_tag_id
protectedinherited

◆ _max_qps

unsigned int FEProblemBase::_max_qps
protected

Maximum number of quadrature points used in the problem.

Definition at line 2883 of file FEProblemBase.h.

Referenced by getMaxQps(), reinitDirac(), and updateMaxQps().

◆ _max_scalar_order

libMesh::Order FEProblemBase::_max_scalar_order
protected

Maximum scalar variable order.

Definition at line 2886 of file FEProblemBase.h.

Referenced by addAuxScalarVariable(), and getMaxScalarOrder().

◆ _mesh

MooseMesh& FEProblemBase::_mesh
protected

◆ _mesh_divisions

MooseObjectWarehouse<MeshDivision> FEProblemBase::_mesh_divisions
protected

Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best.

Definition at line 2663 of file FEProblemBase.h.

Referenced by addMeshDivision(), and getMeshDivision().

◆ _mortar_data

MortarData FEProblemBase::_mortar_data
protected

◆ _multi_apps

ExecuteMooseObjectWarehouse<MultiApp> FEProblemBase::_multi_apps
protected

◆ _multiapp_fixed_point_convergence_name

std::optional<ConvergenceName> FEProblemBase::_multiapp_fixed_point_convergence_name
protected

◆ _name

const std::string& MooseBase::_name
protectedinherited

The name of this class.

Definition at line 359 of file MooseBase.h.

Referenced by AddBCAction::act(), AddConstraintAction::act(), AddPostprocessorAction::act(), PartitionerAction::act(), AddMeshGeneratorAction::act(), AddDamperAction::act(), AddDGKernelAction::act(), AddFVInterfaceKernelAction::act(), AddScalarKernelAction::act(), AddVectorPostprocessorAction::act(), AddNodalKernelAction::act(), AddInitialConditionAction::act(), AddTransferAction::act(), AddDiracKernelAction::act(), AddInterfaceKernelAction::act(), AddUserObjectAction::act(), AddFVInitialConditionAction::act(), AddKernelAction::act(), ReadExecutorParamsAction::act(), AddFunctorMaterialAction::act(), AddMarkerAction::act(), AddMaterialAction::act(), AddIndicatorAction::act(), AddMultiAppAction::act(), AddPositionsAction::act(), AddReporterAction::act(), AddTimesAction::act(), AddFieldSplitAction::act(), AddFVKernelAction::act(), AddFVBCAction::act(), AddHDGKernelAction::act(), AddTimeStepperAction::act(), AddDistributionAction::act(), SetupPreconditionerAction::act(), SetupTimeIntegratorAction::act(), AddFunctionAction::act(), AddConvergenceAction::act(), AddMeshDivisionAction::act(), AddOutputAction::act(), AddLinearFVBCAction::act(), AddLinearFVKernelAction::act(), AddCorrectorAction::act(), AddMeshModifiersAction::act(), AddSamplerAction::act(), AddControlAction::act(), AddMFEMFESpaceAction::act(), AddMFEMSubMeshAction::act(), AddMFEMPreconditionerAction::act(), AddMFEMSolverAction::act(), AddPeriodicBCAction::act(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), CombinerGenerator::CombinerGenerator(), Executor::Executor(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), FunctionDT::FunctionDT(), FillBetweenPointVectorsGenerator::generate(), FillBetweenSidesetsGenerator::generate(), FillBetweenCurvesGenerator::generate(), MooseBase::MooseBase(), NearestPointBase< LayeredSideDiffusiveFluxAverage, SideIntegralVariableUserObject >::name(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseBase::setData(), and AddVariableAction::varName().

◆ _need_to_add_default_multiapp_fixed_point_convergence

bool FEProblemBase::_need_to_add_default_multiapp_fixed_point_convergence
protected

Flag that the problem needs to add the default fixed point convergence.

Definition at line 2595 of file FEProblemBase.h.

Referenced by needToAddDefaultMultiAppFixedPointConvergence(), and setNeedToAddDefaultMultiAppFixedPointConvergence().

◆ _need_to_add_default_nonlinear_convergence

bool FEProblemBase::_need_to_add_default_nonlinear_convergence
protected

Flag that the problem needs to add the default nonlinear convergence.

Definition at line 2593 of file FEProblemBase.h.

Referenced by needToAddDefaultNonlinearConvergence(), and setNeedToAddDefaultNonlinearConvergence().

◆ _need_to_add_default_steady_state_convergence

bool FEProblemBase::_need_to_add_default_steady_state_convergence
protected

Flag that the problem needs to add the default steady convergence.

Definition at line 2597 of file FEProblemBase.h.

Referenced by needToAddDefaultSteadyStateConvergence(), and setNeedToAddDefaultSteadyStateConvergence().

◆ _needs_old_newton_iter

bool FEProblemBase::_needs_old_newton_iter
protected

Indicates that we need to compute variable values for previous Newton iteration.

Definition at line 2841 of file FEProblemBase.h.

◆ _neighbor_material_props

MaterialPropertyStorage& FEProblemBase::_neighbor_material_props
protected

◆ _nl

std::vector<std::shared_ptr<NonlinearSystemBase> > FEProblemBase::_nl
protected

◆ _nl_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_nl_evaluable_local_elem_range
protected

Definition at line 2927 of file FEProblemBase.h.

Referenced by getNonlinearEvaluableElementRange(), and meshChanged().

◆ _nl_sys_name_to_num

std::map<NonlinearSystemName, unsigned int> FEProblemBase::_nl_sys_name_to_num
protected

Map from nonlinear system name to number.

Definition at line 2627 of file FEProblemBase.h.

Referenced by FEProblemBase(), and nlSysNum().

◆ _nl_sys_names

const std::vector<NonlinearSystemName> FEProblemBase::_nl_sys_names
protected

◆ _nonlinear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_nonlinear_convergence_names
protected

Nonlinear system(s) convergence name(s)

Definition at line 2564 of file FEProblemBase.h.

Referenced by getNonlinearConvergenceNames(), and setNonlinearConvergenceNames().

◆ _nonlocal_cm

std::vector<libMesh::CouplingMatrix> FEProblemBase::_nonlocal_cm
private

nonlocal coupling matrix

Definition at line 3092 of file FEProblemBase.h.

Referenced by addJacobianBlockTags(), FEProblemBase(), nonlocalCouplingMatrix(), and setNonlocalCouplingMatrix().

◆ _nonlocal_integrated_bcs

MooseObjectWarehouse<IntegratedBCBase> FEProblemBase::_nonlocal_integrated_bcs
protected

nonlocal integrated_bcs

Definition at line 2675 of file FEProblemBase.h.

Referenced by checkNonlocalCoupling(), setNonlocalCouplingMatrix(), and timestepSetup().

◆ _nonlocal_kernels

MooseObjectWarehouse<KernelBase> FEProblemBase::_nonlocal_kernels
protected

nonlocal kernels

Definition at line 2672 of file FEProblemBase.h.

Referenced by checkNonlocalCoupling(), setNonlocalCouplingMatrix(), and timestepSetup().

◆ _not_zeroed_tagged_vectors

std::unordered_set<TagID> SubProblem::_not_zeroed_tagged_vectors
protectedinherited

the list of vector tags that will not be zeroed when all other tags are

Definition at line 1117 of file SubProblem.h.

Referenced by SubProblem::addNotZeroedVectorTag(), restoreSolutions(), and SubProblem::vectorTagNotZeroed().

◆ _notify_when_mesh_changes

std::vector<MeshChangedInterface *> FEProblemBase::_notify_when_mesh_changes
protected

Objects to be notified when the mesh changes.

Definition at line 2744 of file FEProblemBase.h.

Referenced by meshChanged(), and notifyWhenMeshChanges().

◆ _notify_when_mesh_displaces

std::vector<MeshDisplacedInterface *> FEProblemBase::_notify_when_mesh_displaces
protected

Objects to be notified when the mesh displaces.

Definition at line 2747 of file FEProblemBase.h.

Referenced by meshDisplaced(), and notifyWhenMeshDisplaces().

◆ _num_grid_steps

unsigned int FEProblemBase::_num_grid_steps
private

Number of steps in a grid sequence.

Definition at line 3058 of file FEProblemBase.h.

Referenced by addAnyRedistributers(), checkProblemIntegrity(), initialSetup(), numGridSteps(), and timestepSetup().

◆ _num_linear_sys

const std::size_t FEProblemBase::_num_linear_sys
protected

The number of linear systems.

Definition at line 2603 of file FEProblemBase.h.

Referenced by FEProblem::FEProblem(), FEProblemBase(), numLinearSystems(), and numSolverSystems().

◆ _num_nl_sys

const std::size_t FEProblemBase::_num_nl_sys
protected

◆ _parallel_barrier_messaging

bool FEProblemBase::_parallel_barrier_messaging
protected

Whether or not information about how many transfers have completed is printed.

Definition at line 2895 of file FEProblemBase.h.

Referenced by backupMultiApps(), execMultiApps(), execMultiAppTransfers(), finishMultiAppStep(), restoreMultiApps(), and setParallelBarrierMessaging().

◆ _pars

const InputParameters& MooseBase::_pars
protectedinherited

The object's parameters.

Definition at line 362 of file MooseBase.h.

Referenced by AddFVICAction::act(), AddICAction::act(), CreateProblemAction::act(), CreateProblemDefaultAction::act(), SetupMeshAction::act(), ComposeTimeStepperAction::act(), SetupDebugAction::act(), AddAuxKernelAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FunctorMaterial::addFunctorPropertyByBlocks(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), PiecewiseTabularBase::buildFromFile(), PNGOutput::calculateRescalingValues(), MooseBase::callMooseError(), MooseBase::connectControllableParams(), Console::Console(), MooseApp::copyInputs(), MaterialBase::declareADProperty(), MaterialBase::declareProperty(), FEProblemSolve::FEProblemSolve(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FileMeshGenerator::generate(), MooseBase::getBase(), MooseBase::getCheckedPointerParam(), MaterialBase::getGenericZeroMaterialProperty(), MooseBase::getHitNode(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getParam(), MooseBase::hasBase(), MeshGenerator::hasGenerateData(), AddVariableAction::init(), AdvancedOutput::initExecutionTypes(), Console::initialSetup(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MultiApp::keepSolutionDuringRestore(), MooseBase::messagePrefix(), MooseBase::MooseBase(), MooseApp::outputMachineReadableData(), MooseBase::paramError(), GlobalParamsAction::parameters(), MooseBase::parameters(), MooseBase::paramInfo(), MooseBase::paramWarning(), MooseMesh::prepare(), Eigenvalue::prepareSolverOptions(), MooseMesh::setCoordSystem(), MooseMesh::setPartitionerHelper(), SetupMeshAction::setupMesh(), TransientBase::setupTimeIntegrator(), MooseApp::showInputs(), and MooseBase::uniqueName().

◆ _petsc_option_data_base

PetscOptions FEProblemBase::_petsc_option_data_base
protected

◆ _petsc_options

Moose::PetscSupport::PetscOptions FEProblemBase::_petsc_options
protected

PETSc option storage.

Definition at line 2916 of file FEProblemBase.h.

Referenced by getPetscOptions(), solve(), and solveLinearSystem().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _phi_zero

std::vector<VariablePhiValue> FEProblemBase::_phi_zero

Definition at line 2050 of file FEProblemBase.h.

Referenced by FEProblemBase(), initialSetup(), and ~FEProblemBase().

◆ _point_zero

std::vector<Point> FEProblemBase::_point_zero

Definition at line 2058 of file FEProblemBase.h.

Referenced by FEProblemBase().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _preserve_matrix_sparsity_pattern

bool FEProblemBase::_preserve_matrix_sparsity_pattern
private

Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually.

Definition at line 3019 of file FEProblemBase.h.

Referenced by preserveMatrixSparsityPattern(), and setPreserveMatrixSparsityPattern().

◆ _previous_nl_solution_required

bool FEProblemBase::_previous_nl_solution_required
protected

Indicates we need to save the previous NL iteration variable values.

Definition at line 2844 of file FEProblemBase.h.

Referenced by createTagSolutions().

◆ _print_execution_on

ExecFlagEnum FEProblemBase::_print_execution_on
private

When to print the execution of loops.

Definition at line 3074 of file FEProblemBase.h.

Referenced by setExecutionPrinting(), and shouldPrintExecution().

◆ _random_data_objects

std::map<std::string, std::unique_ptr<RandomData> > FEProblemBase::_random_data_objects
protected

◆ _real_zero

std::vector<Real> FEProblemBase::_real_zero

Convenience zeros.

Definition at line 2047 of file FEProblemBase.h.

Referenced by FEProblemBase().

◆ _regard_general_exceptions_as_errors

const bool FEProblemBase::_regard_general_exceptions_as_errors
private

If we catch an exception during residual/Jacobian evaluaton for which we don't have specific handling, immediately error instead of allowing the time step to be cut.

Definition at line 3089 of file FEProblemBase.h.

Referenced by handleException().

◆ _reinit_displaced_elem

bool FEProblemBase::_reinit_displaced_elem
protected

◆ _reinit_displaced_face

bool FEProblemBase::_reinit_displaced_face
protected

◆ _reinit_displaced_neighbor

bool FEProblemBase::_reinit_displaced_neighbor
protected

◆ _reporter_data

ReporterData FEProblemBase::_reporter_data
protected

◆ _req

The EquationSystems object, wrapped for restart.

Definition at line 2535 of file FEProblemBase.h.

Referenced by es(), and initialSetup().

◆ _requires_nonlocal_coupling

bool FEProblemBase::_requires_nonlocal_coupling
private

nonlocal coupling requirement flag

Definition at line 3095 of file FEProblemBase.h.

Referenced by checkNonlocalCoupling(), checkNonlocalCouplingRequirement(), initialSetup(), and timestepSetup().

◆ _restartable_app

MooseApp& Restartable::_restartable_app
protectedinherited

Reference to the application.

Definition at line 227 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp(), and Restartable::registerRestartableNameWithFilterOnApp().

◆ _restartable_read_only

const bool Restartable::_restartable_read_only
protectedinherited

Flag for toggling read only status (see ReporterData)

Definition at line 236 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp().

◆ _restartable_system_name

const std::string Restartable::_restartable_system_name
protectedinherited

The system name this object is in.

Definition at line 230 of file Restartable.h.

Referenced by Restartable::restartableName().

◆ _restartable_tid

const THREAD_ID Restartable::_restartable_tid
protectedinherited

The thread ID for this object.

Definition at line 233 of file Restartable.h.

Referenced by Restartable::declareRestartableDataHelper().

◆ _restore_original_nonzero_pattern

const bool FEProblemBase::_restore_original_nonzero_pattern
private

Whether we should restore the original nonzero pattern for every Jacobian evaluation.

This option is useful if the sparsity pattern is constantly changing and you are using hash table assembly or if you wish to continually restore the matrix to the originally preallocated sparsity pattern computed by relationship managers.

Definition at line 3015 of file FEProblemBase.h.

Referenced by computeJacobianTags(), and restoreOriginalNonzeroPattern().

◆ _safe_access_tagged_matrices

bool SubProblem::_safe_access_tagged_matrices
protectedinherited

Is it safe to retrieve data from tagged matrices.

Definition at line 1108 of file SubProblem.h.

Referenced by computeJacobianTags(), computeLinearSystemTags(), computeResidualAndJacobian(), resetState(), and SubProblem::safeAccessTaggedMatrices().

◆ _safe_access_tagged_vectors

bool SubProblem::_safe_access_tagged_vectors
protectedinherited

Is it safe to retrieve data from tagged vectors.

Definition at line 1111 of file SubProblem.h.

Referenced by computeLinearSystemTags(), computeResidualAndJacobian(), computeResidualTags(), resetState(), and SubProblem::safeAccessTaggedVectors().

◆ _scalar_ics

ScalarInitialConditionWarehouse FEProblemBase::_scalar_ics
protected

◆ _scalar_zero

std::vector<VariableValue> FEProblemBase::_scalar_zero

Definition at line 2048 of file FEProblemBase.h.

Referenced by FEProblemBase(), reinitDirac(), updateMaxQps(), and ~FEProblemBase().

◆ _second_phi_zero

std::vector<VariablePhiSecond> FEProblemBase::_second_phi_zero

Definition at line 2057 of file FEProblemBase.h.

Referenced by FEProblemBase(), initialSetup(), and ~FEProblemBase().

◆ _second_zero

std::vector<VariableSecond> FEProblemBase::_second_zero

Definition at line 2055 of file FEProblemBase.h.

Referenced by FEProblemBase(), reinitDirac(), updateMaxQps(), and ~FEProblemBase().

◆ _show_invalid_solution_console

const bool FEProblemBase::_show_invalid_solution_console
private

Definition at line 3026 of file FEProblemBase.h.

Referenced by showInvalidSolutionConsole().

◆ _skip_exception_check

bool FEProblemBase::_skip_exception_check
protected

If or not skip 'exception and stop solve'.

Definition at line 2826 of file FEProblemBase.h.

Referenced by checkExceptionAndStopSolve(), initialSetup(), and skipExceptionCheck().

◆ _skip_nl_system_check

const bool FEProblemBase::_skip_nl_system_check
private

Definition at line 3023 of file FEProblemBase.h.

Referenced by checkProblemIntegrity(), and init().

◆ _snesmf_reuse_base

bool FEProblemBase::_snesmf_reuse_base
protected

If or not to resuse the base vector for matrix-free calculation.

Definition at line 2823 of file FEProblemBase.h.

Referenced by setSNESMFReuseBase(), and useSNESMFReuseBase().

◆ _snesmf_reuse_base_set_by_user

bool FEProblemBase::_snesmf_reuse_base_set_by_user
protected

If or not _snesmf_reuse_base is set by user.

Definition at line 2829 of file FEProblemBase.h.

Referenced by isSNESMFReuseBaseSetbyUser(), and setSNESMFReuseBase().

◆ _solve

const bool& FEProblemBase::_solve
protected

Whether or not to actually solve the nonlinear system.

Definition at line 2583 of file FEProblemBase.h.

Referenced by checkProblemIntegrity(), FEProblemBase(), init(), shouldSolve(), EigenProblem::solve(), solve(), solveLinearSystem(), EigenProblem::solverSystemConverged(), and solverSystemConverged().

◆ _solver_params

std::vector<SolverParams> FEProblemBase::_solver_params
protected

Definition at line 2855 of file FEProblemBase.h.

Referenced by FEProblemBase(), solve(), solveLinearSystem(), and solverParams().

◆ _solver_sys_name_to_num

std::map<SolverSystemName, unsigned int> FEProblemBase::_solver_sys_name_to_num
protected

Map connecting solver system names with their respective systems.

Definition at line 2642 of file FEProblemBase.h.

Referenced by FEProblemBase(), and solverSysNum().

◆ _solver_sys_names

std::vector<SolverSystemName> FEProblemBase::_solver_sys_names
protected

The union of nonlinear and linear system names.

Definition at line 2645 of file FEProblemBase.h.

Referenced by FEProblemBase(), getSolverSystemNames(), Moose::PetscSupport::setSinglePetscOption(), and solverSysNum().

◆ _solver_systems

std::vector<std::shared_ptr<SolverSystem> > FEProblemBase::_solver_systems
protected

◆ _solver_var_to_sys_num

std::map<SolverVariableName, unsigned int> FEProblemBase::_solver_var_to_sys_num
protected

Map connecting variable names with their respective solver systems.

Definition at line 2639 of file FEProblemBase.h.

Referenced by addVariable(), and determineSolverSystem().

◆ _started_initial_setup

bool FEProblemBase::_started_initial_setup
private

At or beyond initialSteup stage.

Definition at line 3030 of file FEProblemBase.h.

Referenced by initialSetup(), and startedInitialSetup().

◆ _steady_state_convergence_name

std::optional<ConvergenceName> FEProblemBase::_steady_state_convergence_name
protected

Steady-state detection convergence name.

Definition at line 2570 of file FEProblemBase.h.

Referenced by getSteadyStateConvergenceName(), hasSetSteadyStateConvergenceName(), and setSteadyStateConvergenceName().

◆ _subspace_dim

std::map<std::string, unsigned int> FEProblemBase::_subspace_dim
protected

Dimension of the subspace spanned by the vectors with a given prefix.

Definition at line 2654 of file FEProblemBase.h.

Referenced by initNullSpaceVectors(), and subspaceDim().

◆ _t_step

int& FEProblemBase::_t_step
protected

Definition at line 2588 of file FEProblemBase.h.

Referenced by FEProblemBase(), timeStep(), and timestepSetup().

◆ _termination_requested

bool Problem::_termination_requested
protectedinherited

True if termination of the solve has been requested.

Definition at line 58 of file Problem.h.

Referenced by Problem::isSolveTerminationRequested(), and Problem::terminateSolve().

◆ _time

Real& FEProblemBase::_time
protected

◆ _time_old

Real& FEProblemBase::_time_old
protected

Definition at line 2587 of file FEProblemBase.h.

Referenced by FEProblemBase(), initialSetup(), and timeOld().

◆ _to_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_to_multi_app_transfers
protected

Transfers executed just before MultiApps to transfer data to them.

Definition at line 2723 of file FEProblemBase.h.

Referenced by addTransfer(), execMultiAppTransfers(), getMultiAppTransferWarehouse(), getTransfers(), initialSetup(), and updateActiveObjects().

◆ _transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_transfers
protected

Normal Transfers.

Definition at line 2720 of file FEProblemBase.h.

Referenced by addTransfer(), execTransfers(), initialSetup(), and updateActiveObjects().

◆ _transient

bool FEProblemBase::_transient
protected

Definition at line 2585 of file FEProblemBase.h.

Referenced by isTransient(), and transient().

◆ _transient_multi_apps

ExecuteMooseObjectWarehouse<TransientMultiApp> FEProblemBase::_transient_multi_apps
protected

Storage for TransientMultiApps (only needed for calling 'computeDT')

Definition at line 2717 of file FEProblemBase.h.

Referenced by addMultiApp(), computeMultiAppsDT(), and updateActiveObjects().

◆ _trust_user_coupling_matrix

bool FEProblemBase::_trust_user_coupling_matrix = false
private

Whether to trust the user coupling matrix no matter what.

See https://github.com/idaholab/moose/issues/16395 for detailed background

Definition at line 3062 of file FEProblemBase.h.

Referenced by setCoupling(), and trustUserCouplingMatrix().

◆ _type

const std::string& MooseBase::_type
protectedinherited

◆ _u_dot_old_requested

bool FEProblemBase::_u_dot_old_requested
private

Whether old solution time derivative needs to be stored.

Definition at line 3042 of file FEProblemBase.h.

Referenced by setUDotOldRequested(), and uDotOldRequested().

◆ _u_dot_requested

bool FEProblemBase::_u_dot_requested
private

Whether solution time derivative needs to be stored.

Definition at line 3036 of file FEProblemBase.h.

Referenced by setUDotRequested(), uDotOldRequested(), and uDotRequested().

◆ _u_dotdot_old_requested

bool FEProblemBase::_u_dotdot_old_requested
private

Whether old solution second time derivative needs to be stored.

Definition at line 3045 of file FEProblemBase.h.

Referenced by setUDotDotOldRequested(), and uDotDotOldRequested().

◆ _u_dotdot_requested

bool FEProblemBase::_u_dotdot_requested
private

Whether solution second time derivative needs to be stored.

Definition at line 3039 of file FEProblemBase.h.

Referenced by setUDotDotRequested(), uDotDotOldRequested(), and uDotDotRequested().

◆ _uo_aux_state_check

const bool FEProblemBase::_uo_aux_state_check
protected

Whether or not checking the state of uo/aux evaluation.

Definition at line 2880 of file FEProblemBase.h.

Referenced by execute(), and hasUOAuxStateCheck().

◆ _uo_jacobian_moose_vars

std::vector<std::vector<const MooseVariableFEBase *> > FEProblemBase::_uo_jacobian_moose_vars
protected

◆ _use_hash_table_matrix_assembly

const bool FEProblemBase::_use_hash_table_matrix_assembly
protected

Whether to assemble matrices using hash tables instead of preallocating matrix memory.

This can be a good option if the sparsity pattern changes throughout the course of the simulation

Definition at line 2943 of file FEProblemBase.h.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

◆ _using_ad_mat_props

bool FEProblemBase::_using_ad_mat_props
protected

Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property.

Definition at line 2936 of file FEProblemBase.h.

◆ _using_default_nl

const bool FEProblemBase::_using_default_nl
protected

Boolean to check if we have the default nonlinear system.

Definition at line 2615 of file FEProblemBase.h.

◆ _var_dof_map

std::map<std::string, std::vector<dof_id_type> > SubProblem::_var_dof_map
inherited

◆ _vector_curl_zero

std::vector<VectorVariableCurl> FEProblemBase::_vector_curl_zero

Definition at line 2060 of file FEProblemBase.h.

Referenced by FEProblemBase(), reinitDirac(), updateMaxQps(), and ~FEProblemBase().

◆ _vector_zero

std::vector<VectorVariableValue> FEProblemBase::_vector_zero

Definition at line 2059 of file FEProblemBase.h.

Referenced by FEProblemBase(), reinitDirac(), updateMaxQps(), and ~FEProblemBase().

◆ _verbose_multiapps

bool FEProblemBase::_verbose_multiapps
protected

Whether or not to be verbose with multiapps.

Definition at line 2901 of file FEProblemBase.h.

Referenced by backupMultiApps(), execMultiApps(), execMultiAppTransfers(), finishMultiAppStep(), restoreMultiApps(), setVerboseProblem(), and verboseMultiApps().

◆ _verbose_restore

bool FEProblemBase::_verbose_restore
protected

Whether or not to be verbose on solution restoration post a failed time step.

Definition at line 2904 of file FEProblemBase.h.

Referenced by restoreSolutions(), and setVerboseProblem().

◆ _verbose_setup

MooseEnum FEProblemBase::_verbose_setup
protected

Whether or not to be verbose during setup.

Definition at line 2898 of file FEProblemBase.h.

Referenced by logAdd(), and setVerboseProblem().

◆ _xfem

std::shared_ptr<XFEMInterface> FEProblemBase::_xfem
protected

Pointer to XFEM controller.

Definition at line 2798 of file FEProblemBase.h.

Referenced by getXFEM(), haveXFEM(), initXFEM(), and updateMeshXFEM().

◆ _zero

std::vector<VariableValue> FEProblemBase::_zero

Definition at line 2049 of file FEProblemBase.h.

Referenced by FEProblemBase(), reinitDirac(), updateMaxQps(), and ~FEProblemBase().

◆ _zero_block_material_props

std::map<SubdomainID, std::set<MaterialPropertyName> > SubProblem::_zero_block_material_props
protectedinherited

Set of properties returned as zero properties.

Definition at line 1058 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), checkDependMaterialsHelper(), and SubProblem::storeSubdomainZeroMatProp().

◆ _zero_boundary_material_props

std::map<BoundaryID, std::set<MaterialPropertyName> > SubProblem::_zero_boundary_material_props
protectedinherited

◆ app_param

const std::string MooseBase::app_param = "_moose_app"
staticinherited

◆ moose_base_param

const std::string MooseBase::moose_base_param = "_moose_base"
staticinherited

The name of the parameter that contains the moose system base.

Definition at line 61 of file MooseBase.h.

Referenced by InputParameters::getBase(), InputParameters::hasBase(), and InputParameters::registerBase().

◆ name_param

const std::string MooseBase::name_param = "_object_name"
staticinherited

◆ type_param

const std::string MooseBase::type_param = "_type"
staticinherited

◆ unique_name_param

const std::string MooseBase::unique_name_param = "_unique_name"
staticinherited

The name of the parameter that contains the unique object name.

Definition at line 57 of file MooseBase.h.

Referenced by InputParameterWarehouse::addInputParameters(), AppFactory::create(), InputParameterWarehouse::removeInputParameters(), MooseBase::uniqueName(), and MooseBase::validParams().


The documentation for this class was generated from the following files: