https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
MFEMProblem Class Referenceabstract

#include <MFEMProblem.h>

Inheritance diagram for MFEMProblem:
[legend]

Public Types

enum  Direction : unsigned char { Direction::TO_EXTERNAL_APP, Direction::FROM_EXTERNAL_APP }
 
enum  CoverageCheckMode {
  CoverageCheckMode::FALSE, CoverageCheckMode::TRUE, CoverageCheckMode::OFF, CoverageCheckMode::ON,
  CoverageCheckMode::SKIP_LIST, CoverageCheckMode::ONLY_LIST
}
 
using DataFileParameterType = DataFileName
 The parameter type this interface expects for a data file name. More...
 

Public Member Functions

 MFEMProblem (const InputParameters &params)
 
virtual ~MFEMProblem ()
 
virtual void initialSetup () override
 
virtual void externalSolve () override
 New interface for solving an External problem. More...
 
virtual void syncSolutions (Direction) override
 Method to transfer data to/from the external application to the associated transfer mesh. More...
 
virtual MFEMMeshmesh () override
 Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMesh. More...
 
virtual const MFEMMeshmesh () const override
 
virtual std::vector< VariableName > getAuxVariableNames ()
 Returns all the variable names from the auxiliary system base. More...
 
void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters) override
 
void addMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters) override
 
void addFunctorMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters) override
 
void addFESpace (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Add an MFEM FESpace to the problem. More...
 
void setDevice ()
 Set the device to use to solve the FE problem. More...
 
void setMesh ()
 Set the mesh used by MFEM. More...
 
void addSubMesh (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Add an MFEM SubMesh to the problem. More...
 
void addTransfer (const std::string &transfer_name, const std::string &name, InputParameters &parameters) override
 Add transfers between MultiApps and/or MFEM SubMeshes. More...
 
void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters) override
 Override of ExternalProblem::addVariable. More...
 
void addGridFunction (const std::string &var_type, const std::string &var_name, InputParameters &parameters)
 Adds one MFEM GridFunction to be used in the MFEM solve. More...
 
void addAuxVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters) override
 Override of ExternalProblem::addAuxVariable. More...
 
void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addKernel. More...
 
void addAuxKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addAuxKernel. More...
 
void addFunction (const std::string &type, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addFunction. More...
 
void addInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters) override
 
void addPostprocessor (const std::string &type, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addPostprocessor. More...
 
void addMFEMPreconditioner (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Method called in AddMFEMPreconditionerAction which will create the solver. More...
 
void addMFEMSolver (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Method called in AddMFEMSolverAction which will create the solver. More...
 
void addMFEMNonlinearSolver ()
 Add the nonlinear solver to the system. More...
 
InputParameters addMFEMFESpaceFromMOOSEVariable (InputParameters &moosevar_params)
 Method used to get an mfem FEC depending on the variable family specified in the input file. More...
 
Moose::MFEM::CoefficientManagergetCoefficients ()
 Method to get the PropertyManager object for storing material properties and converting them to MFEM coefficients. More...
 
MFEMProblemDatagetProblemData ()
 Method to get the current MFEMProblemData object storing the current data specifying the FE problem. More...
 
MPI_Comm getComm ()
 Return the MPI communicator associated with this FE problem's mesh. More...
 
void displaceMesh ()
 Displace the mesh, if mesh displacement is enabled. More...
 
std::optional< std::reference_wrapper< mfem::ParGridFunction const > > getMeshDisplacementGridFunction ()
 Returns optional reference to the displacement GridFunction to apply to nodes. More...
 
Moose::FEBackend feBackend () const override
 
std::string solverTypeString (unsigned int solver_sys_num) override
 Return solver type as a human readable string. More...
 
std::shared_ptr< mfem::ParGridFunction > getGridFunction (const std::string &name)
 
virtual void solve (unsigned int nl_sys_num=0) override final
 Solve is implemented to providing syncing to/from the "transfer" mesh. More...
 
virtual void addExternalVariables ()
 Method called to add AuxVariables to the simulation. More...
 
virtual libMesh::EquationSystemses () override
 
const MooseMeshmesh (bool use_displaced) const override
 
void setCoordSystem (const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
 
void setAxisymmetricCoordAxis (const MooseEnum &rz_coord_axis)
 
void setCoupling (Moose::CouplingType type)
 Set the coupling between variables TODO: allow user-defined coupling. More...
 
Moose::CouplingType coupling () const
 
void setCouplingMatrix (std::unique_ptr< libMesh::CouplingMatrix > cm, const unsigned int nl_sys_num)
 Set custom coupling matrix. More...
 
void setCouplingMatrix (libMesh::CouplingMatrix *cm, const unsigned int nl_sys_num)
 
const libMesh::CouplingMatrixcouplingMatrix (const unsigned int nl_sys_num) const override
 The coupling matrix defining what blocks exist in the preconditioning matrix. More...
 
void setNonlocalCouplingMatrix ()
 Set custom coupling matrix for variables requiring nonlocal contribution. More...
 
bool areCoupled (const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
 
bool hasUOAuxStateCheck () const
 Whether or not MOOSE will perform a user object/auxiliary kernel state check. More...
 
bool checkingUOAuxState () const
 Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e. More...
 
void trustUserCouplingMatrix ()
 Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix. More...
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & nonlocalCouplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
virtual bool hasVariable (const std::string &var_name) const override
 Whether or not this problem has the variable. More...
 
bool hasSolverVariable (const std::string &var_name) const
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const=0
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
MooseVariableFieldBasegetActualFieldVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariableField which may be in any system. More...
 
virtual MooseVariablegetStandardVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariable which may be in any system. More...
 
virtual VectorMooseVariablegetVectorVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested VectorMooseVariable which may be in any system. More...
 
virtual ArrayMooseVariablegetArrayVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested ArrayMooseVariable which may be in any system. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const override
 Returns a Boolean indicating whether any system contains a variable with the name provided. More...
 
virtual MooseVariableScalargetScalarVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the scalar variable reference from whichever system contains it. More...
 
virtual libMesh::SystemgetSystem (const std::string &var_name) override
 Returns the equation system containing the variable provided. More...
 
const RestartableEquationSystemsgetRestartableEquationSystems () const
 Get the RestartableEquationSystems object. More...
 
virtual void setActiveElementalMooseVariables (const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
 Set the MOOSE variables to be reinited on each element. More...
 
virtual void clearActiveElementalMooseVariables (const THREAD_ID tid) override
 Clear the active elemental MooseVariableFEBase. More...
 
virtual void clearActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void createQRules (libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
 
void bumpVolumeQRuleOrder (libMesh::Order order, SubdomainID block)
 Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower. More...
 
void bumpAllQRuleOrder (libMesh::Order order, SubdomainID block)
 
unsigned int getMaxQps () const
 
libMesh::Order getMaxScalarOrder () const
 
void checkNonlocalCoupling ()
 
void checkUserObjectJacobianRequirement (THREAD_ID tid)
 
void setVariableAllDoFMap (const std::vector< const MooseVariableFEBase *> &moose_vars)
 
const std::vector< const MooseVariableFEBase * > & getUserObjectJacobianVariables (const THREAD_ID tid) const
 
virtual Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) override
 
virtual const Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) const override
 
Moose::Kokkos::AssemblykokkosAssembly ()
 
const Moose::Kokkos::AssemblykokkosAssembly () const
 
virtual std::vector< VariableName > getVariableNames ()
 Returns a list of all the variables in the problem (both from the NL and Aux systems. More...
 
void checkDuplicatePostprocessorVariableNames ()
 
void timestepSetup () override
 
void customSetup (const ExecFlagType &exec_type) override
 
void residualSetup () override
 
void jacobianSetup () override
 
virtual void prepare (const Elem *elem, const THREAD_ID tid) override
 
virtual void prepare (const Elem *elem, unsigned int ivar, unsigned int jvar, const std::vector< dof_id_type > &dof_indices, const THREAD_ID tid) override
 
virtual void prepareFace (const Elem *elem, const THREAD_ID tid) override
 
virtual void setCurrentSubdomainID (const Elem *elem, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, const THREAD_ID tid)
 
virtual void prepareAssembly (const THREAD_ID tid) override
 
virtual void addGhostedElem (dof_id_type elem_id) override
 Will make sure that all dofs connected to elem_id are ghosted to this processor. More...
 
virtual void addGhostedBoundary (BoundaryID boundary_id) override
 Will make sure that all necessary elements from boundary_id are ghosted to this processor. More...
 
virtual void ghostGhostedBoundaries () override
 Causes the boundaries added using addGhostedBoundary to actually be ghosted. More...
 
virtual void sizeZeroes (unsigned int size, const THREAD_ID tid)
 
virtual bool reinitDirac (const Elem *elem, const THREAD_ID tid) override
 Returns true if the Problem has Dirac kernels it needs to compute on elem. More...
 
virtual void reinitElem (const Elem *elem, const THREAD_ID tid) override
 
virtual void reinitElemPhys (const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid) override
 
void reinitElemFace (const Elem *elem, unsigned int side, BoundaryID, const THREAD_ID tid)
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitLowerDElem (const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 
virtual void reinitNode (const Node *node, const THREAD_ID tid) override
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNeighbor (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitElemNeighborAndLowerD (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitScalars (const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
 fills the VariableValue arrays for scalar variables from the solution vector More...
 
virtual void reinitOffDiagScalars (const THREAD_ID tid) override
 
virtual void getDiracElements (std::set< const Elem *> &elems) override
 Fills "elems" with the elements that should be looped over for Dirac Kernels. More...
 
virtual void clearDiracInfo () override
 Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in. More...
 
virtual void subdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void neighborSubdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void newAssemblyArray (std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
 
virtual void initNullSpaceVectors (const InputParameters &parameters, std::vector< std::shared_ptr< NonlinearSystemBase >> &nl)
 
virtual void init () override
 
void initKokkos ()
 Construct Kokkos assembly and systems and allocate Kokkos material property storages. More...
 
virtual void solveLinearSystem (const unsigned int linear_sys_num, const Moose::PetscSupport::PetscOptions *po=nullptr)
 Build and solve a linear system. More...
 
virtual void setException (const std::string &message)
 Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve(). More...
 
virtual bool hasException ()
 Whether or not an exception has occurred. More...
 
virtual void checkExceptionAndStopSolve (bool print_message=true)
 Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut. More...
 
virtual bool solverSystemConverged (const unsigned int solver_sys_num) override
 
virtual unsigned int nNonlinearIterations (const unsigned int nl_sys_num) const override
 
virtual unsigned int nLinearIterations (const unsigned int nl_sys_num) const override
 
virtual Real finalNonlinearResidual (const unsigned int nl_sys_num) const override
 
virtual bool computingPreSMOResidual (const unsigned int nl_sys_num) const override
 Returns true if the problem is in the process of computing it's initial residual. More...
 
virtual bool startedInitialSetup ()
 Returns true if we are in or beyond the initialSetup stage. More...
 
virtual void onTimestepBegin () override
 
virtual void onTimestepEnd () override
 
virtual Realtime () const
 
virtual RealtimeOld () const
 
virtual inttimeStep () const
 
virtual Realdt () const
 
virtual RealdtOld () const
 
Real getTimeFromStateArg (const Moose::StateArg &state) const
 Returns the time associated with the requested state. More...
 
virtual void transient (bool trans)
 
virtual bool isTransient () const override
 
virtual void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void addPredictor (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void copySolutionsBackwards ()
 
virtual void advanceState ()
 Advance all of the state holding vectors / datastructures so that we can move to the next timestep. More...
 
virtual void restoreSolutions ()
 
virtual void saveOldSolutions ()
 Allocate vectors and save old solutions into them. More...
 
virtual void restoreOldSolutions ()
 Restore old solutions from the backup vectors and deallocate them. More...
 
void needSolutionState (unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
 Declare that we need up to old (1) or older (2) solution states for a given type of iteration. More...
 
virtual void outputStep (ExecFlagType type)
 Output the current step. More...
 
virtual void postExecute ()
 Method called at the end of the simulation. More...
 
void forceOutput ()
 Indicates that the next call to outputStep should be forced. More...
 
virtual void initPetscOutputAndSomeSolverSettings ()
 Reinitialize PETSc output for proper linear/nonlinear iteration display. More...
 
Moose::PetscSupport::PetscOptionsgetPetscOptions ()
 Retrieve a writable reference the PETSc options (used by PetscSupport) More...
 
void logAdd (const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
 Output information about the object just added to the problem. More...
 
virtual bool hasFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual FunctiongetFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual void addMeshDivision (const std::string &type, const std::string &name, InputParameters &params)
 Add a MeshDivision. More...
 
MeshDivisiongetMeshDivision (const std::string &name, const THREAD_ID tid=0) const
 Get a MeshDivision. More...
 
virtual void addConvergence (const std::string &type, const std::string &name, InputParameters &parameters)
 Adds a Convergence object. More...
 
virtual ConvergencegetConvergence (const std::string &name, const THREAD_ID tid=0) const
 Gets a Convergence object. More...
 
virtual const std::vector< std::shared_ptr< Convergence > > & getConvergenceObjects (const THREAD_ID tid=0) const
 Gets the Convergence objects. More...
 
virtual bool hasConvergence (const std::string &name, const THREAD_ID tid=0) const
 Returns true if the problem has a Convergence object of the given name. More...
 
bool needToAddDefaultNonlinearConvergence () const
 Returns true if the problem needs to add the default nonlinear convergence. More...
 
bool needToAddDefaultMultiAppFixedPointConvergence () const
 Returns true if the problem needs to add the default fixed point convergence. More...
 
bool needToAddDefaultSteadyStateConvergence () const
 Returns true if the problem needs to add the default steady-state detection convergence. More...
 
void setNeedToAddDefaultNonlinearConvergence ()
 Sets _need_to_add_default_nonlinear_convergence to true. More...
 
void setNeedToAddDefaultMultiAppFixedPointConvergence ()
 Sets _need_to_add_default_multiapp_fixed_point_convergence to true. More...
 
void setNeedToAddDefaultSteadyStateConvergence ()
 Sets _need_to_add_default_steady_state_convergence to true. More...
 
bool hasSetMultiAppFixedPointConvergenceName () const
 Returns true if the problem has set the fixed point convergence name. More...
 
bool hasSetSteadyStateConvergenceName () const
 Returns true if the problem has set the steady-state detection convergence name. More...
 
virtual void addDefaultNonlinearConvergence (const InputParameters &params)
 Adds the default nonlinear Convergence associated with the problem. More...
 
virtual bool onlyAllowDefaultNonlinearConvergence () const
 Returns true if an error will result if the user supplies 'nonlinear_convergence'. More...
 
void addDefaultMultiAppFixedPointConvergence (const InputParameters &params)
 Adds the default fixed point Convergence associated with the problem. More...
 
void addDefaultSteadyStateConvergence (const InputParameters &params)
 Adds the default steady-state detection Convergence. More...
 
virtual void addLineSearch (const InputParameters &)
 add a MOOSE line search More...
 
virtual void lineSearch ()
 execute MOOSE line search More...
 
LineSearchgetLineSearch () override
 getter for the MOOSE line search More...
 
virtual void addDistribution (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import distributions. More...
 
virtual DistributiongetDistribution (const std::string &name)
 
virtual void addSampler (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import Samplers. More...
 
virtual SamplergetSampler (const std::string &name, const THREAD_ID tid=0)
 
NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num)
 
const NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num) const
 
void setCurrentNonlinearSystem (const unsigned int nl_sys_num)
 
NonlinearSystemBasecurrentNonlinearSystem ()
 
const NonlinearSystemBasecurrentNonlinearSystem () const
 
virtual const SystemBasesystemBaseNonlinear (const unsigned int sys_num) const override
 Return the nonlinear system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseNonlinear (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseSolver (const unsigned int sys_num) const override
 Return the solver system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseSolver (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseAuxiliary () const override
 Return the auxiliary system object as a base class reference. More...
 
virtual SystemBasesystemBaseAuxiliary () override
 
virtual NonlinearSystemgetNonlinearSystem (const unsigned int sys_num)
 
Moose::Kokkos::Array< Moose::Kokkos::System > & getKokkosSystems ()
 Get all Kokkos systems that are associated with MOOSE nonlinear and auxiliary systems. More...
 
const Moose::Kokkos::Array< Moose::Kokkos::System > & getKokkosSystems () const
 
Moose::Kokkos::SystemgetKokkosSystem (const unsigned int sys_num)
 Get the Kokkos system of a specified number that is associated with MOOSE nonlinear and auxiliary systems. More...
 
const Moose::Kokkos::SystemgetKokkosSystem (const unsigned int sys_num) const
 
virtual const SystemBasegetSystemBase (const unsigned int sys_num) const
 Get constant reference to a system in this problem. More...
 
virtual SystemBasegetSystemBase (const unsigned int sys_num)
 Get non-constant reference to a system in this problem. More...
 
SystemBasegetSystemBase (const std::string &sys_name)
 Get non-constant reference to a system in this problem. More...
 
LinearSystemgetLinearSystem (unsigned int sys_num)
 Get non-constant reference to a linear system. More...
 
const LinearSystemgetLinearSystem (unsigned int sys_num) const
 Get a constant reference to a linear system. More...
 
SolverSystemgetSolverSystem (unsigned int sys_num)
 Get non-constant reference to a solver system. More...
 
const SolverSystemgetSolverSystem (unsigned int sys_num) const
 Get a constant reference to a solver system. More...
 
void setCurrentLinearSystem (unsigned int sys_num)
 Set the current linear system pointer. More...
 
LinearSystemcurrentLinearSystem ()
 Get a non-constant reference to the current linear system. More...
 
const LinearSystemcurrentLinearSystem () const
 Get a constant reference to the current linear system. More...
 
virtual const SystemBasesystemBaseLinear (unsigned int sys_num) const override
 Get a constant base class reference to a linear system. More...
 
virtual SystemBasesystemBaseLinear (unsigned int sys_num) override
 Get a non-constant base class reference to a linear system. More...
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 
virtual void setInputParametersFEProblem (InputParameters &parameters)
 
virtual void addAuxVariable (const std::string &var_name, const libMesh::FEType &type, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxArrayVariable (const std::string &var_name, const libMesh::FEType &type, unsigned int components, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarVariable (const std::string &var_name, libMesh::Order order, Real scale_factor=1., const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosAuxKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
AuxiliarySystemgetAuxiliarySystem ()
 
virtual void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInterfaceKernel (const std::string &fv_ik_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 Add an initial condition for a finite volume variables. More...
 
void projectSolution ()
 
unsigned short getCurrentICState ()
 Retrieves the current initial condition state. More...
 
void projectInitialConditionOnCustomRange (libMesh::ConstElemRange &elem_range, ConstBndNodeRange &bnd_node_range, const std::optional< std::set< VariableName >> &target_vars=std::nullopt)
 Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
void projectFunctionOnCustomRange (ConstElemRange &elem_range, Number(*func)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &), Gradient(*func_grad)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &), const libMesh::Parameters &params, const VariableName &target_var)
 Project a function onto a range of elements for a given variable. More...
 
virtual void addMaterialHelper (std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
void prepareMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props, const SubdomainID blk_id, const THREAD_ID tid)
 Add the MooseVariables and the material properties that the current materials depend on to the dependency list. More...
 
void reinitMaterials (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true)
 
void reinitMaterialsFace (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on element faces More...
 
void reinitMaterialsFaceOnBoundary (const BoundaryID boundary_id, const SubdomainID blk_id, const THREAD_ID tid, const bool swap_stateful=true, const std::deque< MaterialBase *> *const reinit_mats=nullptr)
 reinit materials on element faces on a boundary (internal or external) This specific routine helps us not reinit when don't need to More...
 
void reinitMaterialsNeighborOnBoundary (const BoundaryID boundary_id, const SubdomainID blk_id, const THREAD_ID tid, const bool swap_stateful=true, const std::deque< MaterialBase *> *const reinit_mats=nullptr)
 reinit materials on neighbor element (usually faces) on a boundary (internal or external) This specific routine helps us not reinit when don't need to More...
 
void reinitMaterialsNeighbor (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on the neighboring element face More...
 
void reinitMaterialsBoundary (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on a boundary More...
 
void reinitMaterialsInterface (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true)
 
void prepareKokkosMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props)
 
void reinitKokkosMaterials ()
 
virtual void swapBackMaterials (const THREAD_ID tid)
 
virtual void swapBackMaterialsFace (const THREAD_ID tid)
 
virtual void swapBackMaterialsNeighbor (const THREAD_ID tid)
 
void setActiveMaterialProperties (const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
 Record and set the material properties required by the current computing thread. More...
 
bool hasActiveMaterialProperties (const THREAD_ID tid) const
 Method to check whether or not a list of active material roperties has been set. More...
 
void clearActiveMaterialProperties (const THREAD_ID tid)
 Clear the active material properties. More...
 
template<typename T >
std::vector< std::shared_ptr< T > > addObject (const std::string &type, const std::string &name, InputParameters &parameters, const bool threaded=true, const std::string &var_param_name="variable")
 Method for creating and adding an object to the warehouse. More...
 
virtual void addVectorPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addReporter (const std::string &type, const std::string &name, InputParameters &parameters)
 Add a Reporter object to the simulation. More...
 
const ReporterDatagetReporterData () const
 Provides const access the ReporterData object. More...
 
ReporterDatagetReporterData (ReporterData::WriteKey)
 Provides non-const access the ReporterData object that is used to store reporter values. More...
 
virtual std::vector< std::shared_ptr< UserObject > > addUserObject (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 
const ExecuteMooseObjectWarehouse< UserObject > & getUserObjects () const
 
template<class T >
T & getUserObject (const std::string &name, unsigned int tid=0) const
 Get the user object by its name. More...
 
const UserObjectgetUserObjectBase (const std::string &name, const THREAD_ID tid=0) const
 Get the user object by its name. More...
 
const PositionsgetPositionsObject (const std::string &name) const
 Get the Positions object by its name. More...
 
bool hasUserObject (const std::string &name) const
 Check if there if a user object of given name. More...
 
bool hasPostprocessorValueByName (const PostprocessorName &name) const
 Whether or not a Postprocessor value exists by a given name. More...
 
const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name, std::size_t t_index=0) const
 Get a read-only reference to the value associated with a Postprocessor that exists. More...
 
void setPostprocessorValueByName (const PostprocessorName &name, const PostprocessorValue &value, std::size_t t_index=0)
 Set the value of a PostprocessorValue. More...
 
bool hasPostprocessor (const std::string &name) const
 Deprecated. More...
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, std::size_t t_index=0) const
 Get a read-only reference to the vector value associated with the VectorPostprocessor. More...
 
void setVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, const VectorPostprocessorValue &value, std::size_t t_index=0)
 Set the value of a VectorPostprocessor vector. More...
 
const VectorPostprocessorgetVectorPostprocessorObjectByName (const std::string &object_name, const THREAD_ID tid=0) const
 Return the VPP object given the name. More...
 
virtual void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 
void setupDampers ()
 
bool hasDampers ()
 Whether or not this system has dampers. More...
 
virtual void addIndicator (const std::string &indicator_name, const std::string &name, InputParameters &parameters)
 
virtual void addMarker (const std::string &marker_name, const std::string &name, InputParameters &parameters)
 
virtual void addMultiApp (const std::string &multi_app_name, const std::string &name, InputParameters &parameters)
 Add a MultiApp to the problem. More...
 
std::shared_ptr< MultiAppgetMultiApp (const std::string &multi_app_name) const
 Get a MultiApp object by name. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (ExecFlagType type, Transfer::DIRECTION direction) const
 Get Transfers by ExecFlagType and direction. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (Transfer::DIRECTION direction) const
 
const ExecuteMooseObjectWarehouse< Transfer > & getMultiAppTransferWarehouse (Transfer::DIRECTION direction) const
 Return the complete warehouse for MultiAppTransfer object for the given direction. More...
 
void execMultiAppTransfers (ExecFlagType type, Transfer::DIRECTION direction)
 Execute MultiAppTransfers associated with execution flag and direction. More...
 
bool execMultiApps (ExecFlagType type, bool auto_advance=true)
 Execute the MultiApps associated with the ExecFlagType. More...
 
void finalizeMultiApps ()
 
void incrementMultiAppTStep (ExecFlagType type)
 Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType. More...
 
void advanceMultiApps (ExecFlagType type)
 Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose. More...
 
void finishMultiAppStep (ExecFlagType type, bool recurse_through_multiapp_levels=false)
 Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType. More...
 
void backupMultiApps (ExecFlagType type)
 Backup the MultiApps associated with the ExecFlagType. More...
 
void restoreMultiApps (ExecFlagType type, bool force=false)
 Restore the MultiApps associated with the ExecFlagType. More...
 
Real computeMultiAppsDT (ExecFlagType type)
 Find the smallest timestep over all MultiApps. More...
 
void execTransfers (ExecFlagType type)
 Execute the Transfers associated with the ExecFlagType. More...
 
Real computeResidualL2Norm (NonlinearSystemBase &sys)
 Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
Real computeResidualL2Norm (LinearSystem &sys)
 Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual Real computeResidualL2Norm ()
 Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual void computeResidualSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
void computeResidual (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
virtual void computeResidual (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const unsigned int nl_sys_num)
 Form a residual with default tags (nontime, time, residual). More...
 
void computeResidualAndJacobian (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a residual and Jacobian with default tags. More...
 
virtual void computeResidualTag (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag. More...
 
virtual void computeResidualType (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag and "residual" tag. More...
 
virtual void computeResidualInternal (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const std::set< TagID > &tags)
 Form a residual vector for a set of tags. More...
 
virtual void computeResidualTags (const std::set< TagID > &tags)
 Form multiple residual vectors and each is associated with one tag. More...
 
virtual void computeJacobianSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a Jacobian matrix. More...
 
virtual void computeJacobian (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
 Form a Jacobian matrix with the default tag (system). More...
 
virtual void computeJacobianTag (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, TagID tag)
 Form a Jacobian matrix for a given tag. More...
 
virtual void computeJacobianInternal (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
 Form a Jacobian matrix for multiple tags. More...
 
virtual void computeJacobianTags (const std::set< TagID > &tags)
 Form multiple matrices, and each is associated with a tag. More...
 
virtual void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
virtual void computeJacobianBlock (libMesh::SparseMatrix< libMesh::Number > &jacobian, libMesh::System &precond_system, unsigned int ivar, unsigned int jvar)
 Really not a good idea to use this. More...
 
virtual void computeLinearSystemSys (libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
 Assemble both the right hand side and the system matrix of a given linear system. More...
 
void computeLinearSystemTags (const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
 Assemble the current linear system given a set of vector and matrix tags. More...
 
virtual Real computeDamping (const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)
 
virtual bool shouldUpdateSolution ()
 Check to see whether the problem should update the solution. More...
 
virtual bool updateSolution (NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
 Update the solution. More...
 
virtual void predictorCleanup (NumericVector< libMesh::Number > &ghosted_solution)
 Perform cleanup tasks after application of predictor to solution vector. More...
 
virtual void computeBounds (libMesh::NonlinearImplicitSystem &sys, NumericVector< libMesh::Number > &lower, NumericVector< libMesh::Number > &upper)
 
virtual void computeNearNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeTransposeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computePostCheck (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &old_soln, NumericVector< libMesh::Number > &search_direction, NumericVector< libMesh::Number > &new_soln, bool &changed_search_direction, bool &changed_new_soln)
 
virtual void computeIndicatorsAndMarkers ()
 
virtual void computeIndicators ()
 
virtual void computeMarkers ()
 
virtual void addResidual (const THREAD_ID tid) override
 
virtual void addResidualNeighbor (const THREAD_ID tid) override
 
virtual void addResidualLower (const THREAD_ID tid) override
 
virtual void addResidualScalar (const THREAD_ID tid=0)
 
virtual void cacheResidual (const THREAD_ID tid) override
 
virtual void cacheResidualNeighbor (const THREAD_ID tid) override
 
virtual void addCachedResidual (const THREAD_ID tid) override
 
virtual void addCachedResidualDirectly (NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
 Allows for all the residual contributions that are currently cached to be added directly into the vector passed in. More...
 
virtual void setResidual (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidual (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void setResidualNeighbor (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidualNeighbor (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void addJacobian (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const libMesh::DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)=0
 
virtual void addJacobianNeighborLowerD (const THREAD_ID tid) override
 
virtual void addJacobianLowerD (const THREAD_ID tid) override
 
virtual void addJacobianBlockTags (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)
 
virtual void addJacobianScalar (const THREAD_ID tid=0)
 
virtual void addJacobianOffDiagScalar (unsigned int ivar, const THREAD_ID tid=0)
 
virtual void cacheJacobian (const THREAD_ID tid) override
 
virtual void cacheJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addCachedJacobian (const THREAD_ID tid) override
 
virtual void prepareShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareFaceShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareNeighborShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void addDisplacedProblem (std::shared_ptr< DisplacedProblem > displaced_problem)
 
virtual std::shared_ptr< const DisplacedProblemgetDisplacedProblem () const
 
virtual std::shared_ptr< DisplacedProblemgetDisplacedProblem ()
 
virtual void updateGeomSearch (GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
 
virtual void updateMortarMesh ()
 
void createMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
 
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, std::unique_ptr< AutomaticMortarGeneration > > & getMortarInterfaces (bool on_displaced) const
 
virtual void possiblyRebuildGeomSearchPatches ()
 
virtual GeometricSearchDatageomSearchData () override
 
void setRestartFile (const std::string &file_name)
 Communicate to the Resurector the name of the restart filer. More...
 
const MaterialPropertyRegistrygetMaterialPropertyRegistry () const
 
const InitialConditionWarehousegetInitialConditionWarehouse () const
 Return InitialCondition storage. More...
 
const FVInitialConditionWarehousegetFVInitialConditionWarehouse () const
 Return FVInitialCondition storage. More...
 
SolverParamssolverParams (unsigned int solver_sys_num=0)
 Get the solver parameters. More...
 
const SolverParamssolverParams (unsigned int solver_sys_num=0) const
 const version More...
 
Adaptivityadaptivity ()
 
virtual void initialAdaptMesh ()
 
virtual bool adaptMesh ()
 
unsigned int getNumCyclesCompleted ()
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
void initXFEM (std::shared_ptr< XFEMInterface > xfem)
 Create XFEM controller object. More...
 
std::shared_ptr< XFEMInterfacegetXFEM ()
 Get a pointer to the XFEM controller object. More...
 
bool haveXFEM ()
 Find out whether the current analysis is using XFEM. More...
 
virtual bool updateMeshXFEM ()
 Update the mesh due to changing XFEM cuts. More...
 
virtual void meshChanged (bool intermediate_change, bool contract_mesh, bool clean_refinement_flags)
 Update data after a mesh change. More...
 
void notifyWhenMeshChanges (MeshChangedInterface *mci)
 Register an object that derives from MeshChangedInterface to be notified when the mesh changes. More...
 
void notifyWhenMeshDisplaces (MeshDisplacedInterface *mdi)
 Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated. More...
 
void initElementStatefulProps (const libMesh::ConstElemRange &elem_range, const bool threaded)
 Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
void initKokkosStatefulProps ()
 
virtual void checkProblemIntegrity ()
 Method called to perform a series of sanity checks before a simulation is run. More...
 
void registerRandomInterface (RandomInterface &random_interface, const std::string &name)
 
void setConstJacobian (bool state)
 Set flag that Jacobian is constant (for optimization purposes) More...
 
void setKernelCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setKernelCoverageCheck (bool flag)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setMaterialCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setMaterialCoverageCheck (bool flag)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setParallelBarrierMessaging (bool flag)
 Toggle parallel barrier messaging (defaults to on). More...
 
void setVerboseProblem (bool verbose)
 Make the problem be verbose. More...
 
bool verboseMultiApps () const
 Whether or not to use verbose printing for MultiApps. More...
 
void parentOutputPositionChanged ()
 Calls parentOutputPositionChanged() on all sub apps. More...
 
unsigned int subspaceDim (const std::string &prefix) const
 Dimension of the subspace spanned by vectors with a given prefix. More...
 
const MaterialWarehousegetMaterialWarehouse () const
 
const MaterialWarehousegetRegularMaterialsWarehouse () const
 
const MaterialWarehousegetDiscreteMaterialWarehouse () const
 
const MaterialWarehousegetInterfaceMaterialsWarehouse () const
 
const MaterialWarehousegetKokkosMaterialsWarehouse () const
 
std::shared_ptr< MaterialBasegetMaterial (std::string name, Moose::MaterialDataType type, const THREAD_ID tid=0, bool no_warn=false)
 Return a pointer to a MaterialBase object. More...
 
MaterialDatagetMaterialData (Moose::MaterialDataType type, const THREAD_ID tid=0, const MooseObject *object=nullptr) const
 
MaterialDatagetKokkosMaterialData (Moose::MaterialDataType type, const MooseObject *object=nullptr) const
 
const std::set< const MooseObject * > & getMaterialPropertyStorageConsumers (Moose::MaterialDataType type) const
 
const std::set< const MooseObject * > & getKokkosMaterialPropertyStorageConsumers (Moose::MaterialDataType type) const
 
bool restoreOriginalNonzeroPattern () const
 
bool errorOnJacobianNonzeroReallocation () const
 Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc. More...
 
void setErrorOnJacobianNonzeroReallocation (bool state)
 
bool preserveMatrixSparsityPattern () const
 Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve. More...
 
void setPreserveMatrixSparsityPattern (bool preserve)
 Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved. More...
 
bool ignoreZerosInJacobian () const
 Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern. More...
 
void setIgnoreZerosInJacobian (bool state)
 Set whether the zeros in the Jacobian should be dropped from the sparsity pattern. More...
 
bool acceptInvalidSolution () const
 Whether or not to accept the solution based on its invalidity. More...
 
bool allowInvalidSolution () const
 Whether to accept / allow an invalid solution. More...
 
bool showInvalidSolutionConsole () const
 Whether or not to print out the invalid solutions summary table in console. More...
 
bool immediatelyPrintInvalidSolution () const
 Whether or not the solution invalid warnings are printed out immediately. More...
 
bool hasTimeIntegrator () const
 Returns whether or not this Problem has a TimeIntegrator. More...
 
virtual void execute (const ExecFlagType &exec_type)
 Convenience function for performing execution of MOOSE systems. More...
 
virtual void executeAllObjects (const ExecFlagType &exec_type)
 
virtual ExecutorgetExecutor (const std::string &name)
 
virtual void computeUserObjects (const ExecFlagType &type, const Moose::AuxGroup &group)
 Call compute methods on UserObjects. More...
 
virtual void computeUserObjectByName (const ExecFlagType &type, const Moose::AuxGroup &group, const std::string &name)
 Compute an user object with the given name. More...
 
void needsPreviousNewtonIteration (bool state)
 Set a flag that indicated that user required values for the previous Newton iterate. More...
 
bool needsPreviousNewtonIteration () const
 Check to see whether we need to compute the variable values of the previous Newton iterate. More...
 
ExecuteMooseObjectWarehouse< Control > & getControlWarehouse ()
 Reference to the control logic warehouse. More...
 
void executeControls (const ExecFlagType &exec_type)
 Performs setup and execute calls for Control objects. More...
 
void executeSamplers (const ExecFlagType &exec_type)
 Performs setup and execute calls for Sampler objects. More...
 
virtual void updateActiveObjects ()
 Update the active objects in the warehouses. More...
 
void reportMooseObjectDependency (MooseObject *a, MooseObject *b)
 Register a MOOSE object dependency so we can either order operations properly or report when we cannot. More...
 
ExecuteMooseObjectWarehouse< MultiApp > & getMultiAppWarehouse ()
 
bool hasJacobian () const
 Returns _has_jacobian. More...
 
bool constJacobian () const
 Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed) More...
 
void addOutput (const std::string &, const std::string &, InputParameters &)
 Adds an Output object. More...
 
TheWarehousetheWarehouse () const
 
void setSNESMFReuseBase (bool reuse, bool set_by_user)
 If or not to reuse the base vector for matrix-free calculation. More...
 
bool useSNESMFReuseBase ()
 Return a flag that indicates if we are reusing the vector base. More...
 
void skipExceptionCheck (bool skip_exception_check)
 Set a flag that indicates if we want to skip exception and stop solve. More...
 
bool isSNESMFReuseBaseSetbyUser ()
 Return a flag to indicate if _snesmf_reuse_base is set by users. More...
 
bool & petscOptionsInserted ()
 If PETSc options are already inserted. More...
 
PetscOptions & petscOptionsDatabase ()
 
virtual void setUDotRequested (const bool u_dot_requested)
 Set boolean flag to true to store solution time derivative. More...
 
virtual void setUDotDotRequested (const bool u_dotdot_requested)
 Set boolean flag to true to store solution second time derivative. More...
 
virtual void setUDotOldRequested (const bool u_dot_old_requested)
 Set boolean flag to true to store old solution time derivative. More...
 
virtual void setUDotDotOldRequested (const bool u_dotdot_old_requested)
 Set boolean flag to true to store old solution second time derivative. More...
 
virtual bool uDotRequested ()
 Get boolean flag to check whether solution time derivative needs to be stored. More...
 
virtual bool uDotDotRequested ()
 Get boolean flag to check whether solution second time derivative needs to be stored. More...
 
virtual bool uDotOldRequested ()
 Get boolean flag to check whether old solution time derivative needs to be stored. More...
 
virtual bool uDotDotOldRequested ()
 Get boolean flag to check whether old solution second time derivative needs to be stored. More...
 
void haveADObjects (bool have_ad_objects) override
 Method for setting whether we have any ad objects. More...
 
virtual void haveADObjects (bool have_ad_objects)
 Method for setting whether we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool shouldSolve () const
 
const MortarInterfaceWarehousemortarData () const
 Returns the mortar data object. More...
 
MortarInterfaceWarehousemortarData ()
 
virtual bool hasNeighborCoupling () const
 Whether the simulation has neighbor coupling. More...
 
virtual bool hasMortarCoupling () const
 Whether the simulation has mortar coupling. More...
 
void computingNonlinearResid (bool computing_nonlinear_residual) final
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
virtual void computingNonlinearResid (const bool computing_nonlinear_residual)
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
void setCurrentlyComputingResidual (bool currently_computing_residual) final
 Set whether or not the problem is in the process of computing the residual. More...
 
void numGridSteps (unsigned int num_grid_steps)
 Set the number of steps in a grid sequences. More...
 
void uniformRefine ()
 uniformly refine the problem mesh(es). More...
 
void automaticScaling (bool automatic_scaling) override
 Automatic scaling setter. More...
 
virtual void automaticScaling (bool automatic_scaling)
 Automatic scaling setter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
virtual void reinitElemFaceRef (const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data. More...
 
virtual void reinitNeighborFaceRef (const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data. More...
 
bool fvBCsIntegrityCheck () const
 
void fvBCsIntegrityCheck (bool fv_bcs_integrity_check)
 
void getFVMatsAndDependencies (SubdomainID block_id, std::vector< std::shared_ptr< MaterialBase >> &face_materials, std::vector< std::shared_ptr< MaterialBase >> &neighbor_materials, std::set< MooseVariableFieldBase *> &variables, const THREAD_ID tid)
 Get the materials and variables potentially needed for FV. More...
 
void resizeMaterialData (Moose::MaterialDataType data_type, unsigned int nqp, const THREAD_ID tid)
 Resize material data. More...
 
bool haveDisplaced () const override final
 Whether we have a displaced problem in our simulation. More...
 
bool hasLinearConvergenceObjects () const
 Whether we have linear convergence objects. More...
 
void setNonlinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the nonlinear convergence object name(s) if there is one. More...
 
void setLinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the linear convergence object name(s) if there is one. More...
 
void setMultiAppFixedPointConvergenceName (const ConvergenceName &convergence_name)
 Sets the MultiApp fixed point convergence object name if there is one. More...
 
void setSteadyStateConvergenceName (const ConvergenceName &convergence_name)
 Sets the steady-state detection convergence object name if there is one. More...
 
const std::vector< ConvergenceName > & getNonlinearConvergenceNames () const
 Gets the nonlinear system convergence object name(s). More...
 
const std::vector< ConvergenceName > & getLinearConvergenceNames () const
 Gets the linear convergence object name(s). More...
 
const ConvergenceName & getMultiAppFixedPointConvergenceName () const
 Gets the MultiApp fixed point convergence object name. More...
 
const ConvergenceName & getSteadyStateConvergenceName () const
 Gets the steady-state detection convergence object name. More...
 
void computingScalingJacobian (bool computing_scaling_jacobian)
 Setter for whether we're computing the scaling jacobian. More...
 
bool computingScalingJacobian () const override final
 Getter for whether we're computing the scaling jacobian. More...
 
void computingScalingResidual (bool computing_scaling_residual)
 Setter for whether we're computing the scaling residual. More...
 
bool computingScalingResidual () const override final
 
MooseAppCoordTransformcoordTransform ()
 
virtual std::size_t numNonlinearSystems () const override
 
virtual std::size_t numLinearSystems () const override
 
virtual std::size_t numSolverSystems () const override
 
bool isSolverSystemNonlinear (const unsigned int sys_num)
 Check if the solver system is nonlinear. More...
 
virtual unsigned int currentNlSysNum () const override
 
virtual unsigned int currentLinearSysNum () const override
 
virtual unsigned int nlSysNum (const NonlinearSystemName &nl_sys_name) const override
 
unsigned int linearSysNum (const LinearSystemName &linear_sys_name) const override
 
unsigned int solverSysNum (const SolverSystemName &solver_sys_name) const override
 
unsigned int systemNumForVariable (const VariableName &variable_name) const
 
bool getFailNextNonlinearConvergenceCheck () const
 Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
bool getFailNextSystemConvergenceCheck () const
 Whether it will fail the next system convergence check(s), triggering failed step behavior. More...
 
void setFailNextNonlinearConvergenceCheck ()
 Skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
void setFailNextSystemConvergenceCheck ()
 Tell the problem that the system(s) cannot be considered converged next time convergence is checked. More...
 
void resetFailNextNonlinearConvergenceCheck ()
 Tell the problem that the nonlinear convergence check(s) may proceed as normal. More...
 
void resetFailNextSystemConvergenceCheck ()
 Tell the problem that the system convergence check(s) may proceed as normal. More...
 
void setExecutionPrinting (const ExecFlagEnum &print_exec)
 
bool shouldPrintExecution (const THREAD_ID tid) const
 Check whether the problem should output execution orders at this time. More...
 
void reinitMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced)
 Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics. More...
 
virtual const std::vector< VectorTag > & currentResidualVectorTags () const override
 Return the residual vector tags we are currently computing. More...
 
void setCurrentResidualVectorTags (const std::set< TagID > &vector_tags)
 Set the current residual vector tag data structure based on the passed in tag IDs. More...
 
void clearCurrentResidualVectorTags ()
 Clear the current residual vector tag data structure. More...
 
void clearCurrentJacobianMatrixTags ()
 Clear the current Jacobian matrix tag data structure ... More...
 
virtual void needFV () override
 marks this problem as including/needing finite volume functionality. More...
 
virtual bool haveFV () const override
 returns true if this problem includes/needs finite volume functionality. More...
 
virtual bool hasNonlocalCoupling () const override
 Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian. More...
 
bool identifyVariableGroupsInNL () const
 Whether to identify variable groups in nonlinear systems. More...
 
virtual void setCurrentLowerDElem (const Elem *const lower_d_elem, const THREAD_ID tid) override
 Set the current lower dimensional element. More...
 
virtual void setCurrentBoundaryID (BoundaryID bid, const THREAD_ID tid) override
 sets the current boundary ID in assembly More...
 
const std::vector< NonlinearSystemName > & getNonlinearSystemNames () const
 
const std::vector< LinearSystemName > & getLinearSystemNames () const
 
const std::vector< SolverSystemName > & getSolverSystemNames () const
 
virtual const libMesh::CouplingMatrixnonlocalCouplingMatrix (const unsigned i) const override
 
virtual bool checkNonlocalCouplingRequirement () const override
 
void createTagMatrices (CreateTaggedMatrixKey)
 
bool hasKokkosObjects () const
 
bool hasKokkosResidualObjects () const
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
virtual bool nlConverged (const unsigned int nl_sys_num)
 
virtual bool converged (const unsigned int sys_num)
 Eventually we want to convert this virtual over to taking a solver system number argument. More...
 
bool defaultGhosting ()
 Whether or not the user has requested default ghosting ot be on. More...
 
virtual TagID addVectorTag (const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
 Create a Tag. More...
 
void addNotZeroedVectorTag (const TagID tag)
 Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are. More...
 
bool vectorTagNotZeroed (const TagID tag) const
 Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are. More...
 
virtual const VectorTaggetVectorTag (const TagID tag_id) const
 Get a VectorTag from a TagID. More...
 
std::vector< VectorTaggetVectorTags (const std::set< TagID > &tag_ids) const
 
virtual const std::vector< VectorTag > & getVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 Return all vector tags, where a tag is represented by a map from name to ID. More...
 
virtual TagID getVectorTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName vectorTagName (const TagID tag) const
 Retrieve the name associated with a TagID. More...
 
virtual bool vectorTagExists (const TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual bool vectorTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists by using Tag name. More...
 
virtual unsigned int numVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 The total number of tags, which can be limited to the tag type. More...
 
virtual Moose::VectorTagType vectorTagType (const TagID tag_id) const
 
virtual TagID addMatrixTag (TagName tag_name)
 Create a Tag. More...
 
virtual TagID getMatrixTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName matrixTagName (TagID tag)
 Retrieve the name associated with a TagID. More...
 
virtual bool matrixTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists. More...
 
virtual bool matrixTagExists (TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual unsigned int numMatrixTags () const
 The total number of tags. More...
 
virtual std::map< TagName, TagID > & getMatrixTags ()
 Return all matrix tags in the system, where a tag is represented by a map from name to ID. More...
 
virtual bool hasLinearVariable (const std::string &var_name) const
 Whether or not this problem has this linear variable. More...
 
virtual bool hasAuxiliaryVariable (const std::string &var_name) const
 Whether or not this problem has this auxiliary variable. More...
 
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables (const THREAD_ID tid) const
 Get the MOOSE variables to be reinited on each element. More...
 
virtual bool hasActiveElementalMooseVariables (const THREAD_ID tid) const
 Whether or not a list of active elemental moose variables has been set. More...
 
Moose::CoordinateSystemType getCoordSystem (SubdomainID sid) const
 
unsigned int getAxisymmetricRadialCoord () const
 Returns the desired radial direction for RZ coordinate transformation. More...
 
virtual DiracKernelInfodiracKernelInfo ()
 
void reinitNeighborLowerDElem (const Elem *elem, const THREAD_ID tid=0)
 reinitialize a neighboring lower dimensional element More...
 
void reinitMortarElem (const Elem *elem, const THREAD_ID tid=0)
 Reinit a mortar element to obtain a valid JxW. More...
 
virtual void storeSubdomainMatPropName (SubdomainID block_id, const std::string &name)
 Adds the given material property to a storage map based on block ids. More...
 
virtual void storeBoundaryMatPropName (BoundaryID boundary_id, const std::string &name)
 Adds the given material property to a storage map based on boundary ids. More...
 
virtual void storeSubdomainZeroMatProp (SubdomainID block_id, const MaterialPropertyName &name)
 Adds to a map based on block ids of material properties for which a zero value can be returned. More...
 
virtual void storeBoundaryZeroMatProp (BoundaryID boundary_id, const MaterialPropertyName &name)
 Adds to a map based on boundary ids of material properties for which a zero value can be returned. More...
 
virtual void storeSubdomainDelayedCheckMatProp (const std::string &requestor, SubdomainID block_id, const std::string &name)
 Adds to a map based on block ids of material properties to validate. More...
 
virtual void storeBoundaryDelayedCheckMatProp (const std::string &requestor, BoundaryID boundary_id, const std::string &name)
 Adds to a map based on boundary ids of material properties to validate. More...
 
virtual void checkBlockMatProps ()
 Checks block material properties integrity. More...
 
virtual void checkBoundaryMatProps ()
 Checks boundary material properties integrity. More...
 
virtual void markMatPropRequested (const std::string &)
 Helper method for adding a material property name to the _material_property_requested set. More...
 
virtual bool isMatPropRequested (const std::string &prop_name) const
 Find out if a material property has been requested by any object. More...
 
void addConsumedPropertyName (const MooseObjectName &obj_name, const std::string &prop_name)
 Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput. More...
 
const std::map< MooseObjectName, std::set< std::string > > & getConsumedPropertyMap () const
 Return the map that tracks the object with consumed material properties. More...
 
virtual std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBlockMaterialProperty (SubdomainID block_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBoundaryMaterialProperty (BoundaryID boundary_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< dof_id_type > & ghostedElems ()
 Return the list of elements that should have their DoFs ghosted to this processor. More...
 
const bool & currentlyComputingJacobian () const
 Returns true if the problem is in the process of computing the Jacobian. More...
 
void setCurrentlyComputingJacobian (const bool currently_computing_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
const bool & currentlyComputingResidualAndJacobian () const
 Returns true if the problem is in the process of computing the residual and the Jacobian. More...
 
void setCurrentlyComputingResidualAndJacobian (bool currently_computing_residual_and_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
virtual bool safeAccessTaggedMatrices () const
 Is it safe to access the tagged matrices. More...
 
virtual bool safeAccessTaggedVectors () const
 Is it safe to access the tagged vectors. More...
 
const std::set< TagID > & getActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
void addAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
 Add an algebraic ghosting functor to this problem's DofMaps. More...
 
void addCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
 Add a coupling functor to this problem's DofMaps. More...
 
void removeAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf)
 Remove an algebraic ghosting functor from this problem's DofMaps. More...
 
void removeCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf)
 Remove a coupling ghosting functor from this problem's DofMaps. More...
 
void hasScalingVector (const unsigned int nl_sys_num)
 Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector. More...
 
void clearAllDofIndices ()
 Clear dof indices from variables in nl and aux systems. More...
 
template<typename T >
const Moose::Functor< T > & getFunctor (const std::string &name, const THREAD_ID tid, const std::string &requestor_name, bool requestor_is_ad)
 
bool hasFunctor (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor corresponding to name on the thread id tid More...
 
template<typename T >
bool hasFunctorWithType (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor of type T corresponding to name on the thread id tid More...
 
template<typename T >
void addFunctor (const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
 add a functor to the problem functor container More...
 
template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & addPiecewiseByBlockLambdaFunctor (const std::string &name, PolymorphicLambda my_lammy, const std::set< ExecFlagType > &clearance_schedule, const MooseMesh &mesh, const std::set< SubdomainID > &block_ids, const THREAD_ID tid)
 Add a functor that has block-wise lambda definitions, e.g. More...
 
void setFunctorOutput (bool set_output)
 Setter for debug functor output. More...
 
void setChainControlDataOutput (bool set_output)
 Setter for debug chain control data output. More...
 
template<typename T >
void registerUnfilledFunctorRequest (T *functor_interface, const std::string &functor_name, const THREAD_ID tid)
 Register an unfulfilled functor request. More...
 
void reinitFVFace (const THREAD_ID tid, const FaceInfo &fi)
 reinitialize the finite volume assembly data for the provided face and thread More...
 
void preparePRefinement ()
 Prepare DofMap and Assembly classes with our p-refinement information. More...
 
bool doingPRefinement () const
 
bool havePRefinement () const
 Query whether p-refinement has been requested at any point during the simulation. More...
 
template<typename T >
MooseVariableFEBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &systems, const SystemBase &aux) const
 
void _setCLIOption ()
 For Internal Use. More...
 
virtual void terminateSolve ()
 Allow objects to request clean termination of the solve. More...
 
virtual bool isSolveTerminationRequested () const
 Check of termination has been requested. More...
 
const ConsoleStreamconsole () const
 Return console handle. More...
 
virtual bool enabled () const
 Return the enabled status of the object. More...
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 Get another shared pointer to this object that has the same ownership group. More...
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
bool isKokkosObject (IsKokkosObjectKey &&) const
 Get whether this object is a Kokkos functor The parameter is set by the Kokkos base classes: More...
 
MooseAppgetMooseApp () const
 Get the MooseApp this class is associated with. More...
 
const std::string & type () const
 Get the type of this class. More...
 
const std::string & name () const
 Get the name of the class. More...
 
std::string typeAndName () const
 Get the class's combined type and name; useful in error handling. More...
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
MooseObjectName uniqueName () const
 
const InputParametersparameters () const
 Get the parameters of the object. More...
 
const hit::Node * getHitNode () const
 
bool hasBase () const
 
const std::string & getBase () const
 
template<typename T >
const T & getParam (const std::string &name) const
 Retrieve a parameter for the object. More...
 
template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 Retrieve two parameters and provide pair of parameters for the object. More...
 
template<typename T >
const T * queryParam (const std::string &name) const
 Query a parameter for the object. More...
 
template<typename T >
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 Retrieve a renamed parameter for the object. More...
 
template<typename T >
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 Verifies that the requested parameter exists and is not NULL and returns it to the caller. More...
 
bool isParamValid (const std::string &name) const
 Test if the supplied parameter is valid. More...
 
bool isParamSetByUser (const std::string &name) const
 Test if the supplied parameter is set by a user, as opposed to not set or set to default. More...
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 Connect controllable parameter of this action with the controllable parameters of the objects added by this action. More...
 
template<typename... Args>
void paramError (const std::string &param, Args... args) const
 Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramWarning (const std::string &param, Args... args) const
 Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramWarning (const std::string &param, Args... args) const
 
template<typename... Args>
void paramInfo (const std::string &param, Args... args) const
 Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
std::string messagePrefix (const bool hit_prefix=true) const
 
std::string errorPrefix (const std::string &) const
 Deprecated message prefix; the error type is no longer used. More...
 
template<typename... Args>
void mooseError (Args &&... args) const
 Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available. More...
 
template<typename... Args>
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
template<typename... Args>
void mooseErrorNonPrefixed (Args &&... args) const
 Emits an error without the prefixing included in mooseError(). More...
 
template<typename... Args>
void mooseWarning (Args &&... args) const
 Emits a warning prefixed with object name and type. More...
 
template<typename... Args>
void mooseWarning (Args &&... args) const
 
template<typename... Args>
void mooseWarningNonPrefixed (Args &&... args) const
 Emits a warning without the prefixing included in mooseWarning(). More...
 
template<typename... Args>
void mooseWarningNonPrefixed (Args &&... args) const
 
template<typename... Args>
void mooseDeprecated (Args &&... args) const
 
template<typename... Args>
void mooseDeprecated (Args &&... args) const
 
template<typename... Args>
void mooseInfo (Args &&... args) const
 
void callMooseError (std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
 External method for calling moose error with added object context. More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
std::string getDataFileName (const std::string &param) const
 Deprecated method. More...
 
std::string getDataFileNameByName (const std::string &relative_path) const
 Deprecated method. More...
 
std::string getDataFilePath (const std::string &relative_path) const
 Returns the path of a data file for a given relative file path. More...
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
const libMesh::ConstElemRangegetEvaluableElementRange ()
 In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}. More...
 
const libMesh::ConstElemRangegetNonlinearEvaluableElementRange ()
 
const libMesh::ConstElemRangegetCurrentAlgebraicElementRange ()
 These are the element and nodes that contribute to the jacobian and residual for this local processor. More...
 
const libMesh::ConstNodeRangegetCurrentAlgebraicNodeRange ()
 
const ConstBndNodeRangegetCurrentAlgebraicBndNodeRange ()
 
void setCurrentAlgebraicElementRange (libMesh::ConstElemRange *range)
 These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor. More...
 
void setCurrentAlgebraicNodeRange (libMesh::ConstNodeRange *range)
 
void setCurrentAlgebraicBndNodeRange (ConstBndNodeRange *range)
 
void allowOutput (bool state)
 Ability to enable/disable all output calls. More...
 
template<typename T >
void allowOutput (bool state)
 
bool hasMultiApps () const
 Returns whether or not the current simulation has any multiapps. More...
 
bool hasMultiApps (ExecFlagType type) const
 
bool hasMultiApp (const std::string &name) const
 
const AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced) const
 Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains. More...
 
AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced)
 
const MaterialPropertyStoragegetMaterialPropertyStorage ()
 Return a reference to the material property storage. More...
 
const MaterialPropertyStoragegetBndMaterialPropertyStorage ()
 
const MaterialPropertyStoragegetNeighborMaterialPropertyStorage ()
 
Moose::Kokkos::MaterialPropertyStoragegetKokkosMaterialPropertyStorage ()
 
Moose::Kokkos::MaterialPropertyStoragegetKokkosBndMaterialPropertyStorage ()
 
Moose::Kokkos::MaterialPropertyStoragegetKokkosNeighborMaterialPropertyStorage ()
 
const MooseObjectWarehouse< Indicator > & getIndicatorWarehouse ()
 Return indicator/marker storage. More...
 
const MooseObjectWarehouse< InternalSideIndicatorBase > & getInternalSideIndicatorWarehouse ()
 
const MooseObjectWarehouse< Marker > & getMarkerWarehouse ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 These methods are used to determine whether stateful material properties need to be stored on internal sides. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 
bool needInternalNeighborSideMaterial (SubdomainID subdomain_id, const THREAD_ID tid)
 
const ExecFlagTypegetCurrentExecuteOnFlag () const
 Return/set the current execution flag. More...
 
void setCurrentExecuteOnFlag (const ExecFlagType &)
 

Static Public Member Functions

static InputParameters validParams ()
 
static void selectVectorTagsFromSystem (const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
 Select the vector tags which belong to a specific system. More...
 
static void selectMatrixTagsFromSystem (const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
 Select the matrix tags which belong to a specific system. More...
 
static void callMooseError (MooseApp *const app, const InputParameters &params, std::string msg, const bool with_prefix, const hit::Node *node)
 External method for calling moose error with added object context. More...
 
template<typename T >
static void objectSetupHelper (const std::vector< T *> &objects, const ExecFlagType &exec_flag)
 Helpers for calling the necessary setup/execute functions for the supplied objects. More...
 
template<typename T >
static void objectExecuteHelper (const std::vector< T *> &objects)
 

Public Attributes

std::map< std::string, std::vector< dof_id_type > > _var_dof_map
 
 usingCombinedWarningSolutionWarnings
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 
std::vector< Real_real_zero
 Convenience zeros. More...
 
std::vector< VariableValue_scalar_zero
 
std::vector< VariableValue_zero
 
std::vector< VariablePhiValue_phi_zero
 
std::vector< MooseArray< ADReal > > _ad_zero
 
std::vector< VariableGradient_grad_zero
 
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
 
std::vector< VariablePhiGradient_grad_phi_zero
 
std::vector< VariableSecond_second_zero
 
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
 
std::vector< VariablePhiSecond_second_phi_zero
 
std::vector< Point > _point_zero
 
std::vector< VectorVariableValue_vector_zero
 
std::vector< VectorVariableCurl_vector_curl_zero
 

Static Public Attributes

static const std::string type_param = "_type"
 The name of the parameter that contains the object type. More...
 
static const std::string name_param = "_object_name"
 The name of the parameter that contains the object name. More...
 
static const std::string unique_name_param = "_unique_name"
 The name of the parameter that contains the unique object name. More...
 
static const std::string app_param = "_moose_app"
 The name of the parameter that contains the MooseApp. More...
 
static const std::string moose_base_param = "_moose_base"
 The name of the parameter that contains the moose system base. More...
 
static const std::string kokkos_object_param = "_kokkos_object"
 The name of the parameter that indicates an object is a Kokkos functor. More...
 

Protected Member Functions

virtual void meshChanged ()
 Deprecated. More...
 
void createTagVectors ()
 Create extra tagged vectors and matrices. More...
 
void createTagSolutions ()
 Create extra tagged solution vectors. More...
 
virtual void meshDisplaced ()
 Update data after a mesh displaced. More...
 
void computeSystems (const ExecFlagType &type)
 Do generic system computations. More...
 
bool duplicateVariableCheck (const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
 Helper to check for duplicate variable names across systems or within a single system. More...
 
void computeUserObjectsInternal (const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
 
void checkDisplacementOrders ()
 Verify that SECOND order mesh uses SECOND order displacements. More...
 
void checkUserObjects ()
 
void checkDependMaterialsHelper (const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
 Helper method for checking Material object dependency. More...
 
void checkCoordinateSystems ()
 Verify that there are no element type/coordinate type conflicts. More...
 
void reinitBecauseOfGhostingOrNewGeomObjects (bool mortar_changed=false)
 Call when it is possible that the needs for ghosted elements has changed. More...
 
void addObjectParamsHelper (InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
 Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject(). More...
 
template<typename T >
MooseVariableFieldBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
 Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available. More...
 
bool verifyVectorTags () const
 Verify the integrity of _vector_tags and _typed_vector_tags. More...
 
void markFamilyPRefinement (const InputParameters &params)
 Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable. More...
 
template<bool warning>
void flagInvalidSolutionInternal (const InvalidSolutionID invalid_solution_id) const
 Set solution invalid mark for the given solution ID. More...
 
InvalidSolutionID registerInvalidSolutionInternal (const std::string &message, const bool warning) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 
template<typename T , typename... Args>
T & declareRestartableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declares a piece of "managed" restartable data and initialize it. More...
 
template<typename T , typename... Args>
const T & getRestartableData (const std::string &data_name) const
 Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "recoverable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 Declare a piece of data as "restartable". More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 Declare a piece of data as "restartable". More...
 
std::string restartableName (const std::string &data_name) const
 Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix. More...
 

Protected Attributes

MFEMProblemData _problem_data
 
MooseMesh_mesh
 
bool _initialized
 
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
 Nonlinear system(s) convergence name(s) More...
 
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
 Linear system(s) convergence name(s) (if any) More...
 
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
 MultiApp fixed point convergence name. More...
 
std::optional< ConvergenceName > _steady_state_convergence_name
 Steady-state detection convergence name. More...
 
std::set< TagID_fe_vector_tags
 
std::set< TagID_fe_matrix_tags
 
std::set< TagID_linear_vector_tags
 Temporary storage for filtered vector tags for linear systems. More...
 
std::set< TagID_linear_matrix_tags
 Temporary storage for filtered matrix tags for linear systems. More...
 
const bool & _solve
 Whether or not to actually solve the nonlinear system. More...
 
bool _transient
 
Real_time
 
Real_time_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _need_to_add_default_nonlinear_convergence
 Flag that the problem needs to add the default nonlinear convergence. More...
 
bool _need_to_add_default_multiapp_fixed_point_convergence
 Flag that the problem needs to add the default fixed point convergence. More...
 
bool _need_to_add_default_steady_state_convergence
 Flag that the problem needs to add the default steady convergence. More...
 
const std::vector< LinearSystemName > _linear_sys_names
 The linear system names. More...
 
const std::size_t _num_linear_sys
 The number of linear systems. More...
 
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
 The vector of linear systems. More...
 
std::map< LinearSystemName, unsigned int_linear_sys_name_to_num
 Map from linear system name to number. More...
 
LinearSystem_current_linear_sys
 The current linear system that we are solving. More...
 
const bool _using_default_nl
 Boolean to check if we have the default nonlinear system. More...
 
const std::vector< NonlinearSystemName > _nl_sys_names
 The nonlinear system names. More...
 
const std::size_t _num_nl_sys
 The number of nonlinear systems. More...
 
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
 The nonlinear systems. More...
 
std::map< NonlinearSystemName, unsigned int_nl_sys_name_to_num
 Map from nonlinear system name to number. More...
 
NonlinearSystemBase_current_nl_sys
 The current nonlinear system that we are solving. More...
 
SolverSystem_current_solver_sys
 The current solver system. More...
 
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
 Combined container to base pointer of every solver system. More...
 
std::map< SolverVariableName, unsigned int_solver_var_to_sys_num
 Map connecting variable names with their respective solver systems. More...
 
std::map< SolverSystemName, unsigned int_solver_sys_name_to_num
 Map connecting solver system names with their respective systems. More...
 
std::vector< SolverSystemName > _solver_sys_names
 The union of nonlinear and linear system names. More...
 
std::shared_ptr< AuxiliarySystem_aux
 The auxiliary system. More...
 
Moose::CouplingType _coupling
 Type of variable coupling. More...
 
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
 Coupling matrix for variables. More...
 
Moose::Kokkos::Array< Moose::Kokkos::System_kokkos_systems
 
std::map< std::string, unsigned int_subspace_dim
 Dimension of the subspace spanned by the vectors with a given prefix. More...
 
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
 The Assembly objects. More...
 
Moose::Kokkos::Assembly _kokkos_assembly
 
MooseObjectWarehouse< MeshDivision_mesh_divisions
 Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best. More...
 
MooseObjectWarehouse< Function_functions
 functions More...
 
MooseObjectWarehouse< Convergence_convergences
 convergence warehouse More...
 
MooseObjectWarehouse< KernelBase_nonlocal_kernels
 nonlocal kernels More...
 
MooseObjectWarehouse< IntegratedBCBase_nonlocal_integrated_bcs
 nonlocal integrated_bcs More...
 
MaterialPropertyRegistry _material_prop_registry
 
MaterialPropertyStorage_material_props
 
MaterialPropertyStorage_bnd_material_props
 
MaterialPropertyStorage_neighbor_material_props
 
Moose::Kokkos::MaterialPropertyStorage_kokkos_material_props
 
Moose::Kokkos::MaterialPropertyStorage_kokkos_bnd_material_props
 
Moose::Kokkos::MaterialPropertyStorage_kokkos_neighbor_material_props
 
MooseObjectWarehouse< Marker_markers
 
ReporterData _reporter_data
 
ExecuteMooseObjectWarehouse< UserObject_all_user_objects
 
ExecuteMooseObjectWarehouse< MultiApp_multi_apps
 MultiApp Warehouse. More...
 
ExecuteMooseObjectWarehouse< TransientMultiApp_transient_multi_apps
 Storage for TransientMultiApps (only needed for calling 'computeDT') More...
 
ExecuteMooseObjectWarehouse< Transfer_transfers
 Normal Transfers. More...
 
ExecuteMooseObjectWarehouse< Transfer_to_multi_app_transfers
 Transfers executed just before MultiApps to transfer data to them. More...
 
ExecuteMooseObjectWarehouse< Transfer_from_multi_app_transfers
 Transfers executed just after MultiApps to transfer data from them. More...
 
ExecuteMooseObjectWarehouse< Transfer_between_multi_app_transfers
 Transfers executed just before MultiApps to transfer data between them. More...
 
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
 A map of objects that consume random numbers. More...
 
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
 Cache for calculating materials on interface. More...
 
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
 Objects to be notified when the mesh changes. More...
 
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
 Objects to be notified when the mesh displaces. More...
 
Adaptivity _adaptivity
 
unsigned int _cycles_completed
 
std::shared_ptr< XFEMInterface_xfem
 Pointer to XFEM controller. More...
 
MooseMesh_displaced_mesh
 
std::shared_ptr< DisplacedProblem_displaced_problem
 
GeometricSearchData _geometric_search_data
 
std::unique_ptr< MortarInterfaceWarehouse_mortar_data
 
bool _reinit_displaced_elem
 Whether to call DisplacedProblem::reinitElem when this->reinitElem is called. More...
 
bool _reinit_displaced_face
 Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called. More...
 
bool _reinit_displaced_neighbor
 Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called. More...
 
bool _input_file_saved
 whether input file has been written More...
 
bool _has_dampers
 Whether or not this system has any Dampers associated with it. More...
 
bool _has_constraints
 Whether or not this system has any Constraints. More...
 
bool _snesmf_reuse_base
 If or not to resuse the base vector for matrix-free calculation. More...
 
bool _skip_exception_check
 If or not skip 'exception and stop solve'. More...
 
bool _snesmf_reuse_base_set_by_user
 If or not _snesmf_reuse_base is set by user. More...
 
bool _has_initialized_stateful
 Whether nor not stateful materials have been initialized. More...
 
bool _const_jacobian
 true if the Jacobian is constant More...
 
bool _has_jacobian
 Indicates if the Jacobian was computed. More...
 
bool _needs_old_newton_iter
 Indicates that we need to compute variable values for previous Newton iteration. More...
 
bool _previous_nl_solution_required
 Indicates we need to save the previous NL iteration variable values. More...
 
bool _has_nonlocal_coupling
 Indicates if nonlocal coupling is required/exists. More...
 
bool _calculate_jacobian_in_uo
 
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
 
std::vector< unsigned char > _has_active_material_properties
 Whether there are active material properties on each thread. More...
 
std::vector< SolverParams_solver_params
 
CoverageCheckMode _kernel_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active kernel. More...
 
std::vector< SubdomainName > _kernel_coverage_blocks
 
const bool _boundary_restricted_node_integrity_check
 whether to perform checking of boundary restricted nodal object variable dependencies, e.g. More...
 
const bool _boundary_restricted_elem_integrity_check
 whether to perform checking of boundary restricted elemental object variable dependencies, e.g. More...
 
CoverageCheckMode _material_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active material. More...
 
std::vector< SubdomainName > _material_coverage_blocks
 
bool _fv_bcs_integrity_check
 Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset. More...
 
const bool _material_dependency_check
 Determines whether a check to verify material dependencies on every subdomain. More...
 
const bool _uo_aux_state_check
 Whether or not checking the state of uo/aux evaluation. More...
 
unsigned int _max_qps
 Maximum number of quadrature points used in the problem. More...
 
libMesh::Order _max_scalar_order
 Maximum scalar variable order. More...
 
bool _has_time_integrator
 Indicates whether or not this executioner has a time integrator (during setup) More...
 
bool _has_exception
 Whether or not an exception has occurred. More...
 
bool _parallel_barrier_messaging
 Whether or not information about how many transfers have completed is printed. More...
 
MooseEnum _verbose_setup
 Whether or not to be verbose during setup. More...
 
bool _verbose_multiapps
 Whether or not to be verbose with multiapps. More...
 
bool _verbose_restore
 Whether or not to be verbose on solution restoration post a failed time step. More...
 
std::string _exception_message
 The error message to go with an exception. More...
 
ExecFlagType _current_execute_on_flag
 Current execute_on flag. More...
 
ExecuteMooseObjectWarehouse< Control_control_warehouse
 The control logic warehouse. More...
 
Moose::PetscSupport::PetscOptions _petsc_options
 PETSc option storage. More...
 
PetscOptions _petsc_option_data_base
 
bool _is_petsc_options_inserted
 If or not PETSc options have been added to database. More...
 
std::shared_ptr< LineSearch_line_search
 
std::unique_ptr< libMesh::ConstElemRange_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_nl_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_aux_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_current_algebraic_elem_range
 
std::unique_ptr< libMesh::ConstNodeRange_current_algebraic_node_range
 
std::unique_ptr< ConstBndNodeRange_current_algebraic_bnd_node_range
 
bool _using_ad_mat_props
 Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property. More...
 
unsigned short _current_ic_state
 
const bool _use_hash_table_matrix_assembly
 Whether to assemble matrices using hash tables instead of preallocating matrix memory. More...
 
std::map< TagName, TagID_matrix_tag_name_to_tag_id
 The currently declared tags. More...
 
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
 Reverse map. More...
 
Factory_factory
 The Factory for building objects. More...
 
DiracKernelInfo _dirac_kernel_info
 
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
 Map of material properties (block_id -> list of properties) More...
 
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
 Map for boundary material properties (boundary_id -> list of properties) More...
 
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
 Set of properties returned as zero properties. More...
 
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
 
std::set< std::string > _material_property_requested
 set containing all material property names that have been requested by getMaterialProperty* More...
 
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
 This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) More...
 
std::vector< unsigned int_has_active_elemental_moose_variables
 Whether or not there is currently a list of active elemental moose variables. More...
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
 
bool _default_ghosting
 Whether or not to use default libMesh coupling. More...
 
std::set< dof_id_type_ghosted_elems
 Elements that should have Dofs ghosted to the local processor. More...
 
bool _currently_computing_jacobian
 Flag to determine whether the problem is currently computing Jacobian. More...
 
bool _currently_computing_residual_and_jacobian
 Flag to determine whether the problem is currently computing the residual and Jacobian. More...
 
bool _computing_nonlinear_residual
 Whether the non-linear residual is being evaluated. More...
 
bool _currently_computing_residual
 Whether the residual is being evaluated. More...
 
bool _safe_access_tagged_matrices
 Is it safe to retrieve data from tagged matrices. More...
 
bool _safe_access_tagged_vectors
 Is it safe to retrieve data from tagged vectors. More...
 
bool _have_ad_objects
 AD flag indicating whether any AD objects have been added. More...
 
std::unordered_set< TagID_not_zeroed_tagged_vectors
 the list of vector tags that will not be zeroed when all other tags are More...
 
bool _cli_option_found
 True if the CLI option is found. More...
 
bool _color_output
 True if we're going to attempt to write color output. More...
 
bool _termination_requested
 True if termination of the solve has been requested. More...
 
const bool & _enabled
 Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects. More...
 
MooseApp_app
 The MOOSE application this is associated with. More...
 
ActionFactory_action_factory
 Builds Actions. More...
 
const std::string & _type
 The type of this class. More...
 
const std::string & _name
 The name of this class. More...
 
const InputParameters_pars
 The object's parameters. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseApp_restartable_app
 Reference to the application. More...
 
const std::string _restartable_system_name
 The system name this object is in. More...
 
const THREAD_ID _restartable_tid
 The thread ID for this object. More...
 
const bool _restartable_read_only
 Flag for toggling read only status (see ReporterData) More...
 
InitialConditionWarehouse _ics
 
FVInitialConditionWarehouse _fv_ics
 
ScalarInitialConditionWarehouse _scalar_ics
 
MaterialWarehouse _materials
 
MaterialWarehouse _interface_materials
 
MaterialWarehouse _discrete_materials
 
MaterialWarehouse _all_materials
 
MaterialWarehouse _kokkos_materials
 
MooseObjectWarehouse< Indicator_indicators
 
MooseObjectWarehouse< InternalSideIndicatorBase_internal_side_indicators
 
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
 Data structures of the requested material properties. More...
 
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
 

Detailed Description

Definition at line 17 of file MFEMProblem.h.

Member Typedef Documentation

◆ DataFileParameterType

using DataFileInterface::DataFileParameterType = DataFileName
inherited

The parameter type this interface expects for a data file name.

Definition at line 27 of file DataFileInterface.h.

Member Enumeration Documentation

◆ CoverageCheckMode

enum FEProblemBase::CoverageCheckMode
stronginherited
Enumerator
FALSE 
TRUE 
OFF 
ON 
SKIP_LIST 
ONLY_LIST 

Definition at line 152 of file FEProblemBase.h.

153  {
154  FALSE,
155  TRUE,
156  OFF,
157  ON,
158  SKIP_LIST,
159  ONLY_LIST,
160  };

◆ Direction

enum ExternalProblem::Direction : unsigned char
stronginherited
Enumerator
TO_EXTERNAL_APP 
FROM_EXTERNAL_APP 

Definition at line 21 of file ExternalProblem.h.

21  : unsigned char
22  {
23  TO_EXTERNAL_APP,
24  FROM_EXTERNAL_APP
25  };

Constructor & Destructor Documentation

◆ MFEMProblem()

MFEMProblem::MFEMProblem ( const InputParameters params)

Definition at line 33 of file MFEMProblem.C.

33  : ExternalProblem(params)
34 {
35  // Initialise Hypre for all MFEM problems.
36  mfem::Hypre::Init();
37  // Disable multithreading for all MFEM problems (including any libMesh or MFEM subapps).
39  setMesh();
40 }
void setMesh()
Set the mesh used by MFEM.
Definition: MFEMProblem.C:50
ExternalProblem(const InputParameters &parameters)

◆ ~MFEMProblem()

virtual MFEMProblem::~MFEMProblem ( )
inlinevirtual

Definition at line 23 of file MFEMProblem.h.

23 {}

Member Function Documentation

◆ _setCLIOption()

void Problem::_setCLIOption ( )
inlineinherited

For Internal Use.

Definition at line 32 of file Problem.h.

32 { _cli_option_found = true; }
bool _cli_option_found
True if the CLI option is found.
Definition: Problem.h:52

◆ acceptInvalidSolution()

bool FEProblemBase::acceptInvalidSolution ( ) const
inherited

Whether or not to accept the solution based on its invalidity.

If this returns false, it means that an invalid solution was encountered (an error) that was not allowed.

Definition at line 3963 of file FEProblemBase.C.

Referenced by SolverSystem::checkInvalidSolution(), and NonlinearSystem::converged().

3964 {
3965  return allowInvalidSolution() || // invalid solutions are always allowed
3966  !_app.solutionInvalidity().hasInvalidSolutionError(); // if not allowed, check for errors
3967 }
bool hasInvalidSolutionError() const
Whether or not an invalid solution was encountered that was an error.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
bool allowInvalidSolution() const
Whether to accept / allow an invalid solution.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357

◆ adaptivity()

Adaptivity& FEProblemBase::adaptivity ( )
inlineinherited

◆ adaptMesh()

bool FEProblemBase::adaptMesh ( )
virtualinherited
Returns
Whether or not the mesh was changed

Reimplemented in DumpObjectsProblem.

Definition at line 8191 of file FEProblemBase.C.

Referenced by SteadyBase::execute(), Eigenvalue::execute(), and TransientBase::incrementStepOrReject().

8192 {
8193  // reset cycle counter
8194  _cycles_completed = 0;
8195 
8197  return false;
8198 
8199  TIME_SECTION("adaptMesh", 3, "Adapting Mesh");
8200 
8201  unsigned int cycles_per_step = _adaptivity.getCyclesPerStep();
8202 
8203  bool mesh_changed = false;
8204 
8205  for (unsigned int i = 0; i < cycles_per_step; ++i)
8206  {
8207  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
8208  mooseError("HFEM does not support mesh adaptivity currently.");
8209 
8210  // Markers were already computed once by Executioner
8211  if (_adaptivity.getRecomputeMarkersFlag() && i > 0)
8212  computeMarkers();
8213 
8214  bool mesh_changed_this_step;
8215  mesh_changed_this_step = _adaptivity.adaptMesh();
8216 
8217  if (mesh_changed_this_step)
8218  {
8219  mesh_changed = true;
8220 
8221  meshChanged(
8222  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
8224  }
8225  else
8226  {
8227  // If the mesh didn't change, we still need to update the displaced mesh
8228  // to undo the undisplacement performed in Adaptivity::adaptMesh
8229  if (_displaced_problem)
8230  _displaced_problem->updateMesh();
8231 
8232  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
8233  break;
8234  }
8235 
8236  // Show adaptivity progress
8237  _console << std::flush;
8238  }
8239 
8240  // We're done with all intermediate changes; now get systems ready
8241  // for real if necessary.
8242  if (mesh_changed)
8243  es().reinit_systems();
8244 
8245  // Execute multi-apps that need to run after adaptivity, but before the next timestep.
8247 
8248  return mesh_changed;
8249 }
bool adaptMesh(std::string marker_name=std::string())
Adapts the mesh based on the error estimator used.
Definition: Adaptivity.C:131
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1421
unsigned int _cycles_completed
unsigned int getCyclesPerStep() const
Pull out the number of cycles_per_step previously set through the AdaptivityAction.
Definition: Adaptivity.h:112
virtual void computeMarkers()
virtual void reinit_systems()
bool getRecomputeMarkersFlag() const
Pull out the _recompute_markers_during_cycles flag previously set through the AdaptivityAction.
Definition: Adaptivity.h:125
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1425
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isAdaptivityDue()
Query if an adaptivity step should be performed at the current time / time step.
Definition: Adaptivity.C:393
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
const ExecFlagType EXEC_POST_ADAPTIVITY
Definition: Moose.C:58

◆ addAlgebraicGhostingFunctor()

void SubProblem::addAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf,
bool  to_mesh = true 
)
inherited

Add an algebraic ghosting functor to this problem's DofMaps.

Definition at line 1024 of file SubProblem.C.

1025 {
1026  EquationSystems & eq = es();
1027  const auto n_sys = eq.n_systems();
1028  if (!n_sys)
1029  return;
1030 
1031  eq.get_system(0).get_dof_map().add_algebraic_ghosting_functor(algebraic_gf, to_mesh);
1032  cloneAlgebraicGhostingFunctor(algebraic_gf, to_mesh);
1033 }
unsigned int n_systems() const
void cloneAlgebraicGhostingFunctor(libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided algebraic ghosting functor (corresponding to the nonlinear...
Definition: SubProblem.C:1002
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0

◆ addAuxArrayVariable()

void FEProblemBase::addAuxArrayVariable ( const std::string &  var_name,
const libMesh::FEType type,
unsigned int  components,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3271 of file FEProblemBase.C.

3275 {
3276  parallel_object_only();
3277 
3278  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3279 
3280  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3281  return;
3282 
3283  InputParameters params = _factory.getValidParams("ArrayMooseVariable");
3284  params.set<FEProblemBase *>("_fe_problem_base") = this;
3286  params.set<MooseEnum>("order") = type.order.get_order();
3287  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3288  params.set<unsigned int>("components") = components;
3289 
3290  if (active_subdomains)
3291  for (const SubdomainID & id : *active_subdomains)
3292  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3293 
3294  logAdd("Variable", var_name, "ArrayMooseVariable", params);
3295  _aux->addVariable("ArrayMooseVariable", var_name, params);
3296  if (_displaced_problem)
3297  _displaced_problem->addAuxVariable("ArrayMooseVariable", var_name, params);
3298 
3299  markFamilyPRefinement(params);
3300 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1372
void mooseDeprecated(Args &&... args) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxKernel()

void MFEMProblem::addAuxKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addAuxKernel.

Uses ExternalProblem::addAuxKernel to create a MFEMGeneralUserObject representing the kernel in MOOSE, and creates corresponding MFEM kernel to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 216 of file MFEMProblem.C.

219 {
221 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addAuxScalarKernel()

void FEProblemBase::addAuxScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3349 of file FEProblemBase.C.

3352 {
3353  parallel_object_only();
3354 
3355  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3356  {
3357  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3358  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3359  }
3360  else
3361  {
3362  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3363  {
3364  // We allow AuxScalarKernels to request that they use_displaced_mesh,
3365  // but then be overridden when no displacements variables are
3366  // provided in the Mesh block. If that happened, update the value
3367  // of use_displaced_mesh appropriately for this AuxScalarKernel.
3368  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3369  parameters.set<bool>("use_displaced_mesh") = false;
3370  }
3371 
3372  parameters.set<SubProblem *>("_subproblem") = this;
3373  parameters.set<SystemBase *>("_sys") = _aux.get();
3374  }
3375 
3376  logAdd("AuxScalarKernel", name, kernel_name, parameters);
3377  _aux->addScalarKernel(kernel_name, name, parameters);
3378 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarVariable()

void FEProblemBase::addAuxScalarVariable ( const std::string &  var_name,
libMesh::Order  order,
Real  scale_factor = 1.,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3303 of file FEProblemBase.C.

3307 {
3308  parallel_object_only();
3309 
3310  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3311 
3312  if (order > _max_scalar_order)
3313  _max_scalar_order = order;
3314 
3315  FEType type(order, SCALAR);
3316  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3317  return;
3318 
3319  InputParameters params = _factory.getValidParams("MooseVariableScalar");
3320  params.set<FEProblemBase *>("_fe_problem_base") = this;
3322 
3323  params.set<MooseEnum>("order") = type.order.get_order();
3324  params.set<MooseEnum>("family") = "SCALAR";
3325  params.set<std::vector<Real>>("scaling") = {1};
3326  if (active_subdomains)
3327  for (const SubdomainID & id : *active_subdomains)
3328  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3329 
3330  logAdd("ScalarVariable", var_name, "MooseVariableScalar", params);
3331  _aux->addVariable("MooseVariableScalar", var_name, params);
3332  if (_displaced_problem)
3333  _displaced_problem->addAuxVariable("MooseVariableScalar", var_name, params);
3334 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseDeprecated(Args &&... args) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ addAuxVariable() [1/2]

void MFEMProblem::addAuxVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addAuxVariable.

Sets a MFEM grid function to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 206 of file MFEMProblem.C.

209 {
210  // We handle MFEM AuxVariables just like MFEM Variables, except
211  // we do not add additional GridFunctions for time derivatives.
212  addGridFunction(var_type, var_name, parameters);
213 }
void addGridFunction(const std::string &var_type, const std::string &var_name, InputParameters &parameters)
Adds one MFEM GridFunction to be used in the MFEM solve.
Definition: MFEMProblem.C:175
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131

◆ addAuxVariable() [2/2]

void FEProblemBase::addAuxVariable ( const std::string &  var_name,
const libMesh::FEType type,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3231 of file FEProblemBase.C.

3234 {
3235  parallel_object_only();
3236 
3237  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3238 
3239  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3240  return;
3241 
3242  std::string var_type;
3243  if (type == FEType(0, MONOMIAL))
3244  var_type = "MooseVariableConstMonomial";
3245  else if (type.family == SCALAR)
3246  var_type = "MooseVariableScalar";
3247  else if (FEInterface::field_type(type) == TYPE_VECTOR)
3248  var_type = "VectorMooseVariable";
3249  else
3250  var_type = "MooseVariable";
3251 
3252  InputParameters params = _factory.getValidParams(var_type);
3253  params.set<FEProblemBase *>("_fe_problem_base") = this;
3255  params.set<MooseEnum>("order") = type.order.get_order();
3256  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3257 
3258  if (active_subdomains)
3259  for (const SubdomainID & id : *active_subdomains)
3260  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3261 
3262  logAdd("AuxVariable", var_name, var_type, params);
3263  _aux->addVariable(var_type, var_name, params);
3264  if (_displaced_problem)
3265  _displaced_problem->addAuxVariable("MooseVariable", var_name, params);
3266 
3267  markFamilyPRefinement(params);
3268 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1372
void mooseDeprecated(Args &&... args) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addBoundaryCondition()

void MFEMProblem::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 92 of file MFEMProblem.C.

95 {
97  const UserObject * mfem_bc_uo = &(getUserObjectBase(name));
98  if (dynamic_cast<const MFEMIntegratedBC *>(mfem_bc_uo) != nullptr)
99  {
100  auto object_ptr = getUserObject<MFEMIntegratedBC>(name).getSharedPtr();
101  auto bc = std::dynamic_pointer_cast<MFEMIntegratedBC>(object_ptr);
103  {
104  getProblemData().eqn_system->AddIntegratedBC(std::move(bc));
105  }
106  else
107  {
108  mooseError("Cannot add integrated BC with name '" + name +
109  "' because there is no corresponding equation system.");
110  }
111  }
112  else if (dynamic_cast<const MFEMEssentialBC *>(mfem_bc_uo) != nullptr)
113  {
114  auto object_ptr = getUserObject<MFEMEssentialBC>(name).getSharedPtr();
115  auto mfem_bc = std::dynamic_pointer_cast<MFEMEssentialBC>(object_ptr);
117  {
118  getProblemData().eqn_system->AddEssentialBC(std::move(mfem_bc));
119  }
120  else
121  {
122  mooseError("Cannot add boundary condition with name '" + name +
123  "' because there is no corresponding equation system.");
124  }
125  }
126  else
127  {
128  mooseError("Unsupported bc of type '", bc_name, "' and name '", name, "' detected.");
129  }
130 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::shared_ptr< MooseObject > getSharedPtr()
Get another shared pointer to this object that has the same ownership group.
Definition: MooseObject.C:72
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< Moose::MFEM::EquationSystem > eqn_system
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.
Base class for user-specific data.
Definition: UserObject.h:40

◆ addCachedJacobian()

void FEProblemBase::addCachedJacobian ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidual()

void FEProblemBase::addCachedResidual ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidualDirectly()

void FEProblemBase::addCachedResidualDirectly ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
virtualinherited

Allows for all the residual contributions that are currently cached to be added directly into the vector passed in.

Parameters
residualThe vector to add the cached contributions to.
tidThe thread id.

Definition at line 1937 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

1938 {
1940  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1942 
1944  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1946 
1947  // We do this because by adding the cached residual directly, we cannot ensure that all of the
1948  // cached residuals are emptied after only the two add calls above
1949  _assembly[tid][_current_nl_sys->number()]->clearCachedResiduals(Assembly::GlobalDataKey{});
1950 
1951  if (_displaced_problem)
1952  _displaced_problem->addCachedResidualDirectly(residual, tid);
1953 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
TagID nonTimeVectorTag() const override
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
TagID timeVectorTag() const override
Ideally, we should not need this API.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:162
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addConstraint()

void FEProblemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3147 of file FEProblemBase.C.

3150 {
3151  parallel_object_only();
3152 
3153  _has_constraints = true;
3154 
3155  auto determine_var_param_name = [&parameters, this]()
3156  {
3157  if (parameters.isParamValid("variable"))
3158  return "variable";
3159  else
3160  {
3161  // must be a mortar constraint
3162  const bool has_secondary_var = parameters.isParamValid("secondary_variable");
3163  const bool has_primary_var = parameters.isParamValid("primary_variable");
3164  if (!has_secondary_var && !has_primary_var)
3165  mooseError(
3166  "Either a 'secondary_variable' or 'primary_variable' parameter must be supplied for '",
3168  "'");
3169  return has_secondary_var ? "secondary_variable" : "primary_variable";
3170  }
3171  };
3172 
3173  const auto nl_sys_num =
3174  determineSolverSystem(parameters.varName(determine_var_param_name(), name), true).second;
3175  if (!isSolverSystemNonlinear(nl_sys_num))
3176  mooseError("You are trying to add a Constraint to a linear variable/system, which is not "
3177  "supported at the moment!");
3178 
3179  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3180  {
3181  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3182  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3183  _reinit_displaced_face = true;
3184  }
3185  else
3186  {
3187  // It might _want_ to use a displaced mesh... but we're not so set it to false
3188  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3189  parameters.set<bool>("use_displaced_mesh") = false;
3190 
3191  parameters.set<SubProblem *>("_subproblem") = this;
3192  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3193  }
3194 
3195  logAdd("Constraint", name, c_name, parameters);
3196  _nl[nl_sys_num]->addConstraint(c_name, name, parameters);
3197 }
const std::string & getObjectName() const
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_constraints
Whether or not this system has any Constraints.
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addConsumedPropertyName()

void SubProblem::addConsumedPropertyName ( const MooseObjectName obj_name,
const std::string &  prop_name 
)
inherited

Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput.

Definition at line 737 of file SubProblem.C.

Referenced by MaterialPropertyInterface::addConsumedPropertyName().

738 {
739  _consumed_material_properties[obj_name].insert(prop_name);
740 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1190

◆ addConvergence()

void FEProblemBase::addConvergence ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a Convergence object.

Definition at line 2568 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), and FEProblemBase::addDefaultSteadyStateConvergence().

2571 {
2572  parallel_object_only();
2573 
2574  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2575  {
2576  std::shared_ptr<Convergence> conv = _factory.create<Convergence>(type, name, parameters, tid);
2577  _convergences.addObject(conv, tid);
2578  }
2579 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
virtual std::unique_ptr< Base > create()=0
Base class for convergence criteria.
Definition: Convergence.h:21
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addCouplingGhostingFunctor()

void SubProblem::addCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf,
bool  to_mesh = true 
)
inherited

Add a coupling functor to this problem's DofMaps.

Definition at line 1057 of file SubProblem.C.

1058 {
1059  const auto num_nl_sys = numNonlinearSystems();
1060  if (!num_nl_sys)
1061  return;
1062 
1063  systemBaseNonlinear(0).system().get_dof_map().add_coupling_functor(coupling_gf, to_mesh);
1064  cloneCouplingGhostingFunctor(coupling_gf, to_mesh);
1065 }
void cloneCouplingGhostingFunctor(libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided coupling ghosting functor (corresponding to the nonlinear ...
Definition: SubProblem.C:1036
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void add_coupling_functor(GhostingFunctor &coupling_functor, bool to_mesh=true)
virtual std::size_t numNonlinearSystems() const =0
const DofMap & get_dof_map() const

◆ addDamper()

void FEProblemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5365 of file FEProblemBase.C.

5368 {
5369  parallel_object_only();
5370 
5371  const auto nl_sys_num =
5372  parameters.isParamValid("variable")
5373  ? determineSolverSystem(parameters.varName("variable", name), true).second
5374  : (unsigned int)0;
5375 
5376  if (!isSolverSystemNonlinear(nl_sys_num))
5377  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
5378  "supported at the moment!");
5379 
5380  parameters.set<SubProblem *>("_subproblem") = this;
5381  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
5382 
5383  _has_dampers = true;
5384  logAdd("Damper", name, damper_name, parameters);
5385  _nl[nl_sys_num]->addDamper(damper_name, name, parameters);
5386 }
bool _has_dampers
Whether or not this system has any Dampers associated with it.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addDefaultMultiAppFixedPointConvergence()

void FEProblemBase::addDefaultMultiAppFixedPointConvergence ( const InputParameters params)
inherited

Adds the default fixed point Convergence associated with the problem.

This is called if the user does not supply 'multiapp_fixed_point_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2594 of file FEProblemBase.C.

2595 {
2596  const std::string class_name = "DefaultMultiAppFixedPointConvergence";
2597  InputParameters params = _factory.getValidParams(class_name);
2598  params.applyParameters(params_to_apply);
2599  params.applyParameters(parameters());
2600  params.set<bool>("added_as_default") = true;
2602 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.
const ConvergenceName & getMultiAppFixedPointConvergenceName() const
Gets the MultiApp fixed point convergence object name.

◆ addDefaultNonlinearConvergence()

void FEProblemBase::addDefaultNonlinearConvergence ( const InputParameters params)
virtualinherited

Adds the default nonlinear Convergence associated with the problem.

This is called if the user does not supply 'nonlinear_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Reimplemented in ReferenceResidualProblem.

Definition at line 2582 of file FEProblemBase.C.

2583 {
2584  const std::string class_name = "DefaultNonlinearConvergence";
2585  InputParameters params = _factory.getValidParams(class_name);
2586  params.applyParameters(params_to_apply);
2587  params.applyParameters(parameters());
2588  params.set<bool>("added_as_default") = true;
2589  for (const auto & conv_name : getNonlinearConvergenceNames())
2590  addConvergence(class_name, conv_name, params);
2591 }
const std::vector< ConvergenceName > & getNonlinearConvergenceNames() const
Gets the nonlinear system convergence object name(s).
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDefaultSteadyStateConvergence()

void FEProblemBase::addDefaultSteadyStateConvergence ( const InputParameters params)
inherited

Adds the default steady-state detection Convergence.

This is called if the user does not supply 'steady_state_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2605 of file FEProblemBase.C.

2606 {
2607  const std::string class_name = "DefaultSteadyStateConvergence";
2608  InputParameters params = _factory.getValidParams(class_name);
2609  params.applyParameters(params_to_apply);
2610  params.applyParameters(parameters());
2611  params.set<bool>("added_as_default") = true;
2612  addConvergence(class_name, getSteadyStateConvergenceName(), params);
2613 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
const ConvergenceName & getSteadyStateConvergenceName() const
Gets the steady-state detection convergence object name.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDGKernel()

void FEProblemBase::addDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3421 of file FEProblemBase.C.

3424 {
3425  parallel_object_only();
3426 
3427  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3428  if (!isSolverSystemNonlinear(nl_sys_num))
3429  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
3430  "supported at the moment!");
3431 
3432  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3433  {
3434  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3435  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3437  }
3438  else
3439  {
3440  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3441  {
3442  // We allow DGKernels to request that they use_displaced_mesh,
3443  // but then be overridden when no displacements variables are
3444  // provided in the Mesh block. If that happened, update the value
3445  // of use_displaced_mesh appropriately for this DGKernel.
3446  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3447  parameters.set<bool>("use_displaced_mesh") = false;
3448  }
3449 
3450  parameters.set<SubProblem *>("_subproblem") = this;
3451  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3452  }
3453 
3454  logAdd("DGKernel", name, dg_kernel_name, parameters);
3455  _nl[nl_sys_num]->addDGKernel(dg_kernel_name, name, parameters);
3456 
3458 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addDiracKernel()

void FEProblemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3381 of file FEProblemBase.C.

3384 {
3385  parallel_object_only();
3386 
3387  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3388  if (!isSolverSystemNonlinear(nl_sys_num))
3389  mooseError("You are trying to add a DiracKernel to a linear variable/system, which is not "
3390  "supported at the moment!");
3391 
3392  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3393  {
3394  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3395  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3396  _reinit_displaced_elem = true;
3397  }
3398  else
3399  {
3400  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3401  {
3402  // We allow DiracKernels to request that they use_displaced_mesh,
3403  // but then be overridden when no displacements variables are
3404  // provided in the Mesh block. If that happened, update the value
3405  // of use_displaced_mesh appropriately for this DiracKernel.
3406  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3407  parameters.set<bool>("use_displaced_mesh") = false;
3408  }
3409 
3410  parameters.set<SubProblem *>("_subproblem") = this;
3411  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3412  }
3413 
3414  logAdd("DiracKernel", name, kernel_name, parameters);
3415  _nl[nl_sys_num]->addDiracKernel(kernel_name, name, parameters);
3416 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addDisplacedProblem()

void FEProblemBase::addDisplacedProblem ( std::shared_ptr< DisplacedProblem displaced_problem)
virtualinherited

Definition at line 8011 of file FEProblemBase.C.

8012 {
8013  parallel_object_only();
8014 
8017 }
std::shared_ptr< DisplacedProblem > displaced_problem
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ addDistribution()

void FEProblemBase::addDistribution ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import distributions.

Definition at line 2734 of file FEProblemBase.C.

2737 {
2738  parameters.set<std::string>("type") = type;
2739  addObject<Distribution>(type, name, parameters, /* threaded = */ false);
2740 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ addExternalVariables()

virtual void ExternalProblem::addExternalVariables ( )
inlinevirtualinherited

Method called to add AuxVariables to the simulation.

These variables would be the fields that should either be saved out with the MOOSE-formatted solutions or available for transfer to variables in Multiapp simulations.

Definition at line 48 of file ExternalProblem.h.

Referenced by AddExternalAuxVariableAction::act().

48 {}

◆ addFESpace()

void MFEMProblem::addFESpace ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Add an MFEM FESpace to the problem.

Definition at line 149 of file MFEMProblem.C.

Referenced by AddMFEMFESpaceAction::act(), and addMFEMFESpaceFromMOOSEVariable().

152 {
153  FEProblemBase::addUserObject(user_object_name, name, parameters);
154  MFEMFESpace & mfem_fespace(getUserObject<MFEMFESpace>(name));
155 
156  // Register fespace and associated fe collection.
157  getProblemData().fecs.Register(name, mfem_fespace.getFEC());
158  getProblemData().fespaces.Register(name, mfem_fespace.getFESpace());
159 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
Moose::MFEM::FESpaces fespaces
Moose::MFEM::FECollections fecs
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
Constructs and stores an mfem::ParFiniteElementSpace object.
Definition: MFEMFESpace.h:22
void Register(const std::string &field_name, FieldArgs &&... args)
Construct new field with name field_name and register.
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addFunction()

void MFEMProblem::addFunction ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addFunction.

Uses ExternalProblem::addFunction to create a MFEMGeneralUserObject representing the function in MOOSE, and creates a corresponding MFEM Coefficient or VectorCoefficient object.

Reimplemented from FEProblemBase.

Definition at line 327 of file MFEMProblem.C.

330 {
332  auto & func = getFunction(name);
333  // FIXME: Do we want to have optimised versions for when functions
334  // are only of space or only of time.
335  if (std::find(SCALAR_FUNCS.begin(), SCALAR_FUNCS.end(), type) != SCALAR_FUNCS.end())
336  {
337  getCoefficients().declareScalar<mfem::FunctionCoefficient>(
338  name,
339  [&func](const mfem::Vector & p, mfem::real_t t) -> mfem::real_t
340  { return func.value(t, pointFromMFEMVector(p)); });
341  }
342  else if (std::find(VECTOR_FUNCS.begin(), VECTOR_FUNCS.end(), type) != VECTOR_FUNCS.end())
343  {
345  getCoefficients().declareVector<mfem::VectorFunctionCoefficient>(
346  name,
347  dim,
348  [&func, dim](const mfem::Vector & p, mfem::real_t t, mfem::Vector & u)
349  {
350  libMesh::RealVectorValue vector_value = func.vectorValue(t, pointFromMFEMVector(p));
351  for (int i = 0; i < dim; i++)
352  {
353  u[i] = vector_value(i);
354  }
355  });
356  }
357  else
358  {
359  mooseWarning("Could not identify whether function ",
360  type,
361  " is scalar or vector; no MFEM coefficient object created.");
362  }
363 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
const std::vector< std::string > SCALAR_FUNCS
Definition: MFEMProblem.C:286
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
static constexpr std::size_t dim
This is the dimension of all vector and tensor datastructures used in MOOSE.
Definition: Moose.h:162
int vectorFunctionDim(const std::string &type, const InputParameters &parameters)
Definition: MFEMProblem.C:259
virtual Function & getFunction(const std::string &name, const THREAD_ID tid=0)
void mooseWarning(Args &&... args) const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
mfem::Coefficient & declareScalar(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing scalar coefficient or, if it does not exist, try interpreting the nam...
mfem::VectorCoefficient & declareVector(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing vector coefficientor or, if it does not exist, try interpreting the n...
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
Moose::MFEM::CoefficientManager & getCoefficients()
Method to get the PropertyManager object for storing material properties and converting them to MFEM ...
Definition: MFEMProblem.h:180
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
libMesh::Point pointFromMFEMVector(const mfem::Vector &vec)
Definition: MFEMProblem.C:252
const std::vector< std::string > VECTOR_FUNCS
Definition: MFEMProblem.C:324

◆ addFunctor()

template<typename T >
void SubProblem::addFunctor ( const std::string &  name,
const Moose::FunctorBase< T > &  functor,
const THREAD_ID  tid 
)
inherited

add a functor to the problem functor container

Definition at line 1380 of file SubProblem.h.

Referenced by FEProblemBase::addFunction(), SubProblem::addPiecewiseByBlockLambdaFunctor(), FEProblemBase::addUserObject(), and SystemBase::addVariable().

1383 {
1384  constexpr bool added_functor_is_ad =
1385  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1386 
1387  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1388 
1389  auto & functor_to_request_info = _functor_to_request_info[tid];
1390  auto & functors = _functors[tid];
1391  auto it = functors.find("wraps_" + name);
1392  if (it != functors.end())
1393  {
1394  // We have this functor already. If it's a null functor, we want to replace it with the valid
1395  // functor we have now. If it's not then we'll add a new entry into the multimap and then we'll
1396  // error later if a user requests a functor because their request is ambiguous. This is the
1397  // reason that the functors container is a multimap: for nice error messages
1398  auto * const existing_wrapper_base =
1399  added_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get();
1400  auto * const existing_wrapper = dynamic_cast<Moose::Functor<T> *>(existing_wrapper_base);
1401  if (existing_wrapper && existing_wrapper->template wrapsType<Moose::NullFunctor<T>>())
1402  {
1403  // Sanity check
1404  auto [request_info_it, request_info_end_it] = functor_to_request_info.equal_range(name);
1405  if (request_info_it == request_info_end_it)
1406  mooseError("We are wrapping a NullFunctor but we don't have any unfilled functor request "
1407  "info. This doesn't make sense.");
1408 
1409  // Check for valid requests
1410  while (request_info_it != request_info_end_it)
1411  {
1412  auto & [requested_functor_is_ad, requestor_is_ad] = request_info_it->second;
1413  if (!requested_functor_is_ad && requestor_is_ad && added_functor_is_ad)
1414  mooseError("We are requesting a non-AD functor '" + name +
1415  "' from an AD object, but the true functor is AD. This means we could be "
1416  "dropping important derivatives. We will not allow this");
1417  // We're going to eventually check whether we've fulfilled all functor requests and our
1418  // check will be that the multimap is empty. This request is fulfilled, so erase it from the
1419  // map now
1420  request_info_it = functor_to_request_info.erase(request_info_it);
1421  }
1422 
1423  // Ok we didn't have the functor before, so we will add it now
1424  std::get<0>(it->second) =
1426  existing_wrapper->assign(functor);
1427  // Finally we create the non-AD or AD complement of the just added functor
1428  if constexpr (added_functor_is_ad)
1429  {
1430  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1431  auto * const existing_non_ad_wrapper_base = std::get<1>(it->second).get();
1432  auto * const existing_non_ad_wrapper =
1433  dynamic_cast<Moose::Functor<NonADType> *>(existing_non_ad_wrapper_base);
1434  mooseAssert(existing_non_ad_wrapper->template wrapsType<Moose::NullFunctor<NonADType>>(),
1435  "Both members of pair should have been wrapping a NullFunctor");
1436  existing_non_ad_wrapper->assign(
1437  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1438  }
1439  else
1440  {
1441  typedef typename Moose::ADType<T>::type ADType;
1442  auto * const existing_ad_wrapper_base = std::get<2>(it->second).get();
1443  auto * const existing_ad_wrapper =
1444  dynamic_cast<Moose::Functor<ADType> *>(existing_ad_wrapper_base);
1445  mooseAssert(existing_ad_wrapper->template wrapsType<Moose::NullFunctor<ADType>>(),
1446  "Both members of pair should have been wrapping a NullFunctor");
1447  existing_ad_wrapper->assign(std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1448  }
1449  return;
1450  }
1451  else if (!existing_wrapper)
1452  {
1453  // Functor was emplaced but the cast failed. This could be a double definition with
1454  // different types, or it could be a request with one type then a definition with another
1455  // type. Either way it is going to error later, but it is cleaner to catch it now
1456  mooseError("Functor '",
1457  name,
1458  "' is being added with return type '",
1459  MooseUtils::prettyCppType<T>(),
1460  "' but it has already been defined or requested with return type '",
1461  existing_wrapper_base->returnType(),
1462  "'.");
1463  }
1464  }
1465 
1466  // We are a new functor, create the opposite ADType one and store it with other functors
1467  if constexpr (added_functor_is_ad)
1468  {
1469  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1470  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<NonADType>>(
1471  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1472  auto new_ad_wrapper = std::make_unique<Moose::Functor<T>>(functor);
1473  _functors[tid].emplace("wraps_" + name,
1474  std::make_tuple(SubProblem::TrueFunctorIs::AD,
1475  std::move(new_non_ad_wrapper),
1476  std::move(new_ad_wrapper)));
1477  }
1478  else
1479  {
1480  typedef typename Moose::ADType<T>::type ADType;
1481  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<T>>((functor));
1482  auto new_ad_wrapper = std::make_unique<Moose::Functor<ADType>>(
1483  std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1484  _functors[tid].emplace("wraps_" + name,
1485  std::make_tuple(SubProblem::TrueFunctorIs::NONAD,
1486  std::move(new_non_ad_wrapper),
1487  std::move(new_ad_wrapper)));
1488  }
1489 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1135
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
Wraps non-AD functors such that they can be used in objects that have requested the functor as AD...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1163
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1146
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...

◆ addFunctorMaterial()

void MFEMProblem::addFunctorMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 140 of file MFEMProblem.C.

143 {
145  getUserObject<MFEMFunctorMaterial>(name);
146 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addFVBC()

void FEProblemBase::addFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3475 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVBCs().

3478 {
3479  addObject<FVBoundaryCondition>(fv_bc_name, name, parameters);
3480 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addFVInitialCondition()

void FEProblemBase::addFVInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add an initial condition for a finite volume variables.

Parameters
ic_nameThe name of the boundary condition object
nameThe user-defined name from the input file
parametersThe input parameters for construction

Definition at line 3644 of file FEProblemBase.C.

3647 {
3648  parallel_object_only();
3649 
3650  // before we start to mess with the initial condition, we need to check parameters for errors.
3652  const std::string & var_name = parameters.get<VariableName>("variable");
3653 
3654  // Forbid initial conditions on a restarted problem, as they would override the restart
3655  checkICRestartError(ic_name, name, var_name);
3656 
3657  parameters.set<SubProblem *>("_subproblem") = this;
3658 
3659  // field IC
3660  if (hasVariable(var_name))
3661  {
3662  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3663  {
3664  auto & var = getVariable(
3666  parameters.set<SystemBase *>("_sys") = &var.sys();
3667  std::shared_ptr<FVInitialConditionBase> ic;
3668  if (var.isFV())
3669  ic = _factory.create<FVInitialCondition>(ic_name, name, parameters, tid);
3670  else
3671  mooseError(
3672  "Your variable for an FVInitialCondition needs to be an a finite volume variable!");
3673  _fv_ics.addObject(ic, tid);
3674  }
3675  }
3676  else
3677  mooseError("Variable '",
3678  var_name,
3679  "' requested in finite volume initial condition '",
3680  name,
3681  "' does not exist.");
3682 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
void addObject(std::shared_ptr< FVInitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
FVInitialConditionWarehouse _fv_ics
This is a template class that implements the workhorse compute and computeNodal methods.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFVInterfaceKernel()

void FEProblemBase::addFVInterfaceKernel ( const std::string &  fv_ik_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

We assume that variable1 and variable2 can live on different systems, in this case the user needs to create two interface kernels with flipped variables and parameters

Definition at line 3483 of file FEProblemBase.C.

3486 {
3489  addObject<FVInterfaceKernel>(
3490  fv_ik_name, name, parameters, /*threaded=*/true, /*variable_param_name=*/"variable1");
3491 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addFVKernel()

void FEProblemBase::addFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3461 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVKernels().

3464 {
3465  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3466  // FVElementalKernels are computed in the historically finite element threaded loops. They rely
3467  // on Assembly data like _current_elem. When we call reinit on the FEProblemBase we will only
3468  // reinit the DisplacedProblem and its associated Assembly objects if we mark this boolean as
3469  // true
3470  _reinit_displaced_elem = true;
3471  addObject<FVKernel>(fv_kernel_name, name, parameters);
3472 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addGhostedBoundary()

void FEProblemBase::addGhostedBoundary ( BoundaryID  boundary_id)
overridevirtualinherited

Will make sure that all necessary elements from boundary_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2139 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedBoundary().

2140 {
2141  _mesh.addGhostedBoundary(boundary_id);
2142  if (_displaced_problem)
2143  _displaced_mesh->addGhostedBoundary(boundary_id);
2144 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void addGhostedBoundary(BoundaryID boundary_id)
This will add the boundary ids to be ghosted to this processor.
Definition: MooseMesh.C:3250
MooseMesh * _displaced_mesh

◆ addGhostedElem()

void FEProblemBase::addGhostedElem ( dof_id_type  elem_id)
overridevirtualinherited

Will make sure that all dofs connected to elem_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2132 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedElem(), and NodalPatchRecovery::NodalPatchRecovery().

2133 {
2134  if (_mesh.elemPtr(elem_id)->processor_id() != processor_id())
2135  _ghosted_elems.insert(elem_id);
2136 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1095
MooseMesh & _mesh
processor_id_type processor_id() const
processor_id_type processor_id() const

◆ addGridFunction()

void MFEMProblem::addGridFunction ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)

Adds one MFEM GridFunction to be used in the MFEM solve.

Definition at line 175 of file MFEMProblem.C.

Referenced by addAuxVariable(), and addVariable().

178 {
179  if (var_type == "MFEMVariable")
180  {
181  // Add MFEM variable directly.
182  FEProblemBase::addUserObject(var_type, var_name, parameters);
183  }
184  else
185  {
186  // Add MOOSE variable.
187  FEProblemBase::addVariable(var_type, var_name, parameters);
188 
189  // Add MFEM variable indirectly ("gridfunction").
191  FEProblemBase::addUserObject("MFEMVariable", var_name, mfem_variable_params);
192  }
193 
194  // Register gridfunction.
195  MFEMVariable & mfem_variable = getUserObject<MFEMVariable>(var_name);
196  getProblemData().gridfunctions.Register(var_name, mfem_variable.getGridFunction());
197  if (mfem_variable.getFESpace().isScalar())
198  getCoefficients().declareScalar<mfem::GridFunctionCoefficient>(
199  var_name, mfem_variable.getGridFunction().get());
200  else
201  getCoefficients().declareVector<mfem::VectorGridFunctionCoefficient>(
202  var_name, mfem_variable.getGridFunction().get());
203 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
InputParameters addMFEMFESpaceFromMOOSEVariable(InputParameters &moosevar_params)
Method used to get an mfem FEC depending on the variable family specified in the input file...
Definition: MFEMProblem.C:377
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
Constructs and stores an mfem::ParGridFunction object.
Definition: MFEMVariable.h:20
virtual bool isScalar() const =0
mfem::Coefficient & declareScalar(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing scalar coefficient or, if it does not exist, try interpreting the nam...
mfem::VectorCoefficient & declareVector(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing vector coefficientor or, if it does not exist, try interpreting the n...
Moose::MFEM::CoefficientManager & getCoefficients()
Method to get the PropertyManager object for storing material properties and converting them to MFEM ...
Definition: MFEMProblem.h:180
const MFEMFESpace & getFESpace() const
Returns a reference to the fespace used by the gridfunction.
Definition: MFEMVariable.h:31
std::shared_ptr< mfem::ParGridFunction > getGridFunction() const
Returns a shared pointer to the constructed gridfunction.
Definition: MFEMVariable.h:28
virtual void addVariable(const std::string &var_type, const std::string &var_name, InputParameters &params)
Canonical method for adding a non-linear variable.
void Register(const std::string &field_name, FieldArgs &&... args)
Construct new field with name field_name and register.
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
Moose::MFEM::GridFunctions gridfunctions

◆ addHDGKernel()

void FEProblemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3043 of file FEProblemBase.C.

3046 {
3047  parallel_object_only();
3048  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3049  if (!isSolverSystemNonlinear(nl_sys_num))
3050  mooseError("You are trying to add a HDGKernel to a linear variable/system, which is not "
3051  "supported at the moment!");
3053  kernel_name, name, parameters, nl_sys_num, "HDGKernel", _reinit_displaced_elem);
3054 
3055  _nl[nl_sys_num]->addHDGKernel(kernel_name, name, parameters);
3056 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &parameters, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addIndicator()

void FEProblemBase::addIndicator ( const std::string &  indicator_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5396 of file FEProblemBase.C.

5399 {
5400  parallel_object_only();
5401 
5402  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5403  {
5404  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5405  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5406  _reinit_displaced_elem = true;
5407  }
5408  else
5409  {
5410  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5411  {
5412  // We allow Indicators to request that they use_displaced_mesh,
5413  // but then be overridden when no displacements variables are
5414  // provided in the Mesh block. If that happened, update the value
5415  // of use_displaced_mesh appropriately for this Indicator.
5416  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5417  parameters.set<bool>("use_displaced_mesh") = false;
5418  }
5419 
5420  parameters.set<SubProblem *>("_subproblem") = this;
5421  parameters.set<SystemBase *>("_sys") = _aux.get();
5422  }
5423 
5424  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5425  {
5426  std::shared_ptr<Indicator> indicator =
5427  _factory.create<Indicator>(indicator_name, name, parameters, tid);
5428  logAdd("Indicator", name, indicator_name, parameters);
5429  std::shared_ptr<InternalSideIndicatorBase> isi =
5431  if (isi)
5433  else
5434  _indicators.addObject(indicator, tid);
5435  }
5436 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseObjectWarehouse< Indicator > _indicators
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInitialCondition()

void MFEMProblem::addInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 509 of file MFEMProblem.C.

512 {
514  getUserObject<MFEMInitialCondition>(name); // error check
515 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addInterfaceKernel()

void FEProblemBase::addInterfaceKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3512 of file FEProblemBase.C.

3515 {
3516  parallel_object_only();
3517 
3518  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3519  if (!isSolverSystemNonlinear(nl_sys_num))
3520  mooseError("You are trying to add a InterfaceKernel to a linear variable/system, which is not "
3521  "supported at the moment!");
3522 
3523  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3524  {
3525  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3526  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3528  }
3529  else
3530  {
3531  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3532  {
3533  // We allow InterfaceKernels to request that they use_displaced_mesh,
3534  // but then be overridden when no displacements variables are
3535  // provided in the Mesh block. If that happened, update the value
3536  // of use_displaced_mesh appropriately for this InterfaceKernel.
3537  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3538  parameters.set<bool>("use_displaced_mesh") = false;
3539  }
3540 
3541  parameters.set<SubProblem *>("_subproblem") = this;
3542  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3543  }
3544 
3545  logAdd("InterfaceKernel", name, interface_kernel_name, parameters);
3546  _nl[nl_sys_num]->addInterfaceKernel(interface_kernel_name, name, parameters);
3547 
3549 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addInterfaceMaterial()

void FEProblemBase::addInterfaceMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4008 of file FEProblemBase.C.

4011 {
4013 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
MaterialWarehouse _interface_materials
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addJacobian()

void FEProblemBase::addJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1976 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1977 {
1978  _assembly[tid][_current_nl_sys->number()]->addJacobian(Assembly::GlobalDataKey{});
1980  _assembly[tid][_current_nl_sys->number()]->addJacobianNonlocal(Assembly::GlobalDataKey{});
1981  if (_displaced_problem)
1982  {
1983  _displaced_problem->addJacobian(tid);
1985  _displaced_problem->addJacobianNonlocal(tid);
1986  }
1987 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianBlockTags()

void FEProblemBase::addJacobianBlockTags ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2051 of file FEProblemBase.C.

Referenced by ComputeJacobianBlocksThread::postElement().

2058 {
2059  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockTags(
2060  jacobian, ivar, jvar, dof_map, dof_indices, Assembly::GlobalDataKey{}, tags);
2061 
2063  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2064  {
2065  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2066  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockNonlocalTags(
2067  jacobian,
2068  ivar,
2069  jvar,
2070  dof_map,
2071  dof_indices,
2072  jv.allDofIndices(),
2074  tags);
2075  }
2076 
2077  if (_displaced_problem)
2078  {
2079  _displaced_problem->addJacobianBlockTags(jacobian, ivar, jvar, dof_map, dof_indices, tags, tid);
2081  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2082  {
2083  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2084  _displaced_problem->addJacobianBlockNonlocal(
2085  jacobian, ivar, jvar, dof_map, dof_indices, jv.allDofIndices(), tags, tid);
2086  }
2087  }
2088 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
This class provides an interface for common operations on field variables of both FE and FV types wit...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::vector< dof_id_type > & allDofIndices() const
Get all global dofindices for the variable.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianLowerD()

void FEProblemBase::addJacobianLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 2006 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateLower(), and ComputeJacobianThread::accumulateLower().

2007 {
2008  _assembly[tid][_current_nl_sys->number()]->addJacobianLowerD(Assembly::GlobalDataKey{});
2009  if (_displaced_problem)
2010  _displaced_problem->addJacobianLowerD(tid);
2011 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianNeighbor() [1/3]

virtual void SubProblem::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const libMesh::DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
pure virtualinherited

Implemented in DisplacedProblem.

◆ addJacobianNeighbor() [2/3]

void FEProblemBase::addJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1990 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeJacobianThread::accumulateNeighbor(), and ComputeJacobianBlocksThread::postInternalSide().

1991 {
1992  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighbor(Assembly::GlobalDataKey{});
1993  if (_displaced_problem)
1994  _displaced_problem->addJacobianNeighbor(tid);
1995 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianNeighbor() [3/3]

virtual void FEProblemBase::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap &  dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ addJacobianNeighborLowerD()

void FEProblemBase::addJacobianNeighborLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1998 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighborLower(), and ComputeJacobianThread::accumulateNeighborLower().

1999 {
2000  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighborLowerD(Assembly::GlobalDataKey{});
2001  if (_displaced_problem)
2002  _displaced_problem->addJacobianNeighborLowerD(tid);
2003 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianOffDiagScalar()

void FEProblemBase::addJacobianOffDiagScalar ( unsigned int  ivar,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2020 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

2021 {
2022  _assembly[tid][_current_nl_sys->number()]->addJacobianOffDiagScalar(ivar,
2024 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianScalar()

void FEProblemBase::addJacobianScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 2014 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

2015 {
2016  _assembly[tid][_current_nl_sys->number()]->addJacobianScalar(Assembly::GlobalDataKey{});
2017 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addKernel()

void MFEMProblem::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addKernel.

Uses ExternalProblem::addKernel to create a MFEMGeneralUserObject representing the kernel in MOOSE, and creates corresponding MFEM kernel to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 224 of file MFEMProblem.C.

227 {
229  const UserObject * kernel_uo = &(getUserObjectBase(name));
230 
231  if (dynamic_cast<const MFEMKernel *>(kernel_uo) != nullptr)
232  {
233  auto object_ptr = getUserObject<MFEMKernel>(name).getSharedPtr();
234  auto kernel = std::dynamic_pointer_cast<MFEMKernel>(object_ptr);
236  {
237  getProblemData().eqn_system->AddKernel(std::move(kernel));
238  }
239  else
240  {
241  mooseError("Cannot add kernel with name '" + name +
242  "' because there is no corresponding equation system.");
243  }
244  }
245  else
246  {
247  mooseError("Unsupported kernel of type '", kernel_name, "' and name '", name, "' detected.");
248  }
249 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::shared_ptr< MooseObject > getSharedPtr()
Get another shared pointer to this object that has the same ownership group.
Definition: MooseObject.C:72
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< Moose::MFEM::EquationSystem > eqn_system
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.
Class to construct an MFEM integrator to apply to the equation system.
Definition: MFEMKernel.h:21
Base class for user-specific data.
Definition: UserObject.h:40

◆ addKokkosAuxKernel()

virtual void FEProblemBase::addKokkosAuxKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosBoundaryCondition()

virtual void FEProblemBase::addKokkosBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosKernel()

virtual void FEProblemBase::addKokkosKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosMaterial()

virtual void FEProblemBase::addKokkosMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosNodalKernel()

virtual void FEProblemBase::addKokkosNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addLinearFVBC()

void FEProblemBase::addLinearFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3502 of file FEProblemBase.C.

3505 {
3506  addObject<LinearFVBoundaryCondition>(bc_name, name, parameters);
3507 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addLinearFVKernel()

void FEProblemBase::addLinearFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3494 of file FEProblemBase.C.

3497 {
3498  addObject<LinearFVKernel>(kernel_name, name, parameters);
3499 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addLineSearch()

virtual void FEProblemBase::addLineSearch ( const InputParameters )
inlinevirtualinherited

add a MOOSE line search

Reimplemented in DumpObjectsProblem, and FEProblem.

Definition at line 739 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

740  {
741  mooseError("Line search not implemented for this problem type yet.");
742  }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addMarker()

void FEProblemBase::addMarker ( const std::string &  marker_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5439 of file FEProblemBase.C.

5442 {
5443  parallel_object_only();
5444 
5445  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5446  {
5447  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5448  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5449  _reinit_displaced_elem = true;
5450  }
5451  else
5452  {
5453  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5454  {
5455  // We allow Markers to request that they use_displaced_mesh,
5456  // but then be overridden when no displacements variables are
5457  // provided in the Mesh block. If that happened, update the value
5458  // of use_displaced_mesh appropriately for this Marker.
5459  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5460  parameters.set<bool>("use_displaced_mesh") = false;
5461  }
5462 
5463  parameters.set<SubProblem *>("_subproblem") = this;
5464  parameters.set<SystemBase *>("_sys") = _aux.get();
5465  }
5466 
5467  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5468  {
5469  std::shared_ptr<Marker> marker = _factory.create<Marker>(marker_name, name, parameters, tid);
5470  logAdd("Marker", name, marker_name, parameters);
5471  _markers.addObject(marker, tid);
5472  }
5473 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Definition: Marker.h:41
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMaterial()

void MFEMProblem::addMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 133 of file MFEMProblem.C.

134 {
135  mooseError(
136  "MFEM materials must be added through the 'FunctorMaterials' block and not 'Materials'");
137 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addMaterialHelper()

void FEProblemBase::addMaterialHelper ( std::vector< MaterialWarehouse *>  warehouse,
const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4016 of file FEProblemBase.C.

Referenced by FEProblemBase::addInterfaceMaterial(), and FEProblemBase::addMaterial().

4020 {
4021  parallel_object_only();
4022 
4023  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4024  {
4025  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4027  }
4028  else
4029  {
4030  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
4031  {
4032  // We allow Materials to request that they use_displaced_mesh,
4033  // but then be overridden when no displacements variables are
4034  // provided in the Mesh block. If that happened, update the value
4035  // of use_displaced_mesh appropriately for this Material.
4036  if (parameters.have_parameter<bool>("use_displaced_mesh"))
4037  parameters.set<bool>("use_displaced_mesh") = false;
4038  }
4039 
4040  parameters.set<SubProblem *>("_subproblem") = this;
4041  }
4042 
4043  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
4044  {
4045  // Create the general Block/Boundary MaterialBase object
4046  std::shared_ptr<MaterialBase> material =
4047  _factory.create<MaterialBase>(mat_name, name, parameters, tid);
4048  logAdd("Material", name, mat_name, parameters);
4049  bool discrete = !material->getParam<bool>("compute");
4050 
4051  // If the object is boundary restricted or if it is a functor material we do not create the
4052  // neighbor and face objects
4053  if (material->boundaryRestricted() || dynamic_cast<FunctorMaterial *>(material.get()))
4054  {
4055  _all_materials.addObject(material, tid);
4056  if (discrete)
4057  _discrete_materials.addObject(material, tid);
4058  else
4059  for (auto && warehouse : warehouses)
4060  warehouse->addObject(material, tid);
4061  }
4062 
4063  // Non-boundary restricted require face and neighbor objects
4064  else
4065  {
4066  // TODO: we only need to do this if we have needs for face materials (e.g.
4067  // FV, DG, etc.) - but currently we always do it. Figure out how to fix
4068  // this.
4069 
4070  // The name of the object being created, this is changed multiple times as objects are
4071  // created below
4072  std::string object_name;
4073 
4074  // Create a copy of the supplied parameters to the setting for "_material_data_type" isn't
4075  // used from a previous tid loop
4076  InputParameters current_parameters = parameters;
4077 
4078  // face material
4079  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
4081  object_name = name + "_face";
4082  std::shared_ptr<MaterialBase> face_material =
4083  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
4084 
4085  // neighbor material
4086  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
4088  current_parameters.set<bool>("_neighbor") = true;
4089  object_name = name + "_neighbor";
4090  std::shared_ptr<MaterialBase> neighbor_material =
4091  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
4092 
4093  // Store the material objects
4094  _all_materials.addObjects(material, neighbor_material, face_material, tid);
4095 
4096  if (discrete)
4097  _discrete_materials.addObjects(material, neighbor_material, face_material, tid);
4098  else
4099  for (auto && warehouse : warehouses)
4100  warehouse->addObjects(material, neighbor_material, face_material, tid);
4101 
4102  // Names of all controllable parameters for this Material object
4103  const std::string & base = parameters.getBase();
4104  MooseObjectParameterName name(MooseObjectName(base, material->name()), "*");
4105  const auto param_names =
4107 
4108  // Connect parameters of the primary Material object to those on the face and neighbor
4109  // objects
4110  for (const auto & p_name : param_names)
4111  {
4112  MooseObjectParameterName primary_name(MooseObjectName(base, material->name()),
4113  p_name.parameter());
4114  MooseObjectParameterName face_name(MooseObjectName(base, face_material->name()),
4115  p_name.parameter());
4116  MooseObjectParameterName neighbor_name(MooseObjectName(base, neighbor_material->name()),
4117  p_name.parameter());
4119  primary_name, face_name, false);
4121  primary_name, neighbor_name, false);
4122  }
4123  }
4124  }
4125 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addControllableParameterConnection(const MooseObjectParameterName &primary, const MooseObjectParameterName &secondary, bool error_on_empty=true)
Method for linking control parameters of different names.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2973
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
MaterialDataType
MaterialData types.
Definition: MooseTypes.h:692
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & getBase() const
std::vector< MooseObjectParameterName > getControllableParameterNames(const MooseObjectParameterName &input) const
Return a vector of parameters names matching the supplied name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
FunctorMaterials compute functor material properties.
virtual std::unique_ptr< Base > create()=0
void addObjects(std::shared_ptr< MaterialBase > block, std::shared_ptr< MaterialBase > neighbor, std::shared_ptr< MaterialBase > face, THREAD_ID tid=0)
A special method unique to this class for adding Block, Neighbor, and Face material objects...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
MaterialWarehouse _discrete_materials
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A class for storing an input parameter name.
A class for storing the names of MooseObject by tag and object name.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMatrixTag()

TagID SubProblem::addMatrixTag ( TagName  tag_name)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated

Reimplemented in DisplacedProblem.

Definition at line 312 of file SubProblem.C.

Referenced by DisplacedProblem::addMatrixTag(), FEProblemBase::createTagMatrices(), LinearSystem::LinearSystem(), and NonlinearSystemBase::NonlinearSystemBase().

313 {
314  auto tag_name_upper = MooseUtils::toUpper(tag_name);
315  auto existing_tag = _matrix_tag_name_to_tag_id.find(tag_name_upper);
316  if (existing_tag == _matrix_tag_name_to_tag_id.end())
317  {
318  auto tag_id = _matrix_tag_name_to_tag_id.size();
319 
320  _matrix_tag_name_to_tag_id[tag_name_upper] = tag_id;
321 
322  _matrix_tag_id_to_tag_name[tag_id] = tag_name_upper;
323  }
324 
325  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
326 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1043
std::string toUpper(std::string name)
Convert supplied string to upper case.
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1046

◆ addMeshDivision()

void FEProblemBase::addMeshDivision ( const std::string &  type,
const std::string &  name,
InputParameters params 
)
virtualinherited

Add a MeshDivision.

Definition at line 2689 of file FEProblemBase.C.

2692 {
2693  parallel_object_only();
2694  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
2695  parameters.set<SubProblem *>("_subproblem") = this;
2696  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2697  {
2698  std::shared_ptr<MeshDivision> func = _factory.create<MeshDivision>(type, name, parameters, tid);
2699  _mesh_divisions.addObject(func, tid);
2700  }
2701 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMFEMFESpaceFromMOOSEVariable()

InputParameters MFEMProblem::addMFEMFESpaceFromMOOSEVariable ( InputParameters moosevar_params)

Method used to get an mfem FEC depending on the variable family specified in the input file.

This method is used in addAuxVariable to help create the MFEM grid function that corresponds to a given MOOSE aux-variable.

Definition at line 377 of file MFEMProblem.C.

Referenced by addGridFunction().

378 {
379 
380  InputParameters fespace_params = _factory.getValidParams("MFEMGenericFESpace");
381  InputParameters mfem_variable_params = _factory.getValidParams("MFEMVariable");
382 
383  auto moose_fe_type =
384  FEType(Utility::string_to_enum<Order>(parameters.get<MooseEnum>("order")),
385  Utility::string_to_enum<FEFamily>(parameters.get<MooseEnum>("family")));
386 
387  std::string mfem_family;
388  int mfem_vdim = 1;
389 
390  switch (moose_fe_type.family)
391  {
392  case FEFamily::LAGRANGE:
393  mfem_family = "H1";
394  mfem_vdim = 1;
395  break;
396  case FEFamily::LAGRANGE_VEC:
397  mfem_family = "H1";
398  mfem_vdim = 3;
399  break;
400  case FEFamily::MONOMIAL:
401  mfem_family = "L2";
402  mfem_vdim = 1;
403  break;
404  case FEFamily::MONOMIAL_VEC:
405  mfem_family = "L2";
406  mfem_vdim = 3;
407  break;
408  default:
409  mooseError("Unable to set MFEM FESpace for MOOSE variable");
410  break;
411  }
412 
413  // Create fespace name. If this already exists, we will reuse this for
414  // the mfem variable ("gridfunction").
415  const std::string fespace_name = mfem_family + "_" +
416  std::to_string(mesh().getMFEMParMesh().Dimension()) + "D_P" +
417  std::to_string(moose_fe_type.order.get_order());
418 
419  // Set all fespace parameters.
420  fespace_params.set<std::string>("fec_name") = fespace_name;
421  fespace_params.set<int>("vdim") = mfem_vdim;
422 
423  if (!hasUserObject(fespace_name)) // Create the fespace (implicit).
424  {
425  addFESpace("MFEMGenericFESpace", fespace_name, fespace_params);
426  }
427 
428  mfem_variable_params.set<UserObjectName>("fespace") = fespace_name;
429 
430  return mfem_variable_params;
431 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:466
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
InputParameters getValidParams(const std::string &name) const
Get valid parameters for the object.
Definition: Factory.C:68
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void addFESpace(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
Add an MFEM FESpace to the problem.
Definition: MFEMProblem.C:149
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addMFEMNonlinearSolver()

void MFEMProblem::addMFEMNonlinearSolver ( )

Add the nonlinear solver to the system.

TODO: allow user to specify solver options, similar to the linear solvers.

Definition at line 79 of file MFEMProblem.C.

Referenced by initialSetup().

80 {
81  auto nl_solver = std::make_shared<mfem::NewtonSolver>(getComm());
82 
83  // Defaults to one iteration, without further nonlinear iterations
84  nl_solver->SetRelTol(0.0);
85  nl_solver->SetAbsTol(0.0);
86  nl_solver->SetMaxIter(1);
87 
88  getProblemData().nonlinear_solver = nl_solver;
89 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
MPI_Comm getComm()
Return the MPI communicator associated with this FE problem&#39;s mesh.
Definition: MFEMProblem.h:191
std::shared_ptr< mfem::NewtonSolver > nonlinear_solver

◆ addMFEMPreconditioner()

void MFEMProblem::addMFEMPreconditioner ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Method called in AddMFEMPreconditionerAction which will create the solver.

Definition at line 60 of file MFEMProblem.C.

Referenced by AddMFEMPreconditionerAction::act().

63 {
64  FEProblemBase::addUserObject(user_object_name, name, parameters);
65 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addMFEMSolver()

void MFEMProblem::addMFEMSolver ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Method called in AddMFEMSolverAction which will create the solver.

Definition at line 68 of file MFEMProblem.C.

Referenced by AddMFEMSolverAction::act().

71 {
72  FEProblemBase::addUserObject(user_object_name, name, parameters);
73  auto object_ptr = getUserObject<MFEMSolverBase>(name).getSharedPtr();
74 
76 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::shared_ptr< MooseObject > getSharedPtr()
Get another shared pointer to this object that has the same ownership group.
Definition: MooseObject.C:72
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
Base class for wrapping mfem::Solver-derived classes.
std::shared_ptr< MFEMSolverBase > jacobian_solver

◆ addMultiApp()

void FEProblemBase::addMultiApp ( const std::string &  multi_app_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a MultiApp to the problem.

Definition at line 5476 of file FEProblemBase.C.

5479 {
5480  parallel_object_only();
5481 
5482  parameters.set<MPI_Comm>("_mpi_comm") = _communicator.get();
5483 
5484  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5485  {
5486  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5487  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5488  _reinit_displaced_elem = true;
5489  }
5490  else
5491  {
5492  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5493  {
5494  // We allow MultiApps to request that they use_displaced_mesh,
5495  // but then be overridden when no displacements variables are
5496  // provided in the Mesh block. If that happened, update the value
5497  // of use_displaced_mesh appropriately for this MultiApp.
5498  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5499  parameters.set<bool>("use_displaced_mesh") = false;
5500  }
5501 
5502  parameters.set<SubProblem *>("_subproblem") = this;
5503  parameters.set<SystemBase *>("_sys") = _aux.get();
5504  }
5505 
5506  std::shared_ptr<MultiApp> multi_app = _factory.create<MultiApp>(multi_app_name, name, parameters);
5507  logAdd("MultiApp", name, multi_app_name, parameters);
5508  multi_app->setupPositions();
5509 
5510  _multi_apps.addObject(multi_app);
5511 
5512  // Store TransientMultiApp objects in another container, this is needed for calling computeDT
5513  std::shared_ptr<TransientMultiApp> trans_multi_app =
5515  if (trans_multi_app)
5516  _transient_multi_apps.addObject(trans_multi_app);
5517 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
MultiApp Implementation for Transient Apps.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A MultiApp represents one or more MOOSE applications that are running simultaneously.
Definition: MultiApp.h:112

◆ addNodalKernel()

void FEProblemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3059 of file FEProblemBase.C.

3062 {
3063  parallel_object_only();
3064 
3065  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3066  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3067  {
3068  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3069  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3070  _reinit_displaced_elem = true;
3071  }
3072  else
3073  {
3074  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3075  {
3076  // We allow NodalKernels to request that they use_displaced_mesh,
3077  // but then be overridden when no displacements variables are
3078  // provided in the Mesh block. If that happened, update the value
3079  // of use_displaced_mesh appropriately for this NodalKernel.
3080  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3081  parameters.set<bool>("use_displaced_mesh") = false;
3082  }
3083 
3084  parameters.set<SubProblem *>("_subproblem") = this;
3085  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3086  }
3087  logAdd("NodalKernel", name, kernel_name, parameters);
3088  _nl[nl_sys_num]->addNodalKernel(kernel_name, name, parameters);
3089 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addNotZeroedVectorTag()

void SubProblem::addNotZeroedVectorTag ( const TagID  tag)
inherited

Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that will be manually managed

Definition at line 150 of file SubProblem.C.

Referenced by FEProblemBase::createTagVectors().

151 {
152  _not_zeroed_tagged_vectors.insert(tag);
153 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1119

◆ addObject()

template<typename T >
std::vector< std::shared_ptr< T > > FEProblemBase::addObject ( const std::string &  type,
const std::string &  name,
InputParameters parameters,
const bool  threaded = true,
const std::string &  var_param_name = "variable" 
)
inherited

Method for creating and adding an object to the warehouse.

Template Parameters
TThe base object type (registered in the Factory)
Parameters
typeString type of the object (registered in the Factory)
nameName for the object to be created
parametersInputParameters for the object
threadedWhether or not to create n_threads copies of the object
var_param_nameThe name of the parameter on the object which holds the primary variable.
Returns
A vector of shared_ptrs to the added objects

Definition at line 3408 of file FEProblemBase.h.

3413 {
3414  parallel_object_only();
3415 
3416  logAdd(MooseUtils::prettyCppType<T>(), name, type, parameters);
3417  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
3418  addObjectParamsHelper(parameters, name, var_param_name);
3419 
3420  const auto n_threads = threaded ? libMesh::n_threads() : 1;
3421  std::vector<std::shared_ptr<T>> objects(n_threads);
3422  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
3423  {
3424  std::shared_ptr<T> obj = _factory.create<T>(type, name, parameters, tid);
3425  theWarehouse().add(obj);
3426  objects[tid] = std::move(obj);
3427  }
3428 
3429  return objects;
3430 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::shared_ptr< MooseObject > create(const std::string &obj_name, const std::string &name, const InputParameters &parameters, THREAD_ID tid=0, bool print_deprecated=true)
Definition: Factory.C:111
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addObjectParamsHelper()

void FEProblemBase::addObjectParamsHelper ( InputParameters params,
const std::string &  object_name,
const std::string &  var_param_name = "variable" 
)
protectedinherited

Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().

This is needed due to header includes/forward declaration issues

Definition at line 4410 of file FEProblemBase.C.

Referenced by FEProblemBase::addObject(), and FEProblemBase::addUserObject().

4413 {
4414  // Due to objects like SolutionUserObject which manipulate libmesh objects
4415  // and variables directly at the back end, we need a default option here
4416  // which is going to be the pointer to the first solver system within this
4417  // problem
4418  unsigned int sys_num = 0;
4419  if (parameters.isParamValid(var_param_name))
4420  {
4421  const auto variable_name = parameters.varName(var_param_name, object_name);
4422  if (this->hasVariable(variable_name) || this->hasScalarVariable(variable_name))
4423  sys_num = getSystem(variable_name).number();
4424  }
4425  if (parameters.isParamValid("solver_sys"))
4426  {
4427  const auto var_sys_num = sys_num;
4428  sys_num = getSystemBase(parameters.get<SolverSystemName>("solver_sys")).number();
4429  if (sys_num != var_sys_num && parameters.isParamValid(var_param_name))
4430  mooseError("We dont support setting 'variable' to a variable that is not set to the same "
4431  "system as the 'solver_sys' parameter");
4432  }
4433 
4434  if (_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4435  parameters.get<bool>("use_displaced_mesh"))
4436  {
4437  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4438  if (sys_num == _aux->number())
4439  parameters.set<SystemBase *>("_sys") = &_displaced_problem->systemBaseAuxiliary();
4440  else
4441  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(sys_num);
4442  }
4443  else
4444  {
4445  // The object requested use_displaced_mesh, but it was overridden
4446  // due to there being no displacements variables in the [Mesh] block.
4447  // If that happened, update the value of use_displaced_mesh appropriately.
4448  if (!_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4449  parameters.get<bool>("use_displaced_mesh"))
4450  parameters.set<bool>("use_displaced_mesh") = false;
4451 
4452  parameters.set<SubProblem *>("_subproblem") = this;
4453 
4454  if (sys_num == _aux->number())
4455  parameters.set<SystemBase *>("_sys") = _aux.get();
4456  else
4457  parameters.set<SystemBase *>("_sys") = _solver_systems[sys_num].get();
4458  }
4459 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
unsigned int number() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addOutput()

void FEProblemBase::addOutput ( const std::string &  object_type,
const std::string &  object_name,
InputParameters parameters 
)
inherited

Adds an Output object.

Definition at line 9066 of file FEProblemBase.C.

9069 {
9070  parallel_object_only();
9071 
9072  // Get a reference to the OutputWarehouse
9073  OutputWarehouse & output_warehouse = _app.getOutputWarehouse();
9074 
9075  // Reject the reserved names for objects not built by MOOSE
9076  if (!parameters.get<bool>("_built_by_moose") && output_warehouse.isReservedName(object_name))
9077  mooseError("The name '", object_name, "' is a reserved name for output objects");
9078 
9079  // Check that an object by the same name does not already exist; this must be done before the
9080  // object is created to avoid getting misleading errors from the Parser
9081  if (output_warehouse.hasOutput(object_name))
9082  mooseError("An output object named '", object_name, "' already exists");
9083 
9084  // Add a pointer to the FEProblemBase class
9085  parameters.addPrivateParam<FEProblemBase *>("_fe_problem_base", this);
9086 
9087  // Create common parameter exclude list
9088  std::vector<std::string> exclude;
9089  if (object_type == "Console")
9090  {
9091  exclude.push_back("execute_on");
9092 
9093  // --show-input should enable the display of the input file on the screen
9094  if (_app.getParam<bool>("show_input") && parameters.get<bool>("output_screen"))
9095  parameters.set<ExecFlagEnum>("execute_input_on") = EXEC_INITIAL;
9096  }
9097  // Need this because Checkpoint::validParams changes the default value of
9098  // execute_on
9099  else if (object_type == "Checkpoint")
9100  exclude.push_back("execute_on");
9101 
9102  // Apply the common parameters loaded with Outputs input syntax
9103  const InputParameters * common = output_warehouse.getCommonParameters();
9104  if (common)
9105  parameters.applyParameters(*common, exclude);
9106  if (common && std::find(exclude.begin(), exclude.end(), "execute_on") != exclude.end() &&
9107  common->isParamSetByUser("execute_on") && object_type != "Console")
9109  "'execute_on' parameter specified in [Outputs] block is ignored for object '" +
9110  object_name +
9111  "'.\nDefine this object in its own sub-block of [Outputs] to modify its "
9112  "execution schedule.");
9113 
9114  // Set the correct value for the binary flag for XDA/XDR output
9115  if (object_type == "XDR")
9116  parameters.set<bool>("_binary") = true;
9117  else if (object_type == "XDA")
9118  parameters.set<bool>("_binary") = false;
9119 
9120  // Adjust the checkpoint suffix if auto recovery was enabled
9121  if (object_name == "auto_recovery_checkpoint")
9122  parameters.set<std::string>("suffix") = "auto_recovery";
9123 
9124  // Create the object and add it to the warehouse
9125  std::shared_ptr<Output> output = _factory.create<Output>(object_type, object_name, parameters);
9126  logAdd("Output", object_name, object_type, parameters);
9127  output_warehouse.addOutput(output);
9128 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:388
void addPrivateParam(const std::string &name, const T &value)
These method add a parameter to the InputParameters object which can be retrieved like any other para...
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
bool isReservedName(const std::string &name)
Test if the given name is reserved.
bool hasOutput(const std::string &name) const
Returns true if the output object exists.
void mooseInfoRepeated(Args &&... args)
Emit an informational message with the given stringified, concatenated args.
Definition: MooseError.h:398
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Based class for output objects.
Definition: Output.h:43
virtual std::unique_ptr< Base > create()=0
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
Class for storing and utilizing output objects.
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
const InputParameters * getCommonParameters() const
Get a reference to the common output parameters.
void addOutput(std::shared_ptr< Output > output)
Adds an existing output object to the warehouse.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ addPiecewiseByBlockLambdaFunctor()

template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & SubProblem::addPiecewiseByBlockLambdaFunctor ( const std::string &  name,
PolymorphicLambda  my_lammy,
const std::set< ExecFlagType > &  clearance_schedule,
const MooseMesh mesh,
const std::set< SubdomainID > &  block_ids,
const THREAD_ID  tid 
)
inherited

Add a functor that has block-wise lambda definitions, e.g.

the evaluations of the functor are based on a user-provided lambda expression.

Parameters
nameThe name of the functor to add
my_lammyThe lambda expression that will be called when the functor is evaluated
clearance_scheduleHow often to clear functor evaluations. The default value is always, which means that the functor will be re-evaluated every time it is called. If it is something other than always, than cached values may be returned
meshThe mesh on which this functor operates
block_idsThe blocks on which the lambda expression is defined
tidThe thread on which the functor we are adding will run
Returns
The added functor

Definition at line 1343 of file SubProblem.h.

Referenced by FunctorMaterial::addFunctorPropertyByBlocks().

1349 {
1350  auto & pbblf_functors = _pbblf_functors[tid];
1351 
1352  auto [it, first_time_added] =
1353  pbblf_functors.emplace(name,
1354  std::make_unique<PiecewiseByBlockLambdaFunctor<T>>(
1355  name, my_lammy, clearance_schedule, mesh, block_ids));
1356 
1357  auto * functor = dynamic_cast<PiecewiseByBlockLambdaFunctor<T> *>(it->second.get());
1358  if (!functor)
1359  {
1360  if (first_time_added)
1361  mooseError("This should be impossible. If this was the first time we added the functor, then "
1362  "the dynamic cast absolutely should have succeeded");
1363  else
1364  mooseError("Attempted to add a lambda functor with the name '",
1365  name,
1366  "' but another lambda functor of that name returns a different type");
1367  }
1368 
1369  if (first_time_added)
1370  addFunctor(name, *functor, tid);
1371  else
1372  // The functor already exists
1373  functor->setFunctor(mesh, block_ids, my_lammy);
1374 
1375  return *functor;
1376 }
virtual MooseMesh & mesh()=0
A material property that is evaluated on-the-fly via calls to various overloads of operator() ...
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1380
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::map< std::string, std::unique_ptr< Moose::FunctorAbstract > > > _pbblf_functors
Container to hold PiecewiseByBlockLambdaFunctors.
Definition: SubProblem.h:1149
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addPostprocessor()

void MFEMProblem::addPostprocessor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addPostprocessor.

In addition to creating the postprocessor object, it will create a coefficient that will hold its value.

Reimplemented from FEProblemBase.

Definition at line 366 of file MFEMProblem.C.

369 {
372  getCoefficients().declareScalar<mfem::FunctionCoefficient>(
373  name, [&val](const mfem::Vector &) -> mfem::real_t { return val; });
374 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
virtual void addPostprocessor(const std::string &pp_name, const std::string &name, InputParameters &parameters)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
mfem::Coefficient & declareScalar(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing scalar coefficient or, if it does not exist, try interpreting the nam...
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
Moose::MFEM::CoefficientManager & getCoefficients()
Method to get the PropertyManager object for storing material properties and converting them to MFEM ...
Definition: MFEMProblem.h:180
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
const PostprocessorValue & getPostprocessorValueByName(const PostprocessorName &name, std::size_t t_index=0) const
Get a read-only reference to the value associated with a Postprocessor that exists.

◆ addPredictor()

void FEProblemBase::addPredictor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 7034 of file FEProblemBase.C.

Referenced by AB2PredictorCorrector::AB2PredictorCorrector().

7037 {
7038  parallel_object_only();
7039 
7041  mooseError("Vector bounds cannot be used with LinearSystems!");
7042 
7043  parameters.set<SubProblem *>("_subproblem") = this;
7044  std::shared_ptr<Predictor> predictor = _factory.create<Predictor>(type, name, parameters);
7045  logAdd("Predictor", name, type, parameters);
7046 
7047  for (auto & nl : _nl)
7048  nl->setPredictor(predictor);
7049 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
virtual std::size_t numNonlinearSystems() const override
Base class for predictors.
Definition: Predictor.h:28
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual std::size_t numLinearSystems() const override

◆ addReporter()

void FEProblemBase::addReporter ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a Reporter object to the simulation.

Parameters
typeC++ object type to construct
nameA uniquely identifying object name
parametersComplete parameters for the object to be created.

For an example use, refer to AddReporterAction.C/h

Definition at line 4490 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer().

4493 {
4494  // Check for name collision
4495  if (hasUserObject(name))
4496  mooseError("A ",
4498  " already exists. You may not add a Reporter by the same name.");
4499 
4501 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:57
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addResidual()

void FEProblemBase::addResidual ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1876 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1877 {
1878  _assembly[tid][_current_nl_sys->number()]->addResidual(Assembly::GlobalDataKey{},
1880 
1881  if (_displaced_problem)
1882  _displaced_problem->addResidual(tid);
1883 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addResidualLower()

void FEProblemBase::addResidualLower ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1896 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateLower(), ComputeResidualAndJacobianThread::accumulateLower(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1897 {
1898  _assembly[tid][_current_nl_sys->number()]->addResidualLower(Assembly::GlobalDataKey{},
1900 
1901  if (_displaced_problem)
1902  _displaced_problem->addResidualLower(tid);
1903 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addResidualNeighbor()

void FEProblemBase::addResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1886 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateNeighbor(), ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1887 {
1888  _assembly[tid][_current_nl_sys->number()]->addResidualNeighbor(Assembly::GlobalDataKey{},
1890 
1891  if (_displaced_problem)
1892  _displaced_problem->addResidualNeighbor(tid);
1893 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addResidualScalar()

void FEProblemBase::addResidualScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 1906 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1907 {
1908  _assembly[tid][_current_nl_sys->number()]->addResidualScalar(Assembly::GlobalDataKey{},
1910 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addSampler()

void FEProblemBase::addSampler ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import Samplers.

Definition at line 2757 of file FEProblemBase.C.

2760 {
2761  const auto samplers = addObject<Sampler>(type, name, parameters);
2762  for (auto & sampler : samplers)
2763  sampler->init();
2764 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ addScalarKernel()

void FEProblemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3092 of file FEProblemBase.C.

3095 {
3096  parallel_object_only();
3097 
3098  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3099  if (!isSolverSystemNonlinear(nl_sys_num))
3100  mooseError("You are trying to add a ScalarKernel to a linear variable/system, which is not "
3101  "supported at the moment!");
3102 
3103  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3104  {
3105  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3106  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3107  }
3108  else
3109  {
3110  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3111  {
3112  // We allow ScalarKernels to request that they use_displaced_mesh,
3113  // but then be overridden when no displacements variables are
3114  // provided in the Mesh block. If that happened, update the value
3115  // of use_displaced_mesh appropriately for this ScalarKernel.
3116  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3117  parameters.set<bool>("use_displaced_mesh") = false;
3118  }
3119 
3120  parameters.set<SubProblem *>("_subproblem") = this;
3121  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3122  }
3123 
3124  logAdd("ScalarKernel", name, kernel_name, parameters);
3125  _nl[nl_sys_num]->addScalarKernel(kernel_name, name, parameters);
3126 }
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addSubMesh()

void MFEMProblem::addSubMesh ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Add an MFEM SubMesh to the problem.

Definition at line 480 of file MFEMProblem.C.

Referenced by AddMFEMSubMeshAction::act().

483 {
484  // Add MFEM SubMesh.
485  FEProblemBase::addUserObject(var_type, var_name, parameters);
486  // Register submesh.
487  MFEMSubMesh & mfem_submesh = getUserObject<MFEMSubMesh>(var_name);
488  getProblemData().submeshes.Register(var_name, mfem_submesh.getSubMesh());
489 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
Moose::MFEM::SubMeshes submeshes
Base class for construction of a mfem::ParSubMesh object.
Definition: MFEMSubMesh.h:22
std::shared_ptr< mfem::ParSubMesh > getSubMesh()
Returns a shared pointer to the constructed fespace.
Definition: MFEMSubMesh.h:30
void Register(const std::string &field_name, FieldArgs &&... args)
Construct new field with name field_name and register.
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addTimeIntegrator()

void FEProblemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 6999 of file FEProblemBase.C.

Referenced by TransientBase::setupTimeIntegrator().

7002 {
7003  parallel_object_only();
7004 
7005  parameters.set<SubProblem *>("_subproblem") = this;
7006  logAdd("TimeIntegrator", name, type, parameters);
7007  _aux->addTimeIntegrator(type, name + ":aux", parameters);
7008  for (auto & sys : _solver_systems)
7009  sys->addTimeIntegrator(type, name + ":" + sys->name(), parameters);
7010  _has_time_integrator = true;
7011 
7012  // add vectors to store u_dot, u_dotdot, udot_old, u_dotdot_old and
7013  // solution vectors older than 2 time steps, if requested by the time
7014  // integrator
7015  _aux->addDotVectors();
7016  for (auto & nl : _nl)
7017  {
7018  nl->addDotVectors();
7019 
7020  auto tag_udot = nl->getTimeIntegrators()[0]->uDotFactorTag();
7021  if (!nl->hasVector(tag_udot))
7022  nl->associateVectorToTag(*nl->solutionUDot(), tag_udot);
7023  auto tag_udotdot = nl->getTimeIntegrators()[0]->uDotDotFactorTag();
7024  if (!nl->hasVector(tag_udotdot) && uDotDotRequested())
7025  nl->associateVectorToTag(*nl->solutionUDotDot(), tag_udotdot);
7026  }
7027 
7028  if (_displaced_problem)
7029  // Time integrator does not exist when displaced problem is created.
7030  _displaced_problem->addTimeIntegrator();
7031 }
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTransfer()

void MFEMProblem::addTransfer ( const std::string &  transfer_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Add transfers between MultiApps and/or MFEM SubMeshes.

Reimplemented from FEProblemBase.

Definition at line 492 of file MFEMProblem.C.

495 {
496  if (parameters.getBase() == "MFEMSubMeshTransfer")
498  else
499  FEProblemBase::addTransfer(transfer_name, name, parameters);
500 }
virtual void addTransfer(const std::string &transfer_name, const std::string &name, InputParameters &parameters)
Add a Transfer to the problem.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & getBase() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addUserObject()

std::vector< std::shared_ptr< UserObject > > FEProblemBase::addUserObject ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4504 of file FEProblemBase.C.

Referenced by addAuxKernel(), addBoundaryCondition(), addFESpace(), addFunctorMaterial(), addGridFunction(), addInitialCondition(), addKernel(), addMFEMPreconditioner(), addMFEMSolver(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), addSubMesh(), addTransfer(), and FEProblemBase::addVectorPostprocessor().

4507 {
4508  parallel_object_only();
4509 
4510  std::vector<std::shared_ptr<UserObject>> uos;
4511 
4512  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
4514 
4515  for (const auto tid : make_range(libMesh::n_threads()))
4516  {
4517  // Create the UserObject
4518  std::shared_ptr<UserObject> user_object =
4519  _factory.create<UserObject>(user_object_name, name, parameters, tid);
4520  logAdd("UserObject", name, user_object_name, parameters);
4521  uos.push_back(user_object);
4522 
4523  if (tid != 0)
4524  user_object->setPrimaryThreadCopy(uos[0].get());
4525 
4526  // TODO: delete this line after apps have been updated to not call getUserObjects
4527  _all_user_objects.addObject(user_object, tid);
4528 
4529  theWarehouse().add(user_object);
4530 
4531  // Attempt to create all the possible UserObject types
4532  auto euo = std::dynamic_pointer_cast<ElementUserObject>(user_object);
4533  auto suo = std::dynamic_pointer_cast<SideUserObject>(user_object);
4534  auto isuo = std::dynamic_pointer_cast<InternalSideUserObject>(user_object);
4535  auto iuo = std::dynamic_pointer_cast<InterfaceUserObjectBase>(user_object);
4536  auto nuo = std::dynamic_pointer_cast<NodalUserObject>(user_object);
4537  auto duo = std::dynamic_pointer_cast<DomainUserObject>(user_object);
4538  auto guo = std::dynamic_pointer_cast<GeneralUserObject>(user_object);
4539  auto tguo = std::dynamic_pointer_cast<ThreadedGeneralUserObject>(user_object);
4540  auto muo = std::dynamic_pointer_cast<MortarUserObject>(user_object);
4541 
4542  // Account for displaced mesh use
4543  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4544  {
4545  // Whether to re-init or not depends on the attributes of the base classes.
4546  // For example, InterfaceUOBase has "_current_side_elem" and "_neighbor_elem"
4547  // so it needs to reinit on displaced neighbors and faces
4548  // _reinit_displaced_elem -> _current_elem will be reinited
4549  // _reinit_displaced_face -> _current_elem, lowerD if any and _current_side_elem to be
4550  // reinited _reinit_displaced_neighbor -> _current_elem, lowerD if any and _current_neighbor
4551  // to be reinited Note that as soon as you use materials on the displaced mesh, all three get
4552  // turned on.
4553  if (euo || nuo || duo)
4554  _reinit_displaced_elem = true;
4555  if (suo || duo || isuo || iuo)
4556  _reinit_displaced_face = true;
4557  if (iuo || duo || isuo)
4559  }
4560 
4561  // These objects only require one thread
4562  if ((guo && !tguo) || muo)
4563  break;
4564  }
4565 
4566  // Add as a Functor if it is one. We usually need to add the user object from thread 0 as the
4567  // registered functor for all threads because when user objects are thread joined, generally only
4568  // the primary thread copy ends up with all the data
4569  for (const auto tid : make_range(libMesh::n_threads()))
4570  {
4571  const decltype(uos)::size_type uo_index = uos.front()->needThreadedCopy() ? tid : 0;
4572  if (const auto functor = dynamic_cast<Moose::FunctorBase<Real> *>(uos[uo_index].get()))
4573  {
4574  this->addFunctor(name, *functor, tid);
4575  if (_displaced_problem)
4576  _displaced_problem->addFunctor(name, *functor, tid);
4577  }
4578  }
4579 
4580  return uos;
4581 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
unsigned int n_threads()
Base class for implementing interface user objects.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1380
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for user objects executed one or more sidesets, which may be on the outer boundary of the ...
This user object allows related evaluations on elements, boundaries, internal sides, interfaces in one single place.
Base class for creating new nodally-based mortar user objects.
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
A user object that runs over all the nodes and does an aggregation step to compute a single value...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for user objects executed on all element sides internal to one or more blocks...
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
IntRange< T > make_range(T beg, T end)
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
std::shared_ptr< DisplacedProblem > _displaced_problem
Base class for user-specific data.
Definition: UserObject.h:40
An instance of this object type has one copy per thread that runs on each thread. ...

◆ addVariable()

void MFEMProblem::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addVariable.

Sets a MFEM grid function (and time derivative, for transient problems) to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 162 of file MFEMProblem.C.

165 {
166  addGridFunction(var_type, var_name, parameters);
167  // MOOSE variables store DoFs for the trial variable and its time derivatives up to second order;
168  // MFEM GridFunctions store data for only one set of DoFs each, so we must add additional
169  // GridFunctions for time derivatives.
170  if (isTransient())
172 }
void addGridFunction(const std::string &var_type, const std::string &var_name, InputParameters &parameters)
Adds one MFEM GridFunction to be used in the MFEM solve.
Definition: MFEMProblem.C:175
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::string GetTimeDerivativeName(std::string name)
virtual bool isTransient() const override

◆ addVectorPostprocessor()

void FEProblemBase::addVectorPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4476 of file FEProblemBase.C.

Referenced by ExtraIDIntegralReporter::ExtraIDIntegralReporter().

4479 {
4480  // Check for name collision
4481  if (hasUserObject(name))
4482  mooseError("A ",
4484  " already exists. You may not add a VectorPostprocessor by the same name.");
4485 
4486  addUserObject(pp_name, name, parameters);
4487 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:57
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addVectorTag()

TagID SubProblem::addVectorTag ( const TagName &  tag_name,
const Moose::VectorTagType  type = Moose::VECTOR_TAG_RESIDUAL 
)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag, but the type must be the same.

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated
typeThe type of the tag

Reimplemented in DisplacedProblem.

Definition at line 93 of file SubProblem.C.

Referenced by DisplacedProblem::addVectorTag(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), LinearSystem::LinearSystem(), SystemBase::needSolutionState(), and NonlinearSystemBase::NonlinearSystemBase().

95 {
97  mooseError("Vector tag type cannot be VECTOR_TAG_ANY");
98 
99  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
100 
101  // First, see if the tag exists already
102  for (const auto & vector_tag : _vector_tags)
103  {
104  mooseAssert(_vector_tags[vector_tag._id] == vector_tag, "Vector tags index mismatch");
105  if (vector_tag._name == tag_name_upper)
106  {
107  if (vector_tag._type != type)
108  mooseError("While attempting to add vector tag with name '",
109  tag_name_upper,
110  "' and type ",
111  type,
112  ",\na tag with the same name but type ",
113  vector_tag._type,
114  " was found.\n\nA tag can only exist with one type.");
115 
116  return vector_tag._id;
117  }
118  }
119 
120  // Doesn't exist - create it
121  const TagID new_tag_id = _vector_tags.size();
122  const TagTypeID new_tag_type_id = _typed_vector_tags[type].size();
123  // Primary storage for all tags where the index in the vector == the tag ID
124  _vector_tags.emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
125  // Secondary storage for each type so that we can have quick access to all tags of a type
126  _typed_vector_tags[type].emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
127  // Name map storage for quick name access
128  _vector_tags_name_map.emplace(tag_name_upper, new_tag_id);
129 
130  // Make sure that _vector_tags, _typed_vector_tags, and _vector_tags_name_map are sane
132 
133  return new_tag_id;
134 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
std::string toUpper(std::string name)
Convert supplied string to upper case.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1182
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1179
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ advanceMultiApps()

void FEProblemBase::advanceMultiApps ( ExecFlagType  type)
inlineinherited

Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose.

Definition at line 1481 of file FEProblemBase.h.

1482  {
1483  mooseDeprecated("Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep "
1484  "depending on your purpose");
1486  }
void finishMultiAppStep(ExecFlagType type, bool recurse_through_multiapp_levels=false)
Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.
void mooseDeprecated(Args &&... args) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ advanceState()

void FEProblemBase::advanceState ( )
virtualinherited

Advance all of the state holding vectors / datastructures so that we can move to the next timestep.

Reimplemented in DumpObjectsProblem.

Definition at line 6838 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), TransientBase::incrementStepOrReject(), NonlinearEigen::init(), TransientMultiApp::setupApp(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), NonlinearEigen::takeStep(), and InversePowerMethod::takeStep().

6839 {
6840  TIME_SECTION("advanceState", 5, "Advancing State");
6841 
6842  for (auto & sys : _solver_systems)
6843  sys->copyOldSolutions();
6844  _aux->copyOldSolutions();
6845 
6846  if (_displaced_problem)
6847  {
6848  for (const auto i : index_range(_solver_systems))
6849  _displaced_problem->solverSys(i).copyOldSolutions();
6850  _displaced_problem->auxSys().copyOldSolutions();
6851  }
6852 
6854 
6856 
6859 
6862 
6865 
6866 #ifdef MOOSE_KOKKOS_ENABLED
6869 
6872 
6875 #endif
6876 }
void shift()
Shift the material properties in time.
MaterialPropertyStorage & _bnd_material_props
void shift()
Shift current, old, and older material property data storages.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void copyValuesBack()
Copies current chain control data values into old values.
MooseApp & getMooseApp() const
Get the MooseApp this class is associated with.
Definition: MooseBase.h:87
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void copyValuesBack()
At the end of a timestep this method is called to copy the values back in time in preparation for the...
Definition: ReporterData.C:17
Moose::Kokkos::MaterialPropertyStorage & _kokkos_material_props
ChainControlDataSystem & getChainControlDataSystem()
Gets the system that manages the ChainControls.
Definition: MooseApp.h:845
std::shared_ptr< DisplacedProblem > _displaced_problem
MaterialPropertyStorage & _neighbor_material_props
Moose::Kokkos::MaterialPropertyStorage & _kokkos_bnd_material_props
MaterialPropertyStorage & _material_props
Moose::Kokkos::MaterialPropertyStorage & _kokkos_neighbor_material_props
auto index_range(const T &sizable)

◆ allowInvalidSolution()

bool FEProblemBase::allowInvalidSolution ( ) const
inlineinherited

Whether to accept / allow an invalid solution.

Definition at line 2191 of file FEProblemBase.h.

Referenced by FEProblemBase::acceptInvalidSolution().

2191 { return _allow_invalid_solution; }
const bool _allow_invalid_solution

◆ allowOutput() [1/2]

void FEProblemBase::allowOutput ( bool  state)
inherited

Ability to enable/disable all output calls.

This is needed by Multiapps and applications to disable output for cases when executioners call other executions and when Multiapps are sub cycling.

Definition at line 6945 of file FEProblemBase.C.

Referenced by TransientMultiApp::resetApp(), and TransientMultiApp::solveStep().

6946 {
6948 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515

◆ allowOutput() [2/2]

template<typename T >
void FEProblemBase::allowOutput ( bool  state)
inherited

Definition at line 3359 of file FEProblemBase.h.

3360 {
3361  _app.getOutputWarehouse().allowOutput<T>(state);
3362 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515

◆ areCoupled()

bool FEProblemBase::areCoupled ( const unsigned int  ivar,
const unsigned int  jvar,
const unsigned int  nl_sys_num 
) const
inherited

Definition at line 6378 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

6381 {
6382  return (*_cm[nl_sys])(ivar, jvar);
6383 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ assembly() [1/2]

Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
)
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3507 of file FEProblemBase.h.

Referenced by ArrayNodalBC::computeJacobian(), VectorNodalBC::computeJacobian(), NodalBC::computeJacobian(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), VectorNodalBC::computeOffDiagJacobian(), ArrayNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NonlinearSystemBase::constraintJacobians(), FEProblemBase::initialSetup(), ComputeBoundaryInitialConditionThread::onNode(), MaxQpsThread::operator()(), and FEProblemBase::reinitScalars().

3508 {
3509  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3510  mooseAssert(sys_num < _assembly[tid].size(),
3511  "System number larger than the assembly container size");
3512  return *_assembly[tid][sys_num];
3513 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ assembly() [2/2]

const Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
) const
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3516 of file FEProblemBase.h.

3517 {
3518  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3519  mooseAssert(sys_num < _assembly[tid].size(),
3520  "System number larger than the assembly container size");
3521  return *_assembly[tid][sys_num];
3522 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ automaticScaling() [1/4]

bool SubProblem::automaticScaling ( ) const
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1163 of file SubProblem.C.

Referenced by FEProblemBase::automaticScaling(), and DisplacedProblem::DisplacedProblem().

1164 {
1165  // Currently going to assume that we are applying or not applying automatic scaling consistently
1166  // across nonlinear systems
1168 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122

◆ automaticScaling() [2/4]

void SubProblem::automaticScaling
inherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 1156 of file SubProblem.C.

1157 {
1158  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1159  systemBaseNonlinear(nl_sys_num).automaticScaling(automatic_scaling);
1160 }
virtual std::size_t numNonlinearSystems() const override
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.
IntRange< T > make_range(T beg, T end)

◆ automaticScaling() [3/4]

bool SubProblem::automaticScaling
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1163 of file SubProblem.C.

1164 {
1165  // Currently going to assume that we are applying or not applying automatic scaling consistently
1166  // across nonlinear systems
1168 }
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.

◆ automaticScaling() [4/4]

void FEProblemBase::automaticScaling ( bool  automatic_scaling)
overridevirtualinherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Reimplemented from SubProblem.

Definition at line 9261 of file FEProblemBase.C.

Referenced by DisplacedProblem::DisplacedProblem(), and FEProblemSolve::FEProblemSolve().

9262 {
9263  if (_displaced_problem)
9264  _displaced_problem->automaticScaling(automatic_scaling);
9265 
9266  SubProblem::automaticScaling(automatic_scaling);
9267 }
bool automaticScaling() const
Automatic scaling getter.
Definition: SubProblem.C:1163
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ backupMultiApps()

void FEProblemBase::backupMultiApps ( ExecFlagType  type)
inherited

Backup the MultiApps associated with the ExecFlagType.

Definition at line 5743 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), MFEMProblemSolve::solve(), and FixedPointSolve::solve().

5744 {
5745  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5746 
5747  if (multi_apps.size())
5748  {
5749  TIME_SECTION("backupMultiApps", 5, "Backing Up MultiApp");
5750 
5751  if (_verbose_multiapps)
5752  _console << COLOR_CYAN << "\nBacking Up MultiApps on " << type.name() << COLOR_DEFAULT
5753  << std::endl;
5754 
5755  for (const auto & multi_app : multi_apps)
5756  multi_app->backup();
5757 
5759 
5760  if (_verbose_multiapps)
5761  _console << COLOR_CYAN << "Finished Backing Up MultiApps on " << type.name() << "\n"
5762  << COLOR_DEFAULT << std::endl;
5763  }
5764 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:327
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ bumpAllQRuleOrder()

void FEProblemBase::bumpAllQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Definition at line 6235 of file FEProblemBase.C.

6236 {
6237  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6238  for (const auto i : index_range(_nl))
6239  _assembly[tid][i]->bumpAllQRuleOrder(order, block);
6240 
6241  if (_displaced_problem)
6242  _displaced_problem->bumpAllQRuleOrder(order, block);
6243 
6244  updateMaxQps();
6245 }
unsigned int n_threads()
void bumpAllQRuleOrder(libMesh::Order order, SubdomainID block)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ bumpVolumeQRuleOrder()

void FEProblemBase::bumpVolumeQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower.

This can only cause the quadrature level to increase. If volume_order is lower than or equal to the current volume/elem quadrature rule order, then nothing is done (i.e. this function is idempotent).

Definition at line 6222 of file FEProblemBase.C.

6223 {
6224  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6225  for (const auto i : index_range(_nl))
6226  _assembly[tid][i]->bumpVolumeQRuleOrder(order, block);
6227 
6228  if (_displaced_problem)
6229  _displaced_problem->bumpVolumeQRuleOrder(order, block);
6230 
6231  updateMaxQps();
6232 }
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void bumpVolumeQRuleOrder(libMesh::Order order, SubdomainID block)
Increases the element/volume quadrature order for the specified mesh block if and only if the current...
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ cacheJacobian()

void FEProblemBase::cacheJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2027 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulate(), NonlinearSystemBase::constraintJacobians(), and ComputeJacobianThread::postElement().

2028 {
2030  if (_displaced_problem)
2031  _displaced_problem->cacheJacobian(tid);
2032 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheJacobian(const THREAD_ID tid)
Definition: SubProblem.C:1317

◆ cacheJacobianNeighbor()

void FEProblemBase::cacheJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2035 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

2036 {
2038  if (_displaced_problem)
2039  _displaced_problem->cacheJacobianNeighbor(tid);
2040 }
virtual void cacheJacobianNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1325
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidual()

void FEProblemBase::cacheResidual ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1913 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulate(), ComputeResidualAndJacobianThread::accumulate(), and NonlinearSystemBase::constraintResiduals().

1914 {
1916  if (_displaced_problem)
1917  _displaced_problem->cacheResidual(tid);
1918 }
virtual void cacheResidual(const THREAD_ID tid)
Definition: SubProblem.C:1296
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidualNeighbor()

void FEProblemBase::cacheResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1921 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1922 {
1924  if (_displaced_problem)
1925  _displaced_problem->cacheResidualNeighbor(tid);
1926 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheResidualNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1303

◆ callMooseError() [1/2]

void MooseBase::callMooseError ( std::string  msg,
const bool  with_prefix,
const hit::Node *  node = nullptr 
) const
inherited

External method for calling moose error with added object context.

Parameters
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 105 of file MooseBase.C.

Referenced by InputParameters::callMooseError(), MooseBase::mooseDocumentedError(), MooseBase::mooseError(), and MooseBase::mooseErrorNonPrefixed().

108 {
109  callMooseError(&_app, _pars, msg, with_prefix, node);
110 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357

◆ callMooseError() [2/2]

void MooseBase::callMooseError ( MooseApp *const  app,
const InputParameters params,
std::string  msg,
const bool  with_prefix,
const hit::Node *  node 
)
staticinherited

External method for calling moose error with added object context.

Needed so that objects without the MooseBase context (InputParameters) can call errors with context

Parameters
appThe app pointer (if available); adds multiapp context and clears the console
paramsThe parameters, needed to obtain object information
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 113 of file MooseBase.C.

118 {
119  if (!node)
120  node = MooseBase::getHitNode(params);
121 
122  std::string multiapp_prefix = "";
123  if (app)
124  {
125  if (!app->isUltimateMaster())
126  multiapp_prefix = app->name();
128  }
129 
130  if (with_prefix)
131  // False here because the hit context will get processed by the node
132  msg = messagePrefix(params, false) + msg;
133 
134  moose::internal::mooseErrorRaw(msg, multiapp_prefix, node);
135 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
void mooseErrorRaw(std::string msg, const std::string &prefix="", const hit::Node *node=nullptr)
Main callback for emitting a moose error.
Definition: MooseError.C:53
void mooseConsole()
Send current output buffer to Console output objects.
const hit::Node * getHitNode() const
Definition: MooseBase.h:136
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ checkBlockMatProps()

void SubProblem::checkBlockMatProps ( )
virtualinherited

Checks block material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 624 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

625 {
626  // Variable for storing all available blocks/boundaries from the mesh
627  std::set<SubdomainID> all_ids(mesh().meshSubdomains());
628 
629  std::stringstream errors;
630 
631  // Loop through the properties to check
632  for (const auto & check_it : _map_block_material_props_check)
633  {
634  // The current id for the property being checked (BoundaryID || BlockID)
635  SubdomainID check_id = check_it.first;
636 
637  std::set<SubdomainID> check_ids = {check_id};
638 
639  // Loop through all the block/boundary ids
640  for (const auto & id : check_ids)
641  {
642  // Loop through all the stored properties
643  for (const auto & prop_it : check_it.second)
644  {
645  // Produce an error if the material property is not defined on the current block/boundary
646  // and any block/boundary
647  // and not is not a zero material property.
648  if (_map_block_material_props[id].count(prop_it.second) == 0 &&
649  _zero_block_material_props[id].count(prop_it.second) == 0)
650  {
651  std::string check_name = restrictionSubdomainCheckName(id);
652  if (check_name.empty())
653  check_name = std::to_string(id);
654  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
655  << "' is not defined on block " << check_name << "\n";
656  }
657  }
658  }
659  }
660 
661  if (!errors.str().empty())
662  mooseError(errors.str());
663 }
virtual MooseMesh & mesh()=0
std::string restrictionSubdomainCheckName(SubdomainID check_id)
Helper functions for checking MaterialProperties.
Definition: SubProblem.C:773
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1060
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1072
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1054

◆ checkBoundaryMatProps()

void SubProblem::checkBoundaryMatProps ( )
virtualinherited

Checks boundary material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 666 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

667 {
668  // Variable for storing the value for ANY_BOUNDARY_ID
670 
671  // Variable for storing all available blocks/boundaries from the mesh
672  std::set<BoundaryID> all_ids(mesh().getBoundaryIDs());
673 
674  std::stringstream errors;
675 
676  // Loop through the properties to check
677  for (const auto & check_it : _map_boundary_material_props_check)
678  {
679  // The current id for the property being checked (BoundaryID || BlockID)
680  BoundaryID check_id = check_it.first;
681 
682  // In the case when the material being checked has an ID is set to ANY, then loop through all
683  // the possible ids and verify that the material property is defined.
684  std::set<BoundaryID> check_ids{check_id};
685  if (check_id == any_id)
686  check_ids = all_ids;
687 
688  // Loop through all the block/boundary ids
689  for (const auto & id : check_ids)
690  {
691  // Loop through all the stored properties
692  for (const auto & prop_it : check_it.second)
693  {
694  // Produce an error if the material property is not defined on the current block/boundary
695  // and any block/boundary
696  // and not is not a zero material property.
697  if (_map_boundary_material_props[id].count(prop_it.second) == 0 &&
698  _map_boundary_material_props[any_id].count(prop_it.second) == 0 &&
699  _zero_boundary_material_props[id].count(prop_it.second) == 0 &&
700  _zero_boundary_material_props[any_id].count(prop_it.second) == 0)
701  {
702  std::string check_name = restrictionBoundaryCheckName(id);
703  if (check_name.empty())
704  check_name = std::to_string(id);
705  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
706  << "' is not defined on boundary " << check_name << "\n";
707  }
708  }
709  }
710  }
711 
712  if (!errors.str().empty())
713  mooseError(errors.str());
714 }
virtual MooseMesh & mesh()=0
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1073
std::string restrictionBoundaryCheckName(BoundaryID check_id)
Definition: SubProblem.C:784
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1061
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1057
boundary_id_type BoundaryID
std::vector< BoundaryID > getBoundaryIDs(const libMesh::MeshBase &mesh, const std::vector< BoundaryName > &boundary_name, bool generate_unknown, const std::set< BoundaryID > &mesh_boundary_ids)
Gets the boundary IDs with their names.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ checkCoordinateSystems()

void FEProblemBase::checkCoordinateSystems ( )
protectedinherited

Verify that there are no element type/coordinate type conflicts.

Definition at line 8870 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8871 {
8873 }
MooseMesh & _mesh
void checkCoordinateSystems()
Performs a sanity check for every element in the mesh.
Definition: MooseMesh.C:4328

◆ checkDependMaterialsHelper()

void FEProblemBase::checkDependMaterialsHelper ( const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &  materials_map)
protectedinherited

Helper method for checking Material object dependency.

See also
checkProblemIntegrity

These two sets are used to make sure that all dependent props on a block are actually supplied

Definition at line 8749 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8751 {
8752  for (const auto & it : materials_map)
8753  {
8755  std::set<std::string> block_depend_props, block_supplied_props;
8756 
8757  for (const auto & mat1 : it.second)
8758  {
8759  auto & alldeps = mat1->getMatPropDependencies(); // includes requested stateful props
8760  for (auto & dep : alldeps)
8761  block_depend_props.insert(_material_prop_registry.getName(dep));
8762 
8763  // See if any of the active materials supply this property
8764  for (const auto & mat2 : it.second)
8765  {
8766  const std::set<std::string> & supplied_props = mat2->MaterialBase::getSuppliedItems();
8767  block_supplied_props.insert(supplied_props.begin(), supplied_props.end());
8768  }
8769  }
8770 
8771  // Add zero material properties specific to this block and unrestricted
8772  block_supplied_props.insert(_zero_block_material_props[it.first].begin(),
8773  _zero_block_material_props[it.first].end());
8774 
8775  // Error check to make sure all properties consumed by materials are supplied on this block
8776  std::set<std::string> difference;
8777  std::set_difference(block_depend_props.begin(),
8778  block_depend_props.end(),
8779  block_supplied_props.begin(),
8780  block_supplied_props.end(),
8781  std::inserter(difference, difference.end()));
8782 
8783  if (!difference.empty())
8784  {
8785  std::ostringstream oss;
8786  oss << "One or more Material Properties were not supplied on block ";
8787  const std::string & subdomain_name = _mesh.getSubdomainName(it.first);
8788  if (subdomain_name.length() > 0)
8789  oss << subdomain_name << " (" << it.first << ")";
8790  else
8791  oss << it.first;
8792  oss << ":\n";
8793  for (const auto & name : difference)
8794  oss << name << "\n";
8795  mooseError(oss.str());
8796  }
8797  }
8798 
8799  // This loop checks that materials are not supplied by multiple Material objects
8800  for (const auto & it : materials_map)
8801  {
8802  const auto & materials = it.second;
8803  std::set<std::string> inner_supplied, outer_supplied;
8804 
8805  for (const auto & outer_mat : materials)
8806  {
8807  // Storage for properties for this material (outer) and all other materials (inner)
8808  outer_supplied = outer_mat->getSuppliedItems();
8809  inner_supplied.clear();
8810 
8811  // Property to material map for error reporting
8812  std::map<std::string, std::set<std::string>> prop_to_mat;
8813  for (const auto & name : outer_supplied)
8814  prop_to_mat[name].insert(outer_mat->name());
8815 
8816  for (const auto & inner_mat : materials)
8817  {
8818  if (outer_mat == inner_mat)
8819  continue;
8820 
8821  // Check whether these materials are an AD pair
8822  auto outer_mat_type = outer_mat->type();
8823  auto inner_mat_type = inner_mat->type();
8824  removeSubstring(outer_mat_type, "<RESIDUAL>");
8825  removeSubstring(outer_mat_type, "<JACOBIAN>");
8826  removeSubstring(inner_mat_type, "<RESIDUAL>");
8827  removeSubstring(inner_mat_type, "<JACOBIAN>");
8828  if (outer_mat_type == inner_mat_type && outer_mat_type != outer_mat->type() &&
8829  inner_mat_type != inner_mat->type())
8830  continue;
8831 
8832  inner_supplied.insert(inner_mat->getSuppliedItems().begin(),
8833  inner_mat->getSuppliedItems().end());
8834 
8835  for (const auto & inner_supplied_name : inner_supplied)
8836  prop_to_mat[inner_supplied_name].insert(inner_mat->name());
8837  }
8838 
8839  // Test that a property isn't supplied on multiple blocks
8840  std::set<std::string> intersection;
8841  std::set_intersection(outer_supplied.begin(),
8842  outer_supplied.end(),
8843  inner_supplied.begin(),
8844  inner_supplied.end(),
8845  std::inserter(intersection, intersection.end()));
8846 
8847  if (!intersection.empty())
8848  {
8849  std::ostringstream oss;
8850  oss << "The following material properties are declared on block " << it.first
8851  << " by multiple materials:\n";
8852  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << "Material Property"
8853  << "Material Objects\n";
8854  for (const auto & outer_name : intersection)
8855  {
8856  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << outer_name;
8857  for (const auto & inner_name : prop_to_mat[outer_name])
8858  oss << inner_name << " ";
8859  oss << '\n';
8860  }
8861 
8862  mooseError(oss.str());
8863  break;
8864  }
8865  }
8866  }
8867 }
std::string indent(unsigned int spaces)
Create empty string for indenting.
Definition: ConsoleUtils.C:41
MaterialPropertyRegistry _material_prop_registry
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1801
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseMesh & _mesh
void removeSubstring(std::string &main, const std::string &sub)
find, erase, length algorithm for removing a substring from a string
Definition: MooseUtils.C:1201
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1060
const std::string & getName(const unsigned int id) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
for(PetscInt i=0;i< nvars;++i)

◆ checkDisplacementOrders()

void FEProblemBase::checkDisplacementOrders ( )
protectedinherited

Verify that SECOND order mesh uses SECOND order displacements.

Definition at line 8673 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8674 {
8675  if (_displaced_problem)
8676  {
8677  bool mesh_has_second_order_elements = false;
8678  for (const auto & elem : as_range(_displaced_mesh->activeLocalElementsBegin(),
8680  {
8681  if (elem->default_order() == SECOND)
8682  {
8683  mesh_has_second_order_elements = true;
8684  break;
8685  }
8686  }
8687 
8688  // We checked our local elements, so take the max over all processors.
8689  _displaced_mesh->comm().max(mesh_has_second_order_elements);
8690 
8691  // If the Mesh has second order elements, make sure the
8692  // displacement variables are second-order.
8693  if (mesh_has_second_order_elements)
8694  {
8695  const std::vector<std::string> & displacement_variables =
8696  _displaced_problem->getDisplacementVarNames();
8697 
8698  for (const auto & var_name : displacement_variables)
8699  {
8700  MooseVariableFEBase & mv =
8701  _displaced_problem->getVariable(/*tid=*/0,
8702  var_name,
8705  if (mv.order() != SECOND)
8706  mooseError("Error: mesh has SECOND order elements, so all displacement variables must be "
8707  "SECOND order.");
8708  }
8709  }
8710  }
8711 }
const Parallel::Communicator & comm() const
This class provides an interface for common operations on field variables of both FE and FV types wit...
SECOND
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
MeshBase::element_iterator activeLocalElementsBegin()
Calls active_local_nodes_begin/end() on the underlying libMesh mesh object.
Definition: MooseMesh.C:3072
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
void max(const T &r, T &o, Request &req) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
const MeshBase::element_iterator activeLocalElementsEnd()
Definition: MooseMesh.C:3078
MooseMesh * _displaced_mesh

◆ checkDuplicatePostprocessorVariableNames()

void FEProblemBase::checkDuplicatePostprocessorVariableNames ( )
inherited

Definition at line 1528 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

1529 {
1530  for (const auto & pp : _reporter_data.getPostprocessorNames())
1531  if (hasScalarVariable(pp))
1532  mooseError("Postprocessor \"" + pp +
1533  "\" has the same name as a scalar variable in the system.");
1534 }
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
ReporterData _reporter_data
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::set< std::string > getPostprocessorNames() const
Return a list of all postprocessor names.
Definition: ReporterData.C:71

◆ checkExceptionAndStopSolve()

void FEProblemBase::checkExceptionAndStopSolve ( bool  print_message = true)
virtualinherited

Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut.

Notes:

  • The exception have be registered by calling setException() prior to calling this.
  • This is collective on MPI, and must be called simultaneously by all processors!
  • If called when the solve can be interruped, it will do so and also throw a MooseException, which must be handled.
  • If called at a stage in the execution when the solve cannot be interupted (i.e., there is no solve active), it will generate an error and terminate the application.
  • DO NOT CALL THIS IN A THREADED REGION! This is meant to be called just after a threaded section.
Parameters
print_messagewhether to print a message with exception information

Definition at line 6666 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::handleException(), and DisplacedProblem::updateMesh().

6667 {
6669  return;
6670 
6671  TIME_SECTION("checkExceptionAndStopSolve", 5);
6672 
6673  // See if any processor had an exception. If it did, get back the
6674  // processor that the exception occurred on.
6675  unsigned int processor_id;
6676 
6678 
6679  if (_has_exception)
6680  {
6682 
6685  {
6686  // Print the message
6687  if (_communicator.rank() == 0 && print_message)
6688  {
6689  _console << "\n" << _exception_message << "\n";
6690  if (isTransient())
6691  _console
6692  << "To recover, the solution will fail and then be re-attempted with a reduced time "
6693  "step.\n"
6694  << std::endl;
6695  }
6696 
6697  // Stop the solve -- this entails setting
6698  // SNESSetFunctionDomainError() or directly inserting NaNs in the
6699  // residual vector to let PETSc >= 3.6 return DIVERGED_NANORINF.
6700  if (_current_nl_sys)
6702 
6703  if (_current_linear_sys)
6705 
6706  // and close Aux system (we MUST do this here; see #11525)
6707  _aux->solution().close();
6708 
6709  // We've handled this exception, so we no longer have one.
6710  _has_exception = false;
6711 
6712  // Force the next non-linear convergence check to fail (and all further residual evaluation
6713  // to be skipped).
6715 
6716  // Repropagate the exception, so it can be caught at a higher level, typically
6717  // this is NonlinearSystem::computeResidual().
6719  }
6720  else
6721  mooseError("The following parallel-communicated exception was detected during " +
6722  Moose::stringify(_current_execute_on_flag) + " evaluation:\n" +
6724  "\nBecause this did not occur during residual evaluation, there"
6725  " is no way to handle this, so the solution is aborting.\n");
6726  }
6727 }
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close) override
Quit the current solve as soon as possible.
Definition: LinearSystem.C:339
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
ExecFlagType _current_execute_on_flag
Current execute_on flag.
processor_id_type rank() const
bool _has_exception
Whether or not an exception has occurred.
const Parallel::Communicator & _communicator
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
void maxloc(T &r, unsigned int &max_id) const
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::string _exception_message
The error message to go with an exception.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
Quit the current solve as soon as possible.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::set< TagID > _fe_vector_tags
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
virtual bool isTransient() const override
bool _fail_next_system_convergence_check
processor_id_type processor_id() const

◆ checkingUOAuxState()

bool FEProblemBase::checkingUOAuxState ( ) const
inlineinherited

Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e.

the check has been activated by users through Problem/check_uo_aux_state input parameter.

Definition at line 209 of file FEProblemBase.h.

Referenced by MemoryUsage::execute(), VectorMemoryUsage::execute(), PerfGraphData::finalize(), MemoryUsage::finalize(), and VectorMemoryUsage::finalize().

209 { return _checking_uo_aux_state; }
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.

◆ checkNonlocalCoupling()

void FEProblemBase::checkNonlocalCoupling ( )
inherited
Returns
Flag indicating nonlocal coupling exists or not.

Definition at line 1653 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1654 {
1655  TIME_SECTION("checkNonlocalCoupling", 5, "Checking Nonlocal Coupling");
1656 
1657  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1658  for (auto & nl : _nl)
1659  {
1660  const auto & all_kernels = nl->getKernelWarehouse();
1661  const auto & kernels = all_kernels.getObjects(tid);
1662  for (const auto & kernel : kernels)
1663  {
1664  std::shared_ptr<NonlocalKernel> nonlocal_kernel =
1666  if (nonlocal_kernel)
1667  {
1670  _nonlocal_kernels.addObject(kernel, tid);
1671  }
1672  }
1673  const MooseObjectWarehouse<IntegratedBCBase> & all_integrated_bcs =
1674  nl->getIntegratedBCWarehouse();
1675  const auto & integrated_bcs = all_integrated_bcs.getObjects(tid);
1676  for (const auto & integrated_bc : integrated_bcs)
1677  {
1678  std::shared_ptr<NonlocalIntegratedBC> nonlocal_integrated_bc =
1680  if (nonlocal_integrated_bc)
1681  {
1684  _nonlocal_integrated_bcs.addObject(integrated_bc, tid);
1685  }
1686  }
1687  }
1688 }
unsigned int n_threads()
NonlocalIntegratedBC is used for solving integral terms in integro-differential equations.
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
NonlocalKernel is used for solving integral terms in integro-differential equations.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ checkNonlocalCouplingRequirement()

bool FEProblemBase::checkNonlocalCouplingRequirement ( ) const
overridevirtualinherited
Returns
whether there will be nonlocal coupling at any point in the simulation, e.g. whether there are any active or inactive nonlocal kernels or boundary conditions

Implements SubProblem.

Definition at line 9691 of file FEProblemBase.C.

Referenced by DisplacedProblem::checkNonlocalCouplingRequirement(), ComputeJacobianThread::compute(), ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

9692 {
9694 }
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag

◆ checkProblemIntegrity()

void FEProblemBase::checkProblemIntegrity ( )
virtualinherited

Method called to perform a series of sanity checks before a simulation is run.

This method doesn't return when errors are found, instead it generally calls mooseError() directly.

If a material is specified for any block in the simulation, then all blocks must have a material specified.

unsigned int is necessary to print SubdomainIDs in the statement below

vector is necessary to get the subdomain names

Reimplemented in EigenProblem.

Definition at line 8501 of file FEProblemBase.C.

Referenced by EigenProblem::checkProblemIntegrity().

8502 {
8503  TIME_SECTION("checkProblemIntegrity", 5);
8504 
8505  // Subdomains specified by the "Problem/block" parameter
8506  const auto & subdomain_names = getParam<std::vector<SubdomainName>>("block");
8507  auto mesh_subdomains_vec = MooseMeshUtils::getSubdomainIDs(_mesh, subdomain_names);
8508  std::set<SubdomainID> mesh_subdomains(mesh_subdomains_vec.begin(), mesh_subdomains_vec.end());
8509 
8510  // Check kernel coverage of subdomains (blocks) in the mesh
8513  {
8514  std::set<SubdomainID> blocks;
8517  blocks = mesh_subdomains;
8519  {
8520  blocks = mesh_subdomains;
8521  for (const auto & subdomain_name : _kernel_coverage_blocks)
8522  {
8523  const auto id = _mesh.getSubdomainID(subdomain_name);
8524  if (id == Moose::INVALID_BLOCK_ID)
8525  paramError("kernel_coverage_block_list",
8526  "Subdomain \"",
8527  subdomain_name,
8528  "\" not found in mesh.");
8529  blocks.erase(id);
8530  }
8531  }
8533  for (const auto & subdomain_name : _kernel_coverage_blocks)
8534  {
8535  const auto id = _mesh.getSubdomainID(subdomain_name);
8536  if (id == Moose::INVALID_BLOCK_ID)
8537  paramError("kernel_coverage_block_list",
8538  "Subdomain \"",
8539  subdomain_name,
8540  "\" not found in mesh.");
8541  blocks.insert(id);
8542  }
8543  if (!blocks.empty())
8544  for (auto & nl : _nl)
8545  nl->checkKernelCoverage(blocks);
8546  }
8547 
8548  // Check materials
8549  {
8550 #ifdef LIBMESH_ENABLE_AMR
8551  if ((_adaptivity.isOn() || _num_grid_steps) &&
8554  {
8555  _console << "Using EXPERIMENTAL Stateful Material Property projection with Adaptivity!\n"
8556  << std::flush;
8557  }
8558 #endif
8559 
8560  std::set<SubdomainID> local_mesh_subs(mesh_subdomains);
8561 
8564  {
8569  bool check_material_coverage = false;
8570  std::set<SubdomainID> ids = _all_materials.getActiveBlocks();
8571  for (const auto & id : ids)
8572  {
8573  local_mesh_subs.erase(id);
8574  check_material_coverage = true;
8575  }
8576 
8577  // did the user limit the subdomains to be checked?
8579  {
8580  for (const auto & subdomain_name : _material_coverage_blocks)
8581  {
8582  const auto id = _mesh.getSubdomainID(subdomain_name);
8583  if (id == Moose::INVALID_BLOCK_ID)
8584  paramError("material_coverage_block_list",
8585  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8586  local_mesh_subs.erase(id);
8587  }
8588  }
8590  {
8591  std::set<SubdomainID> blocks(local_mesh_subs);
8592  for (const auto & subdomain_name : _material_coverage_blocks)
8593  {
8594  const auto id = _mesh.getSubdomainID(subdomain_name);
8595  if (id == Moose::INVALID_BLOCK_ID)
8596  paramError("material_coverage_block_list",
8597  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8598  blocks.erase(id);
8599  }
8600  for (const auto id : blocks)
8601  local_mesh_subs.erase(id);
8602  }
8603 
8604  // also exclude mortar spaces from the material check
8605  auto && mortar_subdomain_ids = _mortar_data->getMortarSubdomainIDs();
8606  for (auto subdomain_id : mortar_subdomain_ids)
8607  local_mesh_subs.erase(subdomain_id);
8608 
8609  // Check Material Coverage
8610  if (check_material_coverage && !local_mesh_subs.empty())
8611  {
8612  std::stringstream extra_subdomain_ids;
8614  std::copy(local_mesh_subs.begin(),
8615  local_mesh_subs.end(),
8616  std::ostream_iterator<unsigned int>(extra_subdomain_ids, " "));
8618  std::vector<SubdomainID> local_mesh_subs_vec(local_mesh_subs.begin(),
8619  local_mesh_subs.end());
8620 
8621  mooseError("The following blocks from your input mesh do not contain an active material: " +
8622  extra_subdomain_ids.str() +
8623  "(names: " + Moose::stringify(_mesh.getSubdomainNames(local_mesh_subs_vec)) +
8624  ")\nWhen ANY mesh block contains a Material object, "
8625  "all blocks must contain a Material object.\n");
8626  }
8627  }
8628 
8629  // Check material properties on blocks and boundaries
8632 
8633  // Check that material properties exist when requested by other properties on a given block
8634  const auto & materials = _all_materials.getActiveObjects();
8635  for (const auto & material : materials)
8636  material->checkStatefulSanity();
8637 
8638  // auto mats_to_check = _materials.getActiveBlockObjects();
8639  // const auto & discrete_materials = _discrete_materials.getActiveBlockObjects();
8640  // for (const auto & map_it : discrete_materials)
8641  // for (const auto & container_element : map_it.second)
8642  // mats_to_check[map_it.first].push_back(container_element);
8645  }
8646 
8647  checkUserObjects();
8648 
8649  // Verify that we don't have any Element type/Coordinate Type conflicts
8651 
8652  // Coordinate transforms are only intended for use with MultiApps at this time. If you are not
8653  // using multiapps but still require these, contact a moose developer
8655  !hasMultiApps())
8656  mooseError("Coordinate transformation parameters, listed below, are only to be used in the "
8657  "context of application to application field transfers at this time. The mesh is "
8658  "not modified by these parameters within an application.\n"
8659  "You should likely use a 'TransformGenerator' in the [Mesh] block to achieve the "
8660  "desired mesh modification.\n\n",
8662 
8663  // If using displacements, verify that the order of the displacement
8664  // variables matches the order of the elements in the displaced
8665  // mesh.
8667 
8668  // Check for postprocessor names with same name as a scalar variable
8670 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
MaterialPropertyStorage & _bnd_material_props
void checkDependMaterialsHelper(const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
Helper method for checking Material object dependency.
static InputParameters validParams()
Describes the parameters this object can take to setup transformations.
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
char ** blocks
std::vector< SubdomainName > _kernel_coverage_blocks
std::vector< SubdomainName > _material_coverage_blocks
unsigned int _num_grid_steps
Number of steps in a grid sequence.
std::vector< subdomain_id_type > getSubdomainIDs(const libMesh::MeshBase &mesh, const std::vector< SubdomainName > &subdomain_name)
Get the associated subdomainIDs for the subdomain names that are passed in.
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
const bool _skip_nl_system_check
const SubdomainID INVALID_BLOCK_ID
Definition: MooseTypes.C:20
virtual void checkBoundaryMatProps()
Checks boundary material properties integrity.
Definition: SubProblem.C:666
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const bool & _solve
Whether or not to actually solve the nonlinear system.
std::set< SubdomainID > getActiveBlocks(THREAD_ID tid=0) const
Return a set of active SubdomainsIDs.
bool hasScalingOrRotationTransformation() const
Returns true if the app has scaling and/or rotation transformation.
void checkUserObjects()
void checkDisplacementOrders()
Verify that SECOND order mesh uses SECOND order displacements.
MooseMesh & _mesh
virtual void checkBlockMatProps()
Checks block material properties integrity.
Definition: SubProblem.C:624
Adaptivity _adaptivity
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1807
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1923
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data
void checkDuplicatePostprocessorVariableNames()
const bool _material_dependency_check
Determines whether a check to verify material dependencies on every subdomain.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...
MaterialPropertyStorage & _neighbor_material_props
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool hasMultiApps() const
Returns whether or not the current simulation has any multiapps.
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...
MaterialPropertyStorage & _material_props
MaterialWarehouse _all_materials
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1769
void checkCoordinateSystems()
Verify that there are no element type/coordinate type conflicts.

◆ checkUserObjectJacobianRequirement()

void FEProblemBase::checkUserObjectJacobianRequirement ( THREAD_ID  tid)
inherited

Definition at line 1691 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1692 {
1693  std::set<const MooseVariableFEBase *> uo_jacobian_moose_vars;
1694  {
1695  std::vector<ShapeElementUserObject *> objs;
1696  theWarehouse()
1697  .query()
1699  .condition<AttribThread>(tid)
1700  .queryInto(objs);
1701 
1702  for (const auto & uo : objs)
1703  {
1704  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1705  const auto & mv_deps = uo->jacobianMooseVariables();
1706  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1707  }
1708  }
1709  {
1710  std::vector<ShapeSideUserObject *> objs;
1711  theWarehouse()
1712  .query()
1714  .condition<AttribThread>(tid)
1715  .queryInto(objs);
1716  for (const auto & uo : objs)
1717  {
1718  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1719  const auto & mv_deps = uo->jacobianMooseVariables();
1720  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1721  }
1722  }
1723 
1724  _uo_jacobian_moose_vars[tid].assign(uo_jacobian_moose_vars.begin(), uo_jacobian_moose_vars.end());
1725  std::sort(
1726  _uo_jacobian_moose_vars[tid].begin(), _uo_jacobian_moose_vars[tid].end(), sortMooseVariables);
1727 }
bool _calculate_jacobian_in_uo
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ checkUserObjects()

void FEProblemBase::checkUserObjects ( )
protectedinherited

Definition at line 8714 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8715 {
8716  // Check user_objects block coverage
8717  std::set<SubdomainID> mesh_subdomains = _mesh.meshSubdomains();
8718  std::set<SubdomainID> user_objects_blocks;
8719 
8720  // gather names of all user_objects that were defined in the input file
8721  // and the blocks that they are defined on
8722  std::set<std::string> names;
8723 
8724  std::vector<UserObject *> objects;
8726 
8727  for (const auto & obj : objects)
8728  names.insert(obj->name());
8729 
8730  // See if all referenced blocks are covered
8731  std::set<SubdomainID> difference;
8732  std::set_difference(user_objects_blocks.begin(),
8733  user_objects_blocks.end(),
8734  mesh_subdomains.begin(),
8735  mesh_subdomains.end(),
8736  std::inserter(difference, difference.end()));
8737 
8738  if (!difference.empty())
8739  {
8740  std::ostringstream oss;
8741  oss << "One or more UserObjects is referencing a nonexistent block:\n";
8742  for (const auto & id : difference)
8743  oss << id << "\n";
8744  mooseError(oss.str());
8745  }
8746 }
TheWarehouse & theWarehouse() const
MooseMesh & _mesh
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3192

◆ clearActiveElementalMooseVariables()

void FEProblemBase::clearActiveElementalMooseVariables ( const THREAD_ID  tid)
overridevirtualinherited

Clear the active elemental MooseVariableFEBase.

If there are no active variables then they will all be reinited. Call this after finishing the computation that was using a restricted set of MooseVariableFEBases

Parameters
tidThe thread id

Reimplemented from SubProblem.

Definition at line 6064 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::post(), ComputeMarkerThread::post(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

6065 {
6067 
6068  if (_displaced_problem)
6069  _displaced_problem->clearActiveElementalMooseVariables(tid);
6070 }
virtual void clearActiveElementalMooseVariables(const THREAD_ID tid)
Clear the active elemental MooseVariableFieldBase.
Definition: SubProblem.C:467
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6073 of file FEProblemBase.C.

6074 {
6076 
6077  if (_displaced_problem)
6078  _displaced_problem->clearActiveFEVariableCoupleableMatrixTags(tid);
6079 }
virtual void clearActiveFEVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:385
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableVectorTags()

void FEProblemBase::clearActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6082 of file FEProblemBase.C.

6083 {
6085 
6086  if (_displaced_problem)
6087  _displaced_problem->clearActiveFEVariableCoupleableVectorTags(tid);
6088 }
virtual void clearActiveFEVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:379
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveMaterialProperties()

void FEProblemBase::clearActiveMaterialProperties ( const THREAD_ID  tid)
inherited

Clear the active material properties.

Should be called at the end of every computing thread

Parameters
tidThe thread id

Definition at line 6130 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

6131 {
6133 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ clearActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6091 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

6092 {
6094 
6095  if (_displaced_problem)
6096  _displaced_problem->clearActiveScalarVariableCoupleableMatrixTags(tid);
6097 }
virtual void clearActiveScalarVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:426
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::clearActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6100 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

6101 {
6103 
6104  if (_displaced_problem)
6105  _displaced_problem->clearActiveScalarVariableCoupleableVectorTags(tid);
6106 }
virtual void clearActiveScalarVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:420
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearAllDofIndices()

void SubProblem::clearAllDofIndices ( )
inherited

Clear dof indices from variables in nl and aux systems.

Definition at line 1178 of file SubProblem.C.

Referenced by FEProblemBase::solve().

1179 {
1180  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1183 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
void clearAllDofIndices()
Clear all dof indices from moose variables.
Definition: SystemBase.C:1613

◆ clearCurrentJacobianMatrixTags()

void FEProblemBase::clearCurrentJacobianMatrixTags ( )
inlineinherited

Clear the current Jacobian matrix tag data structure ...

if someone creates it

Definition at line 2670 of file FEProblemBase.h.

Referenced by FEProblemBase::resetState().

2670 {}

◆ clearCurrentResidualVectorTags()

void FEProblemBase::clearCurrentResidualVectorTags ( )
inlineinherited

Clear the current residual vector tag data structure.

Definition at line 3553 of file FEProblemBase.h.

Referenced by CrankNicolson::init(), and FEProblemBase::resetState().

3554 {
3556 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ clearDiracInfo()

void FEProblemBase::clearDiracInfo ( )
overridevirtualinherited

Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in.

Implements SubProblem.

Definition at line 2512 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2513 {
2515 
2516  if (_displaced_problem)
2517  _displaced_problem->clearDiracInfo();
2518 }
void clearPoints()
Remove all of the current points and elements.
std::shared_ptr< DisplacedProblem > _displaced_problem
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1051

◆ computeBounds()

void FEProblemBase::computeBounds ( libMesh::NonlinearImplicitSystem sys,
NumericVector< libMesh::Number > &  lower,
NumericVector< libMesh::Number > &  upper 
)
virtualinherited

Definition at line 7685 of file FEProblemBase.C.

Referenced by Moose::compute_bounds().

7688 {
7689  try
7690  {
7691  try
7692  {
7693  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7694  "I expect these system numbers to be the same");
7695 
7696  if (!_current_nl_sys->hasVector("lower_bound") || !_current_nl_sys->hasVector("upper_bound"))
7697  return;
7698 
7699  TIME_SECTION("computeBounds", 1, "Computing Bounds");
7700 
7701  NumericVector<Number> & _lower = _current_nl_sys->getVector("lower_bound");
7702  NumericVector<Number> & _upper = _current_nl_sys->getVector("upper_bound");
7703  _lower.swap(lower);
7704  _upper.swap(upper);
7705  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
7707 
7708  _aux->residualSetup();
7710  _lower.swap(lower);
7711  _upper.swap(upper);
7712  }
7713  catch (...)
7714  {
7715  handleException("computeBounds");
7716  }
7717  }
7718  catch (MooseException & e)
7719  {
7720  mooseError("Irrecoverable exception: " + std::string(e.what()));
7721  }
7722  catch (...)
7723  {
7724  mooseError("Unexpected exception type");
7725  }
7726 }
virtual const char * what() const
Get out the error message.
unsigned int n_threads()
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
unsigned int number() const
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
Provides a way for users to bail out of the current solve.
virtual void swap(NumericVector< T > &v)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933
MaterialWarehouse _all_materials
void computeSystems(const ExecFlagType &type)
Do generic system computations.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeDamping()

Real FEProblemBase::computeDamping ( const NumericVector< libMesh::Number > &  soln,
const NumericVector< libMesh::Number > &  update 
)
virtualinherited

Definition at line 7964 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7966 {
7967  // Default to no damping
7968  Real damping = 1.0;
7969 
7970  if (_has_dampers)
7971  {
7972  TIME_SECTION("computeDamping", 1, "Computing Damping");
7973 
7974  // Save pointer to the current solution
7975  const NumericVector<Number> * _saved_current_solution = _current_nl_sys->currentSolution();
7976 
7978  // For now, do not re-compute auxiliary variables. Doing so allows a wild solution increment
7979  // to get to the material models, which may not be able to cope with drastically different
7980  // values. Once more complete dependency checking is in place, auxiliary variables (and
7981  // material properties) will be computed as needed by dampers.
7982  // _aux.compute();
7983  damping = _current_nl_sys->computeDamping(soln, update);
7984 
7985  // restore saved solution
7986  _current_nl_sys->setSolution(*_saved_current_solution);
7987  }
7988 
7989  return damping;
7990 }
Real computeDamping(const NumericVector< Number > &solution, const NumericVector< Number > &update)
Compute damping.
bool _has_dampers
Whether or not this system has any Dampers associated with it.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ computeIndicators()

void FEProblemBase::computeIndicators ( )
virtualinherited

Reimplemented in DumpObjectsProblem.

Definition at line 4703 of file FEProblemBase.C.

Referenced by FEProblemBase::computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and FEProblemBase::initialAdaptMesh().

4704 {
4705  // Initialize indicator aux variable fields
4707  {
4708  TIME_SECTION("computeIndicators", 1, "Computing Indicators");
4709 
4710  // Internal side indicators may lead to creating a much larger sparsity pattern than dictated by
4711  // the actual finite element scheme (e.g. CFEM)
4712  const auto old_do_derivatives = ADReal::do_derivatives;
4713  ADReal::do_derivatives = false;
4714 
4715  std::vector<std::string> fields;
4716 
4717  // Indicator Fields
4718  const auto & indicators = _indicators.getActiveObjects();
4719  for (const auto & indicator : indicators)
4720  fields.push_back(indicator->name());
4721 
4722  // InternalSideIndicator Fields
4723  const auto & internal_indicators = _internal_side_indicators.getActiveObjects();
4724  for (const auto & internal_indicator : internal_indicators)
4725  fields.push_back(internal_indicator->name());
4726 
4727  _aux->zeroVariables(fields);
4728 
4729  // compute Indicators
4730  ComputeIndicatorThread cit(*this);
4732  _aux->solution().close();
4733  _aux->update();
4734 
4735  ComputeIndicatorThread finalize_cit(*this, true);
4737  _aux->solution().close();
4738  _aux->update();
4739 
4740  ADReal::do_derivatives = old_do_derivatives;
4741  }
4742 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseObjectWarehouse< Indicator > _indicators
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const

◆ computeIndicatorsAndMarkers()

void FEProblemBase::computeIndicatorsAndMarkers ( )
virtualinherited

Definition at line 4696 of file FEProblemBase.C.

4697 {
4699  computeMarkers();
4700 }
virtual void computeMarkers()
virtual void computeIndicators()

◆ computeJacobian()

void FEProblemBase::computeJacobian ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a Jacobian matrix with the default tag (system).

Definition at line 7520 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianSys().

7523 {
7524  setCurrentNonlinearSystem(nl_sys_num);
7525 
7526  _fe_matrix_tags.clear();
7527 
7528  auto & tags = getMatrixTags();
7529  for (auto & tag : tags)
7530  _fe_matrix_tags.insert(tag.second);
7531 
7532  computeJacobianInternal(soln, jacobian, _fe_matrix_tags);
7533 }
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
virtual void computeJacobianInternal(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
Form a Jacobian matrix for multiple tags.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
std::set< TagID > _fe_matrix_tags

◆ computeJacobianBlock()

void FEProblemBase::computeJacobianBlock ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
libMesh::System precond_system,
unsigned int  ivar,
unsigned int  jvar 
)
virtualinherited

Really not a good idea to use this.

It computes just one block of the Jacobian into a smaller matrix. Calling this in a loop is EXTREMELY ineffecient! Try to use computeJacobianBlocks() instead!

Parameters
jacobianThe matrix you want to fill
precond_systemThe libMesh::system of the preconditioning system
ivarthe block-row of the Jacobian
jvarthe block-column of the Jacobian

Definition at line 7673 of file FEProblemBase.C.

7677 {
7678  JacobianBlock jac_block(precond_system, jacobian, ivar, jvar);
7679  std::vector<JacobianBlock *> blocks = {&jac_block};
7680  mooseAssert(_current_nl_sys, "This should be non-null");
7682 }
Helper class for holding the preconditioning blocks to fill.
char ** blocks
virtual void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ computeJacobianBlocks()

void FEProblemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const unsigned int  nl_sys_num 
)
virtualinherited

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Reimplemented in EigenProblem.

Definition at line 7653 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianBlock(), and PhysicsBasedPreconditioner::setup().

7655 {
7656  TIME_SECTION("computeTransientImplicitJacobian", 2);
7657  setCurrentNonlinearSystem(nl_sys_num);
7658 
7659  if (_displaced_problem)
7660  {
7662  _displaced_problem->updateMesh();
7663  }
7664 
7666 
7670 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1098
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
std::shared_ptr< DisplacedProblem > _displaced_problem
void computeSystems(const ExecFlagType &type)
Do generic system computations.

◆ computeJacobianInternal()

void FEProblemBase::computeJacobianInternal ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const std::set< TagID > &  tags 
)
virtualinherited

Form a Jacobian matrix for multiple tags.

It should not be called directly by users.

Definition at line 7536 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian().

7539 {
7540  TIME_SECTION("computeJacobianInternal", 1);
7541 
7543 
7545 
7546  computeJacobianTags(tags);
7547 
7549 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianSys()

void FEProblemBase::computeJacobianSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
virtualinherited

Form a Jacobian matrix.

It is called by Libmesh.

Definition at line 7498 of file FEProblemBase.C.

Referenced by Moose::compute_jacobian(), and NonlinearSystem::computeScalingJacobian().

7501 {
7502  computeJacobian(soln, jacobian, sys.number());
7503 }
unsigned int number() const
virtual void computeJacobian(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
Form a Jacobian matrix with the default tag (system).

◆ computeJacobianTag()

void FEProblemBase::computeJacobianTag ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
TagID  tag 
)
virtualinherited

Form a Jacobian matrix for a given tag.

Definition at line 7506 of file FEProblemBase.C.

Referenced by ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

7509 {
7511 
7512  _current_nl_sys->associateMatrixToTag(jacobian, tag);
7513 
7514  computeJacobianTags({tag});
7515 
7517 }
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianTags()

void FEProblemBase::computeJacobianTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple matrices, and each is associated with a tag.

Definition at line 7552 of file FEProblemBase.C.

Referenced by EigenProblem::computeJacobianAB(), FEProblemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), FEProblemBase::computeJacobianTag(), and EigenProblem::computeMatricesTags().

7553 {
7554  try
7555  {
7556  try
7557  {
7558  if (!_has_jacobian || !_const_jacobian)
7559  {
7560  TIME_SECTION("computeJacobianTags", 5, "Computing Jacobian");
7561 
7562  for (auto tag : tags)
7563  if (_current_nl_sys->hasMatrix(tag))
7564  {
7565  auto & matrix = _current_nl_sys->getMatrix(tag);
7568  else
7569  matrix.zero();
7571  // PETSc algorithms require diagonal allocations regardless of whether there is
7572  // non-zero diagonal dependence. With global AD indexing we only add non-zero
7573  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7574  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7575  matrix.add(index, index, 0);
7576  }
7577 
7578  _aux->zeroVariablesForJacobian();
7579 
7580  unsigned int n_threads = libMesh::n_threads();
7581 
7582  // Random interface objects
7583  for (const auto & it : _random_data_objects)
7584  it.second->updateSeeds(EXEC_NONLINEAR);
7585 
7588  if (_displaced_problem)
7589  _displaced_problem->setCurrentlyComputingJacobian(true);
7590 
7593 
7594  for (unsigned int tid = 0; tid < n_threads; tid++)
7595  reinitScalars(tid);
7596 
7598 
7599  _aux->jacobianSetup();
7600 
7601  if (_displaced_problem)
7602  {
7604  _displaced_problem->updateMesh();
7605  }
7606 
7607  for (unsigned int tid = 0; tid < n_threads; tid++)
7608  {
7611  }
7612 
7614 
7616 
7618 
7620 
7622 
7624 
7625  // For explicit Euler calculations for example we often compute the Jacobian one time and
7626  // then re-use it over and over. If we're performing automatic scaling, we don't want to
7627  // use that kernel, diagonal-block only Jacobian for our actual matrix when performing
7628  // solves!
7630  _has_jacobian = true;
7631  }
7632  }
7633  catch (...)
7634  {
7635  handleException("computeJacobianTags");
7636  }
7637  }
7638  catch (const MooseException &)
7639  {
7640  // The buck stops here, we have already handled the exception by
7641  // calling the system's stopSolve() method, it is now up to PETSc to return a
7642  // "diverged" reason during the next solve.
7643  }
7644  catch (...)
7645  {
7646  mooseError("Unexpected exception type");
7647  }
7648 
7649  resetState();
7650 }
virtual void restore_original_nonzero_pattern()
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
bool _has_jacobian
Indicates if the Jacobian was computed.
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1098
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
bool computingScalingJacobian() const
Whether we are computing an initial Jacobian for automatic variable scaling.
Definition: SystemBase.C:1552
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool has_static_condensation() const
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void jacobianSetup(THREAD_ID tid=0) const
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _const_jacobian
true if the Jacobian is constant
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1110
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeLinearSystemSys()

void FEProblemBase::computeLinearSystemSys ( libMesh::LinearImplicitSystem sys,
libMesh::SparseMatrix< libMesh::Number > &  system_matrix,
NumericVector< libMesh::Number > &  rhs,
const bool  compute_gradients = true 
)
virtualinherited

Assemble both the right hand side and the system matrix of a given linear system.

Parameters
sysThe linear system which should be assembled
system_matrixThe sparse matrix which should hold the system matrix
rhsThe vector which should hold the right hand side
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7729 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), and FEProblemBase::computeResidualL2Norm().

7733 {
7734  TIME_SECTION("computeLinearSystemSys", 5);
7735 
7737 
7740 
7741  // We are using the residual tag system for right hand sides so we fetch everything
7742  const auto & vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7743 
7744  // We filter out tags which do not have associated vectors in the current
7745  // system. This is essential to be able to use system-dependent vector tags.
7748 
7752  compute_gradients);
7753 
7758  // We reset the tags to the default containers for further operations
7763 }
TagID rightHandSideVectorTag() const
Definition: LinearSystem.h:114
virtual TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
Definition: LinearSystem.h:115
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:290
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
SparseMatrix< Number > & getSystemMatrix()
Fetching the system matrix from the libmesh system.
Definition: LinearSystem.h:126
std::set< TagID > _linear_matrix_tags
Temporary storage for filtered matrix tags for linear systems.
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:173
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
NumericVector< Number > & getRightHandSideVector()
Fetching the right hand side vector from the libmesh system.
Definition: LinearSystem.h:119
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
static void selectMatrixTagsFromSystem(const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
Select the matrix tags which belong to a specific system.
Definition: SubProblem.C:301
void computeLinearSystemTags(const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Assemble the current linear system given a set of vector and matrix tags.
unsigned int linearSysNum(const LinearSystemName &linear_sys_name) const override
const std::string & name() const
std::set< TagID > _linear_vector_tags
Temporary storage for filtered vector tags for linear systems.

◆ computeLinearSystemTags()

void FEProblemBase::computeLinearSystemTags ( const NumericVector< libMesh::Number > &  soln,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags,
const bool  compute_gradients = true 
)
inherited

Assemble the current linear system given a set of vector and matrix tags.

Parameters
solnThe solution which should be used for the system assembly
vector_tagsThe vector tags for the right hand side
matrix_tagsThe matrix tags for the matrix
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7766 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys().

7770 {
7771  TIME_SECTION("computeLinearSystemTags", 5, "Computing Linear System");
7772 
7774 
7775  for (auto tag : matrix_tags)
7776  {
7777  auto & matrix = _current_linear_sys->getMatrix(tag);
7778  matrix.zero();
7779  }
7780 
7781  unsigned int n_threads = libMesh::n_threads();
7782 
7784 
7785  // Random interface objects
7786  for (const auto & it : _random_data_objects)
7787  it.second->updateSeeds(EXEC_NONLINEAR);
7788 
7791 
7793 
7794  _aux->jacobianSetup();
7795 
7796  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7797  {
7799  }
7800 
7801  try
7802  {
7804  }
7805  catch (MooseException & e)
7806  {
7807  _console << "\nA MooseException was raised during Auxiliary variable computation.\n"
7808  << "The next solve will fail, the timestep will be reduced, and we will try again.\n"
7809  << std::endl;
7810 
7811  // We know the next solve is going to fail, so there's no point in
7812  // computing anything else after this. Plus, using incompletely
7813  // computed AuxVariables in subsequent calculations could lead to
7814  // other errors or unhandled exceptions being thrown.
7815  return;
7816  }
7817 
7820 
7822 
7823  _current_linear_sys->computeLinearSystemTags(vector_tags, matrix_tags, compute_gradients);
7824 
7825  // Reset execution flag as after this point we are no longer on LINEAR
7827 
7828  // These are the relevant parts of resetState()
7831 }
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void zero()=0
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1113
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
MooseObjectWarehouse< Function > _functions
functions
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1110
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void computeLinearSystemTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Compute the right hand side and the system matrix of the system for given tags.
Definition: LinearSystem.C:154
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMarkers()

void FEProblemBase::computeMarkers ( )
virtualinherited

Reimplemented in DumpObjectsProblem.

Definition at line 4745 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and FEProblemBase::initialAdaptMesh().

4746 {
4747  if (_markers.hasActiveObjects())
4748  {
4749  TIME_SECTION("computeMarkers", 1, "Computing Markers");
4750 
4751  std::vector<std::string> fields;
4752 
4753  // Marker Fields
4754  const auto & markers = _markers.getActiveObjects();
4755  for (const auto & marker : markers)
4756  fields.push_back(marker->name());
4757 
4758  _aux->zeroVariables(fields);
4759 
4761 
4762  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
4763  {
4764  const auto & markers = _markers.getActiveObjects(tid);
4765  for (const auto & marker : markers)
4766  marker->markerSetup();
4767  }
4768 
4769  ComputeMarkerThread cmt(*this);
4771 
4772  _aux->solution().close();
4773  _aux->update();
4774  }
4775 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
unsigned int n_threads()
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void updateErrorVectors()
Update the ErrorVectors that have been requested through calls to getErrorVector().
Definition: Adaptivity.C:372
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
Adaptivity _adaptivity
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMultiAppsDT()

Real FEProblemBase::computeMultiAppsDT ( ExecFlagType  type)
inherited

Find the smallest timestep over all MultiApps.

Definition at line 5795 of file FEProblemBase.C.

Referenced by TransientBase::constrainDTFromMultiApp().

5796 {
5797  const auto & multi_apps = _transient_multi_apps[type].getActiveObjects();
5798 
5799  Real smallest_dt = std::numeric_limits<Real>::max();
5800 
5801  for (const auto & multi_app : multi_apps)
5802  smallest_dt = std::min(smallest_dt, multi_app->computeDT());
5803 
5804  return smallest_dt;
5805 }
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
auto max(const L &left, const R &right)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto min(const L &left, const R &right)

◆ computeNearNullSpace()

void FEProblemBase::computeNearNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7834 of file FEProblemBase.C.

Referenced by Moose::compute_nearnullspace().

7836 {
7837  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7838  "I expect these system numbers to be the same");
7839 
7840  sp.clear();
7841  for (unsigned int i = 0; i < subspaceDim("NearNullSpace"); ++i)
7842  {
7843  std::stringstream postfix;
7844  postfix << "_" << i;
7845  std::string modename = "NearNullSpace" + postfix.str();
7846  sp.push_back(&_current_nl_sys->getVector(modename));
7847  }
7848 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeNullSpace()

void FEProblemBase::computeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7851 of file FEProblemBase.C.

Referenced by Moose::compute_nullspace().

7853 {
7854  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7855  "I expect these system numbers to be the same");
7856  sp.clear();
7857  for (unsigned int i = 0; i < subspaceDim("NullSpace"); ++i)
7858  {
7859  std::stringstream postfix;
7860  postfix << "_" << i;
7861  sp.push_back(&_current_nl_sys->getVector("NullSpace" + postfix.str()));
7862  }
7863 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computePostCheck()

void FEProblemBase::computePostCheck ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  old_soln,
NumericVector< libMesh::Number > &  search_direction,
NumericVector< libMesh::Number > &  new_soln,
bool &  changed_search_direction,
bool &  changed_new_soln 
)
virtualinherited

Definition at line 7881 of file FEProblemBase.C.

Referenced by Moose::compute_postcheck().

7887 {
7888  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7889  "I expect these system numbers to be the same");
7890 
7891  // This function replaces the old PetscSupport::dampedCheck() function.
7892  //
7893  // 1.) Recreate code in PetscSupport::dampedCheck() for constructing
7894  // ghosted "soln" and "update" vectors.
7895  // 2.) Call FEProblemBase::computeDamping() with these ghost vectors.
7896  // 3.) Recreate the code in PetscSupport::dampedCheck() to actually update
7897  // the solution vector based on the damping, and set the "changed" flags
7898  // appropriately.
7899 
7900  TIME_SECTION("computePostCheck", 2, "Computing Post Check");
7901 
7903 
7904  // MOOSE's FEProblemBase doesn't update the solution during the
7905  // postcheck, but FEProblemBase-derived classes might.
7907  {
7908  // We need ghosted versions of new_soln and search_direction (the
7909  // ones we get from libmesh/PETSc are PARALLEL vectors. To make
7910  // our lives simpler, we use the same ghosting pattern as the
7911  // system's current_local_solution to create new ghosted vectors.
7912 
7913  // Construct zeroed-out clones with the same ghosted dofs as the
7914  // System's current_local_solution.
7915  std::unique_ptr<NumericVector<Number>> ghosted_solution =
7916  sys.current_local_solution->zero_clone(),
7917  ghosted_search_direction =
7918  sys.current_local_solution->zero_clone();
7919 
7920  // Copy values from input vectors into clones with ghosted values.
7921  *ghosted_solution = new_soln;
7922  *ghosted_search_direction = search_direction;
7923 
7924  if (_has_dampers)
7925  {
7926  // Compute the damping coefficient using the ghosted vectors
7927  Real damping = computeDamping(*ghosted_solution, *ghosted_search_direction);
7928 
7929  // If some non-trivial damping was computed, update the new_soln
7930  // vector accordingly.
7931  if (damping < 1.0)
7932  {
7933  new_soln = old_soln;
7934  new_soln.add(-damping, search_direction);
7935  changed_new_soln = true;
7936  }
7937  }
7938 
7939  if (shouldUpdateSolution())
7940  {
7941  // Update the ghosted copy of the new solution, if necessary.
7942  if (changed_new_soln)
7943  *ghosted_solution = new_soln;
7944 
7945  bool updated_solution = updateSolution(new_soln, *ghosted_solution);
7946  if (updated_solution)
7947  changed_new_soln = true;
7948  }
7949  }
7950 
7952  {
7954  _aux->copyCurrentIntoPreviousNL();
7955  }
7956 
7957  // MOOSE doesn't change the search_direction
7958  changed_search_direction = false;
7959 
7961 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void setPreviousNewtonSolution(const NumericVector< Number > &soln)
bool _has_dampers
Whether or not this system has any Dampers associated with it.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual bool shouldUpdateSolution()
Check to see whether the problem should update the solution.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual bool updateSolution(NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
Update the solution.
virtual void add(const numeric_index_type i, const T value)=0
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual Real computeDamping(const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)

◆ computeResidual() [1/2]

void FEProblemBase::computeResidual ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
inherited

This function is called by Libmesh to form a residual.

This is deprecated. We should remove this as soon as RattleSnake is fixed.

Referenced by FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualSys(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

◆ computeResidual() [2/2]

virtual void FEProblemBase::computeResidual ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a residual with default tags (nontime, time, residual).

◆ computeResidualAndJacobian()

void FEProblemBase::computeResidualAndJacobian ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
inherited

Form a residual and Jacobian with default tags.

Definition at line 7143 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobian::residual_and_jacobian().

7146 {
7147  try
7148  {
7149  try
7150  {
7151  // vector tags
7153  const auto & residual_vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7154 
7155  mooseAssert(_fe_vector_tags.empty(),
7156  "This should be empty indicating a clean starting state");
7157  // We filter out tags which do not have associated vectors in the current nonlinear
7158  // system. This is essential to be able to use system-dependent residual tags.
7160 
7162 
7163  // matrix tags
7164  {
7165  _fe_matrix_tags.clear();
7166 
7167  auto & tags = getMatrixTags();
7168  for (auto & tag : tags)
7169  _fe_matrix_tags.insert(tag.second);
7170  }
7171 
7173 
7176 
7177  for (const auto tag : _fe_matrix_tags)
7178  if (_current_nl_sys->hasMatrix(tag))
7179  {
7180  auto & matrix = _current_nl_sys->getMatrix(tag);
7181  matrix.zero();
7183  // PETSc algorithms require diagonal allocations regardless of whether there is non-zero
7184  // diagonal dependence. With global AD indexing we only add non-zero
7185  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7186  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7187  matrix.add(index, index, 0);
7188  }
7189 
7190  _aux->zeroVariablesForResidual();
7191 
7192  unsigned int n_threads = libMesh::n_threads();
7193 
7195 
7196  // Random interface objects
7197  for (const auto & it : _random_data_objects)
7198  it.second->updateSeeds(EXEC_LINEAR);
7199 
7203  if (_displaced_problem)
7204  {
7205  _displaced_problem->setCurrentlyComputingResidual(true);
7206  _displaced_problem->setCurrentlyComputingJacobian(true);
7207  _displaced_problem->setCurrentlyComputingResidualAndJacobian(true);
7208  }
7209 
7211 
7213 
7214  for (unsigned int tid = 0; tid < n_threads; tid++)
7215  reinitScalars(tid);
7216 
7218 
7219  _aux->residualSetup();
7220 
7221  if (_displaced_problem)
7222  {
7224  _displaced_problem->updateMesh();
7225  if (_mortar_data->hasDisplacedObjects())
7226  updateMortarMesh();
7227  }
7228 
7229  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7230  {
7233  }
7234 
7236 
7238 
7240 
7242 
7245 
7247 
7250  }
7251  catch (...)
7252  {
7253  handleException("computeResidualAndJacobian");
7254  }
7255  }
7256  catch (const MooseException &)
7257  {
7258  // The buck stops here, we have already handled the exception by
7259  // calling the system's stopSolve() method, it is now up to PETSc to return a
7260  // "diverged" reason during the next solve.
7261  }
7262  catch (...)
7263  {
7264  mooseError("Unexpected exception type");
7265  }
7266 
7267  resetState();
7268  _fe_vector_tags.clear();
7269  _fe_matrix_tags.clear();
7270 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:290
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
bool has_static_condensation() const
void setCurrentlyComputingResidualAndJacobian(bool currently_computing_residual_and_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:1498
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
void setCurrentlyComputingJacobian(const bool currently_computing_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:689
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void computeResidualAndJacobianTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Form possibly multiple tag-associated vectors and matrices.
void handleException(const std::string &calling_method)
Handle exceptions.
virtual void zero()=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1113
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:173
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
TagID residualVectorTag() const override
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
std::set< TagID > _fe_matrix_tags
Provides a way for users to bail out of the current solve.
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::set< TagID > _fe_vector_tags
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1110
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeResidualInternal()

void FEProblemBase::computeResidualInternal ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const std::set< TagID > &  tags 
)
virtualinherited

Form a residual vector for a set of tags.

It should not be called directly by users.

Definition at line 7302 of file FEProblemBase.C.

7305 {
7306  parallel_object_only();
7307 
7308  TIME_SECTION("computeResidualInternal", 1);
7309 
7310  try
7311  {
7313 
7315 
7316  computeResidualTags(tags);
7317 
7319  }
7320  catch (MooseException & e)
7321  {
7322  // If a MooseException propagates all the way to here, it means
7323  // that it was thrown from a MOOSE system where we do not
7324  // (currently) properly support the throwing of exceptions, and
7325  // therefore we have no choice but to error out. It may be
7326  // *possible* to handle exceptions from other systems, but in the
7327  // meantime, we don't want to silently swallow any unhandled
7328  // exceptions here.
7329  mooseError("An unhandled MooseException was raised during residual computation. Please "
7330  "contact the MOOSE team for assistance.");
7331  }
7332 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ computeResidualL2Norm() [1/3]

Real FEProblemBase::computeResidualL2Norm ( NonlinearSystemBase sys)
inherited

Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 7052 of file FEProblemBase.C.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), Residual::getValue(), DefaultMultiAppFixedPointConvergence::initialize(), and DefaultMultiAppFixedPointConvergence::preExecute().

7053 {
7054  _current_nl_sys = &sys;
7055  computeResidual(*sys.currentSolution(), sys.RHS(), sys.number());
7056  return sys.RHS().l2_norm();
7057 }
virtual Real l2_norm() const=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.
virtual NumericVector< Number > & RHS()=0

◆ computeResidualL2Norm() [2/3]

Real FEProblemBase::computeResidualL2Norm ( LinearSystem sys)
inherited

Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 7060 of file FEProblemBase.C.

7061 {
7062  _current_linear_sys = &sys;
7063 
7064  // We assemble the current system to check the current residual
7067  *sys.linearImplicitSystem().rhs,
7068  /*compute fresh gradients*/ true);
7069 
7070  // Unfortunate, but we have to allocate a new vector for the residual
7071  auto residual = sys.linearImplicitSystem().rhs->clone();
7072  residual->scale(-1.0);
7073  residual->add_vector(*sys.currentSolution(), *sys.linearImplicitSystem().matrix);
7074  return residual->l2_norm();
7075 }
libMesh::LinearImplicitSystem & linearImplicitSystem()
Return a reference to the stored linear implicit system.
Definition: LinearSystem.h:86
NumericVector< Number > * rhs
virtual std::unique_ptr< NumericVector< T > > clone() const=0
virtual void computeLinearSystemSys(libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
Assemble both the right hand side and the system matrix of a given linear system. ...
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SparseMatrix< Number > * matrix

◆ computeResidualL2Norm() [3/3]

Real FEProblemBase::computeResidualL2Norm ( )
virtualinherited

Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm.

Returns
The L2 norm of the residual

Reimplemented in EigenProblem.

Definition at line 7078 of file FEProblemBase.C.

7079 {
7080  TIME_SECTION("computeResidualL2Norm", 2, "Computing L2 Norm of Residual");
7081 
7082  // We use sum the squared norms of the individual systems and then take the square root of it
7083  Real l2_norm = 0.0;
7084  for (auto sys : _nl)
7085  {
7086  const auto norm = computeResidualL2Norm(*sys);
7087  l2_norm += norm * norm;
7088  }
7089 
7090  for (auto sys : _linear_systems)
7091  {
7092  const auto norm = computeResidualL2Norm(*sys);
7093  l2_norm += norm * norm;
7094  }
7095 
7096  return std::sqrt(l2_norm);
7097 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
auto norm(const T &a) -> decltype(std::abs(a))
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh
virtual Real computeResidualL2Norm()
Computes the residual using whatever is sitting in the current solution vector then returns the L2 no...
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ computeResidualSys()

void FEProblemBase::computeResidualSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
virtualinherited

This function is called by Libmesh to form a residual.

Definition at line 7100 of file FEProblemBase.C.

Referenced by NonlinearSystem::computeScalingResidual(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and NonlinearSystem::solve().

7103 {
7104  parallel_object_only();
7105 
7106  TIME_SECTION("computeResidualSys", 5);
7107 
7108  computeResidual(soln, residual, sys.number());
7109 }
unsigned int number() const
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.

◆ computeResidualTag()

void FEProblemBase::computeResidualTag ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag.

Definition at line 7273 of file FEProblemBase.C.

7276 {
7277  try
7278  {
7280 
7281  _current_nl_sys->associateVectorToTag(residual, tag);
7282 
7283  computeResidualTags({tag});
7284 
7286  }
7287  catch (MooseException & e)
7288  {
7289  // If a MooseException propagates all the way to here, it means
7290  // that it was thrown from a MOOSE system where we do not
7291  // (currently) properly support the throwing of exceptions, and
7292  // therefore we have no choice but to error out. It may be
7293  // *possible* to handle exceptions from other systems, but in the
7294  // meantime, we don't want to silently swallow any unhandled
7295  // exceptions here.
7296  mooseError("An unhandled MooseException was raised during residual computation. Please "
7297  "contact the MOOSE team for assistance.");
7298  }
7299 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ computeResidualTags()

void FEProblemBase::computeResidualTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple residual vectors and each is associated with one tag.

Definition at line 7418 of file FEProblemBase.C.

Referenced by EigenProblem::computeResidualAB(), FEProblemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), FEProblemBase::computeResidualTag(), and FEProblemBase::computeResidualType().

7419 {
7420  parallel_object_only();
7421 
7422  try
7423  {
7424  try
7425  {
7426  TIME_SECTION("computeResidualTags", 5, "Computing Residual");
7427 
7428  ADReal::do_derivatives = false;
7429 
7431 
7432  _aux->zeroVariablesForResidual();
7433 
7434  unsigned int n_threads = libMesh::n_threads();
7435 
7437 
7438  // Random interface objects
7439  for (const auto & it : _random_data_objects)
7440  it.second->updateSeeds(EXEC_LINEAR);
7441 
7443 
7445 
7446  for (unsigned int tid = 0; tid < n_threads; tid++)
7447  reinitScalars(tid);
7448 
7450 
7451  _aux->residualSetup();
7452 
7453  if (_displaced_problem)
7454  {
7456  _displaced_problem->updateMesh();
7457  if (_mortar_data->hasDisplacedObjects())
7458  updateMortarMesh();
7459  }
7460 
7461  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7462  {
7465  }
7466 
7468 
7470 
7472 
7474 
7477  }
7478  catch (...)
7479  {
7480  handleException("computeResidualTags");
7481  }
7482  }
7483  catch (const MooseException &)
7484  {
7485  // The buck stops here, we have already handled the exception by
7486  // calling the system's stopSolve() method, it is now up to PETSc to return a
7487  // "diverged" reason during the next solve.
7488  }
7489  catch (...)
7490  {
7491  mooseError("Unexpected exception type");
7492  }
7493 
7494  resetState();
7495 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1113
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
Provides a way for users to bail out of the current solve.
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeResidualType()

void FEProblemBase::computeResidualType ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag and "residual" tag.

Definition at line 7335 of file FEProblemBase.C.

7338 {
7339  TIME_SECTION("computeResidualType", 5);
7340 
7341  try
7342  {
7344 
7346 
7348 
7350  }
7351  catch (MooseException & e)
7352  {
7353  // If a MooseException propagates all the way to here, it means
7354  // that it was thrown from a MOOSE system where we do not
7355  // (currently) properly support the throwing of exceptions, and
7356  // therefore we have no choice but to error out. It may be
7357  // *possible* to handle exceptions from other systems, but in the
7358  // meantime, we don't want to silently swallow any unhandled
7359  // exceptions here.
7360  mooseError("An unhandled MooseException was raised during residual computation. Please "
7361  "contact the MOOSE team for assistance.");
7362  }
7363 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ computeSystems()

void FEProblemBase::computeSystems ( const ExecFlagType type)
protectedinherited

Do generic system computations.

Definition at line 9592 of file FEProblemBase.C.

Referenced by FEProblemBase::computeBounds(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and FEProblemBase::execute().

9593 {
9594  // When performing an adjoint solve in the optimization module, the current solver system is the
9595  // adjoint. However, the adjoint solve requires having accurate time derivative calculations for
9596  // the forward system. The cleanest way to handle such uses is just to compute the time
9597  // derivatives for all solver systems instead of trying to guess which ones we need and don't need
9598  for (auto & solver_sys : _solver_systems)
9599  solver_sys->compute(type);
9600 
9601  _aux->compute(type);
9602 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ computeTransposeNullSpace()

void FEProblemBase::computeTransposeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7866 of file FEProblemBase.C.

Referenced by Moose::compute_transpose_nullspace().

7868 {
7869  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7870  "I expect these system numbers to be the same");
7871  sp.clear();
7872  for (unsigned int i = 0; i < subspaceDim("TransposeNullSpace"); ++i)
7873  {
7874  std::stringstream postfix;
7875  postfix << "_" << i;
7876  sp.push_back(&_current_nl_sys->getVector("TransposeNullSpace" + postfix.str()));
7877  }
7878 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeUserObjectByName()

void FEProblemBase::computeUserObjectByName ( const ExecFlagType type,
const Moose::AuxGroup group,
const std::string &  name 
)
virtualinherited

Compute an user object with the given name.

Definition at line 4995 of file FEProblemBase.C.

Referenced by MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), MultiAppGeneralFieldUserObjectTransfer::execute(), MultiAppUserObjectTransfer::execute(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), and MultiAppConservativeTransfer::postExecute().

4998 {
4999  const auto old_exec_flag = _current_execute_on_flag;
5002  .query()
5003  .condition<AttribSystem>("UserObject")
5004  .condition<AttribExecOns>(type)
5005  .condition<AttribName>(name);
5006  computeUserObjectsInternal(type, group, query);
5007  _current_execute_on_flag = old_exec_flag;
5008 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjects()

void FEProblemBase::computeUserObjects ( const ExecFlagType type,
const Moose::AuxGroup group 
)
virtualinherited

Call compute methods on UserObjects.

Definition at line 5011 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

5012 {
5014  theWarehouse().query().condition<AttribSystem>("UserObject").condition<AttribExecOns>(type);
5015  computeUserObjectsInternal(type, group, query);
5016 }
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjectsInternal()

void FEProblemBase::computeUserObjectsInternal ( const ExecFlagType type,
const Moose::AuxGroup group,
TheWarehouse::Query query 
)
protectedinherited

Definition at line 5019 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectByName(), and FEProblemBase::computeUserObjects().

5022 {
5023  try
5024  {
5025  TIME_SECTION("computeUserObjects", 1, "Computing User Objects");
5026 
5027  // Add group to query
5028  if (group == Moose::PRE_IC)
5029  primary_query.condition<AttribPreIC>(true);
5030  else if (group == Moose::PRE_AUX)
5031  primary_query.condition<AttribPreAux>(type);
5032  else if (group == Moose::POST_AUX)
5033  primary_query.condition<AttribPostAux>(type);
5034 
5035  // query everything first to obtain a list of execution groups
5036  std::vector<UserObject *> uos;
5037  primary_query.clone().queryIntoUnsorted(uos);
5038  std::set<int> execution_groups;
5039  for (const auto & uo : uos)
5040  execution_groups.insert(uo->getParam<int>("execution_order_group"));
5041 
5042  // iterate over execution order groups
5043  for (const auto execution_group : execution_groups)
5044  {
5045  auto query = primary_query.clone().condition<AttribExecutionOrderGroup>(execution_group);
5046 
5047  std::vector<GeneralUserObject *> genobjs;
5048  query.clone().condition<AttribInterfaces>(Interfaces::GeneralUserObject).queryInto(genobjs);
5049 
5050  std::vector<UserObject *> userobjs;
5051  query.clone()
5056  .queryInto(userobjs);
5057 
5058  std::vector<UserObject *> tgobjs;
5059  query.clone()
5061  .queryInto(tgobjs);
5062 
5063  std::vector<UserObject *> nodal;
5064  query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).queryInto(nodal);
5065 
5066  std::vector<MortarUserObject *> mortar;
5067  query.clone().condition<AttribInterfaces>(Interfaces::MortarUserObject).queryInto(mortar);
5068 
5069  if (userobjs.empty() && genobjs.empty() && tgobjs.empty() && nodal.empty() && mortar.empty())
5070  continue;
5071 
5072  // Start the timer here since we have at least one active user object
5073  std::string compute_uo_tag = "computeUserObjects(" + Moose::stringify(type) + ")";
5074 
5075  // Perform Residual/Jacobian setups
5076  if (type == EXEC_LINEAR)
5077  {
5078  for (auto obj : userobjs)
5079  obj->residualSetup();
5080  for (auto obj : nodal)
5081  obj->residualSetup();
5082  for (auto obj : mortar)
5083  obj->residualSetup();
5084  for (auto obj : tgobjs)
5085  obj->residualSetup();
5086  for (auto obj : genobjs)
5087  obj->residualSetup();
5088  }
5089  else if (type == EXEC_NONLINEAR)
5090  {
5091  for (auto obj : userobjs)
5092  obj->jacobianSetup();
5093  for (auto obj : nodal)
5094  obj->jacobianSetup();
5095  for (auto obj : mortar)
5096  obj->jacobianSetup();
5097  for (auto obj : tgobjs)
5098  obj->jacobianSetup();
5099  for (auto obj : genobjs)
5100  obj->jacobianSetup();
5101  }
5102 
5103  for (auto obj : userobjs)
5104  obj->initialize();
5105 
5106  // Execute Side/InternalSide/Interface/Elemental/DomainUserObjects
5107  if (!userobjs.empty())
5108  {
5109  // non-nodal user objects have to be run separately before the nodal user objects run
5110  // because some nodal user objects (NodalNormal related) depend on elemental user objects
5111  // :-(
5112  ComputeUserObjectsThread cppt(*this, query);
5114 
5115  // There is one instance in rattlesnake where an elemental user object's finalize depends
5116  // on a side user object having been finalized first :-(
5123  }
5124 
5125  // if any userobject may have written to variables we need to close the aux solution
5126  for (const auto & uo : userobjs)
5127  if (auto euo = dynamic_cast<const ElementUserObject *>(uo);
5128  euo && euo->hasWritableCoupledVariables())
5129  {
5130  _aux->solution().close();
5131  _aux->system().update();
5132  break;
5133  }
5134 
5135  // Execute NodalUserObjects
5136  // BISON has an axial reloc elemental user object that has a finalize func that depends on a
5137  // nodal user object's prev value. So we can't initialize this until after elemental objects
5138  // have been finalized :-(
5139  for (auto obj : nodal)
5140  obj->initialize();
5141  if (query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).count() > 0)
5142  {
5143  ComputeNodalUserObjectsThread cnppt(*this, query);
5146  }
5147 
5148  // if any userobject may have written to variables we need to close the aux solution
5149  for (const auto & uo : nodal)
5150  if (auto nuo = dynamic_cast<const NodalUserObject *>(uo);
5151  nuo && nuo->hasWritableCoupledVariables())
5152  {
5153  _aux->solution().close();
5154  _aux->system().update();
5155  break;
5156  }
5157 
5158  // Execute MortarUserObjects
5159  {
5160  for (auto obj : mortar)
5161  obj->initialize();
5162  if (!mortar.empty())
5163  {
5164  auto create_and_run_mortar_functors = [this, type, &mortar](const bool displaced)
5165  {
5166  // go over mortar interfaces and construct functors
5167  const auto & mortar_interfaces = getMortarInterfaces(displaced);
5168  for (const auto & [primary_secondary_boundary_pair, mortar_generation_ptr] :
5169  mortar_interfaces)
5170  {
5171  auto mortar_uos_to_execute =
5172  getMortarUserObjects(primary_secondary_boundary_pair.first,
5173  primary_secondary_boundary_pair.second,
5174  displaced,
5175  mortar);
5176 
5177  auto * const subproblem = displaced
5178  ? static_cast<SubProblem *>(_displaced_problem.get())
5179  : static_cast<SubProblem *>(this);
5180  MortarUserObjectThread muot(mortar_uos_to_execute,
5181  *mortar_generation_ptr,
5182  *subproblem,
5183  *this,
5184  displaced,
5185  subproblem->assembly(0, 0));
5186 
5187  muot();
5188  }
5189  };
5190 
5191  create_and_run_mortar_functors(false);
5192  if (_displaced_problem)
5193  create_and_run_mortar_functors(true);
5194  }
5195  for (auto obj : mortar)
5196  obj->finalize();
5197  }
5198 
5199  // Execute threaded general user objects
5200  for (auto obj : tgobjs)
5201  obj->initialize();
5202  std::vector<GeneralUserObject *> tguos_zero;
5203  query.clone()
5204  .condition<AttribThread>(0)
5205  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject)
5206  .queryInto(tguos_zero);
5207  for (auto obj : tguos_zero)
5208  {
5209  std::vector<GeneralUserObject *> tguos;
5210  auto q = query.clone()
5211  .condition<AttribName>(obj->name())
5212  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject);
5213  q.queryInto(tguos);
5214 
5216  Threads::parallel_reduce(GeneralUserObjectRange(tguos.begin(), tguos.end()), ctguot);
5217  joinAndFinalize(q);
5218  }
5219 
5220  // Execute general user objects
5222  true);
5223  }
5224  }
5225  catch (...)
5226  {
5227  handleException("computeUserObjectsInternal");
5228  }
5229 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
void joinAndFinalize(TheWarehouse::Query query, bool isgen=false)
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:313
Thread to compute threaded general user objects.
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1313
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:294
void handleException(const std::string &calling_method)
Handle exceptions.
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, std::unique_ptr< AutomaticMortarGeneration > > & getMortarInterfaces(bool on_displaced) const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
StoredRange< std::vector< GeneralUserObject * >::iterator, GeneralUserObject * > GeneralUserObjectRange
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:344
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
query_obj query
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for threaded computation of UserObjects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual std::unique_ptr< Attribute > clone() const =0
clone creates and returns and identical (deep) copy of this attribute - i.e.

◆ computingNonlinearResid() [1/4]

bool SubProblem::computingNonlinearResid ( ) const
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1104

◆ computingNonlinearResid() [2/4]

bool SubProblem::computingNonlinearResid
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1104

◆ computingNonlinearResid() [3/4]

virtual void SubProblem::computingNonlinearResid
inlineinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Definition at line 712 of file SubProblem.h.

713  {
714  _computing_nonlinear_residual = computing_nonlinear_residual;
715  }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1104

◆ computingNonlinearResid() [4/4]

void FEProblemBase::computingNonlinearResid ( bool  computing_nonlinear_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Reimplemented from SubProblem.

Definition at line 9227 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeScaling(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and ComputeResidualAndJacobian::residual_and_jacobian().

9228 {
9229  parallel_object_only();
9230 
9231  if (_displaced_problem)
9232  _displaced_problem->computingNonlinearResid(computing_nonlinear_residual);
9233  _computing_nonlinear_residual = computing_nonlinear_residual;
9234 }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1104
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ computingPreSMOResidual()

bool FEProblemBase::computingPreSMOResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Returns true if the problem is in the process of computing it's initial residual.

Returns
Whether or not the problem is currently computing the initial residual.

Implements SubProblem.

Definition at line 6822 of file FEProblemBase.C.

Referenced by DisplacedProblem::computingPreSMOResidual().

6823 {
6824  return _nl[nl_sys_num]->computingPreSMOResidual();
6825 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ computingScalingJacobian() [1/2]

void FEProblemBase::computingScalingJacobian ( bool  computing_scaling_jacobian)
inlineinherited

Setter for whether we're computing the scaling jacobian.

Definition at line 2550 of file FEProblemBase.h.

Referenced by ComputeJacobianThread::compute(), SolverSystem::compute(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingJacobian().

2551  {
2552  _computing_scaling_jacobian = computing_scaling_jacobian;
2553  }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingJacobian() [2/2]

bool FEProblemBase::computingScalingJacobian ( ) const
inlinefinaloverridevirtualinherited

Getter for whether we're computing the scaling jacobian.

Implements SubProblem.

Definition at line 2555 of file FEProblemBase.h.

2555 { return _computing_scaling_jacobian; }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingResidual() [1/2]

void FEProblemBase::computingScalingResidual ( bool  computing_scaling_residual)
inlineinherited

Setter for whether we're computing the scaling residual.

Definition at line 2560 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingResidual().

2561  {
2562  _computing_scaling_residual = computing_scaling_residual;
2563  }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ computingScalingResidual() [2/2]

bool FEProblemBase::computingScalingResidual ( ) const
inlinefinaloverridevirtualinherited
Returns
whether we are currently computing a residual for automatic scaling purposes

Implements SubProblem.

Definition at line 2568 of file FEProblemBase.h.

2568 { return _computing_scaling_residual; }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ connectControllableParams()

void MooseBase::connectControllableParams ( const std::string &  parameter,
const std::string &  object_type,
const std::string &  object_name,
const std::string &  object_parameter 
) const
inherited

Connect controllable parameter of this action with the controllable parameters of the objects added by this action.

Parameters
parameterName of the controllable parameter of this action
object_typeType of the object added by this action.
object_nameName of the object added by this action.
object_parameterName of the parameter of the object.

Definition at line 77 of file MooseBase.C.

81 {
82  auto & factory = _app.getFactory();
83  auto & ip_warehouse = _app.getInputParameterWarehouse();
84 
85  MooseObjectParameterName primary_name(uniqueName(), parameter);
86  const auto base_type = factory.getValidParams(object_type).getBase();
87  MooseObjectParameterName secondary_name(base_type, object_name, object_parameter);
88  ip_warehouse.addControllableParameterConnection(primary_name, secondary_name);
89 
90  const auto & tags = _pars.get<std::vector<std::string>>("control_tags");
91  for (const auto & tag : tags)
92  {
93  if (!tag.empty())
94  {
95  // Only adds the parameter with the different control tags if the derived class
96  // properly registers the parameter to its own syntax
97  MooseObjectParameterName tagged_name(tag, name(), parameter);
98  ip_warehouse.addControllableParameterConnection(
99  tagged_name, secondary_name, /*error_on_empty=*/false);
100  }
101  }
102 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2973
MooseObjectName uniqueName() const
Definition: MooseBase.C:69
Factory & getFactory()
Retrieve a writable reference to the Factory associated with this App.
Definition: MooseApp.h:401
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
A class for storing an input parameter name.

◆ console()

const ConsoleStream& Problem::console ( ) const
inlineinherited

Return console handle.

Definition at line 48 of file Problem.h.

Referenced by Moose::SlepcSupport::mooseSlepcEPSMonitor(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

48 { return _console; }
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ constJacobian()

bool FEProblemBase::constJacobian ( ) const
inherited

Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed)

Definition at line 9060 of file FEProblemBase.C.

Referenced by Moose::SlepcSupport::moosePetscSNESFormMatricesTags(), and Moose::SlepcSupport::moosePetscSNESFormMatrixTag().

9061 {
9062  return _const_jacobian;
9063 }
bool _const_jacobian
true if the Jacobian is constant

◆ converged()

virtual bool SubProblem::converged ( const unsigned int  sys_num)
inlinevirtualinherited

Eventually we want to convert this virtual over to taking a solver system number argument.

We will have to first convert apps to use solverSystemConverged, and then once that is done, we can change this signature. Then we can go through the apps again and convert back to this changed API

Definition at line 113 of file SubProblem.h.

Referenced by FEProblemBase::initialSetup(), EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), DisplacedProblem::solverSystemConverged(), SubProblem::solverSystemConverged(), and AB2PredictorCorrector::step().

113 { return solverSystemConverged(sys_num); }
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ coordTransform()

MooseAppCoordTransform & FEProblemBase::coordTransform ( )
inherited
Returns
the coordinate transformation object that describes how to transform this problem's coordinate system into the canonical/reference coordinate system

Definition at line 9463 of file FEProblemBase.C.

9464 {
9465  return mesh().coordTransform();
9466 }
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1923
virtual MooseMesh & mesh() override

◆ copySolutionsBackwards()

void FEProblemBase::copySolutionsBackwards ( )
virtualinherited

Definition at line 6828 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6829 {
6830  TIME_SECTION("copySolutionsBackwards", 3, "Copying Solutions Backward");
6831 
6832  for (auto & sys : _solver_systems)
6833  sys->copySolutionsBackwards();
6834  _aux->copySolutionsBackwards();
6835 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ coupling()

Moose::CouplingType FEProblemBase::coupling ( ) const
inlineinherited

Definition at line 177 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), and NonlinearSystemBase::computeJacobianInternal().

177 { return _coupling; }
Moose::CouplingType _coupling
Type of variable coupling.

◆ couplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::couplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

◆ couplingMatrix()

const libMesh::CouplingMatrix * FEProblemBase::couplingMatrix ( const unsigned int  nl_sys_num) const
inlineoverridevirtualinherited

The coupling matrix defining what blocks exist in the preconditioning matrix.

Implements SubProblem.

Definition at line 3525 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), DisplacedProblem::couplingMatrix(), and DisplacedProblem::init().

3526 {
3527  return _cm[i].get();
3528 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ createMortarInterface()

void FEProblemBase::createMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced,
bool  periodic,
const bool  debug,
const bool  correct_edge_dropping,
const Real  minimum_projection_angle 
)
inherited

Definition at line 8041 of file FEProblemBase.C.

8049 {
8050  _has_mortar = true;
8051 
8052  if (on_displaced)
8053  return _mortar_data->createMortarInterface(primary_secondary_boundary_pair,
8054  primary_secondary_subdomain_pair,
8056  on_displaced,
8057  periodic,
8058  debug,
8059  correct_edge_dropping,
8060  minimum_projection_angle);
8061  else
8062  return _mortar_data->createMortarInterface(primary_secondary_boundary_pair,
8063  primary_secondary_subdomain_pair,
8064  *this,
8065  on_displaced,
8066  periodic,
8067  debug,
8068  correct_edge_dropping,
8069  minimum_projection_angle);
8070 }
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ createQRules()

void FEProblemBase::createQRules ( libMesh::QuadratureType  type,
libMesh::Order  order,
libMesh::Order  volume_order = libMesh::INVALID_ORDER,
libMesh::Order  face_order = libMesh::INVALID_ORDER,
SubdomainID  block = Moose::ANY_BLOCK_ID,
bool  allow_negative_qweights = true 
)
virtualinherited

Definition at line 6248 of file FEProblemBase.C.

6254 {
6255  if (order == INVALID_ORDER)
6256  {
6257  // automatically determine the integration order
6258  order = _solver_systems[0]->getMinQuadratureOrder();
6259  for (const auto i : make_range(std::size_t(1), _solver_systems.size()))
6260  if (order < _solver_systems[i]->getMinQuadratureOrder())
6261  order = _solver_systems[i]->getMinQuadratureOrder();
6262  if (order < _aux->getMinQuadratureOrder())
6263  order = _aux->getMinQuadratureOrder();
6264  }
6265 
6266  if (volume_order == INVALID_ORDER)
6267  volume_order = order;
6268 
6269  if (face_order == INVALID_ORDER)
6270  face_order = order;
6271 
6272  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6273  for (const auto i : index_range(_solver_systems))
6274  _assembly[tid][i]->createQRules(
6275  type, order, volume_order, face_order, block, allow_negative_qweights);
6276 
6277  if (_displaced_problem)
6278  _displaced_problem->createQRules(
6279  type, order, volume_order, face_order, block, allow_negative_qweights);
6280 
6281  updateMaxQps();
6282 }
unsigned int n_threads()
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual void createQRules(libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ createTagMatrices()

void FEProblemBase::createTagMatrices ( CreateTaggedMatrixKey  )
inherited

Definition at line 696 of file FEProblemBase.C.

697 {
698  auto & matrices = getParam<std::vector<std::vector<TagName>>>("extra_tag_matrices");
699  for (const auto sys_num : index_range(matrices))
700  for (auto & matrix : matrices[sys_num])
701  {
702  auto tag = addMatrixTag(matrix);
703  _solver_systems[sys_num]->addMatrix(tag);
704  }
705 
706  for (auto & sys : _solver_systems)
707  sys->sizeVariableMatrixData();
708  _aux->sizeVariableMatrixData();
709 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:312
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
auto index_range(const T &sizable)

◆ createTagSolutions()

void FEProblemBase::createTagSolutions ( )
protectedinherited

Create extra tagged solution vectors.

Definition at line 712 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

713 {
714  for (auto & vector : getParam<std::vector<TagName>>("extra_tag_solutions"))
715  {
716  auto tag = addVectorTag(vector, Moose::VECTOR_TAG_SOLUTION);
717  for (auto & sys : _solver_systems)
718  sys->addVector(tag, false, libMesh::GHOSTED);
719  _aux->addVector(tag, false, libMesh::GHOSTED);
720  }
721 
723  {
724  // We'll populate the zeroth state of the nonlinear iterations with the current solution for
725  // ease of use in doing things like copying solutions backwards. We're just storing pointers in
726  // the solution states containers so populating the zeroth state does not cost us the memory of
727  // a new vector
729  }
730 
732  for (auto & sys : _solver_systems)
733  sys->associateVectorToTag(*sys->system().current_local_solution.get(), tag);
734  _aux->associateVectorToTag(*_aux->system().current_local_solution.get(), tag);
735 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:388
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _previous_nl_solution_required
Indicates we need to save the previous NL iteration variable values.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void needSolutionState(unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
Declare that we need up to old (1) or older (2) solution states for a given type of iteration...
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ createTagVectors()

void FEProblemBase::createTagVectors ( )
protectedinherited

Create extra tagged vectors and matrices.

Definition at line 674 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

675 {
676  // add vectors and their tags to system
677  auto & vectors = getParam<std::vector<std::vector<TagName>>>("extra_tag_vectors");
678  for (const auto sys_num : index_range(vectors))
679  for (auto & vector : vectors[sys_num])
680  {
681  auto tag = addVectorTag(vector);
682  _solver_systems[sys_num]->addVector(tag, false, libMesh::GHOSTED);
683  }
684 
685  auto & not_zeroed_vectors = getParam<std::vector<std::vector<TagName>>>("not_zeroed_tag_vectors");
686  for (const auto sys_num : index_range(not_zeroed_vectors))
687  for (auto & vector : not_zeroed_vectors[sys_num])
688  {
689  auto tag = addVectorTag(vector);
690  _solver_systems[sys_num]->addVector(tag, false, GHOSTED);
692  }
693 }
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
auto index_range(const T &sizable)
void addNotZeroedVectorTag(const TagID tag)
Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are...
Definition: SubProblem.C:150

◆ currentLinearSysNum()

unsigned int FEProblemBase::currentLinearSysNum ( ) const
overridevirtualinherited
Returns
the current linear system number

Implements SubProblem.

Definition at line 9480 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentLinearSysNum().

9481 {
9482  // If we don't have linear systems this should be an invalid number
9483  unsigned int current_linear_sys_num = libMesh::invalid_uint;
9484  if (_linear_systems.size())
9485  current_linear_sys_num = currentLinearSystem().number();
9486 
9487  return current_linear_sys_num;
9488 }
const unsigned int invalid_uint
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
LinearSystem & currentLinearSystem()
Get a non-constant reference to the current linear system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ currentLinearSystem() [1/2]

LinearSystem & FEProblemBase::currentLinearSystem ( )
inlineinherited

Get a non-constant reference to the current linear system.

Definition at line 3493 of file FEProblemBase.h.

Referenced by FEProblemBase::currentLinearSysNum(), and Moose::PetscSupport::petscLinearConverged().

3494 {
3495  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3496  return *_current_linear_sys;
3497 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentLinearSystem() [2/2]

const LinearSystem & FEProblemBase::currentLinearSystem ( ) const
inlineinherited

Get a constant reference to the current linear system.

Definition at line 3500 of file FEProblemBase.h.

3501 {
3502  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3503  return *_current_linear_sys;
3504 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentlyComputingJacobian()

const bool& SubProblem::currentlyComputingJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the Jacobian.

Definition at line 684 of file SubProblem.h.

Referenced by PenetrationLocator::detectPenetration(), ComputeUserObjectsThread::onBoundary(), ComputeUserObjectsThread::onElement(), ComputeUserObjectsThread::printBlockExecutionInformation(), SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1098

◆ currentlyComputingResidual() [1/2]

const bool& SubProblem::currentlyComputingResidual ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1107

◆ currentlyComputingResidual() [2/2]

const bool& SubProblem::currentlyComputingResidual
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1107

◆ currentlyComputingResidualAndJacobian()

const bool & SubProblem::currentlyComputingResidualAndJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual and the Jacobian.

Definition at line 1492 of file SubProblem.h.

Referenced by SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

1493 {
1495 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1101

◆ currentNlSysNum()

unsigned int FEProblemBase::currentNlSysNum ( ) const
overridevirtualinherited
Returns
the current nonlinear system number

Implements SubProblem.

Definition at line 9469 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentNlSysNum(), FEProblemBase::jacobianSetup(), and FEProblemBase::residualSetup().

9470 {
9471  // If we don't have nonlinear systems this should be an invalid number
9472  unsigned int current_nl_sys_num = libMesh::invalid_uint;
9473  if (_nl.size())
9474  current_nl_sys_num = currentNonlinearSystem().number();
9475 
9476  return current_nl_sys_num;
9477 }
const unsigned int invalid_uint
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase & currentNonlinearSystem()
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ currentNonlinearSystem() [1/2]

NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( )
inlineinherited

◆ currentNonlinearSystem() [2/2]

const NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( ) const
inlineinherited

Definition at line 3470 of file FEProblemBase.h.

3471 {
3472  mooseAssert(_current_nl_sys, "The nonlinear system is not currently set");
3473  return *_current_nl_sys;
3474 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.

◆ currentResidualVectorTags()

const std::vector< VectorTag > & FEProblemBase::currentResidualVectorTags ( ) const
inlineoverridevirtualinherited

Return the residual vector tags we are currently computing.

Implements SubProblem.

Definition at line 3541 of file FEProblemBase.h.

Referenced by FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), and DisplacedProblem::currentResidualVectorTags().

3542 {
3544 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ customSetup()

void FEProblemBase::customSetup ( const ExecFlagType exec_type)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 4795 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

4796 {
4797  SubProblem::customSetup(exec_type);
4798 
4799  if (_line_search)
4800  _line_search->customSetup(exec_type);
4801 
4802  unsigned int n_threads = libMesh::n_threads();
4803  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4804  {
4805  _all_materials.customSetup(exec_type, tid);
4806  _functions.customSetup(exec_type, tid);
4807  }
4808 
4809  _aux->customSetup(exec_type);
4810  for (auto & nl : _nl)
4811  nl->customSetup(exec_type);
4812 
4813  if (_displaced_problem)
4814  _displaced_problem->customSetup(exec_type);
4815 
4816  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4817  {
4818  _internal_side_indicators.customSetup(exec_type, tid);
4819  _indicators.customSetup(exec_type, tid);
4820  _markers.customSetup(exec_type, tid);
4821  }
4822 
4823  std::vector<UserObject *> userobjs;
4824  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
4825  for (auto obj : userobjs)
4826  obj->customSetup(exec_type);
4827 
4828  _app.getOutputWarehouse().customSetup(exec_type);
4829 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
void customSetup(const ExecFlagType &exec_type)
Calls the setup function for each of the output objects.
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SubProblem.C:1196
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
MooseObjectWarehouse< Indicator > _indicators
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
unsigned int THREAD_ID
Definition: MooseTypes.h:209
std::shared_ptr< LineSearch > _line_search

◆ declareManagedRestartableDataWithContext()

template<typename T , typename... Args>
Restartable::ManagedValue< T > Restartable::declareManagedRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declares a piece of "managed" restartable data and initialize it.

Here, "managed" restartable data means that the caller can destruct this data upon destruction of the return value of this method. Therefore, this ManagedValue<T> wrapper should survive after the final calls to dataStore() for it. That is... at the very end.

This is needed for objects whose destruction ordering is important, and enables natural c++ destruction in reverse construction order of the object that declares it.

See delcareRestartableData and declareRestartableDataWithContext for more information.

Definition at line 283 of file Restartable.h.

286 {
287  auto & data_ptr =
288  declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...);
289  return Restartable::ManagedValue<T>(data_ptr);
290 }
Wrapper class for restartable data that is "managed.
Definition: Restartable.h:42

◆ declareRecoverableData()

template<typename T , typename... Args>
T & Restartable::declareRecoverableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "recoverable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

Note - this data will NOT be restored on Restart!

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 358 of file Restartable.h.

359 {
360  const auto full_name = restartableName(data_name);
361 
363 
364  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
365 }
std::string restartableName(const std::string &data_name) const
Gets the name of a piece of restartable data given a data name, adding the system name and object nam...
Definition: Restartable.C:78
void registerRestartableNameWithFilterOnApp(const std::string &name, Moose::RESTARTABLE_FILTER filter)
Helper function for actually registering the restartable data.
Definition: Restartable.C:71

◆ declareRestartableData()

template<typename T , typename... Args>
T & Restartable::declareRestartableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 276 of file Restartable.h.

277 {
278  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
279 }

◆ declareRestartableDataWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 301 of file Restartable.h.

304 {
305  return declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...).set();
306 }

◆ declareRestartableDataWithObjectName()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectName ( const std::string &  data_name,
const std::string &  object_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
argsArguments to forward to the constructor of the data

Definition at line 330 of file Restartable.h.

333 {
334  return declareRestartableDataWithObjectNameWithContext<T>(
335  data_name, object_name, nullptr, std::forward<Args>(args)...);
336 }

◆ declareRestartableDataWithObjectNameWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectNameWithContext ( const std::string &  data_name,
const std::string &  object_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 340 of file Restartable.h.

344 {
345  std::string old_name = _restartable_name;
346 
347  _restartable_name = object_name;
348 
349  T & value = declareRestartableDataWithContext<T>(data_name, context, std::forward<Args>(args)...);
350 
351  _restartable_name = old_name;
352 
353  return value;
354 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:250
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)

◆ defaultGhosting()

bool SubProblem::defaultGhosting ( )
inlineinherited

Whether or not the user has requested default ghosting ot be on.

Definition at line 144 of file SubProblem.h.

Referenced by DisplacedSystem::DisplacedSystem(), and NonlinearSystemBase::NonlinearSystemBase().

144 { return _default_ghosting; }
bool _default_ghosting
Whether or not to use default libMesh coupling.
Definition: SubProblem.h:1092

◆ diracKernelInfo()

DiracKernelInfo & SubProblem::diracKernelInfo ( )
virtualinherited

Definition at line 749 of file SubProblem.C.

750 {
751  return _dirac_kernel_info;
752 }
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1051

◆ displaceMesh()

void MFEMProblem::displaceMesh ( )

Displace the mesh, if mesh displacement is enabled.

Definition at line 434 of file MFEMProblem.C.

Referenced by MFEMProblemSolve::solve().

435 {
436  // Displace mesh
437  if (mesh().shouldDisplace())
438  {
439  mesh().displace(static_cast<mfem::GridFunction const &>(*getMeshDisplacementGridFunction()));
440  // TODO: update FESpaces GridFunctions etc for transient solves
441  }
442 }
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:466
void displace(mfem::GridFunction const &displacement)
Displace the nodes of the mesh by the given displacement.
Definition: MFEMMesh.C:76
std::optional< std::reference_wrapper< mfem::ParGridFunction const > > getMeshDisplacementGridFunction()
Returns optional reference to the displacement GridFunction to apply to nodes.
Definition: MFEMProblem.C:445

◆ doingPRefinement()

bool SubProblem::doingPRefinement ( ) const
inherited
Returns
whether we're doing p-refinement

Definition at line 1366 of file SubProblem.C.

Referenced by FEProblemBase::meshChanged().

1367 {
1368  return mesh().doingPRefinement();
1369 }
virtual MooseMesh & mesh()=0
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1365

◆ dt()

virtual Real& FEProblemBase::dt ( ) const
inlinevirtualinherited

◆ dtOld()

virtual Real& FEProblemBase::dtOld ( ) const
inlinevirtualinherited

Definition at line 545 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

545 { return _dt_old; }

◆ duplicateVariableCheck()

bool FEProblemBase::duplicateVariableCheck ( const std::string &  var_name,
const libMesh::FEType type,
bool  is_aux,
const std::set< SubdomainID > *const  active_subdomains 
)
protectedinherited

Helper to check for duplicate variable names across systems or within a single system.

Definition at line 2785 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

2789 {
2790  std::set<SubdomainID> subdomainIDs;
2791  if (active_subdomains->size() == 0)
2792  {
2793  const auto subdomains = _mesh.meshSubdomains();
2794  subdomainIDs.insert(subdomains.begin(), subdomains.end());
2795  }
2796  else
2797  subdomainIDs.insert(active_subdomains->begin(), active_subdomains->end());
2798 
2799  for (auto & sys : _solver_systems)
2800  {
2801  SystemBase * curr_sys_ptr = sys.get();
2802  SystemBase * other_sys_ptr = _aux.get();
2803  std::string error_prefix = "";
2804  if (is_aux)
2805  {
2806  curr_sys_ptr = _aux.get();
2807  other_sys_ptr = sys.get();
2808  error_prefix = "aux";
2809  }
2810 
2811  if (other_sys_ptr->hasVariable(var_name))
2812  mooseError("Cannot have an auxiliary variable and a solver variable with the same name: ",
2813  var_name);
2814 
2815  if (curr_sys_ptr->hasVariable(var_name))
2816  {
2817  const Variable & var =
2818  curr_sys_ptr->system().variable(curr_sys_ptr->system().variable_number(var_name));
2819 
2820  // variable type
2821  if (var.type() != type)
2822  {
2823  const auto stringifyType = [](FEType t)
2824  { return Moose::stringify(t.family) + " of order " + Moose::stringify(t.order); };
2825 
2826  mooseError("Mismatching types are specified for ",
2827  error_prefix,
2828  "variable with name '",
2829  var_name,
2830  "': '",
2831  stringifyType(var.type()),
2832  "' and '",
2833  stringifyType(type),
2834  "'");
2835  }
2836 
2837  // block-restriction
2838  if (!(active_subdomains->size() == 0 && var.active_subdomains().size() == 0))
2839  {
2840  const auto varActiveSubdomains = var.active_subdomains();
2841  std::set<SubdomainID> varSubdomainIDs;
2842  if (varActiveSubdomains.size() == 0)
2843  {
2844  const auto subdomains = _mesh.meshSubdomains();
2845  varSubdomainIDs.insert(subdomains.begin(), subdomains.end());
2846  }
2847  else
2848  varSubdomainIDs.insert(varActiveSubdomains.begin(), varActiveSubdomains.end());
2849 
2850  // Is subdomainIDs a subset of varSubdomainIDs? With this we allow the case that the newly
2851  // requested block restriction is only a subset of the existing one.
2852  const auto isSubset = std::includes(varSubdomainIDs.begin(),
2853  varSubdomainIDs.end(),
2854  subdomainIDs.begin(),
2855  subdomainIDs.end());
2856 
2857  if (!isSubset)
2858  {
2859  // helper function: make a string from a set of subdomain ids
2860  const auto stringifySubdomains = [this](std::set<SubdomainID> subdomainIDs)
2861  {
2862  std::stringstream s;
2863  for (auto const i : subdomainIDs)
2864  {
2865  // do we need to insert a comma?
2866  if (s.tellp() != 0)
2867  s << ", ";
2868 
2869  // insert subdomain name and id -or- only the id (if no name is given)
2870  const auto subdomainName = _mesh.getSubdomainName(i);
2871  if (subdomainName.empty())
2872  s << i;
2873  else
2874  s << subdomainName << " (" << i << ")";
2875  }
2876  return s.str();
2877  };
2878 
2879  const std::string msg = "Mismatching block-restrictions are specified for " +
2880  error_prefix + "variable with name '" + var_name + "': {" +
2881  stringifySubdomains(varSubdomainIDs) + "} and {" +
2882  stringifySubdomains(subdomainIDs) + "}";
2883 
2884  mooseError(msg);
2885  }
2886  }
2887 
2888  return true;
2889  }
2890  }
2891 
2892  return false;
2893 }
const Variable & variable(unsigned int var) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1801
unsigned int variable_number(std::string_view var) const
const std::set< subdomain_id_type > & active_subdomains() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3192
const FEType & type() const

◆ enabled()

virtual bool MooseObject::enabled ( ) const
inlinevirtualinherited

Return the enabled status of the object.

Reimplemented in EigenKernel.

Definition at line 49 of file MooseObject.h.

Referenced by EigenKernel::enabled().

49 { return _enabled; }
const bool & _enabled
Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.
Definition: MooseObject.h:86

◆ errorOnJacobianNonzeroReallocation()

bool FEProblemBase::errorOnJacobianNonzeroReallocation ( ) const
inlineinherited

Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc.

Definition at line 2151 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

2152  {
2154  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ errorPrefix()

std::string MooseBase::errorPrefix ( const std::string &  ) const
inlineinherited

Deprecated message prefix; the error type is no longer used.

Definition at line 264 of file MooseBase.h.

264 { return messagePrefix(); }
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ es()

virtual libMesh::EquationSystems& FEProblemBase::es ( )
inlineoverridevirtualinherited

◆ execMultiApps()

bool FEProblemBase::execMultiApps ( ExecFlagType  type,
bool  auto_advance = true 
)
inherited

Execute the MultiApps associated with the ExecFlagType.

Definition at line 5638 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), MFEMSteady::execute(), TransientBase::execute(), SteadyBase::execute(), Eigenvalue::execute(), FEProblemBase::initialSetup(), EigenExecutionerBase::postExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

5639 {
5640  // Active MultiApps
5641  const std::vector<MooseSharedPointer<MultiApp>> & multi_apps =
5643 
5644  // Do anything that needs to be done to Apps before transfers
5645  for (const auto & multi_app : multi_apps)
5646  multi_app->preTransfer(_dt, _time);
5647 
5648  // Execute Transfers _to_ MultiApps
5650 
5651  // Execute Transfers _between_ Multiapps
5653 
5654  // Execute MultiApps
5655  if (multi_apps.size())
5656  {
5657  TIME_SECTION("execMultiApps", 1, "Executing MultiApps", false);
5658 
5659  if (_verbose_multiapps)
5660  _console << COLOR_CYAN << "\nExecuting MultiApps on " << Moose::stringify(type)
5661  << COLOR_DEFAULT << std::endl;
5662 
5663  bool success = true;
5664 
5665  for (const auto & multi_app : multi_apps)
5666  {
5667  success = multi_app->solveStep(_dt, _time, auto_advance);
5668  // no need to finish executing the subapps if one fails
5669  if (!success)
5670  break;
5671  }
5672 
5674 
5675  _communicator.min(success);
5676 
5677  if (!success)
5678  return false;
5679 
5680  if (_verbose_multiapps)
5681  _console << COLOR_CYAN << "Finished Executing MultiApps on " << Moose::stringify(type) << "\n"
5682  << COLOR_DEFAULT << std::endl;
5683  }
5684 
5685  // Execute Transfers _from_ MultiApps
5687 
5688  // If we made it here then everything passed
5689  return true;
5690 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:327
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void execMultiAppTransfers(ExecFlagType type, Transfer::DIRECTION direction)
Execute MultiAppTransfers associated with execution flag and direction.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execMultiAppTransfers()

void FEProblemBase::execMultiAppTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
)
inherited

Execute MultiAppTransfers associated with execution flag and direction.

Parameters
typeThe execution flag to execute.
directionThe direction (to or from) to transfer.

Definition at line 5538 of file FEProblemBase.C.

Referenced by FEProblemBase::execMultiApps().

5539 {
5540  bool to_multiapp = direction == MultiAppTransfer::TO_MULTIAPP;
5541  bool from_multiapp = direction == MultiAppTransfer::FROM_MULTIAPP;
5542  std::string string_direction;
5543  if (to_multiapp)
5544  string_direction = " To ";
5545  else if (from_multiapp)
5546  string_direction = " From ";
5547  else
5548  string_direction = " Between ";
5549 
5550  const MooseObjectWarehouse<Transfer> & wh = to_multiapp ? _to_multi_app_transfers[type]
5551  : from_multiapp ? _from_multi_app_transfers[type]
5553 
5554  if (wh.hasActiveObjects())
5555  {
5556  TIME_SECTION("execMultiAppTransfers", 1, "Executing Transfers");
5557 
5558  const auto & transfers = wh.getActiveObjects();
5559 
5560  if (_verbose_multiapps)
5561  {
5562  _console << COLOR_CYAN << "\nTransfers on " << Moose::stringify(type) << string_direction
5563  << "MultiApps" << COLOR_DEFAULT << ":" << std::endl;
5564 
5566  {"Name", "Type", "From", "To"});
5567 
5568  // Build Table of Transfer Info
5569  for (const auto & transfer : transfers)
5570  {
5571  auto multiapp_transfer = dynamic_cast<MultiAppTransfer *>(transfer.get());
5572 
5573  table.addRow(multiapp_transfer->name(),
5574  multiapp_transfer->type(),
5575  multiapp_transfer->getFromName(),
5576  multiapp_transfer->getToName());
5577  }
5578 
5579  // Print it
5580  table.print(_console);
5581  }
5582 
5583  for (const auto & transfer : transfers)
5584  {
5585  transfer->setCurrentDirection(direction);
5586  transfer->execute();
5587  }
5588 
5590 
5591  if (_verbose_multiapps)
5592  _console << COLOR_CYAN << "Transfers on " << Moose::stringify(type) << " Are Finished\n"
5593  << COLOR_DEFAULT << std::endl;
5594  }
5595  else if (_multi_apps[type].getActiveObjects().size())
5596  {
5597  if (_verbose_multiapps)
5598  _console << COLOR_CYAN << "\nNo Transfers on " << Moose::stringify(type) << string_direction
5599  << "MultiApps\n"
5600  << COLOR_DEFAULT << std::endl;
5601  }
5602 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
A class for "pretty printing" a table of data.
Definition: PerfGraph.h:34
void setCurrentDirection(const int direction)
Set this Transfer to be executed in a given direction.
Definition: Transfer.h:89
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:327
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const
Base class for all MultiAppTransfer objects.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execTransfers()

void FEProblemBase::execTransfers ( ExecFlagType  type)
inherited

Execute the Transfers associated with the ExecFlagType.

Note: This does not execute MultiApp Transfers! Those are executed automatically when MultiApps are executed.

Definition at line 5808 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::initialSetup(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5809 {
5810  if (_transfers[type].hasActiveObjects())
5811  {
5812  TIME_SECTION("execTransfers", 3, "Executing Transfers");
5813 
5814  const auto & transfers = _transfers[type].getActiveObjects();
5815 
5816  for (const auto & transfer : transfers)
5817  transfer->execute();
5818  }
5819 }
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ execute()

void FEProblemBase::execute ( const ExecFlagType exec_type)
virtualinherited

Convenience function for performing execution of MOOSE systems.

Reimplemented in EigenProblem, and DumpObjectsProblem.

Definition at line 4832 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::chebyshev(), FixedPointSolve::examineFixedPointConvergence(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), EigenProblem::execute(), NonlinearEigen::init(), MFEMSteady::init(), Steady::init(), EigenExecutionerBase::init(), TransientBase::init(), FEProblemBase::initialSetup(), EigenExecutionerBase::makeBXConsistent(), EigenExecutionerBase::normalizeSolution(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), EigenExecutionerBase::postExecute(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), FixedPointSolve::solveStep(), InversePowerMethod::takeStep(), and NonlinearEigen::takeStep().

4833 {
4834  // Set the current flag
4835  setCurrentExecuteOnFlag(exec_type);
4836 
4837  if (exec_type != EXEC_INITIAL)
4838  executeControls(exec_type);
4839 
4840  // intentially call this after executing controls because the setups may rely on the controls
4841  // FIXME: we skip the following flags because they have dedicated setup functions in
4842  // SetupInterface and it may not be appropriate to call them here.
4843  if (!(exec_type == EXEC_INITIAL || exec_type == EXEC_TIMESTEP_BEGIN ||
4844  exec_type == EXEC_SUBDOMAIN || exec_type == EXEC_NONLINEAR || exec_type == EXEC_LINEAR))
4845  customSetup(exec_type);
4846 
4847  // Samplers; EXEC_INITIAL is not called because the Sampler::init() method that is called after
4848  // construction makes the first Sampler::execute() call. This ensures that the random number
4849  // generator object is the correct state prior to any other object (e.g., Transfers) attempts to
4850  // extract data from the Sampler. That is, if the Sampler::execute() call is delayed to here
4851  // then it is not in the correct state for other objects.
4852  if (exec_type != EXEC_INITIAL)
4853  executeSamplers(exec_type);
4854 
4855  // Pre-aux UserObjects
4856  computeUserObjects(exec_type, Moose::PRE_AUX);
4857 
4858  // Systems (includes system time derivative and aux kernel calculations)
4859  computeSystems(exec_type);
4860  // With the auxiliary system solution computed, sync the displaced problem auxiliary solution
4861  // before computation of post-aux user objects. The undisplaced auxiliary system current local
4862  // solution is updated (via System::update) within the AuxiliarySystem class's variable
4863  // computation methods (e.g. computeElementalVarsHelper, computeNodalVarsHelper), so it is safe to
4864  // use it here
4865  if (_displaced_problem)
4866  _displaced_problem->syncAuxSolution(*getAuxiliarySystem().currentSolution());
4867 
4868  // Post-aux UserObjects
4869  computeUserObjects(exec_type, Moose::POST_AUX);
4870 
4871  // Return the current flag to None
4873 
4875  {
4876  // we will only check aux variables and postprocessors
4877  // checking more reporter data can be added in the future if needed
4878  std::unique_ptr<NumericVector<Number>> x = _aux->currentSolution()->clone();
4880 
4881  // call THIS execute one more time for checking the possible states
4882  _checking_uo_aux_state = true;
4883  FEProblemBase::execute(exec_type);
4884  _checking_uo_aux_state = false;
4885 
4886  const Real check_tol = 1e-8;
4887 
4888  const Real xnorm = x->l2_norm();
4889  *x -= *_aux->currentSolution();
4890  if (x->l2_norm() > check_tol * xnorm)
4891  {
4892  const auto & sys = _aux->system();
4893  const unsigned int n_vars = sys.n_vars();
4894  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4895  for (const auto i : make_range(n_vars))
4896  {
4897  const Real vnorm = sys.calculate_norm(*x, i, DISCRETE_L2);
4898  ordered_map.emplace(vnorm, sys.variable_name(i));
4899  }
4900 
4901  std::ostringstream oss;
4902  for (const auto & [error_norm, var_name] : ordered_map)
4903  oss << " {" << var_name << ", " << error_norm << "},\n";
4904 
4905  mooseError("Aux kernels, user objects appear to have states for aux variables on ",
4906  exec_type,
4907  ".\nVariable error norms in descending order:\n",
4908  oss.str());
4909  }
4910 
4912  if (pp_values.size() != new_pp_values.size())
4913  mooseError("Second execution for uo/aux state check should not change the number of "
4914  "real reporter values");
4915 
4916  const Real ppnorm = pp_values.l2_norm();
4917  pp_values -= new_pp_values;
4918  if (pp_values.l2_norm() > check_tol * ppnorm)
4919  {
4920  const auto pp_names = getReporterData().getAllRealReporterFullNames();
4921  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4922  for (const auto i : index_range(pp_names))
4923  ordered_map.emplace(std::abs(pp_values(i)), pp_names[i]);
4924 
4925  std::ostringstream oss;
4926  for (const auto & [error_norm, pp_name] : ordered_map)
4927  oss << " {" << pp_name << ", " << error_norm << "},\n";
4928 
4929  mooseError("Aux kernels, user objects appear to have states for real reporter values on ",
4930  exec_type,
4931  ".\nErrors of real reporter values in descending order:\n",
4932  oss.str());
4933  }
4934  }
4935 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:42
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setCurrentExecuteOnFlag(const ExecFlagType &)
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void execute(const ExecFlagType &exec_type)
Convenience function for performing execution of MOOSE systems.
const ReporterData & getReporterData() const
Provides const access the ReporterData object.
DenseVector< Real > getAllRealReporterValues() const
Get all real reporter values including postprocessor and vector postprocessor values into a dense vec...
Definition: ReporterData.C:81
unsigned int n_vars
Real l2_norm() const
std::vector< std::string > getAllRealReporterFullNames() const
Get full names of all real reporter values Note: For a postprocessor, the full name is the postproces...
Definition: ReporterData.C:106
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
void executeSamplers(const ExecFlagType &exec_type)
Performs setup and execute calls for Sampler objects.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
AuxiliarySystem & getAuxiliarySystem()
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void customSetup(const ExecFlagType &exec_type) override
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual unsigned int size() const override final
std::shared_ptr< DisplacedProblem > _displaced_problem
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
auto index_range(const T &sizable)
void computeSystems(const ExecFlagType &type)
Do generic system computations.
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ executeAllObjects()

void FEProblemBase::executeAllObjects ( const ExecFlagType exec_type)
virtualinherited

Definition at line 4790 of file FEProblemBase.C.

Referenced by Executor::exec().

4791 {
4792 }

◆ executeControls()

void FEProblemBase::executeControls ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Control objects.

Definition at line 5232 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

5233 {
5234  if (_control_warehouse[exec_type].hasActiveObjects())
5235  {
5236  TIME_SECTION("executeControls", 1, "Executing Controls");
5237 
5239 
5240  auto controls_wh = _control_warehouse[exec_type];
5241  // Add all of the dependencies into the resolver and sort them
5242  for (const auto & it : controls_wh.getActiveObjects())
5243  {
5244  // Make sure an item with no dependencies comes out too!
5245  resolver.addItem(it);
5246 
5247  std::vector<std::string> & dependent_controls = it->getDependencies();
5248  for (const auto & depend_name : dependent_controls)
5249  {
5250  if (controls_wh.hasActiveObject(depend_name))
5251  {
5252  auto dep_control = controls_wh.getActiveObject(depend_name);
5253  resolver.addEdge(dep_control, it);
5254  }
5255  else
5256  mooseError("The Control \"",
5257  depend_name,
5258  "\" was not created, did you make a "
5259  "spelling mistake or forget to include it "
5260  "in your input file?");
5261  }
5262  }
5263 
5264  const auto & ordered_controls = resolver.getSortedValues();
5265 
5266  if (!ordered_controls.empty())
5267  {
5268  _control_warehouse.setup(exec_type);
5269  // Run the controls in the proper order
5270  for (const auto & control : ordered_controls)
5271  control->execute();
5272  }
5273  }
5274 }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
const std::vector< T > & getSortedValues()
This function also returns dependency resolved values but with a simpler single vector interface...
void setup(const ExecFlagType &exec_flag, THREAD_ID tid=0) const
void addEdge(const T &a, const T &b)
Add an edge between nodes &#39;a&#39; and &#39;b&#39;.
void addItem(const T &value)
Add an independent item to the set.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
Class that represents the dependecy as a graph.

◆ executeSamplers()

void FEProblemBase::executeSamplers ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Sampler objects.

Definition at line 5277 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

5278 {
5279  // TODO: This should be done in a threaded loop, but this should be super quick so for now
5280  // do a serial loop.
5281  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5282  {
5283  std::vector<Sampler *> objects;
5284  theWarehouse()
5285  .query()
5286  .condition<AttribSystem>("Sampler")
5287  .condition<AttribThread>(tid)
5288  .condition<AttribExecOns>(exec_type)
5289  .queryInto(objects);
5290 
5291  if (!objects.empty())
5292  {
5293  TIME_SECTION("executeSamplers", 1, "Executing Samplers");
5294  FEProblemBase::objectSetupHelper<Sampler>(objects, exec_type);
5295  FEProblemBase::objectExecuteHelper<Sampler>(objects);
5296  }
5297  }
5298 }
unsigned int n_threads()
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ externalSolve()

virtual void MFEMProblem::externalSolve ( )
inlineoverridevirtual

New interface for solving an External problem.

"solve()" is finalized here to provide callbacks for solution syncing.

Implements ExternalProblem.

Definition at line 26 of file MFEMProblem.h.

26 {}

◆ feBackend()

Moose::FEBackend MFEMProblem::feBackend ( ) const
inlineoverridevirtual

Reimplemented from FEProblemBase.

Definition at line 204 of file MFEMProblem.h.

◆ finalizeMultiApps()

void FEProblemBase::finalizeMultiApps ( )
inherited

Definition at line 5693 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5694 {
5695  const auto & multi_apps = _multi_apps.getActiveObjects();
5696 
5697  for (const auto & multi_app : multi_apps)
5698  multi_app->finalize();
5699 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ finalNonlinearResidual()

Real FEProblemBase::finalNonlinearResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6816 of file FEProblemBase.C.

6817 {
6818  return _nl[nl_sys_num]->finalNonlinearResidual();
6819 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ finishMultiAppStep()

void FEProblemBase::finishMultiAppStep ( ExecFlagType  type,
bool  recurse_through_multiapp_levels = false 
)
inherited

Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.

Optionally recurse through all multi-app levels

Definition at line 5721 of file FEProblemBase.C.

Referenced by FEProblemBase::advanceMultiApps(), TransientBase::execute(), TransientMultiApp::finishStep(), and TransientBase::incrementStepOrReject().

5722 {
5723  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5724 
5725  if (multi_apps.size())
5726  {
5727  if (_verbose_multiapps)
5728  _console << COLOR_CYAN << "\nAdvancing MultiApps on " << type.name() << COLOR_DEFAULT
5729  << std::endl;
5730 
5731  for (const auto & multi_app : multi_apps)
5732  multi_app->finishStep(recurse_through_multiapp_levels);
5733 
5735 
5736  if (_verbose_multiapps)
5737  _console << COLOR_CYAN << "Finished Advancing MultiApps on " << type.name() << "\n"
5738  << COLOR_DEFAULT << std::endl;
5739  }
5740 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:327
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ flagInvalidSolutionInternal()

template<bool warning>
template void SolutionInvalidInterface::flagInvalidSolutionInternal< false > ( const InvalidSolutionID  invalid_solution_id) const
protectedinherited

Set solution invalid mark for the given solution ID.

Definition at line 41 of file SolutionInvalidInterface.C.

43 {
44  mooseAssert(
45  warning == moose::internal::getSolutionInvalidityRegistry().item(invalid_solution_id).warning,
46  "Inconsistent warning flag");
47  auto & solution_invalidity = _si_moose_base.getMooseApp().solutionInvalidity();
48  if constexpr (!warning)
50  solution_invalidity.printDebug(invalid_solution_id);
51  return solution_invalidity.flagInvalidSolutionInternal(invalid_solution_id);
52 }
const FEProblemBase * _si_problem
A pointer to FEProblem base.
void printDebug(InvalidSolutionID _invalid_solution_id) const
Immediately print the section and message for debug purpose.
MooseApp & getMooseApp() const
Get the MooseApp this class is associated with.
Definition: MooseBase.h:87
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
SolutionInvalidityRegistry & getSolutionInvalidityRegistry()
Get the global SolutionInvalidityRegistry singleton.
bool immediatelyPrintInvalidSolution() const
Whether or not the solution invalid warnings are printed out immediately.
const MooseBase & _si_moose_base
The MooseBase that owns this interface.

◆ forceOutput()

void FEProblemBase::forceOutput ( )
inherited

Indicates that the next call to outputStep should be forced.

This is needed by the MultiApp system, if forceOutput is called the next call to outputStep, regardless of the type supplied to the call, will be executed with EXEC_FORCED.

Forced output will NOT override the allowOutput flag.

Definition at line 6951 of file FEProblemBase.C.

Referenced by TransientMultiApp::solveStep().

6952 {
6954 }
void forceOutput()
Indicates that the next call to outputStep should be forced This is private, users should utilize FEP...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515

◆ fvBCsIntegrityCheck() [1/2]

bool FEProblemBase::fvBCsIntegrityCheck ( ) const
inlineinherited
Returns
whether to perform a boundary condition integrity check for finite volume

Definition at line 2479 of file FEProblemBase.h.

2479 { return _fv_bcs_integrity_check; }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ fvBCsIntegrityCheck() [2/2]

void FEProblemBase::fvBCsIntegrityCheck ( bool  fv_bcs_integrity_check)
inlineinherited
Parameters
fv_bcs_integrity_checkWhether to perform a boundary condition integrity check for finite volume

Definition at line 3531 of file FEProblemBase.h.

3532 {
3534  // the user has requested that we don't check integrity so we will honor that
3535  return;
3536 
3537  _fv_bcs_integrity_check = fv_bcs_integrity_check;
3538 }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ geomSearchData()

virtual GeometricSearchData& FEProblemBase::geomSearchData ( )
inlineoverridevirtualinherited

◆ getActiveElementalMooseVariables()

const std::set< MooseVariableFEBase * > & SubProblem::getActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Get the MOOSE variables to be reinited on each element.

Parameters
tidThe thread id

Definition at line 455 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), FEProblemBase::prepareMaterials(), and SystemBase::reinitElem().

456 {
458 }
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) ...
Definition: SubProblem.h:1077

◆ getActiveFEVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 391 of file SubProblem.C.

392 {
394 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
Definition: SubProblem.h:1083

◆ getActiveFEVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 397 of file SubProblem.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

398 {
400 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
Definition: SubProblem.h:1085

◆ getActiveScalarVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 432 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit().

433 {
435 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
Definition: SubProblem.h:1087

◆ getActiveScalarVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 438 of file SubProblem.C.

439 {
441 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
Definition: SubProblem.h:1089

◆ getActualFieldVariable()

MooseVariableFieldBase & FEProblemBase::getActualFieldVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariableField which may be in any system.

Implements SubProblem.

Definition at line 5938 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSampleTransfer::execute().

5939 {
5940  for (auto & sys : _solver_systems)
5941  if (sys->hasVariable(var_name))
5942  return sys->getActualFieldVariable<Real>(tid, var_name);
5943  if (_aux->hasVariable(var_name))
5944  return _aux->getActualFieldVariable<Real>(tid, var_name);
5945 
5946  mooseError("Unknown variable " + var_name);
5947 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getArrayVariable()

ArrayMooseVariable & FEProblemBase::getArrayVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested ArrayMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5962 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), and PointwiseRenormalizeVector::PointwiseRenormalizeVector().

5963 {
5964  for (auto & sys : _solver_systems)
5965  if (sys->hasVariable(var_name))
5966  return sys->getFieldVariable<RealEigenVector>(tid, var_name);
5967  if (_aux->hasVariable(var_name))
5968  return _aux->getFieldVariable<RealEigenVector>(tid, var_name);
5969 
5970  mooseError("Unknown variable " + var_name);
5971 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
Eigen::Matrix< Real, Eigen::Dynamic, 1 > RealEigenVector
Definition: MooseTypes.h:146

◆ getAuxiliarySystem()

AuxiliarySystem& FEProblemBase::getAuxiliarySystem ( )
inlineinherited

◆ getAuxVariableNames()

std::vector< VariableName > MFEMProblem::getAuxVariableNames ( )
virtual

Returns all the variable names from the auxiliary system base.

This is helpful in the syncSolutions() method when transferring variable data.

Definition at line 460 of file MFEMProblem.C.

461 {
463 }
virtual const SystemBase & systemBaseAuxiliary() const override
Return the auxiliary system object as a base class reference.
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ getAxisymmetricRadialCoord()

unsigned int SubProblem::getAxisymmetricRadialCoord ( ) const
inherited

Returns the desired radial direction for RZ coordinate transformation.

Returns
The coordinate direction for the radial direction

Definition at line 797 of file SubProblem.C.

798 {
799  return mesh().getAxisymmetricRadialCoord();
800 }
virtual MooseMesh & mesh()=0
unsigned int getAxisymmetricRadialCoord() const
Returns the desired radial direction for RZ coordinate transformation.
Definition: MooseMesh.C:4315

◆ getBase()

const std::string& MooseBase::getBase ( ) const
inlineinherited
Returns
The registered base for this object (set via InputParameters::registerBase())

Definition at line 147 of file MooseBase.h.

Referenced by Factory::copyConstruct(), and MooseBase::uniqueParameterName().

147 { return _pars.getBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & getBase() const

◆ getBndMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getBndMaterialPropertyStorage ( )
inlineinherited

Definition at line 1849 of file FEProblemBase.h.

1849 { return _bnd_material_props; }
MaterialPropertyStorage & _bnd_material_props

◆ getCheckedPointerParam()

template<typename T >
T MooseBase::getCheckedPointerParam ( const std::string &  name,
const std::string &  error_string = "" 
) const
inherited

Verifies that the requested parameter exists and is not NULL and returns it to the caller.

The template parameter must be a pointer or an error will be thrown.

Definition at line 432 of file MooseBase.h.

433 {
434  return _pars.getCheckedPointerParam<T>(name, error_string);
435 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
T getCheckedPointerParam(const std::string &name, const std::string &error_string="") const
Verifies that the requested parameter exists and is not NULL and returns it to the caller...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ getCoefficients()

Moose::MFEM::CoefficientManager& MFEMProblem::getCoefficients ( )
inline

Method to get the PropertyManager object for storing material properties and converting them to MFEM coefficients.

This is used by Material and Kernel classes (among others).

Definition at line 180 of file MFEMProblem.h.

Referenced by addFunction(), addGridFunction(), addPostprocessor(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MFEMGeneralUserObject::getScalarCoefficientByName(), and MFEMGeneralUserObject::getVectorCoefficientByName().

180 { return _problem_data.coefficients; }
MFEMProblemData _problem_data
Definition: MFEMProblem.h:214
Moose::MFEM::CoefficientManager coefficients

◆ getComm()

MPI_Comm MFEMProblem::getComm ( )
inline

Return the MPI communicator associated with this FE problem's mesh.

Definition at line 191 of file MFEMProblem.h.

Referenced by addMFEMNonlinearSolver(), MFEMCGSolver::constructSolver(), MFEMHypreFGMRES::constructSolver(), MFEMHyprePCG::constructSolver(), MFEMGMRESSolver::constructSolver(), MFEMHypreGMRES::constructSolver(), MFEMSuperLU::constructSolver(), MFEMCutTransitionSubMesh::labelMesh(), MFEMHyprePCG::updateSolver(), MFEMHypreFGMRES::updateSolver(), and MFEMHypreGMRES::updateSolver().

191 { return getProblemData().comm; }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186

◆ getConsumedPropertyMap()

const std::map< MooseObjectName, std::set< std::string > > & SubProblem::getConsumedPropertyMap ( ) const
inherited

Return the map that tracks the object with consumed material properties.

Definition at line 743 of file SubProblem.C.

Referenced by MaterialPropertyDebugOutput::output().

744 {
746 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1190

◆ getControlWarehouse()

ExecuteMooseObjectWarehouse<Control>& FEProblemBase::getControlWarehouse ( )
inlineinherited

Reference to the control logic warehouse.

Definition at line 2271 of file FEProblemBase.h.

Referenced by LibtorchArtificialNeuralNetParameters::initialSetup(), and LibtorchControlValuePostprocessor::initialSetup().

2271 { return _control_warehouse; }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.

◆ getConvergence()

Convergence & FEProblemBase::getConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Gets a Convergence object.

Definition at line 2673 of file FEProblemBase.C.

Referenced by TransientBase::convergedToSteadyState(), FEProblemSolve::convergenceSetup(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), TransientBase::init(), ParsedConvergence::initializeConvergenceSymbol(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

2674 {
2675  auto * const ret = dynamic_cast<Convergence *>(_convergences.getActiveObject(name, tid).get());
2676  if (!ret)
2677  mooseError("The Convergence object '", name, "' does not exist.");
2678 
2679  return *ret;
2680 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
Base class for convergence criteria.
Definition: Convergence.h:21
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getConvergenceObjects()

const std::vector< std::shared_ptr< Convergence > > & FEProblemBase::getConvergenceObjects ( const THREAD_ID  tid = 0) const
virtualinherited

Gets the Convergence objects.

Definition at line 2683 of file FEProblemBase.C.

2684 {
2685  return _convergences.getActiveObjects(tid);
2686 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse

◆ getCoordSystem()

Moose::CoordinateSystemType SubProblem::getCoordSystem ( SubdomainID  sid) const
inherited

Definition at line 1283 of file SubProblem.C.

Referenced by BlockRestrictable::getBlockCoordSystem(), MultiApp::getBoundingBox(), Assembly::reinitLowerDElem(), Assembly::reinitNeighborLowerDElem(), and Assembly::setCoordinateTransformation().

1284 {
1285  return mesh().getCoordSystem(sid);
1286 }
virtual MooseMesh & mesh()=0
Moose::CoordinateSystemType getCoordSystem(SubdomainID sid) const
Get the coordinate system type, e.g.
Definition: MooseMesh.C:4196

◆ getCurrentAlgebraicBndNodeRange()

const ConstBndNodeRange & FEProblemBase::getCurrentAlgebraicBndNodeRange ( )
inherited

Definition at line 9621 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::setInitialSolution().

9622 {
9624  return *_mesh.getBoundaryNodeRange();
9625 
9627 }
MooseMesh & _mesh
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1327

◆ getCurrentAlgebraicElementRange()

const ConstElemRange & FEProblemBase::getCurrentAlgebraicElementRange ( )
inherited

These are the element and nodes that contribute to the jacobian and residual for this local processor.

getCurrentAlgebraicElementRange() returns the element range that contributes to the system getCurrentAlgebraicNodeRange() returns the node range that contributes to the system getCurrentAlgebraicBndNodeRange returns the boundary node ranges that contributes to the system

Definition at line 9605 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::computeScaling().

9606 {
9609 
9611 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range
MooseMesh & _mesh

◆ getCurrentAlgebraicNodeRange()

const ConstNodeRange & FEProblemBase::getCurrentAlgebraicNodeRange ( )
inherited

Definition at line 9613 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

9614 {
9616  return *_mesh.getLocalNodeRange();
9617 
9619 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1313
MooseMesh & _mesh

◆ getCurrentExecuteOnFlag()

const ExecFlagType & FEProblemBase::getCurrentExecuteOnFlag ( ) const
inherited

Return/set the current execution flag.

Returns EXEC_NONE when not being executed.

See also
FEProblemBase::execute

Definition at line 4778 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), MultiAppGeneralFieldTransfer::closestToPosition(), MultiAppGeneralFieldNearestLocationTransfer::computeNumSources(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), NearestPositionsDivision::divisionIndex(), PositionsFunctorValueSampler::execute(), PIDTransientControl::execute(), Terminator::execute(), Control::getControllableParameterByName(), Material::getMaterialByName(), MultiAppGeneralFieldNearestLocationTransfer::getNumDivisions(), NumPositions::getValue(), PositionsFunctorValueSampler::initialize(), DistributedPositions::initialize(), TransformedPositions::initialize(), ParsedDownSelectionPositions::initialize(), MultiAppGeneralFieldTransfer::locatePointReceivers(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), NonlinearThread::printGeneralExecutionInformation(), MultiApp::restore(), SolutionInvalidityOutput::shouldOutput(), NodalReporter::shouldStore(), ElementReporter::shouldStore(), GeneralReporter::shouldStore(), and WebServerControl::startServer().

4779 {
4780  return _current_execute_on_flag;
4781 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ getCurrentICState()

unsigned short FEProblemBase::getCurrentICState ( )
inherited

Retrieves the current initial condition state.

Returns
current initial condition state

Definition at line 9664 of file FEProblemBase.C.

Referenced by ComputeInitialConditionThread::operator()().

9665 {
9666  return _current_ic_state;
9667 }
unsigned short _current_ic_state

◆ getDataFileName()

std::string DataFileInterface::getDataFileName ( const std::string &  param) const
inherited

Deprecated method.

The data file paths are now automatically set within the InputParameters object, so using getParam<DataFileName>("param_name") is now sufficient.

Definition at line 21 of file DataFileInterface.C.

22 {
23  _parent.mooseDeprecated("getDataFileName() is deprecated. The file path is now directly set "
24  "within the InputParameters.\nUse getParam<DataFileName>(\"",
25  param,
26  "\") instead.");
27  return _parent.getParam<DataFileName>(param);
28 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:388
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
const ParallelParamObject & _parent

◆ getDataFileNameByName()

std::string DataFileInterface::getDataFileNameByName ( const std::string &  relative_path) const
inherited

Deprecated method.

Use getDataFilePath() instead.

Definition at line 31 of file DataFileInterface.C.

32 {
33  _parent.mooseDeprecated("getDataFileNameByName() is deprecated. Use getDataFilePath(\"",
34  relative_path,
35  "\") instead.");
36  return getDataFilePath(relative_path);
37 }
std::string getDataFilePath(const std::string &relative_path) const
Returns the path of a data file for a given relative file path.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
const ParallelParamObject & _parent

◆ getDataFilePath()

std::string DataFileInterface::getDataFilePath ( const std::string &  relative_path) const
inherited

Returns the path of a data file for a given relative file path.

This can be used for hardcoded datafile names and will search the same locations as getDataFileName

Definition at line 40 of file DataFileInterface.C.

Referenced by DataFileInterface::getDataFileNameByName().

41 {
42  // This should only ever be used with relative paths. There is no point to
43  // use this search path with an absolute path.
44  if (std::filesystem::path(relative_path).is_absolute())
45  _parent.mooseWarning("While using getDataFilePath(\"",
46  relative_path,
47  "\"): This API should not be used for absolute paths.");
48 
49  // This will search the data paths for this relative path
50  std::optional<std::string> error;
51  Moose::DataFileUtils::Path found_path;
52  {
53  // Throw on error so that if getPath() fails, we can throw an error
54  // with the context of _parent.mooseError()
55  Moose::ScopedThrowOnError scoped_throw_on_error;
56 
57  try
58  {
59  found_path = Moose::DataFileUtils::getPath(relative_path);
60  }
61  catch (std::exception & e)
62  {
63  error = e.what();
64  }
65  }
66 
67  if (error)
68  _parent.mooseError(*error);
69 
70  mooseAssert(found_path.context == Moose::DataFileUtils::Context::DATA,
71  "Should only ever obtain data");
72  mooseAssert(found_path.data_name, "Should be set");
73 
74  const std::string msg =
75  "Using data file '" + found_path.path + "' from " + *found_path.data_name + " data";
76  _parent.mooseInfo(msg);
77 
78  return found_path.path;
79 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:321
Context context
Context for the file (where it came from)
Definition: DataFileUtils.h:48
Representation of a data file path.
Definition: DataFileUtils.h:36
Path getPath(std::string path, const std::optional< std::string > &base=std::optional< std::string >())
Get the data path for a given path, searching the registered data.
Definition: DataFileUtils.C:22
std::optional< std::string > data_name
The name of the data registry the file came from (with context == DATA)
Definition: DataFileUtils.h:50
Scoped helper for setting Moose::_throw_on_error during this scope.
Definition: Moose.h:297
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const ParallelParamObject & _parent

◆ getDiracElements()

void FEProblemBase::getDiracElements ( std::set< const Elem *> &  elems)
overridevirtualinherited

Fills "elems" with the elements that should be looped over for Dirac Kernels.

Implements SubProblem.

Definition at line 2493 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2494 {
2495  // First add in the undisplaced elements
2496  elems = _dirac_kernel_info.getElements();
2497 
2498  if (_displaced_problem)
2499  {
2500  std::set<const Elem *> displaced_elements;
2501  _displaced_problem->getDiracElements(displaced_elements);
2502 
2503  { // Use the ids from the displaced elements to get the undisplaced elements
2504  // and add them to the list
2505  for (const auto & elem : displaced_elements)
2506  elems.insert(_mesh.elemPtr(elem->id()));
2507  }
2508  }
2509 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
std::set< const Elem * > & getElements()
Returns a writeable reference to the _elements container.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1051

◆ getDiscreteMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getDiscreteMaterialWarehouse ( ) const
inlineinherited

Definition at line 2091 of file FEProblemBase.h.

2091 { return _discrete_materials; }
MaterialWarehouse _discrete_materials

◆ getDisplacedProblem() [1/2]

virtual std::shared_ptr<const DisplacedProblem> FEProblemBase::getDisplacedProblem ( ) const
inlinevirtualinherited

◆ getDisplacedProblem() [2/2]

virtual std::shared_ptr<DisplacedProblem> FEProblemBase::getDisplacedProblem ( )
inlinevirtualinherited

Definition at line 1790 of file FEProblemBase.h.

1790 { return _displaced_problem; }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ getDistribution()

Distribution & FEProblemBase::getDistribution ( const std::string &  name)
virtualinherited

Definition at line 2743 of file FEProblemBase.C.

Referenced by DistributionInterface::getDistribution(), and DistributionInterface::getDistributionByName().

2744 {
2745  std::vector<Distribution *> objs;
2746  theWarehouse()
2747  .query()
2748  .condition<AttribSystem>("Distribution")
2749  .condition<AttribName>(name)
2750  .queryInto(objs);
2751  if (objs.empty())
2752  mooseError("Unable to find Distribution with name '" + name + "'");
2753  return *(objs[0]);
2754 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getEvaluableElementRange()

const ConstElemRange & FEProblemBase::getEvaluableElementRange ( )
inherited

In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}.

That is, the number of evaluable elements does NOT necessarily equal to the number of local and algebraic ghosting elements. For example, if using a Lagrange basis for all variables, if a non-local, non-algebraically-ghosted element is surrounded by neighbors which are local or algebraically ghosted, then all the nodal (Lagrange) degrees of freedom associated with the non-local, non-algebraically-ghosted element will be evaluable, and hence that element will be considered evaluable.

getNonlinearEvaluableElementRange() returns the evaluable element range based on the nonlinear system dofmap; getAuxliaryEvaluableElementRange() returns the evaluable element range based on the auxiliary system dofmap; getEvaluableElementRange() returns the element range that is evaluable based on both the nonlinear dofmap and the auxliary dofmap.

Definition at line 851 of file FEProblemBase.C.

Referenced by NodalPatchRecoveryBase::gatherRequestList().

852 {
854  {
855  std::vector<const DofMap *> dof_maps(es().n_systems());
856  for (const auto i : make_range(es().n_systems()))
857  {
858  const auto & sys = es().get_system(i);
859  dof_maps[i] = &sys.get_dof_map();
860  }
862  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
863  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
864  }
866 }
const T_sys & get_system(std::string_view name) const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
IntRange< T > make_range(T beg, T end)
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range

◆ getExecutor()

virtual Executor& FEProblemBase::getExecutor ( const std::string &  name)
inlinevirtualinherited

Definition at line 2223 of file FEProblemBase.h.

2223 { return _app.getExecutor(name); }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
Executor * getExecutor() const
Definition: MooseApp.h:335

◆ getFailNextNonlinearConvergenceCheck()

bool FEProblemBase::getFailNextNonlinearConvergenceCheck ( ) const
inlineinherited

Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2611 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), NonlinearSystem::converged(), Moose::PetscSupport::petscNonlinearConverged(), and ComputeResidualFunctor::residual().

bool getFailNextSystemConvergenceCheck() const
Whether it will fail the next system convergence check(s), triggering failed step behavior...

◆ getFailNextSystemConvergenceCheck()

bool FEProblemBase::getFailNextSystemConvergenceCheck ( ) const
inlineinherited

Whether it will fail the next system convergence check(s), triggering failed step behavior.

Definition at line 2613 of file FEProblemBase.h.

Referenced by FEProblemBase::getFailNextNonlinearConvergenceCheck(), and Moose::PetscSupport::petscLinearConverged().

bool _fail_next_system_convergence_check

◆ getFunction()

Function & FEProblemBase::getFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2622 of file FEProblemBase.C.

Referenced by addFunction(), FunctionInterface::getFunction(), FunctionInterface::getFunctionByName(), IterationAdaptiveDT::init(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), and ParsedConvergence::initializeFunctionSymbol().

2623 {
2624  // This thread lock is necessary since this method will create functions
2625  // for all threads if one is missing.
2626  Threads::spin_mutex::scoped_lock lock(get_function_mutex);
2627 
2628  if (!hasFunction(name, tid))
2629  {
2630  // If we didn't find a function, it might be a default function, attempt to construct one now
2631  std::istringstream ss(name);
2632  Real real_value;
2633 
2634  // First see if it's just a constant. If it is, build a ConstantFunction
2635  if (ss >> real_value && ss.eof())
2636  {
2637  InputParameters params = _factory.getValidParams("ConstantFunction");
2638  params.set<Real>("value") = real_value;
2639  addFunction("ConstantFunction", ss.str(), params);
2640  }
2641  else
2642  {
2644  std::string vars = "x,y,z,t,NaN,pi,e";
2645  if (fp.Parse(name, vars) == -1) // -1 for success
2646  {
2647  // It parsed ok, so build a MooseParsedFunction
2648  InputParameters params = _factory.getValidParams("ParsedFunction");
2649  params.set<std::string>("expression") = name;
2650  addFunction("ParsedFunction", name, params);
2651  }
2652  }
2653 
2654  // Try once more
2655  if (!hasFunction(name, tid))
2656  mooseError("Unable to find function " + name);
2657  }
2658 
2659  auto * const ret = dynamic_cast<Function *>(_functions.getActiveObject(name, tid).get());
2660  if (!ret)
2661  mooseError("No function named ", name, " of appropriate type");
2662 
2663  return *ret;
2664 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1049
Threads::spin_mutex get_function_mutex
char ** vars
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MooseObjectWarehouse< Function > _functions
functions
virtual bool hasFunction(const std::string &name, const THREAD_ID tid=0)

◆ getFunctor()

template<typename T >
const Moose::Functor< T > & SubProblem::getFunctor ( const std::string &  name,
const THREAD_ID  tid,
const std::string &  requestor_name,
bool  requestor_is_ad 
)
inherited
Template Parameters
TThe type that the functor will return when evaluated, e.g. ADReal or Real
Parameters
nameThe name of the functor to retrieve
tidThe thread ID that we are retrieving the functor property for
requestor_nameThe name of the object that is requesting this functor property
requestor_is_adWhether the requesting object is an AD object
Returns
a constant reference to the functor

Definition at line 1219 of file SubProblem.h.

Referenced by FunctorInterface::getFunctorByName().

1223 {
1224  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1225 
1226  // Log the requestor
1227  _functor_to_requestors["wraps_" + name].insert(requestor_name);
1228 
1229  constexpr bool requested_functor_is_ad =
1230  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1231 
1232  auto & functor_to_request_info = _functor_to_request_info[tid];
1233 
1234  // Get the requested functor if we already have it
1235  auto & functors = _functors[tid];
1236  if (auto find_ret = functors.find("wraps_" + name); find_ret != functors.end())
1237  {
1238  if (functors.count("wraps_" + name) > 1)
1239  mooseError("Attempted to get a functor with the name '",
1240  name,
1241  "' but multiple (" + std::to_string(functors.count("wraps_" + name)) +
1242  ") functors match. Make sure that you do not have functor material "
1243  "properties, functions, postprocessors or variables with the same names.");
1244 
1245  auto & [true_functor_is, non_ad_functor, ad_functor] = find_ret->second;
1246  auto & functor_wrapper = requested_functor_is_ad ? *ad_functor : *non_ad_functor;
1247 
1248  auto * const functor = dynamic_cast<Moose::Functor<T> *>(&functor_wrapper);
1249  if (!functor)
1250  mooseError("A call to SubProblem::getFunctor requested a functor named '",
1251  name,
1252  "' that returns the type: '",
1253  libMesh::demangle(typeid(T).name()),
1254  "'. However, that functor already exists and returns a different type: '",
1255  functor_wrapper.returnType(),
1256  "'");
1257 
1258  if (functor->template wrapsType<Moose::NullFunctor<T>>())
1259  // Store for future checking when the actual functor gets added
1260  functor_to_request_info.emplace(name,
1261  std::make_pair(requested_functor_is_ad, requestor_is_ad));
1262  else
1263  {
1264  // We already have the actual functor
1265  if (true_functor_is == SubProblem::TrueFunctorIs::UNSET)
1266  mooseError("We already have the functor; it should not be unset");
1267 
1268  // Check for whether this is a valid request
1269  // We allow auxiliary variables and linear variables to be retrieved as non AD
1270  if (!requested_functor_is_ad && requestor_is_ad &&
1271  true_functor_is == SubProblem::TrueFunctorIs::AD &&
1273  mooseError("The AD object '",
1274  requestor_name,
1275  "' is requesting the functor '",
1276  name,
1277  "' as a non-AD functor even though it is truly an AD functor, which is not "
1278  "allowed, since this may unintentionally drop derivatives.");
1279  }
1280 
1281  return *functor;
1282  }
1283 
1284  // We don't have the functor yet but we could have it in the future. We'll create null functors
1285  // for now
1286  functor_to_request_info.emplace(name, std::make_pair(requested_functor_is_ad, requestor_is_ad));
1287  if constexpr (requested_functor_is_ad)
1288  {
1289  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1290  typedef T ADType;
1291 
1292  auto emplace_ret =
1293  functors.emplace("wraps_" + name,
1294  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1295  std::make_unique<Moose::Functor<NonADType>>(
1296  std::make_unique<Moose::NullFunctor<NonADType>>()),
1297  std::make_unique<Moose::Functor<ADType>>(
1298  std::make_unique<Moose::NullFunctor<ADType>>())));
1299 
1300  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1301  ? std::get<2>(emplace_ret->second)
1302  : std::get<1>(emplace_ret->second)));
1303  }
1304  else
1305  {
1306  typedef T NonADType;
1307  typedef typename Moose::ADType<T>::type ADType;
1308 
1309  auto emplace_ret =
1310  functors.emplace("wraps_" + name,
1311  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1312  std::make_unique<Moose::Functor<NonADType>>(
1313  std::make_unique<Moose::NullFunctor<NonADType>>()),
1314  std::make_unique<Moose::Functor<ADType>>(
1315  std::make_unique<Moose::NullFunctor<ADType>>())));
1316 
1317  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1318  ? std::get<2>(emplace_ret->second)
1319  : std::get<1>(emplace_ret->second)));
1320  }
1321 }
std::map< std::string, std::set< std::string > > _functor_to_requestors
The requestors of functors where the key is the prop name and the value is a set of names of requesto...
Definition: SubProblem.h:1159
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1163
std::string demangle(const char *name)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1146
virtual bool hasLinearVariable(const std::string &var_name) const
Whether or not this problem has this linear variable.
Definition: SubProblem.C:803
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...
virtual bool hasAuxiliaryVariable(const std::string &var_name) const
Whether or not this problem has this auxiliary variable.
Definition: SubProblem.C:812

◆ getFVInitialConditionWarehouse()

const FVInitialConditionWarehouse& FEProblemBase::getFVInitialConditionWarehouse ( ) const
inlineinherited

Return FVInitialCondition storage.

Definition at line 1891 of file FEProblemBase.h.

Referenced by ComputeFVInitialConditionThread::operator()(), and ComputeFVInitialConditionThread::printGeneralExecutionInformation().

1891 { return _fv_ics; }
FVInitialConditionWarehouse _fv_ics

◆ getFVMatsAndDependencies()

void FEProblemBase::getFVMatsAndDependencies ( SubdomainID  block_id,
std::vector< std::shared_ptr< MaterialBase >> &  face_materials,
std::vector< std::shared_ptr< MaterialBase >> &  neighbor_materials,
std::set< MooseVariableFieldBase *> &  variables,
const THREAD_ID  tid 
)
inherited

Get the materials and variables potentially needed for FV.

Parameters
block_idSubdomainID The subdomain id that we want to retrieve materials for
face_materialsThe face materials container that we will fill
neighbor_materialsThe neighbor materials container that we will fill
variablesThe variables container that we will fill that our materials depend on
tidThe thread id

Definition at line 9300 of file FEProblemBase.C.

9306 {
9307  if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9308  {
9309  auto & this_face_mats =
9311  for (std::shared_ptr<MaterialBase> face_mat : this_face_mats)
9312  if (face_mat->ghostable())
9313  {
9314  face_materials.push_back(face_mat);
9315  auto & var_deps = face_mat->getMooseVariableDependencies();
9316  for (auto * var : var_deps)
9317  {
9318  if (!var->isFV())
9319  mooseError(
9320  "Ghostable materials should only have finite volume variables coupled into them.");
9321  else if (face_mat->hasStatefulProperties())
9322  mooseError("Finite volume materials do not currently support stateful properties.");
9323  variables.insert(var);
9324  }
9325  }
9326  }
9327 
9328  if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9329  {
9330  auto & this_neighbor_mats =
9332  for (std::shared_ptr<MaterialBase> neighbor_mat : this_neighbor_mats)
9333  if (neighbor_mat->ghostable())
9334  {
9335  neighbor_materials.push_back(neighbor_mat);
9336 #ifndef NDEBUG
9337  auto & var_deps = neighbor_mat->getMooseVariableDependencies();
9338  for (auto * var : var_deps)
9339  {
9340  if (!var->isFV())
9341  mooseError(
9342  "Ghostable materials should only have finite volume variables coupled into them.");
9343  else if (neighbor_mat->hasStatefulProperties())
9344  mooseError("Finite volume materials do not currently support stateful properties.");
9345  auto pr = variables.insert(var);
9346  mooseAssert(!pr.second,
9347  "We should not have inserted any new variables dependencies from our "
9348  "neighbor materials that didn't exist for our face materials");
9349  }
9350 #endif
9351  }
9352  }
9353 }
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MaterialWarehouse _materials

◆ getGridFunction()

std::shared_ptr< mfem::ParGridFunction > MFEMProblem::getGridFunction ( const std::string &  name)
Returns
a shared pointer to an MFEM parallel grid function

Definition at line 503 of file MFEMProblem.C.

Referenced by MFEMScalarIC::execute(), MFEMVectorIC::execute(), and MFEMScalarBoundaryIC::execute().

504 {
505  return getUserObject<MFEMVariable>(name).getGridFunction();
506 }
std::shared_ptr< mfem::ParGridFunction > getGridFunction(const std::string &name)
Definition: MFEMProblem.C:503
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ getHitNode()

const hit::Node* MooseBase::getHitNode ( ) const
inlineinherited
Returns
The block-level hit node for this object, if any

Definition at line 136 of file MooseBase.h.

Referenced by FEProblemBase::addAnyRedistributers(), MooseBase::callMooseError(), MooseBase::getHitNode(), and MooseBase::messagePrefix().

136 { return getHitNode(_pars); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const hit::Node * getHitNode() const
Definition: MooseBase.h:136

◆ getIndicatorWarehouse()

const MooseObjectWarehouse<Indicator>& FEProblemBase::getIndicatorWarehouse ( )
inlineinherited

Return indicator/marker storage.

Definition at line 1875 of file FEProblemBase.h.

1875 { return _indicators; }
MooseObjectWarehouse< Indicator > _indicators

◆ getInitialConditionWarehouse()

const InitialConditionWarehouse& FEProblemBase::getInitialConditionWarehouse ( ) const
inlineinherited

Return InitialCondition storage.

Definition at line 1886 of file FEProblemBase.h.

Referenced by ComputeBoundaryInitialConditionThread::onNode(), ComputeInitialConditionThread::operator()(), and ComputeInitialConditionThread::printGeneralExecutionInformation().

1886 { return _ics; }
InitialConditionWarehouse _ics

◆ getInterfaceMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getInterfaceMaterialsWarehouse ( ) const
inlineinherited

Definition at line 2092 of file FEProblemBase.h.

2092 { return _interface_materials; }
MaterialWarehouse _interface_materials

◆ getInternalSideIndicatorWarehouse()

const MooseObjectWarehouse<InternalSideIndicatorBase>& FEProblemBase::getInternalSideIndicatorWarehouse ( )
inlineinherited

Definition at line 1876 of file FEProblemBase.h.

1877  {
1879  }
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators

◆ getKokkosBndMaterialPropertyStorage()

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::getKokkosBndMaterialPropertyStorage ( )
inlineinherited

Definition at line 1860 of file FEProblemBase.h.

1861  {
1863  }
Moose::Kokkos::MaterialPropertyStorage & _kokkos_bnd_material_props

◆ getKokkosMaterialData()

MaterialData& FEProblemBase::getKokkosMaterialData ( Moose::MaterialDataType  type,
const MooseObject object = nullptr 
) const
inherited
Returns
The Kokkos MaterialData for the type type for thread tid

Referenced by BlockRestrictable::initializeBlockRestrictable().

◆ getKokkosMaterialPropertyStorage()

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::getKokkosMaterialPropertyStorage ( )
inlineinherited

Definition at line 1856 of file FEProblemBase.h.

1857  {
1858  return _kokkos_material_props;
1859  }
Moose::Kokkos::MaterialPropertyStorage & _kokkos_material_props

◆ getKokkosMaterialPropertyStorageConsumers()

const std::set<const MooseObject *>& FEProblemBase::getKokkosMaterialPropertyStorageConsumers ( Moose::MaterialDataType  type) const
inherited
Returns
The consumers of the Kokkos MaterialPropertyStorage for the type type

◆ getKokkosMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getKokkosMaterialsWarehouse ( ) const
inlineinherited

Definition at line 2098 of file FEProblemBase.h.

2098 { return _kokkos_materials; }
MaterialWarehouse _kokkos_materials

◆ getKokkosNeighborMaterialPropertyStorage()

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::getKokkosNeighborMaterialPropertyStorage ( )
inlineinherited

Definition at line 1864 of file FEProblemBase.h.

1865  {
1867  }
Moose::Kokkos::MaterialPropertyStorage & _kokkos_neighbor_material_props

◆ getKokkosSystem() [1/2]

Moose::Kokkos::System& FEProblemBase::getKokkosSystem ( const unsigned int  sys_num)
inherited

Get the Kokkos system of a specified number that is associated with MOOSE nonlinear and auxiliary systems.

Parameters
sys_numThe system number
Returns
The Kokkos system{@

◆ getKokkosSystem() [2/2]

const Moose::Kokkos::System& FEProblemBase::getKokkosSystem ( const unsigned int  sys_num) const
inherited

◆ getKokkosSystems() [1/2]

Moose::Kokkos::Array<Moose::Kokkos::System>& FEProblemBase::getKokkosSystems ( )
inlineinherited

Get all Kokkos systems that are associated with MOOSE nonlinear and auxiliary systems.

Returns
The array of Kokkos systems{@

Definition at line 792 of file FEProblemBase.h.

792 { return _kokkos_systems; }
Moose::Kokkos::Array< Moose::Kokkos::System > _kokkos_systems

◆ getKokkosSystems() [2/2]

const Moose::Kokkos::Array<Moose::Kokkos::System>& FEProblemBase::getKokkosSystems ( ) const
inlineinherited

Definition at line 793 of file FEProblemBase.h.

794  {
795  return _kokkos_systems;
796  }
Moose::Kokkos::Array< Moose::Kokkos::System > _kokkos_systems

◆ getLinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getLinearConvergenceNames ( ) const
inherited

Gets the linear convergence object name(s).

Definition at line 9409 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscLinearConverged().

9410 {
9412  return *_linear_convergence_names;
9413  mooseError("The linear convergence name(s) have not been set.");
9414 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ getLinearSystem() [1/2]

LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3477 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Moose::compute_linear_system(), ComputeLinearFVGreenGaussGradientFaceThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Moose::PetscSupport::petscSetDefaults(), and FEProblemSolve::solve().

3478 {
3479  mooseAssert(sys_num < _linear_systems.size(),
3480  "System number greater than the number of linear systems");
3481  return *_linear_systems[sys_num];
3482 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystem() [2/2]

const LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3485 of file FEProblemBase.h.

3486 {
3487  mooseAssert(sys_num < _linear_systems.size(),
3488  "System number greater than the number of linear systems");
3489  return *_linear_systems[sys_num];
3490 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystemNames()

const std::vector<LinearSystemName>& FEProblemBase::getLinearSystemNames ( ) const
inlineinherited
Returns
the linear system names in the problem

Definition at line 2692 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), and MultiSystemSolveObject::MultiSystemSolveObject().

2692 { return _linear_sys_names; }
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.

◆ getLineSearch()

LineSearch* FEProblemBase::getLineSearch ( )
inlineoverridevirtualinherited

getter for the MOOSE line search

Implements SubProblem.

Definition at line 752 of file FEProblemBase.h.

Referenced by DisplacedProblem::getLineSearch().

752 { return _line_search.get(); }
std::shared_ptr< LineSearch > _line_search

◆ getMarkerWarehouse()

const MooseObjectWarehouse<Marker>& FEProblemBase::getMarkerWarehouse ( )
inlineinherited

Definition at line 1880 of file FEProblemBase.h.

1880 { return _markers; }
MooseObjectWarehouse< Marker > _markers

◆ getMaterial()

std::shared_ptr< MaterialBase > FEProblemBase::getMaterial ( std::string  name,
Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
bool  no_warn = false 
)
inherited

Return a pointer to a MaterialBase object.

If no_warn is true, suppress warning about retrieving a material reference potentially during the material's calculation.

This will return enabled or disabled objects, the main purpose is for iterative materials.

Definition at line 3878 of file FEProblemBase.C.

Referenced by MaterialPropertyInterface::getMaterialByName().

3882 {
3883  switch (type)
3884  {
3886  name += "_neighbor";
3887  break;
3889  name += "_face";
3890  break;
3891  default:
3892  break;
3893  }
3894 
3895  std::shared_ptr<MaterialBase> material = _all_materials[type].getActiveObject(name, tid);
3896  if (!no_warn && material->getParam<bool>("compute") && type == Moose::BLOCK_MATERIAL_DATA)
3897  mooseWarning("You are retrieving a Material object (",
3898  material->name(),
3899  "), but its compute flag is set to true. This indicates that MOOSE is "
3900  "computing this property which may not be desired and produce un-expected "
3901  "results.");
3902 
3903  return material;
3904 }
void mooseWarning(Args &&... args) const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
MaterialWarehouse _all_materials

◆ getMaterialData()

MaterialData & FEProblemBase::getMaterialData ( Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
const MooseObject object = nullptr 
) const
inherited
Returns
The MaterialData for the type type for thread tid

Definition at line 3907 of file FEProblemBase.C.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and FEProblemBase::resizeMaterialData().

3910 {
3911  switch (type)
3912  {
3914  if (object)
3915  _material_props.addConsumer(type, object);
3916  return _material_props.getMaterialData(tid);
3918  if (object)
3924  if (object)
3927  }
3928 
3929  mooseError("FEProblemBase::getMaterialData(): Invalid MaterialDataType ", type);
3930 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void addConsumer(Moose::MaterialDataType type, const MooseObject *object)
Add object as the consumer of storage of type type.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyBlockNames()

std::vector< SubdomainName > SubProblem::getMaterialPropertyBlockNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 490 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBlockNames().

491 {
492  std::set<SubdomainID> blocks = getMaterialPropertyBlocks(prop_name);
493  std::vector<SubdomainName> block_names;
494  block_names.reserve(blocks.size());
495  for (const auto & block_id : blocks)
496  {
497  SubdomainName name;
498  name = mesh().getMesh().subdomain_name(block_id);
499  if (name.empty())
500  {
501  std::ostringstream oss;
502  oss << block_id;
503  name = oss.str();
504  }
505  block_names.push_back(name);
506  }
507 
508  return block_names;
509 }
virtual MooseMesh & mesh()=0
char ** blocks
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
std::string & subdomain_name(subdomain_id_type id)
virtual std::set< SubdomainID > getMaterialPropertyBlocks(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:474

◆ getMaterialPropertyBlocks()

std::set< SubdomainID > SubProblem::getMaterialPropertyBlocks ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 474 of file SubProblem.C.

Referenced by SubProblem::getMaterialPropertyBlockNames(), and MaterialPropertyInterface::getMaterialPropertyBlocks().

475 {
476  std::set<SubdomainID> blocks;
477 
478  for (const auto & it : _map_block_material_props)
479  {
480  const std::set<std::string> & prop_names = it.second;
481  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
482  if (name_it != prop_names.end())
483  blocks.insert(it.first);
484  }
485 
486  return blocks;
487 }
char ** blocks
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1054

◆ getMaterialPropertyBoundaryIDs()

std::set< BoundaryID > SubProblem::getMaterialPropertyBoundaryIDs ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 526 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryIDs(), and SubProblem::getMaterialPropertyBoundaryNames().

527 {
528  std::set<BoundaryID> boundaries;
529 
530  for (const auto & it : _map_boundary_material_props)
531  {
532  const std::set<std::string> & prop_names = it.second;
533  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
534  if (name_it != prop_names.end())
535  boundaries.insert(it.first);
536  }
537 
538  return boundaries;
539 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1057

◆ getMaterialPropertyBoundaryNames()

std::vector< BoundaryName > SubProblem::getMaterialPropertyBoundaryNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 542 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryNames().

543 {
544  std::set<BoundaryID> boundaries = getMaterialPropertyBoundaryIDs(prop_name);
545  std::vector<BoundaryName> boundary_names;
546  boundary_names.reserve(boundaries.size());
547  const BoundaryInfo & boundary_info = mesh().getMesh().get_boundary_info();
548 
549  for (const auto & bnd_id : boundaries)
550  {
551  BoundaryName name;
552  if (bnd_id == Moose::ANY_BOUNDARY_ID)
553  name = "ANY_BOUNDARY_ID";
554  else
555  {
556  name = boundary_info.get_sideset_name(bnd_id);
557  if (name.empty())
558  {
559  std::ostringstream oss;
560  oss << bnd_id;
561  name = oss.str();
562  }
563  }
564  boundary_names.push_back(name);
565  }
566 
567  return boundary_names;
568 }
virtual MooseMesh & mesh()=0
virtual std::set< BoundaryID > getMaterialPropertyBoundaryIDs(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:526
const BoundaryInfo & get_boundary_info() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
const std::string & get_sideset_name(boundary_id_type id) const
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ getMaterialPropertyRegistry()

const MaterialPropertyRegistry& FEProblemBase::getMaterialPropertyRegistry ( ) const
inlineinherited
Returns
A reference to the material property registry

Definition at line 1838 of file FEProblemBase.h.

Referenced by MaterialBase::checkStatefulSanity().

1839  {
1840  return _material_prop_registry;
1841  }
MaterialPropertyRegistry _material_prop_registry

◆ getMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getMaterialPropertyStorage ( )
inlineinherited

Return a reference to the material property storage.

Returns
A const reference to the material property storage

Definition at line 1848 of file FEProblemBase.h.

1848 { return _material_props; }
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyStorageConsumers()

const std::set< const MooseObject * > & FEProblemBase::getMaterialPropertyStorageConsumers ( Moose::MaterialDataType  type) const
inherited
Returns
The consumers of the MaterialPropertyStorage for the type type

Definition at line 3933 of file FEProblemBase.C.

3934 {
3935  switch (type)
3936  {
3945  }
3946 
3947  mooseError("FEProblemBase::getMaterialPropertyStorageConsumers(): Invalid MaterialDataType ",
3948  type);
3949 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const std::set< const MooseObject * > & getConsumers(Moose::MaterialDataType type) const
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props

◆ getMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getMaterialWarehouse ( ) const
inlineinherited

◆ getMatrixTagID()

TagID SubProblem::getMatrixTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 343 of file SubProblem.C.

Referenced by Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), DisplacedProblem::getMatrixTagID(), TaggingInterface::TaggingInterface(), and TaggingInterface::useMatrixTag().

344 {
345  auto tag_name_upper = MooseUtils::toUpper(tag_name);
346 
347  if (!matrixTagExists(tag_name))
348  mooseError("Matrix tag: ",
349  tag_name,
350  " does not exist. ",
351  "If this is a TimeKernel then this may have happened because you didn't "
352  "specify a Transient Executioner.");
353 
354  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
355 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1043
std::string toUpper(std::string name)
Convert supplied string to upper case.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ getMatrixTags()

virtual std::map<TagName, TagID>& SubProblem::getMatrixTags ( )
inlinevirtualinherited

Return all matrix tags in the system, where a tag is represented by a map from name to ID.

Definition at line 253 of file SubProblem.h.

Referenced by NonlinearSystemBase::computeJacobian(), FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), NonlinearSystemBase::computeJacobianBlocks(), EigenProblem::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

253 { return _matrix_tag_name_to_tag_id; }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1043

◆ getMaxQps()

unsigned int FEProblemBase::getMaxQps ( ) const
inherited
Returns
The maximum number of quadrature points in use on any element in this problem.

Definition at line 1639 of file FEProblemBase.C.

Referenced by MaterialBase::getMaxQps(), MaterialPropertyInterface::getMaxQps(), FEProblemBase::initialSetup(), FEProblemBase::reinitDirac(), Material::subdomainSetup(), and FEProblemBase::updateMaxQps().

1640 {
1642  mooseError("Max QPS uninitialized");
1643  return _max_qps;
1644 }
auto max(const L &left, const R &right)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
unsigned int _max_qps
Maximum number of quadrature points used in the problem.

◆ getMaxScalarOrder()

Order FEProblemBase::getMaxScalarOrder ( ) const
inherited
Returns
The maximum order for all scalar variables in this problem's systems.

Definition at line 1647 of file FEProblemBase.C.

Referenced by ScalarCoupleable::coupledScalarOrder(), ScalarCoupleable::getADDefaultValue(), and ScalarCoupleable::getDefaultValue().

1648 {
1649  return _max_scalar_order;
1650 }
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ getMeshDisplacementGridFunction()

std::optional< std::reference_wrapper< mfem::ParGridFunction const > > MFEMProblem::getMeshDisplacementGridFunction ( )

Returns optional reference to the displacement GridFunction to apply to nodes.

Definition at line 445 of file MFEMProblem.C.

Referenced by displaceMesh().

446 {
447  // If C++23 transform were available this would be easier
448  auto const displacement_variable = mesh().getMeshDisplacementVariable();
449  if (displacement_variable)
450  {
451  return *_problem_data.gridfunctions.Get(displacement_variable.value());
452  }
453  else
454  {
455  return std::nullopt;
456  }
457 }
std::optional< std::reference_wrapper< std::string const > > getMeshDisplacementVariable() const
Returns an optional reference to displacement variable name.
Definition: MFEMMesh.h:62
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:466
MFEMProblemData _problem_data
Definition: MFEMProblem.h:214
T * Get(const std::string &field_name) const
Returns a non-owning pointer to the field. This is guaranteed to return a non-null pointer...
Moose::MFEM::GridFunctions gridfunctions

◆ getMeshDivision()

MeshDivision & FEProblemBase::getMeshDivision ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get a MeshDivision.

Definition at line 2704 of file FEProblemBase.C.

Referenced by NestedDivision::NestedDivision().

2705 {
2706  auto * const ret = dynamic_cast<MeshDivision *>(_mesh_divisions.getActiveObject(name, tid).get());
2707  if (!ret)
2708  mooseError("No MeshDivision object named ", name, " of appropriate type");
2709  return *ret;
2710 }
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getMooseApp()

MooseApp& MooseBase::getMooseApp ( ) const
inlineinherited

Get the MooseApp this class is associated with.

Definition at line 87 of file MooseBase.h.

Referenced by ChainControlSetupAction::act(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::advanceState(), ParsedChainControl::buildFunction(), ReporterTransferInterface::checkHasReporterValue(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), Coupleable::checkWritableVar(), ComponentPhysicsInterface::ComponentPhysicsInterface(), Coupleable::Coupleable(), MortarInterfaceWarehouse::createMortarInterface(), EigenProblem::doFreeNonlinearPowerIterations(), Terminator::execute(), FEProblemSolve::FEProblemSolve(), SolutionInvalidInterface::flagInvalidSolutionInternal(), ChainControl::getChainControlDataSystem(), DefaultConvergenceBase::getSharedExecutionerParam(), ChainControlDataPostprocessor::initialSetup(), MooseVariableDataFV< OutputType >::MooseVariableDataFV(), ProgressOutput::output(), PetscOutputInterface::petscLinearOutput(), PetscOutputInterface::petscNonlinearOutput(), PetscOutputInterface::PetscOutputInterface(), PostprocessorInterface::postprocessorsAdded(), MultiApp::preTransfer(), Reporter::Reporter(), ReporterInterface::reportersAdded(), MultiApp::restore(), and VectorPostprocessorInterface::vectorPostprocessorsAdded().

87 { return _app; }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357

◆ getMortarInterface() [1/2]

const AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
) const
inherited

Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains.

Definition at line 8073 of file FEProblemBase.C.

8077 {
8078  return _mortar_data->getMortarInterface(
8079  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
8080 }
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data

◆ getMortarInterface() [2/2]

AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
)
inherited

Definition at line 8083 of file FEProblemBase.C.

8087 {
8088  return _mortar_data->getMortarInterface(
8089  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
8090 }
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data

◆ getMortarInterfaces()

const std::unordered_map< std::pair< BoundaryID, BoundaryID >, std::unique_ptr< AutomaticMortarGeneration > > & FEProblemBase::getMortarInterfaces ( bool  on_displaced) const
inherited

Definition at line 9698 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectsInternal(), and NonlinearSystemBase::initialSetup().

9699 {
9700  return _mortar_data->getMortarInterfaces(on_displaced);
9701 }
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data

◆ getMultiApp()

std::shared_ptr< MultiApp > FEProblemBase::getMultiApp ( const std::string &  multi_app_name) const
inherited

Get a MultiApp object by name.

Definition at line 5532 of file FEProblemBase.C.

Referenced by FEProblemBase::addTransfer(), MultiAppPositions::initialize(), and MultiAppTransfer::MultiAppTransfer().

5533 {
5534  return _multi_apps.getObject(multi_app_name);
5535 }
std::shared_ptr< T > getObject(const std::string &name, THREAD_ID tid=0) const
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getMultiAppFixedPointConvergenceName()

const ConvergenceName & FEProblemBase::getMultiAppFixedPointConvergenceName ( ) const
inherited

Gets the MultiApp fixed point convergence object name.

Definition at line 9417 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

9418 {
9421  else
9422  mooseError("The fixed point convergence name has not been set.");
9423 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getMultiAppTransferWarehouse()

const ExecuteMooseObjectWarehouse< Transfer > & FEProblemBase::getMultiAppTransferWarehouse ( Transfer::DIRECTION  direction) const
inherited

Return the complete warehouse for MultiAppTransfer object for the given direction.

Definition at line 5627 of file FEProblemBase.C.

5628 {
5629  if (direction == MultiAppTransfer::TO_MULTIAPP)
5630  return _to_multi_app_transfers;
5631  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5633  else
5635 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getMultiAppWarehouse()

ExecuteMooseObjectWarehouse<MultiApp>& FEProblemBase::getMultiAppWarehouse ( )
inlineinherited

Definition at line 2295 of file FEProblemBase.h.

Referenced by MooseApp::errorCheck().

2295 { return _multi_apps; }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getNeighborMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getNeighborMaterialPropertyStorage ( )
inlineinherited

Definition at line 1850 of file FEProblemBase.h.

1851  {
1852  return _neighbor_material_props;
1853  }
MaterialPropertyStorage & _neighbor_material_props

◆ getNonlinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getNonlinearConvergenceNames ( ) const
inherited

Gets the nonlinear system convergence object name(s).

Definition at line 9385 of file FEProblemBase.C.

Referenced by ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), FEProblemSolve::convergenceSetup(), and Moose::PetscSupport::petscNonlinearConverged().

9386 {
9389  mooseError("The nonlinear system convergence name(s) have not been set.");
9390 }
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getNonlinearEvaluableElementRange()

const ConstElemRange & FEProblemBase::getNonlinearEvaluableElementRange ( )
inherited

Definition at line 869 of file FEProblemBase.C.

Referenced by ElemSideNeighborLayersTester::execute().

870 {
872  {
873  std::vector<const DofMap *> dof_maps(_nl.size());
874  for (const auto i : index_range(dof_maps))
875  dof_maps[i] = &_nl[i]->dofMap();
877  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
878  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
879  }
880 
882 }
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
MooseMesh & _mesh
auto index_range(const T &sizable)

◆ getNonlinearSystem()

NonlinearSystem & FEProblemBase::getNonlinearSystem ( const unsigned int  sys_num)
virtualinherited

Reimplemented in FEProblem.

Definition at line 2719 of file FEProblemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), and PNGOutput::makeMeshFunc().

2720 {
2721  mooseDeprecated("FEProblemBase::getNonlinearSystem() is deprecated, please use "
2722  "FEProblemBase::getNonlinearSystemBase() \n");
2723 
2724  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
2725  auto nl_sys = std::dynamic_pointer_cast<NonlinearSystem>(_nl[sys_num]);
2726 
2727  if (!nl_sys)
2728  mooseError("This is not a NonlinearSystem");
2729 
2730  return *nl_sys;
2731 }
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
void mooseDeprecated(Args &&... args) const
Nonlinear system to be solved.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getNonlinearSystemBase() [1/2]

NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num)
inlineinherited

Definition at line 3433 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Adaptivity::adaptMesh(), DisplacedProblem::addTimeIntegrator(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), Eigenvalue::checkIntegrity(), PseudoTimestep::currentResidualNorm(), DisplacedProblem::DisplacedProblem(), AB2PredictorCorrector::estimateTimeError(), VariableResidual::execute(), MatrixSymmetryCheck::execute(), GreaterThanLessThanPostprocessor::execute(), Executioner::Executioner(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NumResidualEvaluations::getValue(), Residual::getValue(), Adaptivity::init(), ReferenceResidualConvergence::initialSetup(), ActivateElementsUserObjectBase::initSolutions(), Kernel::Kernel(), BoundaryElemIntegrityCheckThread::operator()(), DOFMapOutput::output(), SolutionHistory::output(), ConsoleUtils::outputExecutionInformation(), Console::outputSystemInformation(), Moose::PetscSupport::petscSetDefaults(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Moose::PetscSupport::setLineSearchFromParams(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), AB2PredictorCorrector::step(), DisplacedProblem::syncSolutions(), and Console::writeVariableNorms().

3434 {
3435  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3436  return *_nl[sys_num];
3437 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemBase() [2/2]

const NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num) const
inlineinherited

Definition at line 3440 of file FEProblemBase.h.

3441 {
3442  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3443  return *_nl[sys_num];
3444 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemNames()

const std::vector<NonlinearSystemName>& FEProblemBase::getNonlinearSystemNames ( ) const
inlineinherited
Returns
the nolinear system names in the problem

Definition at line 2688 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), Console::meshChanged(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputExecutionInformation(), and Console::outputSystemInformation().

2688 { return _nl_sys_names; }
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.

◆ getNumCyclesCompleted()

unsigned int FEProblemBase::getNumCyclesCompleted ( )
inlineinherited
Returns
The number of adaptivity cycles completed.

Definition at line 1916 of file FEProblemBase.h.

1916 { return _cycles_completed; }
unsigned int _cycles_completed

◆ getParam() [1/2]

template<typename T >
const T & MooseBase::getParam ( const std::string &  name) const
inherited

Retrieve a parameter for the object.

Parameters
nameThe name of the parameter
Returns
The value of the parameter

Definition at line 388 of file MooseBase.h.

Referenced by CreateDisplacedProblemAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FEProblemBase::addOutput(), DiffusionPhysicsBase::addPostprocessors(), ADNodalKernel::ADNodalKernel(), ArrayParsedAux::ArrayParsedAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), ComponentPhysicsInterface::ComponentPhysicsInterface(), FunctorAux::computeValue(), Console::Console(), FEProblemBase::createTagSolutions(), CutMeshByLevelSetGenerator::CutMeshByLevelSetGenerator(), DebugResidualAux::DebugResidualAux(), AccumulateReporter::declareLateValues(), DerivativeParsedMaterialTempl< is_ad >::DerivativeParsedMaterialTempl(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), EigenKernel::EigenKernel(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), FEProblemSolve::FEProblemSolve(), ParsedVectorReporter::finalize(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), ParsedSubdomainGeneratorBase::functionInitialize(), FVInterfaceKernel::FVInterfaceKernel(), BoundaryLayerSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), BlockDeletionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), GeneratedMeshGenerator::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), MeshExtruderGenerator::generate(), GenericConstantRankTwoTensorTempl< is_ad >::GenericConstantRankTwoTensorTempl(), GenericConstantSymmetricRankTwoTensorTempl< is_ad >::GenericConstantSymmetricRankTwoTensorTempl(), GeometricSearchInterface::GeometricSearchInterface(), MooseApp::getCheckpointDirectories(), DataFileInterface::getDataFileName(), ExecutorInterface::getExecutor(), GhostingUserObject::GhostingUserObject(), FixedPointIterationAdaptiveDT::init(), TimeSequenceStepper::init(), IterationAdaptiveDT::init(), AdvancedOutput::init(), AttribThread::initFrom(), AttribSysNum::initFrom(), AttribResidualObject::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), Console::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseMesh::MooseMesh(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MultiSystemSolveObject::MultiSystemSolveObject(), NEML2ModelExecutor::NEML2ModelExecutor(), NestedDivision::NestedDivision(), PerfGraphOutput::output(), Console::outputSystemInformation(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedElementDeletionGenerator::ParsedElementDeletionGenerator(), ParsedGenerateNodeset::ParsedGenerateNodeset(), ParsedGenerateSideset::ParsedGenerateSideset(), ParsedMaterialTempl< is_ad >::ParsedMaterialTempl(), ParsedNodeTransformGenerator::ParsedNodeTransformGenerator(), ParsedODEKernel::ParsedODEKernel(), ParsedPostprocessor::ParsedPostprocessor(), ParsedReporterBase::ParsedReporterBase(), ParsedVectorReporter::ParsedVectorReporter(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), PiecewiseConstantByBlockMaterialTempl< is_ad >::PiecewiseConstantByBlockMaterialTempl(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), Moose::FV::setInterpolationMethod(), SetupMeshAction::setupMesh(), Output::setWallTimeIntervalFromCommandLineParam(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), TimePeriod::TimePeriod(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and VectorOfPostprocessors::VectorOfPostprocessors().

389 {
390  return InputParameters::getParamHelper<T>(name, _pars);
391 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ getParam() [2/2]

template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > MooseBase::getParam ( const std::string &  param1,
const std::string &  param2 
) const
inherited

Retrieve two parameters and provide pair of parameters for the object.

Parameters
param1The name of first parameter
param2The name of second parameter
Returns
Vector of pairs of first and second parameters

Definition at line 425 of file MooseBase.h.

426 {
427  return _pars.get<T1, T2>(param1, param2);
428 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.

◆ getPetscOptions()

Moose::PetscSupport::PetscOptions& FEProblemBase::getPetscOptions ( )
inlineinherited

◆ getPositionsObject()

const Positions & FEProblemBase::getPositionsObject ( const std::string &  name) const
inherited

Get the Positions object by its name.

Parameters
nameThe name of the Positions object being retrieved
Returns
Const reference to the Positions object

Definition at line 4600 of file FEProblemBase.C.

Referenced by DistributedPositions::DistributedPositions(), MultiApp::fillPositions(), ParsedDownSelectionPositions::initialize(), Positions::initialized(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), and TransformedPositions::TransformedPositions().

4601 {
4602  std::vector<Positions *> objs;
4603  theWarehouse()
4604  .query()
4605  .condition<AttribSystem>("UserObject")
4606  .condition<AttribName>(name)
4607  .queryInto(objs);
4608  if (objs.empty())
4609  mooseError("Unable to find Positions object with name '" + name + "'");
4610  mooseAssert(objs.size() == 1, "Should only find one Positions");
4611  return *(objs[0]);
4612 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getPostprocessorValueByName()

const PostprocessorValue & FEProblemBase::getPostprocessorValueByName ( const PostprocessorName &  name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the value associated with a Postprocessor that exists.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for retrieving values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4634 of file FEProblemBase.C.

Referenced by addPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appPostprocessorValue(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), EigenProblem::formNorm(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializePostprocessorSymbol(), EigenExecutionerBase::inversePowerIteration(), Exodus::outputPostprocessors(), TableOutput::outputPostprocessorsRow(), EigenProblem::postScaleEigenVector(), and TableOutput::shouldOutputPostprocessorsRow().

4636 {
4638  t_index);
4639 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ getProblemData()

MFEMProblemData& MFEMProblem::getProblemData ( )
inline

◆ getRegularMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getRegularMaterialsWarehouse ( ) const
inlineinherited

Definition at line 2090 of file FEProblemBase.h.

Referenced by Moose::Mortar::setupMortarMaterials().

2090 { return _materials; }
MaterialWarehouse _materials

◆ getRenamedParam()

template<typename T >
const T & MooseBase::getRenamedParam ( const std::string &  old_name,
const std::string &  new_name 
) const
inherited

Retrieve a renamed parameter for the object.

This helper makes sure we check both names before erroring, and that only one parameter is passed to avoid silent errors

Parameters
old_namethe old name for the parameter
new_namethe new name for the parameter

Definition at line 402 of file MooseBase.h.

403 {
404  // Most important: accept new parameter
405  if (isParamSetByUser(new_name) && !isParamValid(old_name))
406  return getParam<T>(new_name);
407  // Second most: accept old parameter
408  if (isParamValid(old_name) && !isParamSetByUser(new_name))
409  return getParam<T>(old_name);
410  // Third most: accept default for new parameter
411  if (isParamValid(new_name) && !isParamValid(old_name))
412  return getParam<T>(new_name);
413  // Refuse: no default, no value passed
414  if (!isParamValid(old_name) && !isParamValid(new_name))
415  mooseError("parameter '" + new_name +
416  "' is being retrieved without being set.\nDid you misspell it?");
417  // Refuse: both old and new parameters set by user
418  else
419  mooseError("Parameter '" + new_name + "' may not be provided alongside former parameter '" +
420  old_name + "'");
421 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:199
bool isParamSetByUser(const std::string &name) const
Test if the supplied parameter is set by a user, as opposed to not set or set to default.
Definition: MooseBase.h:205

◆ getReporterData() [1/2]

const ReporterData& FEProblemBase::getReporterData ( ) const
inlineinherited

Provides const access the ReporterData object.

NOTE: There is a private non-const version of this function that uses a key object only constructable by the correct interfaces. This was done by design to encourage the use of the Reporter and ReporterInterface classes.

Definition at line 1257 of file FEProblemBase.h.

Referenced by ReporterTransferInterface::addReporterTransferMode(), ReporterTransferInterface::checkHasReporterValue(), ReporterTransferInterface::clearVectorReporter(), ConstantPostprocessor::ConstantPostprocessor(), AccumulateReporter::declareAccumulateHelper(), ReporterTransferInterface::declareClone(), AccumulateReporter::declareLateValues(), VectorPostprocessor::declareVector(), ReporterTransferInterface::declareVectorClone(), FEProblemBase::execute(), PostprocessorInterface::getPostprocessorValueByNameInternal(), VectorPostprocessorInterface::getVectorPostprocessorByNameHelper(), VectorPostprocessorInterface::getVectorPostprocessorContextByNameHelper(), PostprocessorInterface::hasPostprocessorByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterPositions::initialize(), ReporterTimes::initialize(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializeSymbols(), JSONOutput::initialSetup(), PostprocessorInterface::isDefaultPostprocessorValueByName(), ReporterDebugOutput::output(), Receiver::Receiver(), ReporterTransferInterface::resizeReporter(), ReporterTransferInterface::sumVectorReporter(), ReporterTransferInterface::transferFromVectorReporter(), ReporterTransferInterface::transferReporter(), and ReporterTransferInterface::transferToVectorReporter().

1257 { return _reporter_data; }
ReporterData _reporter_data

◆ getReporterData() [2/2]

ReporterData& FEProblemBase::getReporterData ( ReporterData::WriteKey  )
inlineinherited

Provides non-const access the ReporterData object that is used to store reporter values.

see ReporterData.h

Definition at line 1264 of file FEProblemBase.h.

1264 { return _reporter_data; }
ReporterData _reporter_data

◆ getRestartableData()

template<typename T , typename... Args>
const T & Restartable::getRestartableData ( const std::string &  data_name) const
protectedinherited

Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object.

Forwarded arguments are not allowed in this case because we assume that the object is restarted and we won't need different constructors to initialize it.

NOTE: This returns a const reference! Make sure you store it in a const reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)

Definition at line 294 of file Restartable.h.

295 {
296  return declareRestartableDataHelper<T>(data_name, nullptr).get();
297 }

◆ getRestartableEquationSystems()

const RestartableEquationSystems & FEProblemBase::getRestartableEquationSystems ( ) const
inherited

Get the RestartableEquationSystems object.

Definition at line 6010 of file FEProblemBase.C.

6011 {
6012  return _req.get();
6013 }
const T & get() const
Get the restartable value.
Definition: Restartable.h:58
Restartable::ManagedValue< RestartableEquationSystems > _req
The EquationSystems object, wrapped for restart.

◆ getSampler()

Sampler & FEProblemBase::getSampler ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2767 of file FEProblemBase.C.

Referenced by SamplerInterface::getSampler(), and SamplerInterface::getSamplerByName().

2768 {
2769  std::vector<Sampler *> objs;
2770  theWarehouse()
2771  .query()
2772  .condition<AttribSystem>("Sampler")
2773  .condition<AttribThread>(tid)
2774  .condition<AttribName>(name)
2775  .queryInto(objs);
2776  if (objs.empty())
2777  mooseError(
2778  "Unable to find Sampler with name '" + name +
2779  "', if you are attempting to access this object in the constructor of another object then "
2780  "the object being retrieved must occur prior to the caller within the input file.");
2781  return *(objs[0]);
2782 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getScalarVariable()

MooseVariableScalar & FEProblemBase::getScalarVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the scalar variable reference from whichever system contains it.

Implements SubProblem.

Definition at line 5986 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppScalarToAuxScalarTransfer::execute(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), TableOutput::outputScalarVariables(), and Exodus::outputScalarVariables().

5987 {
5988  for (auto & sys : _solver_systems)
5989  if (sys->hasScalarVariable(var_name))
5990  return sys->getScalarVariable(tid, var_name);
5991  if (_aux->hasScalarVariable(var_name))
5992  return _aux->getScalarVariable(tid, var_name);
5993 
5994  mooseError("Unknown variable " + var_name);
5995 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSharedPtr() [1/2]

std::shared_ptr< MooseObject > MooseObject::getSharedPtr ( )
inherited

Get another shared pointer to this object that has the same ownership group.

Wrapper around shared_from_this().

Definition at line 72 of file MooseObject.C.

Referenced by addBoundaryCondition(), addKernel(), and addMFEMSolver().

73 {
74  try
75  {
76  return shared_from_this();
77  }
78  catch (std::bad_weak_ptr &)
79  {
80  mooseError(not_shared_error);
81  }
82 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSharedPtr() [2/2]

std::shared_ptr< const MooseObject > MooseObject::getSharedPtr ( ) const
inherited

Definition at line 85 of file MooseObject.C.

86 {
87  try
88  {
89  return shared_from_this();
90  }
91  catch (std::bad_weak_ptr &)
92  {
93  mooseError(not_shared_error);
94  }
95 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSolverSystem() [1/2]

SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3447 of file FEProblemBase.h.

Referenced by MooseApp::attachRelationshipManagers(), MooseMesh::cacheFaceInfoVariableOwnership(), MooseMesh::cacheFVElementalDoFs(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputSolverSystemInformation(), Moose::PetscSupport::petscSetDefaultKSPNormType(), and Moose::PetscSupport::petscSetDefaultPCSide().

3448 {
3449  mooseAssert(sys_num < _solver_systems.size(),
3450  "System number greater than the number of solver systems");
3451  return *_solver_systems[sys_num];
3452 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystem() [2/2]

const SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3455 of file FEProblemBase.h.

3456 {
3457  mooseAssert(sys_num < _solver_systems.size(),
3458  "System number greater than the number of solver systems");
3459  return *_solver_systems[sys_num];
3460 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystemNames()

const std::vector<SolverSystemName>& FEProblemBase::getSolverSystemNames ( ) const
inlineinherited
Returns
the solver system names in the problem

Definition at line 2696 of file FEProblemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

2696 { return _solver_sys_names; }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.

◆ getStandardVariable()

MooseVariable & FEProblemBase::getStandardVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5926 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), FEProblemBase::projectFunctionOnCustomRange(), LinearFVKernel::requestVariableCellGradient(), and ElementSubdomainModifierBase::storeOverriddenDofValues().

5927 {
5928  for (auto & sys : _solver_systems)
5929  if (sys->hasVariable(var_name))
5930  return sys->getFieldVariable<Real>(tid, var_name);
5931  if (_aux->hasVariable(var_name))
5932  return _aux->getFieldVariable<Real>(tid, var_name);
5933 
5934  mooseError("Unknown variable " + var_name);
5935 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSteadyStateConvergenceName()

const ConvergenceName & FEProblemBase::getSteadyStateConvergenceName ( ) const
inherited

Gets the steady-state detection convergence object name.

Definition at line 9426 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultSteadyStateConvergence(), TransientBase::convergedToSteadyState(), and TransientBase::init().

9427 {
9429  return _steady_state_convergence_name.value();
9430  else
9431  mooseError("The steady convergence name has not been set.");
9432 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSystem()

System & FEProblemBase::getSystem ( const std::string &  var_name)
overridevirtualinherited

Returns the equation system containing the variable provided.

Implements SubProblem.

Definition at line 5998 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), MultiApp::appTransferVector(), ElementSubdomainModifierBase::gatherPatchElements(), FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::storeOverriddenDofValues().

5999 {
6000  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
6001  if (var_in_sys)
6002  return _solver_systems[sys_num]->system();
6003  else if (_aux->hasVariable(var_name) || _aux->hasScalarVariable(var_name))
6004  return _aux->system();
6005  else
6006  mooseError("Unable to find a system containing the variable " + var_name);
6007 }
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSystemBase() [1/3]

const SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num) const
virtualinherited

Get constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 9139 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), PhysicsBase::copyVariablesFromMesh(), FEProblemBase::getSystemBase(), FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::restoreOverriddenDofValues().

9140 {
9141  if (sys_num < _solver_systems.size())
9142  return *_solver_systems[sys_num];
9143 
9144  return *_aux;
9145 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [2/3]

SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num)
virtualinherited

Get non-constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 9160 of file FEProblemBase.C.

9161 {
9162  if (sys_num < _solver_systems.size())
9163  return *_solver_systems[sys_num];
9164 
9165  return *_aux;
9166 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [3/3]

SystemBase & FEProblemBase::getSystemBase ( const std::string &  sys_name)
inherited

Get non-constant reference to a system in this problem.

Parameters
sys_nameThe name of the system

Definition at line 9148 of file FEProblemBase.C.

9149 {
9150  if (std::find(_solver_sys_names.begin(), _solver_sys_names.end(), sys_name) !=
9151  _solver_sys_names.end())
9152  return getSystemBase(solverSysNum(sys_name));
9153  else if (sys_name == "aux0")
9154  return *_aux;
9155  else
9156  mooseError("System '" + sys_name + "' was requested from problem but does not exist.");
9157 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getTimeFromStateArg()

Real FEProblemBase::getTimeFromStateArg ( const Moose::StateArg state) const
inherited

Returns the time associated with the requested state.

Definition at line 6978 of file FEProblemBase.C.

Referenced by Function::evaluate(), Function::evaluateDotHelper(), Function::evaluateGradientHelper(), Function::evaluateHelper(), and ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl().

6979 {
6981  // If we are any iteration type other than time (e.g. nonlinear), then temporally we are still
6982  // in the present time
6983  return time();
6984 
6985  switch (state.state)
6986  {
6987  case 0:
6988  return time();
6989 
6990  case 1:
6991  return timeOld();
6992 
6993  default:
6994  mooseError("Unhandled state ", state.state, " in FEProblemBase::getTimeFromStateArg");
6995  }
6996 }
virtual Real & time() const
SolutionIterationType iteration_type
The solution iteration type, e.g. time or nonlinear.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual Real & timeOld() const
unsigned int state
The state.

◆ getTransfers() [1/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
) const
inherited

Get Transfers by ExecFlagType and direction.

Definition at line 5605 of file FEProblemBase.C.

5606 {
5607  if (direction == MultiAppTransfer::TO_MULTIAPP)
5609  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5611  else
5613 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getTransfers() [2/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( Transfer::DIRECTION  direction) const
inherited

Definition at line 5616 of file FEProblemBase.C.

5617 {
5618  if (direction == MultiAppTransfer::TO_MULTIAPP)
5620  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5622  else
5624 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getUserObject()

template<class T >
T& FEProblemBase::getUserObject ( const std::string &  name,
unsigned int  tid = 0 
) const
inlineinherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
Returns
Const reference to the user object

Definition at line 1284 of file FEProblemBase.h.

Referenced by ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ReporterTransferInterface::hideVariableHelper(), EigenExecutionerBase::init(), Eigenvalue::init(), IntegralPreservingFunctionIC::initialSetup(), ElementSubdomainModifierBase::initialSetup(), and EigenExecutionerBase::inversePowerIteration().

1285  {
1286  std::vector<T *> objs;
1287  theWarehouse()
1288  .query()
1289  .condition<AttribSystem>("UserObject")
1290  .condition<AttribThread>(tid)
1291  .condition<AttribName>(name)
1292  .queryInto(objs);
1293  if (objs.empty())
1294  mooseError("Unable to find user object with name '" + name + "'");
1295  return *(objs[0]);
1296  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectBase()

const UserObject & FEProblemBase::getUserObjectBase ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
tidThe thread of the user object (defaults to 0)
Returns
Const reference to the user object

Definition at line 4584 of file FEProblemBase.C.

Referenced by addBoundaryCondition(), addKernel(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appUserObjectBase(), EigenProblem::checkProblemIntegrity(), FunctorAux::computeValue(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectFromFEProblem(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), MultiAppCloneReporterTransfer::initialSetup(), MultiAppConservativeTransfer::initialSetup(), Terminator::initialSetup(), and FunctorIC::value().

4585 {
4586  std::vector<UserObject *> objs;
4587  theWarehouse()
4588  .query()
4589  .condition<AttribSystem>("UserObject")
4590  .condition<AttribThread>(tid)
4591  .condition<AttribName>(name)
4592  .queryInto(objs);
4593  if (objs.empty())
4594  mooseError("Unable to find user object with name '" + name + "'");
4595  mooseAssert(objs.size() == 1, "Should only find one UO");
4596  return *(objs[0]);
4597 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectJacobianVariables()

const std::vector<const MooseVariableFEBase *>& FEProblemBase::getUserObjectJacobianVariables ( const THREAD_ID  tid) const
inlineinherited

Definition at line 324 of file FEProblemBase.h.

Referenced by ComputeUserObjectsThread::onBoundary(), and ComputeUserObjectsThread::onElement().

325  {
326  return _uo_jacobian_moose_vars[tid];
327  }
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars

◆ getUserObjects()

const ExecuteMooseObjectWarehouse<UserObject>& FEProblemBase::getUserObjects ( ) const
inlineinherited

Definition at line 1271 of file FEProblemBase.h.

1272  {
1274  "This function is deprecated, use theWarehouse().query() to construct a query instead");
1275  return _all_user_objects;
1276  }
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
void mooseDeprecated(Args &&... args) const

◆ getVariable() [1/4]

virtual const MooseVariableFieldBase& SubProblem::getVariable
inherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

◆ getVariable() [2/4]

virtual MooseVariableFieldBase& SubProblem::getVariable
inlineinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariable() [3/4]

const MooseVariableFieldBase & FEProblemBase::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
) const
overridevirtualinherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

Implements SubProblem.

Definition at line 5916 of file FEProblemBase.C.

Referenced by FEProblemBase::addFVInitialCondition(), FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppGeneralFieldShapeEvaluationTransfer::buildMeshFunctions(), CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppProjectionTransfer::execute(), NodalNormalsPreprocessor::execute(), MultiAppGeometricInterpolationTransfer::execute(), MultiAppUserObjectTransfer::execute(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppProjectionTransfer::initialSetup(), AdvancedOutput::initShowHideLists(), SolutionUserObjectBase::pointValueWrapper(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MultiAppProjectionTransfer::projectSolution(), MultiAppDofCopyTransfer::transfer(), and MultiAppShapeEvaluationTransfer::transferVariable().

5920 {
5921  return getVariableHelper(
5922  tid, var_name, expected_var_type, expected_var_field_type, _solver_systems, *_aux);
5923 }
MooseVariableFieldBase & getVariableHelper(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
Helper function called by getVariable that handles the logic for checking whether Variables of the re...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVariable() [4/4]

virtual MooseVariableFieldBase& SubProblem::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
)
inlinevirtualinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const =0
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariableHelper() [1/2]

template<typename T >
MooseVariableFEBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  systems,
const SystemBase aux 
) const
inherited

Definition at line 819 of file SubProblem.C.

825 {
826  // Eventual return value
827  MooseVariableFEBase * var = nullptr;
828 
829  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
830 
831  // First check that the variable is found on the expected system.
832  if (expected_var_type == Moose::VarKindType::VAR_ANY)
833  {
834  if (var_in_sys)
835  var = &(systems[sys_num]->getVariable(tid, var_name));
836  else if (aux.hasVariable(var_name))
837  var = &(aux.getVariable(tid, var_name));
838  else
839  mooseError("Unknown variable " + var_name);
840  }
841  else if (expected_var_type == Moose::VarKindType::VAR_SOLVER && var_in_sys &&
842  systems[sys_num]->hasVariable(var_name))
843  var = &(systems[sys_num]->getVariable(tid, var_name));
844  else if (expected_var_type == Moose::VarKindType::VAR_AUXILIARY && aux.hasVariable(var_name))
845  var = &(aux.getVariable(tid, var_name));
846  else
847  {
848  std::string expected_var_type_string =
849  (expected_var_type == Moose::VarKindType::VAR_SOLVER ? "nonlinear" : "auxiliary");
850  mooseError("No ",
851  expected_var_type_string,
852  " variable named ",
853  var_name,
854  " found. "
855  "Did you specify an auxiliary variable when you meant to specify a nonlinear "
856  "variable (or vice-versa)?");
857  }
858 
859  // Now make sure the var found has the expected field type.
860  if ((expected_var_field_type == Moose::VarFieldType::VAR_FIELD_ANY) ||
861  (expected_var_field_type == var->fieldType()))
862  return *var;
863  else
864  {
865  std::string expected_var_field_type_string =
866  MooseUtils::toLower(Moose::stringify(expected_var_field_type));
867  std::string var_field_type_string = MooseUtils::toLower(Moose::stringify(var->fieldType()));
868 
869  mooseError("No ",
870  expected_var_field_type_string,
871  " variable named ",
872  var_name,
873  " found. "
874  "Did you specify a ",
875  var_field_type_string,
876  " variable when you meant to specify a ",
877  expected_var_field_type_string,
878  " variable?");
879  }
880 }
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::string toLower(std::string name)
Convert supplied string to lower case.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const =0
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual Moose::VarFieldType fieldType() const =0
Field type of this variable.
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getVariableHelper() [2/2]

template<typename T >
MooseVariableFieldBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  nls,
const SystemBase aux 
) const
protectedinherited

Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available.

Referenced by DisplacedProblem::getVariable(), and FEProblemBase::getVariable().

◆ getVariableNames()

std::vector< VariableName > FEProblemBase::getVariableNames ( )
virtualinherited

Returns a list of all the variables in the problem (both from the NL and Aux systems.

Definition at line 8891 of file FEProblemBase.C.

Referenced by EigenProblem::adjustEigenVector(), AdvancedOutput::initAvailableLists(), and ElementSubdomainModifierBase::initialSetup().

8892 {
8893  std::vector<VariableName> names;
8894 
8895  for (auto & sys : _solver_systems)
8896  {
8897  const std::vector<VariableName> & var_names = sys->getVariableNames();
8898  names.insert(names.end(), var_names.begin(), var_names.end());
8899  }
8900 
8901  const std::vector<VariableName> & aux_var_names = _aux->getVariableNames();
8902  names.insert(names.end(), aux_var_names.begin(), aux_var_names.end());
8903 
8904  return names;
8905 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVectorPostprocessorObjectByName()

const VectorPostprocessor & FEProblemBase::getVectorPostprocessorObjectByName ( const std::string &  object_name,
const THREAD_ID  tid = 0 
) const
inherited

Return the VPP object given the name.

Parameters
object_nameThe name of the VPP object
Returns
Desired VPP object

This is used by various output objects as well as the scatter value handling.

See also
CSV.C, XMLOutput.C, VectorPostprocessorInterface.C

Definition at line 4678 of file FEProblemBase.C.

Referenced by VectorPostprocessorInterface::isVectorPostprocessorDistributedByName(), CSV::output(), and XMLOutput::outputVectorPostprocessors().

4680 {
4681  return getUserObject<VectorPostprocessor>(object_name, tid);
4682 }

◆ getVectorPostprocessorValueByName()

const VectorPostprocessorValue & FEProblemBase::getVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the vector value associated with the VectorPostprocessor.

Parameters
object_nameThe name of the VPP object.
vector_nameThe namve of the decalred vector within the object.
Returns
Referent to the vector of data.

Note: This method is only for retrieving values that already exist, the VectorPostprocessor and VectorPostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4659 of file FEProblemBase.C.

Referenced by HistogramVectorPostprocessor::execute().

4662 {
4664  VectorPostprocessorReporterName(object_name, vector_name), t_index);
4665 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ getVectorTag()

const VectorTag & SubProblem::getVectorTag ( const TagID  tag_id) const
virtualinherited

Get a VectorTag from a TagID.

Reimplemented in DisplacedProblem.

Definition at line 162 of file SubProblem.C.

Referenced by FEProblemBase::addCachedResidualDirectly(), Assembly::cacheResidual(), Assembly::cacheResidualNodes(), DisplacedProblem::getVectorTag(), SubProblem::getVectorTags(), TaggingInterface::prepareVectorTagInternal(), TaggingInterface::prepareVectorTagLower(), TaggingInterface::prepareVectorTagNeighbor(), FEProblemBase::setResidual(), and FEProblemBase::setResidualNeighbor().

163 {
164  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
165 
166  if (!vectorTagExists(tag_id))
167  mooseError("Vector tag with ID ", tag_id, " does not exist");
168 
169  return _vector_tags[tag_id];
170 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getVectorTagID()

TagID SubProblem::getVectorTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 204 of file SubProblem.C.

Referenced by Coupleable::coupledVectorTagArrayGradient(), Coupleable::coupledVectorTagArrayGradients(), Coupleable::coupledVectorTagArrayValues(), Coupleable::coupledVectorTagDofValues(), Coupleable::coupledVectorTagGradient(), Coupleable::coupledVectorTagGradients(), Coupleable::coupledVectorTagValues(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), DisplacedProblem::getVectorTagID(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), ReferenceResidualConvergence::ReferenceResidualConvergence(), SolverSystem::setSolution(), TaggingInterface::TaggingInterface(), TagVectorAux::TagVectorAux(), MultiAppDofCopyTransfer::transfer(), TaggingInterface::useVectorTag(), Coupleable::vectorTagDofValueHelper(), and Coupleable::vectorTagValueHelper().

205 {
206  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
207 
208  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
209  const auto search = _vector_tags_name_map.find(tag_name_upper);
210  if (search != _vector_tags_name_map.end())
211  return search->second;
212 
213  std::string message =
214  tag_name_upper == "TIME"
215  ? ".\n\nThis may occur if "
216  "you have a TimeKernel in your problem but did not specify a transient executioner."
217  : "";
218  mooseError("Vector tag '", tag_name_upper, "' does not exist", message);
219 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
std::string toUpper(std::string name)
Convert supplied string to upper case.
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1182
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getVectorTags() [1/2]

std::vector< VectorTag > SubProblem::getVectorTags ( const std::set< TagID > &  tag_ids) const
inherited

Definition at line 173 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), EigenProblem::computeResidualAB(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), DisplacedProblem::getVectorTags(), SubProblem::numVectorTags(), ComputeMortarFunctor::operator()(), and FEProblemBase::setCurrentResidualVectorTags().

174 {
175  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
176 
177  std::vector<VectorTag> tags;
178  tags.reserve(tag_ids.size());
179  for (const auto & tag_id : tag_ids)
180  tags.push_back(getVectorTag(tag_id));
181  return tags;
182 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:162

◆ getVectorTags() [2/2]

const std::vector< VectorTag > & SubProblem::getVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

Return all vector tags, where a tag is represented by a map from name to ID.

Can optionally be limited to a vector tag type.

Reimplemented in DisplacedProblem.

Definition at line 185 of file SubProblem.C.

186 {
187  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
188 
190  return _vector_tags;
191  else
192  return _typed_vector_tags[type];
193 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1179

◆ getVectorVariable()

VectorMooseVariable & FEProblemBase::getVectorVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested VectorMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5950 of file FEProblemBase.C.

5951 {
5952  for (auto & sys : _solver_systems)
5953  if (sys->hasVariable(var_name))
5954  return sys->getFieldVariable<RealVectorValue>(tid, var_name);
5955  if (_aux->hasVariable(var_name))
5956  return _aux->getFieldVariable<RealVectorValue>(tid, var_name);
5957 
5958  mooseError("Unknown variable " + var_name);
5959 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getXFEM()

std::shared_ptr<XFEMInterface> FEProblemBase::getXFEM ( )
inlineinherited

Get a pointer to the XFEM controller object.

Definition at line 1933 of file FEProblemBase.h.

1933 { return _xfem; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ ghostedElems()

virtual std::set<dof_id_type>& SubProblem::ghostedElems ( )
inlinevirtualinherited

Return the list of elements that should have their DoFs ghosted to this processor.

Returns
The list

Reimplemented in DisplacedProblem.

Definition at line 672 of file SubProblem.h.

Referenced by SystemBase::augmentSendList(), NearestNodeLocator::findNodes(), DisplacedProblem::ghostedElems(), and NearestNodeLocator::updatePatch().

672 { return _ghosted_elems; }
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1095

◆ ghostGhostedBoundaries()

void FEProblemBase::ghostGhostedBoundaries ( )
overridevirtualinherited

Causes the boundaries added using addGhostedBoundary to actually be ghosted.

Implements SubProblem.

Definition at line 2147 of file FEProblemBase.C.

Referenced by DisplacedProblem::ghostGhostedBoundaries(), FEProblemBase::init(), and FEProblemBase::meshChanged().

2148 {
2149  TIME_SECTION("ghostGhostedBoundaries", 3, "Ghosting Ghosted Boundaries");
2150 
2152 
2153  if (_displaced_problem)
2155 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void ghostGhostedBoundaries()
Actually do the ghosting of boundaries that need to be ghosted to this processor. ...
Definition: MooseMesh.C:3335
MooseMesh * _displaced_mesh

◆ hasActiveElementalMooseVariables()

bool SubProblem::hasActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Whether or not a list of active elemental moose variables has been set.

Returns
True if there has been a list of active elemental moose variables set, False otherwise

Definition at line 461 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), and SystemBase::reinitElem().

462 {
464 }
std::vector< unsigned int > _has_active_elemental_moose_variables
Whether or not there is currently a list of active elemental moose variables.
Definition: SubProblem.h:1081

◆ hasActiveMaterialProperties()

bool FEProblemBase::hasActiveMaterialProperties ( const THREAD_ID  tid) const
inherited

Method to check whether or not a list of active material roperties has been set.

This method is called by reinitMaterials to determine whether Material computeProperties methods need to be called. If the return is False, this check prevents unnecessary material property computation

Parameters
tidThe thread id
Returns
True if there has been a list of active material properties set, False otherwise

Definition at line 6124 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::onElement(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsInterface(), FEProblemBase::reinitMaterialsNeighbor(), and FEProblemBase::reinitMaterialsNeighborOnBoundary().

6125 {
6126  return _has_active_material_properties[tid];
6127 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ hasAuxiliaryVariable()

bool SubProblem::hasAuxiliaryVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this auxiliary variable.

Definition at line 812 of file SubProblem.C.

Referenced by SubProblem::getFunctor(), and NearestNodeValueAux::NearestNodeValueAux().

813 {
814  return systemBaseAuxiliary().hasVariable(var_name);
815 }
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851

◆ hasBase()

bool MooseBase::hasBase ( ) const
inlineinherited
Returns
Whether or not this object has a registered base (set via InputParameters::registerBase())

Definition at line 142 of file MooseBase.h.

142 { return _pars.hasBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
bool hasBase() const

◆ hasBlockMaterialProperty()

bool SubProblem::hasBlockMaterialProperty ( SubdomainID  block_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 512 of file SubProblem.C.

513 {
514  auto it = _map_block_material_props.find(bid);
515  if (it == _map_block_material_props.end())
516  return false;
517 
518  if (it->second.count(prop_name) > 0)
519  return true;
520  else
521  return false;
522 }
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1054

◆ hasBoundaryMaterialProperty()

bool SubProblem::hasBoundaryMaterialProperty ( BoundaryID  boundary_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 571 of file SubProblem.C.

572 {
573  auto it = _map_boundary_material_props.find(bid);
574  if (it == _map_boundary_material_props.end())
575  return false;
576 
577  if (it->second.count(prop_name) > 0)
578  return true;
579  else
580  return false;
581 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1057

◆ hasConvergence()

bool FEProblemBase::hasConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Returns true if the problem has a Convergence object of the given name.

Definition at line 2667 of file FEProblemBase.C.

Referenced by ParsedConvergence::initializeSymbols().

2668 {
2669  return _convergences.hasActiveObject(name, tid);
2670 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasDampers()

bool FEProblemBase::hasDampers ( )
inlineinherited

Whether or not this system has dampers.

Definition at line 1421 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::preInit(), and NonlinearSystem::solve().

1421 { return _has_dampers; }
bool _has_dampers
Whether or not this system has any Dampers associated with it.

◆ hasException()

virtual bool FEProblemBase::hasException ( )
inlinevirtualinherited

Whether or not an exception has occurred.

Definition at line 502 of file FEProblemBase.h.

Referenced by NonlinearSystem::converged(), ThreadedElementLoop< ConstElemPointerRange >::keepGoing(), and ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::keepGoing().

502 { return _has_exception; }
bool _has_exception
Whether or not an exception has occurred.

◆ hasFunction()

bool FEProblemBase::hasFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2616 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), FunctorIC::FunctorIC(), FEProblemBase::getFunction(), FunctionInterface::hasFunctionByName(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), ParsedConvergence::initializeSymbols(), and MooseParsedFunction::initialSetup().

2617 {
2618  return _functions.hasActiveObject(name, tid);
2619 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.
MooseObjectWarehouse< Function > _functions
functions

◆ hasFunctor()

bool SubProblem::hasFunctor ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor corresponding to name on the thread id tid

Definition at line 1275 of file SubProblem.C.

Referenced by FunctorInterface::isFunctor().

1276 {
1277  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1278  auto & functors = _functors[tid];
1279  return (functors.find("wraps_" + name) != functors.end());
1280 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1146

◆ hasFunctorWithType()

template<typename T >
bool SubProblem::hasFunctorWithType ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor of type T corresponding to name on the thread id tid

Definition at line 1325 of file SubProblem.h.

1326 {
1327  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1328  auto & functors = _functors[tid];
1329 
1330  const auto & it = functors.find("wraps_" + name);
1331  constexpr bool requested_functor_is_ad =
1332  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1333 
1334  if (it == functors.end())
1335  return false;
1336  else
1337  return dynamic_cast<Moose::Functor<T> *>(
1338  requested_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get());
1339 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1135
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1146

◆ hasInitialAdaptivity() [1/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1921 of file FEProblemBase.h.

1921 { return _adaptivity.getInitialSteps() > 0; }
Adaptivity _adaptivity
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98

◆ hasInitialAdaptivity() [2/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1926 of file FEProblemBase.h.

1926 { return false; }

◆ hasJacobian()

bool FEProblemBase::hasJacobian ( ) const
inherited

Returns _has_jacobian.

Definition at line 9054 of file FEProblemBase.C.

9055 {
9056  return _has_jacobian;
9057 }
bool _has_jacobian
Indicates if the Jacobian was computed.

◆ hasKokkosObjects()

bool FEProblemBase::hasKokkosObjects ( ) const
inlineinherited
Returns
whether any Kokkos object was added in the problem

Definition at line 2718 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::preInit(), and MooseMesh::update().

2718 { return _has_kokkos_objects; }
bool _has_kokkos_objects
Whether we have any Kokkos objects.

◆ hasKokkosResidualObjects()

bool FEProblemBase::hasKokkosResidualObjects ( ) const
inlineinherited
Returns
whether any Kokkos residual object was added in the problem

Definition at line 2722 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

2722 { return _has_kokkos_residual_objects; }
bool _has_kokkos_residual_objects
Whether we have any Kokkos residual objects.

◆ hasLinearConvergenceObjects()

bool FEProblemBase::hasLinearConvergenceObjects ( ) const
inherited

Whether we have linear convergence objects.

Definition at line 9393 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscSetDefaults().

9394 {
9395  // If false,this means we have not set one, not that we are querying this too early
9396  // TODO: once there is a default linear CV object, error on the 'not set' case
9397  return _linear_convergence_names.has_value();
9398 }
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ hasLinearVariable()

bool SubProblem::hasLinearVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this linear variable.

Definition at line 803 of file SubProblem.C.

Referenced by SubProblem::getFunctor().

804 {
805  for (const auto i : make_range(numLinearSystems()))
806  if (systemBaseLinear(i).hasVariable(var_name))
807  return true;
808  return false;
809 }
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
IntRange< T > make_range(T beg, T end)
virtual const SystemBase & systemBaseLinear(const unsigned int sys_num) const =0
Return the linear system object as a base class reference given the system number.
virtual std::size_t numLinearSystems() const =0

◆ hasMortarCoupling()

virtual bool FEProblemBase::hasMortarCoupling ( ) const
inlinevirtualinherited

Whether the simulation has mortar coupling.

Definition at line 2418 of file FEProblemBase.h.

2418 { return _has_mortar; }
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ hasMultiApp()

bool FEProblemBase::hasMultiApp ( const std::string &  name) const
inherited

Definition at line 5526 of file FEProblemBase.C.

5527 {
5528  return _multi_apps.hasActiveObject(multi_app_name);
5529 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasMultiApps() [1/2]

bool FEProblemBase::hasMultiApps ( ) const
inlineinherited

Returns whether or not the current simulation has any multiapps.

Definition at line 1407 of file FEProblemBase.h.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), FEProblemBase::checkProblemIntegrity(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), and DefaultMultiAppFixedPointConvergence::preExecute().

1407 { return _multi_apps.hasActiveObjects(); }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasMultiApps() [2/2]

bool FEProblemBase::hasMultiApps ( ExecFlagType  type) const
inherited

Definition at line 5520 of file FEProblemBase.C.

5521 {
5522  return _multi_apps[type].hasActiveObjects();
5523 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasNeighborCoupling()

virtual bool FEProblemBase::hasNeighborCoupling ( ) const
inlinevirtualinherited

Whether the simulation has neighbor coupling.

Definition at line 2413 of file FEProblemBase.h.

bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ hasNonlocalCoupling()

virtual bool FEProblemBase::hasNonlocalCoupling ( ) const
inlineoverridevirtualinherited

Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian.

For this to return true, there must be at least one active nonlocal kernel or boundary condition

Implements SubProblem.

Definition at line 2675 of file FEProblemBase.h.

Referenced by DisplacedProblem::hasNonlocalCoupling().

2675 { return _has_nonlocal_coupling; }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.

◆ hasPostprocessor()

bool FEProblemBase::hasPostprocessor ( const std::string &  name) const
inherited

Deprecated.

Use hasPostprocessorValueByName

Definition at line 4651 of file FEProblemBase.C.

Referenced by GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl().

4652 {
4653  mooseDeprecated("FEProblemBase::hasPostprocssor is being removed; use "
4654  "hasPostprocessorValueByName instead.");
4656 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
void mooseDeprecated(Args &&... args) const
bool hasPostprocessorValueByName(const PostprocessorName &name) const
Whether or not a Postprocessor value exists by a given name.

◆ hasPostprocessorValueByName()

bool FEProblemBase::hasPostprocessorValueByName ( const PostprocessorName &  name) const
inherited

Whether or not a Postprocessor value exists by a given name.

Parameters
nameThe name of the Postprocessor
Returns
True if a Postprocessor value exists

Note: You should prioritize the use of PostprocessorInterface::hasPostprocessor and PostprocessorInterface::hasPostprocessorByName over this method when possible.

Definition at line 4628 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), FunctorAux::computeValue(), FunctorExtremaPositions::FunctorExtremaPositions(), FEProblemBase::hasPostprocessor(), MooseParsedFunction::initialSetup(), and FunctorIC::value().

4629 {
4631 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143
bool hasReporterValue(const ReporterName &reporter_name) const
Return True if a Reporter value with the given type and name have been created.
Definition: ReporterData.h:445

◆ hasScalarVariable()

bool FEProblemBase::hasScalarVariable ( const std::string &  var_name) const
overridevirtualinherited

Returns a Boolean indicating whether any system contains a variable with the name provided.

Implements SubProblem.

Definition at line 5974 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), EigenProblem::adjustEigenVector(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), AdvancedOutput::initAvailableLists(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), AdvancedOutput::initShowHideLists(), and Split::setup().

5975 {
5976  for (auto & sys : _solver_systems)
5977  if (sys->hasScalarVariable(var_name))
5978  return true;
5979  if (_aux->hasScalarVariable(var_name))
5980  return true;
5981 
5982  return false;
5983 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ hasScalingVector()

void SubProblem::hasScalingVector ( const unsigned int  nl_sys_num)
inherited

Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector.

Definition at line 1171 of file SubProblem.C.

Referenced by SystemBase::addScalingVector().

1172 {
1173  for (const THREAD_ID tid : make_range(libMesh::n_threads()))
1174  assembly(tid, nl_sys_num).hasScalingVector();
1175 }
unsigned int n_threads()
void hasScalingVector()
signals this object that a vector containing variable scaling factors should be used when doing resid...
Definition: Assembly.C:4574
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ hasSetMultiAppFixedPointConvergenceName()

bool FEProblemBase::hasSetMultiAppFixedPointConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the fixed point convergence name.

Definition at line 694 of file FEProblemBase.h.

695  {
696  return _multiapp_fixed_point_convergence_name.has_value();
697  }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ hasSetSteadyStateConvergenceName()

bool FEProblemBase::hasSetSteadyStateConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the steady-state detection convergence name.

Definition at line 699 of file FEProblemBase.h.

700  {
701  return _steady_state_convergence_name.has_value();
702  }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ hasSolverVariable()

bool FEProblemBase::hasSolverVariable ( const std::string &  var_name) const
inherited

Definition at line 5906 of file FEProblemBase.C.

5907 {
5908  for (auto & sys : _solver_systems)
5909  if (sys->hasVariable(var_name))
5910  return true;
5911 
5912  return false;
5913 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ hasTimeIntegrator()

bool FEProblemBase::hasTimeIntegrator ( ) const
inlineinherited

Returns whether or not this Problem has a TimeIntegrator.

Definition at line 2204 of file FEProblemBase.h.

Referenced by TransientBase::setupTimeIntegrator().

2204 { return _has_time_integrator; }
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)

◆ hasUOAuxStateCheck()

bool FEProblemBase::hasUOAuxStateCheck ( ) const
inlineinherited

Whether or not MOOSE will perform a user object/auxiliary kernel state check.

Definition at line 201 of file FEProblemBase.h.

201 { return _uo_aux_state_check; }
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.

◆ hasUserObject()

bool FEProblemBase::hasUserObject ( const std::string &  name) const
inherited

Check if there if a user object of given name.

Parameters
nameThe name of the user object being checked for
Returns
true if the user object exists, false otherwise

Definition at line 4615 of file FEProblemBase.C.

Referenced by addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), FunctorAux::computeValue(), DistributedPositions::DistributedPositions(), UserObjectInterface::hasUserObjectByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterTransferInterface::hideVariableHelper(), ParsedDownSelectionPositions::initialize(), and TransformedPositions::TransformedPositions().

4616 {
4617  std::vector<UserObject *> objs;
4618  theWarehouse()
4619  .query()
4620  .condition<AttribSystem>("UserObject")
4621  .condition<AttribThread>(0)
4622  .condition<AttribName>(name)
4623  .queryInto(objs);
4624  return !objs.empty();
4625 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ hasVariable()

bool FEProblemBase::hasVariable ( const std::string &  var_name) const
overridevirtualinherited

Whether or not this problem has the variable.

Implements SubProblem.

Definition at line 5894 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), FEProblemBase::addFVInitialCondition(), DiffusionFV::addFVKernels(), FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), MultiAppTransfer::checkVariable(), FunctorIC::FunctorIC(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MooseParsedFunction::initialSetup(), AdvancedOutput::initShowHideLists(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), and Split::setup().

5895 {
5896  for (auto & sys : _solver_systems)
5897  if (sys->hasVariable(var_name))
5898  return true;
5899  if (_aux->hasVariable(var_name))
5900  return true;
5901 
5902  return false;
5903 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ haveADObjects() [1/4]

bool SubProblem::haveADObjects ( ) const
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::init().

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1116

◆ haveADObjects() [2/4]

virtual void SubProblem::haveADObjects
inlineinherited

Method for setting whether we have any ad objects.

Definition at line 767 of file SubProblem.h.

767 { _have_ad_objects = have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1116

◆ haveADObjects() [3/4]

bool SubProblem::haveADObjects
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1116

◆ haveADObjects() [4/4]

void FEProblemBase::haveADObjects ( bool  have_ad_objects)
overridevirtualinherited

Method for setting whether we have any ad objects.

Reimplemented from SubProblem.

Definition at line 9131 of file FEProblemBase.C.

9132 {
9133  _have_ad_objects = have_ad_objects;
9134  if (_displaced_problem)
9135  _displaced_problem->SubProblem::haveADObjects(have_ad_objects);
9136 }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1116
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveDisplaced()

bool FEProblemBase::haveDisplaced ( ) const
inlinefinaloverridevirtualinherited

Whether we have a displaced problem in our simulation.

Implements SubProblem.

Definition at line 2509 of file FEProblemBase.h.

2509 { return _displaced_problem.get(); }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveFV()

virtual bool FEProblemBase::haveFV ( ) const
inlineoverridevirtualinherited

◆ havePRefinement()

bool SubProblem::havePRefinement ( ) const
inlineinherited

Query whether p-refinement has been requested at any point during the simulation.

Definition at line 1011 of file SubProblem.h.

Referenced by AdvancedOutput::initAvailableLists(), and FEProblemBase::meshChanged().

1011 { return _have_p_refinement; }
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1207

◆ haveXFEM()

bool FEProblemBase::haveXFEM ( )
inlineinherited

Find out whether the current analysis is using XFEM.

Definition at line 1936 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), FixedPointSolve::solveStep(), TransientBase::takeStep(), and FEProblemBase::updateMeshXFEM().

1936 { return _xfem != nullptr; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ identifyVariableGroupsInNL()

bool FEProblemBase::identifyVariableGroupsInNL ( ) const
inlineinherited

Whether to identify variable groups in nonlinear systems.

This affects dof ordering

Definition at line 2680 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase().

const bool _identify_variable_groups_in_nl
Whether to identify variable groups in nonlinear systems. This affects dof ordering.

◆ ignoreZerosInJacobian()

bool FEProblemBase::ignoreZerosInJacobian ( ) const
inlineinherited

Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.

Note that this can make preserving the matrix sparsity pattern impossible.

Definition at line 2176 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

2176 { return _ignore_zeros_in_jacobian; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ immediatelyPrintInvalidSolution()

bool FEProblemBase::immediatelyPrintInvalidSolution ( ) const
inlineinherited

Whether or not the solution invalid warnings are printed out immediately.

Definition at line 2201 of file FEProblemBase.h.

Referenced by SolutionInvalidInterface::flagInvalidSolutionInternal().

const bool & _immediately_print_invalid_solution

◆ incrementMultiAppTStep()

void FEProblemBase::incrementMultiAppTStep ( ExecFlagType  type)
inherited

Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType.

Definition at line 5711 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject().

5712 {
5713  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5714 
5715  if (multi_apps.size())
5716  for (const auto & multi_app : multi_apps)
5717  multi_app->incrementTStep(_time);
5718 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ init()

void FEProblemBase::init ( )
overridevirtualinherited

Implements Problem.

Reimplemented in FEProblem, and EigenProblem.

Definition at line 6398 of file FEProblemBase.C.

Referenced by EigenProblem::init(), and FEProblem::init().

6399 {
6400  if (_initialized)
6401  return;
6402 
6403  TIME_SECTION("init", 2, "Initializing");
6404 
6405  // call executioner's preProblemInit so that it can do some setups before problem init
6407 
6408  // If we have AD and we are doing global AD indexing, then we should by default set the matrix
6409  // coupling to full. If the user has told us to trust their coupling matrix, then this call will
6410  // not do anything
6413 
6414  for (const auto i : index_range(_nl))
6415  {
6416  auto & nl = _nl[i];
6417  auto & cm = _cm[i];
6418 
6419  unsigned int n_vars = nl->nVariables();
6420  {
6421  TIME_SECTION("fillCouplingMatrix", 3, "Filling Coupling Matrix");
6422 
6423  switch (_coupling)
6424  {
6425  case Moose::COUPLING_DIAG:
6426  cm = std::make_unique<CouplingMatrix>(n_vars);
6427  for (unsigned int i = 0; i < n_vars; i++)
6428  (*cm)(i, i) = 1;
6429  break;
6430 
6431  // for full jacobian
6432  case Moose::COUPLING_FULL:
6433  cm = std::make_unique<CouplingMatrix>(n_vars);
6434  for (unsigned int i = 0; i < n_vars; i++)
6435  for (unsigned int j = 0; j < n_vars; j++)
6436  (*cm)(i, j) = 1;
6437  break;
6438 
6440  // do nothing, _cm was already set through couplingMatrix() call
6441  break;
6442  }
6443  }
6444 
6445  nl->dofMap()._dof_coupling = cm.get();
6446 
6447  // If there are no variables, make sure to pass a nullptr coupling
6448  // matrix, to avoid warnings about non-nullptr yet empty
6449  // CouplingMatrices.
6450  if (n_vars == 0)
6451  nl->dofMap()._dof_coupling = nullptr;
6452 
6453  nl->dofMap().attach_extra_sparsity_function(&extraSparsity, nl.get());
6454  nl->dofMap().attach_extra_send_list_function(&extraSendList, nl.get());
6455  _aux->dofMap().attach_extra_send_list_function(&extraSendList, _aux.get());
6456 
6457  if (!_skip_nl_system_check && _solve && n_vars == 0)
6458  mooseError("No variables specified in nonlinear system '", nl->name(), "'.");
6459  }
6460 
6461  ghostGhostedBoundaries(); // We do this again right here in case new boundaries have been added
6462 
6463  // We may have added element/nodes to the mesh in ghostGhostedBoundaries so we need to update
6464  // all of our mesh information. We need to make sure that mesh information is up-to-date before
6465  // EquationSystems::init because that will call through to updateGeomSearch (for sparsity
6466  // augmentation) and if we haven't added back boundary node information before that latter call,
6467  // then we're screwed. We'll get things like "Unable to find closest node!"
6468  _mesh.meshChanged();
6469  if (_displaced_problem)
6471 
6472  if (_mesh.doingPRefinement())
6473  {
6475  if (_displaced_problem)
6476  _displaced_problem->preparePRefinement();
6477  }
6478 
6479  // do not assemble system matrix for JFNK solve
6480  for (auto & nl : _nl)
6481  if (solverParams(nl->number())._type == Moose::ST_JFNK)
6482  nl->turnOffJacobian();
6483 
6484  for (auto & sys : _solver_systems)
6485  sys->preInit();
6486  _aux->preInit();
6487 
6488  // Build the mortar segment meshes, if they haven't been already, for a couple reasons:
6489  // 1) Get the ghosting correct for both static and dynamic meshes
6490  // 2) Make sure the mortar mesh is built for mortar constraints that live on the static mesh
6491  //
6492  // It is worth-while to note that mortar meshes that live on a dynamic mesh will be built
6493  // during residual and Jacobian evaluation because when displacements are solution variables
6494  // the mortar mesh will move and change during the course of a non-linear solve. We DO NOT
6495  // redo ghosting during non-linear solve, so for purpose 1) the below call has to be made
6496  if (!_mortar_data->initialized())
6497  updateMortarMesh();
6498 
6499  {
6500  TIME_SECTION("EquationSystems::Init", 2, "Initializing Equation Systems");
6501  es().init();
6502  }
6503 
6504  for (auto & sys : _solver_systems)
6505  sys->postInit();
6506  _aux->postInit();
6507 
6508  // Now that the equation system and the dof distribution is done, we can generate the
6509  // finite volume-related parts if needed.
6510  if (haveFV())
6512 
6513  for (auto & sys : _solver_systems)
6514  sys->update();
6515  _aux->update();
6516 
6517  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
6518  for (const auto i : index_range(_nl))
6519  {
6520  mooseAssert(
6521  _cm[i],
6522  "Coupling matrix not set for system "
6523  << i
6524  << ". This should only happen if a preconditioner was not setup for this system");
6525  _assembly[tid][i]->init(_cm[i].get());
6526  }
6527 
6528  if (_displaced_problem)
6529  _displaced_problem->init();
6530 
6531 #ifdef MOOSE_KOKKOS_ENABLED
6532  if (_has_kokkos_objects)
6533  initKokkos();
6534 #endif
6535 
6536  _initialized = true;
6537 }
void extraSparsity(libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz, void *context)
Free function used for a libMesh callback.
Definition: SystemBase.C:48
unsigned int n_threads()
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
bool _has_kokkos_objects
Whether we have any Kokkos objects.
bool globalADIndexing()
Whether we are using global AD indexing.
Definition: ADUtils.h:28
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void preparePRefinement()
Prepare DofMap and Assembly classes with our p-refinement information.
Definition: SubProblem.C:1337
const bool _skip_nl_system_check
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const bool & _solve
Whether or not to actually solve the nonlinear system.
unsigned int n_vars
Moose::CouplingType _coupling
Type of variable coupling.
void extraSendList(std::vector< dof_id_type > &send_list, void *context)
///< Type of coordinate system
Definition: SystemBase.C:40
Jacobian-Free Newton Krylov.
Definition: MooseTypes.h:846
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
Executioner * getExecutioner() const
Retrieve the Executioner for this App.
Definition: MooseApp.C:2196
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data
virtual void preProblemInit()
Perform initializations during executing actions right before init_problem task.
Definition: Executioner.h:57
void initKokkos()
Construct Kokkos assembly and systems and allocate Kokkos material property storages.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1365
auto index_range(const T &sizable)
const std::string & _type
The type of this class.
Definition: MooseBase.h:360
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:897
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4093

◆ initElementStatefulProps()

void FEProblemBase::initElementStatefulProps ( const libMesh::ConstElemRange elem_range,
const bool  threaded 
)
inherited

Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 8485 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::finalize(), ElementSubdomainModifierBase::initElementStatefulProps(), and FEProblemBase::initialSetup().

8486 {
8489  if (threaded)
8490  Threads::parallel_reduce(elem_range, cmt);
8491  else
8492  cmt(elem_range, true);
8493 
8494 #ifdef MOOSE_KOKKOS_ENABLED
8495  if (_has_kokkos_objects)
8497 #endif
8498 }
MaterialPropertyStorage & _bnd_material_props
bool _has_kokkos_objects
Whether we have any Kokkos objects.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props
void initKokkosStatefulProps()

◆ initialAdaptMesh()

void FEProblemBase::initialAdaptMesh ( )
virtualinherited

Definition at line 8155 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

8156 {
8157  unsigned int n = adaptivity().getInitialSteps();
8158  _cycles_completed = 0;
8159  if (n)
8160  {
8161  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
8162  mooseError("HFEM does not support mesh adaptivity currently.");
8163 
8164  TIME_SECTION("initialAdaptMesh", 2, "Performing Initial Adaptivity");
8165 
8166  for (unsigned int i = 0; i < n; i++)
8167  {
8169  computeMarkers();
8170 
8172  {
8173  meshChanged(
8174  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
8175 
8176  // reproject the initial condition
8177  projectSolution();
8178 
8180  }
8181  else
8182  {
8183  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
8184  return;
8185  }
8186  }
8187  }
8188 }
bool initialAdaptMesh()
Used during initial adaptivity.
Definition: Adaptivity.C:268
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1421
unsigned int _cycles_completed
virtual void computeMarkers()
void projectSolution()
virtual void computeIndicators()
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1425
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
Adaptivity & adaptivity()

◆ initialSetup()

void MFEMProblem::initialSetup ( )
overridevirtual

Reimplemented from SubProblem.

Definition at line 43 of file MFEMProblem.C.

Referenced by MFEMSteady::init().

44 {
47 }
void addMFEMNonlinearSolver()
Add the nonlinear solver to the system.
Definition: MFEMProblem.C:79
void initialSetup() override

◆ initKokkos()

void FEProblemBase::initKokkos ( )
inherited

Construct Kokkos assembly and systems and allocate Kokkos material property storages.

Referenced by FEProblemBase::init().

◆ initKokkosStatefulProps()

void FEProblemBase::initKokkosStatefulProps ( )
inherited

◆ initNullSpaceVectors()

void FEProblemBase::initNullSpaceVectors ( const InputParameters parameters,
std::vector< std::shared_ptr< NonlinearSystemBase >> &  nl 
)
virtualinherited

Definition at line 760 of file FEProblemBase.C.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

762 {
763  TIME_SECTION("initNullSpaceVectors", 5, "Initializing Null Space Vectors");
764 
765  unsigned int dimNullSpace = parameters.get<unsigned int>("null_space_dimension");
766  unsigned int dimTransposeNullSpace =
767  parameters.get<unsigned int>("transpose_null_space_dimension");
768  unsigned int dimNearNullSpace = parameters.get<unsigned int>("near_null_space_dimension");
769  for (unsigned int i = 0; i < dimNullSpace; ++i)
770  {
771  std::ostringstream oss;
772  oss << "_" << i;
773  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
774  // builder might march over all nodes
775  for (auto & nl : nls)
776  nl->addVector("NullSpace" + oss.str(), false, libMesh::GHOSTED);
777  }
778  _subspace_dim["NullSpace"] = dimNullSpace;
779  for (unsigned int i = 0; i < dimTransposeNullSpace; ++i)
780  {
781  std::ostringstream oss;
782  oss << "_" << i;
783  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
784  // builder might march over all nodes
785  for (auto & nl : nls)
786  nl->addVector("TransposeNullSpace" + oss.str(), false, libMesh::GHOSTED);
787  }
788  _subspace_dim["TransposeNullSpace"] = dimTransposeNullSpace;
789  for (unsigned int i = 0; i < dimNearNullSpace; ++i)
790  {
791  std::ostringstream oss;
792  oss << "_" << i;
793  // do not project, since this will be recomputed, but make it ghosted, since the near-nullspace
794  // builder might march over all semilocal nodes
795  for (auto & nl : nls)
796  nl->addVector("NearNullSpace" + oss.str(), false, libMesh::GHOSTED);
797  }
798  _subspace_dim["NearNullSpace"] = dimNearNullSpace;
799 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ initPetscOutputAndSomeSolverSettings()

void FEProblemBase::initPetscOutputAndSomeSolverSettings ( )
virtualinherited

Reinitialize PETSc output for proper linear/nonlinear iteration display.

This also may be used for some PETSc-related solver settings

Reimplemented in EigenProblem.

Definition at line 6957 of file FEProblemBase.C.

Referenced by FEProblemBase::possiblyRebuildGeomSearchPatches(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), and FEProblemBase::solve().

6958 {
6961 }
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:450
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void solveSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515

◆ initXFEM()

void FEProblemBase::initXFEM ( std::shared_ptr< XFEMInterface xfem)
inherited

Create XFEM controller object.

Definition at line 8253 of file FEProblemBase.C.

8254 {
8255  _xfem = xfem;
8256  _xfem->setMesh(&_mesh);
8257  if (_displaced_mesh)
8258  _xfem->setDisplacedMesh(_displaced_mesh);
8259 
8260  auto fill_data = [](auto & storage)
8261  {
8262  std::vector<MaterialData *> data(libMesh::n_threads());
8263  for (const auto tid : make_range(libMesh::n_threads()))
8264  data[tid] = &storage.getMaterialData(tid);
8265  return data;
8266  };
8267  _xfem->setMaterialData(fill_data(_material_props));
8268  _xfem->setBoundaryMaterialData(fill_data(_bnd_material_props));
8269 
8270  unsigned int n_threads = libMesh::n_threads();
8271  for (unsigned int i = 0; i < n_threads; ++i)
8272  for (const auto nl_sys_num : index_range(_nl))
8273  {
8274  _assembly[i][nl_sys_num]->setXFEM(_xfem);
8275  if (_displaced_problem)
8276  _displaced_problem->assembly(i, nl_sys_num).setXFEM(_xfem);
8277  }
8278 }
void fill_data(std::map< processor_id_type, std::vector< std::set< unsigned int >>> &data, int M)
MaterialPropertyStorage & _bnd_material_props
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ isKokkosObject()

bool MooseObject::isKokkosObject ( IsKokkosObjectKey &&  ) const
inlineinherited

Get whether this object is a Kokkos functor The parameter is set by the Kokkos base classes:

Definition at line 75 of file MooseObject.h.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and BoundaryRestrictable::initializeBoundaryRestrictable().

76  {
78  }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
static const std::string kokkos_object_param
The name of the parameter that indicates an object is a Kokkos functor.
Definition: MooseBase.h:64
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isMatPropRequested()

bool SubProblem::isMatPropRequested ( const std::string &  prop_name) const
virtualinherited

Find out if a material property has been requested by any object.

Definition at line 731 of file SubProblem.C.

732 {
733  return _material_property_requested.find(prop_name) != _material_property_requested.end();
734 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1064

◆ isParamSetByUser()

bool MooseBase::isParamSetByUser ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is set by a user, as opposed to not set or set to default.

Parameters
nameThe name of the parameter to test

Definition at line 205 of file MooseBase.h.

Referenced by SetupDebugAction::act(), DiffusionCG::addFEBCs(), DiffusionPhysicsBase::addInitialConditions(), MFEMMesh::buildMesh(), MFEMDomainSubMesh::buildSubMesh(), MFEMBoundarySubMesh::buildSubMesh(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), MooseApp::copyInputs(), DiffusionPhysicsBase::DiffusionPhysicsBase(), MooseApp::errorCheck(), MFEMVectorFESpace::getFECName(), MooseBase::getRenamedParam(), DefaultConvergenceBase::getSharedExecutionerParam(), AddVariableAction::init(), PhysicsBase::initializePhysics(), ElementSubdomainModifierBase::initialSetup(), MatrixSymmetryCheck::MatrixSymmetryCheck(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), SolutionInvalidityOutput::output(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), PetscExternalPartitioner::partition(), PiecewiseTabularBase::PiecewiseTabularBase(), MooseMesh::prepare(), SolutionUserObjectBase::readXda(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::runInputFile(), MooseApp::runInputs(), MFEMSolverBase::setPreconditioner(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), TagVectorAux::TagVectorAux(), TimedSubdomainModifier::TimedSubdomainModifier(), and XYDelaunayGenerator::XYDelaunayGenerator().

206  {
207  return _pars.isParamSetByUser(name);
208  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.

◆ isParamValid()

bool MooseBase::isParamValid ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is valid.

Parameters
nameThe name of the parameter to test

Definition at line 199 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), CopyNodalVarsAction::act(), SetupMeshAction::act(), SetupDebugAction::act(), ComposeTimeStepperAction::act(), SetAdaptivityOptionsAction::act(), AddVariableAction::act(), CreateDisplacedProblemAction::act(), CommonOutputAction::act(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), DiffusionPhysicsBase::addInitialConditions(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), DiffusionPhysicsBase::addPostprocessors(), AdvectiveFluxAux::AdvectiveFluxAux(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayVarReductionAux::ArrayVarReductionAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), ParsedChainControl::buildFunction(), GeneratedMesh::buildMesh(), MooseMesh::buildTypedMesh(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), LibmeshPartitioner::clone(), SampledOutput::cloneMesh(), CombinerGenerator::CombinerGenerator(), FunctorAux::computeValue(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), FEProblemSolve::convergenceSetup(), CopyMeshPartitioner::CopyMeshPartitioner(), CSVReaderVectorPostprocessor::CSVReaderVectorPostprocessor(), CutMeshByLevelSetGeneratorBase::CutMeshByLevelSetGeneratorBase(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), DGKernelBase::DGKernelBase(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), PIDTransientControl::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), Exodus::Exodus(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), FunctionDT::FunctionDT(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FVInterfaceKernel::FVInterfaceKernel(), FVMassMatrix::FVMassMatrix(), AddMetaDataGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), BlockDeletionGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), SideSetsFromNodeSetsGenerator::generate(), MeshExtruderGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYZDelaunayGenerator::generate(), XYMeshLineCutter::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), PropertyReadFile::getFileNames(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getRenamedParam(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), Terminator::handleMessage(), HFEMDirichletBC::HFEMDirichletBC(), EigenExecutionerBase::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AdvancedOutput::initExecutionTypes(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), MultiAppVariableValueSampleTransfer::initialSetup(), PiecewiseTabularBase::initialSetup(), SolutionScalarAux::initialSetup(), ParsedConvergence::initialSetup(), SolutionAux::initialSetup(), Console::initialSetup(), MooseParsedVectorFunction::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), MooseParsedGradFunction::initialSetup(), MooseParsedFunction::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::IterationAdaptiveDT(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MassMatrix::MassMatrix(), MatCoupledForce::MatCoupledForce(), MatDiffusionBase< Real >::MatDiffusionBase(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMProblemSolve::MFEMProblemSolve(), MooseMesh::MooseMesh(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableFV< Real >::MooseVariableFV(), MortarConstraintBase::MortarConstraintBase(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NodeSetsGeneratorBase::NodeSetsGeneratorBase(), EigenExecutionerBase::normalizeSolution(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), ParsedCurveGenerator::ParsedCurveGenerator(), PetscOutput::PetscOutput(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseTabularBase::PiecewiseTabularBase(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), MooseMesh::prepare(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), SolutionUserObjectBase::readExodusII(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), ReporterPointSource::ReporterPointSource(), PhysicsBase::reportPotentiallyMissedParameters(), ParsedSubdomainMeshGenerator::setBlockName(), MooseMesh::setCoordSystem(), FileOutput::setFileBase(), FileOutput::setFileBaseInternal(), Split::setup(), SideSetsGeneratorBase::setup(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), Output::setWallTimeIntervalFromCommandLineParam(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsGeneratorBase::SideSetsGeneratorBase(), SolutionUserObjectBase::SolutionUserObjectBase(), WebServerControl::startServer(), Terminator::Terminator(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriod::TimePeriod(), MultiAppDofCopyTransfer::transfer(), TransformGenerator::TransformGenerator(), TransientBase::TransientBase(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

199 { return _pars.isParamValid(name); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isSNESMFReuseBaseSetbyUser()

bool FEProblemBase::isSNESMFReuseBaseSetbyUser ( )
inlineinherited

Return a flag to indicate if _snesmf_reuse_base is set by users.

Definition at line 2339 of file FEProblemBase.h.

bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.

◆ isSolverSystemNonlinear()

bool FEProblemBase::isSolverSystemNonlinear ( const unsigned int  sys_num)
inlineinherited

◆ isSolveTerminationRequested()

virtual bool Problem::isSolveTerminationRequested ( ) const
inlinevirtualinherited

Check of termination has been requested.

This should be called by transient Executioners in the keepGoing() member.

Definition at line 43 of file Problem.h.

Referenced by WebServerControl::execute(), and TransientBase::keepGoing().

43 { return _termination_requested; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ isTransient()

virtual bool FEProblemBase::isTransient ( ) const
inlineoverridevirtualinherited

◆ jacobianSetup()

void FEProblemBase::jacobianSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9449 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::jacobianSetup().

9450 {
9452  // We need to setup all the nonlinear systems other than our current one which actually called
9453  // this method (so we have to make sure we don't go in a circle)
9454  for (const auto i : make_range(numNonlinearSystems()))
9455  if (i != currentNlSysNum())
9456  _nl[i]->jacobianSetup();
9457  // We don't setup the aux sys because that's been done elsewhere
9458  if (_displaced_problem)
9459  _displaced_problem->jacobianSetup();
9460 }
virtual std::size_t numNonlinearSystems() const override
virtual void jacobianSetup()
Definition: SubProblem.C:1212
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ kokkosAssembly() [1/2]

Moose::Kokkos::Assembly& FEProblemBase::kokkosAssembly ( )
inlineinherited

Definition at line 333 of file FEProblemBase.h.

333 { return _kokkos_assembly; }
Moose::Kokkos::Assembly _kokkos_assembly

◆ kokkosAssembly() [2/2]

const Moose::Kokkos::Assembly& FEProblemBase::kokkosAssembly ( ) const
inlineinherited

Definition at line 334 of file FEProblemBase.h.

334 { return _kokkos_assembly; }
Moose::Kokkos::Assembly _kokkos_assembly

◆ linearSysNum()

unsigned int FEProblemBase::linearSysNum ( const LinearSystemName &  linear_sys_name) const
overridevirtualinherited
Returns
the linear system number corresponding to the provided linear_sys_name

Implements SubProblem.

Definition at line 6551 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), LinearSystem::computeGradients(), FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and DisplacedProblem::linearSysNum().

6552 {
6553  std::istringstream ss(linear_sys_name);
6554  unsigned int linear_sys_num;
6555  if (!(ss >> linear_sys_num) || !ss.eof())
6556  linear_sys_num = libmesh_map_find(_linear_sys_name_to_num, linear_sys_name);
6557 
6558  return linear_sys_num;
6559 }
std::map< LinearSystemName, unsigned int > _linear_sys_name_to_num
Map from linear system name to number.

◆ lineSearch()

void FEProblemBase::lineSearch ( )
virtualinherited

execute MOOSE line search

Definition at line 2713 of file FEProblemBase.C.

Referenced by ComputeLineSearchObjectWrapper::linesearch().

2714 {
2715  _line_search->lineSearch();
2716 }
std::shared_ptr< LineSearch > _line_search

◆ logAdd()

void FEProblemBase::logAdd ( const std::string &  system,
const std::string &  name,
const std::string &  type,
const InputParameters params 
) const
inherited

Output information about the object just added to the problem.

Definition at line 4398 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addIndicator(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addOutput(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), FEProblemBase::setAuxKernelParamsAndLog(), and FEProblemBase::setResidualObjectParamsAndLog().

4402 {
4403  if (_verbose_setup != "false")
4404  _console << "[DBG] Adding " << system << " '" << name << "' of type " << type << std::endl;
4405  if (_verbose_setup == "extra")
4406  _console << params << std::endl;
4407 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.

◆ markFamilyPRefinement()

void SubProblem::markFamilyPRefinement ( const InputParameters params)
protectedinherited

Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable.

Definition at line 1372 of file SubProblem.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

1373 {
1374  auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
1375  bool flag = _default_families_without_p_refinement.count(family);
1376  if (params.isParamValid("disable_p_refinement"))
1377  flag = params.get<bool>("disable_p_refinement");
1378 
1379  auto [it, inserted] = _family_for_p_refinement.emplace(family, flag);
1380  if (!inserted && flag != it->second)
1381  mooseError("'disable_p_refinement' not set consistently for variables in ", family);
1382 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1210
static const std::unordered_set< FEFamily > _default_families_without_p_refinement
The set of variable families by default disable p-refinement.
Definition: SubProblem.h:1212
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ markMatPropRequested()

void SubProblem::markMatPropRequested ( const std::string &  prop_name)
virtualinherited

Helper method for adding a material property name to the _material_property_requested set.

Definition at line 725 of file SubProblem.C.

Referenced by MaterialBase::markMatPropRequested(), and MaterialPropertyInterface::markMatPropRequested().

726 {
727  _material_property_requested.insert(prop_name);
728 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1064

◆ matrixTagExists() [1/2]

bool SubProblem::matrixTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 329 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), SystemBase::associateMatrixToTag(), Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), SystemBase::disassociateDefaultMatrixTags(), SystemBase::disassociateMatrixFromTag(), SystemBase::getMatrix(), SubProblem::getMatrixTagID(), SystemBase::matrixTagActive(), DisplacedProblem::matrixTagExists(), SystemBase::removeMatrix(), and TaggingInterface::useMatrixTag().

330 {
331  auto tag_name_upper = MooseUtils::toUpper(tag_name);
332 
333  return _matrix_tag_name_to_tag_id.find(tag_name_upper) != _matrix_tag_name_to_tag_id.end();
334 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1043
std::string toUpper(std::string name)
Convert supplied string to upper case.

◆ matrixTagExists() [2/2]

bool SubProblem::matrixTagExists ( TagID  tag_id) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 337 of file SubProblem.C.

338 {
339  return _matrix_tag_id_to_tag_name.find(tag_id) != _matrix_tag_id_to_tag_name.end();
340 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1046

◆ matrixTagName()

TagName SubProblem::matrixTagName ( TagID  tag)
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 358 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), DisplacedProblem::matrixTagName(), and SystemBase::removeMatrix().

359 {
360  return _matrix_tag_id_to_tag_name[tag];
361 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1046

◆ mesh() [1/3]

MFEMMesh & MFEMProblem::mesh ( )
overridevirtual

Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMesh.

Reimplemented from FEProblemBase.

Definition at line 466 of file MFEMProblem.C.

Referenced by addMFEMFESpaceFromMOOSEVariable(), displaceMesh(), getMeshDisplacementGridFunction(), MFEMSimplifiedFESpace::getProblemDim(), mesh(), and setMesh().

467 {
468  mooseAssert(ExternalProblem::mesh().type() == "MFEMMesh",
469  "Please choose the MFEMMesh mesh type for an MFEMProblem\n");
470  return static_cast<MFEMMesh &>(_mesh);
471 }
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
MFEMMesh inherits a MOOSE mesh class which allows us to work with other MOOSE objects.
Definition: MFEMMesh.h:22
virtual MooseMesh & mesh() override

◆ mesh() [2/3]

const MFEMMesh & MFEMProblem::mesh ( ) const
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 474 of file MFEMProblem.C.

475 {
476  return const_cast<MFEMProblem *>(this)->mesh();
477 }
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:466

◆ mesh() [3/3]

const MooseMesh & FEProblemBase::mesh ( bool  use_displaced) const
overridevirtualinherited

Implements SubProblem.

Definition at line 665 of file FEProblemBase.C.

666 {
667  if (use_displaced && !_displaced_problem)
668  mooseWarning("Displaced mesh was requested but the displaced problem does not exist. "
669  "Regular mesh will be returned");
670  return ((use_displaced && _displaced_problem) ? _displaced_problem->mesh() : mesh());
671 }
void mooseWarning(Args &&... args) const
virtual MooseMesh & mesh() override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ meshChanged() [1/2]

void FEProblemBase::meshChanged ( bool  intermediate_change,
bool  contract_mesh,
bool  clean_refinement_flags 
)
virtualinherited

Update data after a mesh change.

Iff intermediate_change is true, only perform updates as necessary to prepare for another mesh change immediately-subsequent. An example of data that is not updated during an intermediate change is libMesh System matrix data. An example of data that is updated during an intermediate change is libMesh System vectors. These vectors are projected or restricted based off of adaptive mesh refinement or the changing of element subdomain IDs. The flags contract_mesh and clean_refinement_flags should generally only be set to true when the mesh has changed due to mesh refinement. contract_mesh deletes children of coarsened elements and renumbers nodes and elements. clean_refinement_flags resets refinement flags such that any subsequent calls to System::restrict_vectors or System::prolong_vectors before another AMR step do not mistakenly attempt to re-do the restriction/prolongation which occurred in this method

Definition at line 8311 of file FEProblemBase.C.

Referenced by SidesetAroundSubdomainUpdater::finalize(), ActivateElementsUserObjectBase::finalize(), Exodus::handleExodusIOMeshRenumbering(), ElementSubdomainModifierBase::modify(), and Adaptivity::uniformRefineWithProjection().

8314 {
8315  TIME_SECTION("meshChanged", 3, "Handling Mesh Changes");
8316 
8319  _mesh.cacheChangedLists(); // Currently only used with adaptivity and stateful material
8320  // properties
8321 
8322  // Clear these out because they corresponded to the old mesh
8323  _ghosted_elems.clear();
8325 
8326  // The mesh changed. We notify the MooseMesh first, because
8327  // callbacks (e.g. for sparsity calculations) triggered by the
8328  // EquationSystems reinit may require up-to-date MooseMesh caches.
8329  _mesh.meshChanged();
8330 
8331  // If we're just going to alter the mesh again, all we need to
8332  // handle here is AMR and projections, not full system reinit
8333  if (intermediate_change)
8334  es().reinit_solutions();
8335  else
8336  es().reinit();
8337 
8338  if (contract_mesh)
8339  // Once vectors are restricted, we can delete children of coarsened elements
8340  _mesh.getMesh().contract();
8341  if (clean_refinement_flags)
8342  {
8343  // Finally clear refinement flags so that if someone tries to project vectors again without
8344  // an intervening mesh refinement to clear flags they won't run into trouble
8345  MeshRefinement refinement(_mesh.getMesh());
8346  refinement.clean_refinement_flags();
8347  }
8348 
8349  if (!intermediate_change)
8350  {
8351  // Since the mesh has changed, we need to make sure that we update any of our
8352  // MOOSE-system specific data.
8353  for (auto & sys : _solver_systems)
8354  sys->reinit();
8355  _aux->reinit();
8356  }
8357 
8358  // Updating MooseMesh first breaks other adaptivity code, unless we
8359  // then *again* update the MooseMesh caches. E.g. the definition of
8360  // "active" and "local" may have been *changed* by refinement and
8361  // repartitioning done in EquationSystems::reinit().
8362  _mesh.meshChanged();
8363 
8364  // If we have finite volume variables, we will need to recompute additional elemental/face
8365  // quantities
8368 
8369  // Let the meshChangedInterface notify the mesh changed event before we update the active
8370  // semilocal nodes, because the set of ghosted elements may potentially be updated during a mesh
8371  // changed event.
8372  for (const auto & mci : _notify_when_mesh_changes)
8373  mci->meshChanged();
8374 
8375  // Since the Mesh changed, update the PointLocator object used by DiracKernels.
8377 
8378  // Need to redo ghosting
8380 
8381  if (_displaced_problem)
8382  {
8383  _displaced_problem->meshChanged(contract_mesh, clean_refinement_flags);
8385  }
8386 
8388 
8391 
8392  // Just like we reinitialized our geometric search objects, we also need to reinitialize our
8393  // mortar meshes. Note that this needs to happen after DisplacedProblem::meshChanged because the
8394  // mortar mesh discretization will depend necessarily on the displaced mesh being re-displaced
8395  updateMortarMesh();
8396 
8397  // Nonlinear systems hold the mortar mesh functors. The domains of definition of the mortar
8398  // functors might have changed when the mesh changed.
8399  for (auto & nl_sys : _nl)
8400  nl_sys->reinitMortarFunctors();
8401 
8402  reinitBecauseOfGhostingOrNewGeomObjects(/*mortar_changed=*/true);
8403 
8404  // We need to create new storage for newly active elements, and copy
8405  // stateful properties from the old elements.
8408  {
8409  if (havePRefinement())
8411 
8412  // Prolong properties onto newly refined elements' children
8413  {
8415  /* refine = */ true, *this, _material_props, _bnd_material_props, _assembly);
8416  const auto & range = *_mesh.refinedElementRange();
8417  Threads::parallel_reduce(range, pmp);
8418 
8419  // Concurrent erasure from the shared hash map is not safe while we are reading from it in
8420  // ProjectMaterialProperties, so we handle erasure here. Moreover, erasure based on key is
8421  // not thread safe in and of itself because it is a read-write operation. Note that we do not
8422  // do the erasure for p-refinement because the coarse level element is the same as our active
8423  // refined level element
8424  if (!doingPRefinement())
8425  for (const auto & elem : range)
8426  {
8430  }
8431  }
8432 
8433  // Restrict properties onto newly coarsened elements
8434  {
8436  /* refine = */ false, *this, _material_props, _bnd_material_props, _assembly);
8437  const auto & range = *_mesh.coarsenedElementRange();
8438  Threads::parallel_reduce(range, pmp);
8439  // Note that we do not do the erasure for p-refinement because the coarse level element is the
8440  // same as our active refined level element
8441  if (!doingPRefinement())
8442  for (const auto & elem : range)
8443  {
8444  auto && coarsened_children = _mesh.coarsenedElementChildren(elem);
8445  for (auto && child : coarsened_children)
8446  {
8450  }
8451  }
8452  }
8453  }
8454 
8457 
8458  _has_jacobian = false; // we have to recompute jacobian when mesh changed
8459 
8460  // Now for backwards compatibility with user code that overrode the old no-arg meshChanged we must
8461  // call it here
8462  meshChanged();
8463 }
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool isFiniteVolumeInfoDirty() const
Definition: MooseMesh.h:1322
virtual void meshChanged()
Deprecated.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
MaterialPropertyStorage & _bnd_material_props
bool _has_jacobian
Indicates if the Jacobian was computed.
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void eraseProperty(const Elem *elem)
Remove the property storage and element pointer from internal data structures Use this when elements ...
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void cacheChangedLists()
Cache information about what elements were refined and coarsened in the previous step.
Definition: MooseMesh.C:928
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
ConstElemPointerRange * refinedElementRange() const
Return a range that is suitable for threaded execution over elements that were just refined...
Definition: MooseMesh.C:946
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1095
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
bool havePRefinement() const
Query whether p-refinement has been requested at any point during the simulation. ...
Definition: SubProblem.h:1011
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void reinit()
Completely redo all geometric search objects.
bool doingPRefinement() const
Definition: SubProblem.C:1366
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
const std::vector< const Elem * > & coarsenedElementChildren(const Elem *elem) const
Get the newly removed children element ids for an element that was just coarsened.
Definition: MooseMesh.C:958
virtual bool contract()=0
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:966
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
MaterialPropertyStorage & _neighbor_material_props
ConstElemPointerRange * coarsenedElementRange() const
Return a range that is suitable for threaded execution over elements that were just coarsened...
Definition: MooseMesh.C:952
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1051
MaterialPropertyStorage & _material_props
void updatePointLocator(const MooseMesh &mesh)
Called during FEProblemBase::meshChanged() to update the PointLocator object used by the DiracKernels...
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:897
void buildPRefinementAndCoarseningMaps(Assembly *assembly)
Definition: MooseMesh.C:2406
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4093

◆ meshChanged() [2/2]

virtual void FEProblemBase::meshChanged ( )
inlineprotectedvirtualinherited

Deprecated.

Users should switch to overriding the meshChanged which takes arguments

Definition at line 2729 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::initialAdaptMesh(), FEProblemBase::meshChanged(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateMeshXFEM().

2729 {}

◆ meshDisplaced()

void FEProblemBase::meshDisplaced ( )
protectedvirtualinherited

Update data after a mesh displaced.

Definition at line 8478 of file FEProblemBase.C.

Referenced by DisplacedProblem::updateMesh().

8479 {
8480  for (const auto & mdi : _notify_when_mesh_displaces)
8481  mdi->meshDisplaced();
8482 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ messagePrefix()

std::string MooseBase::messagePrefix ( const bool  hit_prefix = true) const
inlineinherited
Returns
A prefix to be used in messages that contain the input file location associated with this object (if any) and the name and type of the object.

Definition at line 256 of file MooseBase.h.

Referenced by MooseBase::callMooseError(), MooseBase::errorPrefix(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), and MooseBase::mooseWarning().

257  {
258  return messagePrefix(_pars, hit_prefix);
259  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseDeprecated() [1/2]

template<typename... Args>
void SolutionInvalidInterface::mooseDeprecated ( Args &&...  args) const
inlineinherited

Definition at line 87 of file SolutionInvalidInterface.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::advanceMultiApps(), MultiApp::appProblem(), ChangeOverTimestepPostprocessor::ChangeOverTimestepPostprocessor(), AddVariableAction::determineType(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), MooseMesh::elem(), UserForcingFunction::f(), FaceFaceConstraint::FaceFaceConstraint(), FunctionDT::FunctionDT(), RandomICBase::generateRandom(), MooseMesh::getBoundariesToElems(), Control::getExecuteOptions(), FEProblemBase::getNonlinearSystem(), FEProblemBase::getUserObjects(), FEProblemBase::hasPostprocessor(), MatDiffusionBase< Real >::MatDiffusionBase(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), NodalScalarKernel::NodalScalarKernel(), MooseMesh::node(), FixedPointSolve::numPicardIts(), RelationshipManager::operator>=(), PercentChangePostprocessor::PercentChangePostprocessor(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Residual::Residual(), MooseMesh::setBoundaryToNormalMap(), Exodus::setOutputDimension(), TagVectorAux::TagVectorAux(), UserForcingFunction::UserForcingFunction(), and VariableResidual::VariableResidual().

88  {
89  _si_moose_base.MooseBase::mooseDeprecated(std::forward<Args>(args)...);
90  flagSolutionWarningMultipleRegistration(_si_moose_base.name() + ": deprecation");
91  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const MooseBase & _si_moose_base
The MooseBase that owns this interface.

◆ mooseDeprecated() [2/2]

template<typename... Args>
void MooseBase::mooseDeprecated ( Args &&...  args) const
inlineinherited

Definition at line 314 of file MooseBase.h.

Referenced by DataFileInterface::getDataFileName(), DataFileInterface::getDataFileNameByName(), MooseApp::getRecoverFileBase(), MooseApp::hasRecoverFileBase(), and MooseApp::setupOptions().

315  {
317  _console, false, true, messagePrefix(true), std::forward<Args>(args)...);
318  }
void mooseDeprecatedStream(S &oss, const bool expired, const bool print_title, Args &&... args)
Definition: MooseError.h:265
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseDocumentedError()

template<typename... Args>
void MooseBase::mooseDocumentedError ( const std::string &  repo_name,
const unsigned int  issue_num,
Args &&...  args 
) const
inlineinherited

Definition at line 277 of file MooseBase.h.

Referenced by ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), DGLowerDKernel::DGLowerDKernel(), HFEMDirichletBC::HFEMDirichletBC(), and LowerDIntegratedBC::LowerDIntegratedBC().

280  {
282  repo_name, issue_num, argumentsToString(std::forward<Args>(args)...)),
283  /* with_prefix = */ true);
284  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105
std::string formatMooseDocumentedError(const std::string &repo_name, const unsigned int issue_num, const std::string &msg)
Formats a documented error.
Definition: MooseError.C:128

◆ mooseError()

template<typename... Args>
void MooseBase::mooseError ( Args &&...  args) const
inlineinherited

Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available.

Definition at line 271 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), PetscExternalPartitioner::_do_partition(), MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), AutoCheckpointAction::act(), AddMeshGeneratorAction::act(), CheckFVBCAction::act(), InitProblemAction::act(), AddBoundsVectorsAction::act(), AddVectorPostprocessorAction::act(), SetupMeshCompleteAction::act(), CreateExecutionerAction::act(), CheckIntegrityAction::act(), AddFVICAction::act(), AddICAction::act(), CreateProblemAction::act(), CreateProblemDefaultAction::act(), CombineComponentsMeshes::act(), SetupMeshAction::act(), SplitMeshAction::act(), AdaptivityAction::act(), ChainControlSetupAction::act(), AddTimeStepperAction::act(), CSGOnlyAction::act(), DeprecatedBlockAction::act(), SetupPredictorAction::act(), SetupTimeStepperAction::act(), CreateDisplacedProblemAction::act(), SetAdaptivityOptionsAction::act(), MaterialDerivativeTestAction::act(), MaterialOutputAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::adaptMesh(), MooseVariableFV< Real >::adCurlSln(), MooseVariableFV< Real >::adCurlSlnNeighbor(), AddActionComponentAction::AddActionComponentAction(), addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), DiffusionCG::addBoundaryConditionsFromComponents(), PhysicsComponentInterface::addBoundaryConditionsFromComponents(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), DistributedRectilinearMeshGenerator::addElement(), MooseApp::addExecutor(), FEProblemBase::addFunction(), SubProblem::addFunctor(), FEProblemBase::addFVInitialCondition(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInitialCondition(), PhysicsComponentInterface::addInitialConditionsFromComponents(), FEProblemBase::addInterfaceKernel(), addKernel(), FEProblemBase::addKernel(), FEProblem::addLineSearch(), FEProblemBase::addLineSearch(), addMaterial(), MeshGenerator::addMeshSubgenerator(), addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), SubProblem::addPiecewiseByBlockLambdaFunctor(), DiracKernelBase::addPoint(), DistributedRectilinearMeshGenerator::addPoint(), DiracKernelBase::addPointWithValidId(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), MooseMesh::addQuadratureNode(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addScalarKernel(), AddVariableAction::addVariable(), FEProblemBase::addVectorPostprocessor(), SubProblem::addVectorTag(), MooseLinearVariableFV< Real >::adError(), ADInterfaceKernelTempl< T >::ADInterfaceKernelTempl(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), MooseVariableScalar::adUDot(), Output::advancedExecuteOn(), AdvectiveFluxAux::AdvectiveFluxAux(), MooseVariableBase::allDofIndices(), NEML2ModelExecutor::applyPredictor(), MooseApp::appNameToLibName(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayConstantIC::ArrayConstantIC(), ArrayDGKernel::ArrayDGKernel(), ArrayDiffusion::ArrayDiffusion(), ArrayFunctionIC::ArrayFunctionIC(), ArrayReaction::ArrayReaction(), ArrayTimeDerivative::ArrayTimeDerivative(), MooseApp::attachRelationshipManagers(), AddPeriodicBCAction::autoTranslationBoundaries(), AuxKernelBase::AuxKernelBase(), Function::average(), Axisymmetric2D3DSolutionFunction::Axisymmetric2D3DSolutionFunction(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), BoundingValueElementDamper::BoundingValueElementDamper(), BoundingValueNodalDamper::BoundingValueNodalDamper(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), MooseMesh::buildCoarseningMap(), MultiApp::buildComm(), DistributedRectilinearMeshGenerator::buildCube(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), TimedSubdomainModifier::buildFromParameters(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), MooseMesh::buildLowerDMesh(), TiledMesh::buildMesh(), GeneratedMesh::buildMesh(), SpiralAnnularMesh::buildMesh(), MeshGeneratorMesh::buildMesh(), ImageMeshGenerator::buildMesh3D(), ImageMesh::buildMesh3D(), MooseMesh::buildRefinementMap(), MaterialBase::buildRequiredMaterials(), MooseMesh::buildTypedMesh(), MooseMesh::cacheFaceInfoVariableOwnership(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), EigenExecutionerBase::chebyshev(), SubProblem::checkBlockMatProps(), PhysicsBase::checkBlockRestrictionIdentical(), ComponentBoundaryConditionInterface::checkBoundaryConditionsAllRequested(), SubProblem::checkBoundaryMatProps(), PhysicsBase::checkComponentType(), IterationCountConvergence::checkConvergence(), MooseMesh::checkCoordinateSystems(), DiffusionLHDGAssemblyHelper::checkCoupling(), FEProblemBase::checkDependMaterialsHelper(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), DefaultConvergenceBase::checkDuplicateSetSharedExecutionerParams(), MooseMesh::checkDuplicateSubdomainNames(), FEProblemBase::checkExceptionAndStopSolve(), NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), MeshGenerator::checkGetMesh(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Steady::checkIntegrity(), EigenExecutionerBase::checkIntegrity(), Eigenvalue::checkIntegrity(), DefaultSteadyStateConvergence::checkIterationType(), DefaultMultiAppFixedPointConvergence::checkIterationType(), DefaultNonlinearConvergence::checkIterationType(), ExplicitTimeIntegrator::checkLinearConvergence(), MooseApp::checkMetaDataIntegrity(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), Sampler::checkReinitStatus(), MooseApp::checkReservedCapability(), MultiAppGeneralFieldNearestLocationTransfer::checkRestrictionsForSource(), MultiAppPostprocessorToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppScalarToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppPostprocessorTransfer::checkSiblingsTransferSupported(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), MultiAppMFEMCopyTransfer::checkSiblingsTransferSupported(), MultiAppCopyTransfer::checkSiblingsTransferSupported(), MultiAppTransfer::checkSiblingsTransferSupported(), MFEMSolverBase::checkSpectralEquivalence(), MaterialBase::checkStatefulSanity(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), FEProblemBase::checkUserObjects(), Moose::PetscSupport::checkUserProvidedPetscOption(), DomainUserObject::checkVariable(), MultiAppTransfer::checkVariable(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), LibmeshPartitioner::clone(), MooseMesh::clone(), CombinerGenerator::CombinerGenerator(), ComparisonPostprocessor::comparisonIsTrue(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), ElementH1ErrorFunctionAux::compute(), NodalPatchRecovery::compute(), FEProblemBase::computeBounds(), VariableCondensationPreconditioner::computeDInverseDiag(), CompositionDT::computeDT(), ArrayDGKernel::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighResidual(), InternalSideIntegralPostprocessor::computeFaceInfoIntegral(), SideIntegralPostprocessor::computeFaceInfoIntegral(), MooseVariableFieldBase::computeFaceValues(), TimeSequenceStepperBase::computeFailedDT(), IterationAdaptiveDT::computeFailedDT(), TimeStepper::computeFailedDT(), MooseMesh::computeFiniteVolumeCoords(), HistogramVectorPostprocessor::computeHistogram(), ArrayKernel::computeJacobian(), ArrayIntegratedBC::computeJacobian(), FVFluxKernel::computeJacobian(), NodalConstraint::computeJacobian(), FEProblemBase::computeJacobianTags(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), EigenProblem::computeMatricesTags(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), ArrayKernel::computeOffDiagJacobian(), ArrayIntegratedBC::computeOffDiagJacobian(), FVElementalKernel::computeOffDiagJacobian(), Moose::Kokkos::ResidualObject::computeOffDiagJacobian(), MortarScalarBase::computeOffDiagJacobianScalar(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), MaterialBase::computeProperties(), SideFVFluxBCIntegral::computeQpIntegral(), ScalarKernel::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), NodalEqualValueConstraint::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), NodeElemConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), ScalarKernel::computeQpResidual(), MassMatrix::computeQpResidual(), HDGKernel::computeQpResidual(), DiffusionLHDGDirichletBC::computeQpResidual(), NodalEqualValueConstraint::computeQpResidual(), DiffusionLHDGPrescribedGradientBC::computeQpResidual(), IPHDGBC::computeQpResidual(), KernelValue::computeQpResidual(), TorchScriptMaterial::computeQpValues(), InterfaceQpValueUserObject::computeRealValue(), ArrayKernel::computeResidual(), ArrayIntegratedBC::computeResidual(), FVFluxBC::computeResidual(), FVFluxKernel::computeResidual(), NodalConstraint::computeResidual(), FVFluxKernel::computeResidualAndJacobian(), ResidualObject::computeResidualAndJacobian(), FEProblemBase::computeResidualAndJacobian(), HDGKernel::computeResidualAndJacobianOnSide(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), KernelScalarBase::computeScalarOffDiagJacobian(), ADKernelScalarBase::computeScalarQpResidual(), ADMortarScalarBase::computeScalarQpResidual(), MortarScalarBase::computeScalarQpResidual(), KernelScalarBase::computeScalarQpResidual(), TimeStepper::computeStep(), ActuallyExplicitEuler::computeTimeDerivatives(), ExplicitEuler::computeTimeDerivatives(), ImplicitEuler::computeTimeDerivatives(), BDF2::computeTimeDerivatives(), NewmarkBeta::computeTimeDerivatives(), CentralDifference::computeTimeDerivatives(), CrankNicolson::computeTimeDerivatives(), LStableDirk2::computeTimeDerivatives(), LStableDirk3::computeTimeDerivatives(), ImplicitMidpoint::computeTimeDerivatives(), ExplicitTVDRK2::computeTimeDerivatives(), AStableDirk4::computeTimeDerivatives(), LStableDirk4::computeTimeDerivatives(), ExplicitRK2::computeTimeDerivatives(), MultiAppGeometricInterpolationTransfer::computeTransformation(), BuildArrayVariableAux::computeValue(), TagVectorArrayVariableAux::computeValue(), NearestNodeValueAux::computeValue(), ProjectionAux::computeValue(), PenetrationAux::computeValue(), ConcentricCircleMesh::ConcentricCircleMesh(), ConditionalEnableControl::ConditionalEnableControl(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), TimeStepper::constrainStep(), LibtorchNeuralNetControl::controlNeuralNet(), TransientBase::convergedToSteadyState(), ParsedConvergence::convertRealToBool(), MooseApp::copyInputs(), CopyMeshPartitioner::CopyMeshPartitioner(), CoupledForceNodalKernel::CoupledForceNodalKernel(), MultiApp::createApp(), MooseApp::createExecutors(), AddVariableAction::createInitialConditionAction(), MooseApp::createRMFromTemplateAndInit(), Function::curl(), MooseVariableFV< Real >::curlPhi(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), SidesetInfoVectorPostprocessor::dataHelper(), ReporterTransferInterface::declareClone(), Moose::Kokkos::MaterialBase::declareKokkosPropertyByName(), MeshGenerator::declareMeshProperty(), ReporterTransferInterface::declareVectorClone(), DefaultSteadyStateConvergence::DefaultSteadyStateConvergence(), FunctorRelationshipManager::delete_remote_elements(), MooseMesh::deleteRemoteElements(), BicubicSplineFunction::derivative(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), MooseMesh::detectPairedSidesets(), MooseApp::determineLibtorchDeviceType(), FEProblemBase::determineSolverSystem(), DGKernel::DGKernel(), MeshDiagnosticsGenerator::diagnosticsLog(), DistributedPositions::DistributedPositions(), Function::div(), FunctorBinnedValuesDivision::divisionIndex(), MooseVariableFV< Real >::divPhi(), FunctorRelationshipManager::dofmap_reinit(), EigenProblem::doFreeNonlinearPowerIterations(), FEProblemBase::duplicateVariableCheck(), MooseApp::dynamicAllRegistration(), MooseApp::dynamicAppRegistration(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), Eigenvalues::Eigenvalues(), ElementalVariableValue::ElementalVariableValue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementIntegerAux::ElementIntegerAux(), ElementMaterialSampler::ElementMaterialSampler(), ElementQualityAux::ElementQualityAux(), ElementUOAux::ElementUOAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), DistributedRectilinearMeshGenerator::elemId(), ProjectionAux::elemOnNodeVariableIsDefinedOn(), EigenKernel::enabled(), MooseApp::errorCheck(), MooseMesh::errorIfDistributedMesh(), MultiAppTransfer::errorIfObjectExecutesOnTransferInSourceApp(), SideIntegralPostprocessor::errorNoFaceInfo(), SideIntegralFunctorPostprocessorTempl< false >::errorNoFaceInfo(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), FixedPointSolve::examineFixedPointConvergence(), MultiAppGeneralFieldTransfer::examineReceivedValueConflicts(), RealToBoolChainControl::execute(), RestartableDataReporter::execute(), DiscreteElementUserObject::execute(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppScalarToAuxScalarTransfer::execute(), NodalValueSampler::execute(), PositionsFunctorValueSampler::execute(), MultiAppPostprocessorInterpolationTransfer::execute(), ElementQualityChecker::execute(), MultiAppPostprocessorTransfer::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), FindValueOnLine::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppMFEMCopyTransfer::execute(), MultiAppCopyTransfer::execute(), MultiAppGeometricInterpolationTransfer::execute(), MultiAppUserObjectTransfer::execute(), InterfaceQpUserObjectBase::execute(), WebServerControl::execute(), TransientBase::execute(), LeastSquaresFit::execute(), LeastSquaresFitHistory::execute(), VectorPostprocessorComparison::execute(), Eigenvalue::execute(), TimeExtremeValue::execute(), DomainUserObject::execute(), FEProblemBase::execute(), FEProblemBase::executeControls(), MooseApp::executeExecutioner(), MultiAppVectorPostprocessorTransfer::executeFromMultiapp(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), Exodus::Exodus(), ExplicitSSPRungeKutta::ExplicitSSPRungeKutta(), MultiAppGeneralFieldTransfer::extractOutgoingPoints(), NEML2ModelExecutor::extractOutputs(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), NEML2ModelExecutor::fillInputs(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), VerifyNodalUniqueID::finalize(), VerifyElementUniqueID::finalize(), ParsedVectorReporter::finalize(), ParsedVectorVectorRealReductionReporter::finalize(), DiscreteElementUserObject::finalize(), ElementQualityChecker::finalize(), MemoryUsage::finalize(), PointSamplerBase::finalize(), DiscreteVariableResidualNorm::finalize(), NearestPointAverage::finalize(), NearestPointIntegralVariablePostprocessor::finalize(), MooseApp::finalizeRestore(), Transfer::find_sys(), BreakMeshByBlockGeneratorBase::findFreeBoundaryId(), FunctionDT::FunctionDT(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FunctionScalarAux::FunctionScalarAux(), FunctionScalarIC::FunctionScalarIC(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVMassMatrix::FVMassMatrix(), FVMatAdvection::FVMatAdvection(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), GapValueAux::GapValueAux(), WorkBalance::gather(), ElementSubdomainModifierBase::gatherPatchElements(), Boundary2DDelaunayGenerator::General2DDelaunay(), ElementOrderConversionGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), SideSetsFromNormalsGenerator::generate(), SmoothMeshGenerator::generate(), SubdomainPerElementGenerator::generate(), TiledMeshGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), MoveNodeGenerator::generate(), SideSetsFromPointsGenerator::generate(), StitchMeshGenerator::generate(), MeshDiagnosticsGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), MeshRepairGenerator::generate(), ParsedGenerateNodeset::generate(), SideSetsFromBoundingBoxGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CombinerGenerator::generate(), AllSideSetsByNormalsGenerator::generate(), AdvancedExtruderGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), SpiralAnnularMeshGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), CutMeshByLevelSetGeneratorBase::generate(), PatternedMeshGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), BoundingBoxNodeSetGenerator::generate(), MeshGenerator::generateCSG(), MeshGenerator::generateData(), GeneratedMesh::GeneratedMesh(), GeneratedMeshGenerator::GeneratedMeshGenerator(), MeshGenerator::generateInternal(), MeshGenerator::generateInternalCSG(), CircularBoundaryCorrectionGenerator::generateRadialCorrectionFactor(), RandomICBase::generateRandom(), GenericConstantMaterialTempl< is_ad >::GenericConstantMaterialTempl(), GenericConstantVectorMaterialTempl< is_ad >::GenericConstantVectorMaterialTempl(), GenericFunctionMaterialTempl< is_ad >::GenericFunctionMaterialTempl(), GenericFunctionVectorMaterialTempl< is_ad >::GenericFunctionVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), DisplacedProblem::getActualFieldVariable(), FEProblemBase::getActualFieldVariable(), DisplacedProblem::getArrayVariable(), FEProblemBase::getArrayVariable(), MooseMesh::getAxisymmetricRadialCoord(), NEML2BatchIndexGenerator::getBatchIndex(), MooseMesh::getBlockConnectedBlocks(), VariableOldValueBounds::getBound(), MooseMesh::getBoundaryID(), MultiApp::getBoundingBox(), ChainControl::getChainControlDataByName(), MooseMesh::getCoarseningMap(), NodalPatchRecoveryBase::getCoefficients(), MultiApp::getCommandLineArgs(), MooseVariableBase::getContinuity(), Control::getControllableParameterByName(), FEProblemBase::getConvergence(), MooseMesh::getCoordSystem(), PhysicsBase::getCoupledPhysics(), MeshGenerator::getCSGBaseByName(), PropertyReadFile::getData(), DataFileInterface::getDataFilePath(), TransfiniteMeshGenerator::getDiscreteEdge(), FEProblemBase::getDistribution(), MooseVariableBase::getDofIndices(), VariableCondensationPreconditioner::getDofToCondense(), TransfiniteMeshGenerator::getEdge(), GhostingUserObject::getElementalValue(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), PropertyReadFile::getElementData(), MooseMesh::getElementIDIndex(), Material::getElementIDNeighbor(), Material::getElementIDNeighborByName(), MooseMesh::getElemIDMapping(), MooseMesh::getElemIDsOnBlocks(), MultiAppFieldTransfer::getEquationSystem(), MultiApp::getExecutioner(), MooseApp::getExecutor(), MFEMVectorFESpace::getFECName(), MultiAppTransfer::getFromMultiApp(), MultiAppTransfer::getFromMultiAppInfo(), FEProblemBase::getFunction(), SubProblem::getFunctor(), FEProblemBase::getFVMatsAndDependencies(), MooseMesh::getGeneralAxisymmetricCoordAxis(), DistributedRectilinearMeshGenerator::getGhostNeighbors(), DistributedRectilinearMeshGenerator::getIndices(), FEProblemBase::getLinearConvergenceNames(), SolutionUserObjectBase::getLocalVarIndex(), Material::getMaterialByName(), FEProblemBase::getMaterialData(), FEProblemBase::getMaterialPropertyStorageConsumers(), SubProblem::getMatrixTagID(), GeneratedMesh::getMaxInDimension(), AnnularMesh::getMaxInDimension(), FEProblemBase::getMaxQps(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), AnnularMesh::getMinInDimension(), GeneratedMesh::getMinInDimension(), MultiAppTransfer::getMultiApp(), FEProblemBase::getMultiAppFixedPointConvergenceName(), DistributedRectilinearMeshGenerator::getNeighbors(), Times::getNextTime(), MooseMesh::getNodeBlockIds(), PropertyReadFile::getNodeData(), MooseMesh::getNodeList(), FEProblemBase::getNonlinearConvergenceNames(), EigenProblem::getNonlinearEigenSystem(), FEProblemBase::getNonlinearSystem(), NEML2ModelExecutor::getOutput(), NEML2ModelExecutor::getOutputDerivative(), NEML2ModelExecutor::getOutputParameterDerivative(), MooseMesh::getPairedBoundaryMapping(), MaterialOutputAction::getParams(), ImageMeshGenerator::GetPixelInfo(), ImageMesh::GetPixelInfo(), PlaneIDMeshGenerator::getPlaneID(), Positions::getPosition(), Positions::getPositions(), FEProblemBase::getPositionsObject(), Positions::getPositionsVector2D(), Positions::getPositionsVector3D(), Positions::getPositionsVector4D(), PostprocessorInterface::getPostprocessorValueByNameInternal(), Times::getPreviousTime(), ComponentMaterialPropertyInterface::getPropertyValue(), InterfaceQpUserObjectBase::getQpValue(), MooseMesh::getRefinementMap(), MooseBase::getRenamedParam(), ReporterInterface::getReporterContextBaseByName(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), MooseApp::getRMClone(), FEProblemBase::getSampler(), WebServerControl::getScalarJSONValue(), DisplacedProblem::getScalarVariable(), FEProblemBase::getScalarVariable(), MooseObject::getSharedPtr(), InterfaceQpUserObjectBase::getSideAverageValue(), PhysicsBase::getSolverSystem(), DisplacedProblem::getStandardVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSteadyStateConvergenceName(), MooseMesh::getSubdomainBoundaryIds(), TimedSubdomainModifier::getSubdomainIDAndCheck(), DisplacedProblem::getSystem(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), Times::getTimeAtIndex(), FEProblemBase::getTimeFromStateArg(), TransientBase::getTimeIntegratorNames(), Times::getTimes(), MultiAppTransfer::getToMultiApp(), MultiAppTransfer::getToMultiAppInfo(), MooseMesh::getUniqueCoordSystem(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorComponent::getValue(), NumRelationshipManagers::getValue(), Residual::getValue(), SideAverageValue::getValue(), JSONFileReader::getValue(), LineValueSampler::getValue(), FindValueOnLine::getValueAtPoint(), SubProblem::getVariableHelper(), JSONFileReader::getVector(), VectorPostprocessorInterface::getVectorPostprocessorName(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), DisplacedProblem::getVectorVariable(), FEProblemBase::getVectorVariable(), GhostingFromUOAux::GhostingFromUOAux(), MultiApp::globalAppToLocal(), MooseParsedVectorFunction::gradient(), Function::gradient(), FEProblemBase::handleException(), Terminator::handleMessage(), MooseVariableBase::hasDoFsOnNodes(), PostprocessorInterface::hasPostprocessor(), PostprocessorInterface::hasPostprocessorByName(), ReporterInterface::hasReporterValue(), ReporterInterface::hasReporterValueByName(), VectorPostprocessorInterface::hasVectorPostprocessor(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), HDGKernel::HDGKernel(), TransientBase::incrementStepOrReject(), FixedPointIterationAdaptiveDT::init(), CrankNicolson::init(), CSVTimeSequenceStepper::init(), ExplicitTimeIntegrator::init(), EigenExecutionerBase::init(), TransientBase::init(), FEProblem::init(), AddAuxVariableAction::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AddVariableAction::init(), MooseMesh::init(), Sampler::init(), FEProblemBase::init(), MultiApp::init(), FEProblemBase::initialAdaptMesh(), NestedDivision::initialize(), DistributedPositions::initialize(), ReporterPositions::initialize(), TransformedPositions::initialize(), ElementGroupCentroidPositions::initialize(), FunctorPositions::initialize(), ReporterTimes::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), ParsedConvergence::initializeConstantSymbol(), PhysicsBase::initializePhysics(), SteffensenSolve::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), ChainControlDataPostprocessor::initialSetup(), MultiAppConservativeTransfer::initialSetup(), PiecewiseLinearBase::initialSetup(), IntegralPreservingFunctionIC::initialSetup(), FullSolveMultiApp::initialSetup(), PiecewiseLinear::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), CoarsenedPiecewiseLinear::initialSetup(), SolutionScalarAux::initialSetup(), LinearFVDiffusion::initialSetup(), LinearFVAdvection::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), SolutionAux::initialSetup(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), NodalVariableValue::initialSetup(), Axisymmetric2D3DSolutionFunction::initialSetup(), ElementSubdomainModifierBase::initialSetup(), Exodus::initialSetup(), CSV::initialSetup(), MooseParsedFunction::initialSetup(), SolutionUserObjectBase::initialSetup(), FEProblemBase::initialSetup(), SubProblem::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initShowHideLists(), Function::integral(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), InterfaceTimeKernel::InterfaceTimeKernel(), InternalSideIndicatorBase::InternalSideIndicatorBase(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), EigenExecutionerBase::inversePowerIteration(), InversePowerMethod::InversePowerMethod(), Sampler::isAdaptiveSamplingCompleted(), MooseMesh::isBoundaryFullyExternalToSubdomains(), MooseVariableBase::isNodal(), IterationAdaptiveDT::IterationAdaptiveDT(), IterationCountConvergence::IterationCountConvergence(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), MooseApp::libNameToAppName(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationPostprocessor::LinearCombinationPostprocessor(), LinearNodalConstraint::LinearNodalConstraint(), LineMaterialSamplerBase< Real >::LineMaterialSamplerBase(), LineSearch::lineSearch(), LineValueSampler::LineValueSampler(), MooseApp::loadLibraryAndDependencies(), MultiAppGeneralFieldTransfer::locatePointReceivers(), LowerBoundNodalKernel::LowerBoundNodalKernel(), MooseLinearVariableFV< Real >::lowerDError(), PNGOutput::makePNG(), ReporterPointMarker::markerSetup(), SubProblem::markFamilyPRefinement(), MassMatrix::MassMatrix(), Material::Material(), MaterialRealTensorValueAuxTempl< is_ad >::MaterialRealTensorValueAuxTempl(), MaterialRealVectorValueAuxTempl< T, is_ad, is_functor >::MaterialRealVectorValueAuxTempl(), MaterialStdVectorRealGradientAux::MaterialStdVectorRealGradientAux(), Distribution::median(), FunctorRelationshipManager::mesh_reinit(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshExtruderGenerator::MeshExtruderGenerator(), MeshRepairGenerator::MeshRepairGenerator(), SetupMeshAction::modifyParamsForUseSplit(), MeshMetaDataInterface::mooseErrorInternal(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), MooseMesh::MooseMesh(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableConstMonomial::MooseVariableConstMonomial(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NearestNodeDistanceAux::NearestNodeDistanceAux(), FEProblemBase::needsPreviousNewtonIteration(), NewmarkBeta::NewmarkBeta(), NodalConstraint::NodalConstraint(), MooseVariableFV< Real >::nodalDofIndex(), MooseVariableFV< Real >::nodalDofIndexNeighbor(), MooseLinearVariableFV< Real >::nodalError(), MooseVariableFV< Real >::nodalMatrixTagValue(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalScalarKernel::NodalScalarKernel(), MooseVariableFV< Real >::nodalValueArray(), MooseVariableFV< Real >::nodalValueOldArray(), MooseVariableFV< Real >::nodalValueOlderArray(), NodalVariableValue::NodalVariableValue(), MooseVariableFV< Real >::nodalVectorTagValue(), DistributedRectilinearMeshGenerator::nodeId(), MooseVariableFV< Real >::numberOfDofsNeighbor(), NumDOFs::NumDOFs(), NumFailedTimeSteps::NumFailedTimeSteps(), DistributedRectilinearMeshGenerator::numNeighbors(), NumNonlinearIterations::NumNonlinearIterations(), NumVars::NumVars(), Output::onInterval(), FunctorRelationshipManager::operator()(), RelationshipManager::operator==(), ActionComponent::outerSurfaceArea(), ActionComponent::outerSurfaceBoundaries(), XDA::output(), SolutionHistory::output(), Exodus::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), AdvancedOutput::outputInput(), MooseApp::outputMachineReadableData(), AdvancedOutput::outputNodalVariables(), AdvancedOutput::outputPostprocessors(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), Exodus::outputSetup(), AdvancedOutput::outputSystemInformation(), Console::outputVectorPostprocessors(), AdvancedOutput::outputVectorPostprocessors(), DistributedRectilinearMeshGenerator::paritionSquarely(), PiecewiseBilinear::parse(), ParsedConvergence::ParsedConvergence(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), MultiAppConservativeTransfer::performAdjustment(), ExplicitTimeIntegrator::performExplicitSolve(), PetscExternalPartitioner::PetscExternalPartitioner(), MooseVariableFV< Real >::phiLowerSize(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseMulticonstant::PiecewiseMulticonstant(), PiecewiseMultiInterpolation::PiecewiseMultiInterpolation(), PiecewiseTabularBase::PiecewiseTabularBase(), CutMeshByLevelSetGeneratorBase::pointPairLevelSetInterception(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessorByName(), LStableDirk2::postResidual(), LStableDirk3::postResidual(), ImplicitMidpoint::postResidual(), ExplicitTVDRK2::postResidual(), LStableDirk4::postResidual(), AStableDirk4::postResidual(), ExplicitRK2::postResidual(), EigenProblem::postScaleEigenVector(), VariableCondensationPreconditioner::preallocateCondensedJacobian(), ADKernelValueTempl< T >::precomputeQpJacobian(), FunctorKernel::precomputeQpResidual(), Predictor::Predictor(), TransientBase::preExecute(), MooseMesh::prepare(), MooseMesh::prepared(), ElementSubdomainModifierBase::prepareVariableForReinitialization(), FixedPointSolve::printFixedPointConvergenceReason(), PseudoTimestep::PseudoTimestep(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readExodusII(), SolutionUserObjectBase::readXda(), CoarsenBlockGenerator::recursiveCoarsen(), MooseApp::recursivelyCreateExecutors(), FunctorRelationshipManager::redistribute(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseApp::registerRestartableData(), MooseApp::registerRestartableNameWithFilter(), Sampler::reinit(), RelativeSolutionDifferenceNorm::RelativeSolutionDifferenceNorm(), MFEMTransient::relativeSolutionDifferenceNorm(), MooseApp::removeRelationshipManager(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::restore(), RinglebMesh::RinglebMesh(), RinglebMeshGenerator::RinglebMeshGenerator(), MooseApp::run(), MooseApp::runInputs(), PiecewiseMultiInterpolation::sample(), ScalarComponentIC::ScalarComponentIC(), MortarScalarBase::scalarVariable(), DistributedRectilinearMeshGenerator::scaleNodalPositions(), BicubicSplineFunction::secondDerivative(), MooseVariableFV< Real >::secondPhi(), MooseVariableFV< Real >::secondPhiFace(), MooseVariableFV< Real >::secondPhiFaceNeighbor(), MooseVariableFV< Real >::secondPhiNeighbor(), FunctorRelationshipManager::set_mesh(), MooseVariableBase::setActiveTags(), DistributedRectilinearMeshGenerator::setBoundaryNames(), MooseMesh::setCoordSystem(), FEProblemBase::setCoupling(), PiecewiseBase::setData(), FileOutput::setFileBaseInternal(), MooseMesh::setGeneralAxisymmetricCoordAxes(), FEProblemSolve::setInnerSolve(), MeshGenerator::setMeshProperty(), MooseApp::setMFEMDevice(), FVPointValueConstraint::setMyElem(), FEProblemBase::setNonlocalCouplingMatrix(), Sampler::setNumberOfCols(), Sampler::setNumberOfRandomSeeds(), Sampler::setNumberOfRows(), Exodus::setOutputDimensionInExodusWriter(), AddPeriodicBCAction::setPeriodicVars(), MFEMSolverBase::setPreconditioner(), MultiAppGeneralFieldTransfer::setSolutionVectorValues(), Split::setup(), TransientMultiApp::setupApp(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), TimeSequenceStepperBase::setupSequence(), TransientBase::setupTimeIntegrator(), TimePeriodBase::setupTimes(), IntegratedBCBase::shouldApply(), PhysicsBase::shouldCreateIC(), PhysicsBase::shouldCreateTimeDerivative(), PhysicsBase::shouldCreateVariable(), SideAdvectiveFluxIntegralTempl< is_ad >::SideAdvectiveFluxIntegralTempl(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsFromNormalsGenerator::SideSetsFromNormalsGenerator(), SideSetsFromPointsGenerator::SideSetsFromPointsGenerator(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), MooseVariableBase::sizeMatrixTagData(), SolutionTimeAdaptiveDT::SolutionTimeAdaptiveDT(), SolutionUserObjectBase::SolutionUserObjectBase(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TimeIntegrator::solve(), FEProblemBase::solverSysNum(), FullSolveMultiApp::solveStep(), SpatialAverageBase::SpatialAverageBase(), UserObject::spatialPoints(), NearestPointIntegralVariablePostprocessor::spatialValue(), NearestPointAverage::spatialValue(), MeshDivisionFunctorReductionVectorPostprocessor::spatialValue(), UserObject::spatialValue(), SpiralAnnularMesh::SpiralAnnularMesh(), SpiralAnnularMeshGenerator::SpiralAnnularMeshGenerator(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), WebServerControl::stringifyJSONType(), MultiAppGeometricInterpolationTransfer::subdomainIDsNode(), Constraint::subdomainSetup(), NodalUserObject::subdomainSetup(), GeneralUserObject::subdomainSetup(), MaterialBase::subdomainSetup(), FEProblemBase::swapBackMaterialsNeighbor(), DisplacedProblem::systemBaseLinear(), Console::systemInfoFlags(), FEProblemBase::systemNumForVariable(), TerminateChainControl::terminate(), Terminator::Terminator(), CutMeshByLevelSetGeneratorBase::tet4ElemCutter(), ThreadedGeneralUserObject::threadJoin(), DiscreteElementUserObject::threadJoin(), GeneralUserObject::threadJoin(), Function::timeDerivative(), TimedSubdomainModifier::TimedSubdomainModifier(), TimeExtremeValue::TimeExtremeValue(), Function::timeIntegral(), MooseLinearVariableFV< Real >::timeIntegratorError(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriodBase::TimePeriodBase(), VectorPostprocessorVisualizationAux::timestepSetup(), WebServerControl::toMiniJson(), MultiAppDofCopyTransfer::transfer(), MultiAppMFEMCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransformedPositions::TransformedPositions(), FEProblemBase::trustUserCouplingMatrix(), MooseVariableScalar::uDot(), MooseVariableScalar::uDotDot(), MooseVariableScalar::uDotDotOld(), FEProblemBase::uDotDotOldRequested(), MooseVariableScalar::uDotOld(), FEProblemBase::uDotOldRequested(), MooseBase::uniqueName(), Positions::unrollMultiDPositions(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), Checkpoint::updateCheckpointFiles(), EqualValueBoundaryConstraint::updateConstrainedNodes(), SolutionUserObjectBase::updateExodusBracketingTimeIndices(), FEProblemBase::updateMaxQps(), MFEMHypreAMS::updateSolver(), MFEMHypreADS::updateSolver(), MFEMGMRESSolver::updateSolver(), MFEMCGSolver::updateSolver(), MFEMHypreFGMRES::updateSolver(), MFEMHyprePCG::updateSolver(), MFEMHypreGMRES::updateSolver(), MFEMSuperLU::updateSolver(), UpperBoundNodalKernel::UpperBoundNodalKernel(), NearestPointIntegralVariablePostprocessor::userObjectValue(), NearestPointAverage::userObjectValue(), BoundingBoxIC::value(), PiecewiseConstantFromCSV::value(), IntegralPreservingFunctionIC::value(), Axisymmetric2D3DSolutionFunction::value(), Function::value(), ValueRangeMarker::ValueRangeMarker(), ValueThresholdMarker::ValueThresholdMarker(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VariableTimeIntegrationAux::VariableTimeIntegrationAux(), AddVariableAction::variableType(), VariableValueVolumeHistogram::VariableValueVolumeHistogram(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), VectorNodalBC::VectorNodalBC(), SubProblem::vectorTagName(), SubProblem::vectorTagType(), MooseParsedGradFunction::vectorValue(), MooseParsedFunction::vectorValue(), Function::vectorValue(), SubProblem::verifyVectorTags(), ActionComponent::volume(), VTKOutput::VTKOutput(), WebServerControl::WebServerControl(), MooseApp::writeRestartableMetaData(), DOFMapOutput::writeStreamToFile(), and Console::writeStreamToFile().

272  {
273  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ true);
274  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105

◆ mooseErrorNonPrefixed()

template<typename... Args>
void MooseBase::mooseErrorNonPrefixed ( Args &&...  args) const
inlineinherited

Emits an error without the prefixing included in mooseError().

Definition at line 290 of file MooseBase.h.

291  {
292  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ false);
293  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105

◆ mooseInfo()

template<typename... Args>
void MooseBase::mooseInfo ( Args &&...  args) const
inlineinherited

Definition at line 321 of file MooseBase.h.

Referenced by SetupRecoverFileBaseAction::act(), AStableDirk4::AStableDirk4(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MultiAppGeneralFieldNearestLocationTransfer::evaluateInterpValuesNearestNode(), PIDTransientControl::execute(), Executioner::Executioner(), ExplicitRK2::ExplicitRK2(), ExplicitTVDRK2::ExplicitTVDRK2(), DataFileInterface::getDataFilePath(), MultiAppTransfer::getPointInTargetAppFrame(), ImplicitMidpoint::ImplicitMidpoint(), ParsedDownSelectionPositions::initialize(), PropertyReadFile::initialize(), MultiAppGeneralFieldTransfer::initialSetup(), InversePowerMethod::InversePowerMethod(), LStableDirk2::LStableDirk2(), LStableDirk3::LStableDirk3(), LStableDirk4::LStableDirk4(), PNGOutput::makeMeshFunc(), NonlinearEigen::NonlinearEigen(), SolutionInvalidityOutput::output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramInfo(), ProjectionAux::ProjectionAux(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MFEMDataCollection::registerFields(), FEProblemBase::setRestartFile(), MooseApp::setupOptions(), SolutionUserObjectBase::SolutionUserObjectBase(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TransientBase::takeStep(), and TransientBase::TransientBase().

322  {
323  moose::internal::mooseInfoStream(_console, messagePrefix(true), std::forward<Args>(args)...);
324  }
void mooseInfoStream(S &oss, Args &&... args)
Definition: MooseError.h:258
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseWarning() [1/2]

template<typename... Args>
void SolutionInvalidInterface::mooseWarning ( Args &&...  args) const
inlineinherited

Definition at line 73 of file SolutionInvalidInterface.h.

Referenced by CopyMeshPartitioner::_do_partition(), AddKernelAction::act(), MeshOnlyAction::act(), AddFunctionAction::act(), MaterialOutputAction::act(), CommonOutputAction::act(), addFunction(), MooseMesh::addPeriodicVariable(), DiracKernelBase::addPoint(), BoundaryMarker::BoundaryMarker(), DistributedRectilinearMeshGenerator::buildCube(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), CartesianMeshGenerator::CartesianMeshGenerator(), CheckOutputAction::checkConsoleOutput(), MultiAppTransfer::checkMultiAppExecuteOn(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), SampledOutput::cloneMesh(), MultiAppGeneralFieldTransfer::closestToPosition(), VariableValueElementSubdomainModifier::computeSubdomainID(), GapValueAux::computeValue(), MultiApp::createApp(), DebugResidualAux::DebugResidualAux(), MeshDiagnosticsGenerator::diagnosticsLog(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), CartesianGridDivision::divisionIndex(), ElementMaterialSampler::ElementMaterialSampler(), Postprocessor::evaluateDotWarning(), MeshDivisionFunctorReductionVectorPostprocessor::execute(), ElementQualityChecker::finalize(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), SubdomainPerElementGenerator::generate(), StitchMeshGenerator::generate(), ParsedGenerateSideset::generate(), MultiAppTransfer::getAppInfo(), FunctorBinnedValuesDivision::getBinIndex(), MFEMVectorFESpace::getFECName(), PointSamplerBase::getLocalElemContainingPoint(), FEProblemBase::getMaterial(), LineValueSampler::getValue(), Terminator::handleMessage(), IndicatorMarker::IndicatorMarker(), SphericalGridDivision::initialize(), CylindricalGridDivision::initialize(), ElementGroupCentroidPositions::initialize(), CartesianGridDivision::initialize(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), BoundsBase::initialSetup(), ReferenceResidualConvergence::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), LeastSquaresFit::LeastSquaresFit(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::mesh(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), NewmarkBeta::NewmarkBeta(), NodalPatchRecovery::NodalPatchRecovery(), NonlocalIntegratedBC::NonlocalIntegratedBC(), NonlocalKernel::NonlocalKernel(), Output::Output(), MaterialOutputAction::outputHelper(), MultiAppGeneralFieldTransfer::outputValueConflicts(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), Executioner::problem(), PropertyReadFile::readData(), TestSourceStepper::rejectStep(), PhysicsBase::reportPotentiallyMissedParameters(), MaterialBase::resetQpProperties(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), MooseMesh::setCoordSystem(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), FEProblemBase::sizeZeroes(), TransientMultiApp::solveStep(), Tecplot::Tecplot(), TimeDerivativeAux::TimeDerivativeAux(), Checkpoint::updateCheckpointFiles(), SampledOutput::updateSample(), PiecewiseConstantFromCSV::value(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

74  {
75  _si_moose_base.MooseBase::mooseWarning(std::forward<Args>(args)...);
76  flagSolutionWarningMultipleRegistration(_si_moose_base.name() + ": warning");
77  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const MooseBase & _si_moose_base
The MooseBase that owns this interface.

◆ mooseWarning() [2/2]

template<typename... Args>
void MooseBase::mooseWarning ( Args &&...  args) const
inlineinherited

Emits a warning prefixed with object name and type.

Definition at line 299 of file MooseBase.h.

Referenced by DataFileInterface::getDataFilePath(), MooseApp::loadLibraryAndDependencies(), and MooseBase::paramWarning().

300  {
301  moose::internal::mooseWarningStream(_console, messagePrefix(true), std::forward<Args>(args)...);
302  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:210
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseWarningNonPrefixed() [1/2]

template<typename... Args>
void SolutionInvalidInterface::mooseWarningNonPrefixed ( Args &&...  args) const
inlineinherited

Definition at line 80 of file SolutionInvalidInterface.h.

81  {
82  _si_moose_base.MooseBase::mooseWarningNonPrefixed(std::forward<Args>(args)...);
83  flagSolutionWarningMultipleRegistration(_si_moose_base.name() + ": warning");
84  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const MooseBase & _si_moose_base
The MooseBase that owns this interface.

◆ mooseWarningNonPrefixed() [2/2]

template<typename... Args>
void MooseBase::mooseWarningNonPrefixed ( Args &&...  args) const
inlineinherited

Emits a warning without the prefixing included in mooseWarning().

Definition at line 308 of file MooseBase.h.

309  {
310  moose::internal::mooseWarningStream(_console, std::forward<Args>(args)...);
311  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:210
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ mortarData() [1/2]

const MortarInterfaceWarehouse& FEProblemBase::mortarData ( ) const
inlineinherited

Returns the mortar data object.

Definition at line 2407 of file FEProblemBase.h.

2407 { return *_mortar_data; }
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data

◆ mortarData() [2/2]

MortarInterfaceWarehouse& FEProblemBase::mortarData ( )
inlineinherited

Definition at line 2408 of file FEProblemBase.h.

2408 { return *_mortar_data; }
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data

◆ name()

const std::string& MooseBase::name ( ) const
inlineinherited

Get the name of the class.

Returns
The name of the class

Definition at line 103 of file MooseBase.h.

Referenced by AddElementalFieldAction::act(), CopyNodalVarsAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), CSGOnlyAction::act(), DeprecatedBlockAction::act(), SetupTimeIntegratorAction::act(), AddActionComponentAction::act(), SetupResidualDebugAction::act(), DisplayGhostingAction::act(), MaterialOutputAction::act(), AddPeriodicBCAction::act(), FEProblemBase::addAnyRedistributers(), Executioner::addAttributeReporter(), addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), DisplacedProblem::addAuxVariable(), addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), PhysicsComponentInterface::addComponent(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), Registry::addDataFilePath(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), addFESpace(), addFunction(), FEProblemBase::addFunction(), SubProblem::addFunctor(), addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FunctorMaterial::addFunctorProperty(), FunctorMaterial::addFunctorPropertyByBlocks(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), addInitialCondition(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), DiffusionLHDGKernel::additionalROVariables(), IPHDGAssemblyHelper::additionalROVariables(), addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), ComponentMaterialPropertyInterface::addMaterials(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), ComponentMeshTransformHelper::addMeshGenerators(), CylinderComponent::addMeshGenerators(), MeshGenerator::addMeshSubgenerator(), addMFEMPreconditioner(), addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), InitialConditionWarehouse::addObject(), FEProblemBase::addObject(), ComponentPhysicsInterface::addPhysics(), SubProblem::addPiecewiseByBlockLambdaFunctor(), addPostprocessor(), FEProblemBase::addPostprocessor(), InitialConditionBase::addPostprocessorDependencyHelper(), AuxKernelBase::addPostprocessorDependencyHelper(), UserObject::addPostprocessorDependencyHelper(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), InitialConditionBase::addUserObjectDependencyHelper(), AuxKernelBase::addUserObjectDependencyHelper(), UserObject::addUserObjectDependencyHelper(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), AuxKernelBase::addVectorPostprocessorDependencyHelper(), UserObject::addVectorPostprocessorDependencyHelper(), MooseLinearVariableFV< Real >::adError(), Output::advancedExecuteOn(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), MooseVariableBase::allDofIndices(), MooseApp::appBinaryName(), MooseApp::appendMeshGenerator(), Registry::appNameFromAppPath(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayDGKernel::ArrayDGKernel(), ArrayParsedAux::ArrayParsedAux(), PhysicsBase::assignBlocks(), AStableDirk4::AStableDirk4(), AuxKernelBase::AuxKernelBase(), Function::average(), MultiApp::backup(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), MFEMFESpace::buildFEC(), PiecewiseTabularBase::buildFromFile(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), MooseBase::callMooseError(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), PhysicsBase::checkBlockRestrictionIdentical(), PhysicsBase::checkComponentType(), ParsedConvergence::checkConvergence(), DefaultNonlinearConvergence::checkConvergence(), FEProblemBase::checkDependMaterialsHelper(), SamplerBase::checkForStandardFieldVariableType(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Moose::Kokkos::Material::checkMaterialProperty(), Material::checkMaterialProperty(), MooseApp::checkMetaDataIntegrity(), Damper::checkMinDamping(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), Checkpoint::checkpointInfo(), DomainUserObject::checkVariable(), BlockRestrictable::checkVariable(), Coupleable::checkWritableVar(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), MaterialBase::computeProperties(), FEProblemBase::computeUserObjectByName(), VectorPostprocessorVisualizationAux::computeValue(), MooseBase::connectControllableParams(), ConstantPostprocessor::ConstantPostprocessor(), Coupleable::coupledName(), CommonOutputAction::create(), MultiApp::createApp(), MooseApp::createExecutors(), MeshGeneratorSystem::createMeshGeneratorOrder(), MooseApp::createRecoverablePerfGraph(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), DebugResidualAux::DebugResidualAux(), MaterialBase::declareADProperty(), MeshGenerator::declareMeshesForSubByName(), MeshGenerator::declareNullMeshName(), MaterialBase::declareProperty(), DOFMapOutput::demangle(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), Registry::determineDataFilePath(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DomainUserObject::DomainUserObject(), DumpObjectsProblem::dumpObjectHelper(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementMaterialSampler::ElementMaterialSampler(), ElementValueSampler::ElementValueSampler(), EigenKernel::enabled(), MooseMesh::errorIfDistributedMesh(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), SideValueSampler::execute(), RestartableDataReporter::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), WebServerControl::execute(), MultiAppGeneralFieldTransfer::execute(), ActionWarehouse::executeActionsWithAction(), Exodus::Exodus(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), PointSamplerBase::finalize(), ChainControl::fullControlDataName(), FunctionArrayAux::FunctionArrayAux(), FunctionDT::FunctionDT(), FunctionIC::functionName(), FVFunctionIC::functionName(), FunctorPositions::FunctorPositions(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), GapValueAux::GapValueAux(), MooseServer::gatherDocumentSymbols(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BreakMeshByBlockGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), SideSetsFromNodeSetsGenerator::generate(), StitchBoundaryMeshGenerator::generate(), StitchMeshGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), MeshGenerator::generateInternal(), MeshGenerator::generateInternalCSG(), InterfaceMaterial::getADMaterialProperty(), Material::getADMaterialProperty(), MultiAppTransfer::getAppInfo(), MultiApp::getBoundingBox(), MooseBase::getCheckedPointerParam(), MooseApp::getCheckpointDirectories(), Control::getControllableParameterByName(), Control::getControllableValue(), Control::getControllableValueByName(), FEProblemBase::getConvergence(), MeshGenerator::getCSGBase(), MeshGenerator::getCSGBasesByName(), Registry::getDataFilePath(), UserObject::getDependObjects(), DistributionInterface::getDistribution(), FEProblemBase::getDistribution(), DistributionInterface::getDistributionByName(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), MultiApp::getExecutioner(), MooseApp::getExecutor(), FEProblemBase::getExecutor(), OutputWarehouse::getFileNumbers(), FEProblemBase::getFunction(), SubProblem::getFunctor(), NodalPatchRecovery::getGenericMaterialProperty(), InterfaceMaterial::getGenericMaterialProperty(), AuxKernelTempl< Real >::getGenericMaterialProperty(), Material::getGenericMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialPropertyByName(), Material::getGenericOptionalMaterialProperty(), MaterialBase::getGenericZeroMaterialProperty(), getGridFunction(), SolutionUserObjectBase::getLocalVarIndex(), Marker::getMarkerValue(), Material::getMaterial(), FEProblemBase::getMaterial(), Material::getMaterialByName(), NodalPatchRecovery::getMaterialProperty(), InterfaceMaterial::getMaterialProperty(), AuxKernelTempl< Real >::getMaterialProperty(), Material::getMaterialProperty(), SubProblem::getMaterialPropertyBlockNames(), SubProblem::getMaterialPropertyBoundaryNames(), NodalPatchRecovery::getMaterialPropertyOld(), AuxKernelTempl< Real >::getMaterialPropertyOld(), InterfaceMaterial::getMaterialPropertyOld(), Material::getMaterialPropertyOld(), NodalPatchRecovery::getMaterialPropertyOlder(), AuxKernelTempl< Real >::getMaterialPropertyOlder(), InterfaceMaterial::getMaterialPropertyOlder(), Material::getMaterialPropertyOlder(), MFEMGeneralUserObject::getMatrixCoefficient(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MeshGenerator::getMesh(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshesByName(), MooseApp::getMeshGenerator(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), ActionWarehouse::getMooseAppName(), MultiAppTransfer::getMultiApp(), InterfaceMaterial::getNeighborADMaterialProperty(), InterfaceMaterial::getNeighborMaterialProperty(), InterfaceMaterial::getNeighborMaterialPropertyOld(), InterfaceMaterial::getNeighborMaterialPropertyOlder(), MooseServer::getObjectParameters(), Material::getOptionalADMaterialProperty(), Material::getOptionalMaterialProperty(), Material::getOptionalMaterialPropertyOld(), Material::getOptionalMaterialPropertyOlder(), OutputWarehouse::getOutput(), MooseBase::getParam(), FEProblemBase::getPositionsObject(), FEProblemBase::getPostprocessorValueByName(), ComponentMaterialPropertyInterface::getPropertyValue(), ReporterData::getReporterInfo(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), FEProblemBase::getSampler(), MFEMGeneralUserObject::getScalarCoefficient(), MFEMGeneralUserObject::getScalarCoefficientByName(), TimedSubdomainModifier::getSubdomainIDAndCheck(), TransientBase::getTimeStepperName(), ProjectedStatefulMaterialStorageAction::getTypeEnum(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), MFEMGeneralUserObject::getVectorCoefficient(), MFEMGeneralUserObject::getVectorCoefficientByName(), Terminator::handleMessage(), Control::hasControllableParameterByName(), FEProblemBase::hasConvergence(), FEProblemBase::hasFunction(), SubProblem::hasFunctor(), SubProblem::hasFunctorWithType(), MooseApp::hasMeshGenerator(), AdvancedOutput::hasOutputHelper(), FEProblemBase::hasPostprocessor(), FEProblemBase::hasPostprocessorValueByName(), MooseApp::hasRelationshipManager(), MooseApp::hasRestartableDataMap(), MooseApp::hasRestartableMetaData(), FEProblemBase::hasUserObject(), IterationAdaptiveDT::init(), AddVariableAction::init(), AdvancedOutput::init(), AdvancedOutput::initExecutionTypes(), AttribName::initFrom(), NestedDivision::initialize(), TransformedPositions::initialize(), BoundaryRestrictable::initializeBoundaryRestrictable(), JSONOutput::initialSetup(), SideFVFluxBCIntegral::initialSetup(), SolutionScalarAux::initialSetup(), MultiAppProjectionTransfer::initialSetup(), NodalVariableValue::initialSetup(), Console::initialSetup(), SolutionUserObjectBase::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), Function::integral(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), MeshGenerator::isChildMeshGenerator(), DerivativeMaterialInterface< MortarScalarBase >::isNotObjectVariable(), MeshGenerator::isNullMeshName(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MeshGenerator::isParentMeshGenerator(), LinearCombinationFunction::LinearCombinationFunction(), FEProblemBase::logAdd(), MooseLinearVariableFV< Real >::lowerDError(), Marker::Marker(), MaterialBase::markMatPropRequested(), MatDiffusionBase< Real >::MatDiffusionBase(), Material::Material(), MaterialDerivativeTestKernelBase< Real >::MaterialDerivativeTestKernelBase(), Distribution::median(), MemoryUsageReporter::MemoryUsageReporter(), MeshGenerator::meshPropertyPrefix(), MooseBase::messagePrefix(), OutputWarehouse::mooseConsole(), SolutionInvalidInterface::mooseDeprecated(), MooseVariableBase::MooseVariableBase(), MooseVariableInterface< Real >::MooseVariableInterface(), SolutionInvalidInterface::mooseWarning(), SolutionInvalidInterface::mooseWarningNonPrefixed(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MooseLinearVariableFV< Real >::nodalError(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalValueSampler::NodalValueSampler(), Registry::objData(), MeshGenerator::Comparator::operator()(), ProgressOutput::output(), DOFMapOutput::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), ConsoleUtils::outputExecutionInformation(), MaterialOutputAction::outputHelper(), AdvancedOutput::outputInput(), AdvancedOutput::outputNodalVariables(), Exodus::outputPostprocessors(), AdvancedOutput::outputPostprocessors(), TableOutput::outputReporter(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), AdvancedOutput::outputSystemInformation(), AdvancedOutput::outputVectorPostprocessors(), SolutionInvalidInterface::paramWarning(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), ComponentPhysicsInterface::physicsExists(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), MooseApp::possiblyLoadRestartableMetaData(), PhysicsBase::prefix(), MooseMesh::prepare(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), PerfGraphLivePrint::printStats(), FEProblemBase::projectInitialConditionOnCustomRange(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), Receiver::Receiver(), Executor::Result::record(), AppFactory::reg(), Registry::registerObjectsTo(), FEProblemBase::registerRandomInterface(), MooseApp::registerRestartableDataMapName(), MooseApp::registerRestartableNameWithFilter(), MaterialBase::resetQpProperties(), MultiApp::restore(), ScalarComponentIC::ScalarComponentIC(), MultiApp::setAppOutputFileBase(), FEProblemBase::setAuxKernelParamsAndLog(), MooseMesh::setBoundaryName(), Control::setControllableValue(), Control::setControllableValueByName(), OutputWarehouse::setFileNumbers(), FEProblemBase::setPostprocessorValueByName(), FEProblemBase::setResidualObjectParamsAndLog(), MooseMesh::setSubdomainName(), NodeSetsGeneratorBase::setup(), Split::setup(), SideSetsGeneratorBase::setup(), TransientMultiApp::setupApp(), FullSolveMultiApp::showStatusMessage(), SideSetExtruderGenerator::SideSetExtruderGenerator(), TransientMultiApp::solveStep(), UserObject::spatialValue(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), SubProblem::storeBoundaryDelayedCheckMatProp(), SubProblem::storeBoundaryMatPropName(), MaterialBase::storeBoundaryZeroMatProp(), SubProblem::storeBoundaryZeroMatProp(), SubProblem::storeSubdomainDelayedCheckMatProp(), SubProblem::storeSubdomainMatPropName(), MaterialBase::storeSubdomainZeroMatProp(), SubProblem::storeSubdomainZeroMatProp(), ConstraintWarehouse::subdomainsCovered(), MaterialBase::subdomainSetup(), TaggingInterface::TaggingInterface(), MooseLinearVariableFV< Real >::timeIntegratorError(), VectorPostprocessorVisualizationAux::timestepSetup(), ElementSubdomainModifierBase::timestepSetup(), to_json(), MultiAppDofCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransientMultiApp::TransientMultiApp(), MooseServer::traverseParseTreeAndFillSymbols(), MooseBase::typeAndName(), MooseBase::uniqueParameterName(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), UserObject::UserObject(), UserObjectInterface::userObjectName(), ParsedAux::validateGenericVectorNames(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), Convergence::verboseOutput(), AdvancedOutput::wantOutput(), Coupleable::writableCoupledValue(), Coupleable::writableVariable(), Console::write(), and MooseApp::writeRestartableMetaData().

104  {
105  mooseAssert(_name.size(), "Empty name");
106  return _name;
107  }
const std::string & _name
The name of this class.
Definition: MooseBase.h:363

◆ needBoundaryMaterialOnSide()

bool FEProblemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

These methods are used to determine whether stateful material properties need to be stored on internal sides.

There are five situations where this may be the case: 1) DGKernels 2) IntegratedBCs 3)InternalSideUserObjects 4)ElementalAuxBCs 5)InterfaceUserObjects

Method 1:

Parameters
bnd_idthe boundary id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Method 2:

Parameters
subdomain_idthe subdomain id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Definition at line 8933 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onBoundary(), ProjectMaterialProperties::onBoundary(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFaceOnBoundary(), and FEProblemBase::reinitMaterialsNeighborOnBoundary().

8934 {
8935  if (_bnd_mat_side_cache[tid].find(bnd_id) == _bnd_mat_side_cache[tid].end())
8936  {
8937  auto & bnd_mat_side_cache = _bnd_mat_side_cache[tid][bnd_id];
8938  bnd_mat_side_cache = false;
8939 
8940  // Check systems
8941  if (_aux->needMaterialOnSide(bnd_id))
8942  {
8943  bnd_mat_side_cache = true;
8944  return true;
8945  }
8946  for (auto & nl : _nl)
8947  if (nl->needBoundaryMaterialOnSide(bnd_id, tid))
8948  {
8949  bnd_mat_side_cache = true;
8950  return true;
8951  }
8952 
8953  // TODO: these objects should be checked for whether they actually consume materials
8954  // NOTE: InterfaceUO can use use boundary properties too
8955  if (theWarehouse()
8956  .query()
8957  .condition<AttribThread>(tid)
8958  .condition<AttribInterfaces>(Interfaces::SideUserObject | Interfaces::DomainUserObject |
8960  .condition<AttribBoundaries>(bnd_id)
8961  .count() > 0)
8962  {
8963  bnd_mat_side_cache = true;
8964  return true;
8965  }
8966  }
8967 
8968  return _bnd_mat_side_cache[tid][bnd_id];
8969 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
Cache for calculating materials on side.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needFV()

virtual void FEProblemBase::needFV ( )
inlineoverridevirtualinherited

marks this problem as including/needing finite volume functionality.

Implements SubProblem.

Definition at line 2672 of file FEProblemBase.h.

Referenced by DiffusionFV::initializePhysicsAdditional(), and DisplacedProblem::needFV().

2672 { _have_fv = true; }
bool _have_fv
Whether we are performing some calculations with finite volume discretizations.

◆ needInterfaceMaterialOnSide()

bool FEProblemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8972 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsInterface(), and FEProblemBase::reinitMaterialsNeighborOnBoundary().

8973 {
8974  if (_interface_mat_side_cache[tid].find(bnd_id) == _interface_mat_side_cache[tid].end())
8975  {
8976  auto & interface_mat_side_cache = _interface_mat_side_cache[tid][bnd_id];
8977  interface_mat_side_cache = false;
8978 
8979  // Aux-system has not needed interface materials so far
8980  for (auto & nl : _nl)
8981  if (nl->needInterfaceMaterialOnSide(bnd_id, tid))
8982  {
8983  interface_mat_side_cache = true;
8984  return true;
8985  }
8986 
8987  // TODO: these objects should be checked for whether they actually consume materials
8988  if (theWarehouse()
8989  .query()
8990  .condition<AttribThread>(tid)
8991  .condition<AttribInterfaces>(Interfaces::InterfaceUserObject |
8993  .condition<AttribBoundaries>(bnd_id)
8994  .count() > 0)
8995  {
8996  interface_mat_side_cache = true;
8997  return true;
8998  }
8999  else if (_interface_materials.hasActiveBoundaryObjects(bnd_id, tid))
9000  {
9001  interface_mat_side_cache = true;
9002  return true;
9003  }
9004  }
9005  return _interface_mat_side_cache[tid][bnd_id];
9006 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
Cache for calculating materials on interface.

◆ needInternalNeighborSideMaterial()

bool FEProblemBase::needInternalNeighborSideMaterial ( SubdomainID  subdomain_id,
const THREAD_ID  tid 
)
inherited

Definition at line 9009 of file FEProblemBase.C.

Referenced by FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsNeighborOnBoundary(), ComputeMaterialsObjectThread::subdomainChanged(), and ProjectMaterialProperties::subdomainChanged().

9010 {
9011  if (_block_mat_side_cache[tid].find(subdomain_id) == _block_mat_side_cache[tid].end())
9012  {
9013  _block_mat_side_cache[tid][subdomain_id] = false;
9014 
9015  for (auto & nl : _nl)
9016  if (nl->needInternalNeighborSideMaterial(subdomain_id, tid))
9017  {
9018  _block_mat_side_cache[tid][subdomain_id] = true;
9019  return true;
9020  }
9021 
9022  // TODO: these objects should be checked for whether they actually consume materials
9023  if (theWarehouse()
9024  .query()
9025  .condition<AttribThread>(tid)
9026  .condition<AttribInterfaces>(Interfaces::InternalSideUserObject |
9028  .condition<AttribSubdomains>(subdomain_id)
9029  .count() > 0)
9030  {
9031  _block_mat_side_cache[tid][subdomain_id] = true;
9032  return true;
9033  }
9034  }
9035 
9036  return _block_mat_side_cache[tid][subdomain_id];
9037 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
Cache for calculating materials on side.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needSolutionState()

void FEProblemBase::needSolutionState ( unsigned int  oldest_needed,
Moose::SolutionIterationType  iteration_type 
)
inherited

Declare that we need up to old (1) or older (2) solution states for a given type of iteration.

Parameters
oldest_neededoldest solution state needed
iteration_typethe type of iteration for which old/older states are needed

Definition at line 738 of file FEProblemBase.C.

Referenced by FEProblemBase::createTagSolutions().

739 {
740  for (auto & sys : _solver_systems)
741  sys->needSolutionState(state, iteration_type);
742  _aux->needSolutionState(state, iteration_type);
743 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ needsPreviousNewtonIteration() [1/2]

void FEProblemBase::needsPreviousNewtonIteration ( bool  state)
inherited

Set a flag that indicated that user required values for the previous Newton iterate.

Definition at line 9046 of file FEProblemBase.C.

Referenced by Coupleable::coupledGradientPreviousNL(), Coupleable::coupledNodalValuePreviousNL(), Coupleable::coupledSecondPreviousNL(), Coupleable::coupledValuePreviousNL(), and NonlinearSystem::solve().

9047 {
9049  mooseError("Previous nonlinear solution is required but not added through "
9050  "Problem/previous_nl_solution_required=true");
9051 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needsPreviousNewtonIteration() [2/2]

bool FEProblemBase::needsPreviousNewtonIteration ( ) const
inherited

Check to see whether we need to compute the variable values of the previous Newton iterate.

Returns
true if the user required values of the previous Newton iterate

Definition at line 9040 of file FEProblemBase.C.

9041 {
9043 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needToAddDefaultMultiAppFixedPointConvergence()

bool FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default fixed point convergence.

Definition at line 669 of file FEProblemBase.h.

670  {
672  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ needToAddDefaultNonlinearConvergence()

bool FEProblemBase::needToAddDefaultNonlinearConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default nonlinear convergence.

Definition at line 664 of file FEProblemBase.h.

665  {
667  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ needToAddDefaultSteadyStateConvergence()

bool FEProblemBase::needToAddDefaultSteadyStateConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default steady-state detection convergence.

Definition at line 674 of file FEProblemBase.h.

675  {
677  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ neighborSubdomainSetup()

void FEProblemBase::neighborSubdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2536 of file FEProblemBase.C.

Referenced by ThreadedFaceLoop< RangeType >::neighborSubdomainChanged().

2537 {
2538  _all_materials.neighborSubdomainSetup(subdomain, tid);
2539 }
virtual void neighborSubdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials

◆ newAssemblyArray()

void FEProblemBase::newAssemblyArray ( std::vector< std::shared_ptr< SolverSystem >> &  solver_systems)
virtualinherited

Definition at line 746 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

747 {
748  unsigned int n_threads = libMesh::n_threads();
749 
750  _assembly.resize(n_threads);
751  for (const auto i : make_range(n_threads))
752  {
753  _assembly[i].resize(solver_systems.size());
754  for (const auto j : index_range(solver_systems))
755  _assembly[i][j] = std::make_unique<Assembly>(*solver_systems[j], i);
756  }
757 }
unsigned int n_threads()
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
auto index_range(const T &sizable)

◆ nlConverged()

bool SubProblem::nlConverged ( const unsigned int  nl_sys_num)
virtualinherited
Returns
whether the given nonlinear system nl_sys_num is converged.

Definition at line 717 of file SubProblem.C.

718 {
719  mooseAssert(nl_sys_num < numNonlinearSystems(),
720  "The nonlinear system number is higher than the number of systems we have!");
721  return solverSystemConverged(nl_sys_num);
722 }
virtual std::size_t numNonlinearSystems() const =0
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ nLinearIterations()

unsigned int FEProblemBase::nLinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6810 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6811 {
6812  return _nl[nl_sys_num]->nLinearIterations();
6813 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nlSysNum()

unsigned int FEProblemBase::nlSysNum ( const NonlinearSystemName &  nl_sys_name) const
overridevirtualinherited
Returns
the nonlinear system number corresponding to the provided nl_sys_name

Implements SubProblem.

Definition at line 6540 of file FEProblemBase.C.

Referenced by DisplacedProblem::nlSysNum().

6541 {
6542  std::istringstream ss(nl_sys_name);
6543  unsigned int nl_sys_num;
6544  if (!(ss >> nl_sys_num) || !ss.eof())
6545  nl_sys_num = libmesh_map_find(_nl_sys_name_to_num, nl_sys_name);
6546 
6547  return nl_sys_num;
6548 }
std::map< NonlinearSystemName, unsigned int > _nl_sys_name_to_num
Map from nonlinear system name to number.

◆ nNonlinearIterations()

unsigned int FEProblemBase::nNonlinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6804 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6805 {
6806  return _nl[nl_sys_num]->nNonlinearIterations();
6807 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nonlocalCouplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::nonlocalCouplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6392 of file FEProblemBase.C.

Referenced by ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

6393 {
6394  return _assembly[tid][nl_sys]->nonlocalCouplingEntries();
6395 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ nonlocalCouplingMatrix()

const libMesh::CouplingMatrix & FEProblemBase::nonlocalCouplingMatrix ( const unsigned  i) const
overridevirtualinherited
Returns
the nonlocal coupling matrix for the i'th nonlinear system

Implements SubProblem.

Definition at line 9685 of file FEProblemBase.C.

Referenced by DisplacedProblem::nonlocalCouplingMatrix().

9686 {
9687  return _nonlocal_cm[i];
9688 }
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix

◆ notifyWhenMeshChanges()

void FEProblemBase::notifyWhenMeshChanges ( MeshChangedInterface mci)
inherited

Register an object that derives from MeshChangedInterface to be notified when the mesh changes.

Definition at line 8466 of file FEProblemBase.C.

Referenced by MeshChangedInterface::MeshChangedInterface().

8467 {
8468  _notify_when_mesh_changes.push_back(mci);
8469 }
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.

◆ notifyWhenMeshDisplaces()

void FEProblemBase::notifyWhenMeshDisplaces ( MeshDisplacedInterface mdi)
inherited

Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated.

Definition at line 8472 of file FEProblemBase.C.

Referenced by MeshDisplacedInterface::MeshDisplacedInterface().

8473 {
8474  _notify_when_mesh_displaces.push_back(mdi);
8475 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ numGridSteps()

void FEProblemBase::numGridSteps ( unsigned int  num_grid_steps)
inlineinherited

Set the number of steps in a grid sequences.

Definition at line 2429 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2429 { _num_grid_steps = num_grid_steps; }
unsigned int _num_grid_steps
Number of steps in a grid sequence.

◆ numLinearSystems()

virtual std::size_t FEProblemBase::numLinearSystems ( ) const
inlineoverridevirtualinherited

◆ numMatrixTags()

virtual unsigned int SubProblem::numMatrixTags ( ) const
inlinevirtualinherited

◆ numNonlinearSystems()

virtual std::size_t FEProblemBase::numNonlinearSystems ( ) const
inlineoverridevirtualinherited

◆ numSolverSystems()

virtual std::size_t FEProblemBase::numSolverSystems ( ) const
inlineoverridevirtualinherited

◆ numVectorTags()

unsigned int SubProblem::numVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

The total number of tags, which can be limited to the tag type.

Reimplemented in DisplacedProblem.

Definition at line 196 of file SubProblem.C.

Referenced by NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeResidualInternal(), ComputeResidualThread::determineObjectWarehouses(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), MooseVariableScalar::MooseVariableScalar(), DisplacedProblem::numVectorTags(), ComputeNodalKernelBcsThread::pre(), and ComputeNodalKernelsThread::pre().

197 {
198  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
199 
200  return getVectorTags(type).size();
201 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:173

◆ objectExecuteHelper()

template<typename T >
void FEProblemBase::objectExecuteHelper ( const std::vector< T *> &  objects)
staticinherited

Definition at line 3400 of file FEProblemBase.h.

3401 {
3402  for (T * obj_ptr : objects)
3403  obj_ptr->execute();
3404 }

◆ objectSetupHelper()

template<typename T >
void FEProblemBase::objectSetupHelper ( const std::vector< T *> &  objects,
const ExecFlagType exec_flag 
)
staticinherited

Helpers for calling the necessary setup/execute functions for the supplied objects.

Definition at line 3366 of file FEProblemBase.h.

3367 {
3368  if (exec_flag == EXEC_INITIAL)
3369  {
3370  for (T * obj_ptr : objects)
3371  obj_ptr->initialSetup();
3372  }
3373 
3374  else if (exec_flag == EXEC_TIMESTEP_BEGIN)
3375  {
3376  for (const auto obj_ptr : objects)
3377  obj_ptr->timestepSetup();
3378  }
3379  else if (exec_flag == EXEC_SUBDOMAIN)
3380  {
3381  for (const auto obj_ptr : objects)
3382  obj_ptr->subdomainSetup();
3383  }
3384 
3385  else if (exec_flag == EXEC_NONLINEAR)
3386  {
3387  for (const auto obj_ptr : objects)
3388  obj_ptr->jacobianSetup();
3389  }
3390 
3391  else if (exec_flag == EXEC_LINEAR)
3392  {
3393  for (const auto obj_ptr : objects)
3394  obj_ptr->residualSetup();
3395  }
3396 }
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ onlyAllowDefaultNonlinearConvergence()

virtual bool FEProblemBase::onlyAllowDefaultNonlinearConvergence ( ) const
inlinevirtualinherited

Returns true if an error will result if the user supplies 'nonlinear_convergence'.

Some problems are strongly tied to their convergence, and it does not make sense to use any convergence other than their default and additionally would be error-prone.

Reimplemented in ReferenceResidualProblem.

Definition at line 718 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

718 { return false; }

◆ onTimestepBegin()

void FEProblemBase::onTimestepBegin ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 6964 of file FEProblemBase.C.

Referenced by MFEMTransient::takeStep(), and TransientBase::takeStep().

6965 {
6966  TIME_SECTION("onTimestepBegin", 2);
6967 
6968  for (auto & nl : _nl)
6969  nl->onTimestepBegin();
6970 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ onTimestepEnd()

void FEProblemBase::onTimestepEnd ( )
overridevirtualinherited

◆ outputStep()

void FEProblemBase::outputStep ( ExecFlagType  type)
virtualinherited

Output the current step.

Will ensure that everything is in the proper state to be outputted. Then tell the OutputWarehouse to do its thing

Parameters
typeThe type execution flag (see Moose.h)

Reimplemented in DumpObjectsProblem.

Definition at line 6927 of file FEProblemBase.C.

Referenced by TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), Eigenvalue::execute(), InversePowerMethod::init(), NonlinearEigen::init(), EigenExecutionerBase::postExecute(), TransientBase::preExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), and FixedPointSolve::solveStep().

6928 {
6929  TIME_SECTION("outputStep", 1, "Outputting");
6930 
6932 
6933  for (auto & sys : _solver_systems)
6934  sys->update();
6935  _aux->update();
6936 
6937  if (_displaced_problem)
6938  _displaced_problem->syncSolutions();
6940 
6942 }
void outputStep(ExecFlagType type)
Calls the outputStep method for each output object.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void setCurrentExecuteOnFlag(const ExecFlagType &)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
std::shared_ptr< DisplacedProblem > _displaced_problem
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515

◆ paramError()

template<typename... Args>
void MooseBase::paramError ( const std::string &  param,
Args...  args 
) const
inherited

Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseError - only printing a message using the given args.

Definition at line 439 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), AutoCheckpointAction::act(), SetupDebugAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), NEML2ModelExecutor::addGatheredParameter(), NEML2ModelExecutor::addGatheredVariable(), ADDGKernel::ADDGKernel(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), ReporterPointSource::addPoints(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ADNodalKernel::ADNodalKernel(), ADPenaltyPeriodicSegmentalConstraint::ADPenaltyPeriodicSegmentalConstraint(), ADPeriodicSegmentalConstraint::ADPeriodicSegmentalConstraint(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), AdvectiveFluxAux::AdvectiveFluxAux(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), ArrayBodyForce::ArrayBodyForce(), ArrayDGKernel::ArrayDGKernel(), ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayDirichletBC::ArrayDirichletBC(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), ArrayParsedAux::ArrayParsedAux(), ArrayPenaltyDirichletBC::ArrayPenaltyDirichletBC(), ArrayVacuumBC::ArrayVacuumBC(), ArrayVarReductionAux::ArrayVarReductionAux(), ParsedSubdomainIDsGenerator::assignElemSubdomainID(), AuxKernelBase::AuxKernelBase(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BlockDeletionGenerator::BlockDeletionGenerator(), BlockWeightedPartitioner::BlockWeightedPartitioner(), BoundsBase::BoundsBase(), BreakMeshByBlockGenerator::BreakMeshByBlockGenerator(), BuildArrayVariableAux::BuildArrayVariableAux(), PiecewiseTabularBase::buildFromFile(), MFEMMesh::buildMesh(), CartesianGridDivision::CartesianGridDivision(), checkComponent(), MeshGenerator::checkGetMesh(), ComponentInitialConditionInterface::checkInitialConditionsAllRequested(), BatchMeshGeneratorAction::checkInputParameterType(), PhysicsBase::checkIntegrityEarly(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), Coupleable::checkVar(), MultiAppTransfer::checkVariable(), CircularBoundaryCorrectionGenerator::CircularBoundaryCorrectionGenerator(), CircularBoundaryCorrectionGenerator::circularCenterCalculator(), MultiAppGeneralFieldTransfer::closestToPosition(), CoarsenBlockGenerator::CoarsenBlockGenerator(), CombinerGenerator::CombinerGenerator(), ComponentInitialConditionInterface::ComponentInitialConditionInterface(), ComponentMaterialPropertyInterface::ComponentMaterialPropertyInterface(), CompositionDT::CompositionDT(), FunctorAux::computeValue(), ConcentricCircleMeshGenerator::ConcentricCircleMeshGenerator(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), ConstantVectorPostprocessor::ConstantVectorPostprocessor(), ContainsPointAux::ContainsPointAux(), CopyValueAux::CopyValueAux(), Coupleable::Coupleable(), CoupledForceTempl< is_ad >::CoupledForceTempl(), CoupledValueFunctionMaterialTempl< is_ad >::CoupledValueFunctionMaterialTempl(), MultiApp::createApp(), MeshGeneratorSystem::createMeshGenerator(), CylindricalGridDivision::CylindricalGridDivision(), DebugResidualAux::DebugResidualAux(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), AccumulateReporter::declareLateValues(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DGLowerDKernel::DGLowerDKernel(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementAdaptivityLevelAux::ElementAdaptivityLevelAux(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementLengthAux::ElementLengthAux(), ElementLpNormAux::ElementLpNormAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), ElementValueSampler::ElementValueSampler(), ElementVectorL2Error::ElementVectorL2Error(), EqualValueEmbeddedConstraintTempl< is_ad >::EqualValueEmbeddedConstraintTempl(), ReporterPointSource::errorCheck(), StitchMeshGeneratorBase::errorMissingBoundary(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), ExtraElementIDAux::ExtraElementIDAux(), ExtraElementIntegerDivision::ExtraElementIntegerDivision(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileMeshGenerator::FileMeshGenerator(), FillBetweenCurvesGenerator::FillBetweenCurvesGenerator(), FillBetweenSidesetsGenerator::FillBetweenSidesetsGenerator(), ReporterPointSource::fillPoint(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), InternalSideIndicatorBase::finalize(), ForcingFunctionAux::ForcingFunctionAux(), FullSolveMultiApp::FullSolveMultiApp(), FunctionArrayAux::FunctionArrayAux(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FunctorADConverterTempl< T >::FunctorADConverterTempl(), FunctorAux::FunctorAux(), FunctorBinnedValuesDivision::FunctorBinnedValuesDivision(), FunctorCoordinatesFunctionAux::FunctorCoordinatesFunctionAux(), FunctorElementalGradientAuxTempl< is_ad >::FunctorElementalGradientAuxTempl(), FunctorExtremaPositions::FunctorExtremaPositions(), FunctorIC::FunctorIC(), FunctorPositions::FunctorPositions(), FunctorVectorElementalAuxTempl< is_ad >::FunctorVectorElementalAuxTempl(), FVAdvection::FVAdvection(), FVFluxBC::FVFluxBC(), FVInterfaceKernel::FVInterfaceKernel(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), FVTwoVarContinuityConstraint::FVTwoVarContinuityConstraint(), Boundary2DDelaunayGenerator::General2DDelaunay(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), AddMetaDataGenerator::generate(), BlockToMeshConverterGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementsToTetrahedronsConverter::generate(), ExtraNodesetGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenSidesetsGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BlockDeletionGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BoundaryElementConversionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), SideSetsFromNodeSetsGenerator::generate(), AdvancedExtruderGenerator::generate(), BreakMeshByElementGenerator::generate(), CombinerGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedCurveGenerator::generate(), ParsedExtraElementIDGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CircularBoundaryCorrectionGenerator::generate(), CutMeshByLevelSetGeneratorBase::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), PatternedMeshGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), GeneratedMeshGenerator::GeneratedMeshGenerator(), GenericConstantStdVectorMaterialTempl< is_ad >::GenericConstantStdVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), PropertyReadFile::getBlockData(), ComponentBoundaryConditionInterface::getBoundaryCondition(), MultiApp::getCommandLineArgs(), PropertyReadFile::getData(), PropertyReadFile::getFileNames(), Sampler::getGlobalSamples(), ComponentInitialConditionInterface::getInitialCondition(), NEML2Action::getInputParameterMapping(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), Sampler::getLocalSamples(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), Sampler::getNextLocalRow(), FEProblemSolve::getParamFromNonlinearSystemVectorParam(), PostprocessorInterface::getPostprocessorNameInternal(), PostprocessorInterface::getPostprocessorValueInternal(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), UserObjectInterface::getUserObjectBase(), UserObjectInterface::getUserObjectName(), HFEMDirichletBC::HFEMDirichletBC(), AddVariableAction::init(), MultiApp::init(), DistributedPositions::initialize(), BlockWeightedPartitioner::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), PhysicsBase::initializePhysics(), JSONOutput::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), SideFVFluxBCIntegral::initialSetup(), MultiAppVariableValueSamplePostprocessorTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), HistogramVectorPostprocessor::initialSetup(), ReferenceResidualConvergence::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), LibtorchControlValuePostprocessor::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), ElementSubdomainModifierBase::initialSetup(), SampledOutput::initSample(), AddMetaDataGenerator::inputChecker(), IntegratedBC::IntegratedBC(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceValueUserObjectAux::InterfaceValueUserObjectAux(), InternalSideIndicatorBase::InternalSideIndicatorBase(), InterpolatedStatefulMaterialTempl< T >::InterpolatedStatefulMaterialTempl(), InversePowerMethod::InversePowerMethod(), IterationAdaptiveDT::IterationAdaptiveDT(), MultiApp::keepSolutionDuringRestore(), Kernel::Kernel(), KokkosBoundNodalKernel< KokkosUpperBoundNodalKernel >::KokkosBoundNodalKernel(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationFunction::LinearCombinationFunction(), LinearFVAdvectionDiffusionFunctorRobinBC::LinearFVAdvectionDiffusionFunctorRobinBC(), LowerDIntegratedBC::LowerDIntegratedBC(), PNGOutput::makeMeshFunc(), MatCoupledForce::MatCoupledForce(), MaterialADConverterTempl< T >::MaterialADConverterTempl(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MatrixSymmetryCheck::MatrixSymmetryCheck(), PatternedMeshGenerator::mergeSubdomainNameMaps(), MeshCollectionGenerator::MeshCollectionGenerator(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshDivisionAux::MeshDivisionAux(), MeshGenerator::MeshGenerator(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMGenericFunctorMaterial::MFEMGenericFunctorMaterial(), MFEMGenericFunctorVectorMaterial::MFEMGenericFunctorVectorMaterial(), MFEMSumAux::MFEMSumAux(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), UserObjectInterface::mooseObjectError(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MortarConstraintBase::MortarConstraintBase(), MortarNodalAuxKernelTempl< ComputeValueType >::MortarNodalAuxKernelTempl(), MultiApp::moveApp(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorToAuxScalarTransfer::MultiAppPostprocessorToAuxScalarTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppProjectionTransfer::MultiAppProjectionTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppScalarToAuxScalarTransfer::MultiAppScalarToAuxScalarTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiAppVectorPostprocessorTransfer::MultiAppVectorPostprocessorTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NearestNodeValueAux::NearestNodeValueAux(), NEML2Action::NEML2Action(), NestedDivision::NestedDivision(), NodalBC::NodalBC(), NodalEqualValueConstraint::NodalEqualValueConstraint(), NodalKernel::NodalKernel(), NodalPatchRecoveryAux::NodalPatchRecoveryAux(), NodalValueSampler::NodalValueSampler(), Output::Output(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), ParsedPostprocessor::ParsedPostprocessor(), ParsedReporterBase::ParsedReporterBase(), ParsedScalarReporter::ParsedScalarReporter(), ParsedVectorRealReductionReporter::ParsedVectorRealReductionReporter(), ParsedVectorReporter::ParsedVectorReporter(), ParsedVectorVectorRealReductionReporter::ParsedVectorVectorRealReductionReporter(), PatternedMeshGenerator::PatternedMeshGenerator(), PenaltyPeriodicSegmentalConstraint::PenaltyPeriodicSegmentalConstraint(), PeriodicSegmentalConstraint::PeriodicSegmentalConstraint(), PIDTransientControl::PIDTransientControl(), PlaneDeletionGenerator::PlaneDeletionGenerator(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), PolyLineMeshGenerator::PolyLineMeshGenerator(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessor(), LibmeshPartitioner::prepareBlocksForSubdomainPartitioner(), ProjectedMaterialPropertyNodalPatchRecoveryAux::ProjectedMaterialPropertyNodalPatchRecoveryAux(), ProjectionAux::ProjectionAux(), PropertyReadFile::PropertyReadFile(), RandomIC::RandomIC(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readXda(), ReferenceResidualConvergence::ReferenceResidualConvergence(), RefineBlockGenerator::RefineBlockGenerator(), RefineSidesetGenerator::RefineSidesetGenerator(), RenameBlockGenerator::RenameBlockGenerator(), RenameBoundaryGenerator::RenameBoundaryGenerator(), ReporterPointSource::ReporterPointSource(), FEProblemBase::restoreSolutions(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), FEProblemBase::setLinearConvergenceNames(), FEProblemBase::setNonlinearConvergenceNames(), MooseMesh::setPartitioner(), NodeSetsGeneratorBase::setup(), SideSetsGeneratorBase::setup(), NEML2Action::setupDerivativeMappings(), NEML2Action::setupParameterDerivativeMappings(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), SideValueSampler::SideValueSampler(), SingleRankPartitioner::SingleRankPartitioner(), SphericalGridDivision::SphericalGridDivision(), StitchBoundaryMeshGenerator::StitchBoundaryMeshGenerator(), StitchMeshGenerator::StitchMeshGenerator(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TagVectorAux::TagVectorAux(), Terminator::Terminator(), TimeDerivativeAux::TimeDerivativeAux(), Transfer::Transfer(), TransformGenerator::TransformGenerator(), TransientMultiApp::TransientMultiApp(), ParsedCurveGenerator::tSectionSpaceDefiner(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), TimeSequenceStepperBase::updateSequence(), UserObject::UserObject(), Checkpoint::validateExecuteOn(), ParsedAux::validateGenericVectorNames(), ParsedMaterialBase::validateVectorNames(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VolumeAux::VolumeAux(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), XYMeshLineCutter::XYMeshLineCutter(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

440 {
441  _pars.paramError(param, std::forward<Args>(args)...);
442 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...

◆ parameters()

const InputParameters& MooseBase::parameters ( ) const
inlineinherited

Get the parameters of the object.

Returns
The parameters of the object

Definition at line 131 of file MooseBase.h.

Referenced by MeshOnlyAction::act(), SplitMeshAction::act(), SetupDebugAction::act(), CSGOnlyAction::act(), AddActionComponentAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::addAnyRedistributers(), addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), addAuxVariable(), DisplacedProblem::addAuxVariable(), addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::addDefaultSteadyStateConvergence(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), addFESpace(), addFunction(), FEProblemBase::addFunction(), addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), addGridFunction(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), addInitialCondition(), FEProblemBase::addInitialCondition(), DiffusionPhysicsBase::addInitialConditions(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblem::addLineSearch(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMeshDivision(), addMFEMFESpaceFromMOOSEVariable(), addMFEMPreconditioner(), addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), addPostprocessor(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), addSubMesh(), FEProblemBase::addTimeIntegrator(), addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), addVariable(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), AdvancedOutput::AdvancedOutput(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), Action::associateWithParameter(), AuxKernelBase::AuxKernelBase(), AuxScalarKernel::AuxScalarKernel(), BoundsBase::BoundsBase(), MooseMesh::buildTypedMesh(), PostprocessorInterface::checkParam(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), SampledOutput::cloneMesh(), LibtorchNeuralNetControl::conditionalParameterError(), Console::Console(), CommonOutputAction::create(), MultiApp::createApp(), Postprocessor::declareValue(), DumpObjectsProblem::deduceNecessaryParameters(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DumpObjectsProblem::dumpObjectHelper(), DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementMaterialSampler::ElementMaterialSampler(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), Executor::Executor(), Exodus::Exodus(), ElementSubdomainModifierBase::extrapolatePolynomial(), FEProblem::FEProblem(), FixedPointSolve::FixedPointSolve(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), GapValueAux::GapValueAux(), ParsedSubdomainGeneratorBase::generate(), ActionWarehouse::getCurrentActionName(), ExecutorInterface::getExecutor(), Material::getMaterial(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), UserObjectInterface::getUserObjectName(), AuxKernelBase::getVariableHelper(), VectorPostprocessorInterface::getVectorPostprocessorName(), GhostingUserObject::GhostingUserObject(), MeshGeneratorSystem::hasDataDrivenAllowed(), AttribSystem::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), FullSolveMultiApp::initialSetup(), FEProblemBase::initNullSpaceVectors(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MooseObject::isKokkosObject(), isValid(), IterationAdaptiveDT::IterationAdaptiveDT(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MFEMCGSolver::MFEMCGSolver(), MFEMGMRESSolver::MFEMGMRESSolver(), MFEMHypreADS::MFEMHypreADS(), MFEMHypreAMS::MFEMHypreAMS(), MFEMHypreBoomerAMG::MFEMHypreBoomerAMG(), MFEMHypreFGMRES::MFEMHypreFGMRES(), MFEMHypreGMRES::MFEMHypreGMRES(), MFEMHyprePCG::MFEMHyprePCG(), MFEMOperatorJacobiSmoother::MFEMOperatorJacobiSmoother(), MFEMSuperLU::MFEMSuperLU(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiApp::MultiApp(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NodeFaceConstraint::NodeFaceConstraint(), ConsoleUtils::outputLegacyInformation(), OverlayMeshGenerator::OverlayMeshGenerator(), MooseServer::parseDocumentForDiagnostics(), ParsedReporterBase::ParsedReporterBase(), ParsedScalarReporter::ParsedScalarReporter(), PenetrationAux::PenetrationAux(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), NEML2Action::printSummary(), ProjectedStatefulMaterialStorageAction::processProperty(), PropertyReadFile::PropertyReadFile(), PseudoTimestep::PseudoTimestep(), RandomIC::RandomIC(), ReferenceResidualConvergence::ReferenceResidualConvergence(), InputParameterWarehouse::removeInputParameters(), FEProblemBase::setAuxKernelParamsAndLog(), FEProblem::setInputParametersFEProblem(), FEProblemBase::setInputParametersFEProblem(), FEProblemBase::setResidualObjectParamsAndLog(), SideSetsGeneratorBase::setup(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), Moose::PetscSupport::storePetscOptions(), DumpObjectsProblem::stringifyParameters(), TaggingInterface::TaggingInterface(), Transfer::Transfer(), TransientBase::TransientBase(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), and MooseApp::~MooseApp().

131 { return _pars; }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366

◆ paramInfo()

template<typename... Args>
void MooseBase::paramInfo ( const std::string &  param,
Args...  args 
) const
inherited

Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseInfo - only printing a message using the given args.

Definition at line 453 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), ComboMarker::ComboMarker(), Control::Control(), FunctorIC::FunctorIC(), and TransientMultiApp::TransientMultiApp().

454 {
455  mooseInfo(_pars.paramMessage(param, std::forward<Args>(args)...));
456 }
std::string paramMessage(const std::string &param, Args... args) const
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:321
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366

◆ paramWarning() [1/2]

template<typename... Args>
void SolutionInvalidInterface::paramWarning ( const std::string &  param,
Args...  args 
) const
inlineinherited

◆ paramWarning() [2/2]

template<typename... Args>
void MooseBase::paramWarning ( const std::string &  param,
Args...  args 
) const
inherited

Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseWarning - only printing a message using the given args.

Definition at line 446 of file MooseBase.h.

447 {
448  mooseWarning(_pars.paramMessage(param, std::forward<Args>(args)...));
449 }
std::string paramMessage(const std::string &param, Args... args) const
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299

◆ parentOutputPositionChanged()

void FEProblemBase::parentOutputPositionChanged ( )
inherited

Calls parentOutputPositionChanged() on all sub apps.

Definition at line 4685 of file FEProblemBase.C.

Referenced by TransientBase::parentOutputPositionChanged().

4686 {
4687  for (const auto & it : _multi_apps)
4688  {
4689  const auto & objects = it.second.getActiveObjects();
4690  for (const auto & obj : objects)
4691  obj->parentOutputPositionChanged();
4692  }
4693 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:173

◆ petscOptionsDatabase()

PetscOptions& FEProblemBase::petscOptionsDatabase ( )
inlineinherited

Definition at line 2347 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2347 { return _petsc_option_data_base; }
PetscOptions _petsc_option_data_base

◆ petscOptionsInserted()

bool& FEProblemBase::petscOptionsInserted ( )
inlineinherited

If PETSc options are already inserted.

Definition at line 2344 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2344 { return _is_petsc_options_inserted; }
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.

◆ possiblyRebuildGeomSearchPatches()

void FEProblemBase::possiblyRebuildGeomSearchPatches ( )
virtualinherited

Definition at line 8093 of file FEProblemBase.C.

Referenced by FEProblemBase::solve().

8094 {
8095  if (_displaced_problem) // Only need to do this if things are moving...
8096  {
8097  TIME_SECTION("possiblyRebuildGeomSearchPatches", 5, "Rebuilding Geometric Search Patches");
8098 
8099  switch (_mesh.getPatchUpdateStrategy())
8100  {
8101  case Moose::Never:
8102  break;
8103  case Moose::Iteration:
8104  // Update the list of ghosted elements at the start of the time step
8107 
8108  _displaced_problem->geomSearchData().updateGhostedElems();
8110 
8111  // The commands below ensure that the sparsity of the Jacobian matrix is
8112  // augmented at the start of the time step using neighbor nodes from the end
8113  // of the previous time step.
8114 
8116 
8117  // This is needed to reinitialize PETSc output
8119 
8120  break;
8121 
8122  case Moose::Auto:
8123  {
8124  Real max = _displaced_problem->geomSearchData().maxPatchPercentage();
8126 
8127  // If we haven't moved very far through the patch
8128  if (max < 0.4)
8129  break;
8130  }
8131  libmesh_fallthrough();
8132 
8133  // Let this fall through if things do need to be updated...
8134  case Moose::Always:
8135  // Flush output here to see the message before the reinitialization, which could take a
8136  // while
8137  _console << "\n\nUpdating geometric search patches\n" << std::endl;
8138 
8141 
8142  _displaced_problem->geomSearchData().clearNearestNodeLocators();
8144 
8146 
8147  // This is needed to reinitialize PETSc output
8149  }
8150  }
8151 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1095
auto max(const L &left, const R &right)
void updateGhostedElems()
Updates the list of ghosted elements at the start of each time step for the nonlinear iteration patch...
MooseMesh & _mesh
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:966
void max(const T &r, T &o, Request &req) const
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
const Moose::PatchUpdateType & getPatchUpdateStrategy() const
Get the current patch update strategy.
Definition: MooseMesh.C:3434
void clearNearestNodeLocators()
Clear out the Penetration Locators so they will redo the search.
MooseMesh * _displaced_mesh

◆ postExecute()

void FEProblemBase::postExecute ( )
virtualinherited

Method called at the end of the simulation.

Definition at line 5702 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5703 {
5704  const auto & multi_apps = _multi_apps.getActiveObjects();
5705 
5706  for (const auto & multi_app : multi_apps)
5707  multi_app->postExecute();
5708 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ predictorCleanup()

void FEProblemBase::predictorCleanup ( NumericVector< libMesh::Number > &  ghosted_solution)
virtualinherited

Perform cleanup tasks after application of predictor to solution vector.

Parameters
ghosted_solutionGhosted solution vector

Definition at line 8006 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::setInitialSolution().

8007 {
8008 }

◆ prepare() [1/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ prepare() [2/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
unsigned int  ivar,
unsigned int  jvar,
const std::vector< dof_id_type > &  dof_indices,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ prepareAssembly()

void FEProblemBase::prepareAssembly ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1861 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), NonlinearSystemBase::reinitNodeFace(), and NonlinearSystemBase::setConstraintSecondaryValues().

1862 {
1863  _assembly[tid][_current_nl_sys->number()]->prepare();
1865  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
1866 
1868  {
1869  _displaced_problem->prepareAssembly(tid);
1871  _displaced_problem->prepareNonlocal(tid);
1872  }
1873 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ prepareFace()

void FEProblemBase::prepareFace ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1775 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onInterface(), and ComputeUserObjectsThread::onInternalSide().

1776 {
1777  for (auto & nl : _nl)
1778  nl->prepareFace(tid, true);
1779  _aux->prepareFace(tid, false);
1780 
1782  _displaced_problem->prepareFace(_displaced_mesh->elemPtr(elem->id()), tid);
1783 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ prepareFaceShapes()

void FEProblemBase::prepareFaceShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2120 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary().

2121 {
2122  _assembly[tid][_current_nl_sys->number()]->copyFaceShapes(var);
2123 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ prepareKokkosMaterials()

void FEProblemBase::prepareKokkosMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props)
inherited

◆ prepareMaterials()

void FEProblemBase::prepareMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props,
const SubdomainID  blk_id,
const THREAD_ID  tid 
)
inherited

Add the MooseVariables and the material properties that the current materials depend on to the dependency list.

Parameters
consumer_needed_mat_propsThe material properties needed by consumer objects (other than the materials themselves)
blk_idThe subdomain ID for which we are preparing our list of needed vars and props
tidThe thread ID we are preparing the requirements for

This MUST be done after the moose variable dependency list has been set for all the other objects using the setActiveElementalMooseVariables API!

Definition at line 4128 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

4131 {
4132  std::set<MooseVariableFEBase *> needed_moose_vars;
4133  std::unordered_set<unsigned int> needed_mat_props;
4134 
4135  if (_all_materials.hasActiveBlockObjects(blk_id, tid))
4136  {
4137  _all_materials.updateVariableDependency(needed_moose_vars, tid);
4138  _all_materials.updateBlockMatPropDependency(blk_id, needed_mat_props, tid);
4139  }
4140 
4141  const auto & ids = _mesh.getSubdomainBoundaryIds(blk_id);
4142  for (const auto id : ids)
4143  {
4144  _materials.updateBoundaryVariableDependency(id, needed_moose_vars, tid);
4145  _materials.updateBoundaryMatPropDependency(id, needed_mat_props, tid);
4146  }
4147 
4148  const auto & current_active_elemental_moose_variables = getActiveElementalMooseVariables(tid);
4149  needed_moose_vars.insert(current_active_elemental_moose_variables.begin(),
4150  current_active_elemental_moose_variables.end());
4151 
4152  needed_mat_props.insert(consumer_needed_mat_props.begin(), consumer_needed_mat_props.end());
4153 
4154  setActiveElementalMooseVariables(needed_moose_vars, tid);
4155  setActiveMaterialProperties(needed_mat_props, tid);
4156 }
void updateVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
Update variable dependency vector.
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::set< BoundaryID > & getSubdomainBoundaryIds(const SubdomainID subdomain_id) const
Get the list of boundary ids associated with the given subdomain id.
Definition: MooseMesh.C:3518
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
Set the MOOSE variables to be reinited on each element.
MooseMesh & _mesh
void updateBoundaryMatPropDependency(std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBlockMatPropDependency(SubdomainID id, std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBoundaryVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
MaterialWarehouse _all_materials
MaterialWarehouse _materials

◆ prepareNeighborShapes()

void FEProblemBase::prepareNeighborShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2126 of file FEProblemBase.C.

2127 {
2128  _assembly[tid][_current_nl_sys->number()]->copyNeighborShapes(var);
2129 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preparePRefinement()

void SubProblem::preparePRefinement ( )
inherited

Prepare DofMap and Assembly classes with our p-refinement information.

Definition at line 1337 of file SubProblem.C.

Referenced by FEProblemBase::init().

1338 {
1339  std::unordered_set<FEFamily> disable_families;
1340  for (const auto & [family, flag] : _family_for_p_refinement)
1341  if (flag)
1342  disable_families.insert(family);
1343 
1344  for (const auto tid : make_range(libMesh::n_threads()))
1345  for (const auto s : make_range(numNonlinearSystems()))
1346  assembly(tid, s).havePRefinement(disable_families);
1347 
1348  auto & eq = es();
1349  for (const auto family : disable_families)
1350  for (const auto i : make_range(eq.n_systems()))
1351  {
1352  auto & system = eq.get_system(i);
1353  auto & dof_map = system.get_dof_map();
1354  for (const auto vg : make_range(system.n_variable_groups()))
1355  {
1356  const auto & var_group = system.variable_group(vg);
1357  if (var_group.type().family == family)
1358  dof_map.should_p_refine(vg, false);
1359  }
1360  }
1361 
1362  _have_p_refinement = true;
1363 }
unsigned int n_threads()
virtual libMesh::EquationSystems & es()=0
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1210
void havePRefinement(const std::unordered_set< FEFamily > &disable_p_refinement_for_families)
Indicate that we have p-refinement.
Definition: Assembly.C:4859
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1207
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ prepareShapes()

void FEProblemBase::prepareShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2114 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onElement().

2115 {
2116  _assembly[tid][_current_nl_sys->number()]->copyShapes(var);
2117 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preserveMatrixSparsityPattern()

bool FEProblemBase::preserveMatrixSparsityPattern ( ) const
inlineinherited

Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve.

This is usually the Jacobian.

Definition at line 2165 of file FEProblemBase.h.

bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...

◆ projectFunctionOnCustomRange()

void FEProblemBase::projectFunctionOnCustomRange ( ConstElemRange elem_range,
Number(*)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &)  func,
Gradient(*)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &)  func_grad,
const libMesh::Parameters params,
const VariableName &  target_var 
)
inherited

Project a function onto a range of elements for a given variable.

Warning
The current implementation is not ideal. The projection takes place on all local active elements, ignoring the specified elem_range. After the projection, dof values on the specified elem_range are copied over to the current solution vector. This should be fixed once the project_vector or project_solution API is modified to take a custom element range.
Parameters
elem_rangeElement range to project on
funcFunction to project
func_gradGradient of the function
paramsParameters to pass to the function
target_varvariable name to project

Definition at line 3828 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::extrapolatePolynomial().

3839 {
3840  mooseAssert(!Threads::in_threads,
3841  "We're performing a projection based on data from just the thread 0 variable, so any "
3842  "modifications to the variable solution must have been thread joined already");
3843 
3844  const auto & var = getStandardVariable(0, target_var);
3845  const auto var_num = var.number();
3846  const auto sn = systemNumForVariable(target_var);
3847  auto & sys = getSystemBase(sn);
3848 
3849  // Let libmesh handle the projection
3850  System & libmesh_sys = getSystem(target_var);
3851  auto temp_vec = libmesh_sys.current_local_solution->zero_clone();
3852  libmesh_sys.project_vector(func, func_grad, params, *temp_vec);
3853  temp_vec->close();
3854 
3855  // Get the dof indices to copy
3856  DofMap & dof_map = sys.dofMap();
3857  std::set<dof_id_type> dof_indices;
3858  std::vector<dof_id_type> elem_dof_indices;
3859 
3860  for (const auto & elem : elem_range)
3861  {
3862  dof_map.dof_indices(elem, elem_dof_indices, var_num);
3863  dof_indices.insert(elem_dof_indices.begin(), elem_dof_indices.end());
3864  }
3865  std::vector<dof_id_type> dof_indices_v(dof_indices.begin(), dof_indices.end());
3866 
3867  // Copy the projected values into the solution vector
3868  std::vector<Real> dof_vals;
3869  temp_vec->get(dof_indices_v, dof_vals);
3870  mooseAssert(sys.solution().closed(),
3871  "The solution should be closed before mapping our projection");
3872  sys.solution().insert(dof_vals, dof_indices_v);
3873  sys.solution().close();
3874  sys.solution().localize(*libmesh_sys.current_local_solution, sys.dofMap().get_send_list());
3875 }
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
unsigned int systemNumForVariable(const VariableName &variable_name) const
virtual MooseVariable & getStandardVariable(const THREAD_ID tid, const std::string &var_name) override
Returns the variable reference for requested MooseVariable which may be in any system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::unique_ptr< NumericVector< Number > > current_local_solution
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const

◆ projectInitialConditionOnCustomRange()

void FEProblemBase::projectInitialConditionOnCustomRange ( libMesh::ConstElemRange elem_range,
ConstBndNodeRange bnd_node_range,
const std::optional< std::set< VariableName >> &  target_vars = std::nullopt 
)
inherited

Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Parameters
elem_rangeElement range to project on
bnd_node_rangeBoundary node range to project on
target_varsSet of variable names to project ICs

Definition at line 3753 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::applyIC(), and ActivateElementsUserObjectBase::initSolutions().

3757 {
3758  if (target_vars)
3759  {
3760  ComputeInitialConditionThread cic(*this, &(*target_vars));
3761  Threads::parallel_reduce(elem_range, cic);
3762  }
3763  else
3764  {
3765  ComputeInitialConditionThread cic(*this);
3766  Threads::parallel_reduce(elem_range, cic);
3767  }
3768 
3769  // Need to close the solution vector here so that boundary ICs take precendence
3770  for (auto & nl : _nl)
3771  nl->solution().close();
3772  _aux->solution().close();
3773 
3774  if (target_vars)
3775  {
3776  ComputeBoundaryInitialConditionThread cbic(*this, &(*target_vars));
3777  Threads::parallel_reduce(bnd_nodes, cbic);
3778  }
3779  else
3780  {
3782  Threads::parallel_reduce(bnd_nodes, cbic);
3783  }
3784 
3785  for (auto & nl : _nl)
3786  nl->solution().close();
3787  _aux->solution().close();
3788 
3789  // Also, load values into the SCALAR dofs
3790  // Note: We assume that all SCALAR dofs are on the
3791  // processor with highest ID
3792  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3793  {
3794  const auto & ics = _scalar_ics.getActiveObjects();
3795  for (const auto & ic : ics)
3796  {
3797  MooseVariableScalar & var = ic->variable();
3798 
3799  if (target_vars && !target_vars->count(var.name()))
3800  continue;
3801 
3802  var.reinit();
3803 
3804  DenseVector<Number> vals(var.order());
3805  ic->compute(vals);
3806 
3807  const unsigned int n_scalar_dofs = var.dofIndices().size();
3808  for (unsigned int i = 0; i < n_scalar_dofs; i++)
3809  {
3810  const auto global_index = var.dofIndices()[i];
3811  var.sys().solution().set(global_index, vals(i));
3812  var.setValue(i, vals(i));
3813  }
3814  }
3815  }
3816 
3817  for (auto & nl : _nl)
3818  {
3819  nl->solution().close();
3820  nl->solution().localize(*nl->system().current_local_solution, nl->dofMap().get_send_list());
3821  }
3822 
3823  _aux->solution().close();
3824  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3825 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
Class for scalar variables (they are different).
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.

◆ projectSolution()

void FEProblemBase::projectSolution ( )
inherited

Definition at line 3685 of file FEProblemBase.C.

Referenced by FEProblemBase::initialAdaptMesh(), and FEProblemBase::initialSetup().

3686 {
3687  TIME_SECTION("projectSolution", 2, "Projecting Initial Solutions")
3688 
3689  FloatingPointExceptionGuard fpe_guard(_app);
3690 
3691  ConstElemRange & elem_range = *_mesh.getActiveLocalElementRange();
3692  ComputeInitialConditionThread cic(*this);
3693  Threads::parallel_reduce(elem_range, cic);
3694 
3695  if (haveFV())
3696  {
3698  ElemInfoRange elem_info_range(_mesh.ownedElemInfoBegin(), _mesh.ownedElemInfoEnd());
3699 
3700  ComputeFVInitialConditionThread cfvic(*this);
3701  Threads::parallel_reduce(elem_info_range, cfvic);
3702  }
3703 
3704  // Need to close the solution vector here so that boundary ICs take precendence
3705  for (auto & nl : _nl)
3706  nl->solution().close();
3707  _aux->solution().close();
3708 
3709  // now run boundary-restricted initial conditions
3710  ConstBndNodeRange & bnd_nodes = *_mesh.getBoundaryNodeRange();
3712  Threads::parallel_reduce(bnd_nodes, cbic);
3713 
3714  for (auto & nl : _nl)
3715  nl->solution().close();
3716  _aux->solution().close();
3717 
3718  // Also, load values into the SCALAR dofs
3719  // Note: We assume that all SCALAR dofs are on the
3720  // processor with highest ID
3721  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3722  {
3723  const auto & ics = _scalar_ics.getActiveObjects();
3724  for (const auto & ic : ics)
3725  {
3726  MooseVariableScalar & var = ic->variable();
3727  var.reinit();
3728 
3729  DenseVector<Number> vals(var.order());
3730  ic->compute(vals);
3731 
3732  const unsigned int n_scalar_dofs = var.dofIndices().size();
3733  for (unsigned int i = 0; i < n_scalar_dofs; i++)
3734  {
3735  const auto global_index = var.dofIndices()[i];
3736  var.sys().solution().set(global_index, vals(i));
3737  var.setValue(i, vals(i));
3738  }
3739  }
3740  }
3741 
3742  for (auto & sys : _solver_systems)
3743  {
3744  sys->solution().close();
3745  sys->solution().localize(*sys->system().current_local_solution, sys->dofMap().get_send_list());
3746  }
3747 
3748  _aux->solution().close();
3749  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3750 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Scope guard for starting and stopping Floating Point Exception Trapping.
elem_info_iterator ownedElemInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1566
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
MooseMesh & _mesh
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
if(!dmm->_nl) SETERRQ(PETSC_COMM_WORLD
Class for scalar variables (they are different).
elem_info_iterator ownedElemInfoEnd()
Definition: MooseMesh.C:1574
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1327

◆ queryParam()

template<typename T >
const T * MooseBase::queryParam ( const std::string &  name) const
inherited

Query a parameter for the object.

If the parameter is not valid, nullptr will be returned

Parameters
nameThe name of the parameter
Returns
A pointer to the parameter value, if it exists

Definition at line 395 of file MooseBase.h.

396 {
397  return isParamValid(name) ? &getParam<T>(name) : nullptr;
398 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:199

◆ registerInvalidSolutionInternal()

InvalidSolutionID SolutionInvalidInterface::registerInvalidSolutionInternal ( const std::string &  message,
const bool  warning 
) const
protectedinherited

Definition at line 55 of file SolutionInvalidInterface.C.

57 {
59  _si_moose_base.type(), message, warning);
60 }
InvalidSolutionID registerInvalidity(const std::string &object_type, const std::string &message, const bool warning)
Call to register an invalid calculation.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
SolutionInvalidityRegistry & getSolutionInvalidityRegistry()
Get the global SolutionInvalidityRegistry singleton.
const MooseBase & _si_moose_base
The MooseBase that owns this interface.

◆ registerRandomInterface()

void FEProblemBase::registerRandomInterface ( RandomInterface random_interface,
const std::string &  name 
)
inherited

Definition at line 8923 of file FEProblemBase.C.

Referenced by RandomInterface::setRandomResetFrequency().

8924 {
8925  auto insert_pair = moose_try_emplace(
8926  _random_data_objects, name, std::make_unique<RandomData>(*this, random_interface));
8927 
8928  auto random_data_ptr = insert_pair.first->second.get();
8929  random_interface.setRandomDataPointer(random_data_ptr);
8930 }
std::pair< typename M::iterator, bool > moose_try_emplace(M &m, const typename M::key_type &k, Args &&... args)
Function to mirror the behavior of the C++17 std::map::try_emplace() method (no hint).
Definition: Moose.h:101
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
void setRandomDataPointer(RandomData *random_data)

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerUnfilledFunctorRequest()

template<typename T >
void SubProblem::registerUnfilledFunctorRequest ( T *  functor_interface,
const std::string &  functor_name,
const THREAD_ID  tid 
)
inherited

Register an unfulfilled functor request.

◆ reinitBecauseOfGhostingOrNewGeomObjects()

void FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects ( bool  mortar_changed = false)
protectedinherited

Call when it is possible that the needs for ghosted elements has changed.

Parameters
mortar_changedWhether an update of mortar data has been requested since the last EquationSystems (re)initialization

Definition at line 5338 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), and FEProblemBase::possiblyRebuildGeomSearchPatches().

5339 {
5340  TIME_SECTION("reinitBecauseOfGhostingOrNewGeomObjects",
5341  3,
5342  "Reinitializing Because of Geometric Search Objects");
5343 
5344  // Need to see if _any_ processor has ghosted elems or geometry objects.
5345  bool needs_reinit = !_ghosted_elems.empty();
5346  needs_reinit = needs_reinit || !_geometric_search_data._nearest_node_locators.empty() ||
5347  (_mortar_data->hasObjects() && mortar_changed);
5348  needs_reinit =
5349  needs_reinit || (_displaced_problem &&
5350  (!_displaced_problem->geomSearchData()._nearest_node_locators.empty() ||
5351  (_mortar_data->hasDisplacedObjects() && mortar_changed)));
5352  _communicator.max(needs_reinit);
5353 
5354  if (needs_reinit)
5355  {
5356  // Call reinit to get the ghosted vectors correct now that some geometric search has been done
5357  es().reinit();
5358 
5359  if (_displaced_mesh)
5360  _displaced_problem->es().reinit();
5361  }
5362 }
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1095
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::EquationSystems & es() override
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data
void max(const T &r, T &o, Request &req) const
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
MooseMesh * _displaced_mesh

◆ reinitDirac()

bool FEProblemBase::reinitDirac ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Returns true if the Problem has Dirac kernels it needs to compute on elem.

The maximum number of qps can rise if several Dirac points are added to a single element. In that case we need to resize the zeros to compensate.

Implements SubProblem.

Definition at line 2165 of file FEProblemBase.C.

Referenced by ComputeDiracThread::onElement().

2166 {
2167  std::vector<Point> & points = _dirac_kernel_info.getPoints()[elem].first;
2168 
2169  unsigned int n_points = points.size();
2170 
2171  if (n_points)
2172  {
2173  if (n_points > _max_qps)
2174  {
2175  _max_qps = n_points;
2176 
2181  unsigned int max_qpts = getMaxQps();
2182  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
2183  {
2184  // the highest available order in libMesh is 43
2185  _scalar_zero[tid].resize(FORTYTHIRD, 0);
2186  _zero[tid].resize(max_qpts, 0);
2187  _grad_zero[tid].resize(max_qpts, RealGradient(0.));
2188  _second_zero[tid].resize(max_qpts, RealTensor(0.));
2189  _vector_zero[tid].resize(max_qpts, RealGradient(0.));
2190  _vector_curl_zero[tid].resize(max_qpts, RealGradient(0.));
2191  }
2192  }
2193 
2194  for (const auto i : index_range(_nl))
2195  {
2196  _assembly[tid][i]->reinitAtPhysical(elem, points);
2197  _nl[i]->prepare(tid);
2198  }
2199  _aux->prepare(tid);
2200 
2201  reinitElem(elem, tid);
2202  }
2203 
2204  _assembly[tid][_current_nl_sys->number()]->prepare();
2206  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
2207 
2208  bool have_points = n_points > 0;
2210  {
2211  have_points |= _displaced_problem->reinitDirac(_displaced_mesh->elemPtr(elem->id()), tid);
2213  _displaced_problem->prepareNonlocal(tid);
2214  }
2215 
2216  return have_points;
2217 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
unsigned int n_threads()
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< VariableSecond > _second_zero
std::vector< VectorVariableCurl > _vector_curl_zero
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MultiPointMap & getPoints()
Returns a writeable reference to the _points container.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::vector< VariableGradient > _grad_zero
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< VectorVariableValue > _vector_zero
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1051
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh
unsigned int getMaxQps() const

◆ reinitElem()

void FEProblemBase::reinitElem ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2220 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeElemDampingThread::onElement(), ComputeIndicatorThread::onElement(), ComputeMaterialsObjectThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeInitialConditionThread::operator()(), FEProblemBase::reinitDirac(), and FEProblemBase::reinitElemPhys().

2221 {
2222  for (auto & sys : _solver_systems)
2223  sys->reinitElem(elem, tid);
2224  _aux->reinitElem(elem, tid);
2225 
2227  _displaced_problem->reinitElem(_displaced_mesh->elemPtr(elem->id()), tid);
2228 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemFace() [1/2]

void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
BoundaryID  ,
const THREAD_ID  tid 
)
inherited

◆ reinitElemFace() [2/2]

virtual void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitElemFaceRef()

void FEProblemBase::reinitElemFaceRef ( const Elem elem,
unsigned int  side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9270 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9276 {
9277  SubProblem::reinitElemFaceRef(elem, side, tolerance, pts, weights, tid);
9278 
9279  if (_displaced_problem)
9280  _displaced_problem->reinitElemFaceRef(
9281  _displaced_mesh->elemPtr(elem->id()), side, tolerance, pts, weights, tid);
9282 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
dof_id_type id() const
virtual void reinitElemFaceRef(const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given element on a given side at a given set of reference points and the...
Definition: SubProblem.C:883
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemNeighborAndLowerD()

void FEProblemBase::reinitElemNeighborAndLowerD ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2406 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInternalSide(), and NonlinearThread::onInternalSide().

2409 {
2410  reinitNeighbor(elem, side, tid);
2411 
2412  const Elem * lower_d_elem = _mesh.getLowerDElem(elem, side);
2413  if (lower_d_elem && _mesh.interiorLowerDBlocks().count(lower_d_elem->subdomain_id()) > 0)
2414  reinitLowerDElem(lower_d_elem, tid);
2415  else
2416  {
2417  // with mesh refinement, lower-dimensional element might be defined on neighbor side
2418  auto & neighbor = _assembly[tid][0]->neighbor();
2419  auto & neighbor_side = _assembly[tid][0]->neighborSide();
2420  const Elem * lower_d_elem_neighbor = _mesh.getLowerDElem(neighbor, neighbor_side);
2421  if (lower_d_elem_neighbor &&
2422  _mesh.interiorLowerDBlocks().count(lower_d_elem_neighbor->subdomain_id()) > 0)
2423  {
2424  auto qps = _assembly[tid][0]->qPointsFaceNeighbor().stdVector();
2425  std::vector<Point> reference_points;
2426  FEMap::inverse_map(
2427  lower_d_elem_neighbor->dim(), lower_d_elem_neighbor, qps, reference_points);
2428  reinitLowerDElem(lower_d_elem_neighbor, tid, &reference_points);
2429  }
2430  }
2431 
2433  _displaced_problem->reinitElemNeighborAndLowerD(
2434  _displaced_mesh->elemPtr(elem->id()), side, tid);
2435 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1421
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
const Elem * getLowerDElem(const Elem *, unsigned short int) const
Returns a const pointer to a lower dimensional element that corresponds to a side of a higher dimensi...
Definition: MooseMesh.C:1739
dof_id_type id() const
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
virtual unsigned short dim() const=0
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void reinitNeighbor(const Elem *elem, unsigned int side, const THREAD_ID tid) override
MooseMesh * _displaced_mesh

◆ reinitElemPhys()

void FEProblemBase::reinitElemPhys ( const Elem elem,
const std::vector< Point > &  phys_points_in_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2231 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

2234 {
2235  mooseAssert(_mesh.queryElemPtr(elem->id()) == elem,
2236  "Are you calling this method with a displaced mesh element?");
2237 
2238  for (const auto i : index_range(_solver_systems))
2239  {
2240  _assembly[tid][i]->reinitAtPhysical(elem, phys_points_in_elem);
2241  _solver_systems[i]->prepare(tid);
2242  _assembly[tid][i]->prepare();
2244  _assembly[tid][i]->prepareNonlocal();
2245  }
2246  _aux->prepare(tid);
2247 
2248  reinitElem(elem, tid);
2249 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual Elem * queryElemPtr(const dof_id_type i)
Definition: MooseMesh.C:3146
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
auto index_range(const T &sizable)

◆ reinitFVFace()

void SubProblem::reinitFVFace ( const THREAD_ID  tid,
const FaceInfo fi 
)
inherited

reinitialize the finite volume assembly data for the provided face and thread

Definition at line 1289 of file SubProblem.C.

1290 {
1291  for (const auto nl : make_range(numNonlinearSystems()))
1292  assembly(tid, nl).reinitFVFace(fi);
1293 }
void reinitFVFace(const FaceInfo &fi)
Definition: Assembly.C:1855
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitKokkosMaterials()

void FEProblemBase::reinitKokkosMaterials ( )
inherited

◆ reinitLowerDElem()

void FEProblemBase::reinitLowerDElem ( const Elem lower_d_elem,
const THREAD_ID  tid,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2279 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::prepareFace(), and FEProblemBase::reinitElemNeighborAndLowerD().

2283 {
2284  SubProblem::reinitLowerDElem(lower_d_elem, tid, pts, weights);
2285 
2287  _displaced_problem->reinitLowerDElem(
2288  _displaced_mesh->elemPtr(lower_d_elem->id()), tid, pts, weights);
2289 }
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr)
Definition: SubProblem.C:958
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitMaterials()

void FEProblemBase::reinitMaterials ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4159 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeDiracThread::onElement(), and ComputeUserObjectsThread::onElement().

4160 {
4161  if (hasActiveMaterialProperties(tid))
4162  {
4163  auto && elem = _assembly[tid][0]->elem();
4164  unsigned int n_points = _assembly[tid][0]->qRule()->n_points();
4165 
4166  auto & material_data = _material_props.getMaterialData(tid);
4167  material_data.resize(n_points);
4168 
4169  // Only swap if requested
4170  if (swap_stateful)
4171  material_data.swap(*elem);
4172 
4173  if (_discrete_materials.hasActiveBlockObjects(blk_id, tid))
4174  material_data.reset(_discrete_materials.getActiveBlockObjects(blk_id, tid));
4175 
4176  if (_materials.hasActiveBlockObjects(blk_id, tid))
4177  material_data.reinit(_materials.getActiveBlockObjects(blk_id, tid));
4178  }
4179 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsBoundary()

void FEProblemBase::reinitMaterialsBoundary ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on a boundary

Parameters
boundary_idThe boundary on which to reinit corresponding materials
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4304 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4308 {
4309  if (hasActiveMaterialProperties(tid) && needBoundaryMaterialOnSide(boundary_id, tid))
4310  {
4311  auto && elem = _assembly[tid][0]->elem();
4312  unsigned int side = _assembly[tid][0]->side();
4313  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4314 
4315  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4316  bnd_material_data.resize(n_points);
4317 
4318  if (swap_stateful && !bnd_material_data.isSwapped())
4319  bnd_material_data.swap(*elem, side);
4320 
4321  if (_discrete_materials.hasActiveBoundaryObjects(boundary_id, tid))
4322  bnd_material_data.reset(_discrete_materials.getActiveBoundaryObjects(boundary_id, tid));
4323 
4324  if (reinit_mats)
4325  bnd_material_data.reinit(*reinit_mats);
4326  else if (_materials.hasActiveBoundaryObjects(boundary_id, tid))
4327  bnd_material_data.reinit(_materials.getActiveBoundaryObjects(boundary_id, tid));
4328  }
4329 }
MaterialPropertyStorage & _bnd_material_props
bool needBoundaryMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
These methods are used to determine whether stateful material properties need to be stored on interna...
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFace()

void FEProblemBase::reinitMaterialsFace ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on element faces

Parameters
blk_idThe subdomain on which the element owning the face lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4182 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearThread::prepareFace().

4186 {
4187  // we reinit more often than needed here because we dont have a way to check whether
4188  // we need to compute the face materials on a particular (possibly external) face
4189  if (hasActiveMaterialProperties(tid))
4190  {
4191  auto && elem = _assembly[tid][0]->elem();
4192  unsigned int side = _assembly[tid][0]->side();
4193  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4194 
4195  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4196  bnd_material_data.resize(n_points);
4197 
4198  if (swap_stateful && !bnd_material_data.isSwapped())
4199  bnd_material_data.swap(*elem, side);
4200 
4201  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4202  bnd_material_data.reset(
4203  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4204 
4205  if (reinit_mats)
4206  bnd_material_data.reinit(*reinit_mats);
4207  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4208  bnd_material_data.reinit(
4209  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4210  }
4211 }
MaterialPropertyStorage & _bnd_material_props
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFaceOnBoundary()

void FEProblemBase::reinitMaterialsFaceOnBoundary ( const BoundaryID  boundary_id,
const SubdomainID  blk_id,
const THREAD_ID  tid,
const bool  swap_stateful = true,
const std::deque< MaterialBase *> *const  reinit_mats = nullptr 
)
inherited

reinit materials on element faces on a boundary (internal or external) This specific routine helps us not reinit when don't need to

Parameters
boundary_idThe boundary on which the face belongs
blk_idThe block id to which the element (who owns the face) belong
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4214 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4219 {
4220  if (hasActiveMaterialProperties(tid) && (needBoundaryMaterialOnSide(boundary_id, tid) ||
4221  needInterfaceMaterialOnSide(boundary_id, tid) ||
4222  needInternalNeighborSideMaterial(blk_id, tid)))
4223  {
4224  const auto * const elem = _assembly[tid][0]->elem();
4225  unsigned int side = _assembly[tid][0]->side();
4226  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4227 
4228  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4229  bnd_material_data.resize(n_points);
4230 
4231  if (swap_stateful && !bnd_material_data.isSwapped())
4232  bnd_material_data.swap(*elem, side);
4233 
4234  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4235  bnd_material_data.reset(
4236  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4237 
4238  if (reinit_mats)
4239  bnd_material_data.reinit(*reinit_mats);
4240  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4241  bnd_material_data.reinit(
4242  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4243  }
4244 }
MaterialPropertyStorage & _bnd_material_props
bool needBoundaryMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
These methods are used to determine whether stateful material properties need to be stored on interna...
bool needInternalNeighborSideMaterial(SubdomainID subdomain_id, const THREAD_ID tid)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
bool needInterfaceMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsInterface()

void FEProblemBase::reinitMaterialsInterface ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4332 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), and ComputeUserObjectsThread::onInterface().

4335 {
4336  if (hasActiveMaterialProperties(tid) && needInterfaceMaterialOnSide(boundary_id, tid))
4337  {
4338  const Elem * const & elem = _assembly[tid][0]->elem();
4339  unsigned int side = _assembly[tid][0]->side();
4340  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4341 
4342  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4343  bnd_material_data.resize(n_points);
4344 
4345  if (swap_stateful && !bnd_material_data.isSwapped())
4346  bnd_material_data.swap(*elem, side);
4347 
4348  if (_interface_materials.hasActiveBoundaryObjects(boundary_id, tid))
4349  bnd_material_data.reinit(_interface_materials.getActiveBoundaryObjects(boundary_id, tid));
4350  }
4351 }
MaterialPropertyStorage & _bnd_material_props
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool needInterfaceMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ reinitMaterialsNeighbor()

void FEProblemBase::reinitMaterialsNeighbor ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on the neighboring element face

Parameters
blk_idThe subdomain on which the neighbor element lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4264 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), FEProblemBase::reinitMaterialsNeighborOnBoundary(), and NonlinearSystemBase::reinitNodeFace().

4268 {
4269  if (hasActiveMaterialProperties(tid))
4270  {
4271  // NOTE: this will not work with h-adaptivity
4272  // lindsayad: why not?
4273 
4274  const Elem * neighbor = _assembly[tid][0]->neighbor();
4275  unsigned int neighbor_side = neighbor->which_neighbor_am_i(_assembly[tid][0]->elem());
4276 
4277  mooseAssert(neighbor, "neighbor should be non-null");
4278  mooseAssert(blk_id == neighbor->subdomain_id(),
4279  "The provided blk_id " << blk_id << " and neighbor subdomain ID "
4280  << neighbor->subdomain_id() << " do not match.");
4281 
4282  unsigned int n_points = _assembly[tid][0]->qRuleNeighbor()->n_points();
4283 
4284  auto & neighbor_material_data = _neighbor_material_props.getMaterialData(tid);
4285  neighbor_material_data.resize(n_points);
4286 
4287  // Only swap if requested
4288  if (swap_stateful)
4289  neighbor_material_data.swap(*neighbor, neighbor_side);
4290 
4291  if (_discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4292  neighbor_material_data.reset(
4293  _discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4294 
4295  if (reinit_mats)
4296  neighbor_material_data.reinit(*reinit_mats);
4297  else if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4298  neighbor_material_data.reinit(
4299  _materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4300  }
4301 }
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
subdomain_id_type subdomain_id() const
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsNeighborOnBoundary()

void FEProblemBase::reinitMaterialsNeighborOnBoundary ( const BoundaryID  boundary_id,
const SubdomainID  blk_id,
const THREAD_ID  tid,
const bool  swap_stateful = true,
const std::deque< MaterialBase *> *const  reinit_mats = nullptr 
)
inherited

reinit materials on neighbor element (usually faces) on a boundary (internal or external) This specific routine helps us not reinit when don't need to

Parameters
boundary_idThe boundary on which the face belongs
blk_idThe block id to which the element (who owns the face) belong
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4247 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface().

4253 {
4254  // Since objects don't declare whether they need the face or neighbor (side) material properties,
4255  // we use the same criteria for skipping material property computations as for face material
4256  // properties This could be a future optimization.
4257  if (hasActiveMaterialProperties(tid) && (needBoundaryMaterialOnSide(boundary_id, tid) ||
4258  needInterfaceMaterialOnSide(boundary_id, tid) ||
4259  needInternalNeighborSideMaterial(blk_id, tid)))
4260  reinitMaterialsNeighbor(blk_id, tid, swap_stateful, reinit_mats);
4261 }
bool needBoundaryMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
These methods are used to determine whether stateful material properties need to be stored on interna...
void reinitMaterialsNeighbor(SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
reinit materials on the neighboring element face
bool needInternalNeighborSideMaterial(SubdomainID subdomain_id, const THREAD_ID tid)
bool needInterfaceMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.

◆ reinitMortarElem()

void SubProblem::reinitMortarElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

Reinit a mortar element to obtain a valid JxW.

Definition at line 995 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

996 {
997  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
998  assembly(tid, nl_sys_num).reinitMortarElem(elem);
999 }
void reinitMortarElem(const Elem *elem)
reinitialize a mortar segment mesh element in order to get a proper JxW
Definition: Assembly.C:2402
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitMortarUserObjects()

void FEProblemBase::reinitMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced 
)
inherited

Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics.

Definition at line 9535 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9538 {
9539  const auto mortar_uos =
9540  getMortarUserObjects(primary_boundary_id, secondary_boundary_id, displaced);
9541  for (auto * const mortar_uo : mortar_uos)
9542  {
9543  mortar_uo->setNormals();
9544  mortar_uo->reinit();
9545  }
9546 }
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...

◆ reinitNeighbor()

void FEProblemBase::reinitNeighbor ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2367 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and FEProblemBase::reinitElemNeighborAndLowerD().

2368 {
2369  setNeighborSubdomainID(elem, side, tid);
2370 
2371  const Elem * neighbor = elem->neighbor_ptr(side);
2372  unsigned int neighbor_side = neighbor->which_neighbor_am_i(elem);
2373 
2374  for (const auto i : index_range(_nl))
2375  {
2376  _assembly[tid][i]->reinitElemAndNeighbor(elem, side, neighbor, neighbor_side);
2377  _nl[i]->prepareNeighbor(tid);
2378  // Called during stateful material property evaluation outside of solve
2379  _assembly[tid][i]->prepareNeighbor();
2380  }
2381  _aux->prepareNeighbor(tid);
2382 
2383  for (auto & nl : _nl)
2384  {
2385  nl->reinitElemFace(elem, side, tid);
2386  nl->reinitNeighborFace(neighbor, neighbor_side, tid);
2387  }
2388  _aux->reinitElemFace(elem, side, tid);
2389  _aux->reinitNeighborFace(neighbor, neighbor_side, tid);
2390 
2392  {
2393  // There are cases like for cohesive zone modeling without significant sliding where we cannot
2394  // use FEInterface::inverse_map in Assembly::reinitElemAndNeighbor in the displaced problem
2395  // because the physical points coming from the element don't actually lie on the neighbor.
2396  // Moreover, what's the point of doing another physical point inversion in other cases? We only
2397  // care about the reference points which we can just take from the undisplaced computation
2398  const auto & displaced_ref_pts = _assembly[tid][0]->qRuleNeighbor()->get_points();
2399 
2400  _displaced_problem->reinitNeighbor(
2401  _displaced_mesh->elemPtr(elem->id()), side, tid, &displaced_ref_pts);
2402  }
2403 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
unsigned int which_neighbor_am_i(const Elem *e) const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const Elem * neighbor_ptr(unsigned int i) const
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNeighborFaceRef()

void FEProblemBase::reinitNeighborFaceRef ( const Elem neighbor_elem,
unsigned int  neighbor_side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9285 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9291 {
9292  SubProblem::reinitNeighborFaceRef(neighbor_elem, neighbor_side, tolerance, pts, weights, tid);
9293 
9294  if (_displaced_problem)
9295  _displaced_problem->reinitNeighborFaceRef(
9296  _displaced_mesh->elemPtr(neighbor_elem->id()), neighbor_side, tolerance, pts, weights, tid);
9297 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
virtual void reinitNeighborFaceRef(const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given neighbor element on a given side at a given set of reference point...
Definition: SubProblem.C:922
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitNeighborLowerDElem()

void SubProblem::reinitNeighborLowerDElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

reinitialize a neighboring lower dimensional element

Definition at line 988 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

989 {
990  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
991  assembly(tid, nl_sys_num).reinitNeighborLowerDElem(elem);
992 }
void reinitNeighborLowerDElem(const Elem *elem)
reinitialize a neighboring lower dimensional element
Definition: Assembly.C:2381
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitNeighborPhys() [1/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
unsigned int  neighbor_side,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ reinitNeighborPhys() [2/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitNode()

void FEProblemBase::reinitNode ( const Node node,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2292 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), NonlinearSystemBase::computeResidualInternal(), ComputeNodalUserObjectsThread::onNode(), ComputeNodalDampingThread::onNode(), ComputeNodalKernelsThread::onNode(), and ComputeNodalKernelJacobiansThread::onNode().

2293 {
2295  _displaced_problem->reinitNode(&_displaced_mesh->nodeRef(node->id()), tid);
2296 
2297  for (const auto i : index_range(_nl))
2298  {
2299  _assembly[tid][i]->reinit(node);
2300  _nl[i]->reinitNode(node, tid);
2301  }
2302  _aux->reinitNode(node, tid);
2303 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodeFace()

void FEProblemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2306 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), ComputeNodalKernelBcsThread::onNode(), ComputeNodalKernelBCJacobiansThread::onNode(), NonlinearSystemBase::reinitNodeFace(), NonlinearSystemBase::setConstraintSecondaryValues(), and NonlinearSystemBase::setInitialSolution().

2307 {
2309  _displaced_problem->reinitNodeFace(&_displaced_mesh->nodeRef(node->id()), bnd_id, tid);
2310 
2311  for (const auto i : index_range(_nl))
2312  {
2313  _assembly[tid][i]->reinit(node);
2314  _nl[i]->reinitNodeFace(node, bnd_id, tid);
2315  }
2316  _aux->reinitNodeFace(node, bnd_id, tid);
2317 }
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodes()

void FEProblemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2320 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2321 {
2323  _displaced_problem->reinitNodes(nodes, tid);
2324 
2325  for (auto & nl : _nl)
2326  nl->reinitNodes(nodes, tid);
2327  _aux->reinitNodes(nodes, tid);
2328 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitNodesNeighbor()

void FEProblemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2331 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2332 {
2334  _displaced_problem->reinitNodesNeighbor(nodes, tid);
2335 
2336  for (auto & nl : _nl)
2337  nl->reinitNodesNeighbor(nodes, tid);
2338  _aux->reinitNodesNeighbor(nodes, tid);
2339 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitOffDiagScalars()

void FEProblemBase::reinitOffDiagScalars ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 2359 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians(), NonlinearSystemBase::constraintJacobians(), and NonlinearThread::onElement().

2360 {
2361  _assembly[tid][_current_nl_sys->number()]->prepareOffDiagScalar();
2362  if (_displaced_problem)
2363  _displaced_problem->reinitOffDiagScalars(tid);
2364 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitScalars()

void FEProblemBase::reinitScalars ( const THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
overridevirtualinherited

fills the VariableValue arrays for scalar variables from the solution vector

Parameters
tidThe thread id
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Implements SubProblem.

Definition at line 2342 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeResidualTags(), NonlinearSystemBase::computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), and FEProblemBase::initialSetup().

2343 {
2344  TIME_SECTION("reinitScalars", 3, "Reinitializing Scalar Variables");
2345 
2347  _displaced_problem->reinitScalars(tid, reinit_for_derivative_reordering);
2348 
2349  for (auto & nl : _nl)
2350  nl->reinitScalars(tid, reinit_for_derivative_reordering);
2351  _aux->reinitScalars(tid, reinit_for_derivative_reordering);
2352 
2353  // This is called outside of residual/Jacobian call-backs
2354  for (auto & assembly : _assembly[tid])
2356 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void prepareScalar()
Definition: Assembly.C:2945
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ removeAlgebraicGhostingFunctor()

void SubProblem::removeAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf)
inherited

Remove an algebraic ghosting functor from this problem's DofMaps.

Definition at line 1068 of file SubProblem.C.

1069 {
1070  EquationSystems & eq = es();
1071  const auto n_sys = eq.n_systems();
1072  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1073 
1074  const bool found_in_root_sys =
1076  nl_dof_map.algebraic_ghosting_functors_end(),
1077  &algebraic_gf) != nl_dof_map.algebraic_ghosting_functors_end();
1078 
1079 #ifndef NDEBUG
1080  const bool found_in_our_map =
1081  _root_alg_gf_to_sys_clones.find(&algebraic_gf) != _root_alg_gf_to_sys_clones.end();
1082  mooseAssert(found_in_root_sys == found_in_our_map,
1083  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1084  "it in our gf to clones map");
1085 #endif
1086 
1087  if (found_in_root_sys) // libMesh yells if we try to remove
1088  // something that's not there
1089  nl_dof_map.remove_algebraic_ghosting_functor(algebraic_gf);
1090 
1091  auto it = _root_alg_gf_to_sys_clones.find(&algebraic_gf);
1092  if (it == _root_alg_gf_to_sys_clones.end())
1093  return;
1094 
1095  auto & clones_vec = it->second;
1096  mooseAssert((n_sys - 1) == clones_vec.size(),
1097  "The size of the gf clones vector doesn't match the number of systems minus one");
1098  if (clones_vec.empty())
1099  {
1100  mooseAssert(n_sys == 1, "The clones vector should only be empty if there is only one system");
1101  return;
1102  }
1103 
1104  for (const auto i : make_range(n_sys))
1105  eq.get_system(i + 1).get_dof_map().remove_algebraic_ghosting_functor(*clones_vec[i]);
1106 
1107  _root_alg_gf_to_sys_clones.erase(it->first);
1108 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
unsigned int n_systems() const
GhostingFunctorIterator algebraic_ghosting_functors_begin() const
GhostingFunctorIterator algebraic_ghosting_functors_end() const
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_alg_gf_to_sys_clones
A map from a root algebraic ghosting functor, e.g.
Definition: SubProblem.h:1197
IntRange< T > make_range(T beg, T end)
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)

◆ removeCouplingGhostingFunctor()

void SubProblem::removeCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf)
inherited

Remove a coupling ghosting functor from this problem's DofMaps.

Definition at line 1111 of file SubProblem.C.

1112 {
1113  EquationSystems & eq = es();
1114  const auto num_nl_sys = numNonlinearSystems();
1115  if (!num_nl_sys)
1116  return;
1117 
1118  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1119  const bool found_in_root_sys = std::find(nl_dof_map.coupling_functors_begin(),
1120  nl_dof_map.coupling_functors_end(),
1121  &coupling_gf) != nl_dof_map.coupling_functors_end();
1122 
1123 #ifndef NDEBUG
1124  const bool found_in_our_map =
1126  mooseAssert(found_in_root_sys == found_in_our_map,
1127  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1128  "it in our gf to clones map");
1129 #endif
1130 
1131  if (found_in_root_sys) // libMesh yells if we try to remove
1132  // something that's not there
1133  nl_dof_map.remove_coupling_functor(coupling_gf);
1134 
1135  auto it = _root_coupling_gf_to_sys_clones.find(&coupling_gf);
1136  if (it == _root_coupling_gf_to_sys_clones.end())
1137  return;
1138 
1139  auto & clones_vec = it->second;
1140  mooseAssert((num_nl_sys - 1) == clones_vec.size(),
1141  "The size of the gf clones vector doesn't match the number of systems minus one");
1142  if (clones_vec.empty())
1143  {
1144  mooseAssert(num_nl_sys == 1,
1145  "The clones vector should only be empty if there is only one nonlinear system");
1146  return;
1147  }
1148 
1149  for (const auto i : make_range(num_nl_sys))
1150  eq.get_system(i + 1).get_dof_map().remove_coupling_functor(*clones_vec[i]);
1151 
1152  _root_coupling_gf_to_sys_clones.erase(it->first);
1153 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_coupling_gf_to_sys_clones
A map from a root coupling ghosting functor, e.g.
Definition: SubProblem.h:1204
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
GhostingFunctorIterator coupling_functors_end() const
void remove_coupling_functor(GhostingFunctor &coupling_functor)
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
GhostingFunctorIterator coupling_functors_begin() const

◆ reportMooseObjectDependency()

void FEProblemBase::reportMooseObjectDependency ( MooseObject a,
MooseObject b 
)
inherited

Register a MOOSE object dependency so we can either order operations properly or report when we cannot.

a -> b (a depends on b)

Definition at line 5332 of file FEProblemBase.C.

5333 {
5334  //<< "Object " << a->name() << " -> " << b->name() << std::endl;
5335 }

◆ resetFailNextNonlinearConvergenceCheck()

void FEProblemBase::resetFailNextNonlinearConvergenceCheck ( )
inlineinherited

Tell the problem that the nonlinear convergence check(s) may proceed as normal.

Definition at line 2621 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscNonlinearConverged().

void resetFailNextSystemConvergenceCheck()
Tell the problem that the system convergence check(s) may proceed as normal.

◆ resetFailNextSystemConvergenceCheck()

void FEProblemBase::resetFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system convergence check(s) may proceed as normal.

Definition at line 2623 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscLinearConverged(), and FEProblemBase::resetFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ residualSetup()

void FEProblemBase::residualSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9435 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::residualSetup().

9436 {
9438  // We need to setup all the nonlinear systems other than our current one which actually called
9439  // this method (so we have to make sure we don't go in a circle)
9440  for (const auto i : make_range(numNonlinearSystems()))
9441  if (i != currentNlSysNum())
9442  _nl[i]->residualSetup();
9443  // We don't setup the aux sys because that's been done elsewhere
9444  if (_displaced_problem)
9445  _displaced_problem->residualSetup();
9446 }
virtual std::size_t numNonlinearSystems() const override
virtual void residualSetup()
Definition: SubProblem.C:1204
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ resizeMaterialData()

void FEProblemBase::resizeMaterialData ( Moose::MaterialDataType  data_type,
unsigned int  nqp,
const THREAD_ID  tid 
)
inherited

Resize material data.

Parameters
data_typeThe type of material data to resize
nqpThe number of quadrature points to resize for
tidThe thread ID

Definition at line 9356 of file FEProblemBase.C.

9359 {
9360  getMaterialData(data_type, tid).resize(nqp);
9361 }
MPI_Datatype data_type
MaterialData & getMaterialData(Moose::MaterialDataType type, const THREAD_ID tid=0, const MooseObject *object=nullptr) const
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ restartableName()

std::string Restartable::restartableName ( const std::string &  data_name) const
protectedinherited

Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix.

This should only be used in this interface and in testing.

Definition at line 78 of file Restartable.C.

Referenced by Restartable::declareRecoverableData(), and Restartable::declareRestartableDataHelper().

79 {
80  return _restartable_system_name + "/" + _restartable_name + "/" + data_name;
81 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:250
const std::string _restartable_system_name
The system name this object is in.
Definition: Restartable.h:237

◆ restoreMultiApps()

void FEProblemBase::restoreMultiApps ( ExecFlagType  type,
bool  force = false 
)
inherited

Restore the MultiApps associated with the ExecFlagType.

Parameters
forceForce restoration because something went wrong with the solve

Definition at line 5767 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject(), and FixedPointSolve::solve().

5768 {
5769  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5770 
5771  if (multi_apps.size())
5772  {
5773  if (_verbose_multiapps)
5774  {
5775  if (force)
5776  _console << COLOR_CYAN << "\nRestoring Multiapps on " << type.name()
5777  << " because of solve failure!" << COLOR_DEFAULT << std::endl;
5778  else
5779  _console << COLOR_CYAN << "\nRestoring MultiApps on " << type.name() << COLOR_DEFAULT
5780  << std::endl;
5781  }
5782 
5783  for (const auto & multi_app : multi_apps)
5784  multi_app->restore(force);
5785 
5787 
5788  if (_verbose_multiapps)
5789  _console << COLOR_CYAN << "Finished Restoring MultiApps on " << type.name() << "\n"
5790  << COLOR_DEFAULT << std::endl;
5791  }
5792 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:327
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ restoreOldSolutions()

void FEProblemBase::restoreOldSolutions ( )
virtualinherited

Restore old solutions from the backup vectors and deallocate them.

Definition at line 6917 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6918 {
6919  TIME_SECTION("restoreOldSolutions", 5, "Restoring Old Solutions");
6920 
6921  for (auto & sys : _solver_systems)
6922  sys->restoreOldSolutions();
6923  _aux->restoreOldSolutions();
6924 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ restoreOriginalNonzeroPattern()

bool FEProblemBase::restoreOriginalNonzeroPattern ( ) const
inlineinherited
Returns
Whether the original matrix nonzero pattern is restored before each Jacobian assembly

Definition at line 2145 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal().

const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.

◆ restoreSolutions()

void FEProblemBase::restoreSolutions ( )
virtualinherited

Definition at line 6879 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::initSolutions(), TimeStepper::rejectStep(), and FEProblemBase::updateMeshXFEM().

6880 {
6881  TIME_SECTION("restoreSolutions", 5, "Restoring Solutions");
6882 
6883  if (!_not_zeroed_tagged_vectors.empty())
6884  paramError("not_zeroed_tag_vectors",
6885  "There is currently no way to restore not-zeroed vectors.");
6886 
6887  for (auto & sys : _solver_systems)
6888  {
6889  if (_verbose_restore)
6890  _console << "Restoring solutions on system " << sys->name() << "..." << std::endl;
6891  sys->restoreSolutions();
6892  }
6893 
6894  if (_verbose_restore)
6895  _console << "Restoring solutions on Auxiliary system..." << std::endl;
6896  _aux->restoreSolutions();
6897 
6898  if (_verbose_restore)
6899  _console << "Restoring postprocessor, vector-postprocessor, and reporter data..." << std::endl;
6901 
6902  if (_displaced_problem)
6903  _displaced_problem->updateMesh();
6904 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1119
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
void restoreState(bool verbose=false)
When a time step fails, this method is called to revert the current reporter values to their old stat...
Definition: ReporterData.C:24

◆ safeAccessTaggedMatrices()

virtual bool SubProblem::safeAccessTaggedMatrices ( ) const
inlinevirtualinherited

Is it safe to access the tagged matrices.

Reimplemented in DisplacedProblem.

Definition at line 731 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedMatrices().

bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1110

◆ safeAccessTaggedVectors()

virtual bool SubProblem::safeAccessTaggedVectors ( ) const
inlinevirtualinherited

Is it safe to access the tagged vectors.

Reimplemented in DisplacedProblem.

Definition at line 734 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedVectors().

734 { return _safe_access_tagged_vectors; }
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1113

◆ saveOldSolutions()

void FEProblemBase::saveOldSolutions ( )
virtualinherited

Allocate vectors and save old solutions into them.

Definition at line 6907 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6908 {
6909  TIME_SECTION("saveOldSolutions", 5, "Saving Old Solutions");
6910 
6911  for (auto & sys : _solver_systems)
6912  sys->saveOldSolutions();
6913  _aux->saveOldSolutions();
6914 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ selectMatrixTagsFromSystem()

void SubProblem::selectMatrixTagsFromSystem ( const SystemBase system,
const std::map< TagName, TagID > &  input_matrix_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the matrix tags which belong to a specific system.

Parameters
systemReference to the system
input_matrix_tagsA map of matrix tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 301 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys().

304 {
305  selected_tags.clear();
306  for (const auto & matrix_tag_pair : input_matrix_tags)
307  if (system.hasMatrix(matrix_tag_pair.second))
308  selected_tags.insert(matrix_tag_pair.second);
309 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360

◆ selectVectorTagsFromSystem()

void SubProblem::selectVectorTagsFromSystem ( const SystemBase system,
const std::vector< VectorTag > &  input_vector_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the vector tags which belong to a specific system.

Parameters
systemReference to the system
input_vector_tagsA vector of vector tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 290 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), and ComputeResidualAndJacobianThread::determineObjectWarehouses().

293 {
294  selected_tags.clear();
295  for (const auto & vector_tag : input_vector_tags)
296  if (system.hasVector(vector_tag._id))
297  selected_tags.insert(vector_tag._id);
298 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924

◆ setActiveElementalMooseVariables()

void FEProblemBase::setActiveElementalMooseVariables ( const std::set< MooseVariableFEBase *> &  moose_vars,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the MOOSE variables to be reinited on each element.

Parameters
moose_varsA set of variables that need to be reinited each time reinit() is called.
tidThe thread id

Reimplemented from SubProblem.

Definition at line 6054 of file FEProblemBase.C.

Referenced by FEProblemBase::prepareMaterials(), ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

6056 {
6058 
6059  if (_displaced_problem)
6060  _displaced_problem->setActiveElementalMooseVariables(moose_vars, tid);
6061 }
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFieldBase *> &moose_vars, const THREAD_ID tid)
Set the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:444
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::setActiveFEVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6016 of file FEProblemBase.C.

6017 {
6019 
6020  if (_displaced_problem)
6021  _displaced_problem->setActiveFEVariableCoupleableMatrixTags(mtags, tid);
6022 }
virtual void setActiveFEVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:364
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableVectorTags()

void FEProblemBase::setActiveFEVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setActiveMaterialProperties()

void FEProblemBase::setActiveMaterialProperties ( const std::unordered_set< unsigned int > &  mat_prop_ids,
const THREAD_ID  tid 
)
inherited

Record and set the material properties required by the current computing thread.

Parameters
mat_prop_idsThe set of material properties required by the current computing thread.
tidThe thread id

Definition at line 6109 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), FEProblemBase::prepareMaterials(), NodalPatchRecovery::reinitPatch(), NonlinearSystemBase::setConstraintSecondaryValues(), and ComputeDiracThread::subdomainChanged().

6111 {
6112  // mark active properties in every material
6113  for (auto & mat : _all_materials.getObjects(tid))
6114  mat->setActiveProperties(mat_prop_ids);
6115  for (auto & mat : _all_materials[Moose::FACE_MATERIAL_DATA].getObjects(tid))
6116  mat->setActiveProperties(mat_prop_ids);
6117  for (auto & mat : _all_materials[Moose::NEIGHBOR_MATERIAL_DATA].getObjects(tid))
6118  mat->setActiveProperties(mat_prop_ids);
6119 
6120  _has_active_material_properties[tid] = !mat_prop_ids.empty();
6121 }
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.
MaterialWarehouse _all_materials

◆ setActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::setActiveScalarVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6034 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

6036 {
6038 
6039  if (_displaced_problem)
6040  _displaced_problem->setActiveScalarVariableCoupleableMatrixTags(mtags, tid);
6041 }
virtual void setActiveScalarVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:403
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::setActiveScalarVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6044 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

6046 {
6048 
6049  if (_displaced_problem)
6050  _displaced_problem->setActiveScalarVariableCoupleableVectorTags(vtags, tid);
6051 }
virtual void setActiveScalarVariableCoupleableVectorTags(std::set< TagID > &vtags, const THREAD_ID tid)
Definition: SubProblem.C:410
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setAxisymmetricCoordAxis()

void FEProblemBase::setAxisymmetricCoordAxis ( const MooseEnum rz_coord_axis)
inherited

Definition at line 845 of file FEProblemBase.C.

846 {
847  _mesh.setAxisymmetricCoordAxis(rz_coord_axis);
848 }
MooseMesh & _mesh
void setAxisymmetricCoordAxis(const MooseEnum &rz_coord_axis)
For axisymmetric simulations, set the symmetry coordinate axis.
Definition: MooseMesh.C:4234

◆ setChainControlDataOutput()

void SubProblem::setChainControlDataOutput ( bool  set_output)
inlineinherited

Setter for debug chain control data output.

Definition at line 926 of file SubProblem.h.

926 { _show_chain_control_data = set_output; }
bool _show_chain_control_data
Whether to output a list of all the chain control data.
Definition: SubProblem.h:1169

◆ setConstJacobian()

void FEProblemBase::setConstJacobian ( bool  state)
inlineinherited

Set flag that Jacobian is constant (for optimization purposes)

Parameters
stateTrue if the Jacobian is constant, false otherwise

Definition at line 1993 of file FEProblemBase.h.

Referenced by ExplicitEuler::preSolve(), ExplicitTVDRK2::preSolve(), and ExplicitRK2::preSolve().

1993 { _const_jacobian = state; }
bool _const_jacobian
true if the Jacobian is constant

◆ setCoordSystem()

void FEProblemBase::setCoordSystem ( const std::vector< SubdomainName > &  blocks,
const MultiMooseEnum coord_sys 
)
inherited

Definition at line 837 of file FEProblemBase.C.

839 {
840  TIME_SECTION("setCoordSystem", 5, "Setting Coordinate System");
841  _mesh.setCoordSystem(blocks, coord_sys);
842 }
char ** blocks
MooseMesh & _mesh
void setCoordSystem(const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
Set the coordinate system for the provided blocks to coord_sys.
Definition: MooseMesh.C:4102

◆ setCoupling()

void FEProblemBase::setCoupling ( Moose::CouplingType  type)
inherited

Set the coupling between variables TODO: allow user-defined coupling.

Parameters
typeType of coupling

Definition at line 6285 of file FEProblemBase.C.

Referenced by FEProblemBase::init(), FEProblemBase::setCouplingMatrix(), and Moose::SlepcSupport::setEigenProblemSolverParams().

6286 {
6288  {
6290  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6291  "haven't been provided a coupling matrix!");
6292 
6293  // We've been told to trust the user coupling matrix, so we're going to leave things alone
6294  return;
6295  }
6296 
6297  _coupling = type;
6298 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ setCouplingMatrix() [1/2]

void FEProblemBase::setCouplingMatrix ( std::unique_ptr< libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Set custom coupling matrix.

Parameters
cmcoupling matrix to be set
nl_sys_numwhich nonlinear system we are setting the coupling matrix for

Definition at line 6309 of file FEProblemBase.C.

Referenced by MoosePreconditioner::setCouplingMatrix().

6310 {
6312  _cm[i] = std::move(cm);
6313 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCouplingMatrix() [2/2]

void FEProblemBase::setCouplingMatrix ( libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6301 of file FEProblemBase.C.

6302 {
6303  // TODO: Deprecate method
6305  _cm[i].reset(cm);
6306 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCurrentAlgebraicBndNodeRange()

void FEProblemBase::setCurrentAlgebraicBndNodeRange ( ConstBndNodeRange range)
inherited

Definition at line 9652 of file FEProblemBase.C.

9653 {
9654  if (!range)
9655  {
9657  return;
9658  }
9659 
9660  _current_algebraic_bnd_node_range = std::make_unique<ConstBndNodeRange>(*range);
9661 }
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range

◆ setCurrentAlgebraicElementRange()

void FEProblemBase::setCurrentAlgebraicElementRange ( libMesh::ConstElemRange range)
inherited

These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor.

setCurrentAlgebraicElementRange() sets the element range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicNodeRange() sets the node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicBndNodeRange() sets the boundary node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

Parameters
rangeA pointer to the const range object representing the algebraic elements, nodes, or boundary nodes.

Definition at line 9630 of file FEProblemBase.C.

9631 {
9632  if (!range)
9633  {
9635  return;
9636  }
9637 
9638  _current_algebraic_elem_range = std::make_unique<ConstElemRange>(*range);
9639 }
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range

◆ setCurrentAlgebraicNodeRange()

void FEProblemBase::setCurrentAlgebraicNodeRange ( libMesh::ConstNodeRange range)
inherited

Definition at line 9641 of file FEProblemBase.C.

9642 {
9643  if (!range)
9644  {
9646  return;
9647  }
9648 
9649  _current_algebraic_node_range = std::make_unique<ConstNodeRange>(*range);
9650 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range

◆ setCurrentBoundaryID()

void FEProblemBase::setCurrentBoundaryID ( BoundaryID  bid,
const THREAD_ID  tid 
)
overridevirtualinherited

sets the current boundary ID in assembly

Reimplemented from SubProblem.

Definition at line 9566 of file FEProblemBase.C.

9567 {
9569  if (_displaced_problem)
9570  _displaced_problem->setCurrentBoundaryID(bid, tid);
9571 }
virtual void setCurrentBoundaryID(BoundaryID bid, const THREAD_ID tid)
sets the current boundary ID in assembly
Definition: SubProblem.C:790
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setCurrentExecuteOnFlag()

void FEProblemBase::setCurrentExecuteOnFlag ( const ExecFlagType flag)
inherited

Definition at line 4784 of file FEProblemBase.C.

Referenced by FEProblemBase::execute(), FEProblemBase::initialSetup(), and FEProblemBase::outputStep().

4785 {
4786  _current_execute_on_flag = flag;
4787 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ setCurrentLinearSystem()

void FEProblemBase::setCurrentLinearSystem ( unsigned int  sys_num)
inherited

Set the current linear system pointer.

Parameters
sys_numThe number of linear system

Definition at line 9583 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and FEProblemBase::solveLinearSystem().

9584 {
9585  mooseAssert(sys_num < _linear_systems.size(),
9586  "System number greater than the number of linear systems");
9587  _current_linear_sys = _linear_systems[sys_num].get();
9589 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ setCurrentLowerDElem()

void FEProblemBase::setCurrentLowerDElem ( const Elem *const  lower_d_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the current lower dimensional element.

This can be null

Reimplemented from SubProblem.

Definition at line 9557 of file FEProblemBase.C.

9558 {
9559  SubProblem::setCurrentLowerDElem(lower_d_elem, tid);
9560  if (_displaced_problem)
9561  _displaced_problem->setCurrentLowerDElem(
9562  lower_d_elem ? _displaced_mesh->elemPtr(lower_d_elem->id()) : nullptr, tid);
9563 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
virtual void setCurrentLowerDElem(const Elem *const lower_d_elem, const THREAD_ID tid)
Set the current lower dimensional element.
Definition: SubProblem.C:1385
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ setCurrentlyComputingJacobian()

void SubProblem::setCurrentlyComputingJacobian ( const bool  currently_computing_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 689 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

690  {
691  _currently_computing_jacobian = currently_computing_jacobian;
692  }
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1098

◆ setCurrentlyComputingResidual()

void FEProblemBase::setCurrentlyComputingResidual ( bool  currently_computing_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the residual.

Reimplemented from SubProblem.

Definition at line 9237 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualTags(), and FEProblemBase::resetState().

9238 {
9239  if (_displaced_problem)
9240  _displaced_problem->setCurrentlyComputingResidual(currently_computing_residual);
9241  _currently_computing_residual = currently_computing_residual;
9242 }
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1107

◆ setCurrentlyComputingResidualAndJacobian()

void SubProblem::setCurrentlyComputingResidualAndJacobian ( bool  currently_computing_residual_and_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 1498 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

1500 {
1501  _currently_computing_residual_and_jacobian = currently_computing_residual_and_jacobian;
1502 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1101

◆ setCurrentNonlinearSystem()

void FEProblemBase::setCurrentNonlinearSystem ( const unsigned int  nl_sys_num)
inherited

Definition at line 9574 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), EigenProblem::computeMatricesTags(), EigenProblem::computeResidualTag(), NonlinearSystemBase::computeResidualTags(), FEProblem::FEProblem(), EigenProblem::solve(), and FEProblemBase::solve().

9575 {
9576  mooseAssert(nl_sys_num < _nl.size(),
9577  "System number greater than the number of nonlinear systems");
9578  _current_nl_sys = _nl[nl_sys_num].get();
9580 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.

◆ setCurrentResidualVectorTags()

void FEProblemBase::setCurrentResidualVectorTags ( const std::set< TagID > &  vector_tags)
inlineinherited

Set the current residual vector tag data structure based on the passed in tag IDs.

Definition at line 3547 of file FEProblemBase.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and CrankNicolson::init().

3548 {
3550 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:173

◆ setCurrentSubdomainID()

void FEProblemBase::setCurrentSubdomainID ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1822 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementalVariableValue::execute(), and ComputeInitialConditionThread::operator()().

1823 {
1824  SubdomainID did = elem->subdomain_id();
1825  for (const auto i : index_range(_solver_systems))
1826  {
1827  _assembly[tid][i]->setCurrentSubdomainID(did);
1828  if (_displaced_problem &&
1830  _displaced_problem->assembly(tid, i).setCurrentSubdomainID(did);
1831  }
1832 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ setDevice()

void MFEMProblem::setDevice ( )

Set the device to use to solve the FE problem.

◆ setErrorOnJacobianNonzeroReallocation()

void FEProblemBase::setErrorOnJacobianNonzeroReallocation ( bool  state)
inlineinherited

Definition at line 2156 of file FEProblemBase.h.

2157  {
2159  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ setException()

void FEProblemBase::setException ( const std::string &  message)
virtualinherited

Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve().

Parameters
messageThe error message describing the exception, which will get printed when checkExceptionAndStopSolve() is called

Definition at line 6659 of file FEProblemBase.C.

Referenced by ComputeThreadedGeneralUserObjectsThread::caughtMooseException(), ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::caughtMooseException(), ThreadedFaceLoop< RangeType >::caughtMooseException(), NonlinearSystemBase::computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), AuxiliarySystem::computeMortarNodalVars(), FEProblemBase::handleException(), ComputeMortarFunctor::operator()(), and DisplacedProblem::updateMesh().

6660 {
6661  _has_exception = true;
6662  _exception_message = message;
6663 }
bool _has_exception
Whether or not an exception has occurred.
std::string _exception_message
The error message to go with an exception.

◆ setExecutionPrinting()

void FEProblemBase::setExecutionPrinting ( const ExecFlagEnum print_exec)
inlineinherited

Definition at line 2629 of file FEProblemBase.h.

2629 { _print_execution_on = print_exec; }
ExecFlagEnum _print_execution_on
When to print the execution of loops.

◆ setFailNextNonlinearConvergenceCheck()

void FEProblemBase::setFailNextNonlinearConvergenceCheck ( )
inlineinherited

Skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2616 of file FEProblemBase.h.

Referenced by Terminator::execute().

void setFailNextSystemConvergenceCheck()
Tell the problem that the system(s) cannot be considered converged next time convergence is checked...

◆ setFailNextSystemConvergenceCheck()

void FEProblemBase::setFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system(s) cannot be considered converged next time convergence is checked.

Definition at line 2618 of file FEProblemBase.h.

Referenced by FEProblemBase::setFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ setFunctorOutput()

void SubProblem::setFunctorOutput ( bool  set_output)
inlineinherited

Setter for debug functor output.

Definition at line 924 of file SubProblem.h.

924 { _show_functors = set_output; }
bool _show_functors
Whether to output a list of the functors used and requested (currently only at initialSetup) ...
Definition: SubProblem.h:1166

◆ setIgnoreZerosInJacobian()

void FEProblemBase::setIgnoreZerosInJacobian ( bool  state)
inlineinherited

Set whether the zeros in the Jacobian should be dropped from the sparsity pattern.

Definition at line 2179 of file FEProblemBase.h.

2179 { _ignore_zeros_in_jacobian = state; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ setInputParametersFEProblem()

virtual void FEProblemBase::setInputParametersFEProblem ( InputParameters parameters)
inlinevirtualinherited

Reimplemented in FEProblem.

Definition at line 915 of file FEProblemBase.h.

Referenced by FEProblem::setInputParametersFEProblem().

916  {
917  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
918  }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.

◆ setKernelCoverageCheck() [1/2]

void FEProblemBase::setKernelCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1999 of file FEProblemBase.h.

1999 { _kernel_coverage_check = mode; }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setKernelCoverageCheck() [2/2]

void FEProblemBase::setKernelCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 2005 of file FEProblemBase.h.

2006  {
2008  }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setLinearConvergenceNames()

void FEProblemBase::setLinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the linear convergence object name(s) if there is one.

Definition at line 9401 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9402 {
9403  if (convergence_names.size() != numLinearSystems())
9404  paramError("linear_convergence", "There must be one convergence object per linear system");
9405  _linear_convergence_names = convergence_names;
9406 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)
virtual std::size_t numLinearSystems() const override

◆ setMaterialCoverageCheck() [1/2]

void FEProblemBase::setMaterialCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 2016 of file FEProblemBase.h.

2016 { _material_coverage_check = mode; }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMaterialCoverageCheck() [2/2]

void FEProblemBase::setMaterialCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 2024 of file FEProblemBase.h.

2025  {
2027  }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMesh()

void MFEMProblem::setMesh ( )

Set the mesh used by MFEM.

Definition at line 50 of file MFEMProblem.C.

Referenced by MFEMProblem().

51 {
52  auto pmesh = mesh().getMFEMParMeshPtr();
53  getProblemData().pmesh = pmesh;
54  getProblemData().comm = pmesh->GetComm();
55  getProblemData().num_procs = pmesh->GetNRanks();
56  getProblemData().myid = pmesh->GetMyRank();
57 }
std::shared_ptr< mfem::ParMesh > pmesh
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:466
std::shared_ptr< mfem::ParMesh > getMFEMParMeshPtr()
Copy a shared_ptr to the mfem::ParMesh object.
Definition: MFEMMesh.h:42

◆ setMultiAppFixedPointConvergenceName()

void FEProblemBase::setMultiAppFixedPointConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the MultiApp fixed point convergence object name if there is one.

Definition at line 9373 of file FEProblemBase.C.

Referenced by FixedPointSolve::FixedPointSolve().

9374 {
9375  _multiapp_fixed_point_convergence_name = convergence_name;
9376 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ setNeedToAddDefaultMultiAppFixedPointConvergence()

void FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence ( )
inlineinherited

Sets _need_to_add_default_multiapp_fixed_point_convergence to true.

Definition at line 684 of file FEProblemBase.h.

Referenced by FixedPointSolve::FixedPointSolve().

685  {
687  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ setNeedToAddDefaultNonlinearConvergence()

void FEProblemBase::setNeedToAddDefaultNonlinearConvergence ( )
inlineinherited

Sets _need_to_add_default_nonlinear_convergence to true.

Definition at line 679 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

680  {
682  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ setNeedToAddDefaultSteadyStateConvergence()

void FEProblemBase::setNeedToAddDefaultSteadyStateConvergence ( )
inlineinherited

Sets _need_to_add_default_steady_state_convergence to true.

Definition at line 689 of file FEProblemBase.h.

Referenced by TransientBase::TransientBase().

690  {
692  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ setNeighborSubdomainID() [1/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setNeighborSubdomainID() [2/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
const THREAD_ID  tid 
)
virtualinherited

◆ setNonlinearConvergenceNames()

void FEProblemBase::setNonlinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the nonlinear convergence object name(s) if there is one.

Definition at line 9364 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9365 {
9366  if (convergence_names.size() != numNonlinearSystems())
9367  paramError("nonlinear_convergence",
9368  "There must be one convergence object per nonlinear system");
9369  _nonlinear_convergence_names = convergence_names;
9370 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
virtual std::size_t numNonlinearSystems() const override
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)

◆ setNonlocalCouplingMatrix()

void FEProblemBase::setNonlocalCouplingMatrix ( )
inherited

Set custom coupling matrix for variables requiring nonlocal contribution.

Definition at line 6326 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6327 {
6328  TIME_SECTION("setNonlocalCouplingMatrix", 5, "Setting Nonlocal Coupling Matrix");
6329 
6330  if (_nl.size() > 1)
6331  mooseError("Nonlocal kernels are weirdly stored on the FEProblem so we don't currently support "
6332  "multiple nonlinear systems with nonlocal kernels.");
6333 
6334  for (const auto nl_sys_num : index_range(_nl))
6335  {
6336  auto & nl = _nl[nl_sys_num];
6337  auto & nonlocal_cm = _nonlocal_cm[nl_sys_num];
6338  unsigned int n_vars = nl->nVariables();
6339  nonlocal_cm.resize(n_vars);
6340  const auto & vars = nl->getVariables(0);
6341  const auto & nonlocal_kernel = _nonlocal_kernels.getObjects();
6342  const auto & nonlocal_integrated_bc = _nonlocal_integrated_bcs.getObjects();
6343  for (const auto & ivar : vars)
6344  {
6345  for (const auto & kernel : nonlocal_kernel)
6346  {
6347  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6348  if (i == kernel->variable().number())
6349  for (const auto & jvar : vars)
6350  {
6351  const auto it = _var_dof_map.find(jvar->name());
6352  if (it != _var_dof_map.end())
6353  {
6354  unsigned int j = jvar->number();
6355  nonlocal_cm(i, j) = 1;
6356  }
6357  }
6358  }
6359  for (const auto & integrated_bc : nonlocal_integrated_bc)
6360  {
6361  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6362  if (i == integrated_bc->variable().number())
6363  for (const auto & jvar : vars)
6364  {
6365  const auto it = _var_dof_map.find(jvar->name());
6366  if (it != _var_dof_map.end())
6367  {
6368  unsigned int j = jvar->number();
6369  nonlocal_cm(i, j) = 1;
6370  }
6371  }
6372  }
6373  }
6374  }
6375 }
char ** vars
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
unsigned int n_vars
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
auto index_range(const T &sizable)
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ setParallelBarrierMessaging()

void FEProblemBase::setParallelBarrierMessaging ( bool  flag)
inlineinherited

Toggle parallel barrier messaging (defaults to on).

Definition at line 2032 of file FEProblemBase.h.

2032 { _parallel_barrier_messaging = flag; }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.

◆ setPostprocessorValueByName()

void FEProblemBase::setPostprocessorValueByName ( const PostprocessorName &  name,
const PostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a PostprocessorValue.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for setting values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

WARNING! This method should be used with caution. It exists to allow Transfers and other similar objects to modify Postprocessor values. It is not intended for general use.

Definition at line 4642 of file FEProblemBase.C.

Referenced by MultiAppPostprocessorTransfer::execute(), PIDTransientControl::execute(), FEProblemBase::joinAndFinalize(), SecantSolve::transformPostprocessors(), SteffensenSolve::transformPostprocessors(), and PicardSolve::transformPostprocessors().

4645 {
4647  PostprocessorReporterName(name), value, t_index);
4648 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ setPreserveMatrixSparsityPattern()

void FEProblemBase::setPreserveMatrixSparsityPattern ( bool  preserve)
inherited

Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved.

This global setting can be retrieved by kernels, notably those using AD, to decide whether to take additional care to preserve the sparsity pattern

Definition at line 3952 of file FEProblemBase.C.

3953 {
3954  if (_ignore_zeros_in_jacobian && preserve)
3955  paramWarning(
3956  "ignore_zeros_in_jacobian",
3957  "We likely cannot preserve the sparsity pattern if ignoring zeros in the Jacobian, which "
3958  "leads to removing those entries from the Jacobian sparsity pattern");
3960 }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.
bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...
void paramWarning(const std::string &param, Args... args) const

◆ setResidual() [1/2]

virtual void SubProblem::setResidual ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidual() [2/2]

void FEProblemBase::setResidual ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1956 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1957 {
1958  _assembly[tid][_current_nl_sys->number()]->setResidual(
1959  residual,
1961  getVectorTag(_nl[_current_nl_sys->number()]->residualVectorTag()));
1962  if (_displaced_problem)
1963  _displaced_problem->setResidual(residual, tid);
1964 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:162
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ setResidualNeighbor() [1/2]

virtual void SubProblem::setResidualNeighbor ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidualNeighbor() [2/2]

void FEProblemBase::setResidualNeighbor ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1967 of file FEProblemBase.C.

1968 {
1969  _assembly[tid][_current_nl_sys->number()]->setResidualNeighbor(
1971  if (_displaced_problem)
1972  _displaced_problem->setResidualNeighbor(residual, tid);
1973 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
TagID residualVectorTag() const override
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:162
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ setRestartFile()

void FEProblemBase::setRestartFile ( const std::string &  file_name)
inherited

Communicate to the Resurector the name of the restart filer.

Parameters
file_nameThe file name for restarting from

Definition at line 8876 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and FEProblemBase::FEProblemBase().

8877 {
8878  if (_app.isRecovering())
8879  {
8880  mooseInfo("Restart file ", file_name, " is NOT being used since we are performing recovery.");
8881  }
8882  else
8883  {
8884  _app.setRestart(true);
8885  _app.setRestartRecoverFileBase(file_name);
8886  mooseInfo("Using ", file_name, " for restart.");
8887  }
8888 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:321
void setRestartRecoverFileBase(const std::string &file_base)
mutator for recover_base (set by RecoverBaseAction)
Definition: MooseApp.h:506
void setRestart(bool value)
Sets the restart/recover flags.
Definition: MooseApp.C:2985
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1874

◆ setSNESMFReuseBase()

void FEProblemBase::setSNESMFReuseBase ( bool  reuse,
bool  set_by_user 
)
inlineinherited

If or not to reuse the base vector for matrix-free calculation.

Definition at line 2318 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2319  {
2320  _snesmf_reuse_base = reuse, _snesmf_reuse_base_set_by_user = set_by_user;
2321  }
bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ setSteadyStateConvergenceName()

void FEProblemBase::setSteadyStateConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the steady-state detection convergence object name if there is one.

Definition at line 9379 of file FEProblemBase.C.

Referenced by TransientBase::TransientBase().

9380 {
9381  _steady_state_convergence_name = convergence_name;
9382 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ setUDotDotOldRequested()

virtual void FEProblemBase::setUDotDotOldRequested ( const bool  u_dotdot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution second time derivative.

Definition at line 2366 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2367  {
2368  _u_dotdot_old_requested = u_dotdot_old_requested;
2369  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.

◆ setUDotDotRequested()

virtual void FEProblemBase::setUDotDotRequested ( const bool  u_dotdot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution second time derivative.

Definition at line 2354 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2355  {
2356  _u_dotdot_requested = u_dotdot_requested;
2357  }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ setUDotOldRequested()

virtual void FEProblemBase::setUDotOldRequested ( const bool  u_dot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution time derivative.

Definition at line 2360 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2361  {
2362  _u_dot_old_requested = u_dot_old_requested;
2363  }
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ setUDotRequested()

virtual void FEProblemBase::setUDotRequested ( const bool  u_dot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution time derivative.

Definition at line 2351 of file FEProblemBase.h.

Referenced by TimeIntegrator::TimeIntegrator().

2351 { _u_dot_requested = u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ setupDampers()

void FEProblemBase::setupDampers ( )
inherited

Definition at line 5389 of file FEProblemBase.C.

5390 {
5391  for (auto & nl : _nl)
5392  nl->setupDampers();
5393 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ setVariableAllDoFMap()

void FEProblemBase::setVariableAllDoFMap ( const std::vector< const MooseVariableFEBase *> &  moose_vars)
inherited

Definition at line 1730 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

1731 {
1732  for (unsigned int i = 0; i < moose_vars.size(); ++i)
1733  {
1734  VariableName var_name = moose_vars[i]->name();
1735  auto & sys = _solver_systems[moose_vars[i]->sys().number()];
1736  sys->setVariableGlobalDoFs(var_name);
1737  _var_dof_map[var_name] = sys->getVariableGlobalDoFs();
1738  }
1739 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674

◆ setVectorPostprocessorValueByName()

void FEProblemBase::setVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
const VectorPostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a VectorPostprocessor vector.

Parameters
object_nameThe name of the VPP object
vector_nameThe name of the declared vector
valueThe data to apply to the vector
t_indexFlag for getting current (0), old (1), or older (2) values

Definition at line 4668 of file FEProblemBase.C.

4672 {
4674  VectorPostprocessorReporterName(object_name, vector_name), value, t_index);
4675 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ setVerboseProblem()

void FEProblemBase::setVerboseProblem ( bool  verbose)
inherited

Make the problem be verbose.

Definition at line 9549 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and PhysicsBase::initializePhysics().

9550 {
9551  _verbose_setup = verbose ? "true" : "false";
9552  _verbose_multiapps = verbose;
9553  _verbose_restore = verbose;
9554 }
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ shouldPrintExecution()

bool FEProblemBase::shouldPrintExecution ( const THREAD_ID  tid) const
inherited

Check whether the problem should output execution orders at this time.

Definition at line 9491 of file FEProblemBase.C.

Referenced by FEProblemBase::joinAndFinalize(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

9492 {
9493  // For now, only support printing from thread 0
9494  if (tid != 0)
9495  return false;
9496 
9499  return true;
9500  else
9501  return false;
9502 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_ALWAYS
Definition: Moose.C:51
ExecFlagEnum _print_execution_on
When to print the execution of loops.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.

◆ shouldSolve()

bool FEProblemBase::shouldSolve ( ) const
inlineinherited

Definition at line 2402 of file FEProblemBase.h.

Referenced by ExternalProblem::solve(), FEProblemSolve::solve(), MFEMProblemSolve::solve(), and TransientBase::TransientBase().

2402 { return _solve; }
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ shouldUpdateSolution()

bool FEProblemBase::shouldUpdateSolution ( )
virtualinherited

Check to see whether the problem should update the solution.

Returns
true if the problem should update the solution, false otherwise

Definition at line 7993 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck(), and NonlinearSystem::solve().

7994 {
7995  return false;
7996 }

◆ showInvalidSolutionConsole()

bool FEProblemBase::showInvalidSolutionConsole ( ) const
inlineinherited

Whether or not to print out the invalid solutions summary table in console.

Definition at line 2196 of file FEProblemBase.h.

Referenced by SolverSystem::checkInvalidSolution().

const bool _show_invalid_solution_console

◆ sizeZeroes()

void FEProblemBase::sizeZeroes ( unsigned int  size,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2158 of file FEProblemBase.C.

2159 {
2160  mooseDoOnce(mooseWarning(
2161  "This function is deprecated and no longer performs any function. Please do not call it."));
2162 }
void mooseWarning(Args &&... args) const

◆ skipExceptionCheck()

void FEProblemBase::skipExceptionCheck ( bool  skip_exception_check)
inlineinherited

Set a flag that indicates if we want to skip exception and stop solve.

Definition at line 2331 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2332  {
2333  _skip_exception_check = skip_exception_check;
2334  }
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.

◆ solve()

void ExternalProblem::solve ( unsigned int  nl_sys_num = 0)
finaloverridevirtualinherited

Solve is implemented to providing syncing to/from the "transfer" mesh.

Reimplemented from FEProblemBase.

Definition at line 61 of file ExternalProblem.C.

62 {
63  TIME_SECTION("solve", 1, "Solving", false)
64 
65  syncSolutions(Direction::TO_EXTERNAL_APP);
66  if (shouldSolve())
67  externalSolve();
68  syncSolutions(Direction::FROM_EXTERNAL_APP);
69 }
bool shouldSolve() const
virtual void syncSolutions(Direction direction)=0
Method to transfer data to/from the external application to the associated transfer mesh...
if(!dmm->_nl) SETERRQ(PETSC_COMM_WORLD
virtual void externalSolve()=0
New interface for solving an External problem.

◆ solveLinearSystem()

void FEProblemBase::solveLinearSystem ( const unsigned int  linear_sys_num,
const Moose::PetscSupport::PetscOptions po = nullptr 
)
virtualinherited

Build and solve a linear system.

Parameters
linear_sys_numThe number of the linear system (1,..,num. of lin. systems)
poThe petsc options for the solve, if not supplied, the defaults are used

Reimplemented in DumpObjectsProblem.

Definition at line 6755 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

6757 {
6758  TIME_SECTION("solve", 1, "Solving", false);
6759 
6760  setCurrentLinearSystem(linear_sys_num);
6761 
6762  const Moose::PetscSupport::PetscOptions & options = po ? *po : _petsc_options;
6763  auto & solver_params = _solver_params[numNonlinearSystems() + linear_sys_num];
6764 
6765  // Set custom convergence criteria
6767 
6768 #if PETSC_RELEASE_LESS_THAN(3, 12, 0)
6769  LibmeshPetscCall(Moose::PetscSupport::petscSetOptions(
6770  options, solver_params)); // Make sure the PETSc options are setup for this app
6771 #else
6772  // Now this database will be the default
6773  // Each app should have only one database
6774  if (!_app.isUltimateMaster())
6775  LibmeshPetscCall(PetscOptionsPush(_petsc_option_data_base));
6776 
6777  // We did not add PETSc options to database yet
6779  {
6780  Moose::PetscSupport::petscSetOptions(options, solver_params, this);
6782  }
6783 #endif
6784 
6785  if (_solve)
6787 
6788 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
6789  if (!_app.isUltimateMaster())
6790  LibmeshPetscCall(PetscOptionsPop());
6791 #endif
6792 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
virtual std::size_t numNonlinearSystems() const override
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:450
std::vector< SolverParams > _solver_params
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
A struct for storing the various types of petsc options and values.
Definition: PetscSupport.h:44
PetscOptions _petsc_option_data_base
const bool & _solve
Whether or not to actually solve the nonlinear system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
virtual void solve() override
Solve the system (using libMesh magic)
Definition: LinearSystem.C:312
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
A function for setting the PETSc options in PETSc from the options supplied to MOOSE.
Definition: PetscSupport.C:230
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
Moose::PetscSupport::PetscOptions _petsc_options
PETSc option storage.

◆ solverParams() [1/2]

SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0)
inherited

Get the solver parameters.

Definition at line 8908 of file FEProblemBase.C.

Referenced by NonlinearEigenSystem::attachPreconditioner(), SolverSystem::compute(), SlepcEigenSolverConfiguration::configure_solver(), Eigenvalue::Eigenvalue(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), FEProblemSolve::FEProblemSolve(), ExplicitTimeIntegrator::init(), EigenProblem::init(), FEProblemBase::init(), EigenProblem::isNonlinearEigenvalueSolver(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), ConsoleUtils::outputExecutionInformation(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), Eigenvalue::prepareSolverOptions(), NonlinearSystem::residualAndJacobianTogether(), Moose::SlepcSupport::setEigenProblemSolverParams(), Moose::PetscSupport::setLineSearchFromParams(), Moose::PetscSupport::setMFFDTypeFromParams(), Moose::PetscSupport::setSinglePetscOption(), Moose::PetscSupport::setSolveTypeFromParams(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), EigenProblem::solve(), FEProblemBase::solverParams(), EigenProblem::solverTypeString(), FEProblemBase::solverTypeString(), and Moose::SlepcSupport::storeSolveType().

8909 {
8910  mooseAssert(solver_sys_num < numSolverSystems(),
8911  "Solver system number '" << solver_sys_num << "' is out of bounds. We have '"
8912  << numSolverSystems() << "' solver systems");
8913  return _solver_params[solver_sys_num];
8914 }
std::vector< SolverParams > _solver_params
virtual std::size_t numSolverSystems() const override

◆ solverParams() [2/2]

const SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0) const
inherited

const version

Definition at line 8917 of file FEProblemBase.C.

8918 {
8919  return const_cast<FEProblemBase *>(this)->solverParams(solver_sys_num);
8920 }
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ solverSysNum()

unsigned int FEProblemBase::solverSysNum ( const SolverSystemName &  solver_sys_name) const
overridevirtualinherited
Returns
the solver system number corresponding to the provided solver_sys_name

Implements SubProblem.

Definition at line 6562 of file FEProblemBase.C.

Referenced by FEProblemBase::addVariable(), FEProblemBase::getSystemBase(), MultiSystemSolveObject::MultiSystemSolveObject(), and DisplacedProblem::solverSysNum().

6563 {
6564  std::istringstream ss(solver_sys_name);
6565  unsigned int solver_sys_num;
6566  if (!(ss >> solver_sys_num) || !ss.eof())
6567  {
6568  const auto & search = _solver_sys_name_to_num.find(solver_sys_name);
6569  if (search == _solver_sys_name_to_num.end())
6570  mooseError("The solver system number was requested for system '" + solver_sys_name,
6571  "' but this system does not exist in the Problem. Systems can be added to the "
6572  "problem using the 'nl_sys_names'/'linear_sys_names' parameter.\nSystems in the "
6573  "Problem: " +
6575  solver_sys_num = search->second;
6576  }
6577 
6578  return solver_sys_num;
6579 }
std::map< SolverSystemName, unsigned int > _solver_sys_name_to_num
Map connecting solver system names with their respective systems.
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ solverSystemConverged()

bool FEProblemBase::solverSystemConverged ( const unsigned int  sys_num)
overridevirtualinherited
Returns
whether the given solver system sys_num is converged

Reimplemented from SubProblem.

Reimplemented in EigenProblem.

Definition at line 6795 of file FEProblemBase.C.

6796 {
6797  if (_solve)
6798  return _solver_systems[sys_num]->converged();
6799  else
6800  return true;
6801 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ solverTypeString()

std::string MFEMProblem::solverTypeString ( unsigned int  solver_sys_num)
overridevirtual

Return solver type as a human readable string.

Reimplemented from FEProblemBase.

Definition at line 518 of file MFEMProblem.C.

519 {
520  mooseAssert(solver_sys_num == 0, "No support for multi-system with MFEM right now");
521  return MooseUtils::prettyCppType(getProblemData().jacobian_solver.get());
522 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
std::string prettyCppType(const std::string &cpp_type)
Definition: MooseUtils.C:1151

◆ startedInitialSetup()

virtual bool FEProblemBase::startedInitialSetup ( )
inlinevirtualinherited

Returns true if we are in or beyond the initialSetup stage.

Definition at line 536 of file FEProblemBase.h.

Referenced by NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), and MaterialPropertyInterface::checkExecutionStage().

536 { return _started_initial_setup; }
bool _started_initial_setup
At or beyond initialSteup stage.

◆ storeBoundaryDelayedCheckMatProp()

void SubProblem::storeBoundaryDelayedCheckMatProp ( const std::string &  requestor,
BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties to validate.

Parameters
requestorThe MOOSE object name requesting the material property
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 616 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

619 {
620  _map_boundary_material_props_check[boundary_id].insert(std::make_pair(requestor, name));
621 }
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1073
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ storeBoundaryMatPropName()

void SubProblem::storeBoundaryMatPropName ( BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on boundary ids.

This is method is called from within the Material class when the property is first registered.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 590 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

591 {
592  _map_boundary_material_props[boundary_id].insert(name);
593 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1057
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ storeBoundaryZeroMatProp()

void SubProblem::storeBoundaryZeroMatProp ( BoundaryID  boundary_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 602 of file SubProblem.C.

Referenced by MaterialBase::storeBoundaryZeroMatProp().

603 {
604  _zero_boundary_material_props[boundary_id].insert(name);
605 }
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1061
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ storeSubdomainDelayedCheckMatProp()

void SubProblem::storeSubdomainDelayedCheckMatProp ( const std::string &  requestor,
SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on block ids of material properties to validate.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 608 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

611 {
612  _map_block_material_props_check[block_id].insert(std::make_pair(requestor, name));
613 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1072

◆ storeSubdomainMatPropName()

void SubProblem::storeSubdomainMatPropName ( SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on block ids.

This is method is called from within the Material class when the property is first registered.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 584 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

585 {
586  _map_block_material_props[block_id].insert(name);
587 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1054

◆ storeSubdomainZeroMatProp()

void SubProblem::storeSubdomainZeroMatProp ( SubdomainID  block_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on block ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 596 of file SubProblem.C.

Referenced by MaterialBase::storeSubdomainZeroMatProp().

597 {
598  _zero_block_material_props[block_id].insert(name);
599 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1060

◆ subdomainSetup()

void FEProblemBase::subdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2521 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), ComputeUserObjectsThread::subdomainChanged(), and ThreadedFaceLoop< RangeType >::subdomainChanged().

2522 {
2523  _all_materials.subdomainSetup(subdomain, tid);
2524  // Call the subdomain methods of the output system, these are not threaded so only call it once
2525  if (tid == 0)
2527 
2528  for (auto & nl : _nl)
2529  nl->subdomainSetup(subdomain, tid);
2530 
2531  // FIXME: call displaced_problem->subdomainSetup() ?
2532  // When adding possibility with materials being evaluated on displaced mesh
2533 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void subdomainSetup()
Calls the subdomainSetup function for each of the output objects.
virtual void subdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515

◆ subspaceDim()

unsigned int FEProblemBase::subspaceDim ( const std::string &  prefix) const
inlineinherited

Dimension of the subspace spanned by vectors with a given prefix.

Parameters
prefixPrefix of the vectors spanning the subspace.

Definition at line 2074 of file FEProblemBase.h.

Referenced by FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), and FEProblemBase::computeTransposeNullSpace().

2075  {
2076  if (_subspace_dim.count(prefix))
2077  return _subspace_dim.find(prefix)->second;
2078  else
2079  return 0;
2080  }
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ swapBackMaterials()

void FEProblemBase::swapBackMaterials ( const THREAD_ID  tid)
virtualinherited

Definition at line 4354 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), LineMaterialSamplerBase< Real >::execute(), ComputeMarkerThread::onElement(), ComputeElemAuxVarsThread< AuxKernelType >::onElement(), ComputeIndicatorThread::onElement(), NonlinearThread::onElement(), and ComputeUserObjectsThread::onElement().

4355 {
4356  auto && elem = _assembly[tid][0]->elem();
4358 }
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ swapBackMaterialsFace()

void FEProblemBase::swapBackMaterialsFace ( const THREAD_ID  tid)
virtualinherited

Definition at line 4361 of file FEProblemBase.C.

Referenced by NonlinearThread::onBoundary(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4362 {
4363  auto && elem = _assembly[tid][0]->elem();
4364  unsigned int side = _assembly[tid][0]->side();
4365  _bnd_material_props.getMaterialData(tid).swapBack(*elem, side);
4366 }
MaterialPropertyStorage & _bnd_material_props
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ swapBackMaterialsNeighbor()

void FEProblemBase::swapBackMaterialsNeighbor ( const THREAD_ID  tid)
virtualinherited

Definition at line 4369 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4370 {
4371  // NOTE: this will not work with h-adaptivity
4372  const Elem * neighbor = _assembly[tid][0]->neighbor();
4373  unsigned int neighbor_side =
4374  neighbor ? neighbor->which_neighbor_am_i(_assembly[tid][0]->elem()) : libMesh::invalid_uint;
4375 
4376  if (!neighbor)
4377  {
4378  if (haveFV())
4379  {
4380  // If neighbor is null, then we're on the neighbor side of a mesh boundary, e.g. we're off
4381  // the mesh in ghost-land. If we're using the finite volume method, then variable values and
4382  // consequently material properties have well-defined values in this ghost region outside of
4383  // the mesh and we really do want to reinit our neighbor materials in this case. Since we're
4384  // off in ghost land it's safe to do swaps with `MaterialPropertyStorage` using the elem and
4385  // elem_side keys
4386  neighbor = _assembly[tid][0]->elem();
4387  neighbor_side = _assembly[tid][0]->side();
4388  mooseAssert(neighbor, "We should have an appropriate value for elem coming from Assembly");
4389  }
4390  else
4391  mooseError("neighbor is null in Assembly!");
4392  }
4393 
4394  _neighbor_material_props.getMaterialData(tid).swapBack(*neighbor, neighbor_side);
4395 }
const unsigned int invalid_uint
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ syncSolutions()

virtual void MFEMProblem::syncSolutions ( Direction  direction)
inlineoverridevirtual

Method to transfer data to/from the external application to the associated transfer mesh.

Implements ExternalProblem.

Definition at line 27 of file MFEMProblem.h.

27 {}

◆ systemBaseAuxiliary() [1/2]

const SystemBase & FEProblemBase::systemBaseAuxiliary ( ) const
overridevirtualinherited

Return the auxiliary system object as a base class reference.

Implements SubProblem.

Definition at line 9215 of file FEProblemBase.C.

Referenced by PhysicsBase::copyVariablesFromMesh(), and getAuxVariableNames().

9216 {
9217  return *_aux;
9218 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseAuxiliary() [2/2]

SystemBase & FEProblemBase::systemBaseAuxiliary ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 9221 of file FEProblemBase.C.

9222 {
9223  return *_aux;
9224 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseLinear() [1/2]

const SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num) const
overridevirtualinherited

Get a constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 9183 of file FEProblemBase.C.

9184 {
9185  mooseAssert(sys_num < _linear_systems.size(),
9186  "System number greater than the number of linear systems");
9187  return *_linear_systems[sys_num];
9188 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseLinear() [2/2]

SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num)
overridevirtualinherited

Get a non-constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 9191 of file FEProblemBase.C.

9192 {
9193  mooseAssert(sys_num < _linear_systems.size(),
9194  "System number greater than the number of linear systems");
9195  return *_linear_systems[sys_num];
9196 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseNonlinear() [1/2]

const SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num) const
overridevirtualinherited

Return the nonlinear system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 9169 of file FEProblemBase.C.

9170 {
9171  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
9172  return *_nl[sys_num];
9173 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseNonlinear() [2/2]

SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 9176 of file FEProblemBase.C.

9177 {
9178  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
9179  return *_nl[sys_num];
9180 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseSolver() [1/2]

const SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num) const
overridevirtualinherited

Return the solver system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 9199 of file FEProblemBase.C.

9200 {
9201  mooseAssert(sys_num < _solver_systems.size(),
9202  "System number greater than the number of solver systems");
9203  return *_solver_systems[sys_num];
9204 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemBaseSolver() [2/2]

SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 9207 of file FEProblemBase.C.

9208 {
9209  mooseAssert(sys_num < _solver_systems.size(),
9210  "System number greater than the number of solver systems");
9211  return *_solver_systems[sys_num];
9212 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemNumForVariable()

unsigned int FEProblemBase::systemNumForVariable ( const VariableName &  variable_name) const
inherited
Returns
the system number for the provided variable_name Can be nonlinear or auxiliary

Definition at line 6582 of file FEProblemBase.C.

Referenced by FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::restoreOverriddenDofValues().

6583 {
6584  for (const auto & solver_sys : _solver_systems)
6585  if (solver_sys->hasVariable(variable_name))
6586  return solver_sys->number();
6587  mooseAssert(_aux, "Should have an auxiliary system");
6588  if (_aux->hasVariable(variable_name))
6589  return _aux->number();
6590 
6591  mooseError("Variable '",
6592  variable_name,
6593  "' was not found in any solver (nonlinear/linear) or auxiliary system");
6594 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ terminateSolve()

virtual void Problem::terminateSolve ( )
inlinevirtualinherited

Allow objects to request clean termination of the solve.

Definition at line 37 of file Problem.h.

Referenced by WebServerControl::execute(), Terminator::execute(), and TerminateChainControl::terminate().

37 { _termination_requested = true; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ theWarehouse()

TheWarehouse& FEProblemBase::theWarehouse ( ) const
inlineinherited

Definition at line 2313 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), NonlinearSystemBase::addKernel(), NonlinearSystemBase::addNodalKernel(), FEProblemBase::addObject(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), FEProblemBase::addUserObject(), NonlinearSystemBase::checkKernelCoverage(), FEProblemBase::checkUserObjectJacobianRequirement(), FEProblemBase::checkUserObjects(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), LinearSystem::containsTimeKernel(), NonlinearSystemBase::customSetup(), FEProblemBase::customSetup(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), FEProblemBase::executeSamplers(), ComputeLinearFVElementalThread::fetchBlockSystemContributionObjects(), ComputeLinearFVFaceThread::fetchBlockSystemContributionObjects(), FEProblemBase::getDistribution(), FEProblemBase::getMortarUserObjects(), FEProblemBase::getPositionsObject(), FEProblemBase::getSampler(), CompositionDT::getTimeSteppers(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), FEProblemBase::hasUserObject(), SideFVFluxBCIntegral::initialSetup(), ExplicitTimeIntegrator::initialSetup(), LinearSystem::initialSetup(), NonlinearSystemBase::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needInternalNeighborSideMaterial(), JSONOutput::outputReporters(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), ComputeLinearFVElementalThread::setupSystemContributionObjects(), ComputeLinearFVFaceThread::setupSystemContributionObjects(), NonlinearThread::subdomainChanged(), NonlinearSystemBase::timestepSetup(), and FEProblemBase::timestepSetup().

2313 { return _app.theWarehouse(); }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
TheWarehouse & theWarehouse()
Definition: MooseApp.h:137

◆ time()

virtual Real& FEProblemBase::time ( ) const
inlinevirtualinherited

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeOld()

virtual Real& FEProblemBase::timeOld ( ) const
inlinevirtualinherited

◆ timeStep()

virtual int& FEProblemBase::timeStep ( ) const
inlinevirtualinherited

◆ timestepSetup()

void FEProblemBase::timestepSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1537 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), and TransientBase::takeStep().

1538 {
1540 
1541  if (_t_step > 1 && _num_grid_steps)
1542  {
1543  libMesh::MeshRefinement mesh_refinement(_mesh);
1544  std::unique_ptr<libMesh::MeshRefinement> displaced_mesh_refinement(nullptr);
1545  if (_displaced_mesh)
1546  displaced_mesh_refinement = std::make_unique<libMesh::MeshRefinement>(*_displaced_mesh);
1547 
1548  for (MooseIndex(_num_grid_steps) i = 0; i < _num_grid_steps; ++i)
1549  {
1550  if (_displaced_problem)
1551  // If the DisplacedProblem is active, undisplace the DisplacedMesh in preparation for
1552  // refinement. We can't safely refine the DisplacedMesh directly, since the Hilbert keys
1553  // computed on the inconsistenly-displaced Mesh are different on different processors,
1554  // leading to inconsistent Hilbert keys. We must do this before the undisplaced Mesh is
1555  // coarsensed, so that the element and node numbering is still consistent. We also have to
1556  // make sure this is done during every step of coarsening otherwise different partitions
1557  // will be generated for the reference and displaced meshes (even for replicated)
1558  _displaced_problem->undisplaceMesh();
1559 
1560  mesh_refinement.uniformly_coarsen();
1561  if (_displaced_mesh)
1562  displaced_mesh_refinement->uniformly_coarsen();
1563 
1564  // Mark this as an intermediate change because we do not yet want to reinit_systems. E.g. we
1565  // need things to happen in the following order for the undisplaced problem:
1566  // u1) EquationSystems::reinit_solutions. This will restrict the solution vectors and then
1567  // contract the mesh
1568  // u2) MooseMesh::meshChanged. This will update the node/side lists and other
1569  // things which needs to happen after the contraction
1570  // u3) GeometricSearchData::reinit. Once the node/side lists are updated we can perform our
1571  // geometric searches which will aid in determining sparsity patterns
1572  //
1573  // We do these things for the displaced problem (if it exists)
1574  // d1) EquationSystems::reinit. Restrict the displaced problem vector copies and then contract
1575  // the mesh. It's safe to do a full reinit with the displaced because there are no
1576  // matrices that sparsity pattern calculations will be conducted for
1577  // d2) MooseMesh::meshChanged. This will update the node/side lists and other
1578  // things which needs to happen after the contraction
1579  // d3) UpdateDisplacedMeshThread::operator(). Re-displace the mesh using the *displaced*
1580  // solution vector copy because we don't know the state of the reference solution vector.
1581  // It's safe to use the displaced copy because we are outside of a non-linear solve,
1582  // and there is no concern about differences between solution and current_local_solution
1583  // d4) GeometricSearchData::reinit. With the node/side lists updated and the mesh
1584  // re-displaced, we can perform our geometric searches, which will aid in determining the
1585  // sparsity pattern of the matrix held by the libMesh::ImplicitSystem held by the
1586  // NonlinearSystem held by this
1587  meshChanged(
1588  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
1589  }
1590 
1591  // u4) Now that all the geometric searches have been done (both undisplaced and displaced),
1592  // we're ready to update the sparsity pattern
1593  es().reinit_systems();
1594  }
1595 
1596  if (_line_search)
1597  _line_search->timestepSetup();
1598 
1599  // Random interface objects
1600  for (const auto & it : _random_data_objects)
1601  it.second->updateSeeds(EXEC_TIMESTEP_BEGIN);
1602 
1603  unsigned int n_threads = libMesh::n_threads();
1604  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1605  {
1608  }
1609 
1610  _aux->timestepSetup();
1611  for (auto & sys : _solver_systems)
1612  sys->timestepSetup();
1613 
1614  if (_displaced_problem)
1615  // timestepSetup for displaced systems
1616  _displaced_problem->timestepSetup();
1617 
1618  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1619  {
1622  _markers.timestepSetup(tid);
1623  }
1624 
1625  std::vector<UserObject *> userobjs;
1626  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
1627  for (auto obj : userobjs)
1628  obj->timestepSetup();
1629 
1630  // Timestep setup of output objects
1632 
1635  _has_nonlocal_coupling = true;
1636 }
virtual void meshChanged()
Deprecated.
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
virtual void timestepSetup(THREAD_ID tid=0) const
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
unsigned int _num_grid_steps
Number of steps in a grid sequence.
virtual void reinit_systems()
TheWarehouse & theWarehouse() const
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
virtual void timestepSetup(THREAD_ID tid=0) const
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
MooseObjectWarehouse< Indicator > _indicators
virtual void timestepSetup()
Definition: SubProblem.C:1186
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
void timestepSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2515
MooseMesh * _displaced_mesh
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
std::shared_ptr< LineSearch > _line_search
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ transient()

virtual void FEProblemBase::transient ( bool  trans)
inlinevirtualinherited

Definition at line 551 of file FEProblemBase.h.

Referenced by EigenExecutionerBase::EigenExecutionerBase(), and TransientBase::TransientBase().

551 { _transient = trans; }

◆ trustUserCouplingMatrix()

void FEProblemBase::trustUserCouplingMatrix ( )
inherited

Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix.

See https://github.com/idaholab/moose/issues/16395 for detailed background

Definition at line 6316 of file FEProblemBase.C.

Referenced by SingleMatrixPreconditioner::SingleMatrixPreconditioner().

6317 {
6319  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6320  "haven't been provided a coupling matrix!");
6321 
6323 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ type()

const std::string& MooseBase::type ( ) const
inlineinherited

Get the type of this class.

Returns
the name of the type of this class

Definition at line 93 of file MooseBase.h.

Referenced by CreateProblemDefaultAction::act(), SetupDebugAction::act(), MaterialDerivativeTestAction::act(), MaterialOutputAction::act(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConvergence(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), addFunction(), FEProblemBase::addFunction(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), MeshGenerator::addMeshSubgenerator(), FEProblemBase::addObject(), addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addTimeIntegrator(), MooseServer::addValuesToList(), DisplacedProblem::addVectorTag(), SubProblem::addVectorTag(), FEProblemBase::advanceMultiApps(), MooseApp::appendMeshGenerator(), AuxKernelBase::AuxKernelBase(), FEProblemBase::backupMultiApps(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BoundaryPreservedMarker::BoundaryPreservedMarker(), DistributedRectilinearMeshGenerator::buildCube(), MooseMesh::buildHRefinementAndCoarseningMaps(), MooseMesh::buildLowerDMesh(), MooseMesh::buildPRefinementAndCoarseningMaps(), PhysicsBase::checkComponentType(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), ADDGKernel::computeElemNeighJacobian(), DGKernel::computeElemNeighJacobian(), ElemElemConstraint::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighJacobian(), ADDGKernel::computeElemNeighResidual(), DGKernel::computeElemNeighResidual(), ElemElemConstraint::computeElemNeighResidual(), ArrayDGKernel::computeElemNeighResidual(), LowerDIntegratedBC::computeLowerDJacobian(), ArrayLowerDIntegratedBC::computeLowerDJacobian(), DGLowerDKernel::computeLowerDJacobian(), ArrayDGLowerDKernel::computeLowerDJacobian(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayHFEMDirichletBC::computeLowerDQpJacobian(), ArrayHFEMDiffusion::computeLowerDQpJacobian(), HFEMDirichletBC::computeLowerDQpJacobian(), HFEMDiffusion::computeLowerDQpJacobian(), ArrayHFEMDirichletBC::computeLowerDQpOffDiagJacobian(), HFEMDirichletBC::computeLowerDQpOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDQpOffDiagJacobian(), ArrayDGLowerDKernel::computeLowerDQpOffDiagJacobian(), FEProblemBase::computeMultiAppsDT(), ADDGKernel::computeOffDiagElemNeighJacobian(), DGKernel::computeOffDiagElemNeighJacobian(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), DGConvection::computeQpJacobian(), ScalarKernel::computeQpJacobian(), InterfaceDiffusion::computeQpJacobian(), InterfaceReaction::computeQpJacobian(), ArrayDGDiffusion::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), DGDiffusion::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), HFEMTestJump::computeQpOffDiagJacobian(), HFEMTrialJump::computeQpOffDiagJacobian(), ArrayDGKernel::computeQpOffDiagJacobian(), ArrayHFEMDiffusion::computeQpResidual(), DGConvection::computeQpResidual(), HFEMDiffusion::computeQpResidual(), ScalarKernel::computeQpResidual(), InterfaceDiffusion::computeQpResidual(), ADMatInterfaceReaction::computeQpResidual(), InterfaceReaction::computeQpResidual(), ADDGAdvection::computeQpResidual(), ArrayDGDiffusion::computeQpResidual(), CoupledTiedValueConstraint::computeQpResidual(), TiedValueConstraint::computeQpResidual(), DGDiffusion::computeQpResidual(), LinearNodalConstraint::computeQpResidual(), ADDGDiffusion::computeQpResidual(), HFEMTrialJump::computeQpResidual(), EqualValueBoundaryConstraint::computeQpResidual(), HFEMTestJump::computeQpResidual(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), FEProblemBase::computeUserObjectsInternal(), DisplacedProblem::createQRules(), FEProblemBase::createQRules(), MooseApp::createRecoverablePerfGraph(), DumpObjectsProblem::deduceNecessaryParameters(), DumpObjectsProblem::dumpObjectHelper(), FEProblemBase::duplicateVariableCheck(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), FEProblemBase::execTransfers(), WebServerControl::execute(), SteadyBase::execute(), ActionWarehouse::executeActionsWithAction(), FEProblemBase::finishMultiAppStep(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), MooseServer::gatherDocumentReferencesLocations(), Boundary2DDelaunayGenerator::General2DDelaunay(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), Boundary2DDelaunayGenerator::generate(), PatternedMeshGenerator::generate(), MeshGenerator::generateInternal(), MeshGenerator::generateInternalCSG(), MultiAppTransfer::getAppInfo(), TransfiniteMeshGenerator::getEdge(), ElementGenerator::getElemType(), MooseServer::getInputLookupDefinitionNodes(), FEProblemBase::getMaterial(), FEProblemBase::getMaterialData(), FEProblemBase::getMaterialPropertyStorageConsumers(), MaterialOutputAction::getParams(), ReporterData::getReporterInfo(), FEProblemBase::getTransfers(), DisplacedProblem::getVectorTags(), SubProblem::getVectorTags(), CommonOutputAction::hasConsole(), FEProblemBase::hasMultiApps(), AdvancedOutput::hasOutput(), FEProblemBase::incrementMultiAppTStep(), AdvancedOutput::initAvailableLists(), FunctorPositions::initialize(), FunctorTimes::initialize(), MultiAppConservativeTransfer::initialSetup(), LinearFVAdvection::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), LinearFVDiffusion::initialSetup(), ArrayDGDiffusion::initQpResidual(), AdvancedOutput::initShowHideLists(), RelationshipManager::isType(), FEProblemBase::logAdd(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), mesh(), MooseObject::MooseObject(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), DisplacedProblem::numVectorTags(), SubProblem::numVectorTags(), Console::output(), AdvancedOutput::output(), ConsoleUtils::outputExecutionInformation(), SampledOutput::outputStep(), Output::outputStep(), FEProblemBase::outputStep(), MooseServer::parseDocumentForDiagnostics(), MooseMesh::prepare(), ProjectedStatefulMaterialStorageAction::processProperty(), MooseApp::recursivelyCreateExecutors(), SolutionInvalidInterface::registerInvalidSolutionInternal(), FEProblemBase::restoreMultiApps(), MeshRepairGenerator::separateSubdomainsByElementType(), FEProblemBase::setCoupling(), MooseApp::setupOptions(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), WebServerControl::startServer(), Reporter::store(), MooseBase::typeAndName(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), DisplacedProblem::updateGeomSearch(), FEProblemBase::updateGeomSearch(), UserObjectInterface::userObjectType(), and AdvancedOutput::wantOutput().

94  {
95  mooseAssert(_type.size(), "Empty type");
96  return _type;
97  }
const std::string & _type
The type of this class.
Definition: MooseBase.h:360

◆ typeAndName()

std::string MooseBase::typeAndName ( ) const
inherited

Get the class's combined type and name; useful in error handling.

Returns
The type and name of this class in the form '<type()> "<name()>"'.

Definition at line 57 of file MooseBase.C.

Referenced by FEProblemBase::addPostprocessor(), MaterialPropertyStorage::addProperty(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MeshGeneratorSystem::dataDrivenError(), ReporterContext< std::vector< T > >::finalize(), and ReporterData::getReporterInfo().

58 {
59  return type() + std::string(" \"") + name() + std::string("\"");
60 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ uDotDotOldRequested()

virtual bool FEProblemBase::uDotDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution second time derivative needs to be stored.

Definition at line 2389 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2390  {
2392  mooseError("FEProblemBase: When requesting old second time derivative of solution, current "
2393  "second time derivation of solution should also be stored. Please set "
2394  "`u_dotdot_requested` to true using setUDotDotRequested.");
2395  return _u_dotdot_old_requested;
2396  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotDotRequested()

virtual bool FEProblemBase::uDotDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution second time derivative needs to be stored.

Definition at line 2375 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors(), and FEProblemBase::addTimeIntegrator().

2375 { return _u_dotdot_requested; }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotOldRequested()

virtual bool FEProblemBase::uDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution time derivative needs to be stored.

Definition at line 2378 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2379  {
2381  mooseError("FEProblemBase: When requesting old time derivative of solution, current time "
2382  "derivative of solution should also be stored. Please set `u_dot_requested` to "
2383  "true using setUDotRequested.");
2384 
2385  return _u_dot_old_requested;
2386  }
bool _u_dot_requested
Whether solution time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ uDotRequested()

virtual bool FEProblemBase::uDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution time derivative needs to be stored.

Definition at line 2372 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2372 { return _u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ uniformRefine()

void FEProblemBase::uniformRefine ( )
inherited

uniformly refine the problem mesh(es).

This will also prolong the the solution, and in order for that to be safe, we can only perform one refinement at a time

Definition at line 9245 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

9246 {
9247  // ResetDisplacedMeshThread::onNode looks up the reference mesh by ID, so we need to make sure
9248  // we undisplace before adapting the reference mesh
9249  if (_displaced_problem)
9250  _displaced_problem->undisplaceMesh();
9251 
9253  if (_displaced_problem)
9255 
9256  meshChanged(
9257  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
9258 }
virtual void meshChanged()
Deprecated.
static void uniformRefine(MooseMesh *mesh, unsigned int level=libMesh::invalid_uint)
Performs uniform refinement of the passed Mesh object.
Definition: Adaptivity.C:274
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ uniqueName()

MooseObjectName MooseBase::uniqueName ( ) const
inherited
Returns
The unique name for accessing input parameters of this object in the InputParameterWarehouse

Definition at line 69 of file MooseBase.C.

Referenced by MooseBase::connectControllableParams(), and Action::uniqueActionName().

70 {
71  if (!_pars.have_parameter<std::string>(unique_name_param))
72  mooseError("uniqueName(): Object does not have a unique name");
73  return MooseObjectName(_pars.get<std::string>(unique_name_param));
74 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
static const std::string unique_name_param
The name of the parameter that contains the unique object name.
Definition: MooseBase.h:57
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
A class for storing the names of MooseObject by tag and object name.

◆ uniqueParameterName()

MooseObjectParameterName MooseBase::uniqueParameterName ( const std::string &  parameter_name) const
inherited
Returns
The unique parameter name of a valid parameter of this object for accessing parameter controls

Definition at line 63 of file MooseBase.C.

64 {
65  return MooseObjectParameterName(getBase(), name(), parameter_name);
66 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
A class for storing an input parameter name.
const std::string & getBase() const
Definition: MooseBase.h:147

◆ updateActiveObjects()

void FEProblemBase::updateActiveObjects ( )
virtualinherited

Update the active objects in the warehouses.

Reimplemented in DumpObjectsProblem.

Definition at line 5301 of file FEProblemBase.C.

Referenced by MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5302 {
5303  TIME_SECTION("updateActiveObjects", 5, "Updating Active Objects");
5304 
5305  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5306  {
5307  for (auto & nl : _nl)
5308  nl->updateActive(tid);
5309  _aux->updateActive(tid);
5312  _markers.updateActive(tid);
5314  _materials.updateActive(tid);
5316  }
5317 
5325 
5326 #ifdef MOOSE_KOKKOS_ENABLED
5328 #endif
5329 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
void updateActive(THREAD_ID tid=0) override
Updates the active objects storage.
MaterialWarehouse _kokkos_materials
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void updateActive(THREAD_ID tid=0)
Update the active status of Kernels.
MooseObjectWarehouse< Indicator > _indicators
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
MaterialWarehouse _discrete_materials
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ updateGeomSearch()

void FEProblemBase::updateGeomSearch ( GeometricSearchData::GeometricSearchType  type = GeometricSearchData::ALL)
overridevirtualinherited

Implements SubProblem.

Definition at line 8020 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::augmentSparsity(), and FEProblemBase::initialSetup().

8021 {
8022  TIME_SECTION("updateGeometricSearch", 3, "Updating Geometric Search");
8023 
8025 
8026  if (_displaced_problem)
8027  _displaced_problem->updateGeomSearch(type);
8028 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void update(GeometricSearchType type=ALL)
Update all of the search objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data

◆ updateMeshXFEM()

bool FEProblemBase::updateMeshXFEM ( )
virtualinherited

Update the mesh due to changing XFEM cuts.

Definition at line 8281 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FixedPointSolve::solveStep().

8282 {
8283  TIME_SECTION("updateMeshXFEM", 5, "Updating XFEM");
8284 
8285  bool updated = false;
8286  if (haveXFEM())
8287  {
8288  if (_xfem->updateHeal())
8289  // XFEM exodiff tests rely on a given numbering because they cannot use map = true due to
8290  // having coincident elements. While conceptually speaking we do not need to contract the
8291  // mesh, we need its call to renumber_nodes_and_elements in order to preserve these tests
8292  meshChanged(
8293  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8294 
8295  updated = _xfem->update(_time, _nl, *_aux);
8296  if (updated)
8297  {
8298  meshChanged(
8299  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8300  _xfem->initSolution(_nl, *_aux);
8301  restoreSolutions();
8302  _console << "\nXFEM update complete: Mesh modified" << std::endl;
8303  }
8304  else
8305  _console << "\nXFEM update complete: Mesh not modified" << std::endl;
8306  }
8307  return updated;
8308 }
virtual void meshChanged()
Deprecated.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void restoreSolutions()
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ updateMortarMesh()

void FEProblemBase::updateMortarMesh ( )
virtualinherited

Definition at line 8031 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::init(), FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

8032 {
8033  TIME_SECTION("updateMortarMesh", 5, "Updating Mortar Mesh");
8034 
8035  FloatingPointExceptionGuard fpe_guard(_app);
8036 
8037  _mortar_data->update();
8038 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
std::unique_ptr< MortarInterfaceWarehouse > _mortar_data

◆ updateSolution()

bool FEProblemBase::updateSolution ( NumericVector< libMesh::Number > &  vec_solution,
NumericVector< libMesh::Number > &  ghosted_solution 
)
virtualinherited

Update the solution.

Parameters
vec_solutionLocal solution vector that gets modified by this method
ghosted_solutionGhosted solution vector
Returns
true if the solution was modified, false otherwise

Definition at line 7999 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

8001 {
8002  return false;
8003 }

◆ useSNESMFReuseBase()

bool FEProblemBase::useSNESMFReuseBase ( )
inlineinherited

Return a flag that indicates if we are reusing the vector base.

Definition at line 2326 of file FEProblemBase.h.

Referenced by NonlinearSystem::potentiallySetupFiniteDifferencing().

2326 { return _snesmf_reuse_base; }
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ validParams()

InputParameters MFEMProblem::validParams ( )
static

Definition at line 25 of file MFEMProblem.C.

26 {
28  params.addClassDescription("Problem type for building and solving finite element problem using"
29  " the MFEM finite element library.");
30  return params;
31 }
static InputParameters validParams()
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void addClassDescription(const std::string &doc_string)
This method adds a description of the class that will be displayed in the input file syntax dump...

◆ vectorTagExists() [1/2]

virtual bool SubProblem::vectorTagExists ( const TagID  tag_id) const
inlinevirtualinherited

◆ vectorTagExists() [2/2]

bool SubProblem::vectorTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists by using Tag name.

Reimplemented in DisplacedProblem.

Definition at line 137 of file SubProblem.C.

138 {
139  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
140 
141  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
142  for (const auto & vector_tag : _vector_tags)
143  if (vector_tag._name == tag_name_upper)
144  return true;
145 
146  return false;
147 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
std::string toUpper(std::string name)
Convert supplied string to upper case.

◆ vectorTagName()

TagName SubProblem::vectorTagName ( const TagID  tag) const
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 222 of file SubProblem.C.

Referenced by SystemBase::closeTaggedVector(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), SystemBase::removeVector(), NonlinearSystemBase::residualGhosted(), DisplacedProblem::vectorTagName(), and SystemBase::zeroTaggedVector().

223 {
224  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
225  if (!vectorTagExists(tag_id))
226  mooseError("Vector tag with ID ", tag_id, " does not exist");
227 
228  return _vector_tags[tag_id]._name;
229 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ vectorTagNotZeroed()

bool SubProblem::vectorTagNotZeroed ( const TagID  tag) const
inherited

Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that is currently being checked
Returns
false if the tag is not within the set of vectors that are intended to not be zero or if the set is empty. returns true otherwise

Definition at line 156 of file SubProblem.C.

Referenced by SystemBase::zeroTaggedVector().

157 {
158  return _not_zeroed_tagged_vectors.count(tag);
159 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1119

◆ vectorTagType()

Moose::VectorTagType SubProblem::vectorTagType ( const TagID  tag_id) const
virtualinherited

Reimplemented in DisplacedProblem.

Definition at line 232 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit(), TaggingInterface::TaggingInterface(), TagVectorAux::TagVectorAux(), and DisplacedProblem::vectorTagType().

233 {
234  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
235  if (!vectorTagExists(tag_id))
236  mooseError("Vector tag with ID ", tag_id, " does not exist");
237 
238  return _vector_tags[tag_id]._type;
239 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:242
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ verboseMultiApps()

bool FEProblemBase::verboseMultiApps ( ) const
inlineinherited

Whether or not to use verbose printing for MultiApps.

Definition at line 2040 of file FEProblemBase.h.

Referenced by MultiApp::backup(), MultiApp::createApp(), MultiApp::restore(), FullSolveMultiApp::showStatusMessage(), and TransientMultiApp::solveStep().

2040 { return _verbose_multiapps; }
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ verifyVectorTags()

bool SubProblem::verifyVectorTags ( ) const
protectedinherited

Verify the integrity of _vector_tags and _typed_vector_tags.

Definition at line 242 of file SubProblem.C.

Referenced by SubProblem::addVectorTag(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), SubProblem::getVectorTags(), SubProblem::numVectorTags(), SubProblem::vectorTagExists(), SubProblem::vectorTagName(), and SubProblem::vectorTagType().

243 {
244  for (TagID tag_id = 0; tag_id < _vector_tags.size(); ++tag_id)
245  {
246  const auto & vector_tag = _vector_tags[tag_id];
247 
248  if (vector_tag._id != tag_id)
249  mooseError("Vector tag ", vector_tag._id, " id mismatch in _vector_tags");
250  if (vector_tag._type == Moose::VECTOR_TAG_ANY)
251  mooseError("Vector tag '", vector_tag._name, "' has type VECTOR_TAG_ANY");
252 
253  const auto search = _vector_tags_name_map.find(vector_tag._name);
254  if (search == _vector_tags_name_map.end())
255  mooseError("Vector tag ", vector_tag._id, " is not in _vector_tags_name_map");
256  else if (search->second != tag_id)
257  mooseError("Vector tag ", vector_tag._id, " has incorrect id in _vector_tags_name_map");
258 
259  unsigned int found_in_type = 0;
260  for (TagTypeID tag_type_id = 0; tag_type_id < _typed_vector_tags[vector_tag._type].size();
261  ++tag_type_id)
262  {
263  const auto & vector_tag_type = _typed_vector_tags[vector_tag._type][tag_type_id];
264  if (vector_tag_type == vector_tag)
265  {
266  ++found_in_type;
267  if (vector_tag_type._type_id != tag_type_id)
268  mooseError("Type ID for Vector tag ", tag_id, " is incorrect");
269  }
270  }
271 
272  if (found_in_type == 0)
273  mooseError("Vector tag ", tag_id, " not found in _typed_vector_tags");
274  if (found_in_type > 1)
275  mooseError("Vector tag ", tag_id, " found multiple times in _typed_vector_tags");
276  }
277 
278  unsigned int num_typed_vector_tags = 0;
279  for (const auto & typed_vector_tags : _typed_vector_tags)
280  num_typed_vector_tags += typed_vector_tags.size();
281  if (num_typed_vector_tags != _vector_tags.size())
282  mooseError("Size mismatch between _vector_tags and _typed_vector_tags");
283  if (_vector_tags_name_map.size() != _vector_tags.size())
284  mooseError("Size mismatch between _vector_tags and _vector_tags_name_map");
285 
286  return true;
287 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1172
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1182
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1179
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

Member Data Documentation

◆ _action_factory

ActionFactory& ParallelParamObject::_action_factory
protectedinherited

◆ _active_elemental_moose_variables

std::vector<std::set<MooseVariableFieldBase *> > SubProblem::_active_elemental_moose_variables
protectedinherited

This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem)

Definition at line 1077 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::getActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _active_fe_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_matrix_tags
protectedinherited

◆ _active_fe_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_vector_tags
protectedinherited

◆ _active_sc_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_matrix_tags
protectedinherited

◆ _active_sc_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_vector_tags
protectedinherited

◆ _ad_grad_zero

std::vector<MooseArray<ADRealVectorValue> > FEProblemBase::_ad_grad_zero
inherited

◆ _ad_second_zero

std::vector<MooseArray<ADRealTensorValue> > FEProblemBase::_ad_second_zero
inherited

◆ _ad_zero

std::vector<MooseArray<ADReal> > FEProblemBase::_ad_zero
inherited

◆ _adaptivity

Adaptivity FEProblemBase::_adaptivity
protectedinherited

◆ _all_materials

MaterialWarehouse FEProblemBase::_all_materials
protectedinherited

◆ _all_user_objects

ExecuteMooseObjectWarehouse<UserObject> FEProblemBase::_all_user_objects
protectedinherited

◆ _app

MooseApp& MooseBase::_app
protectedinherited

The MOOSE application this is associated with.

Definition at line 357 of file MooseBase.h.

◆ _assembly

std::vector<std::vector<std::unique_ptr<Assembly> > > FEProblemBase::_assembly
protectedinherited

The Assembly objects.

The first index corresponds to the thread ID and the second index corresponds to the nonlinear system number

Definition at line 2890 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::assembly(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::couplingEntries(), FEProblemBase::createQRules(), FEProblemBase::init(), FEProblemBase::initElementStatefulProps(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::meshChanged(), FEProblemBase::newAssemblyArray(), FEProblemBase::nonlocalCouplingEntries(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsInterface(), FEProblemBase::reinitMaterialsNeighbor(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::swapBackMaterials(), FEProblemBase::swapBackMaterialsFace(), and FEProblemBase::swapBackMaterialsNeighbor().

◆ _aux

std::shared_ptr<AuxiliarySystem> FEProblemBase::_aux
protectedinherited

The auxiliary system.

Definition at line 2876 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addIndicator(), FEProblemBase::addMarker(), FEProblemBase::addMultiApp(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::advanceState(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeIndicators(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeMarkers(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::customSetup(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), FEProblemBase::execute(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getAuxiliarySystem(), FEProblemBase::getScalarVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasVariable(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::setAuxKernelParamsAndLog(), FEProblemBase::systemBaseAuxiliary(), FEProblemBase::systemNumForVariable(), FEProblemBase::timestepSetup(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _aux_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_aux_evaluable_local_elem_range
protectedinherited

Definition at line 3173 of file FEProblemBase.h.

◆ _between_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_between_multi_app_transfers
protectedinherited

◆ _block_mat_side_cache

std::vector<std::unordered_map<SubdomainID, bool> > FEProblemBase::_block_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2980 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needInternalNeighborSideMaterial().

◆ _bnd_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_bnd_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2983 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needBoundaryMaterialOnSide().

◆ _bnd_material_props

MaterialPropertyStorage& FEProblemBase::_bnd_material_props
protectedinherited

◆ _boundary_restricted_elem_integrity_check

const bool FEProblemBase::_boundary_restricted_elem_integrity_check
protectedinherited

whether to perform checking of boundary restricted elemental object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 3112 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _boundary_restricted_node_integrity_check

const bool FEProblemBase::_boundary_restricted_node_integrity_check
protectedinherited

whether to perform checking of boundary restricted nodal object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 3108 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _calculate_jacobian_in_uo

bool FEProblemBase::_calculate_jacobian_in_uo
protectedinherited

◆ _cli_option_found

bool Problem::_cli_option_found
protectedinherited

True if the CLI option is found.

Definition at line 52 of file Problem.h.

Referenced by Problem::_setCLIOption().

◆ _cm

std::vector<std::unique_ptr<libMesh::CouplingMatrix> > FEProblemBase::_cm
protectedinherited

◆ _color_output

bool Problem::_color_output
protectedinherited

True if we're going to attempt to write color output.

Definition at line 55 of file Problem.h.

◆ _computing_nonlinear_residual

bool SubProblem::_computing_nonlinear_residual
protectedinherited

Whether the non-linear residual is being evaluated.

Definition at line 1104 of file SubProblem.h.

Referenced by SubProblem::computingNonlinearResid(), and FEProblemBase::computingNonlinearResid().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), NonlinearSystemBase::computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), NonlinearSystemBase::computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), NonlinearEigen::init(), InversePowerMethod::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), SubProblem::initialSetup(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), NonlinearSystemBase::setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), FixedPointSolve::solve(), NonlinearSystem::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), SubProblem::timestepSetup(), FEProblemBase::updateMeshXFEM(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _const_jacobian

bool FEProblemBase::_const_jacobian
protectedinherited

true if the Jacobian is constant

Definition at line 3080 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::constJacobian(), and FEProblemBase::setConstJacobian().

◆ _control_warehouse

ExecuteMooseObjectWarehouse<Control> FEProblemBase::_control_warehouse
protectedinherited

The control logic warehouse.

Definition at line 3158 of file FEProblemBase.h.

Referenced by FEProblemBase::executeControls(), FEProblemBase::getControlWarehouse(), and FEProblemBase::updateActiveObjects().

◆ _convergences

MooseObjectWarehouse<Convergence> FEProblemBase::_convergences
protectedinherited

◆ _coupling

Moose::CouplingType FEProblemBase::_coupling
protectedinherited

◆ _current_algebraic_bnd_node_range

std::unique_ptr<ConstBndNodeRange> FEProblemBase::_current_algebraic_bnd_node_range
protectedinherited

◆ _current_algebraic_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_current_algebraic_elem_range
protectedinherited

◆ _current_algebraic_node_range

std::unique_ptr<libMesh::ConstNodeRange> FEProblemBase::_current_algebraic_node_range
protectedinherited

◆ _current_execute_on_flag

ExecFlagType FEProblemBase::_current_execute_on_flag
protectedinherited

◆ _current_ic_state

unsigned short FEProblemBase::_current_ic_state
protectedinherited

◆ _current_linear_sys

LinearSystem* FEProblemBase::_current_linear_sys
protectedinherited

◆ _current_nl_sys

NonlinearSystemBase* FEProblemBase::_current_nl_sys
protectedinherited

The current nonlinear system that we are solving.

Definition at line 2858 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeDamping(), FEProblemBase::computeJacobianBlock(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), FEProblemBase::computeTransposeNullSpace(), FEProblemBase::currentNonlinearSystem(), EigenProblem::doFreeNonlinearPowerIterations(), EigenProblem::EigenProblem(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), EigenProblem::solve(), and FEProblemBase::solve().

◆ _current_solver_sys

SolverSystem* FEProblemBase::_current_solver_sys
protectedinherited

The current solver system.

Definition at line 2861 of file FEProblemBase.h.

Referenced by FEProblemBase::setCurrentLinearSystem(), and FEProblemBase::setCurrentNonlinearSystem().

◆ _currently_computing_jacobian

bool SubProblem::_currently_computing_jacobian
protectedinherited

◆ _currently_computing_residual

bool SubProblem::_currently_computing_residual
protectedinherited

◆ _currently_computing_residual_and_jacobian

bool SubProblem::_currently_computing_residual_and_jacobian
protectedinherited

Flag to determine whether the problem is currently computing the residual and Jacobian.

Definition at line 1101 of file SubProblem.h.

Referenced by SubProblem::currentlyComputingResidualAndJacobian(), and SubProblem::setCurrentlyComputingResidualAndJacobian().

◆ _cycles_completed

unsigned int FEProblemBase::_cycles_completed
protectedinherited

◆ _default_ghosting

bool SubProblem::_default_ghosting
protectedinherited

Whether or not to use default libMesh coupling.

Definition at line 1092 of file SubProblem.h.

Referenced by SubProblem::defaultGhosting().

◆ _dirac_kernel_info

DiracKernelInfo SubProblem::_dirac_kernel_info
protectedinherited

◆ _discrete_materials

MaterialWarehouse FEProblemBase::_discrete_materials
protectedinherited

◆ _displaced_mesh

MooseMesh* FEProblemBase::_displaced_mesh
protectedinherited

◆ _displaced_problem

std::shared_ptr<DisplacedProblem> FEProblemBase::_displaced_problem
protectedinherited

Definition at line 3047 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::addAnyRedistributers(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addCachedJacobian(), FEProblemBase::addCachedResidual(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addConstraint(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDisplacedProblem(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVKernel(), FEProblemBase::addGhostedBoundary(), FEProblemBase::addIndicator(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::automaticScaling(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::cacheJacobian(), FEProblemBase::cacheJacobianNeighbor(), FEProblemBase::cacheResidual(), FEProblemBase::cacheResidualNeighbor(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::clearActiveElementalMooseVariables(), FEProblemBase::clearActiveFEVariableCoupleableMatrixTags(), FEProblemBase::clearActiveFEVariableCoupleableVectorTags(), FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::clearActiveScalarVariableCoupleableVectorTags(), FEProblemBase::clearDiracInfo(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::computingNonlinearResid(), FEProblemBase::createMortarInterface(), FEProblemBase::createQRules(), FEProblemBase::customSetup(), FEProblemBase::execute(), FEProblemBase::getDiracElements(), FEProblemBase::getDisplacedProblem(), FEProblemBase::getMortarUserObjects(), FEProblemBase::ghostGhostedBoundaries(), FEProblemBase::haveADObjects(), FEProblemBase::haveDisplaced(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::mesh(), FEProblemBase::meshChanged(), FEProblemBase::outputStep(), FEProblemBase::possiblyRebuildGeomSearchPatches(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFace(), FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemFaceRef(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitLowerDElem(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNeighborFaceRef(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::resetState(), FEProblemBase::residualSetup(), FEProblemBase::restoreSolutions(), FEProblemBase::setActiveElementalMooseVariables(), FEProblemBase::setActiveFEVariableCoupleableMatrixTags(), FEProblemBase::setActiveFEVariableCoupleableVectorTags(), FEProblemBase::setActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::setActiveScalarVariableCoupleableVectorTags(), FEProblemBase::setAuxKernelParamsAndLog(), FEProblemBase::setCurrentBoundaryID(), FEProblemBase::setCurrentLowerDElem(), FEProblemBase::setCurrentlyComputingResidual(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::setResidualObjectParamsAndLog(), EigenProblem::solve(), FEProblemBase::solve(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateGeomSearch().

◆ _dt

Real& FEProblemBase::_dt
protectedinherited

◆ _dt_old

Real& FEProblemBase::_dt_old
protectedinherited

Definition at line 2818 of file FEProblemBase.h.

Referenced by FEProblemBase::dtOld(), and FEProblemBase::FEProblemBase().

◆ _enabled

const bool& MooseObject::_enabled
protectedinherited

Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.

Definition at line 86 of file MooseObject.h.

Referenced by MooseObject::enabled().

◆ _evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_evaluable_local_elem_range
protectedinherited

◆ _exception_message

std::string FEProblemBase::_exception_message
protectedinherited

The error message to go with an exception.

Definition at line 3152 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), and FEProblemBase::setException().

◆ _factory

Factory& SubProblem::_factory
protectedinherited

◆ _fe_matrix_tags

std::set<TagID> FEProblemBase::_fe_matrix_tags
protectedinherited

◆ _fe_vector_tags

std::set<TagID> FEProblemBase::_fe_vector_tags
protectedinherited

◆ _from_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_from_multi_app_transfers
protectedinherited

◆ _functions

MooseObjectWarehouse<Function> FEProblemBase::_functions
protectedinherited

◆ _fv_bcs_integrity_check

bool FEProblemBase::_fv_bcs_integrity_check
protectedinherited

Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset.

Definition at line 3119 of file FEProblemBase.h.

Referenced by FEProblemBase::fvBCsIntegrityCheck().

◆ _fv_ics

FVInitialConditionWarehouse FEProblemBase::_fv_ics
protectedinherited

◆ _geometric_search_data

GeometricSearchData FEProblemBase::_geometric_search_data
protectedinherited

◆ _ghosted_elems

std::set<dof_id_type> SubProblem::_ghosted_elems
protectedinherited

◆ _grad_phi_zero

std::vector<VariablePhiGradient> FEProblemBase::_grad_phi_zero
inherited

◆ _grad_zero

std::vector<VariableGradient> FEProblemBase::_grad_zero
inherited

◆ _has_active_elemental_moose_variables

std::vector<unsigned int> SubProblem::_has_active_elemental_moose_variables
protectedinherited

Whether or not there is currently a list of active elemental moose variables.

Definition at line 1081 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::hasActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _has_active_material_properties

std::vector<unsigned char> FEProblemBase::_has_active_material_properties
protectedinherited

◆ _has_constraints

bool FEProblemBase::_has_constraints
protectedinherited

Whether or not this system has any Constraints.

Definition at line 3065 of file FEProblemBase.h.

Referenced by FEProblemBase::addConstraint(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

◆ _has_dampers

bool FEProblemBase::_has_dampers
protectedinherited

Whether or not this system has any Dampers associated with it.

Definition at line 3062 of file FEProblemBase.h.

Referenced by FEProblemBase::addDamper(), FEProblemBase::computeDamping(), FEProblemBase::computePostCheck(), and FEProblemBase::hasDampers().

◆ _has_exception

bool FEProblemBase::_has_exception
protectedinherited

Whether or not an exception has occurred.

Definition at line 3137 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::hasException(), and FEProblemBase::setException().

◆ _has_initialized_stateful

bool FEProblemBase::_has_initialized_stateful
protectedinherited

Whether nor not stateful materials have been initialized.

Definition at line 3077 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

◆ _has_jacobian

bool FEProblemBase::_has_jacobian
protectedinherited

Indicates if the Jacobian was computed.

Definition at line 3083 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::hasJacobian(), and FEProblemBase::meshChanged().

◆ _has_nonlocal_coupling

bool FEProblemBase::_has_nonlocal_coupling
protectedinherited

◆ _has_time_integrator

bool FEProblemBase::_has_time_integrator
protectedinherited

Indicates whether or not this executioner has a time integrator (during setup)

Definition at line 3134 of file FEProblemBase.h.

Referenced by FEProblemBase::addTimeIntegrator(), and FEProblemBase::hasTimeIntegrator().

◆ _have_ad_objects

bool SubProblem::_have_ad_objects
protectedinherited

AD flag indicating whether any AD objects have been added.

Definition at line 1116 of file SubProblem.h.

Referenced by DisplacedProblem::haveADObjects(), SubProblem::haveADObjects(), and FEProblemBase::haveADObjects().

◆ _ics

InitialConditionWarehouse FEProblemBase::_ics
protectedinherited

◆ _indicators

MooseObjectWarehouse<Indicator> FEProblemBase::_indicators
protectedinherited

◆ _initialized

bool FEProblemBase::_initialized
protectedinherited

Definition at line 2789 of file FEProblemBase.h.

Referenced by FEProblemBase::init().

◆ _input_file_saved

bool FEProblemBase::_input_file_saved
protectedinherited

whether input file has been written

Definition at line 3059 of file FEProblemBase.h.

◆ _interface_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_interface_mat_side_cache
protectedinherited

Cache for calculating materials on interface.

Definition at line 2986 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needInterfaceMaterialOnSide().

◆ _interface_materials

MaterialWarehouse FEProblemBase::_interface_materials
protectedinherited

◆ _internal_side_indicators

MooseObjectWarehouse<InternalSideIndicatorBase> FEProblemBase::_internal_side_indicators
protectedinherited

◆ _is_petsc_options_inserted

bool FEProblemBase::_is_petsc_options_inserted
protectedinherited

If or not PETSc options have been added to database.

Definition at line 3167 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), FEProblemBase::petscOptionsInserted(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _kernel_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_kernel_coverage_blocks
protectedinherited

◆ _kernel_coverage_check

CoverageCheckMode FEProblemBase::_kernel_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active kernel.

Definition at line 3103 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setKernelCoverageCheck().

◆ _kokkos_assembly

Moose::Kokkos::Assembly FEProblemBase::_kokkos_assembly
protectedinherited

Definition at line 2893 of file FEProblemBase.h.

Referenced by FEProblemBase::kokkosAssembly().

◆ _kokkos_bnd_material_props

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::_kokkos_bnd_material_props
protectedinherited

◆ _kokkos_material_props

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::_kokkos_material_props
protectedinherited

◆ _kokkos_materials

MaterialWarehouse FEProblemBase::_kokkos_materials
protectedinherited

◆ _kokkos_neighbor_material_props

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::_kokkos_neighbor_material_props
protectedinherited

◆ _kokkos_systems

Moose::Kokkos::Array<Moose::Kokkos::System> FEProblemBase::_kokkos_systems
protectedinherited

Definition at line 2882 of file FEProblemBase.h.

Referenced by FEProblemBase::getKokkosSystems().

◆ _line_search

std::shared_ptr<LineSearch> FEProblemBase::_line_search
protectedinherited

◆ _linear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_linear_convergence_names
protectedinherited

Linear system(s) convergence name(s) (if any)

Definition at line 2794 of file FEProblemBase.h.

Referenced by FEProblemBase::getLinearConvergenceNames(), FEProblemBase::hasLinearConvergenceObjects(), and FEProblemBase::setLinearConvergenceNames().

◆ _linear_matrix_tags

std::set<TagID> FEProblemBase::_linear_matrix_tags
protectedinherited

Temporary storage for filtered matrix tags for linear systems.

Definition at line 2808 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _linear_sys_name_to_num

std::map<LinearSystemName, unsigned int> FEProblemBase::_linear_sys_name_to_num
protectedinherited

Map from linear system name to number.

Definition at line 2837 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::linearSysNum().

◆ _linear_sys_names

const std::vector<LinearSystemName> FEProblemBase::_linear_sys_names
protectedinherited

◆ _linear_systems

std::vector<std::shared_ptr<LinearSystem> > FEProblemBase::_linear_systems
protectedinherited

◆ _linear_vector_tags

std::set<TagID> FEProblemBase::_linear_vector_tags
protectedinherited

Temporary storage for filtered vector tags for linear systems.

Definition at line 2805 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _map_block_material_props

std::map<SubdomainID, std::set<std::string> > SubProblem::_map_block_material_props
protectedinherited

Map of material properties (block_id -> list of properties)

Definition at line 1054 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), SubProblem::getMaterialPropertyBlocks(), SubProblem::hasBlockMaterialProperty(), and SubProblem::storeSubdomainMatPropName().

◆ _map_block_material_props_check

std::map<SubdomainID, std::multimap<std::string, std::string> > SubProblem::_map_block_material_props_check
protectedinherited

Data structures of the requested material properties.

We store them in a map from boundary/block id to multimap. Each of the multimaps is a list of requestor object names to material property names.

Definition at line 1072 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), and SubProblem::storeSubdomainDelayedCheckMatProp().

◆ _map_boundary_material_props

std::map<BoundaryID, std::set<std::string> > SubProblem::_map_boundary_material_props
protectedinherited

Map for boundary material properties (boundary_id -> list of properties)

Definition at line 1057 of file SubProblem.h.

Referenced by SubProblem::checkBoundaryMatProps(), SubProblem::getMaterialPropertyBoundaryIDs(), SubProblem::hasBoundaryMaterialProperty(), and SubProblem::storeBoundaryMatPropName().

◆ _map_boundary_material_props_check

std::map<BoundaryID, std::multimap<std::string, std::string> > SubProblem::_map_boundary_material_props_check
protectedinherited

◆ _markers

MooseObjectWarehouse<Marker> FEProblemBase::_markers
protectedinherited

◆ _material_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_material_coverage_blocks
protectedinherited

◆ _material_coverage_check

CoverageCheckMode FEProblemBase::_material_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active material.

Definition at line 3115 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setMaterialCoverageCheck().

◆ _material_dependency_check

const bool FEProblemBase::_material_dependency_check
protectedinherited

Determines whether a check to verify material dependencies on every subdomain.

Definition at line 3122 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity().

◆ _material_prop_registry

MaterialPropertyRegistry FEProblemBase::_material_prop_registry
protectedinherited

◆ _material_property_requested

std::set<std::string> SubProblem::_material_property_requested
protectedinherited

set containing all material property names that have been requested by getMaterialProperty*

Definition at line 1064 of file SubProblem.h.

Referenced by SubProblem::isMatPropRequested(), and SubProblem::markMatPropRequested().

◆ _material_props

MaterialPropertyStorage& FEProblemBase::_material_props
protectedinherited

◆ _materials

MaterialWarehouse FEProblemBase::_materials
protectedinherited

◆ _matrix_tag_id_to_tag_name

std::map<TagID, TagName> SubProblem::_matrix_tag_id_to_tag_name
protectedinherited

Reverse map.

Definition at line 1046 of file SubProblem.h.

Referenced by SubProblem::addMatrixTag(), SubProblem::matrixTagExists(), and SubProblem::matrixTagName().

◆ _matrix_tag_name_to_tag_id

std::map<TagName, TagID> SubProblem::_matrix_tag_name_to_tag_id
protectedinherited

◆ _max_qps

unsigned int FEProblemBase::_max_qps
protectedinherited

Maximum number of quadrature points used in the problem.

Definition at line 3128 of file FEProblemBase.h.

Referenced by FEProblemBase::getMaxQps(), FEProblemBase::reinitDirac(), and FEProblemBase::updateMaxQps().

◆ _max_scalar_order

libMesh::Order FEProblemBase::_max_scalar_order
protectedinherited

Maximum scalar variable order.

Definition at line 3131 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxScalarVariable(), and FEProblemBase::getMaxScalarOrder().

◆ _mesh

MooseMesh& FEProblemBase::_mesh
protectedinherited

◆ _mesh_divisions

MooseObjectWarehouse<MeshDivision> FEProblemBase::_mesh_divisions
protectedinherited

Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best.

Definition at line 2899 of file FEProblemBase.h.

Referenced by FEProblemBase::addMeshDivision(), and FEProblemBase::getMeshDivision().

◆ _mortar_data

std::unique_ptr<MortarInterfaceWarehouse> FEProblemBase::_mortar_data
protectedinherited

◆ _multi_apps

ExecuteMooseObjectWarehouse<MultiApp> FEProblemBase::_multi_apps
protectedinherited

◆ _multiapp_fixed_point_convergence_name

std::optional<ConvergenceName> FEProblemBase::_multiapp_fixed_point_convergence_name
protectedinherited

◆ _name

const std::string& MooseBase::_name
protectedinherited

The name of this class.

Definition at line 363 of file MooseBase.h.

Referenced by AddBCAction::act(), AddConstraintAction::act(), PartitionerAction::act(), AddFVInterfaceKernelAction::act(), AddUserObjectAction::act(), AddFVInitialConditionAction::act(), AddScalarKernelAction::act(), AddKernelAction::act(), ReadExecutorParamsAction::act(), AddMeshGeneratorAction::act(), AddVectorPostprocessorAction::act(), AddFunctorMaterialAction::act(), AddMarkerAction::act(), AddNodalKernelAction::act(), AddMaterialAction::act(), AddIndicatorAction::act(), AddPostprocessorAction::act(), AddDamperAction::act(), AddInitialConditionAction::act(), AddMultiAppAction::act(), AddTransferAction::act(), AddDGKernelAction::act(), AddDiracKernelAction::act(), AddInterfaceKernelAction::act(), AddPositionsAction::act(), AddReporterAction::act(), AddTimesAction::act(), AddFieldSplitAction::act(), AddFVKernelAction::act(), AddFVBCAction::act(), AddTimeStepperAction::act(), AddDistributionAction::act(), SetupPreconditionerAction::act(), SetupTimeIntegratorAction::act(), AddFunctionAction::act(), AddConvergenceAction::act(), AddMeshDivisionAction::act(), AddHDGKernelAction::act(), AddOutputAction::act(), AddLinearFVBCAction::act(), AddLinearFVKernelAction::act(), AddMeshModifiersAction::act(), AddCorrectorAction::act(), AddSamplerAction::act(), AddControlAction::act(), AddMFEMFESpaceAction::act(), AddMFEMPreconditionerAction::act(), AddMFEMSolverAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), CombinerGenerator::CombinerGenerator(), Executor::Executor(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), FunctionDT::FunctionDT(), FillBetweenSidesetsGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenPointVectorsGenerator::generate(), MooseBase::MooseBase(), NearestPointBase< LayeredSideDiffusiveFluxAverage, SideIntegralVariableUserObject >::name(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseBase::setData(), and AddVariableAction::varName().

◆ _need_to_add_default_multiapp_fixed_point_convergence

bool FEProblemBase::_need_to_add_default_multiapp_fixed_point_convergence
protectedinherited

Flag that the problem needs to add the default fixed point convergence.

Definition at line 2823 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence(), and FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence().

◆ _need_to_add_default_nonlinear_convergence

bool FEProblemBase::_need_to_add_default_nonlinear_convergence
protectedinherited

Flag that the problem needs to add the default nonlinear convergence.

Definition at line 2821 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultNonlinearConvergence(), and FEProblemBase::setNeedToAddDefaultNonlinearConvergence().

◆ _need_to_add_default_steady_state_convergence

bool FEProblemBase::_need_to_add_default_steady_state_convergence
protectedinherited

Flag that the problem needs to add the default steady convergence.

Definition at line 2825 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultSteadyStateConvergence(), and FEProblemBase::setNeedToAddDefaultSteadyStateConvergence().

◆ _needs_old_newton_iter

bool FEProblemBase::_needs_old_newton_iter
protectedinherited

Indicates that we need to compute variable values for previous Newton iteration.

Definition at line 3086 of file FEProblemBase.h.

◆ _neighbor_material_props

MaterialPropertyStorage& FEProblemBase::_neighbor_material_props
protectedinherited

◆ _nl

std::vector<std::shared_ptr<NonlinearSystemBase> > FEProblemBase::_nl
protectedinherited

The nonlinear systems.

Definition at line 2852 of file FEProblemBase.h.

Referenced by FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addKernel(), FEProblemBase::addNodalKernel(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::checkNonlocalCoupling(), FEProblemBase::checkProblemIntegrity(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computingPreSMOResidual(), FEProblemBase::currentNlSysNum(), FEProblemBase::customSetup(), DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::finalNonlinearResidual(), FEProblemBase::getNonlinearEvaluableElementRange(), FEProblemBase::getNonlinearSystem(), FEProblemBase::getNonlinearSystemBase(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needInternalNeighborSideMaterial(), FEProblemBase::nLinearIterations(), FEProblemBase::nNonlinearIterations(), FEProblemBase::onTimestepBegin(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::residualSetup(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setNonlocalCouplingMatrix(), FEProblemBase::setResidual(), FEProblemBase::setResidualObjectParamsAndLog(), FEProblemBase::setupDampers(), FEProblemBase::subdomainSetup(), FEProblemBase::systemBaseNonlinear(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _nl_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_nl_evaluable_local_elem_range
protectedinherited

◆ _nl_sys_name_to_num

std::map<NonlinearSystemName, unsigned int> FEProblemBase::_nl_sys_name_to_num
protectedinherited

Map from nonlinear system name to number.

Definition at line 2855 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::nlSysNum().

◆ _nl_sys_names

const std::vector<NonlinearSystemName> FEProblemBase::_nl_sys_names
protectedinherited

◆ _nonlinear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_nonlinear_convergence_names
protectedinherited

Nonlinear system(s) convergence name(s)

Definition at line 2792 of file FEProblemBase.h.

Referenced by FEProblemBase::getNonlinearConvergenceNames(), and FEProblemBase::setNonlinearConvergenceNames().

◆ _nonlocal_integrated_bcs

MooseObjectWarehouse<IntegratedBCBase> FEProblemBase::_nonlocal_integrated_bcs
protectedinherited

◆ _nonlocal_kernels

MooseObjectWarehouse<KernelBase> FEProblemBase::_nonlocal_kernels
protectedinherited

◆ _not_zeroed_tagged_vectors

std::unordered_set<TagID> SubProblem::_not_zeroed_tagged_vectors
protectedinherited

the list of vector tags that will not be zeroed when all other tags are

Definition at line 1119 of file SubProblem.h.

Referenced by SubProblem::addNotZeroedVectorTag(), FEProblemBase::restoreSolutions(), and SubProblem::vectorTagNotZeroed().

◆ _notify_when_mesh_changes

std::vector<MeshChangedInterface *> FEProblemBase::_notify_when_mesh_changes
protectedinherited

Objects to be notified when the mesh changes.

Definition at line 2989 of file FEProblemBase.h.

Referenced by FEProblemBase::meshChanged(), and FEProblemBase::notifyWhenMeshChanges().

◆ _notify_when_mesh_displaces

std::vector<MeshDisplacedInterface *> FEProblemBase::_notify_when_mesh_displaces
protectedinherited

Objects to be notified when the mesh displaces.

Definition at line 2992 of file FEProblemBase.h.

Referenced by FEProblemBase::meshDisplaced(), and FEProblemBase::notifyWhenMeshDisplaces().

◆ _num_linear_sys

const std::size_t FEProblemBase::_num_linear_sys
protectedinherited

◆ _num_nl_sys

const std::size_t FEProblemBase::_num_nl_sys
protectedinherited

◆ _parallel_barrier_messaging

bool FEProblemBase::_parallel_barrier_messaging
protectedinherited

◆ _pars

const InputParameters& MooseBase::_pars
protectedinherited

The object's parameters.

Definition at line 366 of file MooseBase.h.

Referenced by AddFVICAction::act(), AddICAction::act(), CreateProblemDefaultAction::act(), CreateProblemAction::act(), SetupMeshAction::act(), ComposeTimeStepperAction::act(), SetupDebugAction::act(), AddAuxKernelAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FunctorMaterial::addFunctorPropertyByBlocks(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), PiecewiseTabularBase::buildFromFile(), PNGOutput::calculateRescalingValues(), MooseBase::callMooseError(), MooseBase::connectControllableParams(), Console::Console(), MooseApp::copyInputs(), MaterialBase::declareADProperty(), MaterialBase::declareProperty(), FEProblemSolve::FEProblemSolve(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FileMeshGenerator::generate(), MooseBase::getBase(), MooseBase::getCheckedPointerParam(), MaterialBase::getGenericZeroMaterialProperty(), MooseBase::getHitNode(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getParam(), MooseBase::hasBase(), MeshGenerator::hasGenerateCSG(), MeshGenerator::hasGenerateData(), AddVariableAction::init(), AdvancedOutput::initExecutionTypes(), Console::initialSetup(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MultiApp::keepSolutionDuringRestore(), MooseBase::messagePrefix(), MooseBase::MooseBase(), MooseApp::outputMachineReadableData(), MooseBase::paramError(), MooseBase::parameters(), MooseBase::paramInfo(), MooseBase::paramWarning(), MooseMesh::prepare(), Eigenvalue::prepareSolverOptions(), MooseMesh::setCoordSystem(), MooseMesh::setPartitionerHelper(), SetupMeshAction::setupMesh(), TransientBase::setupTimeIntegrator(), MooseApp::showInputs(), and MooseBase::uniqueName().

◆ _petsc_option_data_base

PetscOptions FEProblemBase::_petsc_option_data_base
protectedinherited

◆ _petsc_options

Moose::PetscSupport::PetscOptions FEProblemBase::_petsc_options
protectedinherited

PETSc option storage.

Definition at line 3161 of file FEProblemBase.h.

Referenced by FEProblemBase::getPetscOptions(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _phi_zero

std::vector<VariablePhiValue> FEProblemBase::_phi_zero
inherited

◆ _point_zero

std::vector<Point> FEProblemBase::_point_zero
inherited

Definition at line 2263 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _previous_nl_solution_required

bool FEProblemBase::_previous_nl_solution_required
protectedinherited

Indicates we need to save the previous NL iteration variable values.

Definition at line 3089 of file FEProblemBase.h.

Referenced by FEProblemBase::createTagSolutions().

◆ _problem_data

MFEMProblemData MFEMProblem::_problem_data
protected

Definition at line 214 of file MFEMProblem.h.

Referenced by getCoefficients(), getMeshDisplacementGridFunction(), and getProblemData().

◆ _random_data_objects

std::map<std::string, std::unique_ptr<RandomData> > FEProblemBase::_random_data_objects
protectedinherited

◆ _real_zero

std::vector<Real> FEProblemBase::_real_zero
inherited

Convenience zeros.

Definition at line 2252 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _reinit_displaced_elem

bool FEProblemBase::_reinit_displaced_elem
protectedinherited

◆ _reinit_displaced_face

bool FEProblemBase::_reinit_displaced_face
protectedinherited

◆ _reinit_displaced_neighbor

bool FEProblemBase::_reinit_displaced_neighbor
protectedinherited

◆ _reporter_data

ReporterData FEProblemBase::_reporter_data
protectedinherited

◆ _restartable_app

MooseApp& Restartable::_restartable_app
protectedinherited

Reference to the application.

Definition at line 234 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp(), and Restartable::registerRestartableNameWithFilterOnApp().

◆ _restartable_read_only

const bool Restartable::_restartable_read_only
protectedinherited

Flag for toggling read only status (see ReporterData)

Definition at line 243 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp().

◆ _restartable_system_name

const std::string Restartable::_restartable_system_name
protectedinherited

The system name this object is in.

Definition at line 237 of file Restartable.h.

Referenced by Restartable::restartableName().

◆ _restartable_tid

const THREAD_ID Restartable::_restartable_tid
protectedinherited

The thread ID for this object.

Definition at line 240 of file Restartable.h.

Referenced by Restartable::declareRestartableDataHelper().

◆ _safe_access_tagged_matrices

bool SubProblem::_safe_access_tagged_matrices
protectedinherited

◆ _safe_access_tagged_vectors

bool SubProblem::_safe_access_tagged_vectors
protectedinherited

◆ _scalar_ics

ScalarInitialConditionWarehouse FEProblemBase::_scalar_ics
protectedinherited

◆ _scalar_zero

std::vector<VariableValue> FEProblemBase::_scalar_zero
inherited

◆ _second_phi_zero

std::vector<VariablePhiSecond> FEProblemBase::_second_phi_zero
inherited

◆ _second_zero

std::vector<VariableSecond> FEProblemBase::_second_zero
inherited

◆ _skip_exception_check

bool FEProblemBase::_skip_exception_check
protectedinherited

If or not skip 'exception and stop solve'.

Definition at line 3071 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::initialSetup(), and FEProblemBase::skipExceptionCheck().

◆ _snesmf_reuse_base

bool FEProblemBase::_snesmf_reuse_base
protectedinherited

If or not to resuse the base vector for matrix-free calculation.

Definition at line 3068 of file FEProblemBase.h.

Referenced by FEProblemBase::setSNESMFReuseBase(), and FEProblemBase::useSNESMFReuseBase().

◆ _snesmf_reuse_base_set_by_user

bool FEProblemBase::_snesmf_reuse_base_set_by_user
protectedinherited

If or not _snesmf_reuse_base is set by user.

Definition at line 3074 of file FEProblemBase.h.

Referenced by FEProblemBase::isSNESMFReuseBaseSetbyUser(), and FEProblemBase::setSNESMFReuseBase().

◆ _solve

const bool& FEProblemBase::_solve
protectedinherited

◆ _solver_params

std::vector<SolverParams> FEProblemBase::_solver_params
protectedinherited

◆ _solver_sys_name_to_num

std::map<SolverSystemName, unsigned int> FEProblemBase::_solver_sys_name_to_num
protectedinherited

Map connecting solver system names with their respective systems.

Definition at line 2870 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::solverSysNum().

◆ _solver_sys_names

std::vector<SolverSystemName> FEProblemBase::_solver_sys_names
protectedinherited

◆ _solver_systems

std::vector<std::shared_ptr<SolverSystem> > FEProblemBase::_solver_systems
protectedinherited

Combined container to base pointer of every solver system.

Definition at line 2864 of file FEProblemBase.h.

Referenced by FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::computeSystems(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getScalarVariable(), FEProblemBase::getSolverSystem(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasSolverVariable(), FEProblemBase::hasVariable(), FEProblem::init(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::projectSolution(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::setAuxKernelParamsAndLog(), FEProblemBase::setCurrentSubdomainID(), Moose::PetscSupport::setSinglePetscOption(), FEProblemBase::setVariableAllDoFMap(), FEProblemBase::solverSystemConverged(), FEProblemBase::systemBaseSolver(), FEProblemBase::systemNumForVariable(), and FEProblemBase::timestepSetup().

◆ _solver_var_to_sys_num

std::map<SolverVariableName, unsigned int> FEProblemBase::_solver_var_to_sys_num
protectedinherited

Map connecting variable names with their respective solver systems.

Definition at line 2867 of file FEProblemBase.h.

Referenced by FEProblemBase::addVariable(), and FEProblemBase::determineSolverSystem().

◆ _steady_state_convergence_name

std::optional<ConvergenceName> FEProblemBase::_steady_state_convergence_name
protectedinherited

◆ _subspace_dim

std::map<std::string, unsigned int> FEProblemBase::_subspace_dim
protectedinherited

Dimension of the subspace spanned by the vectors with a given prefix.

Definition at line 2886 of file FEProblemBase.h.

Referenced by FEProblemBase::initNullSpaceVectors(), and FEProblemBase::subspaceDim().

◆ _t_step

int& FEProblemBase::_t_step
protectedinherited

◆ _termination_requested

bool Problem::_termination_requested
protectedinherited

True if termination of the solve has been requested.

Definition at line 58 of file Problem.h.

Referenced by Problem::isSolveTerminationRequested(), and Problem::terminateSolve().

◆ _time

Real& FEProblemBase::_time
protectedinherited

◆ _time_old

Real& FEProblemBase::_time_old
protectedinherited

◆ _to_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_to_multi_app_transfers
protectedinherited

◆ _transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_transfers
protectedinherited

◆ _transient

bool FEProblemBase::_transient
protectedinherited

Definition at line 2813 of file FEProblemBase.h.

Referenced by FEProblemBase::isTransient(), and FEProblemBase::transient().

◆ _transient_multi_apps

ExecuteMooseObjectWarehouse<TransientMultiApp> FEProblemBase::_transient_multi_apps
protectedinherited

Storage for TransientMultiApps (only needed for calling 'computeDT')

Definition at line 2962 of file FEProblemBase.h.

Referenced by FEProblemBase::addMultiApp(), FEProblemBase::computeMultiAppsDT(), and FEProblemBase::updateActiveObjects().

◆ _type

const std::string& MooseBase::_type
protectedinherited

◆ _uo_aux_state_check

const bool FEProblemBase::_uo_aux_state_check
protectedinherited

Whether or not checking the state of uo/aux evaluation.

Definition at line 3125 of file FEProblemBase.h.

Referenced by FEProblemBase::execute(), and FEProblemBase::hasUOAuxStateCheck().

◆ _uo_jacobian_moose_vars

std::vector<std::vector<const MooseVariableFEBase *> > FEProblemBase::_uo_jacobian_moose_vars
protectedinherited

◆ _use_hash_table_matrix_assembly

const bool FEProblemBase::_use_hash_table_matrix_assembly
protectedinherited

Whether to assemble matrices using hash tables instead of preallocating matrix memory.

This can be a good option if the sparsity pattern changes throughout the course of the simulation

Definition at line 3188 of file FEProblemBase.h.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

◆ _using_ad_mat_props

bool FEProblemBase::_using_ad_mat_props
protectedinherited

Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property.

Definition at line 3181 of file FEProblemBase.h.

◆ _using_default_nl

const bool FEProblemBase::_using_default_nl
protectedinherited

Boolean to check if we have the default nonlinear system.

Definition at line 2843 of file FEProblemBase.h.

◆ _var_dof_map

std::map<std::string, std::vector<dof_id_type> > SubProblem::_var_dof_map
inherited

◆ _vector_curl_zero

std::vector<VectorVariableCurl> FEProblemBase::_vector_curl_zero
inherited

◆ _vector_zero

std::vector<VectorVariableValue> FEProblemBase::_vector_zero
inherited

◆ _verbose_multiapps

bool FEProblemBase::_verbose_multiapps
protectedinherited

◆ _verbose_restore

bool FEProblemBase::_verbose_restore
protectedinherited

Whether or not to be verbose on solution restoration post a failed time step.

Definition at line 3149 of file FEProblemBase.h.

Referenced by FEProblemBase::restoreSolutions(), and FEProblemBase::setVerboseProblem().

◆ _verbose_setup

MooseEnum FEProblemBase::_verbose_setup
protectedinherited

Whether or not to be verbose during setup.

Definition at line 3143 of file FEProblemBase.h.

Referenced by FEProblemBase::logAdd(), and FEProblemBase::setVerboseProblem().

◆ _xfem

std::shared_ptr<XFEMInterface> FEProblemBase::_xfem
protectedinherited

Pointer to XFEM controller.

Definition at line 3043 of file FEProblemBase.h.

Referenced by FEProblemBase::getXFEM(), FEProblemBase::haveXFEM(), FEProblemBase::initXFEM(), and FEProblemBase::updateMeshXFEM().

◆ _zero

std::vector<VariableValue> FEProblemBase::_zero
inherited

◆ _zero_block_material_props

std::map<SubdomainID, std::set<MaterialPropertyName> > SubProblem::_zero_block_material_props
protectedinherited

Set of properties returned as zero properties.

Definition at line 1060 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), FEProblemBase::checkDependMaterialsHelper(), and SubProblem::storeSubdomainZeroMatProp().

◆ _zero_boundary_material_props

std::map<BoundaryID, std::set<MaterialPropertyName> > SubProblem::_zero_boundary_material_props
protectedinherited

◆ app_param

const std::string MooseBase::app_param = "_moose_app"
staticinherited

◆ kokkos_object_param

const std::string MooseBase::kokkos_object_param = "_kokkos_object"
staticinherited

The name of the parameter that indicates an object is a Kokkos functor.

Definition at line 64 of file MooseBase.h.

Referenced by MooseObject::isKokkosObject().

◆ moose_base_param

const std::string MooseBase::moose_base_param = "_moose_base"
staticinherited

The name of the parameter that contains the moose system base.

Definition at line 61 of file MooseBase.h.

Referenced by InputParameters::getBase(), InputParameters::hasBase(), and InputParameters::registerBase().

◆ name_param

const std::string MooseBase::name_param = "_object_name"
staticinherited

◆ type_param

const std::string MooseBase::type_param = "_type"
staticinherited

◆ unique_name_param

const std::string MooseBase::unique_name_param = "_unique_name"
staticinherited

The name of the parameter that contains the unique object name.

Definition at line 57 of file MooseBase.h.

Referenced by InputParameterWarehouse::addInputParameters(), AppFactory::create(), InputParameterWarehouse::removeInputParameters(), MooseBase::uniqueName(), and MooseBase::validParams().

◆ usingCombinedWarningSolutionWarnings

MooseObject::usingCombinedWarningSolutionWarnings
inherited

Definition at line 82 of file MooseObject.h.


The documentation for this class was generated from the following files: