https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
MFEMProblem Class Referenceabstract

#include <MFEMProblem.h>

Inheritance diagram for MFEMProblem:
[legend]

Public Types

enum  Direction : unsigned char { Direction::TO_EXTERNAL_APP, Direction::FROM_EXTERNAL_APP }
 
enum  CoverageCheckMode {
  CoverageCheckMode::FALSE, CoverageCheckMode::TRUE, CoverageCheckMode::OFF, CoverageCheckMode::ON,
  CoverageCheckMode::SKIP_LIST, CoverageCheckMode::ONLY_LIST
}
 
using DataFileParameterType = DataFileName
 The parameter type this interface expects for a data file name. More...
 

Public Member Functions

 MFEMProblem (const InputParameters &params)
 
virtual ~MFEMProblem ()
 
virtual void initialSetup () override
 
virtual void externalSolve () override
 New interface for solving an External problem. More...
 
virtual void syncSolutions (Direction) override
 Method to transfer data to/from the external application to the associated transfer mesh. More...
 
virtual MFEMMeshmesh () override
 Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMesh. More...
 
virtual const MFEMMeshmesh () const override
 
virtual std::vector< VariableName > getAuxVariableNames ()
 Returns all the variable names from the auxiliary system base. More...
 
void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters) override
 
void addMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters) override
 
void addFunctorMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters) override
 
void addFESpace (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Add an MFEM FESpace to the problem. More...
 
void setDevice ()
 Set the device to use to solve the FE problem. More...
 
void setMesh ()
 Set the mesh used by MFEM. More...
 
void addSubMesh (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Add an MFEM SubMesh to the problem. More...
 
void addTransfer (const std::string &transfer_name, const std::string &name, InputParameters &parameters) override
 Add transfers between MultiApps and/or MFEM SubMeshes. More...
 
void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters) override
 Override of ExternalProblem::addVariable. More...
 
void addGridFunction (const std::string &var_type, const std::string &var_name, InputParameters &parameters)
 Adds one MFEM GridFunction to be used in the MFEM solve. More...
 
void addAuxVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters) override
 Override of ExternalProblem::addAuxVariable. More...
 
void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addKernel. More...
 
void addAuxKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addAuxKernel. More...
 
void addFunction (const std::string &type, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addFunction. More...
 
void addInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters) override
 
void addPostprocessor (const std::string &type, const std::string &name, InputParameters &parameters) override
 Override of ExternalProblem::addPostprocessor. More...
 
void addMFEMPreconditioner (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Method called in AddMFEMPreconditionerAction which will create the solver. More...
 
void addMFEMSolver (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 Method called in AddMFEMSolverAction which will create the solver. More...
 
void addMFEMNonlinearSolver ()
 Add the nonlinear solver to the system. More...
 
InputParameters addMFEMFESpaceFromMOOSEVariable (InputParameters &moosevar_params)
 Method used to get an mfem FEC depending on the variable family specified in the input file. More...
 
Moose::MFEM::CoefficientManagergetCoefficients ()
 Method to get the PropertyManager object for storing material properties and converting them to MFEM coefficients. More...
 
MFEMProblemDatagetProblemData ()
 Method to get the current MFEMProblemData object storing the current data specifying the FE problem. More...
 
void displaceMesh ()
 Displace the mesh, if mesh displacement is enabled. More...
 
std::optional< std::reference_wrapper< mfem::ParGridFunction const > > getMeshDisplacementGridFunction ()
 Returns optional reference to the displacement GridFunction to apply to nodes. More...
 
Moose::FEBackend feBackend () const override
 
std::string solverTypeString (unsigned int solver_sys_num) override
 Return solver type as a human readable string. More...
 
std::shared_ptr< mfem::ParGridFunction > getGridFunction (const std::string &name)
 
virtual void solve (unsigned int nl_sys_num=0) override final
 Solve is implemented to providing syncing to/from the "transfer" mesh. More...
 
virtual void addExternalVariables ()
 Method called to add AuxVariables to the simulation. More...
 
virtual libMesh::EquationSystemses () override
 
const MooseMeshmesh (bool use_displaced) const override
 
void setCoordSystem (const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
 
void setAxisymmetricCoordAxis (const MooseEnum &rz_coord_axis)
 
void setCoupling (Moose::CouplingType type)
 Set the coupling between variables TODO: allow user-defined coupling. More...
 
Moose::CouplingType coupling () const
 
void setCouplingMatrix (std::unique_ptr< libMesh::CouplingMatrix > cm, const unsigned int nl_sys_num)
 Set custom coupling matrix. More...
 
void setCouplingMatrix (libMesh::CouplingMatrix *cm, const unsigned int nl_sys_num)
 
const libMesh::CouplingMatrixcouplingMatrix (const unsigned int nl_sys_num) const override
 The coupling matrix defining what blocks exist in the preconditioning matrix. More...
 
void setNonlocalCouplingMatrix ()
 Set custom coupling matrix for variables requiring nonlocal contribution. More...
 
bool areCoupled (const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
 
bool hasUOAuxStateCheck () const
 Whether or not MOOSE will perform a user object/auxiliary kernel state check. More...
 
bool checkingUOAuxState () const
 Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e. More...
 
void trustUserCouplingMatrix ()
 Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix. More...
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & nonlocalCouplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
virtual bool hasVariable (const std::string &var_name) const override
 Whether or not this problem has the variable. More...
 
bool hasSolverVariable (const std::string &var_name) const
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const=0
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
MooseVariableFieldBasegetActualFieldVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariableField which may be in any system. More...
 
virtual MooseVariablegetStandardVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariable which may be in any system. More...
 
virtual VectorMooseVariablegetVectorVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested VectorMooseVariable which may be in any system. More...
 
virtual ArrayMooseVariablegetArrayVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested ArrayMooseVariable which may be in any system. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const override
 Returns a Boolean indicating whether any system contains a variable with the name provided. More...
 
virtual MooseVariableScalargetScalarVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the scalar variable reference from whichever system contains it. More...
 
virtual libMesh::SystemgetSystem (const std::string &var_name) override
 Returns the equation system containing the variable provided. More...
 
virtual void setActiveElementalMooseVariables (const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
 Set the MOOSE variables to be reinited on each element. More...
 
virtual void clearActiveElementalMooseVariables (const THREAD_ID tid) override
 Clear the active elemental MooseVariableFEBase. More...
 
virtual void clearActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void createQRules (libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
 
void bumpVolumeQRuleOrder (libMesh::Order order, SubdomainID block)
 Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower. More...
 
void bumpAllQRuleOrder (libMesh::Order order, SubdomainID block)
 
unsigned int getMaxQps () const
 
libMesh::Order getMaxScalarOrder () const
 
void checkNonlocalCoupling ()
 
void checkUserObjectJacobianRequirement (THREAD_ID tid)
 
void setVariableAllDoFMap (const std::vector< const MooseVariableFEBase *> &moose_vars)
 
const std::vector< const MooseVariableFEBase * > & getUserObjectJacobianVariables (const THREAD_ID tid) const
 
virtual Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) override
 
virtual const Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) const override
 
virtual std::vector< VariableName > getVariableNames ()
 Returns a list of all the variables in the problem (both from the NL and Aux systems. More...
 
void checkDuplicatePostprocessorVariableNames ()
 
void timestepSetup () override
 
void customSetup (const ExecFlagType &exec_type) override
 
void residualSetup () override
 
void jacobianSetup () override
 
virtual void prepare (const Elem *elem, const THREAD_ID tid) override
 
virtual void prepare (const Elem *elem, unsigned int ivar, unsigned int jvar, const std::vector< dof_id_type > &dof_indices, const THREAD_ID tid) override
 
virtual void prepareFace (const Elem *elem, const THREAD_ID tid) override
 
virtual void setCurrentSubdomainID (const Elem *elem, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, const THREAD_ID tid)
 
virtual void prepareAssembly (const THREAD_ID tid) override
 
virtual void addGhostedElem (dof_id_type elem_id) override
 Will make sure that all dofs connected to elem_id are ghosted to this processor. More...
 
virtual void addGhostedBoundary (BoundaryID boundary_id) override
 Will make sure that all necessary elements from boundary_id are ghosted to this processor. More...
 
virtual void ghostGhostedBoundaries () override
 Causes the boundaries added using addGhostedBoundary to actually be ghosted. More...
 
virtual void sizeZeroes (unsigned int size, const THREAD_ID tid)
 
virtual bool reinitDirac (const Elem *elem, const THREAD_ID tid) override
 Returns true if the Problem has Dirac kernels it needs to compute on elem. More...
 
virtual void reinitElem (const Elem *elem, const THREAD_ID tid) override
 
virtual void reinitElemPhys (const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid) override
 
void reinitElemFace (const Elem *elem, unsigned int side, BoundaryID, const THREAD_ID tid)
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitLowerDElem (const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 
virtual void reinitNode (const Node *node, const THREAD_ID tid) override
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNeighbor (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitElemNeighborAndLowerD (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitScalars (const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
 fills the VariableValue arrays for scalar variables from the solution vector More...
 
virtual void reinitOffDiagScalars (const THREAD_ID tid) override
 
virtual void getDiracElements (std::set< const Elem *> &elems) override
 Fills "elems" with the elements that should be looped over for Dirac Kernels. More...
 
virtual void clearDiracInfo () override
 Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in. More...
 
virtual void subdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void neighborSubdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void newAssemblyArray (std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
 
virtual void initNullSpaceVectors (const InputParameters &parameters, std::vector< std::shared_ptr< NonlinearSystemBase >> &nl)
 
virtual void init () override
 
virtual void solveLinearSystem (const unsigned int linear_sys_num, const Moose::PetscSupport::PetscOptions *po=nullptr)
 Build and solve a linear system. More...
 
virtual void setException (const std::string &message)
 Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve(). More...
 
virtual bool hasException ()
 Whether or not an exception has occurred. More...
 
virtual void checkExceptionAndStopSolve (bool print_message=true)
 Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut. More...
 
virtual bool solverSystemConverged (const unsigned int solver_sys_num) override
 
virtual unsigned int nNonlinearIterations (const unsigned int nl_sys_num) const override
 
virtual unsigned int nLinearIterations (const unsigned int nl_sys_num) const override
 
virtual Real finalNonlinearResidual (const unsigned int nl_sys_num) const override
 
virtual bool computingPreSMOResidual (const unsigned int nl_sys_num) const override
 Returns true if the problem is in the process of computing it's initial residual. More...
 
virtual bool startedInitialSetup ()
 Returns true if we are in or beyond the initialSetup stage. More...
 
virtual void onTimestepBegin () override
 
virtual void onTimestepEnd () override
 
virtual Realtime () const
 
virtual RealtimeOld () const
 
virtual inttimeStep () const
 
virtual Realdt () const
 
virtual RealdtOld () const
 
Real getTimeFromStateArg (const Moose::StateArg &state) const
 Returns the time associated with the requested state. More...
 
virtual void transient (bool trans)
 
virtual bool isTransient () const override
 
virtual void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void addPredictor (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void copySolutionsBackwards ()
 
virtual void advanceState ()
 Advance all of the state holding vectors / datastructures so that we can move to the next timestep. More...
 
virtual void restoreSolutions ()
 
virtual void saveOldSolutions ()
 Allocate vectors and save old solutions into them. More...
 
virtual void restoreOldSolutions ()
 Restore old solutions from the backup vectors and deallocate them. More...
 
void needSolutionState (unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
 Declare that we need up to old (1) or older (2) solution states for a given type of iteration. More...
 
virtual void outputStep (ExecFlagType type)
 Output the current step. More...
 
virtual void postExecute ()
 Method called at the end of the simulation. More...
 
void forceOutput ()
 Indicates that the next call to outputStep should be forced. More...
 
virtual void initPetscOutputAndSomeSolverSettings ()
 Reinitialize PETSc output for proper linear/nonlinear iteration display. More...
 
Moose::PetscSupport::PetscOptionsgetPetscOptions ()
 Retrieve a writable reference the PETSc options (used by PetscSupport) More...
 
void logAdd (const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
 Output information about the object just added to the problem. More...
 
virtual bool hasFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual FunctiongetFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual void addMeshDivision (const std::string &type, const std::string &name, InputParameters &params)
 Add a MeshDivision. More...
 
MeshDivisiongetMeshDivision (const std::string &name, const THREAD_ID tid=0) const
 Get a MeshDivision. More...
 
virtual void addConvergence (const std::string &type, const std::string &name, InputParameters &parameters)
 Adds a Convergence object. More...
 
virtual ConvergencegetConvergence (const std::string &name, const THREAD_ID tid=0) const
 Gets a Convergence object. More...
 
virtual const std::vector< std::shared_ptr< Convergence > > & getConvergenceObjects (const THREAD_ID tid=0) const
 Gets the Convergence objects. More...
 
virtual bool hasConvergence (const std::string &name, const THREAD_ID tid=0) const
 Returns true if the problem has a Convergence object of the given name. More...
 
bool needToAddDefaultNonlinearConvergence () const
 Returns true if the problem needs to add the default nonlinear convergence. More...
 
bool needToAddDefaultMultiAppFixedPointConvergence () const
 Returns true if the problem needs to add the default fixed point convergence. More...
 
bool needToAddDefaultSteadyStateConvergence () const
 Returns true if the problem needs to add the default steady-state detection convergence. More...
 
void setNeedToAddDefaultNonlinearConvergence ()
 Sets _need_to_add_default_nonlinear_convergence to true. More...
 
void setNeedToAddDefaultMultiAppFixedPointConvergence ()
 Sets _need_to_add_default_multiapp_fixed_point_convergence to true. More...
 
void setNeedToAddDefaultSteadyStateConvergence ()
 Sets _need_to_add_default_steady_state_convergence to true. More...
 
bool hasSetMultiAppFixedPointConvergenceName () const
 Returns true if the problem has set the fixed point convergence name. More...
 
bool hasSetSteadyStateConvergenceName () const
 Returns true if the problem has set the steady-state detection convergence name. More...
 
virtual void addDefaultNonlinearConvergence (const InputParameters &params)
 Adds the default nonlinear Convergence associated with the problem. More...
 
virtual bool onlyAllowDefaultNonlinearConvergence () const
 Returns true if an error will result if the user supplies 'nonlinear_convergence'. More...
 
void addDefaultMultiAppFixedPointConvergence (const InputParameters &params)
 Adds the default fixed point Convergence associated with the problem. More...
 
void addDefaultSteadyStateConvergence (const InputParameters &params)
 Adds the default steady-state detection Convergence. More...
 
virtual void addLineSearch (const InputParameters &)
 add a MOOSE line search More...
 
virtual void lineSearch ()
 execute MOOSE line search More...
 
LineSearchgetLineSearch () override
 getter for the MOOSE line search More...
 
virtual void addDistribution (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import distributions. More...
 
virtual DistributiongetDistribution (const std::string &name)
 
virtual void addSampler (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import Samplers. More...
 
virtual SamplergetSampler (const std::string &name, const THREAD_ID tid=0)
 
NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num)
 
const NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num) const
 
void setCurrentNonlinearSystem (const unsigned int nl_sys_num)
 
NonlinearSystemBasecurrentNonlinearSystem ()
 
const NonlinearSystemBasecurrentNonlinearSystem () const
 
virtual const SystemBasesystemBaseNonlinear (const unsigned int sys_num) const override
 Return the nonlinear system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseNonlinear (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseSolver (const unsigned int sys_num) const override
 Return the solver system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseSolver (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseAuxiliary () const override
 Return the auxiliary system object as a base class reference. More...
 
virtual SystemBasesystemBaseAuxiliary () override
 
virtual NonlinearSystemgetNonlinearSystem (const unsigned int sys_num)
 
virtual const SystemBasegetSystemBase (const unsigned int sys_num) const
 Get constant reference to a system in this problem. More...
 
virtual SystemBasegetSystemBase (const unsigned int sys_num)
 Get non-constant reference to a system in this problem. More...
 
SystemBasegetSystemBase (const std::string &sys_name)
 Get non-constant reference to a system in this problem. More...
 
LinearSystemgetLinearSystem (unsigned int sys_num)
 Get non-constant reference to a linear system. More...
 
const LinearSystemgetLinearSystem (unsigned int sys_num) const
 Get a constant reference to a linear system. More...
 
SolverSystemgetSolverSystem (unsigned int sys_num)
 Get non-constant reference to a solver system. More...
 
const SolverSystemgetSolverSystem (unsigned int sys_num) const
 Get a constant reference to a solver system. More...
 
void setCurrentLinearSystem (unsigned int sys_num)
 Set the current linear system pointer. More...
 
LinearSystemcurrentLinearSystem ()
 Get a non-constant reference to the current linear system. More...
 
const LinearSystemcurrentLinearSystem () const
 Get a constant reference to the current linear system. More...
 
virtual const SystemBasesystemBaseLinear (unsigned int sys_num) const override
 Get a constant base class reference to a linear system. More...
 
virtual SystemBasesystemBaseLinear (unsigned int sys_num) override
 Get a non-constant base class reference to a linear system. More...
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 
virtual void setInputParametersFEProblem (InputParameters &parameters)
 
virtual void addAuxVariable (const std::string &var_name, const libMesh::FEType &type, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxArrayVariable (const std::string &var_name, const libMesh::FEType &type, unsigned int components, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarVariable (const std::string &var_name, libMesh::Order order, Real scale_factor=1., const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
AuxiliarySystemgetAuxiliarySystem ()
 
virtual void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInterfaceKernel (const std::string &fv_ik_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 Add an initial condition for a finite volume variables. More...
 
void projectSolution ()
 
unsigned short getCurrentICState ()
 Retrieves the current initial condition state. More...
 
void projectInitialConditionOnCustomRange (libMesh::ConstElemRange &elem_range, ConstBndNodeRange &bnd_node_range)
 Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
virtual void addMaterialHelper (std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
void prepareMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props, const SubdomainID blk_id, const THREAD_ID tid)
 Add the MooseVariables and the material properties that the current materials depend on to the dependency list. More...
 
void reinitMaterials (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true)
 
void reinitMaterialsFace (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on element faces More...
 
void reinitMaterialsNeighbor (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on the neighboring element face More...
 
void reinitMaterialsBoundary (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on a boundary More...
 
void reinitMaterialsInterface (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true)
 
virtual void swapBackMaterials (const THREAD_ID tid)
 
virtual void swapBackMaterialsFace (const THREAD_ID tid)
 
virtual void swapBackMaterialsNeighbor (const THREAD_ID tid)
 
void setActiveMaterialProperties (const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
 Record and set the material properties required by the current computing thread. More...
 
bool hasActiveMaterialProperties (const THREAD_ID tid) const
 Method to check whether or not a list of active material roperties has been set. More...
 
void clearActiveMaterialProperties (const THREAD_ID tid)
 Clear the active material properties. More...
 
template<typename T >
std::vector< std::shared_ptr< T > > addObject (const std::string &type, const std::string &name, InputParameters &parameters, const bool threaded=true, const std::string &var_param_name="variable")
 Method for creating and adding an object to the warehouse. More...
 
virtual void addVectorPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addReporter (const std::string &type, const std::string &name, InputParameters &parameters)
 Add a Reporter object to the simulation. More...
 
const ReporterDatagetReporterData () const
 Provides const access the ReporterData object. More...
 
ReporterDatagetReporterData (ReporterData::WriteKey)
 Provides non-const access the ReporterData object that is used to store reporter values. More...
 
virtual std::vector< std::shared_ptr< UserObject > > addUserObject (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 
const ExecuteMooseObjectWarehouse< UserObject > & getUserObjects () const
 
template<class T >
T & getUserObject (const std::string &name, unsigned int tid=0) const
 Get the user object by its name. More...
 
const UserObjectgetUserObjectBase (const std::string &name, const THREAD_ID tid=0) const
 Get the user object by its name. More...
 
const PositionsgetPositionsObject (const std::string &name) const
 Get the Positions object by its name. More...
 
bool hasUserObject (const std::string &name) const
 Check if there if a user object of given name. More...
 
bool hasPostprocessorValueByName (const PostprocessorName &name) const
 Whether or not a Postprocessor value exists by a given name. More...
 
const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name, std::size_t t_index=0) const
 Get a read-only reference to the value associated with a Postprocessor that exists. More...
 
void setPostprocessorValueByName (const PostprocessorName &name, const PostprocessorValue &value, std::size_t t_index=0)
 Set the value of a PostprocessorValue. More...
 
bool hasPostprocessor (const std::string &name) const
 Deprecated. More...
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, std::size_t t_index=0) const
 Get a read-only reference to the vector value associated with the VectorPostprocessor. More...
 
void setVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, const VectorPostprocessorValue &value, std::size_t t_index=0)
 Set the value of a VectorPostprocessor vector. More...
 
const VectorPostprocessorgetVectorPostprocessorObjectByName (const std::string &object_name, const THREAD_ID tid=0) const
 Return the VPP object given the name. More...
 
virtual void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 
void setupDampers ()
 
bool hasDampers ()
 Whether or not this system has dampers. More...
 
virtual void addIndicator (const std::string &indicator_name, const std::string &name, InputParameters &parameters)
 
virtual void addMarker (const std::string &marker_name, const std::string &name, InputParameters &parameters)
 
virtual void addMultiApp (const std::string &multi_app_name, const std::string &name, InputParameters &parameters)
 Add a MultiApp to the problem. More...
 
std::shared_ptr< MultiAppgetMultiApp (const std::string &multi_app_name) const
 Get a MultiApp object by name. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (ExecFlagType type, Transfer::DIRECTION direction) const
 Get Transfers by ExecFlagType and direction. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (Transfer::DIRECTION direction) const
 
const ExecuteMooseObjectWarehouse< Transfer > & getMultiAppTransferWarehouse (Transfer::DIRECTION direction) const
 Return the complete warehouse for MultiAppTransfer object for the given direction. More...
 
void execMultiAppTransfers (ExecFlagType type, Transfer::DIRECTION direction)
 Execute MultiAppTransfers associated with execution flag and direction. More...
 
bool execMultiApps (ExecFlagType type, bool auto_advance=true)
 Execute the MultiApps associated with the ExecFlagType. More...
 
void finalizeMultiApps ()
 
void incrementMultiAppTStep (ExecFlagType type)
 Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType. More...
 
void advanceMultiApps (ExecFlagType type)
 Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose. More...
 
void finishMultiAppStep (ExecFlagType type, bool recurse_through_multiapp_levels=false)
 Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType. More...
 
void backupMultiApps (ExecFlagType type)
 Backup the MultiApps associated with the ExecFlagType. More...
 
void restoreMultiApps (ExecFlagType type, bool force=false)
 Restore the MultiApps associated with the ExecFlagType. More...
 
Real computeMultiAppsDT (ExecFlagType type)
 Find the smallest timestep over all MultiApps. More...
 
void execTransfers (ExecFlagType type)
 Execute the Transfers associated with the ExecFlagType. More...
 
Real computeResidualL2Norm (NonlinearSystemBase &sys)
 Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
Real computeResidualL2Norm (LinearSystem &sys)
 Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual Real computeResidualL2Norm ()
 Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual void computeResidualSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
void computeResidual (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
virtual void computeResidual (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const unsigned int nl_sys_num)
 Form a residual with default tags (nontime, time, residual). More...
 
void computeResidualAndJacobian (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a residual and Jacobian with default tags. More...
 
virtual void computeResidualTag (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag. More...
 
virtual void computeResidualType (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag and "residual" tag. More...
 
virtual void computeResidualInternal (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const std::set< TagID > &tags)
 Form a residual vector for a set of tags. More...
 
virtual void computeResidualTags (const std::set< TagID > &tags)
 Form multiple residual vectors and each is associated with one tag. More...
 
virtual void computeJacobianSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a Jacobian matrix. More...
 
virtual void computeJacobian (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
 Form a Jacobian matrix with the default tag (system). More...
 
virtual void computeJacobianTag (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, TagID tag)
 Form a Jacobian matrix for a given tag. More...
 
virtual void computeJacobianInternal (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
 Form a Jacobian matrix for multiple tags. More...
 
virtual void computeJacobianTags (const std::set< TagID > &tags)
 Form multiple matrices, and each is associated with a tag. More...
 
virtual void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
virtual void computeJacobianBlock (libMesh::SparseMatrix< libMesh::Number > &jacobian, libMesh::System &precond_system, unsigned int ivar, unsigned int jvar)
 Really not a good idea to use this. More...
 
virtual void computeLinearSystemSys (libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
 Assemble both the right hand side and the system matrix of a given linear system. More...
 
void computeLinearSystemTags (const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
 Assemble the current linear system given a set of vector and matrix tags. More...
 
virtual Real computeDamping (const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)
 
virtual bool shouldUpdateSolution ()
 Check to see whether the problem should update the solution. More...
 
virtual bool updateSolution (NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
 Update the solution. More...
 
virtual void predictorCleanup (NumericVector< libMesh::Number > &ghosted_solution)
 Perform cleanup tasks after application of predictor to solution vector. More...
 
virtual void computeBounds (libMesh::NonlinearImplicitSystem &sys, NumericVector< libMesh::Number > &lower, NumericVector< libMesh::Number > &upper)
 
virtual void computeNearNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeTransposeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computePostCheck (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &old_soln, NumericVector< libMesh::Number > &search_direction, NumericVector< libMesh::Number > &new_soln, bool &changed_search_direction, bool &changed_new_soln)
 
virtual void computeIndicatorsAndMarkers ()
 
virtual void computeIndicators ()
 
virtual void computeMarkers ()
 
virtual void addResidual (const THREAD_ID tid) override
 
virtual void addResidualNeighbor (const THREAD_ID tid) override
 
virtual void addResidualLower (const THREAD_ID tid) override
 
virtual void addResidualScalar (const THREAD_ID tid=0)
 
virtual void cacheResidual (const THREAD_ID tid) override
 
virtual void cacheResidualNeighbor (const THREAD_ID tid) override
 
virtual void addCachedResidual (const THREAD_ID tid) override
 
virtual void addCachedResidualDirectly (NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
 Allows for all the residual contributions that are currently cached to be added directly into the vector passed in. More...
 
virtual void setResidual (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidual (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void setResidualNeighbor (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidualNeighbor (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void addJacobian (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const libMesh::DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)=0
 
virtual void addJacobianNeighborLowerD (const THREAD_ID tid) override
 
virtual void addJacobianLowerD (const THREAD_ID tid) override
 
virtual void addJacobianBlockTags (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)
 
virtual void addJacobianScalar (const THREAD_ID tid=0)
 
virtual void addJacobianOffDiagScalar (unsigned int ivar, const THREAD_ID tid=0)
 
virtual void cacheJacobian (const THREAD_ID tid) override
 
virtual void cacheJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addCachedJacobian (const THREAD_ID tid) override
 
virtual void prepareShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareFaceShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareNeighborShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void addDisplacedProblem (std::shared_ptr< DisplacedProblem > displaced_problem)
 
virtual std::shared_ptr< const DisplacedProblemgetDisplacedProblem () const
 
virtual std::shared_ptr< DisplacedProblemgetDisplacedProblem ()
 
virtual void updateGeomSearch (GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
 
virtual void updateMortarMesh ()
 
void createMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
 
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces (bool on_displaced) const
 
virtual void possiblyRebuildGeomSearchPatches ()
 
virtual GeometricSearchDatageomSearchData () override
 
void setRestartFile (const std::string &file_name)
 Communicate to the Resurector the name of the restart filer. More...
 
const MaterialPropertyRegistrygetMaterialPropertyRegistry () const
 
const InitialConditionWarehousegetInitialConditionWarehouse () const
 Return InitialCondition storage. More...
 
const FVInitialConditionWarehousegetFVInitialConditionWarehouse () const
 Return FVInitialCondition storage. More...
 
SolverParamssolverParams (unsigned int solver_sys_num=0)
 Get the solver parameters. More...
 
const SolverParamssolverParams (unsigned int solver_sys_num=0) const
 const version More...
 
Adaptivityadaptivity ()
 
virtual void initialAdaptMesh ()
 
virtual bool adaptMesh ()
 
unsigned int getNumCyclesCompleted ()
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
void initXFEM (std::shared_ptr< XFEMInterface > xfem)
 Create XFEM controller object. More...
 
std::shared_ptr< XFEMInterfacegetXFEM ()
 Get a pointer to the XFEM controller object. More...
 
bool haveXFEM ()
 Find out whether the current analysis is using XFEM. More...
 
virtual bool updateMeshXFEM ()
 Update the mesh due to changing XFEM cuts. More...
 
virtual void meshChanged (bool intermediate_change, bool contract_mesh, bool clean_refinement_flags)
 Update data after a mesh change. More...
 
void notifyWhenMeshChanges (MeshChangedInterface *mci)
 Register an object that derives from MeshChangedInterface to be notified when the mesh changes. More...
 
void notifyWhenMeshDisplaces (MeshDisplacedInterface *mdi)
 Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated. More...
 
void initElementStatefulProps (const libMesh::ConstElemRange &elem_range, const bool threaded)
 Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
virtual void checkProblemIntegrity ()
 Method called to perform a series of sanity checks before a simulation is run. More...
 
void registerRandomInterface (RandomInterface &random_interface, const std::string &name)
 
void setConstJacobian (bool state)
 Set flag that Jacobian is constant (for optimization purposes) More...
 
void setKernelCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setKernelCoverageCheck (bool flag)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setMaterialCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setMaterialCoverageCheck (bool flag)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setParallelBarrierMessaging (bool flag)
 Toggle parallel barrier messaging (defaults to on). More...
 
void setVerboseProblem (bool verbose)
 Make the problem be verbose. More...
 
bool verboseMultiApps () const
 Whether or not to use verbose printing for MultiApps. More...
 
void parentOutputPositionChanged ()
 Calls parentOutputPositionChanged() on all sub apps. More...
 
unsigned int subspaceDim (const std::string &prefix) const
 Dimension of the subspace spanned by vectors with a given prefix. More...
 
const MaterialWarehousegetMaterialWarehouse () const
 
const MaterialWarehousegetRegularMaterialsWarehouse () const
 
const MaterialWarehousegetDiscreteMaterialWarehouse () const
 
const MaterialWarehousegetInterfaceMaterialsWarehouse () const
 
std::shared_ptr< MaterialBasegetMaterial (std::string name, Moose::MaterialDataType type, const THREAD_ID tid=0, bool no_warn=false)
 Return a pointer to a MaterialBase object. More...
 
MaterialDatagetMaterialData (Moose::MaterialDataType type, const THREAD_ID tid=0) const
 
bool restoreOriginalNonzeroPattern () const
 
bool errorOnJacobianNonzeroReallocation () const
 Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc. More...
 
void setErrorOnJacobianNonzeroReallocation (bool state)
 
bool preserveMatrixSparsityPattern () const
 Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve. More...
 
void setPreserveMatrixSparsityPattern (bool preserve)
 Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved. More...
 
bool ignoreZerosInJacobian () const
 Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern. More...
 
void setIgnoreZerosInJacobian (bool state)
 Set whether the zeros in the Jacobian should be dropped from the sparsity pattern. More...
 
bool acceptInvalidSolution () const
 Whether or not to accept the solution based on its invalidity. More...
 
bool allowInvalidSolution () const
 Whether to accept / allow an invalid solution. More...
 
bool showInvalidSolutionConsole () const
 Whether or not to print out the invalid solutions summary table in console. More...
 
bool immediatelyPrintInvalidSolution () const
 Whether or not the solution invalid warnings are printed out immediately. More...
 
bool hasTimeIntegrator () const
 Returns whether or not this Problem has a TimeIntegrator. More...
 
virtual void execute (const ExecFlagType &exec_type)
 Convenience function for performing execution of MOOSE systems. More...
 
virtual void executeAllObjects (const ExecFlagType &exec_type)
 
virtual ExecutorgetExecutor (const std::string &name)
 
virtual void computeUserObjects (const ExecFlagType &type, const Moose::AuxGroup &group)
 Call compute methods on UserObjects. More...
 
virtual void computeUserObjectByName (const ExecFlagType &type, const Moose::AuxGroup &group, const std::string &name)
 Compute an user object with the given name. More...
 
void needsPreviousNewtonIteration (bool state)
 Set a flag that indicated that user required values for the previous Newton iterate. More...
 
bool needsPreviousNewtonIteration () const
 Check to see whether we need to compute the variable values of the previous Newton iterate. More...
 
ExecuteMooseObjectWarehouse< Control > & getControlWarehouse ()
 Reference to the control logic warehouse. More...
 
void executeControls (const ExecFlagType &exec_type)
 Performs setup and execute calls for Control objects. More...
 
void executeSamplers (const ExecFlagType &exec_type)
 Performs setup and execute calls for Sampler objects. More...
 
virtual void updateActiveObjects ()
 Update the active objects in the warehouses. More...
 
void reportMooseObjectDependency (MooseObject *a, MooseObject *b)
 Register a MOOSE object dependency so we can either order operations properly or report when we cannot. More...
 
ExecuteMooseObjectWarehouse< MultiApp > & getMultiAppWarehouse ()
 
bool hasJacobian () const
 Returns _has_jacobian. More...
 
bool constJacobian () const
 Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed) More...
 
void addOutput (const std::string &, const std::string &, InputParameters &)
 Adds an Output object. More...
 
TheWarehousetheWarehouse () const
 
void setSNESMFReuseBase (bool reuse, bool set_by_user)
 If or not to reuse the base vector for matrix-free calculation. More...
 
bool useSNESMFReuseBase ()
 Return a flag that indicates if we are reusing the vector base. More...
 
void skipExceptionCheck (bool skip_exception_check)
 Set a flag that indicates if we want to skip exception and stop solve. More...
 
bool isSNESMFReuseBaseSetbyUser ()
 Return a flag to indicate if _snesmf_reuse_base is set by users. More...
 
bool & petscOptionsInserted ()
 If PETSc options are already inserted. More...
 
PetscOptions & petscOptionsDatabase ()
 
virtual void setUDotRequested (const bool u_dot_requested)
 Set boolean flag to true to store solution time derivative. More...
 
virtual void setUDotDotRequested (const bool u_dotdot_requested)
 Set boolean flag to true to store solution second time derivative. More...
 
virtual void setUDotOldRequested (const bool u_dot_old_requested)
 Set boolean flag to true to store old solution time derivative. More...
 
virtual void setUDotDotOldRequested (const bool u_dotdot_old_requested)
 Set boolean flag to true to store old solution second time derivative. More...
 
virtual bool uDotRequested ()
 Get boolean flag to check whether solution time derivative needs to be stored. More...
 
virtual bool uDotDotRequested ()
 Get boolean flag to check whether solution second time derivative needs to be stored. More...
 
virtual bool uDotOldRequested ()
 Get boolean flag to check whether old solution time derivative needs to be stored. More...
 
virtual bool uDotDotOldRequested ()
 Get boolean flag to check whether old solution second time derivative needs to be stored. More...
 
void haveADObjects (bool have_ad_objects) override
 Method for setting whether we have any ad objects. More...
 
virtual void haveADObjects (bool have_ad_objects)
 Method for setting whether we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool shouldSolve () const
 
const MortarDatamortarData () const
 Returns the mortar data object. More...
 
MortarDatamortarData ()
 
virtual bool hasNeighborCoupling () const
 Whether the simulation has neighbor coupling. More...
 
virtual bool hasMortarCoupling () const
 Whether the simulation has mortar coupling. More...
 
void computingNonlinearResid (bool computing_nonlinear_residual) final
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
virtual void computingNonlinearResid (const bool computing_nonlinear_residual)
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
void setCurrentlyComputingResidual (bool currently_computing_residual) final
 Set whether or not the problem is in the process of computing the residual. More...
 
void numGridSteps (unsigned int num_grid_steps)
 Set the number of steps in a grid sequences. More...
 
void uniformRefine ()
 uniformly refine the problem mesh(es). More...
 
void automaticScaling (bool automatic_scaling) override
 Automatic scaling setter. More...
 
virtual void automaticScaling (bool automatic_scaling)
 Automatic scaling setter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
virtual void reinitElemFaceRef (const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data. More...
 
virtual void reinitNeighborFaceRef (const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data. More...
 
bool fvBCsIntegrityCheck () const
 
void fvBCsIntegrityCheck (bool fv_bcs_integrity_check)
 
void getFVMatsAndDependencies (SubdomainID block_id, std::vector< std::shared_ptr< MaterialBase >> &face_materials, std::vector< std::shared_ptr< MaterialBase >> &neighbor_materials, std::set< MooseVariableFieldBase *> &variables, const THREAD_ID tid)
 Get the materials and variables potentially needed for FV. More...
 
void resizeMaterialData (Moose::MaterialDataType data_type, unsigned int nqp, const THREAD_ID tid)
 Resize material data. More...
 
bool haveDisplaced () const override final
 Whether we have a displaced problem in our simulation. More...
 
bool hasLinearConvergenceObjects () const
 Whether we have linear convergence objects. More...
 
void setNonlinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the nonlinear convergence object name(s) if there is one. More...
 
void setLinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the linear convergence object name(s) if there is one. More...
 
void setMultiAppFixedPointConvergenceName (const ConvergenceName &convergence_name)
 Sets the MultiApp fixed point convergence object name if there is one. More...
 
void setSteadyStateConvergenceName (const ConvergenceName &convergence_name)
 Sets the steady-state detection convergence object name if there is one. More...
 
const std::vector< ConvergenceName > & getNonlinearConvergenceNames () const
 Gets the nonlinear system convergence object name(s). More...
 
const std::vector< ConvergenceName > & getLinearConvergenceNames () const
 Gets the linear convergence object name(s). More...
 
const ConvergenceName & getMultiAppFixedPointConvergenceName () const
 Gets the MultiApp fixed point convergence object name. More...
 
const ConvergenceName & getSteadyStateConvergenceName () const
 Gets the steady-state detection convergence object name. More...
 
void computingScalingJacobian (bool computing_scaling_jacobian)
 Setter for whether we're computing the scaling jacobian. More...
 
bool computingScalingJacobian () const override final
 Getter for whether we're computing the scaling jacobian. More...
 
void computingScalingResidual (bool computing_scaling_residual)
 Setter for whether we're computing the scaling residual. More...
 
bool computingScalingResidual () const override final
 
MooseAppCoordTransformcoordTransform ()
 
virtual std::size_t numNonlinearSystems () const override
 
virtual std::size_t numLinearSystems () const override
 
virtual std::size_t numSolverSystems () const override
 
bool isSolverSystemNonlinear (const unsigned int sys_num)
 Check if the solver system is nonlinear. More...
 
virtual unsigned int currentNlSysNum () const override
 
virtual unsigned int currentLinearSysNum () const override
 
virtual unsigned int nlSysNum (const NonlinearSystemName &nl_sys_name) const override
 
unsigned int linearSysNum (const LinearSystemName &linear_sys_name) const override
 
unsigned int solverSysNum (const SolverSystemName &solver_sys_name) const override
 
unsigned int systemNumForVariable (const VariableName &variable_name) const
 
bool getFailNextNonlinearConvergenceCheck () const
 Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
bool getFailNextSystemConvergenceCheck () const
 Whether it will fail the next system convergence check(s), triggering failed step behavior. More...
 
void setFailNextNonlinearConvergenceCheck ()
 Skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
void setFailNextSystemConvergenceCheck ()
 Tell the problem that the system(s) cannot be considered converged next time convergence is checked. More...
 
void resetFailNextNonlinearConvergenceCheck ()
 Tell the problem that the nonlinear convergence check(s) may proceed as normal. More...
 
void resetFailNextSystemConvergenceCheck ()
 Tell the problem that the system convergence check(s) may proceed as normal. More...
 
void setExecutionPrinting (const ExecFlagEnum &print_exec)
 
bool shouldPrintExecution (const THREAD_ID tid) const
 Check whether the problem should output execution orders at this time. More...
 
void reinitMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced)
 Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics. More...
 
virtual const std::vector< VectorTag > & currentResidualVectorTags () const override
 Return the residual vector tags we are currently computing. More...
 
void setCurrentResidualVectorTags (const std::set< TagID > &vector_tags)
 Set the current residual vector tag data structure based on the passed in tag IDs. More...
 
void clearCurrentResidualVectorTags ()
 Clear the current residual vector tag data structure. More...
 
void clearCurrentJacobianMatrixTags ()
 Clear the current Jacobian matrix tag data structure ... More...
 
virtual void needFV () override
 marks this problem as including/needing finite volume functionality. More...
 
virtual bool haveFV () const override
 returns true if this problem includes/needs finite volume functionality. More...
 
virtual bool hasNonlocalCoupling () const override
 Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian. More...
 
bool identifyVariableGroupsInNL () const
 Whether to identify variable groups in nonlinear systems. More...
 
virtual void setCurrentLowerDElem (const Elem *const lower_d_elem, const THREAD_ID tid) override
 Set the current lower dimensional element. More...
 
virtual void setCurrentBoundaryID (BoundaryID bid, const THREAD_ID tid) override
 sets the current boundary ID in assembly More...
 
const std::vector< NonlinearSystemName > & getNonlinearSystemNames () const
 
const std::vector< LinearSystemName > & getLinearSystemNames () const
 
const std::vector< SolverSystemName > & getSolverSystemNames () const
 
virtual const libMesh::CouplingMatrixnonlocalCouplingMatrix (const unsigned i) const override
 
virtual bool checkNonlocalCouplingRequirement () const override
 
void createTagMatrices (CreateTaggedMatrixKey)
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
virtual bool nlConverged (const unsigned int nl_sys_num)
 
virtual bool converged (const unsigned int sys_num)
 Eventually we want to convert this virtual over to taking a solver system number argument. More...
 
bool defaultGhosting ()
 Whether or not the user has requested default ghosting ot be on. More...
 
virtual TagID addVectorTag (const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
 Create a Tag. More...
 
void addNotZeroedVectorTag (const TagID tag)
 Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are. More...
 
bool vectorTagNotZeroed (const TagID tag) const
 Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are. More...
 
virtual const VectorTaggetVectorTag (const TagID tag_id) const
 Get a VectorTag from a TagID. More...
 
std::vector< VectorTaggetVectorTags (const std::set< TagID > &tag_ids) const
 
virtual const std::vector< VectorTag > & getVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 Return all vector tags, where a tag is represented by a map from name to ID. More...
 
virtual TagID getVectorTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName vectorTagName (const TagID tag) const
 Retrieve the name associated with a TagID. More...
 
virtual bool vectorTagExists (const TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual bool vectorTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists by using Tag name. More...
 
virtual unsigned int numVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 The total number of tags, which can be limited to the tag type. More...
 
virtual Moose::VectorTagType vectorTagType (const TagID tag_id) const
 
virtual TagID addMatrixTag (TagName tag_name)
 Create a Tag. More...
 
virtual TagID getMatrixTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName matrixTagName (TagID tag)
 Retrieve the name associated with a TagID. More...
 
virtual bool matrixTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists. More...
 
virtual bool matrixTagExists (TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual unsigned int numMatrixTags () const
 The total number of tags. More...
 
virtual std::map< TagName, TagID > & getMatrixTags ()
 Return all matrix tags in the system, where a tag is represented by a map from name to ID. More...
 
virtual bool hasLinearVariable (const std::string &var_name) const
 Whether or not this problem has this linear variable. More...
 
virtual bool hasAuxiliaryVariable (const std::string &var_name) const
 Whether or not this problem has this auxiliary variable. More...
 
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables (const THREAD_ID tid) const
 Get the MOOSE variables to be reinited on each element. More...
 
virtual bool hasActiveElementalMooseVariables (const THREAD_ID tid) const
 Whether or not a list of active elemental moose variables has been set. More...
 
Moose::CoordinateSystemType getCoordSystem (SubdomainID sid) const
 
unsigned int getAxisymmetricRadialCoord () const
 Returns the desired radial direction for RZ coordinate transformation. More...
 
virtual DiracKernelInfodiracKernelInfo ()
 
void reinitNeighborLowerDElem (const Elem *elem, const THREAD_ID tid=0)
 reinitialize a neighboring lower dimensional element More...
 
void reinitMortarElem (const Elem *elem, const THREAD_ID tid=0)
 Reinit a mortar element to obtain a valid JxW. More...
 
virtual void storeSubdomainMatPropName (SubdomainID block_id, const std::string &name)
 Adds the given material property to a storage map based on block ids. More...
 
virtual void storeBoundaryMatPropName (BoundaryID boundary_id, const std::string &name)
 Adds the given material property to a storage map based on boundary ids. More...
 
virtual void storeSubdomainZeroMatProp (SubdomainID block_id, const MaterialPropertyName &name)
 Adds to a map based on block ids of material properties for which a zero value can be returned. More...
 
virtual void storeBoundaryZeroMatProp (BoundaryID boundary_id, const MaterialPropertyName &name)
 Adds to a map based on boundary ids of material properties for which a zero value can be returned. More...
 
virtual void storeSubdomainDelayedCheckMatProp (const std::string &requestor, SubdomainID block_id, const std::string &name)
 Adds to a map based on block ids of material properties to validate. More...
 
virtual void storeBoundaryDelayedCheckMatProp (const std::string &requestor, BoundaryID boundary_id, const std::string &name)
 Adds to a map based on boundary ids of material properties to validate. More...
 
virtual void checkBlockMatProps ()
 Checks block material properties integrity. More...
 
virtual void checkBoundaryMatProps ()
 Checks boundary material properties integrity. More...
 
virtual void markMatPropRequested (const std::string &)
 Helper method for adding a material property name to the _material_property_requested set. More...
 
virtual bool isMatPropRequested (const std::string &prop_name) const
 Find out if a material property has been requested by any object. More...
 
void addConsumedPropertyName (const MooseObjectName &obj_name, const std::string &prop_name)
 Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput. More...
 
const std::map< MooseObjectName, std::set< std::string > > & getConsumedPropertyMap () const
 Return the map that tracks the object with consumed material properties. More...
 
virtual std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBlockMaterialProperty (SubdomainID block_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBoundaryMaterialProperty (BoundaryID boundary_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< dof_id_type > & ghostedElems ()
 Return the list of elements that should have their DoFs ghosted to this processor. More...
 
const bool & currentlyComputingJacobian () const
 Returns true if the problem is in the process of computing the Jacobian. More...
 
void setCurrentlyComputingJacobian (const bool currently_computing_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
const bool & currentlyComputingResidualAndJacobian () const
 Returns true if the problem is in the process of computing the residual and the Jacobian. More...
 
void setCurrentlyComputingResidualAndJacobian (bool currently_computing_residual_and_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
virtual bool safeAccessTaggedMatrices () const
 Is it safe to access the tagged matrices. More...
 
virtual bool safeAccessTaggedVectors () const
 Is it safe to access the tagged vectors. More...
 
const std::set< TagID > & getActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
void addAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
 Add an algebraic ghosting functor to this problem's DofMaps. More...
 
void addCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
 Add a coupling functor to this problem's DofMaps. More...
 
void removeAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf)
 Remove an algebraic ghosting functor from this problem's DofMaps. More...
 
void removeCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf)
 Remove a coupling ghosting functor from this problem's DofMaps. More...
 
void hasScalingVector (const unsigned int nl_sys_num)
 Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector. More...
 
void clearAllDofIndices ()
 Clear dof indices from variables in nl and aux systems. More...
 
template<typename T >
const Moose::Functor< T > & getFunctor (const std::string &name, const THREAD_ID tid, const std::string &requestor_name, bool requestor_is_ad)
 
bool hasFunctor (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor corresponding to name on the thread id tid More...
 
template<typename T >
bool hasFunctorWithType (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor of type T corresponding to name on the thread id tid More...
 
template<typename T >
void addFunctor (const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
 add a functor to the problem functor container More...
 
template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & addPiecewiseByBlockLambdaFunctor (const std::string &name, PolymorphicLambda my_lammy, const std::set< ExecFlagType > &clearance_schedule, const MooseMesh &mesh, const std::set< SubdomainID > &block_ids, const THREAD_ID tid)
 Add a functor that has block-wise lambda definitions, e.g. More...
 
void setFunctorOutput (bool set_output)
 Setter for debug functor output. More...
 
template<typename T >
void registerUnfilledFunctorRequest (T *functor_interface, const std::string &functor_name, const THREAD_ID tid)
 Register an unfulfilled functor request. More...
 
void reinitFVFace (const THREAD_ID tid, const FaceInfo &fi)
 reinitialize the finite volume assembly data for the provided face and thread More...
 
void preparePRefinement ()
 Prepare DofMap and Assembly classes with our p-refinement information. More...
 
bool doingPRefinement () const
 
bool havePRefinement () const
 Query whether p-refinement has been requested at any point during the simulation. More...
 
template<typename T >
MooseVariableFEBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &systems, const SystemBase &aux) const
 
void _setCLIOption ()
 For Internal Use. More...
 
virtual void terminateSolve ()
 Allow objects to request clean termination of the solve. More...
 
virtual bool isSolveTerminationRequested () const
 Check of termination has been requested. More...
 
const ConsoleStreamconsole () const
 Return console handle. More...
 
virtual bool enabled () const
 Return the enabled status of the object. More...
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 Get another shared pointer to this object that has the same ownership group. More...
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 Get the MooseApp this class is associated with. More...
 
const std::string & type () const
 Get the type of this class. More...
 
const std::string & name () const
 Get the name of the class. More...
 
std::string typeAndName () const
 Get the class's combined type and name; useful in error handling. More...
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
MooseObjectName uniqueName () const
 
const InputParametersparameters () const
 Get the parameters of the object. More...
 
const hit::Node * getHitNode () const
 
bool hasBase () const
 
const std::string & getBase () const
 
template<typename T >
const T & getParam (const std::string &name) const
 Retrieve a parameter for the object. More...
 
template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 Retrieve two parameters and provide pair of parameters for the object. More...
 
template<typename T >
const T * queryParam (const std::string &name) const
 Query a parameter for the object. More...
 
template<typename T >
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 Retrieve a renamed parameter for the object. More...
 
template<typename T >
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 Verifies that the requested parameter exists and is not NULL and returns it to the caller. More...
 
bool isParamValid (const std::string &name) const
 Test if the supplied parameter is valid. More...
 
bool isParamSetByUser (const std::string &name) const
 Test if the supplied parameter is set by a user, as opposed to not set or set to default. More...
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 Connect controllable parameter of this action with the controllable parameters of the objects added by this action. More...
 
template<typename... Args>
void paramError (const std::string &param, Args... args) const
 Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramWarning (const std::string &param, Args... args) const
 Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramInfo (const std::string &param, Args... args) const
 Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
std::string messagePrefix (const bool hit_prefix=true) const
 
std::string errorPrefix (const std::string &) const
 Deprecated message prefix; the error type is no longer used. More...
 
template<typename... Args>
void mooseError (Args &&... args) const
 Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available. More...
 
template<typename... Args>
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
template<typename... Args>
void mooseErrorNonPrefixed (Args &&... args) const
 Emits an error without the prefixing included in mooseError(). More...
 
template<typename... Args>
void mooseWarning (Args &&... args) const
 Emits a warning prefixed with object name and type. More...
 
template<typename... Args>
void mooseWarningNonPrefixed (Args &&... args) const
 Emits a warning without the prefixing included in mooseWarning(). More...
 
template<typename... Args>
void mooseDeprecated (Args &&... args) const
 
template<typename... Args>
void mooseInfo (Args &&... args) const
 
void callMooseError (std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
 External method for calling moose error with added object context. More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
std::string getDataFileName (const std::string &param) const
 Deprecated method. More...
 
std::string getDataFileNameByName (const std::string &relative_path) const
 Deprecated method. More...
 
std::string getDataFilePath (const std::string &relative_path) const
 Returns the path of a data file for a given relative file path. More...
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
const libMesh::ConstElemRangegetEvaluableElementRange ()
 In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}. More...
 
const libMesh::ConstElemRangegetNonlinearEvaluableElementRange ()
 
const libMesh::ConstElemRangegetCurrentAlgebraicElementRange ()
 These are the element and nodes that contribute to the jacobian and residual for this local processor. More...
 
const libMesh::ConstNodeRangegetCurrentAlgebraicNodeRange ()
 
const ConstBndNodeRangegetCurrentAlgebraicBndNodeRange ()
 
void setCurrentAlgebraicElementRange (libMesh::ConstElemRange *range)
 These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor. More...
 
void setCurrentAlgebraicNodeRange (libMesh::ConstNodeRange *range)
 
void setCurrentAlgebraicBndNodeRange (ConstBndNodeRange *range)
 
void allowOutput (bool state)
 Ability to enable/disable all output calls. More...
 
template<typename T >
void allowOutput (bool state)
 
bool hasMultiApps () const
 Returns whether or not the current simulation has any multiapps. More...
 
bool hasMultiApps (ExecFlagType type) const
 
bool hasMultiApp (const std::string &name) const
 
const AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced) const
 Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains. More...
 
AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced)
 
const MaterialPropertyStoragegetMaterialPropertyStorage ()
 Return a reference to the material property storage. More...
 
const MaterialPropertyStoragegetBndMaterialPropertyStorage ()
 
const MaterialPropertyStoragegetNeighborMaterialPropertyStorage ()
 
const MooseObjectWarehouse< Indicator > & getIndicatorWarehouse ()
 Return indicator/marker storage. More...
 
const MooseObjectWarehouse< InternalSideIndicatorBase > & getInternalSideIndicatorWarehouse ()
 
const MooseObjectWarehouse< Marker > & getMarkerWarehouse ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 These methods are used to determine whether stateful material properties need to be stored on internal sides. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 
bool needSubdomainMaterialOnSide (SubdomainID subdomain_id, const THREAD_ID tid)
 
const ExecFlagTypegetCurrentExecuteOnFlag () const
 Return/set the current execution flag. More...
 
void setCurrentExecuteOnFlag (const ExecFlagType &)
 

Static Public Member Functions

static InputParameters validParams ()
 
static void selectVectorTagsFromSystem (const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
 Select the vector tags which belong to a specific system. More...
 
static void selectMatrixTagsFromSystem (const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
 Select the matrix tags which belong to a specific system. More...
 
static void callMooseError (MooseApp *const app, const InputParameters &params, std::string msg, const bool with_prefix, const hit::Node *node)
 External method for calling moose error with added object context. More...
 
template<typename T >
static void objectSetupHelper (const std::vector< T *> &objects, const ExecFlagType &exec_flag)
 Helpers for calling the necessary setup/execute functions for the supplied objects. More...
 
template<typename T >
static void objectExecuteHelper (const std::vector< T *> &objects)
 

Public Attributes

std::map< std::string, std::vector< dof_id_type > > _var_dof_map
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 
std::vector< Real_real_zero
 Convenience zeros. More...
 
std::vector< VariableValue_scalar_zero
 
std::vector< VariableValue_zero
 
std::vector< VariablePhiValue_phi_zero
 
std::vector< MooseArray< ADReal > > _ad_zero
 
std::vector< VariableGradient_grad_zero
 
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
 
std::vector< VariablePhiGradient_grad_phi_zero
 
std::vector< VariableSecond_second_zero
 
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
 
std::vector< VariablePhiSecond_second_phi_zero
 
std::vector< Point > _point_zero
 
std::vector< VectorVariableValue_vector_zero
 
std::vector< VectorVariableCurl_vector_curl_zero
 

Static Public Attributes

static const std::string type_param = "_type"
 The name of the parameter that contains the object type. More...
 
static const std::string name_param = "_object_name"
 The name of the parameter that contains the object name. More...
 
static const std::string unique_name_param = "_unique_name"
 The name of the parameter that contains the unique object name. More...
 
static const std::string app_param = "_moose_app"
 The name of the parameter that contains the MooseApp. More...
 
static const std::string moose_base_param = "_moose_base"
 The name of the parameter that contains the moose system base. More...
 

Protected Member Functions

virtual void meshChanged ()
 Deprecated. More...
 
void createTagVectors ()
 Create extra tagged vectors and matrices. More...
 
void createTagSolutions ()
 Create extra tagged solution vectors. More...
 
virtual void meshDisplaced ()
 Update data after a mesh displaced. More...
 
void computeSystems (const ExecFlagType &type)
 Do generic system computations. More...
 
bool duplicateVariableCheck (const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
 Helper to check for duplicate variable names across systems or within a single system. More...
 
void computeUserObjectsInternal (const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
 
void checkDisplacementOrders ()
 Verify that SECOND order mesh uses SECOND order displacements. More...
 
void checkUserObjects ()
 
void checkDependMaterialsHelper (const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
 Helper method for checking Material object dependency. More...
 
void checkCoordinateSystems ()
 Verify that there are no element type/coordinate type conflicts. More...
 
void reinitBecauseOfGhostingOrNewGeomObjects (bool mortar_changed=false)
 Call when it is possible that the needs for ghosted elements has changed. More...
 
void addObjectParamsHelper (InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
 Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject(). More...
 
template<typename T >
MooseVariableFieldBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
 Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available. More...
 
bool verifyVectorTags () const
 Verify the integrity of _vector_tags and _typed_vector_tags. More...
 
void markFamilyPRefinement (const InputParameters &params)
 Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 
template<typename T , typename... Args>
T & declareRestartableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declares a piece of "managed" restartable data and initialize it. More...
 
template<typename T , typename... Args>
const T & getRestartableData (const std::string &data_name) const
 Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "recoverable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 Declare a piece of data as "restartable". More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 Declare a piece of data as "restartable". More...
 
std::string restartableName (const std::string &data_name) const
 Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix. More...
 

Protected Attributes

MFEMProblemData _problem_data
 
MooseMesh_mesh
 
bool _initialized
 
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
 Nonlinear system(s) convergence name(s) More...
 
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
 Linear system(s) convergence name(s) (if any) More...
 
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
 MultiApp fixed point convergence name. More...
 
std::optional< ConvergenceName > _steady_state_convergence_name
 Steady-state detection convergence name. More...
 
std::set< TagID_fe_vector_tags
 
std::set< TagID_fe_matrix_tags
 
std::set< TagID_linear_vector_tags
 Temporary storage for filtered vector tags for linear systems. More...
 
std::set< TagID_linear_matrix_tags
 Temporary storage for filtered matrix tags for linear systems. More...
 
const bool & _solve
 Whether or not to actually solve the nonlinear system. More...
 
bool _transient
 
Real_time
 
Real_time_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _need_to_add_default_nonlinear_convergence
 Flag that the problem needs to add the default nonlinear convergence. More...
 
bool _need_to_add_default_multiapp_fixed_point_convergence
 Flag that the problem needs to add the default fixed point convergence. More...
 
bool _need_to_add_default_steady_state_convergence
 Flag that the problem needs to add the default steady convergence. More...
 
const std::vector< LinearSystemName > _linear_sys_names
 The linear system names. More...
 
const std::size_t _num_linear_sys
 The number of linear systems. More...
 
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
 The vector of linear systems. More...
 
std::map< LinearSystemName, unsigned int_linear_sys_name_to_num
 Map from linear system name to number. More...
 
LinearSystem_current_linear_sys
 The current linear system that we are solving. More...
 
const bool _using_default_nl
 Boolean to check if we have the default nonlinear system. More...
 
const std::vector< NonlinearSystemName > _nl_sys_names
 The nonlinear system names. More...
 
const std::size_t _num_nl_sys
 The number of nonlinear systems. More...
 
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
 The nonlinear systems. More...
 
std::map< NonlinearSystemName, unsigned int_nl_sys_name_to_num
 Map from nonlinear system name to number. More...
 
NonlinearSystemBase_current_nl_sys
 The current nonlinear system that we are solving. More...
 
SolverSystem_current_solver_sys
 The current solver system. More...
 
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
 Combined container to base pointer of every solver system. More...
 
std::map< SolverVariableName, unsigned int_solver_var_to_sys_num
 Map connecting variable names with their respective solver systems. More...
 
std::map< SolverSystemName, unsigned int_solver_sys_name_to_num
 Map connecting solver system names with their respective systems. More...
 
std::vector< SolverSystemName > _solver_sys_names
 The union of nonlinear and linear system names. More...
 
std::shared_ptr< AuxiliarySystem_aux
 The auxiliary system. More...
 
Moose::CouplingType _coupling
 Type of variable coupling. More...
 
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
 Coupling matrix for variables. More...
 
std::map< std::string, unsigned int_subspace_dim
 Dimension of the subspace spanned by the vectors with a given prefix. More...
 
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
 The Assembly objects. More...
 
MooseObjectWarehouse< MeshDivision_mesh_divisions
 Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best. More...
 
MooseObjectWarehouse< Function_functions
 functions More...
 
MooseObjectWarehouse< Convergence_convergences
 convergence warehouse More...
 
MooseObjectWarehouse< KernelBase_nonlocal_kernels
 nonlocal kernels More...
 
MooseObjectWarehouse< IntegratedBCBase_nonlocal_integrated_bcs
 nonlocal integrated_bcs More...
 
MaterialPropertyRegistry _material_prop_registry
 
MaterialPropertyStorage_material_props
 
MaterialPropertyStorage_bnd_material_props
 
MaterialPropertyStorage_neighbor_material_props
 
MooseObjectWarehouse< Marker_markers
 
ReporterData _reporter_data
 
ExecuteMooseObjectWarehouse< UserObject_all_user_objects
 
ExecuteMooseObjectWarehouse< MultiApp_multi_apps
 MultiApp Warehouse. More...
 
ExecuteMooseObjectWarehouse< TransientMultiApp_transient_multi_apps
 Storage for TransientMultiApps (only needed for calling 'computeDT') More...
 
ExecuteMooseObjectWarehouse< Transfer_transfers
 Normal Transfers. More...
 
ExecuteMooseObjectWarehouse< Transfer_to_multi_app_transfers
 Transfers executed just before MultiApps to transfer data to them. More...
 
ExecuteMooseObjectWarehouse< Transfer_from_multi_app_transfers
 Transfers executed just after MultiApps to transfer data from them. More...
 
ExecuteMooseObjectWarehouse< Transfer_between_multi_app_transfers
 Transfers executed just before MultiApps to transfer data between them. More...
 
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
 A map of objects that consume random numbers. More...
 
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
 Cache for calculating materials on interface. More...
 
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
 Objects to be notified when the mesh changes. More...
 
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
 Objects to be notified when the mesh displaces. More...
 
Adaptivity _adaptivity
 
unsigned int _cycles_completed
 
std::shared_ptr< XFEMInterface_xfem
 Pointer to XFEM controller. More...
 
MooseMesh_displaced_mesh
 
std::shared_ptr< DisplacedProblem_displaced_problem
 
GeometricSearchData _geometric_search_data
 
MortarData _mortar_data
 
bool _reinit_displaced_elem
 Whether to call DisplacedProblem::reinitElem when this->reinitElem is called. More...
 
bool _reinit_displaced_face
 Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called. More...
 
bool _reinit_displaced_neighbor
 Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called. More...
 
bool _input_file_saved
 whether input file has been written More...
 
bool _has_dampers
 Whether or not this system has any Dampers associated with it. More...
 
bool _has_constraints
 Whether or not this system has any Constraints. More...
 
bool _snesmf_reuse_base
 If or not to resuse the base vector for matrix-free calculation. More...
 
bool _skip_exception_check
 If or not skip 'exception and stop solve'. More...
 
bool _snesmf_reuse_base_set_by_user
 If or not _snesmf_reuse_base is set by user. More...
 
bool _has_initialized_stateful
 Whether nor not stateful materials have been initialized. More...
 
bool _const_jacobian
 true if the Jacobian is constant More...
 
bool _has_jacobian
 Indicates if the Jacobian was computed. More...
 
bool _needs_old_newton_iter
 Indicates that we need to compute variable values for previous Newton iteration. More...
 
bool _previous_nl_solution_required
 Indicates we need to save the previous NL iteration variable values. More...
 
bool _has_nonlocal_coupling
 Indicates if nonlocal coupling is required/exists. More...
 
bool _calculate_jacobian_in_uo
 
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
 
std::vector< unsigned char > _has_active_material_properties
 Whether there are active material properties on each thread. More...
 
std::vector< SolverParams_solver_params
 
CoverageCheckMode _kernel_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active kernel. More...
 
std::vector< SubdomainName > _kernel_coverage_blocks
 
const bool _boundary_restricted_node_integrity_check
 whether to perform checking of boundary restricted nodal object variable dependencies, e.g. More...
 
const bool _boundary_restricted_elem_integrity_check
 whether to perform checking of boundary restricted elemental object variable dependencies, e.g. More...
 
CoverageCheckMode _material_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active material. More...
 
std::vector< SubdomainName > _material_coverage_blocks
 
bool _fv_bcs_integrity_check
 Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset. More...
 
const bool _material_dependency_check
 Determines whether a check to verify material dependencies on every subdomain. More...
 
const bool _uo_aux_state_check
 Whether or not checking the state of uo/aux evaluation. More...
 
unsigned int _max_qps
 Maximum number of quadrature points used in the problem. More...
 
libMesh::Order _max_scalar_order
 Maximum scalar variable order. More...
 
bool _has_time_integrator
 Indicates whether or not this executioner has a time integrator (during setup) More...
 
bool _has_exception
 Whether or not an exception has occurred. More...
 
bool _parallel_barrier_messaging
 Whether or not information about how many transfers have completed is printed. More...
 
MooseEnum _verbose_setup
 Whether or not to be verbose during setup. More...
 
bool _verbose_multiapps
 Whether or not to be verbose with multiapps. More...
 
bool _verbose_restore
 Whether or not to be verbose on solution restoration post a failed time step. More...
 
std::string _exception_message
 The error message to go with an exception. More...
 
ExecFlagType _current_execute_on_flag
 Current execute_on flag. More...
 
ExecuteMooseObjectWarehouse< Control_control_warehouse
 The control logic warehouse. More...
 
Moose::PetscSupport::PetscOptions _petsc_options
 PETSc option storage. More...
 
PetscOptions _petsc_option_data_base
 
bool _is_petsc_options_inserted
 If or not PETSc options have been added to database. More...
 
std::shared_ptr< LineSearch_line_search
 
std::unique_ptr< libMesh::ConstElemRange_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_nl_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_aux_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_current_algebraic_elem_range
 
std::unique_ptr< libMesh::ConstNodeRange_current_algebraic_node_range
 
std::unique_ptr< ConstBndNodeRange_current_algebraic_bnd_node_range
 
bool _using_ad_mat_props
 Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property. More...
 
unsigned short _current_ic_state
 
const bool _use_hash_table_matrix_assembly
 Whether to assemble matrices using hash tables instead of preallocating matrix memory. More...
 
std::map< TagName, TagID_matrix_tag_name_to_tag_id
 The currently declared tags. More...
 
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
 Reverse map. More...
 
Factory_factory
 The Factory for building objects. More...
 
DiracKernelInfo _dirac_kernel_info
 
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
 Map of material properties (block_id -> list of properties) More...
 
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
 Map for boundary material properties (boundary_id -> list of properties) More...
 
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
 Set of properties returned as zero properties. More...
 
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
 
std::set< std::string > _material_property_requested
 set containing all material property names that have been requested by getMaterialProperty* More...
 
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
 This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) More...
 
std::vector< unsigned int_has_active_elemental_moose_variables
 Whether or not there is currently a list of active elemental moose variables. More...
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
 
bool _default_ghosting
 Whether or not to use default libMesh coupling. More...
 
std::set< dof_id_type_ghosted_elems
 Elements that should have Dofs ghosted to the local processor. More...
 
bool _currently_computing_jacobian
 Flag to determine whether the problem is currently computing Jacobian. More...
 
bool _currently_computing_residual_and_jacobian
 Flag to determine whether the problem is currently computing the residual and Jacobian. More...
 
bool _computing_nonlinear_residual
 Whether the non-linear residual is being evaluated. More...
 
bool _currently_computing_residual
 Whether the residual is being evaluated. More...
 
bool _safe_access_tagged_matrices
 Is it safe to retrieve data from tagged matrices. More...
 
bool _safe_access_tagged_vectors
 Is it safe to retrieve data from tagged vectors. More...
 
bool _have_ad_objects
 AD flag indicating whether any AD objects have been added. More...
 
std::unordered_set< TagID_not_zeroed_tagged_vectors
 the list of vector tags that will not be zeroed when all other tags are More...
 
bool _cli_option_found
 True if the CLI option is found. More...
 
bool _color_output
 True if we're going to attempt to write color output. More...
 
bool _termination_requested
 True if termination of the solve has been requested. More...
 
const bool & _enabled
 Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects. More...
 
MooseApp_app
 The MOOSE application this is associated with. More...
 
ActionFactory_action_factory
 Builds Actions. More...
 
const std::string & _type
 The type of this class. More...
 
const std::string & _name
 The name of this class. More...
 
const InputParameters_pars
 The object's parameters. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseApp_restartable_app
 Reference to the application. More...
 
const std::string _restartable_system_name
 The system name this object is in. More...
 
const THREAD_ID _restartable_tid
 The thread ID for this object. More...
 
const bool _restartable_read_only
 Flag for toggling read only status (see ReporterData) More...
 
InitialConditionWarehouse _ics
 
FVInitialConditionWarehouse _fv_ics
 
ScalarInitialConditionWarehouse _scalar_ics
 
MaterialWarehouse _materials
 
MaterialWarehouse _interface_materials
 
MaterialWarehouse _discrete_materials
 
MaterialWarehouse _all_materials
 
MooseObjectWarehouse< Indicator_indicators
 
MooseObjectWarehouse< InternalSideIndicatorBase_internal_side_indicators
 
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
 Data structures of the requested material properties. More...
 
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
 

Detailed Description

Definition at line 17 of file MFEMProblem.h.

Member Typedef Documentation

◆ DataFileParameterType

using DataFileInterface::DataFileParameterType = DataFileName
inherited

The parameter type this interface expects for a data file name.

Definition at line 27 of file DataFileInterface.h.

Member Enumeration Documentation

◆ CoverageCheckMode

enum FEProblemBase::CoverageCheckMode
stronginherited
Enumerator
FALSE 
TRUE 
OFF 
ON 
SKIP_LIST 
ONLY_LIST 

Definition at line 140 of file FEProblemBase.h.

141  {
142  FALSE,
143  TRUE,
144  OFF,
145  ON,
146  SKIP_LIST,
147  ONLY_LIST,
148  };

◆ Direction

enum ExternalProblem::Direction : unsigned char
stronginherited
Enumerator
TO_EXTERNAL_APP 
FROM_EXTERNAL_APP 

Definition at line 21 of file ExternalProblem.h.

21  : unsigned char
22  {
23  TO_EXTERNAL_APP,
24  FROM_EXTERNAL_APP
25  };

Constructor & Destructor Documentation

◆ MFEMProblem()

MFEMProblem::MFEMProblem ( const InputParameters params)

Definition at line 33 of file MFEMProblem.C.

33  : ExternalProblem(params)
34 {
35  // Initialise Hypre for all MFEM problems.
36  mfem::Hypre::Init();
37  setMesh();
38 }
void setMesh()
Set the mesh used by MFEM.
Definition: MFEMProblem.C:48
ExternalProblem(const InputParameters &parameters)

◆ ~MFEMProblem()

virtual MFEMProblem::~MFEMProblem ( )
inlinevirtual

Definition at line 23 of file MFEMProblem.h.

23 {}

Member Function Documentation

◆ _setCLIOption()

void Problem::_setCLIOption ( )
inlineinherited

For Internal Use.

Definition at line 32 of file Problem.h.

32 { _cli_option_found = true; }
bool _cli_option_found
True if the CLI option is found.
Definition: Problem.h:52

◆ acceptInvalidSolution()

bool FEProblemBase::acceptInvalidSolution ( ) const
inherited

Whether or not to accept the solution based on its invalidity.

If this returns false, it means that an invalid solution was encountered (an error) that was not allowed.

Definition at line 3804 of file FEProblemBase.C.

Referenced by SolverSystem::checkInvalidSolution(), and NonlinearSystem::converged().

3805 {
3806  return allowInvalidSolution() || // invalid solutions are always allowed
3807  !_app.solutionInvalidity().hasInvalidSolutionError(); // if not allowed, check for errors
3808 }
bool hasInvalidSolutionError() const
Whether or not an invalid solution was encountered that was an error.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:172
bool allowInvalidSolution() const
Whether to accept / allow an invalid solution.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ adaptivity()

Adaptivity& FEProblemBase::adaptivity ( )
inlineinherited

◆ adaptMesh()

bool FEProblemBase::adaptMesh ( )
virtualinherited
Returns
Whether or not the mesh was changed

Reimplemented in DumpObjectsProblem.

Definition at line 7961 of file FEProblemBase.C.

Referenced by SteadyBase::execute(), Eigenvalue::execute(), and TransientBase::incrementStepOrReject().

7962 {
7963  // reset cycle counter
7964  _cycles_completed = 0;
7965 
7967  return false;
7968 
7969  TIME_SECTION("adaptMesh", 3, "Adapting Mesh");
7970 
7971  unsigned int cycles_per_step = _adaptivity.getCyclesPerStep();
7972 
7973  bool mesh_changed = false;
7974 
7975  for (unsigned int i = 0; i < cycles_per_step; ++i)
7976  {
7977  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
7978  mooseError("HFEM does not support mesh adaptivity currently.");
7979 
7980  // Markers were already computed once by Executioner
7981  if (_adaptivity.getRecomputeMarkersFlag() && i > 0)
7982  computeMarkers();
7983 
7984  bool mesh_changed_this_step;
7985  mesh_changed_this_step = _adaptivity.adaptMesh();
7986 
7987  if (mesh_changed_this_step)
7988  {
7989  mesh_changed = true;
7990 
7991  meshChanged(
7992  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
7994  }
7995  else
7996  {
7997  // If the mesh didn't change, we still need to update the displaced mesh
7998  // to undo the undisplacement performed in Adaptivity::adaptMesh
7999  if (_displaced_problem)
8000  _displaced_problem->updateMesh();
8001 
8002  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
8003  break;
8004  }
8005 
8006  // Show adaptivity progress
8007  _console << std::flush;
8008  }
8009 
8010  // We're done with all intermediate changes; now get systems ready
8011  // for real if necessary.
8012  if (mesh_changed)
8013  es().reinit_systems();
8014 
8015  // Execute multi-apps that need to run after adaptivity, but before the next timestep.
8017 
8018  return mesh_changed;
8019 }
bool adaptMesh(std::string marker_name=std::string())
Adapts the mesh based on the error estimator used.
Definition: Adaptivity.C:131
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
unsigned int _cycles_completed
unsigned int getCyclesPerStep() const
Pull out the number of cycles_per_step previously set through the AdaptivityAction.
Definition: Adaptivity.h:112
virtual void computeMarkers()
virtual void reinit_systems()
bool getRecomputeMarkersFlag() const
Pull out the _recompute_markers_during_cycles flag previously set through the AdaptivityAction.
Definition: Adaptivity.h:125
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1407
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isAdaptivityDue()
Query if an adaptivity step should be performed at the current time / time step.
Definition: Adaptivity.C:393
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
const ExecFlagType EXEC_POST_ADAPTIVITY
Definition: Moose.C:58

◆ addAlgebraicGhostingFunctor()

void SubProblem::addAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf,
bool  to_mesh = true 
)
inherited

Add an algebraic ghosting functor to this problem's DofMaps.

Definition at line 1023 of file SubProblem.C.

1024 {
1025  EquationSystems & eq = es();
1026  const auto n_sys = eq.n_systems();
1027  if (!n_sys)
1028  return;
1029 
1030  eq.get_system(0).get_dof_map().add_algebraic_ghosting_functor(algebraic_gf, to_mesh);
1031  cloneAlgebraicGhostingFunctor(algebraic_gf, to_mesh);
1032 }
unsigned int n_systems() const
void cloneAlgebraicGhostingFunctor(libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided algebraic ghosting functor (corresponding to the nonlinear...
Definition: SubProblem.C:1001
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0

◆ addAuxArrayVariable()

void FEProblemBase::addAuxArrayVariable ( const std::string &  var_name,
const libMesh::FEType type,
unsigned int  components,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3185 of file FEProblemBase.C.

3189 {
3190  parallel_object_only();
3191 
3192  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3193 
3194  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3195  return;
3196 
3197  InputParameters params = _factory.getValidParams("ArrayMooseVariable");
3198  params.set<FEProblemBase *>("_fe_problem_base") = this;
3200  params.set<MooseEnum>("order") = type.order.get_order();
3201  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3202  params.set<unsigned int>("components") = components;
3203 
3204  if (active_subdomains)
3205  for (const SubdomainID & id : *active_subdomains)
3206  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3207 
3208  logAdd("Variable", var_name, "ArrayMooseVariable", params);
3209  _aux->addVariable("ArrayMooseVariable", var_name, params);
3210  if (_displaced_problem)
3211  _displaced_problem->addAuxVariable("ArrayMooseVariable", var_name, params);
3212 
3213  markFamilyPRefinement(params);
3214 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxKernel()

void MFEMProblem::addAuxKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addAuxKernel.

Uses ExternalProblem::addAuxKernel to create a MFEMGeneralUserObject representing the kernel in MOOSE, and creates corresponding MFEM kernel to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 214 of file MFEMProblem.C.

217 {
219 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addAuxScalarKernel()

void FEProblemBase::addAuxScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3289 of file FEProblemBase.C.

3292 {
3293  parallel_object_only();
3294 
3295  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3296  {
3297  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3298  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3299  }
3300  else
3301  {
3302  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3303  {
3304  // We allow AuxScalarKernels to request that they use_displaced_mesh,
3305  // but then be overridden when no displacements variables are
3306  // provided in the Mesh block. If that happened, update the value
3307  // of use_displaced_mesh appropriately for this AuxScalarKernel.
3308  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3309  parameters.set<bool>("use_displaced_mesh") = false;
3310  }
3311 
3312  parameters.set<SubProblem *>("_subproblem") = this;
3313  parameters.set<SystemBase *>("_sys") = _aux.get();
3314  }
3315 
3316  logAdd("AuxScalarKernel", name, kernel_name, parameters);
3317  _aux->addScalarKernel(kernel_name, name, parameters);
3318 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarVariable()

void FEProblemBase::addAuxScalarVariable ( const std::string &  var_name,
libMesh::Order  order,
Real  scale_factor = 1.,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3217 of file FEProblemBase.C.

3221 {
3222  parallel_object_only();
3223 
3224  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3225 
3226  if (order > _max_scalar_order)
3227  _max_scalar_order = order;
3228 
3229  FEType type(order, SCALAR);
3230  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3231  return;
3232 
3233  InputParameters params = _factory.getValidParams("MooseVariableScalar");
3234  params.set<FEProblemBase *>("_fe_problem_base") = this;
3236 
3237  params.set<MooseEnum>("order") = type.order.get_order();
3238  params.set<MooseEnum>("family") = "SCALAR";
3239  params.set<std::vector<Real>>("scaling") = {1};
3240  if (active_subdomains)
3241  for (const SubdomainID & id : *active_subdomains)
3242  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3243 
3244  logAdd("ScalarVariable", var_name, "MooseVariableScalar", params);
3245  _aux->addVariable("MooseVariableScalar", var_name, params);
3246  if (_displaced_problem)
3247  _displaced_problem->addAuxVariable("MooseVariableScalar", var_name, params);
3248 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ addAuxVariable() [1/2]

void MFEMProblem::addAuxVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addAuxVariable.

Sets a MFEM grid function to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 204 of file MFEMProblem.C.

207 {
208  // We handle MFEM AuxVariables just like MFEM Variables, except
209  // we do not add additional GridFunctions for time derivatives.
210  addGridFunction(var_type, var_name, parameters);
211 }
void addGridFunction(const std::string &var_type, const std::string &var_name, InputParameters &parameters)
Adds one MFEM GridFunction to be used in the MFEM solve.
Definition: MFEMProblem.C:173
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127

◆ addAuxVariable() [2/2]

void FEProblemBase::addAuxVariable ( const std::string &  var_name,
const libMesh::FEType type,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3145 of file FEProblemBase.C.

3148 {
3149  parallel_object_only();
3150 
3151  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3152 
3153  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3154  return;
3155 
3156  std::string var_type;
3157  if (type == FEType(0, MONOMIAL))
3158  var_type = "MooseVariableConstMonomial";
3159  else if (type.family == SCALAR)
3160  var_type = "MooseVariableScalar";
3161  else if (FEInterface::field_type(type) == TYPE_VECTOR)
3162  var_type = "VectorMooseVariable";
3163  else
3164  var_type = "MooseVariable";
3165 
3166  InputParameters params = _factory.getValidParams(var_type);
3167  params.set<FEProblemBase *>("_fe_problem_base") = this;
3169  params.set<MooseEnum>("order") = type.order.get_order();
3170  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3171 
3172  if (active_subdomains)
3173  for (const SubdomainID & id : *active_subdomains)
3174  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3175 
3176  logAdd("AuxVariable", var_name, var_type, params);
3177  _aux->addVariable(var_type, var_name, params);
3178  if (_displaced_problem)
3179  _displaced_problem->addAuxVariable("MooseVariable", var_name, params);
3180 
3181  markFamilyPRefinement(params);
3182 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addBoundaryCondition()

void MFEMProblem::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 90 of file MFEMProblem.C.

93 {
95  const UserObject * mfem_bc_uo = &(getUserObjectBase(name));
96  if (dynamic_cast<const MFEMIntegratedBC *>(mfem_bc_uo) != nullptr)
97  {
98  auto object_ptr = getUserObject<MFEMIntegratedBC>(name).getSharedPtr();
99  auto bc = std::dynamic_pointer_cast<MFEMIntegratedBC>(object_ptr);
101  {
102  getProblemData().eqn_system->AddIntegratedBC(std::move(bc));
103  }
104  else
105  {
106  mooseError("Cannot add integrated BC with name '" + name +
107  "' because there is no corresponding equation system.");
108  }
109  }
110  else if (dynamic_cast<const MFEMEssentialBC *>(mfem_bc_uo) != nullptr)
111  {
112  auto object_ptr = getUserObject<MFEMEssentialBC>(name).getSharedPtr();
113  auto mfem_bc = std::dynamic_pointer_cast<MFEMEssentialBC>(object_ptr);
115  {
116  getProblemData().eqn_system->AddEssentialBC(std::move(mfem_bc));
117  }
118  else
119  {
120  mooseError("Cannot add boundary condition with name '" + name +
121  "' because there is no corresponding equation system.");
122  }
123  }
124  else
125  {
126  mooseError("Unsupported bc of type '", bc_name, "' and name '", name, "' detected.");
127  }
128 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::shared_ptr< MooseObject > getSharedPtr()
Get another shared pointer to this object that has the same ownership group.
Definition: MooseObject.C:61
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< Moose::MFEM::EquationSystem > eqn_system
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.
Base class for user-specific data.
Definition: UserObject.h:40

◆ addCachedJacobian()

void FEProblemBase::addCachedJacobian ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidual()

void FEProblemBase::addCachedResidual ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidualDirectly()

void FEProblemBase::addCachedResidualDirectly ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
virtualinherited

Allows for all the residual contributions that are currently cached to be added directly into the vector passed in.

Parameters
residualThe vector to add the cached contributions to.
tidThe thread id.

Definition at line 1887 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

1888 {
1890  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1892 
1894  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1896 
1897  // We do this because by adding the cached residual directly, we cannot ensure that all of the
1898  // cached residuals are emptied after only the two add calls above
1899  _assembly[tid][_current_nl_sys->number()]->clearCachedResiduals(Assembly::GlobalDataKey{});
1900 
1901  if (_displaced_problem)
1902  _displaced_problem->addCachedResidualDirectly(residual, tid);
1903 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916
TagID nonTimeVectorTag() const override
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
TagID timeVectorTag() const override
Ideally, we should not need this API.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addConstraint()

void FEProblemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3061 of file FEProblemBase.C.

3064 {
3065  parallel_object_only();
3066 
3067  _has_constraints = true;
3068 
3069  auto determine_var_param_name = [&parameters, this]()
3070  {
3071  if (parameters.isParamValid("variable"))
3072  return "variable";
3073  else
3074  {
3075  // must be a mortar constraint
3076  const bool has_secondary_var = parameters.isParamValid("secondary_variable");
3077  const bool has_primary_var = parameters.isParamValid("primary_variable");
3078  if (!has_secondary_var && !has_primary_var)
3079  mooseError(
3080  "Either a 'secondary_variable' or 'primary_variable' parameter must be supplied for '",
3082  "'");
3083  return has_secondary_var ? "secondary_variable" : "primary_variable";
3084  }
3085  };
3086 
3087  const auto nl_sys_num =
3088  determineSolverSystem(parameters.varName(determine_var_param_name(), name), true).second;
3089  if (!isSolverSystemNonlinear(nl_sys_num))
3090  mooseError("You are trying to add a Constraint to a linear variable/system, which is not "
3091  "supported at the moment!");
3092 
3093  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3094  {
3095  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3096  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3097  _reinit_displaced_face = true;
3098  }
3099  else
3100  {
3101  // It might _want_ to use a displaced mesh... but we're not so set it to false
3102  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3103  parameters.set<bool>("use_displaced_mesh") = false;
3104 
3105  parameters.set<SubProblem *>("_subproblem") = this;
3106  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3107  }
3108 
3109  logAdd("Constraint", name, c_name, parameters);
3110  _nl[nl_sys_num]->addConstraint(c_name, name, parameters);
3111 }
const std::string & getObjectName() const
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_constraints
Whether or not this system has any Constraints.
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addConsumedPropertyName()

void SubProblem::addConsumedPropertyName ( const MooseObjectName obj_name,
const std::string &  prop_name 
)
inherited

Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput.

Definition at line 736 of file SubProblem.C.

Referenced by MaterialPropertyInterface::addConsumedPropertyName().

737 {
738  _consumed_material_properties[obj_name].insert(prop_name);
739 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ addConvergence()

void FEProblemBase::addConvergence ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a Convergence object.

Definition at line 2518 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), and FEProblemBase::addDefaultSteadyStateConvergence().

2521 {
2522  parallel_object_only();
2523 
2524  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2525  {
2526  std::shared_ptr<Convergence> conv = _factory.create<Convergence>(type, name, parameters, tid);
2527  _convergences.addObject(conv, tid);
2528  }
2529 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
virtual std::unique_ptr< Base > create()=0
Base class for convergence criteria.
Definition: Convergence.h:21
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addCouplingGhostingFunctor()

void SubProblem::addCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf,
bool  to_mesh = true 
)
inherited

Add a coupling functor to this problem's DofMaps.

Definition at line 1056 of file SubProblem.C.

1057 {
1058  const auto num_nl_sys = numNonlinearSystems();
1059  if (!num_nl_sys)
1060  return;
1061 
1062  systemBaseNonlinear(0).system().get_dof_map().add_coupling_functor(coupling_gf, to_mesh);
1063  cloneCouplingGhostingFunctor(coupling_gf, to_mesh);
1064 }
void cloneCouplingGhostingFunctor(libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided coupling ghosting functor (corresponding to the nonlinear ...
Definition: SubProblem.C:1035
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void add_coupling_functor(GhostingFunctor &coupling_functor, bool to_mesh=true)
virtual std::size_t numNonlinearSystems() const =0
const DofMap & get_dof_map() const

◆ addDamper()

void FEProblemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5151 of file FEProblemBase.C.

5154 {
5155  parallel_object_only();
5156 
5157  const auto nl_sys_num =
5158  parameters.isParamValid("variable")
5159  ? determineSolverSystem(parameters.varName("variable", name), true).second
5160  : (unsigned int)0;
5161 
5162  if (!isSolverSystemNonlinear(nl_sys_num))
5163  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
5164  "supported at the moment!");
5165 
5166  parameters.set<SubProblem *>("_subproblem") = this;
5167  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
5168 
5169  _has_dampers = true;
5170  logAdd("Damper", name, damper_name, parameters);
5171  _nl[nl_sys_num]->addDamper(damper_name, name, parameters);
5172 }
bool _has_dampers
Whether or not this system has any Dampers associated with it.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addDefaultMultiAppFixedPointConvergence()

void FEProblemBase::addDefaultMultiAppFixedPointConvergence ( const InputParameters params)
inherited

Adds the default fixed point Convergence associated with the problem.

This is called if the user does not supply 'multiapp_fixed_point_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2544 of file FEProblemBase.C.

2545 {
2546  const std::string class_name = "DefaultMultiAppFixedPointConvergence";
2547  InputParameters params = _factory.getValidParams(class_name);
2548  params.applyParameters(params_to_apply);
2549  params.applyParameters(parameters());
2550  params.set<bool>("added_as_default") = true;
2552 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.
const ConvergenceName & getMultiAppFixedPointConvergenceName() const
Gets the MultiApp fixed point convergence object name.

◆ addDefaultNonlinearConvergence()

void FEProblemBase::addDefaultNonlinearConvergence ( const InputParameters params)
virtualinherited

Adds the default nonlinear Convergence associated with the problem.

This is called if the user does not supply 'nonlinear_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Reimplemented in ReferenceResidualProblem.

Definition at line 2532 of file FEProblemBase.C.

2533 {
2534  const std::string class_name = "DefaultNonlinearConvergence";
2535  InputParameters params = _factory.getValidParams(class_name);
2536  params.applyParameters(params_to_apply);
2537  params.applyParameters(parameters());
2538  params.set<bool>("added_as_default") = true;
2539  for (const auto & conv_name : getNonlinearConvergenceNames())
2540  addConvergence(class_name, conv_name, params);
2541 }
const std::vector< ConvergenceName > & getNonlinearConvergenceNames() const
Gets the nonlinear system convergence object name(s).
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDefaultSteadyStateConvergence()

void FEProblemBase::addDefaultSteadyStateConvergence ( const InputParameters params)
inherited

Adds the default steady-state detection Convergence.

This is called if the user does not supply 'steady_state_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2555 of file FEProblemBase.C.

2556 {
2557  const std::string class_name = "DefaultSteadyStateConvergence";
2558  InputParameters params = _factory.getValidParams(class_name);
2559  params.applyParameters(params_to_apply);
2560  params.applyParameters(parameters());
2561  params.set<bool>("added_as_default") = true;
2562  addConvergence(class_name, getSteadyStateConvergenceName(), params);
2563 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
const ConvergenceName & getSteadyStateConvergenceName() const
Gets the steady-state detection convergence object name.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDGKernel()

void FEProblemBase::addDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3361 of file FEProblemBase.C.

3364 {
3365  parallel_object_only();
3366 
3367  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3368  if (!isSolverSystemNonlinear(nl_sys_num))
3369  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
3370  "supported at the moment!");
3371 
3372  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3373  {
3374  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3375  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3377  }
3378  else
3379  {
3380  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3381  {
3382  // We allow DGKernels to request that they use_displaced_mesh,
3383  // but then be overridden when no displacements variables are
3384  // provided in the Mesh block. If that happened, update the value
3385  // of use_displaced_mesh appropriately for this DGKernel.
3386  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3387  parameters.set<bool>("use_displaced_mesh") = false;
3388  }
3389 
3390  parameters.set<SubProblem *>("_subproblem") = this;
3391  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3392  }
3393 
3394  logAdd("DGKernel", name, dg_kernel_name, parameters);
3395  _nl[nl_sys_num]->addDGKernel(dg_kernel_name, name, parameters);
3396 
3398 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addDiracKernel()

void FEProblemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3321 of file FEProblemBase.C.

3324 {
3325  parallel_object_only();
3326 
3327  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3328  if (!isSolverSystemNonlinear(nl_sys_num))
3329  mooseError("You are trying to add a DiracKernel to a linear variable/system, which is not "
3330  "supported at the moment!");
3331 
3332  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3333  {
3334  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3335  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3336  _reinit_displaced_elem = true;
3337  }
3338  else
3339  {
3340  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3341  {
3342  // We allow DiracKernels to request that they use_displaced_mesh,
3343  // but then be overridden when no displacements variables are
3344  // provided in the Mesh block. If that happened, update the value
3345  // of use_displaced_mesh appropriately for this DiracKernel.
3346  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3347  parameters.set<bool>("use_displaced_mesh") = false;
3348  }
3349 
3350  parameters.set<SubProblem *>("_subproblem") = this;
3351  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3352  }
3353 
3354  logAdd("DiracKernel", name, kernel_name, parameters);
3355  _nl[nl_sys_num]->addDiracKernel(kernel_name, name, parameters);
3356 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addDisplacedProblem()

void FEProblemBase::addDisplacedProblem ( std::shared_ptr< DisplacedProblem displaced_problem)
virtualinherited

Definition at line 7775 of file FEProblemBase.C.

7776 {
7777  parallel_object_only();
7778 
7781 }
std::shared_ptr< DisplacedProblem > displaced_problem
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ addDistribution()

void FEProblemBase::addDistribution ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import distributions.

Definition at line 2684 of file FEProblemBase.C.

2687 {
2688  parameters.set<std::string>("type") = type;
2689  addObject<Distribution>(type, name, parameters, /* threaded = */ false);
2690 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ addExternalVariables()

virtual void ExternalProblem::addExternalVariables ( )
inlinevirtualinherited

Method called to add AuxVariables to the simulation.

These variables would be the fields that should either be saved out with the MOOSE-formatted solutions or available for transfer to variables in Multiapp simulations.

Definition at line 48 of file ExternalProblem.h.

Referenced by AddExternalAuxVariableAction::act().

48 {}

◆ addFESpace()

void MFEMProblem::addFESpace ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Add an MFEM FESpace to the problem.

Definition at line 147 of file MFEMProblem.C.

Referenced by AddMFEMFESpaceAction::act(), and addMFEMFESpaceFromMOOSEVariable().

150 {
151  FEProblemBase::addUserObject(user_object_name, name, parameters);
152  MFEMFESpace & mfem_fespace(getUserObject<MFEMFESpace>(name));
153 
154  // Register fespace and associated fe collection.
155  getProblemData().fecs.Register(name, mfem_fespace.getFEC());
156  getProblemData().fespaces.Register(name, mfem_fespace.getFESpace());
157 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
Moose::MFEM::FESpaces fespaces
Moose::MFEM::FECollections fecs
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Constructs and stores an mfem::ParFiniteElementSpace object.
Definition: MFEMFESpace.h:22
void Register(const std::string &field_name, FieldArgs &&... args)
Construct new field with name field_name and register.
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addFunction()

void MFEMProblem::addFunction ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addFunction.

Uses ExternalProblem::addFunction to create a MFEMGeneralUserObject representing the function in MOOSE, and creates a corresponding MFEM Coefficient or VectorCoefficient object.

Reimplemented from FEProblemBase.

Definition at line 325 of file MFEMProblem.C.

328 {
330  auto & func = getFunction(name);
331  // FIXME: Do we want to have optimised versions for when functions
332  // are only of space or only of time.
333  if (std::find(SCALAR_FUNCS.begin(), SCALAR_FUNCS.end(), type) != SCALAR_FUNCS.end())
334  {
335  getCoefficients().declareScalar<mfem::FunctionCoefficient>(
336  name,
337  [&func](const mfem::Vector & p, double t) -> mfem::real_t
338  { return func.value(t, pointFromMFEMVector(p)); });
339  }
340  else if (std::find(VECTOR_FUNCS.begin(), VECTOR_FUNCS.end(), type) != VECTOR_FUNCS.end())
341  {
343  getCoefficients().declareVector<mfem::VectorFunctionCoefficient>(
344  name,
345  dim,
346  [&func, dim](const mfem::Vector & p, double t, mfem::Vector & u)
347  {
348  libMesh::RealVectorValue vector_value = func.vectorValue(t, pointFromMFEMVector(p));
349  for (int i = 0; i < dim; i++)
350  {
351  u[i] = vector_value(i);
352  }
353  });
354  }
355  else
356  {
357  mooseWarning("Could not identify whether function ",
358  type,
359  " is scalar or vector; no MFEM coefficient object created.");
360  }
361 }
const std::vector< std::string > SCALAR_FUNCS
Definition: MFEMProblem.C:284
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
static constexpr std::size_t dim
This is the dimension of all vector and tensor datastructures used in MOOSE.
Definition: Moose.h:159
int vectorFunctionDim(const std::string &type, const InputParameters &parameters)
Definition: MFEMProblem.C:257
virtual Function & getFunction(const std::string &name, const THREAD_ID tid=0)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
mfem::Coefficient & declareScalar(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing scalar coefficient or, if it does not exist, try interpreting the nam...
mfem::VectorCoefficient & declareVector(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing vector coefficientor or, if it does not exist, try interpreting the n...
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
Moose::MFEM::CoefficientManager & getCoefficients()
Method to get the PropertyManager object for storing material properties and converting them to MFEM ...
Definition: MFEMProblem.h:180
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
libMesh::Point pointFromMFEMVector(const mfem::Vector &vec)
Definition: MFEMProblem.C:250
const std::vector< std::string > VECTOR_FUNCS
Definition: MFEMProblem.C:322
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ addFunctor()

template<typename T >
void SubProblem::addFunctor ( const std::string &  name,
const Moose::FunctorBase< T > &  functor,
const THREAD_ID  tid 
)
inherited

add a functor to the problem functor container

Definition at line 1375 of file SubProblem.h.

Referenced by FEProblemBase::addFunction(), SubProblem::addPiecewiseByBlockLambdaFunctor(), FEProblemBase::addUserObject(), and SystemBase::addVariable().

1378 {
1379  constexpr bool added_functor_is_ad =
1380  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1381 
1382  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1383 
1384  auto & functor_to_request_info = _functor_to_request_info[tid];
1385  auto & functors = _functors[tid];
1386  auto it = functors.find("wraps_" + name);
1387  if (it != functors.end())
1388  {
1389  // We have this functor already. If it's a null functor, we want to replace it with the valid
1390  // functor we have now. If it's not then we'll add a new entry into the multimap and then we'll
1391  // error later if a user requests a functor because their request is ambiguous. This is the
1392  // reason that the functors container is a multimap: for nice error messages
1393  auto * const existing_wrapper_base =
1394  added_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get();
1395  auto * const existing_wrapper = dynamic_cast<Moose::Functor<T> *>(existing_wrapper_base);
1396  if (existing_wrapper && existing_wrapper->template wrapsType<Moose::NullFunctor<T>>())
1397  {
1398  // Sanity check
1399  auto [request_info_it, request_info_end_it] = functor_to_request_info.equal_range(name);
1400  if (request_info_it == request_info_end_it)
1401  mooseError("We are wrapping a NullFunctor but we don't have any unfilled functor request "
1402  "info. This doesn't make sense.");
1403 
1404  // Check for valid requests
1405  while (request_info_it != request_info_end_it)
1406  {
1407  auto & [requested_functor_is_ad, requestor_is_ad] = request_info_it->second;
1408  if (!requested_functor_is_ad && requestor_is_ad && added_functor_is_ad)
1409  mooseError("We are requesting a non-AD functor '" + name +
1410  "' from an AD object, but the true functor is AD. This means we could be "
1411  "dropping important derivatives. We will not allow this");
1412  // We're going to eventually check whether we've fulfilled all functor requests and our
1413  // check will be that the multimap is empty. This request is fulfilled, so erase it from the
1414  // map now
1415  request_info_it = functor_to_request_info.erase(request_info_it);
1416  }
1417 
1418  // Ok we didn't have the functor before, so we will add it now
1419  std::get<0>(it->second) =
1421  existing_wrapper->assign(functor);
1422  // Finally we create the non-AD or AD complement of the just added functor
1423  if constexpr (added_functor_is_ad)
1424  {
1425  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1426  auto * const existing_non_ad_wrapper_base = std::get<1>(it->second).get();
1427  auto * const existing_non_ad_wrapper =
1428  dynamic_cast<Moose::Functor<NonADType> *>(existing_non_ad_wrapper_base);
1429  mooseAssert(existing_non_ad_wrapper->template wrapsType<Moose::NullFunctor<NonADType>>(),
1430  "Both members of pair should have been wrapping a NullFunctor");
1431  existing_non_ad_wrapper->assign(
1432  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1433  }
1434  else
1435  {
1436  typedef typename Moose::ADType<T>::type ADType;
1437  auto * const existing_ad_wrapper_base = std::get<2>(it->second).get();
1438  auto * const existing_ad_wrapper =
1439  dynamic_cast<Moose::Functor<ADType> *>(existing_ad_wrapper_base);
1440  mooseAssert(existing_ad_wrapper->template wrapsType<Moose::NullFunctor<ADType>>(),
1441  "Both members of pair should have been wrapping a NullFunctor");
1442  existing_ad_wrapper->assign(std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1443  }
1444  return;
1445  }
1446  else if (!existing_wrapper)
1447  {
1448  // Functor was emplaced but the cast failed. This could be a double definition with
1449  // different types, or it could be a request with one type then a definition with another
1450  // type. Either way it is going to error later, but it is cleaner to catch it now
1451  mooseError("Functor '",
1452  name,
1453  "' is being added with return type '",
1454  MooseUtils::prettyCppType<T>(),
1455  "' but it has already been defined or requested with return type '",
1456  existing_wrapper_base->returnType(),
1457  "'.");
1458  }
1459  }
1460 
1461  // We are a new functor, create the opposite ADType one and store it with other functors
1462  if constexpr (added_functor_is_ad)
1463  {
1464  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1465  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<NonADType>>(
1466  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1467  auto new_ad_wrapper = std::make_unique<Moose::Functor<T>>(functor);
1468  _functors[tid].emplace("wraps_" + name,
1469  std::make_tuple(SubProblem::TrueFunctorIs::AD,
1470  std::move(new_non_ad_wrapper),
1471  std::move(new_ad_wrapper)));
1472  }
1473  else
1474  {
1475  typedef typename Moose::ADType<T>::type ADType;
1476  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<T>>((functor));
1477  auto new_ad_wrapper = std::make_unique<Moose::Functor<ADType>>(
1478  std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1479  _functors[tid].emplace("wraps_" + name,
1480  std::make_tuple(SubProblem::TrueFunctorIs::NONAD,
1481  std::move(new_non_ad_wrapper),
1482  std::move(new_ad_wrapper)));
1483  }
1484 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1155
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
Wraps non-AD functors such that they can be used in objects that have requested the functor as AD...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...

◆ addFunctorMaterial()

void MFEMProblem::addFunctorMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 138 of file MFEMProblem.C.

141 {
143  getUserObject<MFEMFunctorMaterial>(name);
144 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addFVBC()

void FEProblemBase::addFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3415 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVBCs().

3418 {
3419  addObject<FVBoundaryCondition>(fv_bc_name, name, parameters);
3420 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addFVInitialCondition()

void FEProblemBase::addFVInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add an initial condition for a finite volume variables.

Parameters
ic_nameThe name of the boundary condition object
nameThe user-defined name from the input file
parametersThe input parameters for construction

Definition at line 3584 of file FEProblemBase.C.

3587 {
3588  parallel_object_only();
3589 
3590  // before we start to mess with the initial condition, we need to check parameters for errors.
3592  const std::string & var_name = parameters.get<VariableName>("variable");
3593 
3594  // Forbid initial conditions on a restarted problem, as they would override the restart
3595  checkICRestartError(ic_name, name, var_name);
3596 
3597  parameters.set<SubProblem *>("_subproblem") = this;
3598 
3599  // field IC
3600  if (hasVariable(var_name))
3601  {
3602  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3603  {
3604  auto & var = getVariable(
3606  parameters.set<SystemBase *>("_sys") = &var.sys();
3607  std::shared_ptr<FVInitialConditionBase> ic;
3608  if (var.isFV())
3609  ic = _factory.create<FVInitialCondition>(ic_name, name, parameters, tid);
3610  else
3611  mooseError(
3612  "Your variable for an FVInitialCondition needs to be an a finite volume variable!");
3613  _fv_ics.addObject(ic, tid);
3614  }
3615  }
3616  else
3617  mooseError("Variable '",
3618  var_name,
3619  "' requested in finite volume initial condition '",
3620  name,
3621  "' does not exist.");
3622 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
void addObject(std::shared_ptr< FVInitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
FVInitialConditionWarehouse _fv_ics
This is a template class that implements the workhorse compute and computeNodal methods.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFVInterfaceKernel()

void FEProblemBase::addFVInterfaceKernel ( const std::string &  fv_ik_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

We assume that variable1 and variable2 can live on different systems, in this case the user needs to create two interface kernels with flipped variables and parameters

Definition at line 3423 of file FEProblemBase.C.

3426 {
3429  addObject<FVInterfaceKernel>(
3430  fv_ik_name, name, parameters, /*threaded=*/true, /*variable_param_name=*/"variable1");
3431 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addFVKernel()

void FEProblemBase::addFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3401 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVKernels().

3404 {
3405  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3406  // FVElementalKernels are computed in the historically finite element threaded loops. They rely
3407  // on Assembly data like _current_elem. When we call reinit on the FEProblemBase we will only
3408  // reinit the DisplacedProblem and its associated Assembly objects if we mark this boolean as
3409  // true
3410  _reinit_displaced_elem = true;
3411  addObject<FVKernel>(fv_kernel_name, name, parameters);
3412 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addGhostedBoundary()

void FEProblemBase::addGhostedBoundary ( BoundaryID  boundary_id)
overridevirtualinherited

Will make sure that all necessary elements from boundary_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2089 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedBoundary().

2090 {
2091  _mesh.addGhostedBoundary(boundary_id);
2092  if (_displaced_problem)
2093  _displaced_mesh->addGhostedBoundary(boundary_id);
2094 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void addGhostedBoundary(BoundaryID boundary_id)
This will add the boundary ids to be ghosted to this processor.
Definition: MooseMesh.C:3229
MooseMesh * _displaced_mesh

◆ addGhostedElem()

void FEProblemBase::addGhostedElem ( dof_id_type  elem_id)
overridevirtualinherited

Will make sure that all dofs connected to elem_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2082 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedElem(), and NodalPatchRecovery::NodalPatchRecovery().

2083 {
2084  if (_mesh.elemPtr(elem_id)->processor_id() != processor_id())
2085  _ghosted_elems.insert(elem_id);
2086 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
MooseMesh & _mesh
processor_id_type processor_id() const
processor_id_type processor_id() const

◆ addGridFunction()

void MFEMProblem::addGridFunction ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)

Adds one MFEM GridFunction to be used in the MFEM solve.

Definition at line 173 of file MFEMProblem.C.

Referenced by addAuxVariable(), and addVariable().

176 {
177  if (var_type == "MFEMVariable")
178  {
179  // Add MFEM variable directly.
180  FEProblemBase::addUserObject(var_type, var_name, parameters);
181  }
182  else
183  {
184  // Add MOOSE variable.
185  FEProblemBase::addVariable(var_type, var_name, parameters);
186 
187  // Add MFEM variable indirectly ("gridfunction").
189  FEProblemBase::addUserObject("MFEMVariable", var_name, mfem_variable_params);
190  }
191 
192  // Register gridfunction.
193  MFEMVariable & mfem_variable = getUserObject<MFEMVariable>(var_name);
194  getProblemData().gridfunctions.Register(var_name, mfem_variable.getGridFunction());
195  if (mfem_variable.getFESpace().isScalar())
196  getCoefficients().declareScalar<mfem::GridFunctionCoefficient>(
197  var_name, mfem_variable.getGridFunction().get());
198  else
199  getCoefficients().declareVector<mfem::VectorGridFunctionCoefficient>(
200  var_name, mfem_variable.getGridFunction().get());
201 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
InputParameters addMFEMFESpaceFromMOOSEVariable(InputParameters &moosevar_params)
Method used to get an mfem FEC depending on the variable family specified in the input file...
Definition: MFEMProblem.C:376
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
Constructs and stores an mfem::ParGridFunction object.
Definition: MFEMVariable.h:20
virtual bool isScalar() const =0
mfem::Coefficient & declareScalar(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing scalar coefficient or, if it does not exist, try interpreting the nam...
mfem::VectorCoefficient & declareVector(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing vector coefficientor or, if it does not exist, try interpreting the n...
Moose::MFEM::CoefficientManager & getCoefficients()
Method to get the PropertyManager object for storing material properties and converting them to MFEM ...
Definition: MFEMProblem.h:180
const MFEMFESpace & getFESpace() const
Returns a reference to the fespace used by the gridfunction.
Definition: MFEMVariable.h:31
std::shared_ptr< mfem::ParGridFunction > getGridFunction() const
Returns a shared pointer to the constructed gridfunction.
Definition: MFEMVariable.h:28
virtual void addVariable(const std::string &var_type, const std::string &var_name, InputParameters &params)
Canonical method for adding a non-linear variable.
void Register(const std::string &field_name, FieldArgs &&... args)
Construct new field with name field_name and register.
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
Moose::MFEM::GridFunctions gridfunctions

◆ addHDGKernel()

void FEProblemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 2957 of file FEProblemBase.C.

2960 {
2961  parallel_object_only();
2962  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2963  if (!isSolverSystemNonlinear(nl_sys_num))
2964  mooseError("You are trying to add a HDGKernel to a linear variable/system, which is not "
2965  "supported at the moment!");
2967  kernel_name, name, parameters, nl_sys_num, "HDGKernel", _reinit_displaced_elem);
2968 
2969  _nl[nl_sys_num]->addHDGKernel(kernel_name, name, parameters);
2970 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addIndicator()

void FEProblemBase::addIndicator ( const std::string &  indicator_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5182 of file FEProblemBase.C.

5185 {
5186  parallel_object_only();
5187 
5188  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5189  {
5190  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5191  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5192  _reinit_displaced_elem = true;
5193  }
5194  else
5195  {
5196  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5197  {
5198  // We allow Indicators to request that they use_displaced_mesh,
5199  // but then be overridden when no displacements variables are
5200  // provided in the Mesh block. If that happened, update the value
5201  // of use_displaced_mesh appropriately for this Indicator.
5202  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5203  parameters.set<bool>("use_displaced_mesh") = false;
5204  }
5205 
5206  parameters.set<SubProblem *>("_subproblem") = this;
5207  parameters.set<SystemBase *>("_sys") = _aux.get();
5208  }
5209 
5210  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5211  {
5212  std::shared_ptr<Indicator> indicator =
5213  _factory.create<Indicator>(indicator_name, name, parameters, tid);
5214  logAdd("Indicator", name, indicator_name, parameters);
5215  std::shared_ptr<InternalSideIndicatorBase> isi =
5217  if (isi)
5219  else
5220  _indicators.addObject(indicator, tid);
5221  }
5222 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseObjectWarehouse< Indicator > _indicators
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInitialCondition()

void MFEMProblem::addInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 508 of file MFEMProblem.C.

511 {
513  getUserObject<MFEMInitialCondition>(name); // error check
514 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addInterfaceKernel()

void FEProblemBase::addInterfaceKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3452 of file FEProblemBase.C.

3455 {
3456  parallel_object_only();
3457 
3458  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3459  if (!isSolverSystemNonlinear(nl_sys_num))
3460  mooseError("You are trying to add a InterfaceKernel to a linear variable/system, which is not "
3461  "supported at the moment!");
3462 
3463  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3464  {
3465  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3466  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3468  }
3469  else
3470  {
3471  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3472  {
3473  // We allow InterfaceKernels to request that they use_displaced_mesh,
3474  // but then be overridden when no displacements variables are
3475  // provided in the Mesh block. If that happened, update the value
3476  // of use_displaced_mesh appropriately for this InterfaceKernel.
3477  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3478  parameters.set<bool>("use_displaced_mesh") = false;
3479  }
3480 
3481  parameters.set<SubProblem *>("_subproblem") = this;
3482  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3483  }
3484 
3485  logAdd("InterfaceKernel", name, interface_kernel_name, parameters);
3486  _nl[nl_sys_num]->addInterfaceKernel(interface_kernel_name, name, parameters);
3487 
3489 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addInterfaceMaterial()

void FEProblemBase::addInterfaceMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3849 of file FEProblemBase.C.

3852 {
3854 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
MaterialWarehouse _interface_materials
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addJacobian()

void FEProblemBase::addJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1926 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1927 {
1928  _assembly[tid][_current_nl_sys->number()]->addJacobian(Assembly::GlobalDataKey{});
1930  _assembly[tid][_current_nl_sys->number()]->addJacobianNonlocal(Assembly::GlobalDataKey{});
1931  if (_displaced_problem)
1932  {
1933  _displaced_problem->addJacobian(tid);
1935  _displaced_problem->addJacobianNonlocal(tid);
1936  }
1937 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianBlockTags()

void FEProblemBase::addJacobianBlockTags ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2001 of file FEProblemBase.C.

Referenced by ComputeJacobianBlocksThread::postElement().

2008 {
2009  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockTags(
2010  jacobian, ivar, jvar, dof_map, dof_indices, Assembly::GlobalDataKey{}, tags);
2011 
2013  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2014  {
2015  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2016  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockNonlocalTags(
2017  jacobian,
2018  ivar,
2019  jvar,
2020  dof_map,
2021  dof_indices,
2022  jv.allDofIndices(),
2024  tags);
2025  }
2026 
2027  if (_displaced_problem)
2028  {
2029  _displaced_problem->addJacobianBlockTags(jacobian, ivar, jvar, dof_map, dof_indices, tags, tid);
2031  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2032  {
2033  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2034  _displaced_problem->addJacobianBlockNonlocal(
2035  jacobian, ivar, jvar, dof_map, dof_indices, jv.allDofIndices(), tags, tid);
2036  }
2037  }
2038 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
This class provides an interface for common operations on field variables of both FE and FV types wit...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::vector< dof_id_type > & allDofIndices() const
Get all global dofindices for the variable.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianLowerD()

void FEProblemBase::addJacobianLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1956 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateLower(), and ComputeJacobianThread::accumulateLower().

1957 {
1958  _assembly[tid][_current_nl_sys->number()]->addJacobianLowerD(Assembly::GlobalDataKey{});
1959  if (_displaced_problem)
1960  _displaced_problem->addJacobianLowerD(tid);
1961 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianNeighbor() [1/3]

virtual void SubProblem::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const libMesh::DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
pure virtualinherited

Implemented in DisplacedProblem.

◆ addJacobianNeighbor() [2/3]

void FEProblemBase::addJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1940 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeJacobianThread::accumulateNeighbor(), and ComputeJacobianBlocksThread::postInternalSide().

1941 {
1942  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighbor(Assembly::GlobalDataKey{});
1943  if (_displaced_problem)
1944  _displaced_problem->addJacobianNeighbor(tid);
1945 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianNeighbor() [3/3]

virtual void FEProblemBase::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap &  dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ addJacobianNeighborLowerD()

void FEProblemBase::addJacobianNeighborLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1948 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighborLower(), and ComputeJacobianThread::accumulateNeighborLower().

1949 {
1950  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighborLowerD(Assembly::GlobalDataKey{});
1951  if (_displaced_problem)
1952  _displaced_problem->addJacobianNeighborLowerD(tid);
1953 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianOffDiagScalar()

void FEProblemBase::addJacobianOffDiagScalar ( unsigned int  ivar,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 1970 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

1971 {
1972  _assembly[tid][_current_nl_sys->number()]->addJacobianOffDiagScalar(ivar,
1974 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianScalar()

void FEProblemBase::addJacobianScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 1964 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

1965 {
1966  _assembly[tid][_current_nl_sys->number()]->addJacobianScalar(Assembly::GlobalDataKey{});
1967 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addKernel()

void MFEMProblem::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addKernel.

Uses ExternalProblem::addKernel to create a MFEMGeneralUserObject representing the kernel in MOOSE, and creates corresponding MFEM kernel to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 222 of file MFEMProblem.C.

225 {
227  const UserObject * kernel_uo = &(getUserObjectBase(name));
228 
229  if (dynamic_cast<const MFEMKernel *>(kernel_uo) != nullptr)
230  {
231  auto object_ptr = getUserObject<MFEMKernel>(name).getSharedPtr();
232  auto kernel = std::dynamic_pointer_cast<MFEMKernel>(object_ptr);
234  {
235  getProblemData().eqn_system->AddKernel(std::move(kernel));
236  }
237  else
238  {
239  mooseError("Cannot add kernel with name '" + name +
240  "' because there is no corresponding equation system.");
241  }
242  }
243  else
244  {
245  mooseError("Unsupported kernel of type '", kernel_name, "' and name '", name, "' detected.");
246  }
247 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::shared_ptr< MooseObject > getSharedPtr()
Get another shared pointer to this object that has the same ownership group.
Definition: MooseObject.C:61
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< Moose::MFEM::EquationSystem > eqn_system
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.
Class to construct an MFEM integrator to apply to the equation system.
Definition: MFEMKernel.h:21
Base class for user-specific data.
Definition: UserObject.h:40

◆ addLinearFVBC()

void FEProblemBase::addLinearFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3442 of file FEProblemBase.C.

3445 {
3446  addObject<LinearFVBoundaryCondition>(bc_name, name, parameters);
3447 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addLinearFVKernel()

void FEProblemBase::addLinearFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3434 of file FEProblemBase.C.

3437 {
3438  addObject<LinearFVKernel>(kernel_name, name, parameters);
3439 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addLineSearch()

virtual void FEProblemBase::addLineSearch ( const InputParameters )
inlinevirtualinherited

add a MOOSE line search

Reimplemented in DumpObjectsProblem, and FEProblem.

Definition at line 712 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

713  {
714  mooseError("Line search not implemented for this problem type yet.");
715  }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addMarker()

void FEProblemBase::addMarker ( const std::string &  marker_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5225 of file FEProblemBase.C.

5228 {
5229  parallel_object_only();
5230 
5231  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5232  {
5233  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5234  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5235  _reinit_displaced_elem = true;
5236  }
5237  else
5238  {
5239  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5240  {
5241  // We allow Markers to request that they use_displaced_mesh,
5242  // but then be overridden when no displacements variables are
5243  // provided in the Mesh block. If that happened, update the value
5244  // of use_displaced_mesh appropriately for this Marker.
5245  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5246  parameters.set<bool>("use_displaced_mesh") = false;
5247  }
5248 
5249  parameters.set<SubProblem *>("_subproblem") = this;
5250  parameters.set<SystemBase *>("_sys") = _aux.get();
5251  }
5252 
5253  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5254  {
5255  std::shared_ptr<Marker> marker = _factory.create<Marker>(marker_name, name, parameters, tid);
5256  logAdd("Marker", name, marker_name, parameters);
5257  _markers.addObject(marker, tid);
5258  }
5259 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Definition: Marker.h:41
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMaterial()

void MFEMProblem::addMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 131 of file MFEMProblem.C.

132 {
133  mooseError(
134  "MFEM materials must be added through the 'FunctorMaterials' block and not 'Materials'");
135 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addMaterialHelper()

void FEProblemBase::addMaterialHelper ( std::vector< MaterialWarehouse *>  warehouse,
const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3857 of file FEProblemBase.C.

Referenced by FEProblemBase::addInterfaceMaterial(), and FEProblemBase::addMaterial().

3861 {
3862  parallel_object_only();
3863 
3864  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3865  {
3866  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3868  }
3869  else
3870  {
3871  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3872  {
3873  // We allow Materials to request that they use_displaced_mesh,
3874  // but then be overridden when no displacements variables are
3875  // provided in the Mesh block. If that happened, update the value
3876  // of use_displaced_mesh appropriately for this Material.
3877  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3878  parameters.set<bool>("use_displaced_mesh") = false;
3879  }
3880 
3881  parameters.set<SubProblem *>("_subproblem") = this;
3882  }
3883 
3884  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
3885  {
3886  // Create the general Block/Boundary MaterialBase object
3887  std::shared_ptr<MaterialBase> material =
3888  _factory.create<MaterialBase>(mat_name, name, parameters, tid);
3889  logAdd("Material", name, mat_name, parameters);
3890  bool discrete = !material->getParam<bool>("compute");
3891 
3892  // If the object is boundary restricted or if it is a functor material we do not create the
3893  // neighbor and face objects
3894  if (material->boundaryRestricted() || dynamic_cast<FunctorMaterial *>(material.get()))
3895  {
3896  _all_materials.addObject(material, tid);
3897  if (discrete)
3898  _discrete_materials.addObject(material, tid);
3899  else
3900  for (auto && warehouse : warehouses)
3901  warehouse->addObject(material, tid);
3902  }
3903 
3904  // Non-boundary restricted require face and neighbor objects
3905  else
3906  {
3907  // TODO: we only need to do this if we have needs for face materials (e.g.
3908  // FV, DG, etc.) - but currently we always do it. Figure out how to fix
3909  // this.
3910 
3911  // The name of the object being created, this is changed multiple times as objects are
3912  // created below
3913  std::string object_name;
3914 
3915  // Create a copy of the supplied parameters to the setting for "_material_data_type" isn't
3916  // used from a previous tid loop
3917  InputParameters current_parameters = parameters;
3918 
3919  // face material
3920  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
3922  object_name = name + "_face";
3923  std::shared_ptr<MaterialBase> face_material =
3924  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
3925 
3926  // neighbor material
3927  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
3929  current_parameters.set<bool>("_neighbor") = true;
3930  object_name = name + "_neighbor";
3931  std::shared_ptr<MaterialBase> neighbor_material =
3932  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
3933 
3934  // Store the material objects
3935  _all_materials.addObjects(material, neighbor_material, face_material, tid);
3936 
3937  if (discrete)
3938  _discrete_materials.addObjects(material, neighbor_material, face_material, tid);
3939  else
3940  for (auto && warehouse : warehouses)
3941  warehouse->addObjects(material, neighbor_material, face_material, tid);
3942 
3943  // Names of all controllable parameters for this Material object
3944  const std::string & base = parameters.getBase();
3945  MooseObjectParameterName name(MooseObjectName(base, material->name()), "*");
3946  const auto param_names =
3948 
3949  // Connect parameters of the primary Material object to those on the face and neighbor
3950  // objects
3951  for (const auto & p_name : param_names)
3952  {
3953  MooseObjectParameterName primary_name(MooseObjectName(base, material->name()),
3954  p_name.parameter());
3955  MooseObjectParameterName face_name(MooseObjectName(base, face_material->name()),
3956  p_name.parameter());
3957  MooseObjectParameterName neighbor_name(MooseObjectName(base, neighbor_material->name()),
3958  p_name.parameter());
3960  primary_name, face_name, false);
3962  primary_name, neighbor_name, false);
3963  }
3964  }
3965  }
3966 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addControllableParameterConnection(const MooseObjectParameterName &primary, const MooseObjectParameterName &secondary, bool error_on_empty=true)
Method for linking control parameters of different names.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2900
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
MaterialDataType
MaterialData types.
Definition: MooseTypes.h:692
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & getBase() const
std::vector< MooseObjectParameterName > getControllableParameterNames(const MooseObjectParameterName &input) const
Return a vector of parameters names matching the supplied name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
FunctorMaterials compute functor material properties.
virtual std::unique_ptr< Base > create()=0
void addObjects(std::shared_ptr< MaterialBase > block, std::shared_ptr< MaterialBase > neighbor, std::shared_ptr< MaterialBase > face, THREAD_ID tid=0)
A special method unique to this class for adding Block, Neighbor, and Face material objects...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
MaterialWarehouse _discrete_materials
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A class for storing an input parameter name.
A class for storing the names of MooseObject by tag and object name.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMatrixTag()

TagID SubProblem::addMatrixTag ( TagName  tag_name)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated

Reimplemented in DisplacedProblem.

Definition at line 311 of file SubProblem.C.

Referenced by DisplacedProblem::addMatrixTag(), FEProblemBase::createTagMatrices(), LinearSystem::LinearSystem(), and NonlinearSystemBase::NonlinearSystemBase().

312 {
313  auto tag_name_upper = MooseUtils::toUpper(tag_name);
314  auto existing_tag = _matrix_tag_name_to_tag_id.find(tag_name_upper);
315  if (existing_tag == _matrix_tag_name_to_tag_id.end())
316  {
317  auto tag_id = _matrix_tag_name_to_tag_id.size();
318 
319  _matrix_tag_name_to_tag_id[tag_name_upper] = tag_id;
320 
321  _matrix_tag_id_to_tag_name[tag_id] = tag_name_upper;
322  }
323 
324  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
325 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ addMeshDivision()

void FEProblemBase::addMeshDivision ( const std::string &  type,
const std::string &  name,
InputParameters params 
)
virtualinherited

Add a MeshDivision.

Definition at line 2639 of file FEProblemBase.C.

2642 {
2643  parallel_object_only();
2644  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
2645  parameters.set<SubProblem *>("_subproblem") = this;
2646  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2647  {
2648  std::shared_ptr<MeshDivision> func = _factory.create<MeshDivision>(type, name, parameters, tid);
2649  _mesh_divisions.addObject(func, tid);
2650  }
2651 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMFEMFESpaceFromMOOSEVariable()

InputParameters MFEMProblem::addMFEMFESpaceFromMOOSEVariable ( InputParameters moosevar_params)

Method used to get an mfem FEC depending on the variable family specified in the input file.

This method is used in addAuxVariable to help create the MFEM grid function that corresponds to a given MOOSE aux-variable.

Definition at line 376 of file MFEMProblem.C.

Referenced by addGridFunction().

377 {
378 
379  InputParameters fespace_params = _factory.getValidParams("MFEMGenericFESpace");
380  InputParameters mfem_variable_params = _factory.getValidParams("MFEMVariable");
381 
382  auto moose_fe_type =
383  FEType(Utility::string_to_enum<Order>(parameters.get<MooseEnum>("order")),
384  Utility::string_to_enum<FEFamily>(parameters.get<MooseEnum>("family")));
385 
386  std::string mfem_family;
387  int mfem_vdim = 1;
388 
389  switch (moose_fe_type.family)
390  {
391  case FEFamily::LAGRANGE:
392  mfem_family = "H1";
393  mfem_vdim = 1;
394  break;
395  case FEFamily::LAGRANGE_VEC:
396  mfem_family = "H1";
397  mfem_vdim = 3;
398  break;
399  case FEFamily::MONOMIAL:
400  mfem_family = "L2";
401  mfem_vdim = 1;
402  break;
403  case FEFamily::MONOMIAL_VEC:
404  mfem_family = "L2";
405  mfem_vdim = 3;
406  break;
407  default:
408  mooseError("Unable to set MFEM FESpace for MOOSE variable");
409  break;
410  }
411 
412  // Create fespace name. If this already exists, we will reuse this for
413  // the mfem variable ("gridfunction").
414  const std::string fespace_name = mfem_family + "_" +
415  std::to_string(mesh().getMFEMParMesh().Dimension()) + "D_P" +
416  std::to_string(moose_fe_type.order.get_order());
417 
418  // Set all fespace parameters.
419  fespace_params.set<std::string>("fec_name") = fespace_name;
420  fespace_params.set<int>("vdim") = mfem_vdim;
421 
422  if (!hasUserObject(fespace_name)) // Create the fespace (implicit).
423  {
424  addFESpace("MFEMGenericFESpace", fespace_name, fespace_params);
425  }
426 
427  mfem_variable_params.set<UserObjectName>("fespace") = fespace_name;
428 
429  return mfem_variable_params;
430 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:465
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
InputParameters getValidParams(const std::string &name) const
Get valid parameters for the object.
Definition: Factory.C:68
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void addFESpace(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
Add an MFEM FESpace to the problem.
Definition: MFEMProblem.C:147
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addMFEMNonlinearSolver()

void MFEMProblem::addMFEMNonlinearSolver ( )

Add the nonlinear solver to the system.

TODO: allow user to specify solver options, similar to the linear solvers.

Definition at line 77 of file MFEMProblem.C.

Referenced by initialSetup().

78 {
79  auto nl_solver = std::make_shared<mfem::NewtonSolver>(getProblemData().comm);
80 
81  // Defaults to one iteration, without further nonlinear iterations
82  nl_solver->SetRelTol(0.0);
83  nl_solver->SetAbsTol(0.0);
84  nl_solver->SetMaxIter(1);
85 
86  getProblemData().nonlinear_solver = nl_solver;
87 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
std::shared_ptr< mfem::NewtonSolver > nonlinear_solver

◆ addMFEMPreconditioner()

void MFEMProblem::addMFEMPreconditioner ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Method called in AddMFEMPreconditionerAction which will create the solver.

Definition at line 58 of file MFEMProblem.C.

Referenced by AddMFEMPreconditionerAction::act().

61 {
62  FEProblemBase::addUserObject(user_object_name, name, parameters);
63 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addMFEMSolver()

void MFEMProblem::addMFEMSolver ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Method called in AddMFEMSolverAction which will create the solver.

Definition at line 66 of file MFEMProblem.C.

Referenced by AddMFEMSolverAction::act().

69 {
70  FEProblemBase::addUserObject(user_object_name, name, parameters);
71  auto object_ptr = getUserObject<MFEMSolverBase>(name).getSharedPtr();
72 
74 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::shared_ptr< MooseObject > getSharedPtr()
Get another shared pointer to this object that has the same ownership group.
Definition: MooseObject.C:61
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
Base class for wrapping mfem::Solver-derived classes.
std::shared_ptr< MFEMSolverBase > jacobian_solver

◆ addMultiApp()

void FEProblemBase::addMultiApp ( const std::string &  multi_app_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a MultiApp to the problem.

Definition at line 5262 of file FEProblemBase.C.

5265 {
5266  parallel_object_only();
5267 
5268  parameters.set<MPI_Comm>("_mpi_comm") = _communicator.get();
5269 
5270  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5271  {
5272  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5273  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5274  _reinit_displaced_elem = true;
5275  }
5276  else
5277  {
5278  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5279  {
5280  // We allow MultiApps to request that they use_displaced_mesh,
5281  // but then be overridden when no displacements variables are
5282  // provided in the Mesh block. If that happened, update the value
5283  // of use_displaced_mesh appropriately for this MultiApp.
5284  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5285  parameters.set<bool>("use_displaced_mesh") = false;
5286  }
5287 
5288  parameters.set<SubProblem *>("_subproblem") = this;
5289  parameters.set<SystemBase *>("_sys") = _aux.get();
5290  }
5291 
5292  std::shared_ptr<MultiApp> multi_app = _factory.create<MultiApp>(multi_app_name, name, parameters);
5293  logAdd("MultiApp", name, multi_app_name, parameters);
5294  multi_app->setupPositions();
5295 
5296  _multi_apps.addObject(multi_app);
5297 
5298  // Store TransientMultiApp objects in another container, this is needed for calling computeDT
5299  std::shared_ptr<TransientMultiApp> trans_multi_app =
5301  if (trans_multi_app)
5302  _transient_multi_apps.addObject(trans_multi_app);
5303 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
MultiApp Implementation for Transient Apps.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A MultiApp represents one or more MOOSE applications that are running simultaneously.
Definition: MultiApp.h:112

◆ addNodalKernel()

void FEProblemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 2973 of file FEProblemBase.C.

2976 {
2977  parallel_object_only();
2978 
2979  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2980  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
2981  {
2982  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
2983  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
2984  _reinit_displaced_elem = true;
2985  }
2986  else
2987  {
2988  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
2989  {
2990  // We allow NodalKernels to request that they use_displaced_mesh,
2991  // but then be overridden when no displacements variables are
2992  // provided in the Mesh block. If that happened, update the value
2993  // of use_displaced_mesh appropriately for this NodalKernel.
2994  if (parameters.have_parameter<bool>("use_displaced_mesh"))
2995  parameters.set<bool>("use_displaced_mesh") = false;
2996  }
2997 
2998  parameters.set<SubProblem *>("_subproblem") = this;
2999  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3000  }
3001  logAdd("NodalKernel", name, kernel_name, parameters);
3002  _nl[nl_sys_num]->addNodalKernel(kernel_name, name, parameters);
3003 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addNotZeroedVectorTag()

void SubProblem::addNotZeroedVectorTag ( const TagID  tag)
inherited

Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that will be manually managed

Definition at line 149 of file SubProblem.C.

Referenced by FEProblemBase::createTagVectors().

150 {
151  _not_zeroed_tagged_vectors.insert(tag);
152 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ addObject()

template<typename T >
std::vector< std::shared_ptr< T > > FEProblemBase::addObject ( const std::string &  type,
const std::string &  name,
InputParameters parameters,
const bool  threaded = true,
const std::string &  var_param_name = "variable" 
)
inherited

Method for creating and adding an object to the warehouse.

Template Parameters
TThe base object type (registered in the Factory)
Parameters
typeString type of the object (registered in the Factory)
nameName for the object to be created
parametersInputParameters for the object
threadedWhether or not to create n_threads copies of the object
var_param_nameThe name of the parameter on the object which holds the primary variable.
Returns
A vector of shared_ptrs to the added objects

Definition at line 3161 of file FEProblemBase.h.

3166 {
3167  parallel_object_only();
3168 
3169  logAdd(MooseUtils::prettyCppType<T>(), name, type, parameters);
3170  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
3171  addObjectParamsHelper(parameters, name, var_param_name);
3172 
3173  const auto n_threads = threaded ? libMesh::n_threads() : 1;
3174  std::vector<std::shared_ptr<T>> objects(n_threads);
3175  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
3176  {
3177  std::shared_ptr<T> obj = _factory.create<T>(type, name, parameters, tid);
3178  theWarehouse().add(obj);
3179  objects[tid] = std::move(obj);
3180  }
3181 
3182  return objects;
3183 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::shared_ptr< MooseObject > create(const std::string &obj_name, const std::string &name, const InputParameters &parameters, THREAD_ID tid=0, bool print_deprecated=true)
Definition: Factory.C:111
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addObjectParamsHelper()

void FEProblemBase::addObjectParamsHelper ( InputParameters params,
const std::string &  object_name,
const std::string &  var_param_name = "variable" 
)
protectedinherited

Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().

This is needed due to header includes/forward declaration issues

Definition at line 4199 of file FEProblemBase.C.

Referenced by FEProblemBase::addObject(), and FEProblemBase::addUserObject().

4202 {
4203  // Due to objects like SolutionUserObject which manipulate libmesh objects
4204  // and variables directly at the back end, we need a default option here
4205  // which is going to be the pointer to the first solver system within this
4206  // problem
4207  unsigned int sys_num = 0;
4208  if (parameters.isParamValid(var_param_name))
4209  {
4210  const auto variable_name = parameters.varName(var_param_name, object_name);
4211  if (this->hasVariable(variable_name) || this->hasScalarVariable(variable_name))
4212  sys_num = getSystem(variable_name).number();
4213  }
4214  if (parameters.isParamValid("solver_sys"))
4215  {
4216  const auto var_sys_num = sys_num;
4217  sys_num = getSystemBase(parameters.get<SolverSystemName>("solver_sys")).number();
4218  if (sys_num != var_sys_num && parameters.isParamValid(var_param_name))
4219  mooseError("We dont support setting 'variable' to a variable that is not set to the same "
4220  "system as the 'solver_sys' parameter");
4221  }
4222 
4223  if (_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4224  parameters.get<bool>("use_displaced_mesh"))
4225  {
4226  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4227  if (sys_num == _aux->number())
4228  parameters.set<SystemBase *>("_sys") = &_displaced_problem->systemBaseAuxiliary();
4229  else
4230  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(sys_num);
4231  }
4232  else
4233  {
4234  // The object requested use_displaced_mesh, but it was overridden
4235  // due to there being no displacements variables in the [Mesh] block.
4236  // If that happened, update the value of use_displaced_mesh appropriately.
4237  if (!_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4238  parameters.get<bool>("use_displaced_mesh"))
4239  parameters.set<bool>("use_displaced_mesh") = false;
4240 
4241  parameters.set<SubProblem *>("_subproblem") = this;
4242 
4243  if (sys_num == _aux->number())
4244  parameters.set<SystemBase *>("_sys") = _aux.get();
4245  else
4246  parameters.set<SystemBase *>("_sys") = _solver_systems[sys_num].get();
4247  }
4248 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
unsigned int number() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addOutput()

void FEProblemBase::addOutput ( const std::string &  object_type,
const std::string &  object_name,
InputParameters parameters 
)
inherited

Adds an Output object.

Definition at line 8824 of file FEProblemBase.C.

8827 {
8828  parallel_object_only();
8829 
8830  // Get a reference to the OutputWarehouse
8831  OutputWarehouse & output_warehouse = _app.getOutputWarehouse();
8832 
8833  // Reject the reserved names for objects not built by MOOSE
8834  if (!parameters.get<bool>("_built_by_moose") && output_warehouse.isReservedName(object_name))
8835  mooseError("The name '", object_name, "' is a reserved name for output objects");
8836 
8837  // Check that an object by the same name does not already exist; this must be done before the
8838  // object is created to avoid getting misleading errors from the Parser
8839  if (output_warehouse.hasOutput(object_name))
8840  mooseError("An output object named '", object_name, "' already exists");
8841 
8842  // Add a pointer to the FEProblemBase class
8843  parameters.addPrivateParam<FEProblemBase *>("_fe_problem_base", this);
8844 
8845  // Create common parameter exclude list
8846  std::vector<std::string> exclude;
8847  if (object_type == "Console")
8848  {
8849  exclude.push_back("execute_on");
8850 
8851  // --show-input should enable the display of the input file on the screen
8852  if (_app.getParam<bool>("show_input") && parameters.get<bool>("output_screen"))
8853  parameters.set<ExecFlagEnum>("execute_input_on") = EXEC_INITIAL;
8854  }
8855  // Need this because Checkpoint::validParams changes the default value of
8856  // execute_on
8857  else if (object_type == "Checkpoint")
8858  exclude.push_back("execute_on");
8859 
8860  // Apply the common parameters loaded with Outputs input syntax
8861  const InputParameters * common = output_warehouse.getCommonParameters();
8862  if (common)
8863  parameters.applyParameters(*common, exclude);
8864  if (common && std::find(exclude.begin(), exclude.end(), "execute_on") != exclude.end() &&
8865  common->isParamSetByUser("execute_on") && object_type != "Console")
8867  "'execute_on' parameter specified in [Outputs] block is ignored for object '" +
8868  object_name +
8869  "'.\nDefine this object in its own sub-block of [Outputs] to modify its "
8870  "execution schedule.");
8871 
8872  // Set the correct value for the binary flag for XDA/XDR output
8873  if (object_type == "XDR")
8874  parameters.set<bool>("_binary") = true;
8875  else if (object_type == "XDA")
8876  parameters.set<bool>("_binary") = false;
8877 
8878  // Adjust the checkpoint suffix if auto recovery was enabled
8879  if (object_name == "auto_recovery_checkpoint")
8880  parameters.set<std::string>("suffix") = "auto_recovery";
8881 
8882  // Create the object and add it to the warehouse
8883  std::shared_ptr<Output> output = _factory.create<Output>(object_type, object_name, parameters);
8884  logAdd("Output", object_name, object_type, parameters);
8885  output_warehouse.addOutput(output);
8886 }
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
void addPrivateParam(const std::string &name, const T &value)
These method add a parameter to the InputParameters object which can be retrieved like any other para...
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
bool isReservedName(const std::string &name)
Test if the given name is reserved.
bool hasOutput(const std::string &name) const
Returns true if the output object exists.
void mooseInfoRepeated(Args &&... args)
Emit an informational message with the given stringified, concatenated args.
Definition: MooseError.h:408
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Based class for output objects.
Definition: Output.h:43
virtual std::unique_ptr< Base > create()=0
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
Class for storing and utilizing output objects.
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
const InputParameters * getCommonParameters() const
Get a reference to the common output parameters.
void addOutput(std::shared_ptr< Output > output)
Adds an existing output object to the warehouse.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ addPiecewiseByBlockLambdaFunctor()

template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & SubProblem::addPiecewiseByBlockLambdaFunctor ( const std::string &  name,
PolymorphicLambda  my_lammy,
const std::set< ExecFlagType > &  clearance_schedule,
const MooseMesh mesh,
const std::set< SubdomainID > &  block_ids,
const THREAD_ID  tid 
)
inherited

Add a functor that has block-wise lambda definitions, e.g.

the evaluations of the functor are based on a user-provided lambda expression.

Parameters
nameThe name of the functor to add
my_lammyThe lambda expression that will be called when the functor is evaluated
clearance_scheduleHow often to clear functor evaluations. The default value is always, which means that the functor will be re-evaluated every time it is called. If it is something other than always, than cached values may be returned
meshThe mesh on which this functor operates
block_idsThe blocks on which the lambda expression is defined
tidThe thread on which the functor we are adding will run
Returns
The added functor

Definition at line 1338 of file SubProblem.h.

Referenced by FunctorMaterial::addFunctorPropertyByBlocks().

1344 {
1345  auto & pbblf_functors = _pbblf_functors[tid];
1346 
1347  auto [it, first_time_added] =
1348  pbblf_functors.emplace(name,
1349  std::make_unique<PiecewiseByBlockLambdaFunctor<T>>(
1350  name, my_lammy, clearance_schedule, mesh, block_ids));
1351 
1352  auto * functor = dynamic_cast<PiecewiseByBlockLambdaFunctor<T> *>(it->second.get());
1353  if (!functor)
1354  {
1355  if (first_time_added)
1356  mooseError("This should be impossible. If this was the first time we added the functor, then "
1357  "the dynamic cast absolutely should have succeeded");
1358  else
1359  mooseError("Attempted to add a lambda functor with the name '",
1360  name,
1361  "' but another lambda functor of that name returns a different type");
1362  }
1363 
1364  if (first_time_added)
1365  addFunctor(name, *functor, tid);
1366  else
1367  // The functor already exists
1368  functor->setFunctor(mesh, block_ids, my_lammy);
1369 
1370  return *functor;
1371 }
virtual MooseMesh & mesh()=0
A material property that is evaluated on-the-fly via calls to various overloads of operator() ...
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::map< std::string, std::unique_ptr< Moose::FunctorAbstract > > > _pbblf_functors
Container to hold PiecewiseByBlockLambdaFunctors.
Definition: SubProblem.h:1147
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addPostprocessor()

void MFEMProblem::addPostprocessor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addPostprocessor.

In addition to creating the postprocessor object, it will create a coefficient that will hold its value.

Reimplemented from FEProblemBase.

Definition at line 364 of file MFEMProblem.C.

367 {
368  // For some reason this isn't getting called
371  getCoefficients().declareScalar<mfem::FunctionCoefficient>(
372  name, [&val](const mfem::Vector &, double) -> mfem::real_t { return val; });
373 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
virtual void addPostprocessor(const std::string &pp_name, const std::string &name, InputParameters &parameters)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
mfem::Coefficient & declareScalar(const std::string &name, const std::string &existing_or_literal)
Declare an alias to an existing scalar coefficient or, if it does not exist, try interpreting the nam...
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
Moose::MFEM::CoefficientManager & getCoefficients()
Method to get the PropertyManager object for storing material properties and converting them to MFEM ...
Definition: MFEMProblem.h:180
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
const PostprocessorValue & getPostprocessorValueByName(const PostprocessorName &name, std::size_t t_index=0) const
Get a read-only reference to the value associated with a Postprocessor that exists.

◆ addPredictor()

void FEProblemBase::addPredictor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 6798 of file FEProblemBase.C.

Referenced by AB2PredictorCorrector::AB2PredictorCorrector().

6801 {
6802  parallel_object_only();
6803 
6805  mooseError("Vector bounds cannot be used with LinearSystems!");
6806 
6807  parameters.set<SubProblem *>("_subproblem") = this;
6808  std::shared_ptr<Predictor> predictor = _factory.create<Predictor>(type, name, parameters);
6809  logAdd("Predictor", name, type, parameters);
6810 
6811  for (auto & nl : _nl)
6812  nl->setPredictor(predictor);
6813 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
virtual std::size_t numNonlinearSystems() const override
Base class for predictors.
Definition: Predictor.h:28
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual std::size_t numLinearSystems() const override

◆ addReporter()

void FEProblemBase::addReporter ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a Reporter object to the simulation.

Parameters
typeC++ object type to construct
nameA uniquely identifying object name
parametersComplete parameters for the object to be created.

For an example use, refer to AddReporterAction.C/h

Definition at line 4279 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer().

4282 {
4283  // Check for name collision
4284  if (hasUserObject(name))
4285  mooseError("A ",
4287  " already exists. You may not add a Reporter by the same name.");
4288 
4290 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addResidual()

void FEProblemBase::addResidual ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1826 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1827 {
1828  _assembly[tid][_current_nl_sys->number()]->addResidual(Assembly::GlobalDataKey{},
1830 
1831  if (_displaced_problem)
1832  _displaced_problem->addResidual(tid);
1833 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualLower()

void FEProblemBase::addResidualLower ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1846 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateLower(), ComputeResidualAndJacobianThread::accumulateLower(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1847 {
1848  _assembly[tid][_current_nl_sys->number()]->addResidualLower(Assembly::GlobalDataKey{},
1850 
1851  if (_displaced_problem)
1852  _displaced_problem->addResidualLower(tid);
1853 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualNeighbor()

void FEProblemBase::addResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1836 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateNeighbor(), ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1837 {
1838  _assembly[tid][_current_nl_sys->number()]->addResidualNeighbor(Assembly::GlobalDataKey{},
1840 
1841  if (_displaced_problem)
1842  _displaced_problem->addResidualNeighbor(tid);
1843 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualScalar()

void FEProblemBase::addResidualScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 1856 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1857 {
1858  _assembly[tid][_current_nl_sys->number()]->addResidualScalar(Assembly::GlobalDataKey{},
1860 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addSampler()

void FEProblemBase::addSampler ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import Samplers.

Definition at line 2707 of file FEProblemBase.C.

2710 {
2711  const auto samplers = addObject<Sampler>(type, name, parameters);
2712  for (auto & sampler : samplers)
2713  sampler->init();
2714 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ addScalarKernel()

void FEProblemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3006 of file FEProblemBase.C.

3009 {
3010  parallel_object_only();
3011 
3012  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3013  if (!isSolverSystemNonlinear(nl_sys_num))
3014  mooseError("You are trying to add a ScalarKernel to a linear variable/system, which is not "
3015  "supported at the moment!");
3016 
3017  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3018  {
3019  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3020  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3021  }
3022  else
3023  {
3024  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3025  {
3026  // We allow ScalarKernels to request that they use_displaced_mesh,
3027  // but then be overridden when no displacements variables are
3028  // provided in the Mesh block. If that happened, update the value
3029  // of use_displaced_mesh appropriately for this ScalarKernel.
3030  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3031  parameters.set<bool>("use_displaced_mesh") = false;
3032  }
3033 
3034  parameters.set<SubProblem *>("_subproblem") = this;
3035  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3036  }
3037 
3038  logAdd("ScalarKernel", name, kernel_name, parameters);
3039  _nl[nl_sys_num]->addScalarKernel(kernel_name, name, parameters);
3040 }
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addSubMesh()

void MFEMProblem::addSubMesh ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)

Add an MFEM SubMesh to the problem.

Definition at line 479 of file MFEMProblem.C.

Referenced by AddMFEMSubMeshAction::act().

482 {
483  // Add MFEM SubMesh.
484  FEProblemBase::addUserObject(var_type, var_name, parameters);
485  // Register submesh.
486  MFEMSubMesh & mfem_submesh = getUserObject<MFEMSubMesh>(var_name);
487  getProblemData().submeshes.Register(var_name, mfem_submesh.getSubMesh());
488 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
Moose::MFEM::SubMeshes submeshes
Base class for construction of a mfem::ParSubMesh object.
Definition: MFEMSubMesh.h:22
std::shared_ptr< mfem::ParSubMesh > getSubMesh()
Returns a shared pointer to the constructed fespace.
Definition: MFEMSubMesh.h:30
void Register(const std::string &field_name, FieldArgs &&... args)
Construct new field with name field_name and register.
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addTimeIntegrator()

void FEProblemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 6763 of file FEProblemBase.C.

Referenced by TransientBase::setupTimeIntegrator().

6766 {
6767  parallel_object_only();
6768 
6769  parameters.set<SubProblem *>("_subproblem") = this;
6770  logAdd("TimeIntegrator", name, type, parameters);
6771  _aux->addTimeIntegrator(type, name + ":aux", parameters);
6772  for (auto & sys : _solver_systems)
6773  sys->addTimeIntegrator(type, name + ":" + sys->name(), parameters);
6774  _has_time_integrator = true;
6775 
6776  // add vectors to store u_dot, u_dotdot, udot_old, u_dotdot_old and
6777  // solution vectors older than 2 time steps, if requested by the time
6778  // integrator
6779  _aux->addDotVectors();
6780  for (auto & nl : _nl)
6781  {
6782  nl->addDotVectors();
6783 
6784  auto tag_udot = nl->getTimeIntegrators()[0]->uDotFactorTag();
6785  if (!nl->hasVector(tag_udot))
6786  nl->associateVectorToTag(*nl->solutionUDot(), tag_udot);
6787  auto tag_udotdot = nl->getTimeIntegrators()[0]->uDotDotFactorTag();
6788  if (!nl->hasVector(tag_udotdot) && uDotDotRequested())
6789  nl->associateVectorToTag(*nl->solutionUDotDot(), tag_udotdot);
6790  }
6791 
6792  if (_displaced_problem)
6793  // Time integrator does not exist when displaced problem is created.
6794  _displaced_problem->addTimeIntegrator();
6795 }
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTransfer()

void MFEMProblem::addTransfer ( const std::string &  transfer_name,
const std::string &  name,
InputParameters parameters 
)
overridevirtual

Add transfers between MultiApps and/or MFEM SubMeshes.

Reimplemented from FEProblemBase.

Definition at line 491 of file MFEMProblem.C.

494 {
495  if (parameters.getBase() == "MFEMSubMeshTransfer")
497  else
498  FEProblemBase::addTransfer(transfer_name, name, parameters);
499 }
virtual void addTransfer(const std::string &transfer_name, const std::string &name, InputParameters &parameters)
Add a Transfer to the problem.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & getBase() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)

◆ addUserObject()

std::vector< std::shared_ptr< UserObject > > FEProblemBase::addUserObject ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4293 of file FEProblemBase.C.

Referenced by addAuxKernel(), addBoundaryCondition(), addFESpace(), addFunctorMaterial(), addGridFunction(), addInitialCondition(), addKernel(), addMFEMPreconditioner(), addMFEMSolver(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), addSubMesh(), addTransfer(), and FEProblemBase::addVectorPostprocessor().

4296 {
4297  parallel_object_only();
4298 
4299  std::vector<std::shared_ptr<UserObject>> uos;
4300 
4301  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
4303 
4304  for (const auto tid : make_range(libMesh::n_threads()))
4305  {
4306  // Create the UserObject
4307  std::shared_ptr<UserObject> user_object =
4308  _factory.create<UserObject>(user_object_name, name, parameters, tid);
4309  logAdd("UserObject", name, user_object_name, parameters);
4310  uos.push_back(user_object);
4311 
4312  if (tid != 0)
4313  user_object->setPrimaryThreadCopy(uos[0].get());
4314 
4315  // TODO: delete this line after apps have been updated to not call getUserObjects
4316  _all_user_objects.addObject(user_object, tid);
4317 
4318  theWarehouse().add(user_object);
4319 
4320  // Attempt to create all the possible UserObject types
4321  auto euo = std::dynamic_pointer_cast<ElementUserObject>(user_object);
4322  auto suo = std::dynamic_pointer_cast<SideUserObject>(user_object);
4323  auto isuo = std::dynamic_pointer_cast<InternalSideUserObject>(user_object);
4324  auto iuo = std::dynamic_pointer_cast<InterfaceUserObjectBase>(user_object);
4325  auto nuo = std::dynamic_pointer_cast<NodalUserObject>(user_object);
4326  auto duo = std::dynamic_pointer_cast<DomainUserObject>(user_object);
4327  auto guo = std::dynamic_pointer_cast<GeneralUserObject>(user_object);
4328  auto tguo = std::dynamic_pointer_cast<ThreadedGeneralUserObject>(user_object);
4329  auto muo = std::dynamic_pointer_cast<MortarUserObject>(user_object);
4330 
4331  // Account for displaced mesh use
4332  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4333  {
4334  // Whether to re-init or not depends on the attributes of the base classes.
4335  // For example, InterfaceUOBase has "_current_side_elem" and "_neighbor_elem"
4336  // so it needs to reinit on displaced neighbors and faces
4337  // _reinit_displaced_elem -> _current_elem will be reinited
4338  // _reinit_displaced_face -> _current_elem, lowerD if any and _current_side_elem to be
4339  // reinited _reinit_displaced_neighbor -> _current_elem, lowerD if any and _current_neighbor
4340  // to be reinited Note that as soon as you use materials on the displaced mesh, all three get
4341  // turned on.
4342  if (euo || nuo || duo)
4343  _reinit_displaced_elem = true;
4344  if (suo || duo || isuo || iuo)
4345  _reinit_displaced_face = true;
4346  if (iuo || duo || isuo)
4348  }
4349 
4350  // These objects only require one thread
4351  if ((guo && !tguo) || muo)
4352  break;
4353  }
4354 
4355  // Add as a Functor if it is one. We usually need to add the user object from thread 0 as the
4356  // registered functor for all threads because when user objects are thread joined, generally only
4357  // the primary thread copy ends up with all the data
4358  for (const auto tid : make_range(libMesh::n_threads()))
4359  {
4360  const decltype(uos)::size_type uo_index = uos.front()->needThreadedCopy() ? tid : 0;
4361  if (const auto functor = dynamic_cast<Moose::FunctorBase<Real> *>(uos[uo_index].get()))
4362  {
4363  this->addFunctor(name, *functor, tid);
4364  if (_displaced_problem)
4365  _displaced_problem->addFunctor(name, *functor, tid);
4366  }
4367  }
4368 
4369  return uos;
4370 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
Base class for implementing interface user objects.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for user objects executed one or more sidesets, which may be on the outer boundary of the ...
This user object allows related evaluations on elements, boundaries, internal sides, interfaces in one single place.
Base class for creating new nodally-based mortar user objects.
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
A user object that runs over all the nodes and does an aggregation step to compute a single value...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for user objects executed on all element sides internal to one or more blocks...
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
IntRange< T > make_range(T beg, T end)
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
std::shared_ptr< DisplacedProblem > _displaced_problem
Base class for user-specific data.
Definition: UserObject.h:40
An instance of this object type has one copy per thread that runs on each thread. ...

◆ addVariable()

void MFEMProblem::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
overridevirtual

Override of ExternalProblem::addVariable.

Sets a MFEM grid function (and time derivative, for transient problems) to be used in the MFEM solve.

Reimplemented from FEProblemBase.

Definition at line 160 of file MFEMProblem.C.

163 {
164  addGridFunction(var_type, var_name, parameters);
165  // MOOSE variables store DoFs for the trial variable and its time derivatives up to second order;
166  // MFEM GridFunctions store data for only one set of DoFs each, so we must add additional
167  // GridFunctions for time derivatives.
168  if (isTransient())
170 }
void addGridFunction(const std::string &var_type, const std::string &var_name, InputParameters &parameters)
Adds one MFEM GridFunction to be used in the MFEM solve.
Definition: MFEMProblem.C:173
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::string GetTimeDerivativeName(std::string name)
virtual bool isTransient() const override

◆ addVectorPostprocessor()

void FEProblemBase::addVectorPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4265 of file FEProblemBase.C.

Referenced by ExtraIDIntegralReporter::ExtraIDIntegralReporter().

4268 {
4269  // Check for name collision
4270  if (hasUserObject(name))
4271  mooseError("A ",
4273  " already exists. You may not add a VectorPostprocessor by the same name.");
4274 
4275  addUserObject(pp_name, name, parameters);
4276 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addVectorTag()

TagID SubProblem::addVectorTag ( const TagName &  tag_name,
const Moose::VectorTagType  type = Moose::VECTOR_TAG_RESIDUAL 
)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag, but the type must be the same.

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated
typeThe type of the tag

Reimplemented in DisplacedProblem.

Definition at line 92 of file SubProblem.C.

Referenced by DisplacedProblem::addVectorTag(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), LinearSystem::LinearSystem(), SystemBase::needSolutionState(), and NonlinearSystemBase::NonlinearSystemBase().

94 {
96  mooseError("Vector tag type cannot be VECTOR_TAG_ANY");
97 
98  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
99 
100  // First, see if the tag exists already
101  for (const auto & vector_tag : _vector_tags)
102  {
103  mooseAssert(_vector_tags[vector_tag._id] == vector_tag, "Vector tags index mismatch");
104  if (vector_tag._name == tag_name_upper)
105  {
106  if (vector_tag._type != type)
107  mooseError("While attempting to add vector tag with name '",
108  tag_name_upper,
109  "' and type ",
110  type,
111  ",\na tag with the same name but type ",
112  vector_tag._type,
113  " was found.\n\nA tag can only exist with one type.");
114 
115  return vector_tag._id;
116  }
117  }
118 
119  // Doesn't exist - create it
120  const TagID new_tag_id = _vector_tags.size();
121  const TagTypeID new_tag_type_id = _typed_vector_tags[type].size();
122  // Primary storage for all tags where the index in the vector == the tag ID
123  _vector_tags.emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
124  // Secondary storage for each type so that we can have quick access to all tags of a type
125  _typed_vector_tags[type].emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
126  // Name map storage for quick name access
127  _vector_tags_name_map.emplace(tag_name_upper, new_tag_id);
128 
129  // Make sure that _vector_tags, _typed_vector_tags, and _vector_tags_name_map are sane
131 
132  return new_tag_id;
133 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ advanceMultiApps()

void FEProblemBase::advanceMultiApps ( ExecFlagType  type)
inlineinherited

Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose.

Definition at line 1333 of file FEProblemBase.h.

1334  {
1335  mooseDeprecated("Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep "
1336  "depending on your purpose");
1338  }
void finishMultiAppStep(ExecFlagType type, bool recurse_through_multiapp_levels=false)
Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ advanceState()

void FEProblemBase::advanceState ( )
virtualinherited

Advance all of the state holding vectors / datastructures so that we can move to the next timestep.

Reimplemented in DumpObjectsProblem.

Definition at line 6613 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), TransientBase::incrementStepOrReject(), NonlinearEigen::init(), TransientMultiApp::setupApp(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), NonlinearEigen::takeStep(), and InversePowerMethod::takeStep().

6614 {
6615  TIME_SECTION("advanceState", 5, "Advancing State");
6616 
6617  for (auto & sys : _solver_systems)
6618  sys->copyOldSolutions();
6619  _aux->copyOldSolutions();
6620 
6621  if (_displaced_problem)
6622  {
6623  for (const auto i : index_range(_solver_systems))
6624  _displaced_problem->solverSys(i).copyOldSolutions();
6625  _displaced_problem->auxSys().copyOldSolutions();
6626  }
6627 
6629 
6631 
6634 
6637 
6640 }
void shift()
Shift the material properties in time.
MaterialPropertyStorage & _bnd_material_props
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void copyValuesBack()
Copies current chain control data values into old values.
MooseApp & getMooseApp() const
Get the MooseApp this class is associated with.
Definition: MooseBase.h:83
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void copyValuesBack()
At the end of a timestep this method is called to copy the values back in time in preparation for the...
Definition: ReporterData.C:17
ChainControlDataSystem & getChainControlDataSystem()
Gets the system that manages the ChainControls.
Definition: MooseApp.h:838
std::shared_ptr< DisplacedProblem > _displaced_problem
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)

◆ allowInvalidSolution()

bool FEProblemBase::allowInvalidSolution ( ) const
inlineinherited

Whether to accept / allow an invalid solution.

Definition at line 1992 of file FEProblemBase.h.

Referenced by FEProblemBase::acceptInvalidSolution().

1992 { return _allow_invalid_solution; }
const bool _allow_invalid_solution

◆ allowOutput() [1/2]

void FEProblemBase::allowOutput ( bool  state)
inherited

Ability to enable/disable all output calls.

This is needed by Multiapps and applications to disable output for cases when executioners call other executions and when Multiapps are sub cycling.

Definition at line 6709 of file FEProblemBase.C.

Referenced by TransientMultiApp::resetApp(), and TransientMultiApp::solveStep().

6710 {
6712 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ allowOutput() [2/2]

template<typename T >
void FEProblemBase::allowOutput ( bool  state)
inherited

Definition at line 3112 of file FEProblemBase.h.

3113 {
3114  _app.getOutputWarehouse().allowOutput<T>(state);
3115 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ areCoupled()

bool FEProblemBase::areCoupled ( const unsigned int  ivar,
const unsigned int  jvar,
const unsigned int  nl_sys_num 
) const
inherited

Definition at line 6158 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

6161 {
6162  return (*_cm[nl_sys])(ivar, jvar);
6163 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ assembly() [1/2]

Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
)
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3260 of file FEProblemBase.h.

Referenced by ArrayNodalBC::computeJacobian(), VectorNodalBC::computeJacobian(), NodalBC::computeJacobian(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), VectorNodalBC::computeOffDiagJacobian(), ArrayNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NonlinearSystemBase::constraintJacobians(), FEProblemBase::initialSetup(), ComputeBoundaryInitialConditionThread::onNode(), MaxQpsThread::operator()(), and FEProblemBase::reinitScalars().

3261 {
3262  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3263  mooseAssert(sys_num < _assembly[tid].size(),
3264  "System number larger than the assembly container size");
3265  return *_assembly[tid][sys_num];
3266 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ assembly() [2/2]

const Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
) const
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3269 of file FEProblemBase.h.

3270 {
3271  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3272  mooseAssert(sys_num < _assembly[tid].size(),
3273  "System number larger than the assembly container size");
3274  return *_assembly[tid][sys_num];
3275 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ automaticScaling() [1/4]

bool SubProblem::automaticScaling ( ) const
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

Referenced by FEProblemBase::automaticScaling(), and DisplacedProblem::DisplacedProblem().

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122

◆ automaticScaling() [2/4]

void SubProblem::automaticScaling
inherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 1155 of file SubProblem.C.

1156 {
1157  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1158  systemBaseNonlinear(nl_sys_num).automaticScaling(automatic_scaling);
1159 }
virtual std::size_t numNonlinearSystems() const override
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.
IntRange< T > make_range(T beg, T end)

◆ automaticScaling() [3/4]

bool SubProblem::automaticScaling
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.

◆ automaticScaling() [4/4]

void FEProblemBase::automaticScaling ( bool  automatic_scaling)
overridevirtualinherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Reimplemented from SubProblem.

Definition at line 9019 of file FEProblemBase.C.

Referenced by DisplacedProblem::DisplacedProblem(), and FEProblemSolve::FEProblemSolve().

9020 {
9021  if (_displaced_problem)
9022  _displaced_problem->automaticScaling(automatic_scaling);
9023 
9024  SubProblem::automaticScaling(automatic_scaling);
9025 }
bool automaticScaling() const
Automatic scaling getter.
Definition: SubProblem.C:1162
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ backupMultiApps()

void FEProblemBase::backupMultiApps ( ExecFlagType  type)
inherited

Backup the MultiApps associated with the ExecFlagType.

Definition at line 5529 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), MFEMProblemSolve::solve(), and FixedPointSolve::solve().

5530 {
5531  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5532 
5533  if (multi_apps.size())
5534  {
5535  TIME_SECTION("backupMultiApps", 5, "Backing Up MultiApp");
5536 
5537  if (_verbose_multiapps)
5538  _console << COLOR_CYAN << "\nBacking Up MultiApps on " << type.name() << COLOR_DEFAULT
5539  << std::endl;
5540 
5541  for (const auto & multi_app : multi_apps)
5542  multi_app->backup();
5543 
5545 
5546  if (_verbose_multiapps)
5547  _console << COLOR_CYAN << "Finished Backing Up MultiApps on " << type.name() << "\n"
5548  << COLOR_DEFAULT << std::endl;
5549  }
5550 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ bumpAllQRuleOrder()

void FEProblemBase::bumpAllQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Definition at line 6015 of file FEProblemBase.C.

6016 {
6017  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6018  for (const auto i : index_range(_nl))
6019  _assembly[tid][i]->bumpAllQRuleOrder(order, block);
6020 
6021  if (_displaced_problem)
6022  _displaced_problem->bumpAllQRuleOrder(order, block);
6023 
6024  updateMaxQps();
6025 }
unsigned int n_threads()
void bumpAllQRuleOrder(libMesh::Order order, SubdomainID block)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ bumpVolumeQRuleOrder()

void FEProblemBase::bumpVolumeQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower.

This can only cause the quadrature level to increase. If volume_order is lower than or equal to the current volume/elem quadrature rule order, then nothing is done (i.e. this function is idempotent).

Definition at line 6002 of file FEProblemBase.C.

6003 {
6004  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6005  for (const auto i : index_range(_nl))
6006  _assembly[tid][i]->bumpVolumeQRuleOrder(order, block);
6007 
6008  if (_displaced_problem)
6009  _displaced_problem->bumpVolumeQRuleOrder(order, block);
6010 
6011  updateMaxQps();
6012 }
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void bumpVolumeQRuleOrder(libMesh::Order order, SubdomainID block)
Increases the element/volume quadrature order for the specified mesh block if and only if the current...
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ cacheJacobian()

void FEProblemBase::cacheJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1977 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulate(), NonlinearSystemBase::constraintJacobians(), and ComputeJacobianThread::postElement().

1978 {
1980  if (_displaced_problem)
1981  _displaced_problem->cacheJacobian(tid);
1982 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheJacobian(const THREAD_ID tid)
Definition: SubProblem.C:1312

◆ cacheJacobianNeighbor()

void FEProblemBase::cacheJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1985 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

1986 {
1988  if (_displaced_problem)
1989  _displaced_problem->cacheJacobianNeighbor(tid);
1990 }
virtual void cacheJacobianNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1320
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidual()

void FEProblemBase::cacheResidual ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1863 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulate(), ComputeResidualAndJacobianThread::accumulate(), and NonlinearSystemBase::constraintResiduals().

1864 {
1866  if (_displaced_problem)
1867  _displaced_problem->cacheResidual(tid);
1868 }
virtual void cacheResidual(const THREAD_ID tid)
Definition: SubProblem.C:1291
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidualNeighbor()

void FEProblemBase::cacheResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1871 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1872 {
1874  if (_displaced_problem)
1875  _displaced_problem->cacheResidualNeighbor(tid);
1876 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheResidualNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1298

◆ callMooseError() [1/2]

void MooseBase::callMooseError ( std::string  msg,
const bool  with_prefix,
const hit::Node *  node = nullptr 
) const
inherited

External method for calling moose error with added object context.

Parameters
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 102 of file MooseBase.C.

Referenced by InputParameters::callMooseError(), MooseBase::mooseDocumentedError(), MooseBase::mooseError(), and MooseBase::mooseErrorNonPrefixed().

105 {
106  callMooseError(&_app, _pars, msg, with_prefix, node);
107 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ callMooseError() [2/2]

void MooseBase::callMooseError ( MooseApp *const  app,
const InputParameters params,
std::string  msg,
const bool  with_prefix,
const hit::Node *  node 
)
staticinherited

External method for calling moose error with added object context.

Needed so that objects without the MooseBase context (InputParameters) can call errors with context

Parameters
appThe app pointer (if available); adds multiapp context and clears the console
paramsThe parameters, needed to obtain object information
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 110 of file MooseBase.C.

115 {
116  if (!node)
117  node = MooseBase::getHitNode(params);
118 
119  std::string multiapp_prefix = "";
120  if (app)
121  {
122  if (!app->isUltimateMaster())
123  multiapp_prefix = app->name();
125  }
126 
127  if (with_prefix)
128  // False here because the hit context will get processed by the node
129  msg = messagePrefix(params, false) + msg;
130 
131  moose::internal::mooseErrorRaw(msg, multiapp_prefix, node);
132 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
void mooseErrorRaw(std::string msg, const std::string &prefix="", const hit::Node *node=nullptr)
Main callback for emitting a moose error.
Definition: MooseError.C:53
void mooseConsole()
Send current output buffer to Console output objects.
const hit::Node * getHitNode() const
Definition: MooseBase.h:132
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ checkBlockMatProps()

void SubProblem::checkBlockMatProps ( )
virtualinherited

Checks block material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 623 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

624 {
625  // Variable for storing all available blocks/boundaries from the mesh
626  std::set<SubdomainID> all_ids(mesh().meshSubdomains());
627 
628  std::stringstream errors;
629 
630  // Loop through the properties to check
631  for (const auto & check_it : _map_block_material_props_check)
632  {
633  // The current id for the property being checked (BoundaryID || BlockID)
634  SubdomainID check_id = check_it.first;
635 
636  std::set<SubdomainID> check_ids = {check_id};
637 
638  // Loop through all the block/boundary ids
639  for (const auto & id : check_ids)
640  {
641  // Loop through all the stored properties
642  for (const auto & prop_it : check_it.second)
643  {
644  // Produce an error if the material property is not defined on the current block/boundary
645  // and any block/boundary
646  // and not is not a zero material property.
647  if (_map_block_material_props[id].count(prop_it.second) == 0 &&
648  _zero_block_material_props[id].count(prop_it.second) == 0)
649  {
650  std::string check_name = restrictionSubdomainCheckName(id);
651  if (check_name.empty())
652  check_name = std::to_string(id);
653  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
654  << "' is not defined on block " << check_name << "\n";
655  }
656  }
657  }
658  }
659 
660  if (!errors.str().empty())
661  mooseError(errors.str());
662 }
virtual MooseMesh & mesh()=0
std::string restrictionSubdomainCheckName(SubdomainID check_id)
Helper functions for checking MaterialProperties.
Definition: SubProblem.C:772
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ checkBoundaryMatProps()

void SubProblem::checkBoundaryMatProps ( )
virtualinherited

Checks boundary material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 665 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

666 {
667  // Variable for storing the value for ANY_BOUNDARY_ID
669 
670  // Variable for storing all available blocks/boundaries from the mesh
671  std::set<BoundaryID> all_ids(mesh().getBoundaryIDs());
672 
673  std::stringstream errors;
674 
675  // Loop through the properties to check
676  for (const auto & check_it : _map_boundary_material_props_check)
677  {
678  // The current id for the property being checked (BoundaryID || BlockID)
679  BoundaryID check_id = check_it.first;
680 
681  // In the case when the material being checked has an ID is set to ANY, then loop through all
682  // the possible ids and verify that the material property is defined.
683  std::set<BoundaryID> check_ids{check_id};
684  if (check_id == any_id)
685  check_ids = all_ids;
686 
687  // Loop through all the block/boundary ids
688  for (const auto & id : check_ids)
689  {
690  // Loop through all the stored properties
691  for (const auto & prop_it : check_it.second)
692  {
693  // Produce an error if the material property is not defined on the current block/boundary
694  // and any block/boundary
695  // and not is not a zero material property.
696  if (_map_boundary_material_props[id].count(prop_it.second) == 0 &&
697  _map_boundary_material_props[any_id].count(prop_it.second) == 0 &&
698  _zero_boundary_material_props[id].count(prop_it.second) == 0 &&
699  _zero_boundary_material_props[any_id].count(prop_it.second) == 0)
700  {
701  std::string check_name = restrictionBoundaryCheckName(id);
702  if (check_name.empty())
703  check_name = std::to_string(id);
704  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
705  << "' is not defined on boundary " << check_name << "\n";
706  }
707  }
708  }
709  }
710 
711  if (!errors.str().empty())
712  mooseError(errors.str());
713 }
virtual MooseMesh & mesh()=0
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
std::string restrictionBoundaryCheckName(BoundaryID check_id)
Definition: SubProblem.C:783
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
boundary_id_type BoundaryID
std::vector< BoundaryID > getBoundaryIDs(const libMesh::MeshBase &mesh, const std::vector< BoundaryName > &boundary_name, bool generate_unknown, const std::set< BoundaryID > &mesh_boundary_ids)
Gets the boundary IDs with their names.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ checkCoordinateSystems()

void FEProblemBase::checkCoordinateSystems ( )
protectedinherited

Verify that there are no element type/coordinate type conflicts.

Definition at line 8636 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8637 {
8639 }
MooseMesh & _mesh
void checkCoordinateSystems()
Performs a sanity check for every element in the mesh.
Definition: MooseMesh.C:4307

◆ checkDependMaterialsHelper()

void FEProblemBase::checkDependMaterialsHelper ( const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &  materials_map)
protectedinherited

Helper method for checking Material object dependency.

See also
checkProblemIntegrity

These two sets are used to make sure that all dependent props on a block are actually supplied

Definition at line 8511 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8513 {
8514  for (const auto & it : materials_map)
8515  {
8517  std::set<std::string> block_depend_props, block_supplied_props;
8518 
8519  for (const auto & mat1 : it.second)
8520  {
8521  const std::set<std::string> & depend_props = mat1->getRequestedItems();
8522  block_depend_props.insert(depend_props.begin(), depend_props.end());
8523 
8524  auto & alldeps = mat1->getMatPropDependencies(); // includes requested stateful props
8525  for (auto & dep : alldeps)
8526  if (const auto name = _material_props.queryStatefulPropName(dep))
8527  block_depend_props.insert(*name);
8528 
8529  // See if any of the active materials supply this property
8530  for (const auto & mat2 : it.second)
8531  {
8532  const std::set<std::string> & supplied_props = mat2->MaterialBase::getSuppliedItems();
8533  block_supplied_props.insert(supplied_props.begin(), supplied_props.end());
8534  }
8535  }
8536 
8537  // Add zero material properties specific to this block and unrestricted
8538  block_supplied_props.insert(_zero_block_material_props[it.first].begin(),
8539  _zero_block_material_props[it.first].end());
8540 
8541  // Error check to make sure all properties consumed by materials are supplied on this block
8542  std::set<std::string> difference;
8543  std::set_difference(block_depend_props.begin(),
8544  block_depend_props.end(),
8545  block_supplied_props.begin(),
8546  block_supplied_props.end(),
8547  std::inserter(difference, difference.end()));
8548 
8549  if (!difference.empty())
8550  {
8551  std::ostringstream oss;
8552  oss << "One or more Material Properties were not supplied on block ";
8553  const std::string & subdomain_name = _mesh.getSubdomainName(it.first);
8554  if (subdomain_name.length() > 0)
8555  oss << subdomain_name << " (" << it.first << ")";
8556  else
8557  oss << it.first;
8558  oss << ":\n";
8559  for (const auto & name : difference)
8560  oss << name << "\n";
8561  mooseError(oss.str());
8562  }
8563  }
8564 
8565  // This loop checks that materials are not supplied by multiple Material objects
8566  for (const auto & it : materials_map)
8567  {
8568  const auto & materials = it.second;
8569  std::set<std::string> inner_supplied, outer_supplied;
8570 
8571  for (const auto & outer_mat : materials)
8572  {
8573  // Storage for properties for this material (outer) and all other materials (inner)
8574  outer_supplied = outer_mat->getSuppliedItems();
8575  inner_supplied.clear();
8576 
8577  // Property to material map for error reporting
8578  std::map<std::string, std::set<std::string>> prop_to_mat;
8579  for (const auto & name : outer_supplied)
8580  prop_to_mat[name].insert(outer_mat->name());
8581 
8582  for (const auto & inner_mat : materials)
8583  {
8584  if (outer_mat == inner_mat)
8585  continue;
8586 
8587  // Check whether these materials are an AD pair
8588  auto outer_mat_type = outer_mat->type();
8589  auto inner_mat_type = inner_mat->type();
8590  removeSubstring(outer_mat_type, "<RESIDUAL>");
8591  removeSubstring(outer_mat_type, "<JACOBIAN>");
8592  removeSubstring(inner_mat_type, "<RESIDUAL>");
8593  removeSubstring(inner_mat_type, "<JACOBIAN>");
8594  if (outer_mat_type == inner_mat_type && outer_mat_type != outer_mat->type() &&
8595  inner_mat_type != inner_mat->type())
8596  continue;
8597 
8598  inner_supplied.insert(inner_mat->getSuppliedItems().begin(),
8599  inner_mat->getSuppliedItems().end());
8600 
8601  for (const auto & inner_supplied_name : inner_supplied)
8602  prop_to_mat[inner_supplied_name].insert(inner_mat->name());
8603  }
8604 
8605  // Test that a property isn't supplied on multiple blocks
8606  std::set<std::string> intersection;
8607  std::set_intersection(outer_supplied.begin(),
8608  outer_supplied.end(),
8609  inner_supplied.begin(),
8610  inner_supplied.end(),
8611  std::inserter(intersection, intersection.end()));
8612 
8613  if (!intersection.empty())
8614  {
8615  std::ostringstream oss;
8616  oss << "The following material properties are declared on block " << it.first
8617  << " by multiple materials:\n";
8618  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << "Material Property"
8619  << "Material Objects\n";
8620  for (const auto & outer_name : intersection)
8621  {
8622  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << outer_name;
8623  for (const auto & inner_name : prop_to_mat[outer_name])
8624  oss << inner_name << " ";
8625  oss << '\n';
8626  }
8627 
8628  mooseError(oss.str());
8629  break;
8630  }
8631  }
8632  }
8633 }
std::string indent(unsigned int spaces)
Create empty string for indenting.
Definition: ConsoleUtils.C:41
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1763
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::optional< std::string > queryStatefulPropName(const unsigned int id) const
MooseMesh & _mesh
void removeSubstring(std::string &main, const std::string &sub)
find, erase, length algorithm for removing a substring from a string
Definition: MooseUtils.C:1296
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _material_props
for(PetscInt i=0;i< nvars;++i)

◆ checkDisplacementOrders()

void FEProblemBase::checkDisplacementOrders ( )
protectedinherited

Verify that SECOND order mesh uses SECOND order displacements.

Definition at line 8435 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8436 {
8437  if (_displaced_problem)
8438  {
8439  bool mesh_has_second_order_elements = false;
8440  for (const auto & elem : as_range(_displaced_mesh->activeLocalElementsBegin(),
8442  {
8443  if (elem->default_order() == SECOND)
8444  {
8445  mesh_has_second_order_elements = true;
8446  break;
8447  }
8448  }
8449 
8450  // We checked our local elements, so take the max over all processors.
8451  _displaced_mesh->comm().max(mesh_has_second_order_elements);
8452 
8453  // If the Mesh has second order elements, make sure the
8454  // displacement variables are second-order.
8455  if (mesh_has_second_order_elements)
8456  {
8457  const std::vector<std::string> & displacement_variables =
8458  _displaced_problem->getDisplacementVarNames();
8459 
8460  for (const auto & var_name : displacement_variables)
8461  {
8462  MooseVariableFEBase & mv =
8463  _displaced_problem->getVariable(/*tid=*/0,
8464  var_name,
8467  if (mv.order() != SECOND)
8468  mooseError("Error: mesh has SECOND order elements, so all displacement variables must be "
8469  "SECOND order.");
8470  }
8471  }
8472  }
8473 }
const Parallel::Communicator & comm() const
This class provides an interface for common operations on field variables of both FE and FV types wit...
SECOND
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
MeshBase::element_iterator activeLocalElementsBegin()
Calls active_local_nodes_begin/end() on the underlying libMesh mesh object.
Definition: MooseMesh.C:3051
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
void max(const T &r, T &o, Request &req) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
const MeshBase::element_iterator activeLocalElementsEnd()
Definition: MooseMesh.C:3057
MooseMesh * _displaced_mesh

◆ checkDuplicatePostprocessorVariableNames()

void FEProblemBase::checkDuplicatePostprocessorVariableNames ( )
inherited

Definition at line 1478 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

1479 {
1480  for (const auto & pp : _reporter_data.getPostprocessorNames())
1481  if (hasScalarVariable(pp))
1482  mooseError("Postprocessor \"" + pp +
1483  "\" has the same name as a scalar variable in the system.");
1484 }
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
ReporterData _reporter_data
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< std::string > getPostprocessorNames() const
Return a list of all postprocessor names.
Definition: ReporterData.C:71

◆ checkExceptionAndStopSolve()

void FEProblemBase::checkExceptionAndStopSolve ( bool  print_message = true)
virtualinherited

Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut.

Notes:

  • The exception have be registered by calling setException() prior to calling this.
  • This is collective on MPI, and must be called simultaneously by all processors!
  • If called when the solve can be interruped, it will do so and also throw a MooseException, which must be handled.
  • If called at a stage in the execution when the solve cannot be interupted (i.e., there is no solve active), it will generate an error and terminate the application.
  • DO NOT CALL THIS IN A THREADED REGION! This is meant to be called just after a threaded section.
Parameters
print_messagewhether to print a message with exception information

Definition at line 6441 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::handleException(), and DisplacedProblem::updateMesh().

6442 {
6444  return;
6445 
6446  TIME_SECTION("checkExceptionAndStopSolve", 5);
6447 
6448  // See if any processor had an exception. If it did, get back the
6449  // processor that the exception occurred on.
6450  unsigned int processor_id;
6451 
6453 
6454  if (_has_exception)
6455  {
6457 
6460  {
6461  // Print the message
6462  if (_communicator.rank() == 0 && print_message)
6463  {
6464  _console << "\n" << _exception_message << "\n";
6465  if (isTransient())
6466  _console
6467  << "To recover, the solution will fail and then be re-attempted with a reduced time "
6468  "step.\n"
6469  << std::endl;
6470  }
6471 
6472  // Stop the solve -- this entails setting
6473  // SNESSetFunctionDomainError() or directly inserting NaNs in the
6474  // residual vector to let PETSc >= 3.6 return DIVERGED_NANORINF.
6475  if (_current_nl_sys)
6477 
6478  if (_current_linear_sys)
6480 
6481  // and close Aux system (we MUST do this here; see #11525)
6482  _aux->solution().close();
6483 
6484  // We've handled this exception, so we no longer have one.
6485  _has_exception = false;
6486 
6487  // Force the next non-linear convergence check to fail (and all further residual evaluation
6488  // to be skipped).
6490 
6491  // Repropagate the exception, so it can be caught at a higher level, typically
6492  // this is NonlinearSystem::computeResidual().
6494  }
6495  else
6496  mooseError("The following parallel-communicated exception was detected during " +
6497  Moose::stringify(_current_execute_on_flag) + " evaluation:\n" +
6499  "\nBecause this did not occur during residual evaluation, there"
6500  " is no way to handle this, so the solution is aborting.\n");
6501  }
6502 }
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close) override
Quit the current solve as soon as possible.
Definition: LinearSystem.C:326
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
ExecFlagType _current_execute_on_flag
Current execute_on flag.
processor_id_type rank() const
bool _has_exception
Whether or not an exception has occurred.
const Parallel::Communicator & _communicator
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
void maxloc(T &r, unsigned int &max_id) const
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::string _exception_message
The error message to go with an exception.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
Quit the current solve as soon as possible.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< TagID > _fe_vector_tags
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
virtual bool isTransient() const override
bool _fail_next_system_convergence_check
processor_id_type processor_id() const

◆ checkingUOAuxState()

bool FEProblemBase::checkingUOAuxState ( ) const
inlineinherited

Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e.

the check has been activated by users through Problem/check_uo_aux_state input parameter.

Definition at line 197 of file FEProblemBase.h.

Referenced by MemoryUsage::execute(), VectorMemoryUsage::execute(), PerfGraphData::finalize(), MemoryUsage::finalize(), and VectorMemoryUsage::finalize().

197 { return _checking_uo_aux_state; }
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.

◆ checkNonlocalCoupling()

void FEProblemBase::checkNonlocalCoupling ( )
inherited
Returns
Flag indicating nonlocal coupling exists or not.

Definition at line 1603 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1604 {
1605  TIME_SECTION("checkNonlocalCoupling", 5, "Checking Nonlocal Coupling");
1606 
1607  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1608  for (auto & nl : _nl)
1609  {
1610  const auto & all_kernels = nl->getKernelWarehouse();
1611  const auto & kernels = all_kernels.getObjects(tid);
1612  for (const auto & kernel : kernels)
1613  {
1614  std::shared_ptr<NonlocalKernel> nonlocal_kernel =
1616  if (nonlocal_kernel)
1617  {
1620  _nonlocal_kernels.addObject(kernel, tid);
1621  }
1622  }
1623  const MooseObjectWarehouse<IntegratedBCBase> & all_integrated_bcs =
1624  nl->getIntegratedBCWarehouse();
1625  const auto & integrated_bcs = all_integrated_bcs.getObjects(tid);
1626  for (const auto & integrated_bc : integrated_bcs)
1627  {
1628  std::shared_ptr<NonlocalIntegratedBC> nonlocal_integrated_bc =
1630  if (nonlocal_integrated_bc)
1631  {
1634  _nonlocal_integrated_bcs.addObject(integrated_bc, tid);
1635  }
1636  }
1637  }
1638 }
unsigned int n_threads()
NonlocalIntegratedBC is used for solving integral terms in integro-differential equations.
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
NonlocalKernel is used for solving integral terms in integro-differential equations.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ checkNonlocalCouplingRequirement()

bool FEProblemBase::checkNonlocalCouplingRequirement ( ) const
overridevirtualinherited
Returns
whether there will be nonlocal coupling at any point in the simulation, e.g. whether there are any active or inactive nonlocal kernels or boundary conditions

Implements SubProblem.

Definition at line 9449 of file FEProblemBase.C.

Referenced by DisplacedProblem::checkNonlocalCouplingRequirement(), ComputeJacobianThread::compute(), ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

9450 {
9452 }
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag

◆ checkProblemIntegrity()

void FEProblemBase::checkProblemIntegrity ( )
virtualinherited

Method called to perform a series of sanity checks before a simulation is run.

This method doesn't return when errors are found, instead it generally calls mooseError() directly.

If a material is specified for any block in the simulation, then all blocks must have a material specified.

unsigned int is necessary to print SubdomainIDs in the statement below

vector is necessary to get the subdomain names

Reimplemented in EigenProblem.

Definition at line 8263 of file FEProblemBase.C.

Referenced by EigenProblem::checkProblemIntegrity().

8264 {
8265  TIME_SECTION("checkProblemIntegrity", 5);
8266 
8267  // Subdomains specified by the "Problem/block" parameter
8268  const auto & subdomain_names = getParam<std::vector<SubdomainName>>("block");
8269  auto mesh_subdomains_vec = MooseMeshUtils::getSubdomainIDs(_mesh, subdomain_names);
8270  std::set<SubdomainID> mesh_subdomains(mesh_subdomains_vec.begin(), mesh_subdomains_vec.end());
8271 
8272  // Check kernel coverage of subdomains (blocks) in the mesh
8275  {
8276  std::set<SubdomainID> blocks;
8279  blocks = mesh_subdomains;
8281  {
8282  blocks = mesh_subdomains;
8283  for (const auto & subdomain_name : _kernel_coverage_blocks)
8284  {
8285  const auto id = _mesh.getSubdomainID(subdomain_name);
8286  if (id == Moose::INVALID_BLOCK_ID)
8287  paramError("kernel_coverage_block_list",
8288  "Subdomain \"",
8289  subdomain_name,
8290  "\" not found in mesh.");
8291  blocks.erase(id);
8292  }
8293  }
8295  for (const auto & subdomain_name : _kernel_coverage_blocks)
8296  {
8297  const auto id = _mesh.getSubdomainID(subdomain_name);
8298  if (id == Moose::INVALID_BLOCK_ID)
8299  paramError("kernel_coverage_block_list",
8300  "Subdomain \"",
8301  subdomain_name,
8302  "\" not found in mesh.");
8303  blocks.insert(id);
8304  }
8305  if (!blocks.empty())
8306  for (auto & nl : _nl)
8307  nl->checkKernelCoverage(blocks);
8308  }
8309 
8310  // Check materials
8311  {
8312 #ifdef LIBMESH_ENABLE_AMR
8313  if ((_adaptivity.isOn() || _num_grid_steps) &&
8316  {
8317  _console << "Using EXPERIMENTAL Stateful Material Property projection with Adaptivity!\n"
8318  << std::flush;
8319  }
8320 #endif
8321 
8322  std::set<SubdomainID> local_mesh_subs(mesh_subdomains);
8323 
8326  {
8331  bool check_material_coverage = false;
8332  std::set<SubdomainID> ids = _all_materials.getActiveBlocks();
8333  for (const auto & id : ids)
8334  {
8335  local_mesh_subs.erase(id);
8336  check_material_coverage = true;
8337  }
8338 
8339  // did the user limit the subdomains to be checked?
8341  {
8342  for (const auto & subdomain_name : _material_coverage_blocks)
8343  {
8344  const auto id = _mesh.getSubdomainID(subdomain_name);
8345  if (id == Moose::INVALID_BLOCK_ID)
8346  paramError("material_coverage_block_list",
8347  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8348  local_mesh_subs.erase(id);
8349  }
8350  }
8352  {
8353  std::set<SubdomainID> blocks(local_mesh_subs);
8354  for (const auto & subdomain_name : _material_coverage_blocks)
8355  {
8356  const auto id = _mesh.getSubdomainID(subdomain_name);
8357  if (id == Moose::INVALID_BLOCK_ID)
8358  paramError("material_coverage_block_list",
8359  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8360  blocks.erase(id);
8361  }
8362  for (const auto id : blocks)
8363  local_mesh_subs.erase(id);
8364  }
8365 
8366  // also exclude mortar spaces from the material check
8367  auto && mortar_subdomain_ids = _mortar_data.getMortarSubdomainIDs();
8368  for (auto subdomain_id : mortar_subdomain_ids)
8369  local_mesh_subs.erase(subdomain_id);
8370 
8371  // Check Material Coverage
8372  if (check_material_coverage && !local_mesh_subs.empty())
8373  {
8374  std::stringstream extra_subdomain_ids;
8376  std::copy(local_mesh_subs.begin(),
8377  local_mesh_subs.end(),
8378  std::ostream_iterator<unsigned int>(extra_subdomain_ids, " "));
8380  std::vector<SubdomainID> local_mesh_subs_vec(local_mesh_subs.begin(),
8381  local_mesh_subs.end());
8382 
8383  mooseError("The following blocks from your input mesh do not contain an active material: " +
8384  extra_subdomain_ids.str() +
8385  "(names: " + Moose::stringify(_mesh.getSubdomainNames(local_mesh_subs_vec)) +
8386  ")\nWhen ANY mesh block contains a Material object, "
8387  "all blocks must contain a Material object.\n");
8388  }
8389  }
8390 
8391  // Check material properties on blocks and boundaries
8394 
8395  // Check that material properties exist when requested by other properties on a given block
8396  const auto & materials = _all_materials.getActiveObjects();
8397  for (const auto & material : materials)
8398  material->checkStatefulSanity();
8399 
8400  // auto mats_to_check = _materials.getActiveBlockObjects();
8401  // const auto & discrete_materials = _discrete_materials.getActiveBlockObjects();
8402  // for (const auto & map_it : discrete_materials)
8403  // for (const auto & container_element : map_it.second)
8404  // mats_to_check[map_it.first].push_back(container_element);
8407  }
8408 
8409  checkUserObjects();
8410 
8411  // Verify that we don't have any Element type/Coordinate Type conflicts
8413 
8414  // Coordinate transforms are only intended for use with MultiApps at this time. If you are not
8415  // using multiapps but still require these, contact a moose developer
8417  !hasMultiApps())
8418  mooseError("Coordinate transformation parameters, listed below, are only to be used in the "
8419  "context of application to application field transfers at this time. The mesh is "
8420  "not modified by these parameters within an application.\n"
8421  "You should likely use a 'TransformGenerator' in the [Mesh] block to achieve the "
8422  "desired mesh modification.\n\n",
8424 
8425  // If using displacements, verify that the order of the displacement
8426  // variables matches the order of the elements in the displaced
8427  // mesh.
8429 
8430  // Check for postprocessor names with same name as a scalar variable
8432 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
MaterialPropertyStorage & _bnd_material_props
void checkDependMaterialsHelper(const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
Helper method for checking Material object dependency.
static InputParameters validParams()
Describes the parameters this object can take to setup transformations.
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
char ** blocks
std::vector< SubdomainName > _kernel_coverage_blocks
std::vector< SubdomainName > _material_coverage_blocks
unsigned int _num_grid_steps
Number of steps in a grid sequence.
std::vector< subdomain_id_type > getSubdomainIDs(const libMesh::MeshBase &mesh, const std::vector< SubdomainName > &subdomain_name)
Get the associated subdomainIDs for the subdomain names that are passed in.
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
const bool _skip_nl_system_check
const SubdomainID INVALID_BLOCK_ID
Definition: MooseTypes.C:20
virtual void checkBoundaryMatProps()
Checks boundary material properties integrity.
Definition: SubProblem.C:665
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const bool & _solve
Whether or not to actually solve the nonlinear system.
std::set< SubdomainID > getActiveBlocks(THREAD_ID tid=0) const
Return a set of active SubdomainsIDs.
bool hasScalingOrRotationTransformation() const
Returns true if the app has scaling and/or rotation transformation.
void checkUserObjects()
void checkDisplacementOrders()
Verify that SECOND order mesh uses SECOND order displacements.
MortarData _mortar_data
MooseMesh & _mesh
virtual void checkBlockMatProps()
Checks block material properties integrity.
Definition: SubProblem.C:623
Adaptivity _adaptivity
const std::set< SubdomainID > & getMortarSubdomainIDs() const
Returns the mortar covered subdomains.
Definition: MortarData.h:84
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1769
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1888
void checkDuplicatePostprocessorVariableNames()
const bool _material_dependency_check
Determines whether a check to verify material dependencies on every subdomain.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...
MaterialPropertyStorage & _neighbor_material_props
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool hasMultiApps() const
Returns whether or not the current simulation has any multiapps.
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...
MaterialPropertyStorage & _material_props
MaterialWarehouse _all_materials
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1731
void checkCoordinateSystems()
Verify that there are no element type/coordinate type conflicts.

◆ checkUserObjectJacobianRequirement()

void FEProblemBase::checkUserObjectJacobianRequirement ( THREAD_ID  tid)
inherited

Definition at line 1641 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1642 {
1643  std::set<const MooseVariableFEBase *> uo_jacobian_moose_vars;
1644  {
1645  std::vector<ShapeElementUserObject *> objs;
1646  theWarehouse()
1647  .query()
1649  .condition<AttribThread>(tid)
1650  .queryInto(objs);
1651 
1652  for (const auto & uo : objs)
1653  {
1654  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1655  const auto & mv_deps = uo->jacobianMooseVariables();
1656  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1657  }
1658  }
1659  {
1660  std::vector<ShapeSideUserObject *> objs;
1661  theWarehouse()
1662  .query()
1664  .condition<AttribThread>(tid)
1665  .queryInto(objs);
1666  for (const auto & uo : objs)
1667  {
1668  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1669  const auto & mv_deps = uo->jacobianMooseVariables();
1670  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1671  }
1672  }
1673 
1674  _uo_jacobian_moose_vars[tid].assign(uo_jacobian_moose_vars.begin(), uo_jacobian_moose_vars.end());
1675  std::sort(
1676  _uo_jacobian_moose_vars[tid].begin(), _uo_jacobian_moose_vars[tid].end(), sortMooseVariables);
1677 }
bool _calculate_jacobian_in_uo
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ checkUserObjects()

void FEProblemBase::checkUserObjects ( )
protectedinherited

Definition at line 8476 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8477 {
8478  // Check user_objects block coverage
8479  std::set<SubdomainID> mesh_subdomains = _mesh.meshSubdomains();
8480  std::set<SubdomainID> user_objects_blocks;
8481 
8482  // gather names of all user_objects that were defined in the input file
8483  // and the blocks that they are defined on
8484  std::set<std::string> names;
8485 
8486  std::vector<UserObject *> objects;
8488 
8489  for (const auto & obj : objects)
8490  names.insert(obj->name());
8491 
8492  // See if all referenced blocks are covered
8493  std::set<SubdomainID> difference;
8494  std::set_difference(user_objects_blocks.begin(),
8495  user_objects_blocks.end(),
8496  mesh_subdomains.begin(),
8497  mesh_subdomains.end(),
8498  std::inserter(difference, difference.end()));
8499 
8500  if (!difference.empty())
8501  {
8502  std::ostringstream oss;
8503  oss << "One or more UserObjects is referencing a nonexistent block:\n";
8504  for (const auto & id : difference)
8505  oss << id << "\n";
8506  mooseError(oss.str());
8507  }
8508 }
TheWarehouse & theWarehouse() const
MooseMesh & _mesh
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3171

◆ clearActiveElementalMooseVariables()

void FEProblemBase::clearActiveElementalMooseVariables ( const THREAD_ID  tid)
overridevirtualinherited

Clear the active elemental MooseVariableFEBase.

If there are no active variables then they will all be reinited. Call this after finishing the computation that was using a restricted set of MooseVariableFEBases

Parameters
tidThe thread id

Reimplemented from SubProblem.

Definition at line 5844 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::post(), ComputeMarkerThread::post(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

5845 {
5847 
5848  if (_displaced_problem)
5849  _displaced_problem->clearActiveElementalMooseVariables(tid);
5850 }
virtual void clearActiveElementalMooseVariables(const THREAD_ID tid)
Clear the active elemental MooseVariableFieldBase.
Definition: SubProblem.C:466
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5853 of file FEProblemBase.C.

5854 {
5856 
5857  if (_displaced_problem)
5858  _displaced_problem->clearActiveFEVariableCoupleableMatrixTags(tid);
5859 }
virtual void clearActiveFEVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:384
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableVectorTags()

void FEProblemBase::clearActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5862 of file FEProblemBase.C.

5863 {
5865 
5866  if (_displaced_problem)
5867  _displaced_problem->clearActiveFEVariableCoupleableVectorTags(tid);
5868 }
virtual void clearActiveFEVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:378
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveMaterialProperties()

void FEProblemBase::clearActiveMaterialProperties ( const THREAD_ID  tid)
inherited

Clear the active material properties.

Should be called at the end of every computing thread

Parameters
tidThe thread id

Definition at line 5910 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

5911 {
5913 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ clearActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5871 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

5872 {
5874 
5875  if (_displaced_problem)
5876  _displaced_problem->clearActiveScalarVariableCoupleableMatrixTags(tid);
5877 }
virtual void clearActiveScalarVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:425
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::clearActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5880 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

5881 {
5883 
5884  if (_displaced_problem)
5885  _displaced_problem->clearActiveScalarVariableCoupleableVectorTags(tid);
5886 }
virtual void clearActiveScalarVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:419
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearAllDofIndices()

void SubProblem::clearAllDofIndices ( )
inherited

Clear dof indices from variables in nl and aux systems.

Definition at line 1177 of file SubProblem.C.

Referenced by FEProblemBase::solve().

1178 {
1179  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1182 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
void clearAllDofIndices()
Clear all dof indices from moose variables.
Definition: SystemBase.C:1605

◆ clearCurrentJacobianMatrixTags()

void FEProblemBase::clearCurrentJacobianMatrixTags ( )
inlineinherited

Clear the current Jacobian matrix tag data structure ...

if someone creates it

Definition at line 2471 of file FEProblemBase.h.

Referenced by FEProblemBase::resetState().

2471 {}

◆ clearCurrentResidualVectorTags()

void FEProblemBase::clearCurrentResidualVectorTags ( )
inlineinherited

Clear the current residual vector tag data structure.

Definition at line 3306 of file FEProblemBase.h.

Referenced by CrankNicolson::init(), and FEProblemBase::resetState().

3307 {
3309 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ clearDiracInfo()

void FEProblemBase::clearDiracInfo ( )
overridevirtualinherited

Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in.

Implements SubProblem.

Definition at line 2462 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2463 {
2465 
2466  if (_displaced_problem)
2467  _displaced_problem->clearDiracInfo();
2468 }
void clearPoints()
Remove all of the current points and elements.
std::shared_ptr< DisplacedProblem > _displaced_problem
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ computeBounds()

void FEProblemBase::computeBounds ( libMesh::NonlinearImplicitSystem sys,
NumericVector< libMesh::Number > &  lower,
NumericVector< libMesh::Number > &  upper 
)
virtualinherited

Definition at line 7449 of file FEProblemBase.C.

Referenced by Moose::compute_bounds().

7452 {
7453  try
7454  {
7455  try
7456  {
7457  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7458  "I expect these system numbers to be the same");
7459 
7460  if (!_current_nl_sys->hasVector("lower_bound") || !_current_nl_sys->hasVector("upper_bound"))
7461  return;
7462 
7463  TIME_SECTION("computeBounds", 1, "Computing Bounds");
7464 
7465  NumericVector<Number> & _lower = _current_nl_sys->getVector("lower_bound");
7466  NumericVector<Number> & _upper = _current_nl_sys->getVector("upper_bound");
7467  _lower.swap(lower);
7468  _upper.swap(upper);
7469  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
7471 
7472  _aux->residualSetup();
7474  _lower.swap(lower);
7475  _upper.swap(upper);
7476  }
7477  catch (...)
7478  {
7479  handleException("computeBounds");
7480  }
7481  }
7482  catch (MooseException & e)
7483  {
7484  mooseError("Irrecoverable exception: " + std::string(e.what()));
7485  }
7486  catch (...)
7487  {
7488  mooseError("Unexpected exception type");
7489  }
7490 }
virtual const char * what() const
Get out the error message.
unsigned int n_threads()
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916
unsigned int number() const
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
Provides a way for users to bail out of the current solve.
virtual void swap(NumericVector< T > &v)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925
MaterialWarehouse _all_materials
void computeSystems(const ExecFlagType &type)
Do generic system computations.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeDamping()

Real FEProblemBase::computeDamping ( const NumericVector< libMesh::Number > &  soln,
const NumericVector< libMesh::Number > &  update 
)
virtualinherited

Definition at line 7728 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7730 {
7731  // Default to no damping
7732  Real damping = 1.0;
7733 
7734  if (_has_dampers)
7735  {
7736  TIME_SECTION("computeDamping", 1, "Computing Damping");
7737 
7738  // Save pointer to the current solution
7739  const NumericVector<Number> * _saved_current_solution = _current_nl_sys->currentSolution();
7740 
7742  // For now, do not re-compute auxiliary variables. Doing so allows a wild solution increment
7743  // to get to the material models, which may not be able to cope with drastically different
7744  // values. Once more complete dependency checking is in place, auxiliary variables (and
7745  // material properties) will be computed as needed by dampers.
7746  // _aux.compute();
7747  damping = _current_nl_sys->computeDamping(soln, update);
7748 
7749  // restore saved solution
7750  _current_nl_sys->setSolution(*_saved_current_solution);
7751  }
7752 
7753  return damping;
7754 }
Real computeDamping(const NumericVector< Number > &solution, const NumericVector< Number > &update)
Compute damping.
bool _has_dampers
Whether or not this system has any Dampers associated with it.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ computeIndicators()

void FEProblemBase::computeIndicators ( )
virtualinherited

Reimplemented in DumpObjectsProblem.

Definition at line 4492 of file FEProblemBase.C.

Referenced by FEProblemBase::computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and FEProblemBase::initialAdaptMesh().

4493 {
4494  // Initialize indicator aux variable fields
4496  {
4497  TIME_SECTION("computeIndicators", 1, "Computing Indicators");
4498 
4499  // Internal side indicators may lead to creating a much larger sparsity pattern than dictated by
4500  // the actual finite element scheme (e.g. CFEM)
4501  const auto old_do_derivatives = ADReal::do_derivatives;
4502  ADReal::do_derivatives = false;
4503 
4504  std::vector<std::string> fields;
4505 
4506  // Indicator Fields
4507  const auto & indicators = _indicators.getActiveObjects();
4508  for (const auto & indicator : indicators)
4509  fields.push_back(indicator->name());
4510 
4511  // InternalSideIndicator Fields
4512  const auto & internal_indicators = _internal_side_indicators.getActiveObjects();
4513  for (const auto & internal_indicator : internal_indicators)
4514  fields.push_back(internal_indicator->name());
4515 
4516  _aux->zeroVariables(fields);
4517 
4518  // compute Indicators
4519  ComputeIndicatorThread cit(*this);
4521  _aux->solution().close();
4522  _aux->update();
4523 
4524  ComputeIndicatorThread finalize_cit(*this, true);
4526  _aux->solution().close();
4527  _aux->update();
4528 
4529  ADReal::do_derivatives = old_do_derivatives;
4530  }
4531 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseObjectWarehouse< Indicator > _indicators
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const

◆ computeIndicatorsAndMarkers()

void FEProblemBase::computeIndicatorsAndMarkers ( )
virtualinherited

Definition at line 4485 of file FEProblemBase.C.

4486 {
4488  computeMarkers();
4489 }
virtual void computeMarkers()
virtual void computeIndicators()

◆ computeJacobian()

void FEProblemBase::computeJacobian ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a Jacobian matrix with the default tag (system).

Definition at line 7284 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianSys().

7287 {
7288  setCurrentNonlinearSystem(nl_sys_num);
7289 
7290  _fe_matrix_tags.clear();
7291 
7292  auto & tags = getMatrixTags();
7293  for (auto & tag : tags)
7294  _fe_matrix_tags.insert(tag.second);
7295 
7296  computeJacobianInternal(soln, jacobian, _fe_matrix_tags);
7297 }
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
virtual void computeJacobianInternal(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
Form a Jacobian matrix for multiple tags.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
std::set< TagID > _fe_matrix_tags

◆ computeJacobianBlock()

void FEProblemBase::computeJacobianBlock ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
libMesh::System precond_system,
unsigned int  ivar,
unsigned int  jvar 
)
virtualinherited

Really not a good idea to use this.

It computes just one block of the Jacobian into a smaller matrix. Calling this in a loop is EXTREMELY ineffecient! Try to use computeJacobianBlocks() instead!

Parameters
jacobianThe matrix you want to fill
precond_systemThe libMesh::system of the preconditioning system
ivarthe block-row of the Jacobian
jvarthe block-column of the Jacobian

Definition at line 7437 of file FEProblemBase.C.

7441 {
7442  JacobianBlock jac_block(precond_system, jacobian, ivar, jvar);
7443  std::vector<JacobianBlock *> blocks = {&jac_block};
7444  mooseAssert(_current_nl_sys, "This should be non-null");
7446 }
Helper class for holding the preconditioning blocks to fill.
char ** blocks
virtual void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149

◆ computeJacobianBlocks()

void FEProblemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const unsigned int  nl_sys_num 
)
virtualinherited

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Reimplemented in EigenProblem.

Definition at line 7417 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianBlock(), and PhysicsBasedPreconditioner::setup().

7419 {
7420  TIME_SECTION("computeTransientImplicitJacobian", 2);
7421  setCurrentNonlinearSystem(nl_sys_num);
7422 
7423  if (_displaced_problem)
7424  {
7426  _displaced_problem->updateMesh();
7427  }
7428 
7430 
7434 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
std::shared_ptr< DisplacedProblem > _displaced_problem
void computeSystems(const ExecFlagType &type)
Do generic system computations.

◆ computeJacobianInternal()

void FEProblemBase::computeJacobianInternal ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const std::set< TagID > &  tags 
)
virtualinherited

Form a Jacobian matrix for multiple tags.

It should not be called directly by users.

Definition at line 7300 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian().

7303 {
7304  TIME_SECTION("computeJacobianInternal", 1);
7305 
7307 
7309 
7310  computeJacobianTags(tags);
7311 
7313 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianSys()

void FEProblemBase::computeJacobianSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
virtualinherited

Form a Jacobian matrix.

It is called by Libmesh.

Definition at line 7262 of file FEProblemBase.C.

Referenced by Moose::compute_jacobian(), and NonlinearSystem::computeScalingJacobian().

7265 {
7266  computeJacobian(soln, jacobian, sys.number());
7267 }
unsigned int number() const
virtual void computeJacobian(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
Form a Jacobian matrix with the default tag (system).

◆ computeJacobianTag()

void FEProblemBase::computeJacobianTag ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
TagID  tag 
)
virtualinherited

Form a Jacobian matrix for a given tag.

Definition at line 7270 of file FEProblemBase.C.

Referenced by ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

7273 {
7275 
7276  _current_nl_sys->associateMatrixToTag(jacobian, tag);
7277 
7278  computeJacobianTags({tag});
7279 
7281 }
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianTags()

void FEProblemBase::computeJacobianTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple matrices, and each is associated with a tag.

Definition at line 7316 of file FEProblemBase.C.

Referenced by EigenProblem::computeJacobianAB(), FEProblemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), FEProblemBase::computeJacobianTag(), and EigenProblem::computeMatricesTags().

7317 {
7318  try
7319  {
7320  try
7321  {
7322  if (!_has_jacobian || !_const_jacobian)
7323  {
7324  TIME_SECTION("computeJacobianTags", 5, "Computing Jacobian");
7325 
7326  for (auto tag : tags)
7327  if (_current_nl_sys->hasMatrix(tag))
7328  {
7329  auto & matrix = _current_nl_sys->getMatrix(tag);
7332  else
7333  matrix.zero();
7335  // PETSc algorithms require diagonal allocations regardless of whether there is
7336  // non-zero diagonal dependence. With global AD indexing we only add non-zero
7337  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7338  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7339  matrix.add(index, index, 0);
7340  }
7341 
7342  _aux->zeroVariablesForJacobian();
7343 
7344  unsigned int n_threads = libMesh::n_threads();
7345 
7346  // Random interface objects
7347  for (const auto & it : _random_data_objects)
7348  it.second->updateSeeds(EXEC_NONLINEAR);
7349 
7352  if (_displaced_problem)
7353  _displaced_problem->setCurrentlyComputingJacobian(true);
7354 
7357 
7358  for (unsigned int tid = 0; tid < n_threads; tid++)
7359  reinitScalars(tid);
7360 
7362 
7363  _aux->jacobianSetup();
7364 
7365  if (_displaced_problem)
7366  {
7368  _displaced_problem->updateMesh();
7369  }
7370 
7371  for (unsigned int tid = 0; tid < n_threads; tid++)
7372  {
7375  }
7376 
7378 
7380 
7382 
7384 
7386 
7388 
7389  // For explicit Euler calculations for example we often compute the Jacobian one time and
7390  // then re-use it over and over. If we're performing automatic scaling, we don't want to
7391  // use that kernel, diagonal-block only Jacobian for our actual matrix when performing
7392  // solves!
7394  _has_jacobian = true;
7395  }
7396  }
7397  catch (...)
7398  {
7399  handleException("computeJacobianTags");
7400  }
7401  }
7402  catch (const MooseException &)
7403  {
7404  // The buck stops here, we have already handled the exception by
7405  // calling the system's stopSolve() method, it is now up to PETSc to return a
7406  // "diverged" reason during the next solve.
7407  }
7408  catch (...)
7409  {
7410  mooseError("Unexpected exception type");
7411  }
7412 
7413  resetState();
7414 }
virtual void restore_original_nonzero_pattern()
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
bool _has_jacobian
Indicates if the Jacobian was computed.
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
bool computingScalingJacobian() const
Whether we are computing an initial Jacobian for automatic variable scaling.
Definition: SystemBase.C:1544
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool has_static_condensation() const
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void jacobianSetup(THREAD_ID tid=0) const
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _const_jacobian
true if the Jacobian is constant
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeLinearSystemSys()

void FEProblemBase::computeLinearSystemSys ( libMesh::LinearImplicitSystem sys,
libMesh::SparseMatrix< libMesh::Number > &  system_matrix,
NumericVector< libMesh::Number > &  rhs,
const bool  compute_gradients = true 
)
virtualinherited

Assemble both the right hand side and the system matrix of a given linear system.

Parameters
sysThe linear system which should be assembled
system_matrixThe sparse matrix which should hold the system matrix
rhsThe vector which should hold the right hand side
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7493 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), and FEProblemBase::computeResidualL2Norm().

7497 {
7498  TIME_SECTION("computeLinearSystemSys", 5);
7499 
7501 
7504 
7505  // We are using the residual tag system for right hand sides so we fetch everything
7506  const auto & vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7507 
7508  // We filter out tags which do not have associated vectors in the current
7509  // system. This is essential to be able to use system-dependent vector tags.
7512 
7516  compute_gradients);
7517 
7522  // We reset the tags to the default containers for further operations
7527 }
TagID rightHandSideVectorTag() const
Definition: LinearSystem.h:114
virtual TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
Definition: LinearSystem.h:115
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
SparseMatrix< Number > & getSystemMatrix()
Fetching the system matrix from the libmesh system.
Definition: LinearSystem.h:126
std::set< TagID > _linear_matrix_tags
Temporary storage for filtered matrix tags for linear systems.
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
NumericVector< Number > & getRightHandSideVector()
Fetching the right hand side vector from the libmesh system.
Definition: LinearSystem.h:119
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
static void selectMatrixTagsFromSystem(const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
Select the matrix tags which belong to a specific system.
Definition: SubProblem.C:300
void computeLinearSystemTags(const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Assemble the current linear system given a set of vector and matrix tags.
unsigned int linearSysNum(const LinearSystemName &linear_sys_name) const override
const std::string & name() const
std::set< TagID > _linear_vector_tags
Temporary storage for filtered vector tags for linear systems.

◆ computeLinearSystemTags()

void FEProblemBase::computeLinearSystemTags ( const NumericVector< libMesh::Number > &  soln,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags,
const bool  compute_gradients = true 
)
inherited

Assemble the current linear system given a set of vector and matrix tags.

Parameters
solnThe solution which should be used for the system assembly
vector_tagsThe vector tags for the right hand side
matrix_tagsThe matrix tags for the matrix
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7530 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys().

7534 {
7535  TIME_SECTION("computeLinearSystemTags", 5, "Computing Linear System");
7536 
7538 
7539  for (auto tag : matrix_tags)
7540  {
7541  auto & matrix = _current_linear_sys->getMatrix(tag);
7542  matrix.zero();
7543  }
7544 
7545  unsigned int n_threads = libMesh::n_threads();
7546 
7548 
7549  // Random interface objects
7550  for (const auto & it : _random_data_objects)
7551  it.second->updateSeeds(EXEC_NONLINEAR);
7552 
7555 
7557 
7558  _aux->jacobianSetup();
7559 
7560  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7561  {
7563  }
7564 
7565  try
7566  {
7568  }
7569  catch (MooseException & e)
7570  {
7571  _console << "\nA MooseException was raised during Auxiliary variable computation.\n"
7572  << "The next solve will fail, the timestep will be reduced, and we will try again.\n"
7573  << std::endl;
7574 
7575  // We know the next solve is going to fail, so there's no point in
7576  // computing anything else after this. Plus, using incompletely
7577  // computed AuxVariables in subsequent calculations could lead to
7578  // other errors or unhandled exceptions being thrown.
7579  return;
7580  }
7581 
7584 
7586 
7587  _current_linear_sys->computeLinearSystemTags(vector_tags, matrix_tags, compute_gradients);
7588 
7589  // Reset execution flag as after this point we are no longer on LINEAR
7591 
7592  // These are the relevant parts of resetState()
7595 }
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void zero()=0
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
MooseObjectWarehouse< Function > _functions
functions
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void computeLinearSystemTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Compute the right hand side and the system matrix of the system for given tags.
Definition: LinearSystem.C:141
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMarkers()

void FEProblemBase::computeMarkers ( )
virtualinherited

Reimplemented in DumpObjectsProblem.

Definition at line 4534 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and FEProblemBase::initialAdaptMesh().

4535 {
4536  if (_markers.hasActiveObjects())
4537  {
4538  TIME_SECTION("computeMarkers", 1, "Computing Markers");
4539 
4540  std::vector<std::string> fields;
4541 
4542  // Marker Fields
4543  const auto & markers = _markers.getActiveObjects();
4544  for (const auto & marker : markers)
4545  fields.push_back(marker->name());
4546 
4547  _aux->zeroVariables(fields);
4548 
4550 
4551  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
4552  {
4553  const auto & markers = _markers.getActiveObjects(tid);
4554  for (const auto & marker : markers)
4555  marker->markerSetup();
4556  }
4557 
4558  ComputeMarkerThread cmt(*this);
4560 
4561  _aux->solution().close();
4562  _aux->update();
4563  }
4564 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
unsigned int n_threads()
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void updateErrorVectors()
Update the ErrorVectors that have been requested through calls to getErrorVector().
Definition: Adaptivity.C:372
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
Adaptivity _adaptivity
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMultiAppsDT()

Real FEProblemBase::computeMultiAppsDT ( ExecFlagType  type)
inherited

Find the smallest timestep over all MultiApps.

Definition at line 5581 of file FEProblemBase.C.

Referenced by TransientBase::constrainDTFromMultiApp().

5582 {
5583  const auto & multi_apps = _transient_multi_apps[type].getActiveObjects();
5584 
5585  Real smallest_dt = std::numeric_limits<Real>::max();
5586 
5587  for (const auto & multi_app : multi_apps)
5588  smallest_dt = std::min(smallest_dt, multi_app->computeDT());
5589 
5590  return smallest_dt;
5591 }
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
auto max(const L &left, const R &right)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto min(const L &left, const R &right)

◆ computeNearNullSpace()

void FEProblemBase::computeNearNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7598 of file FEProblemBase.C.

Referenced by Moose::compute_nearnullspace().

7600 {
7601  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7602  "I expect these system numbers to be the same");
7603 
7604  sp.clear();
7605  for (unsigned int i = 0; i < subspaceDim("NearNullSpace"); ++i)
7606  {
7607  std::stringstream postfix;
7608  postfix << "_" << i;
7609  std::string modename = "NearNullSpace" + postfix.str();
7610  sp.push_back(&_current_nl_sys->getVector(modename));
7611  }
7612 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computeNullSpace()

void FEProblemBase::computeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7615 of file FEProblemBase.C.

Referenced by Moose::compute_nullspace().

7617 {
7618  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7619  "I expect these system numbers to be the same");
7620  sp.clear();
7621  for (unsigned int i = 0; i < subspaceDim("NullSpace"); ++i)
7622  {
7623  std::stringstream postfix;
7624  postfix << "_" << i;
7625  sp.push_back(&_current_nl_sys->getVector("NullSpace" + postfix.str()));
7626  }
7627 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computePostCheck()

void FEProblemBase::computePostCheck ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  old_soln,
NumericVector< libMesh::Number > &  search_direction,
NumericVector< libMesh::Number > &  new_soln,
bool &  changed_search_direction,
bool &  changed_new_soln 
)
virtualinherited

Definition at line 7645 of file FEProblemBase.C.

Referenced by Moose::compute_postcheck().

7651 {
7652  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7653  "I expect these system numbers to be the same");
7654 
7655  // This function replaces the old PetscSupport::dampedCheck() function.
7656  //
7657  // 1.) Recreate code in PetscSupport::dampedCheck() for constructing
7658  // ghosted "soln" and "update" vectors.
7659  // 2.) Call FEProblemBase::computeDamping() with these ghost vectors.
7660  // 3.) Recreate the code in PetscSupport::dampedCheck() to actually update
7661  // the solution vector based on the damping, and set the "changed" flags
7662  // appropriately.
7663 
7664  TIME_SECTION("computePostCheck", 2, "Computing Post Check");
7665 
7667 
7668  // MOOSE's FEProblemBase doesn't update the solution during the
7669  // postcheck, but FEProblemBase-derived classes might.
7671  {
7672  // We need ghosted versions of new_soln and search_direction (the
7673  // ones we get from libmesh/PETSc are PARALLEL vectors. To make
7674  // our lives simpler, we use the same ghosting pattern as the
7675  // system's current_local_solution to create new ghosted vectors.
7676 
7677  // Construct zeroed-out clones with the same ghosted dofs as the
7678  // System's current_local_solution.
7679  std::unique_ptr<NumericVector<Number>> ghosted_solution =
7680  sys.current_local_solution->zero_clone(),
7681  ghosted_search_direction =
7682  sys.current_local_solution->zero_clone();
7683 
7684  // Copy values from input vectors into clones with ghosted values.
7685  *ghosted_solution = new_soln;
7686  *ghosted_search_direction = search_direction;
7687 
7688  if (_has_dampers)
7689  {
7690  // Compute the damping coefficient using the ghosted vectors
7691  Real damping = computeDamping(*ghosted_solution, *ghosted_search_direction);
7692 
7693  // If some non-trivial damping was computed, update the new_soln
7694  // vector accordingly.
7695  if (damping < 1.0)
7696  {
7697  new_soln = old_soln;
7698  new_soln.add(-damping, search_direction);
7699  changed_new_soln = true;
7700  }
7701  }
7702 
7703  if (shouldUpdateSolution())
7704  {
7705  // Update the ghosted copy of the new solution, if necessary.
7706  if (changed_new_soln)
7707  *ghosted_solution = new_soln;
7708 
7709  bool updated_solution = updateSolution(new_soln, *ghosted_solution);
7710  if (updated_solution)
7711  changed_new_soln = true;
7712  }
7713  }
7714 
7716  {
7718  _aux->copyCurrentIntoPreviousNL();
7719  }
7720 
7721  // MOOSE doesn't change the search_direction
7722  changed_search_direction = false;
7723 
7725 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void setPreviousNewtonSolution(const NumericVector< Number > &soln)
bool _has_dampers
Whether or not this system has any Dampers associated with it.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual bool shouldUpdateSolution()
Check to see whether the problem should update the solution.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual bool updateSolution(NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
Update the solution.
virtual void add(const numeric_index_type i, const T value)=0
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual Real computeDamping(const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)

◆ computeResidual() [1/2]

void FEProblemBase::computeResidual ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
inherited

This function is called by Libmesh to form a residual.

This is deprecated. We should remove this as soon as RattleSnake is fixed.

Referenced by FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualSys(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

◆ computeResidual() [2/2]

virtual void FEProblemBase::computeResidual ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a residual with default tags (nontime, time, residual).

◆ computeResidualAndJacobian()

void FEProblemBase::computeResidualAndJacobian ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
inherited

Form a residual and Jacobian with default tags.

Definition at line 6907 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobian::residual_and_jacobian().

6910 {
6911  try
6912  {
6913  try
6914  {
6915  // vector tags
6917  const auto & residual_vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
6918 
6919  mooseAssert(_fe_vector_tags.empty(),
6920  "This should be empty indicating a clean starting state");
6921  // We filter out tags which do not have associated vectors in the current nonlinear
6922  // system. This is essential to be able to use system-dependent residual tags.
6924 
6926 
6927  // matrix tags
6928  {
6929  _fe_matrix_tags.clear();
6930 
6931  auto & tags = getMatrixTags();
6932  for (auto & tag : tags)
6933  _fe_matrix_tags.insert(tag.second);
6934  }
6935 
6937 
6940 
6941  for (const auto tag : _fe_matrix_tags)
6942  if (_current_nl_sys->hasMatrix(tag))
6943  {
6944  auto & matrix = _current_nl_sys->getMatrix(tag);
6945  matrix.zero();
6947  // PETSc algorithms require diagonal allocations regardless of whether there is non-zero
6948  // diagonal dependence. With global AD indexing we only add non-zero
6949  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
6950  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
6951  matrix.add(index, index, 0);
6952  }
6953 
6954  _aux->zeroVariablesForResidual();
6955 
6956  unsigned int n_threads = libMesh::n_threads();
6957 
6959 
6960  // Random interface objects
6961  for (const auto & it : _random_data_objects)
6962  it.second->updateSeeds(EXEC_LINEAR);
6963 
6967  if (_displaced_problem)
6968  {
6969  _displaced_problem->setCurrentlyComputingResidual(true);
6970  _displaced_problem->setCurrentlyComputingJacobian(true);
6971  _displaced_problem->setCurrentlyComputingResidualAndJacobian(true);
6972  }
6973 
6975 
6977 
6978  for (unsigned int tid = 0; tid < n_threads; tid++)
6979  reinitScalars(tid);
6980 
6982 
6983  _aux->residualSetup();
6984 
6985  if (_displaced_problem)
6986  {
6988  _displaced_problem->updateMesh();
6990  updateMortarMesh();
6991  }
6992 
6993  for (THREAD_ID tid = 0; tid < n_threads; tid++)
6994  {
6997  }
6998 
7000 
7002 
7004 
7006 
7009 
7011 
7014  }
7015  catch (...)
7016  {
7017  handleException("computeResidualAndJacobian");
7018  }
7019  }
7020  catch (const MooseException &)
7021  {
7022  // The buck stops here, we have already handled the exception by
7023  // calling the system's stopSolve() method, it is now up to PETSc to return a
7024  // "diverged" reason during the next solve.
7025  }
7026  catch (...)
7027  {
7028  mooseError("Unexpected exception type");
7029  }
7030 
7031  resetState();
7032  _fe_vector_tags.clear();
7033  _fe_matrix_tags.clear();
7034 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
bool has_static_condensation() const
void setCurrentlyComputingResidualAndJacobian(bool currently_computing_residual_and_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:1493
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
void setCurrentlyComputingJacobian(const bool currently_computing_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:689
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void computeResidualAndJacobianTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Form possibly multiple tag-associated vectors and matrices.
void handleException(const std::string &calling_method)
Handle exceptions.
virtual void zero()=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
TagID residualVectorTag() const override
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
std::set< TagID > _fe_matrix_tags
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< TagID > _fe_vector_tags
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeResidualInternal()

void FEProblemBase::computeResidualInternal ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const std::set< TagID > &  tags 
)
virtualinherited

Form a residual vector for a set of tags.

It should not be called directly by users.

Definition at line 7066 of file FEProblemBase.C.

7069 {
7070  parallel_object_only();
7071 
7072  TIME_SECTION("computeResidualInternal", 1);
7073 
7074  try
7075  {
7077 
7079 
7080  computeResidualTags(tags);
7081 
7083  }
7084  catch (MooseException & e)
7085  {
7086  // If a MooseException propagates all the way to here, it means
7087  // that it was thrown from a MOOSE system where we do not
7088  // (currently) properly support the throwing of exceptions, and
7089  // therefore we have no choice but to error out. It may be
7090  // *possible* to handle exceptions from other systems, but in the
7091  // meantime, we don't want to silently swallow any unhandled
7092  // exceptions here.
7093  mooseError("An unhandled MooseException was raised during residual computation. Please "
7094  "contact the MOOSE team for assistance.");
7095  }
7096 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeResidualL2Norm() [1/3]

Real FEProblemBase::computeResidualL2Norm ( NonlinearSystemBase sys)
inherited

Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 6816 of file FEProblemBase.C.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), Residual::getValue(), DefaultMultiAppFixedPointConvergence::initialize(), and DefaultMultiAppFixedPointConvergence::preExecute().

6817 {
6818  _current_nl_sys = &sys;
6819  computeResidual(*sys.currentSolution(), sys.RHS(), sys.number());
6820  return sys.RHS().l2_norm();
6821 }
virtual Real l2_norm() const=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.
virtual NumericVector< Number > & RHS()=0

◆ computeResidualL2Norm() [2/3]

Real FEProblemBase::computeResidualL2Norm ( LinearSystem sys)
inherited

Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 6824 of file FEProblemBase.C.

6825 {
6826  _current_linear_sys = &sys;
6827 
6828  // We assemble the current system to check the current residual
6831  *sys.linearImplicitSystem().rhs,
6832  /*compute fresh gradients*/ true);
6833 
6834  // Unfortunate, but we have to allocate a new vector for the residual
6835  auto residual = sys.linearImplicitSystem().rhs->clone();
6836  residual->scale(-1.0);
6837  residual->add_vector(*sys.currentSolution(), *sys.linearImplicitSystem().matrix);
6838  return residual->l2_norm();
6839 }
libMesh::LinearImplicitSystem & linearImplicitSystem()
Return a reference to the stored linear implicit system.
Definition: LinearSystem.h:86
NumericVector< Number > * rhs
virtual std::unique_ptr< NumericVector< T > > clone() const=0
virtual void computeLinearSystemSys(libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
Assemble both the right hand side and the system matrix of a given linear system. ...
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SparseMatrix< Number > * matrix

◆ computeResidualL2Norm() [3/3]

Real FEProblemBase::computeResidualL2Norm ( )
virtualinherited

Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm.

Returns
The L2 norm of the residual

Reimplemented in EigenProblem.

Definition at line 6842 of file FEProblemBase.C.

6843 {
6844  TIME_SECTION("computeResidualL2Norm", 2, "Computing L2 Norm of Residual");
6845 
6846  // We use sum the squared norms of the individual systems and then take the square root of it
6847  Real l2_norm = 0.0;
6848  for (auto sys : _nl)
6849  {
6850  const auto norm = computeResidualL2Norm(*sys);
6851  l2_norm += norm * norm;
6852  }
6853 
6854  for (auto sys : _linear_systems)
6855  {
6856  const auto norm = computeResidualL2Norm(*sys);
6857  l2_norm += norm * norm;
6858  }
6859 
6860  return std::sqrt(l2_norm);
6861 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
auto norm(const T &a) -> decltype(std::abs(a))
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh
virtual Real computeResidualL2Norm()
Computes the residual using whatever is sitting in the current solution vector then returns the L2 no...
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ computeResidualSys()

void FEProblemBase::computeResidualSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
virtualinherited

This function is called by Libmesh to form a residual.

Definition at line 6864 of file FEProblemBase.C.

Referenced by NonlinearSystem::computeScalingResidual(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and NonlinearSystem::solve().

6867 {
6868  parallel_object_only();
6869 
6870  TIME_SECTION("computeResidualSys", 5);
6871 
6872  computeResidual(soln, residual, sys.number());
6873 }
unsigned int number() const
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.

◆ computeResidualTag()

void FEProblemBase::computeResidualTag ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag.

Definition at line 7037 of file FEProblemBase.C.

7040 {
7041  try
7042  {
7044 
7045  _current_nl_sys->associateVectorToTag(residual, tag);
7046 
7047  computeResidualTags({tag});
7048 
7050  }
7051  catch (MooseException & e)
7052  {
7053  // If a MooseException propagates all the way to here, it means
7054  // that it was thrown from a MOOSE system where we do not
7055  // (currently) properly support the throwing of exceptions, and
7056  // therefore we have no choice but to error out. It may be
7057  // *possible* to handle exceptions from other systems, but in the
7058  // meantime, we don't want to silently swallow any unhandled
7059  // exceptions here.
7060  mooseError("An unhandled MooseException was raised during residual computation. Please "
7061  "contact the MOOSE team for assistance.");
7062  }
7063 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeResidualTags()

void FEProblemBase::computeResidualTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple residual vectors and each is associated with one tag.

Definition at line 7182 of file FEProblemBase.C.

Referenced by EigenProblem::computeResidualAB(), FEProblemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), FEProblemBase::computeResidualTag(), and FEProblemBase::computeResidualType().

7183 {
7184  parallel_object_only();
7185 
7186  try
7187  {
7188  try
7189  {
7190  TIME_SECTION("computeResidualTags", 5, "Computing Residual");
7191 
7192  ADReal::do_derivatives = false;
7193 
7195 
7196  _aux->zeroVariablesForResidual();
7197 
7198  unsigned int n_threads = libMesh::n_threads();
7199 
7201 
7202  // Random interface objects
7203  for (const auto & it : _random_data_objects)
7204  it.second->updateSeeds(EXEC_LINEAR);
7205 
7207 
7209 
7210  for (unsigned int tid = 0; tid < n_threads; tid++)
7211  reinitScalars(tid);
7212 
7214 
7215  _aux->residualSetup();
7216 
7217  if (_displaced_problem)
7218  {
7220  _displaced_problem->updateMesh();
7222  updateMortarMesh();
7223  }
7224 
7225  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7226  {
7229  }
7230 
7232 
7234 
7236 
7238 
7241  }
7242  catch (...)
7243  {
7244  handleException("computeResidualTags");
7245  }
7246  }
7247  catch (const MooseException &)
7248  {
7249  // The buck stops here, we have already handled the exception by
7250  // calling the system's stopSolve() method, it is now up to PETSc to return a
7251  // "diverged" reason during the next solve.
7252  }
7253  catch (...)
7254  {
7255  mooseError("Unexpected exception type");
7256  }
7257 
7258  resetState();
7259 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
Provides a way for users to bail out of the current solve.
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeResidualType()

void FEProblemBase::computeResidualType ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag and "residual" tag.

Definition at line 7099 of file FEProblemBase.C.

7102 {
7103  TIME_SECTION("computeResidualType", 5);
7104 
7105  try
7106  {
7108 
7110 
7112 
7114  }
7115  catch (MooseException & e)
7116  {
7117  // If a MooseException propagates all the way to here, it means
7118  // that it was thrown from a MOOSE system where we do not
7119  // (currently) properly support the throwing of exceptions, and
7120  // therefore we have no choice but to error out. It may be
7121  // *possible* to handle exceptions from other systems, but in the
7122  // meantime, we don't want to silently swallow any unhandled
7123  // exceptions here.
7124  mooseError("An unhandled MooseException was raised during residual computation. Please "
7125  "contact the MOOSE team for assistance.");
7126  }
7127 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeSystems()

void FEProblemBase::computeSystems ( const ExecFlagType type)
protectedinherited

Do generic system computations.

Definition at line 9350 of file FEProblemBase.C.

Referenced by FEProblemBase::computeBounds(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and FEProblemBase::execute().

9351 {
9352  // When performing an adjoint solve in the optimization module, the current solver system is the
9353  // adjoint. However, the adjoint solve requires having accurate time derivative calculations for
9354  // the forward system. The cleanest way to handle such uses is just to compute the time
9355  // derivatives for all solver systems instead of trying to guess which ones we need and don't need
9356  for (auto & solver_sys : _solver_systems)
9357  solver_sys->compute(type);
9358 
9359  _aux->compute(type);
9360 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ computeTransposeNullSpace()

void FEProblemBase::computeTransposeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7630 of file FEProblemBase.C.

Referenced by Moose::compute_transpose_nullspace().

7632 {
7633  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7634  "I expect these system numbers to be the same");
7635  sp.clear();
7636  for (unsigned int i = 0; i < subspaceDim("TransposeNullSpace"); ++i)
7637  {
7638  std::stringstream postfix;
7639  postfix << "_" << i;
7640  sp.push_back(&_current_nl_sys->getVector("TransposeNullSpace" + postfix.str()));
7641  }
7642 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computeUserObjectByName()

void FEProblemBase::computeUserObjectByName ( const ExecFlagType type,
const Moose::AuxGroup group,
const std::string &  name 
)
virtualinherited

Compute an user object with the given name.

Definition at line 4784 of file FEProblemBase.C.

Referenced by MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), MultiAppGeneralFieldUserObjectTransfer::execute(), MultiAppUserObjectTransfer::execute(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), and MultiAppConservativeTransfer::postExecute().

4787 {
4788  const auto old_exec_flag = _current_execute_on_flag;
4791  .query()
4792  .condition<AttribSystem>("UserObject")
4793  .condition<AttribExecOns>(type)
4794  .condition<AttribName>(name);
4795  computeUserObjectsInternal(type, group, query);
4796  _current_execute_on_flag = old_exec_flag;
4797 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjects()

void FEProblemBase::computeUserObjects ( const ExecFlagType type,
const Moose::AuxGroup group 
)
virtualinherited

Call compute methods on UserObjects.

Definition at line 4800 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

4801 {
4803  theWarehouse().query().condition<AttribSystem>("UserObject").condition<AttribExecOns>(type);
4804  computeUserObjectsInternal(type, group, query);
4805 }
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjectsInternal()

void FEProblemBase::computeUserObjectsInternal ( const ExecFlagType type,
const Moose::AuxGroup group,
TheWarehouse::Query query 
)
protectedinherited

Definition at line 4808 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectByName(), and FEProblemBase::computeUserObjects().

4811 {
4812  try
4813  {
4814  TIME_SECTION("computeUserObjects", 1, "Computing User Objects");
4815 
4816  // Add group to query
4817  if (group == Moose::PRE_IC)
4818  primary_query.condition<AttribPreIC>(true);
4819  else if (group == Moose::PRE_AUX)
4820  primary_query.condition<AttribPreAux>(type);
4821  else if (group == Moose::POST_AUX)
4822  primary_query.condition<AttribPostAux>(type);
4823 
4824  // query everything first to obtain a list of execution groups
4825  std::vector<UserObject *> uos;
4826  primary_query.clone().queryIntoUnsorted(uos);
4827  std::set<int> execution_groups;
4828  for (const auto & uo : uos)
4829  execution_groups.insert(uo->getParam<int>("execution_order_group"));
4830 
4831  // iterate over execution order groups
4832  for (const auto execution_group : execution_groups)
4833  {
4834  auto query = primary_query.clone().condition<AttribExecutionOrderGroup>(execution_group);
4835 
4836  std::vector<GeneralUserObject *> genobjs;
4837  query.clone().condition<AttribInterfaces>(Interfaces::GeneralUserObject).queryInto(genobjs);
4838 
4839  std::vector<UserObject *> userobjs;
4840  query.clone()
4845  .queryInto(userobjs);
4846 
4847  std::vector<UserObject *> tgobjs;
4848  query.clone()
4850  .queryInto(tgobjs);
4851 
4852  std::vector<UserObject *> nodal;
4853  query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).queryInto(nodal);
4854 
4855  std::vector<MortarUserObject *> mortar;
4856  query.clone().condition<AttribInterfaces>(Interfaces::MortarUserObject).queryInto(mortar);
4857 
4858  if (userobjs.empty() && genobjs.empty() && tgobjs.empty() && nodal.empty() && mortar.empty())
4859  continue;
4860 
4861  // Start the timer here since we have at least one active user object
4862  std::string compute_uo_tag = "computeUserObjects(" + Moose::stringify(type) + ")";
4863 
4864  // Perform Residual/Jacobian setups
4865  if (type == EXEC_LINEAR)
4866  {
4867  for (auto obj : userobjs)
4868  obj->residualSetup();
4869  for (auto obj : nodal)
4870  obj->residualSetup();
4871  for (auto obj : mortar)
4872  obj->residualSetup();
4873  for (auto obj : tgobjs)
4874  obj->residualSetup();
4875  for (auto obj : genobjs)
4876  obj->residualSetup();
4877  }
4878  else if (type == EXEC_NONLINEAR)
4879  {
4880  for (auto obj : userobjs)
4881  obj->jacobianSetup();
4882  for (auto obj : nodal)
4883  obj->jacobianSetup();
4884  for (auto obj : mortar)
4885  obj->jacobianSetup();
4886  for (auto obj : tgobjs)
4887  obj->jacobianSetup();
4888  for (auto obj : genobjs)
4889  obj->jacobianSetup();
4890  }
4891 
4892  for (auto obj : userobjs)
4893  obj->initialize();
4894 
4895  // Execute Side/InternalSide/Interface/Elemental/DomainUserObjects
4896  if (!userobjs.empty())
4897  {
4898  // non-nodal user objects have to be run separately before the nodal user objects run
4899  // because some nodal user objects (NodalNormal related) depend on elemental user objects
4900  // :-(
4901  ComputeUserObjectsThread cppt(*this, query);
4903 
4904  // There is one instance in rattlesnake where an elemental user object's finalize depends
4905  // on a side user object having been finalized first :-(
4912  }
4913 
4914  // if any userobject may have written to variables we need to close the aux solution
4915  for (const auto & uo : userobjs)
4916  if (auto euo = dynamic_cast<const ElementUserObject *>(uo);
4917  euo && euo->hasWritableCoupledVariables())
4918  {
4919  _aux->solution().close();
4920  _aux->system().update();
4921  break;
4922  }
4923 
4924  // Execute NodalUserObjects
4925  // BISON has an axial reloc elemental user object that has a finalize func that depends on a
4926  // nodal user object's prev value. So we can't initialize this until after elemental objects
4927  // have been finalized :-(
4928  for (auto obj : nodal)
4929  obj->initialize();
4930  if (query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).count() > 0)
4931  {
4932  ComputeNodalUserObjectsThread cnppt(*this, query);
4935  }
4936 
4937  // if any userobject may have written to variables we need to close the aux solution
4938  for (const auto & uo : nodal)
4939  if (auto nuo = dynamic_cast<const NodalUserObject *>(uo);
4940  nuo && nuo->hasWritableCoupledVariables())
4941  {
4942  _aux->solution().close();
4943  _aux->system().update();
4944  break;
4945  }
4946 
4947  // Execute MortarUserObjects
4948  {
4949  for (auto obj : mortar)
4950  obj->initialize();
4951  if (!mortar.empty())
4952  {
4953  auto create_and_run_mortar_functors = [this, type, &mortar](const bool displaced)
4954  {
4955  // go over mortar interfaces and construct functors
4956  const auto & mortar_interfaces = getMortarInterfaces(displaced);
4957  for (const auto & mortar_interface : mortar_interfaces)
4958  {
4959  const auto primary_secondary_boundary_pair = mortar_interface.first;
4960  auto mortar_uos_to_execute =
4961  getMortarUserObjects(primary_secondary_boundary_pair.first,
4962  primary_secondary_boundary_pair.second,
4963  displaced,
4964  mortar);
4965  const auto & mortar_generation_object = mortar_interface.second;
4966 
4967  auto * const subproblem = displaced
4968  ? static_cast<SubProblem *>(_displaced_problem.get())
4969  : static_cast<SubProblem *>(this);
4970  MortarUserObjectThread muot(mortar_uos_to_execute,
4971  mortar_generation_object,
4972  *subproblem,
4973  *this,
4974  displaced,
4975  subproblem->assembly(0, 0));
4976 
4977  muot();
4978  }
4979  };
4980 
4981  create_and_run_mortar_functors(false);
4982  if (_displaced_problem)
4983  create_and_run_mortar_functors(true);
4984  }
4985  for (auto obj : mortar)
4986  obj->finalize();
4987  }
4988 
4989  // Execute threaded general user objects
4990  for (auto obj : tgobjs)
4991  obj->initialize();
4992  std::vector<GeneralUserObject *> tguos_zero;
4993  query.clone()
4994  .condition<AttribThread>(0)
4995  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject)
4996  .queryInto(tguos_zero);
4997  for (auto obj : tguos_zero)
4998  {
4999  std::vector<GeneralUserObject *> tguos;
5000  auto q = query.clone()
5001  .condition<AttribName>(obj->name())
5002  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject);
5003  q.queryInto(tguos);
5004 
5006  Threads::parallel_reduce(GeneralUserObjectRange(tguos.begin(), tguos.end()), ctguot);
5007  joinAndFinalize(q);
5008  }
5009 
5010  // Execute general user objects
5012  true);
5013  }
5014  }
5015  catch (...)
5016  {
5017  handleException("computeUserObjectsInternal");
5018  }
5019 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
void joinAndFinalize(TheWarehouse::Query query, bool isgen=false)
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:313
Thread to compute threaded general user objects.
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:294
void handleException(const std::string &calling_method)
Handle exceptions.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
StoredRange< std::vector< GeneralUserObject * >::iterator, GeneralUserObject * > GeneralUserObjectRange
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:344
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
query_obj query
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for threaded computation of UserObjects.
std::shared_ptr< DisplacedProblem > _displaced_problem
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
virtual std::unique_ptr< Attribute > clone() const =0
clone creates and returns and identical (deep) copy of this attribute - i.e.

◆ computingNonlinearResid() [1/4]

bool SubProblem::computingNonlinearResid ( ) const
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [2/4]

bool SubProblem::computingNonlinearResid
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [3/4]

virtual void SubProblem::computingNonlinearResid
inlineinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Definition at line 712 of file SubProblem.h.

713  {
714  _computing_nonlinear_residual = computing_nonlinear_residual;
715  }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [4/4]

void FEProblemBase::computingNonlinearResid ( bool  computing_nonlinear_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Reimplemented from SubProblem.

Definition at line 8985 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeScaling(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and ComputeResidualAndJacobian::residual_and_jacobian().

8986 {
8987  parallel_object_only();
8988 
8989  if (_displaced_problem)
8990  _displaced_problem->computingNonlinearResid(computing_nonlinear_residual);
8991  _computing_nonlinear_residual = computing_nonlinear_residual;
8992 }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ computingPreSMOResidual()

bool FEProblemBase::computingPreSMOResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Returns true if the problem is in the process of computing it's initial residual.

Returns
Whether or not the problem is currently computing the initial residual.

Implements SubProblem.

Definition at line 6597 of file FEProblemBase.C.

Referenced by DisplacedProblem::computingPreSMOResidual().

6598 {
6599  return _nl[nl_sys_num]->computingPreSMOResidual();
6600 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ computingScalingJacobian() [1/2]

void FEProblemBase::computingScalingJacobian ( bool  computing_scaling_jacobian)
inlineinherited

Setter for whether we're computing the scaling jacobian.

Definition at line 2351 of file FEProblemBase.h.

Referenced by ComputeJacobianThread::compute(), SolverSystem::compute(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingJacobian().

2352  {
2353  _computing_scaling_jacobian = computing_scaling_jacobian;
2354  }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingJacobian() [2/2]

bool FEProblemBase::computingScalingJacobian ( ) const
inlinefinaloverridevirtualinherited

Getter for whether we're computing the scaling jacobian.

Implements SubProblem.

Definition at line 2356 of file FEProblemBase.h.

2356 { return _computing_scaling_jacobian; }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingResidual() [1/2]

void FEProblemBase::computingScalingResidual ( bool  computing_scaling_residual)
inlineinherited

Setter for whether we're computing the scaling residual.

Definition at line 2361 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingResidual().

2362  {
2363  _computing_scaling_residual = computing_scaling_residual;
2364  }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ computingScalingResidual() [2/2]

bool FEProblemBase::computingScalingResidual ( ) const
inlinefinaloverridevirtualinherited
Returns
whether we are currently computing a residual for automatic scaling purposes

Implements SubProblem.

Definition at line 2369 of file FEProblemBase.h.

2369 { return _computing_scaling_residual; }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ connectControllableParams()

void MooseBase::connectControllableParams ( const std::string &  parameter,
const std::string &  object_type,
const std::string &  object_name,
const std::string &  object_parameter 
) const
inherited

Connect controllable parameter of this action with the controllable parameters of the objects added by this action.

Parameters
parameterName of the controllable parameter of this action
object_typeType of the object added by this action.
object_nameName of the object added by this action.
object_parameterName of the parameter of the object.

Definition at line 74 of file MooseBase.C.

78 {
79  auto & factory = _app.getFactory();
80  auto & ip_warehouse = _app.getInputParameterWarehouse();
81 
82  MooseObjectParameterName primary_name(uniqueName(), parameter);
83  const auto base_type = factory.getValidParams(object_type).getBase();
84  MooseObjectParameterName secondary_name(base_type, object_name, object_parameter);
85  ip_warehouse.addControllableParameterConnection(primary_name, secondary_name);
86 
87  const auto & tags = _pars.get<std::vector<std::string>>("control_tags");
88  for (const auto & tag : tags)
89  {
90  if (!tag.empty())
91  {
92  // Only adds the parameter with the different control tags if the derived class
93  // properly registers the parameter to its own syntax
94  MooseObjectParameterName tagged_name(tag, name(), parameter);
95  ip_warehouse.addControllableParameterConnection(
96  tagged_name, secondary_name, /*error_on_empty=*/false);
97  }
98  }
99 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2900
MooseObjectName uniqueName() const
Definition: MooseBase.C:66
Factory & getFactory()
Retrieve a writable reference to the Factory associated with this App.
Definition: MooseApp.h:394
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
A class for storing an input parameter name.

◆ console()

const ConsoleStream& Problem::console ( ) const
inlineinherited

Return console handle.

Definition at line 48 of file Problem.h.

Referenced by Moose::SlepcSupport::mooseSlepcEPSMonitor(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

48 { return _console; }
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ constJacobian()

bool FEProblemBase::constJacobian ( ) const
inherited

Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed)

Definition at line 8818 of file FEProblemBase.C.

Referenced by Moose::SlepcSupport::moosePetscSNESFormMatricesTags(), and Moose::SlepcSupport::moosePetscSNESFormMatrixTag().

8819 {
8820  return _const_jacobian;
8821 }
bool _const_jacobian
true if the Jacobian is constant

◆ converged()

virtual bool SubProblem::converged ( const unsigned int  sys_num)
inlinevirtualinherited

Eventually we want to convert this virtual over to taking a solver system number argument.

We will have to first convert apps to use solverSystemConverged, and then once that is done, we can change this signature. Then we can go through the apps again and convert back to this changed API

Definition at line 113 of file SubProblem.h.

Referenced by FEProblemBase::initialSetup(), EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), DisplacedProblem::solverSystemConverged(), SubProblem::solverSystemConverged(), and AB2PredictorCorrector::step().

113 { return solverSystemConverged(sys_num); }
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ coordTransform()

MooseAppCoordTransform & FEProblemBase::coordTransform ( )
inherited
Returns
the coordinate transformation object that describes how to transform this problem's coordinate system into the canonical/reference coordinate system

Definition at line 9221 of file FEProblemBase.C.

9222 {
9223  return mesh().coordTransform();
9224 }
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1888
virtual MooseMesh & mesh() override

◆ copySolutionsBackwards()

void FEProblemBase::copySolutionsBackwards ( )
virtualinherited

Definition at line 6603 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6604 {
6605  TIME_SECTION("copySolutionsBackwards", 3, "Copying Solutions Backward");
6606 
6607  for (auto & sys : _solver_systems)
6608  sys->copySolutionsBackwards();
6609  _aux->copySolutionsBackwards();
6610 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ coupling()

Moose::CouplingType FEProblemBase::coupling ( ) const
inlineinherited

Definition at line 165 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), and NonlinearSystemBase::computeJacobianInternal().

165 { return _coupling; }
Moose::CouplingType _coupling
Type of variable coupling.

◆ couplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::couplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

◆ couplingMatrix()

const libMesh::CouplingMatrix * FEProblemBase::couplingMatrix ( const unsigned int  nl_sys_num) const
inlineoverridevirtualinherited

The coupling matrix defining what blocks exist in the preconditioning matrix.

Implements SubProblem.

Definition at line 3278 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), DisplacedProblem::couplingMatrix(), and DisplacedProblem::init().

3279 {
3280  return _cm[i].get();
3281 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ createMortarInterface()

void FEProblemBase::createMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced,
bool  periodic,
const bool  debug,
const bool  correct_edge_dropping,
const Real  minimum_projection_angle 
)
inherited

Definition at line 7805 of file FEProblemBase.C.

7813 {
7814  _has_mortar = true;
7815 
7816  if (on_displaced)
7817  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
7818  primary_secondary_subdomain_pair,
7820  on_displaced,
7821  periodic,
7822  debug,
7823  correct_edge_dropping,
7824  minimum_projection_angle);
7825  else
7826  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
7827  primary_secondary_subdomain_pair,
7828  *this,
7829  on_displaced,
7830  periodic,
7831  debug,
7832  correct_edge_dropping,
7833  minimum_projection_angle);
7834 }
void createMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &subdomain_key, SubProblem &subproblem, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
Create mortar generation object.
Definition: MortarData.C:22
MortarData _mortar_data
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ createQRules()

void FEProblemBase::createQRules ( libMesh::QuadratureType  type,
libMesh::Order  order,
libMesh::Order  volume_order = libMesh::INVALID_ORDER,
libMesh::Order  face_order = libMesh::INVALID_ORDER,
SubdomainID  block = Moose::ANY_BLOCK_ID,
bool  allow_negative_qweights = true 
)
virtualinherited

Definition at line 6028 of file FEProblemBase.C.

6034 {
6035  if (order == INVALID_ORDER)
6036  {
6037  // automatically determine the integration order
6038  order = _solver_systems[0]->getMinQuadratureOrder();
6039  for (const auto i : make_range(std::size_t(1), _solver_systems.size()))
6040  if (order < _solver_systems[i]->getMinQuadratureOrder())
6041  order = _solver_systems[i]->getMinQuadratureOrder();
6042  if (order < _aux->getMinQuadratureOrder())
6043  order = _aux->getMinQuadratureOrder();
6044  }
6045 
6046  if (volume_order == INVALID_ORDER)
6047  volume_order = order;
6048 
6049  if (face_order == INVALID_ORDER)
6050  face_order = order;
6051 
6052  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6053  for (const auto i : index_range(_solver_systems))
6054  _assembly[tid][i]->createQRules(
6055  type, order, volume_order, face_order, block, allow_negative_qweights);
6056 
6057  if (_displaced_problem)
6058  _displaced_problem->createQRules(
6059  type, order, volume_order, face_order, block, allow_negative_qweights);
6060 
6061  updateMaxQps();
6062 }
unsigned int n_threads()
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual void createQRules(libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ createTagMatrices()

void FEProblemBase::createTagMatrices ( CreateTaggedMatrixKey  )
inherited

Definition at line 676 of file FEProblemBase.C.

677 {
678  auto & matrices = getParam<std::vector<std::vector<TagName>>>("extra_tag_matrices");
679  for (const auto sys_num : index_range(matrices))
680  for (auto & matrix : matrices[sys_num])
681  {
682  auto tag = addMatrixTag(matrix);
683  _solver_systems[sys_num]->addMatrix(tag);
684  }
685 
686  for (auto & sys : _solver_systems)
687  sys->sizeVariableMatrixData();
688  _aux->sizeVariableMatrixData();
689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:311
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
auto index_range(const T &sizable)

◆ createTagSolutions()

void FEProblemBase::createTagSolutions ( )
protectedinherited

Create extra tagged solution vectors.

Definition at line 692 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

693 {
694  for (auto & vector : getParam<std::vector<TagName>>("extra_tag_solutions"))
695  {
696  auto tag = addVectorTag(vector, Moose::VECTOR_TAG_SOLUTION);
697  for (auto & sys : _solver_systems)
698  sys->addVector(tag, false, libMesh::GHOSTED);
699  _aux->addVector(tag, false, libMesh::GHOSTED);
700  }
701 
703  {
704  // We'll populate the zeroth state of the nonlinear iterations with the current solution for
705  // ease of use in doing things like copying solutions backwards. We're just storing pointers in
706  // the solution states containers so populating the zeroth state does not cost us the memory of
707  // a new vector
709  }
710 
712  for (auto & sys : _solver_systems)
713  sys->associateVectorToTag(*sys->system().current_local_solution.get(), tag);
714  _aux->associateVectorToTag(*_aux->system().current_local_solution.get(), tag);
715 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _previous_nl_solution_required
Indicates we need to save the previous NL iteration variable values.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void needSolutionState(unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
Declare that we need up to old (1) or older (2) solution states for a given type of iteration...
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ createTagVectors()

void FEProblemBase::createTagVectors ( )
protectedinherited

Create extra tagged vectors and matrices.

Definition at line 654 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

655 {
656  // add vectors and their tags to system
657  auto & vectors = getParam<std::vector<std::vector<TagName>>>("extra_tag_vectors");
658  for (const auto sys_num : index_range(vectors))
659  for (auto & vector : vectors[sys_num])
660  {
661  auto tag = addVectorTag(vector);
662  _solver_systems[sys_num]->addVector(tag, false, libMesh::GHOSTED);
663  }
664 
665  auto & not_zeroed_vectors = getParam<std::vector<std::vector<TagName>>>("not_zeroed_tag_vectors");
666  for (const auto sys_num : index_range(not_zeroed_vectors))
667  for (auto & vector : not_zeroed_vectors[sys_num])
668  {
669  auto tag = addVectorTag(vector);
670  _solver_systems[sys_num]->addVector(tag, false, GHOSTED);
672  }
673 }
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
auto index_range(const T &sizable)
void addNotZeroedVectorTag(const TagID tag)
Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are...
Definition: SubProblem.C:149

◆ currentLinearSysNum()

unsigned int FEProblemBase::currentLinearSysNum ( ) const
overridevirtualinherited
Returns
the current linear system number

Implements SubProblem.

Definition at line 9238 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentLinearSysNum().

9239 {
9240  // If we don't have linear systems this should be an invalid number
9241  unsigned int current_linear_sys_num = libMesh::invalid_uint;
9242  if (_linear_systems.size())
9243  current_linear_sys_num = currentLinearSystem().number();
9244 
9245  return current_linear_sys_num;
9246 }
const unsigned int invalid_uint
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
LinearSystem & currentLinearSystem()
Get a non-constant reference to the current linear system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ currentLinearSystem() [1/2]

LinearSystem & FEProblemBase::currentLinearSystem ( )
inlineinherited

Get a non-constant reference to the current linear system.

Definition at line 3246 of file FEProblemBase.h.

Referenced by FEProblemBase::currentLinearSysNum(), and Moose::PetscSupport::petscLinearConverged().

3247 {
3248  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3249  return *_current_linear_sys;
3250 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentLinearSystem() [2/2]

const LinearSystem & FEProblemBase::currentLinearSystem ( ) const
inlineinherited

Get a constant reference to the current linear system.

Definition at line 3253 of file FEProblemBase.h.

3254 {
3255  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3256  return *_current_linear_sys;
3257 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentlyComputingJacobian()

const bool& SubProblem::currentlyComputingJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the Jacobian.

Definition at line 684 of file SubProblem.h.

Referenced by PenetrationLocator::detectPenetration(), ComputeUserObjectsThread::onBoundary(), ComputeUserObjectsThread::onElement(), ComputeUserObjectsThread::printBlockExecutionInformation(), SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ currentlyComputingResidual() [1/2]

const bool& SubProblem::currentlyComputingResidual ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidual() [2/2]

const bool& SubProblem::currentlyComputingResidual
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidualAndJacobian()

const bool & SubProblem::currentlyComputingResidualAndJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual and the Jacobian.

Definition at line 1487 of file SubProblem.h.

Referenced by SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

1488 {
1490 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ currentNlSysNum()

unsigned int FEProblemBase::currentNlSysNum ( ) const
overridevirtualinherited
Returns
the current nonlinear system number

Implements SubProblem.

Definition at line 9227 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentNlSysNum(), FEProblemBase::jacobianSetup(), and FEProblemBase::residualSetup().

9228 {
9229  // If we don't have nonlinear systems this should be an invalid number
9230  unsigned int current_nl_sys_num = libMesh::invalid_uint;
9231  if (_nl.size())
9232  current_nl_sys_num = currentNonlinearSystem().number();
9233 
9234  return current_nl_sys_num;
9235 }
const unsigned int invalid_uint
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase & currentNonlinearSystem()
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149

◆ currentNonlinearSystem() [1/2]

NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( )
inlineinherited

◆ currentNonlinearSystem() [2/2]

const NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( ) const
inlineinherited

Definition at line 3223 of file FEProblemBase.h.

3224 {
3225  mooseAssert(_current_nl_sys, "The nonlinear system is not currently set");
3226  return *_current_nl_sys;
3227 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.

◆ currentResidualVectorTags()

const std::vector< VectorTag > & FEProblemBase::currentResidualVectorTags ( ) const
inlineoverridevirtualinherited

Return the residual vector tags we are currently computing.

Implements SubProblem.

Definition at line 3294 of file FEProblemBase.h.

Referenced by FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), and DisplacedProblem::currentResidualVectorTags().

3295 {
3297 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ customSetup()

void FEProblemBase::customSetup ( const ExecFlagType exec_type)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 4584 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

4585 {
4586  SubProblem::customSetup(exec_type);
4587 
4588  if (_line_search)
4589  _line_search->customSetup(exec_type);
4590 
4591  unsigned int n_threads = libMesh::n_threads();
4592  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4593  {
4594  _all_materials.customSetup(exec_type, tid);
4595  _functions.customSetup(exec_type, tid);
4596  }
4597 
4598  _aux->customSetup(exec_type);
4599  for (auto & nl : _nl)
4600  nl->customSetup(exec_type);
4601 
4602  if (_displaced_problem)
4603  _displaced_problem->customSetup(exec_type);
4604 
4605  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4606  {
4607  _internal_side_indicators.customSetup(exec_type, tid);
4608  _indicators.customSetup(exec_type, tid);
4609  _markers.customSetup(exec_type, tid);
4610  }
4611 
4612  std::vector<UserObject *> userobjs;
4613  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
4614  for (auto obj : userobjs)
4615  obj->customSetup(exec_type);
4616 
4617  _app.getOutputWarehouse().customSetup(exec_type);
4618 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
void customSetup(const ExecFlagType &exec_type)
Calls the setup function for each of the output objects.
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SubProblem.C:1193
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
MooseObjectWarehouse< Indicator > _indicators
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
unsigned int THREAD_ID
Definition: MooseTypes.h:209
std::shared_ptr< LineSearch > _line_search

◆ declareManagedRestartableDataWithContext()

template<typename T , typename... Args>
Restartable::ManagedValue< T > Restartable::declareManagedRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declares a piece of "managed" restartable data and initialize it.

Here, "managed" restartable data means that the caller can destruct this data upon destruction of the return value of this method. Therefore, this ManagedValue<T> wrapper should survive after the final calls to dataStore() for it. That is... at the very end.

This is needed for objects whose destruction ordering is important, and enables natural c++ destruction in reverse construction order of the object that declares it.

See delcareRestartableData and declareRestartableDataWithContext for more information.

Definition at line 276 of file Restartable.h.

279 {
280  auto & data_ptr =
281  declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...);
282  return Restartable::ManagedValue<T>(data_ptr);
283 }
Wrapper class for restartable data that is "managed.
Definition: Restartable.h:42

◆ declareRecoverableData()

template<typename T , typename... Args>
T & Restartable::declareRecoverableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "recoverable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

Note - this data will NOT be restored on Restart!

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 351 of file Restartable.h.

352 {
353  const auto full_name = restartableName(data_name);
354 
356 
357  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
358 }
std::string restartableName(const std::string &data_name) const
Gets the name of a piece of restartable data given a data name, adding the system name and object nam...
Definition: Restartable.C:66
void registerRestartableNameWithFilterOnApp(const std::string &name, Moose::RESTARTABLE_FILTER filter)
Helper function for actually registering the restartable data.
Definition: Restartable.C:59

◆ declareRestartableData()

template<typename T , typename... Args>
T & Restartable::declareRestartableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 269 of file Restartable.h.

270 {
271  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
272 }

◆ declareRestartableDataWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 294 of file Restartable.h.

297 {
298  return declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...).set();
299 }

◆ declareRestartableDataWithObjectName()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectName ( const std::string &  data_name,
const std::string &  object_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
argsArguments to forward to the constructor of the data

Definition at line 323 of file Restartable.h.

326 {
327  return declareRestartableDataWithObjectNameWithContext<T>(
328  data_name, object_name, nullptr, std::forward<Args>(args)...);
329 }

◆ declareRestartableDataWithObjectNameWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectNameWithContext ( const std::string &  data_name,
const std::string &  object_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 333 of file Restartable.h.

337 {
338  std::string old_name = _restartable_name;
339 
340  _restartable_name = object_name;
341 
342  T & value = declareRestartableDataWithContext<T>(data_name, context, std::forward<Args>(args)...);
343 
344  _restartable_name = old_name;
345 
346  return value;
347 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:243
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)

◆ defaultGhosting()

bool SubProblem::defaultGhosting ( )
inlineinherited

Whether or not the user has requested default ghosting ot be on.

Definition at line 144 of file SubProblem.h.

Referenced by AuxiliarySystem::AuxiliarySystem(), DisplacedSystem::DisplacedSystem(), and NonlinearSystemBase::NonlinearSystemBase().

144 { return _default_ghosting; }
bool _default_ghosting
Whether or not to use default libMesh coupling.
Definition: SubProblem.h:1090

◆ diracKernelInfo()

DiracKernelInfo & SubProblem::diracKernelInfo ( )
virtualinherited

Definition at line 748 of file SubProblem.C.

749 {
750  return _dirac_kernel_info;
751 }
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ displaceMesh()

void MFEMProblem::displaceMesh ( )

Displace the mesh, if mesh displacement is enabled.

Definition at line 433 of file MFEMProblem.C.

Referenced by MFEMProblemSolve::solve().

434 {
435  // Displace mesh
436  if (mesh().shouldDisplace())
437  {
438  mesh().displace(static_cast<mfem::GridFunction const &>(*getMeshDisplacementGridFunction()));
439  // TODO: update FESpaces GridFunctions etc for transient solves
440  }
441 }
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:465
void displace(mfem::GridFunction const &displacement)
Displace the nodes of the mesh by the given displacement.
Definition: MFEMMesh.C:76
std::optional< std::reference_wrapper< mfem::ParGridFunction const > > getMeshDisplacementGridFunction()
Returns optional reference to the displacement GridFunction to apply to nodes.
Definition: MFEMProblem.C:444

◆ doingPRefinement()

bool SubProblem::doingPRefinement ( ) const
inherited
Returns
whether we're doing p-refinement

Definition at line 1361 of file SubProblem.C.

Referenced by FEProblemBase::meshChanged().

1362 {
1363  return mesh().doingPRefinement();
1364 }
virtual MooseMesh & mesh()=0
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1347

◆ dt()

virtual Real& FEProblemBase::dt ( ) const
inlinevirtualinherited

◆ dtOld()

virtual Real& FEProblemBase::dtOld ( ) const
inlinevirtualinherited

Definition at line 518 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

518 { return _dt_old; }

◆ duplicateVariableCheck()

bool FEProblemBase::duplicateVariableCheck ( const std::string &  var_name,
const libMesh::FEType type,
bool  is_aux,
const std::set< SubdomainID > *const  active_subdomains 
)
protectedinherited

Helper to check for duplicate variable names across systems or within a single system.

Definition at line 2735 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

2739 {
2740  std::set<SubdomainID> subdomainIDs;
2741  if (active_subdomains->size() == 0)
2742  {
2743  const auto subdomains = _mesh.meshSubdomains();
2744  subdomainIDs.insert(subdomains.begin(), subdomains.end());
2745  }
2746  else
2747  subdomainIDs.insert(active_subdomains->begin(), active_subdomains->end());
2748 
2749  for (auto & sys : _solver_systems)
2750  {
2751  SystemBase * curr_sys_ptr = sys.get();
2752  SystemBase * other_sys_ptr = _aux.get();
2753  std::string error_prefix = "";
2754  if (is_aux)
2755  {
2756  curr_sys_ptr = _aux.get();
2757  other_sys_ptr = sys.get();
2758  error_prefix = "aux";
2759  }
2760 
2761  if (other_sys_ptr->hasVariable(var_name))
2762  mooseError("Cannot have an auxiliary variable and a solver variable with the same name: ",
2763  var_name);
2764 
2765  if (curr_sys_ptr->hasVariable(var_name))
2766  {
2767  const Variable & var =
2768  curr_sys_ptr->system().variable(curr_sys_ptr->system().variable_number(var_name));
2769 
2770  // variable type
2771  if (var.type() != type)
2772  {
2773  const auto stringifyType = [](FEType t)
2774  { return Moose::stringify(t.family) + " of order " + Moose::stringify(t.order); };
2775 
2776  mooseError("Mismatching types are specified for ",
2777  error_prefix,
2778  "variable with name '",
2779  var_name,
2780  "': '",
2781  stringifyType(var.type()),
2782  "' and '",
2783  stringifyType(type),
2784  "'");
2785  }
2786 
2787  // block-restriction
2788  if (!(active_subdomains->size() == 0 && var.active_subdomains().size() == 0))
2789  {
2790  const auto varActiveSubdomains = var.active_subdomains();
2791  std::set<SubdomainID> varSubdomainIDs;
2792  if (varActiveSubdomains.size() == 0)
2793  {
2794  const auto subdomains = _mesh.meshSubdomains();
2795  varSubdomainIDs.insert(subdomains.begin(), subdomains.end());
2796  }
2797  else
2798  varSubdomainIDs.insert(varActiveSubdomains.begin(), varActiveSubdomains.end());
2799 
2800  // Is subdomainIDs a subset of varSubdomainIDs? With this we allow the case that the newly
2801  // requested block restriction is only a subset of the existing one.
2802  const auto isSubset = std::includes(varSubdomainIDs.begin(),
2803  varSubdomainIDs.end(),
2804  subdomainIDs.begin(),
2805  subdomainIDs.end());
2806 
2807  if (!isSubset)
2808  {
2809  // helper function: make a string from a set of subdomain ids
2810  const auto stringifySubdomains = [this](std::set<SubdomainID> subdomainIDs)
2811  {
2812  std::stringstream s;
2813  for (auto const i : subdomainIDs)
2814  {
2815  // do we need to insert a comma?
2816  if (s.tellp() != 0)
2817  s << ", ";
2818 
2819  // insert subdomain name and id -or- only the id (if no name is given)
2820  const auto subdomainName = _mesh.getSubdomainName(i);
2821  if (subdomainName.empty())
2822  s << i;
2823  else
2824  s << subdomainName << " (" << i << ")";
2825  }
2826  return s.str();
2827  };
2828 
2829  const std::string msg = "Mismatching block-restrictions are specified for " +
2830  error_prefix + "variable with name '" + var_name + "': {" +
2831  stringifySubdomains(varSubdomainIDs) + "} and {" +
2832  stringifySubdomains(subdomainIDs) + "}";
2833 
2834  mooseError(msg);
2835  }
2836  }
2837 
2838  return true;
2839  }
2840  }
2841 
2842  return false;
2843 }
const Variable & variable(unsigned int var) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1763
unsigned int variable_number(std::string_view var) const
const std::set< subdomain_id_type > & active_subdomains() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3171
const FEType & type() const

◆ enabled()

virtual bool MooseObject::enabled ( ) const
inlinevirtualinherited

Return the enabled status of the object.

Reimplemented in EigenKernel.

Definition at line 39 of file MooseObject.h.

Referenced by EigenKernel::enabled().

39 { return _enabled; }
const bool & _enabled
Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.
Definition: MooseObject.h:50

◆ errorOnJacobianNonzeroReallocation()

bool FEProblemBase::errorOnJacobianNonzeroReallocation ( ) const
inlineinherited

Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc.

Definition at line 1952 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

1953  {
1955  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ errorPrefix()

std::string MooseBase::errorPrefix ( const std::string &  ) const
inlineinherited

Deprecated message prefix; the error type is no longer used.

Definition at line 260 of file MooseBase.h.

260 { return messagePrefix(); }
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ es()

virtual libMesh::EquationSystems& FEProblemBase::es ( )
inlineoverridevirtualinherited

◆ execMultiApps()

bool FEProblemBase::execMultiApps ( ExecFlagType  type,
bool  auto_advance = true 
)
inherited

Execute the MultiApps associated with the ExecFlagType.

Definition at line 5424 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), MFEMSteady::execute(), TransientBase::execute(), SteadyBase::execute(), Eigenvalue::execute(), FEProblemBase::initialSetup(), EigenExecutionerBase::postExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

5425 {
5426  // Active MultiApps
5427  const std::vector<MooseSharedPointer<MultiApp>> & multi_apps =
5429 
5430  // Do anything that needs to be done to Apps before transfers
5431  for (const auto & multi_app : multi_apps)
5432  multi_app->preTransfer(_dt, _time);
5433 
5434  // Execute Transfers _to_ MultiApps
5436 
5437  // Execute Transfers _between_ Multiapps
5439 
5440  // Execute MultiApps
5441  if (multi_apps.size())
5442  {
5443  TIME_SECTION("execMultiApps", 1, "Executing MultiApps", false);
5444 
5445  if (_verbose_multiapps)
5446  _console << COLOR_CYAN << "\nExecuting MultiApps on " << Moose::stringify(type)
5447  << COLOR_DEFAULT << std::endl;
5448 
5449  bool success = true;
5450 
5451  for (const auto & multi_app : multi_apps)
5452  {
5453  success = multi_app->solveStep(_dt, _time, auto_advance);
5454  // no need to finish executing the subapps if one fails
5455  if (!success)
5456  break;
5457  }
5458 
5460 
5461  _communicator.min(success);
5462 
5463  if (!success)
5464  return false;
5465 
5466  if (_verbose_multiapps)
5467  _console << COLOR_CYAN << "Finished Executing MultiApps on " << Moose::stringify(type) << "\n"
5468  << COLOR_DEFAULT << std::endl;
5469  }
5470 
5471  // Execute Transfers _from_ MultiApps
5473 
5474  // If we made it here then everything passed
5475  return true;
5476 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void execMultiAppTransfers(ExecFlagType type, Transfer::DIRECTION direction)
Execute MultiAppTransfers associated with execution flag and direction.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execMultiAppTransfers()

void FEProblemBase::execMultiAppTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
)
inherited

Execute MultiAppTransfers associated with execution flag and direction.

Parameters
typeThe execution flag to execute.
directionThe direction (to or from) to transfer.

Definition at line 5324 of file FEProblemBase.C.

Referenced by FEProblemBase::execMultiApps().

5325 {
5326  bool to_multiapp = direction == MultiAppTransfer::TO_MULTIAPP;
5327  bool from_multiapp = direction == MultiAppTransfer::FROM_MULTIAPP;
5328  std::string string_direction;
5329  if (to_multiapp)
5330  string_direction = " To ";
5331  else if (from_multiapp)
5332  string_direction = " From ";
5333  else
5334  string_direction = " Between ";
5335 
5336  const MooseObjectWarehouse<Transfer> & wh = to_multiapp ? _to_multi_app_transfers[type]
5337  : from_multiapp ? _from_multi_app_transfers[type]
5339 
5340  if (wh.hasActiveObjects())
5341  {
5342  TIME_SECTION("execMultiAppTransfers", 1, "Executing Transfers");
5343 
5344  const auto & transfers = wh.getActiveObjects();
5345 
5346  if (_verbose_multiapps)
5347  {
5348  _console << COLOR_CYAN << "\nTransfers on " << Moose::stringify(type) << string_direction
5349  << "MultiApps" << COLOR_DEFAULT << ":" << std::endl;
5350 
5352  {"Name", "Type", "From", "To"});
5353 
5354  // Build Table of Transfer Info
5355  for (const auto & transfer : transfers)
5356  {
5357  auto multiapp_transfer = dynamic_cast<MultiAppTransfer *>(transfer.get());
5358 
5359  table.addRow(multiapp_transfer->name(),
5360  multiapp_transfer->type(),
5361  multiapp_transfer->getFromName(),
5362  multiapp_transfer->getToName());
5363  }
5364 
5365  // Print it
5366  table.print(_console);
5367  }
5368 
5369  for (const auto & transfer : transfers)
5370  {
5371  transfer->setCurrentDirection(direction);
5372  transfer->execute();
5373  }
5374 
5376 
5377  if (_verbose_multiapps)
5378  _console << COLOR_CYAN << "Transfers on " << Moose::stringify(type) << " Are Finished\n"
5379  << COLOR_DEFAULT << std::endl;
5380  }
5381  else if (_multi_apps[type].getActiveObjects().size())
5382  {
5383  if (_verbose_multiapps)
5384  _console << COLOR_CYAN << "\nNo Transfers on " << Moose::stringify(type) << string_direction
5385  << "MultiApps\n"
5386  << COLOR_DEFAULT << std::endl;
5387  }
5388 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
A class for "pretty printing" a table of data.
Definition: PerfGraph.h:34
void setCurrentDirection(const int direction)
Set this Transfer to be executed in a given direction.
Definition: Transfer.h:89
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const
Base class for all MultiAppTransfer objects.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execTransfers()

void FEProblemBase::execTransfers ( ExecFlagType  type)
inherited

Execute the Transfers associated with the ExecFlagType.

Note: This does not execute MultiApp Transfers! Those are executed automatically when MultiApps are executed.

Definition at line 5594 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::initialSetup(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5595 {
5596  if (_transfers[type].hasActiveObjects())
5597  {
5598  TIME_SECTION("execTransfers", 3, "Executing Transfers");
5599 
5600  const auto & transfers = _transfers[type].getActiveObjects();
5601 
5602  for (const auto & transfer : transfers)
5603  transfer->execute();
5604  }
5605 }
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ execute()

void FEProblemBase::execute ( const ExecFlagType exec_type)
virtualinherited

Convenience function for performing execution of MOOSE systems.

Reimplemented in EigenProblem, and DumpObjectsProblem.

Definition at line 4621 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::chebyshev(), FixedPointSolve::examineFixedPointConvergence(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), EigenProblem::execute(), NonlinearEigen::init(), MFEMSteady::init(), Steady::init(), EigenExecutionerBase::init(), TransientBase::init(), FEProblemBase::initialSetup(), EigenExecutionerBase::makeBXConsistent(), EigenExecutionerBase::normalizeSolution(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), EigenExecutionerBase::postExecute(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), FixedPointSolve::solveStep(), InversePowerMethod::takeStep(), and NonlinearEigen::takeStep().

4622 {
4623  // Set the current flag
4624  setCurrentExecuteOnFlag(exec_type);
4625 
4626  if (exec_type != EXEC_INITIAL)
4627  executeControls(exec_type);
4628 
4629  // intentially call this after executing controls because the setups may rely on the controls
4630  // FIXME: we skip the following flags because they have dedicated setup functions in
4631  // SetupInterface and it may not be appropriate to call them here.
4632  if (!(exec_type == EXEC_INITIAL || exec_type == EXEC_TIMESTEP_BEGIN ||
4633  exec_type == EXEC_SUBDOMAIN || exec_type == EXEC_NONLINEAR || exec_type == EXEC_LINEAR))
4634  customSetup(exec_type);
4635 
4636  // Samplers; EXEC_INITIAL is not called because the Sampler::init() method that is called after
4637  // construction makes the first Sampler::execute() call. This ensures that the random number
4638  // generator object is the correct state prior to any other object (e.g., Transfers) attempts to
4639  // extract data from the Sampler. That is, if the Sampler::execute() call is delayed to here
4640  // then it is not in the correct state for other objects.
4641  if (exec_type != EXEC_INITIAL)
4642  executeSamplers(exec_type);
4643 
4644  // Pre-aux UserObjects
4645  computeUserObjects(exec_type, Moose::PRE_AUX);
4646 
4647  // Systems (includes system time derivative and aux kernel calculations)
4648  computeSystems(exec_type);
4649  // With the auxiliary system solution computed, sync the displaced problem auxiliary solution
4650  // before computation of post-aux user objects. The undisplaced auxiliary system current local
4651  // solution is updated (via System::update) within the AuxiliarySystem class's variable
4652  // computation methods (e.g. computeElementalVarsHelper, computeNodalVarsHelper), so it is safe to
4653  // use it here
4654  if (_displaced_problem)
4655  _displaced_problem->syncAuxSolution(*getAuxiliarySystem().currentSolution());
4656 
4657  // Post-aux UserObjects
4658  computeUserObjects(exec_type, Moose::POST_AUX);
4659 
4660  // Return the current flag to None
4662 
4664  {
4665  // we will only check aux variables and postprocessors
4666  // checking more reporter data can be added in the future if needed
4667  std::unique_ptr<NumericVector<Number>> x = _aux->currentSolution()->clone();
4669 
4670  // call THIS execute one more time for checking the possible states
4671  _checking_uo_aux_state = true;
4672  FEProblemBase::execute(exec_type);
4673  _checking_uo_aux_state = false;
4674 
4675  const Real check_tol = 1e-8;
4676 
4677  const Real xnorm = x->l2_norm();
4678  *x -= *_aux->currentSolution();
4679  if (x->l2_norm() > check_tol * xnorm)
4680  {
4681  const auto & sys = _aux->system();
4682  const unsigned int n_vars = sys.n_vars();
4683  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4684  for (const auto i : make_range(n_vars))
4685  {
4686  const Real vnorm = sys.calculate_norm(*x, i, DISCRETE_L2);
4687  ordered_map.emplace(vnorm, sys.variable_name(i));
4688  }
4689 
4690  std::ostringstream oss;
4691  for (const auto & [error_norm, var_name] : ordered_map)
4692  oss << " {" << var_name << ", " << error_norm << "},\n";
4693 
4694  mooseError("Aux kernels, user objects appear to have states for aux variables on ",
4695  exec_type,
4696  ".\nVariable error norms in descending order:\n",
4697  oss.str());
4698  }
4699 
4701  if (pp_values.size() != new_pp_values.size())
4702  mooseError("Second execution for uo/aux state check should not change the number of "
4703  "real reporter values");
4704 
4705  const Real ppnorm = pp_values.l2_norm();
4706  pp_values -= new_pp_values;
4707  if (pp_values.l2_norm() > check_tol * ppnorm)
4708  {
4709  const auto pp_names = getReporterData().getAllRealReporterFullNames();
4710  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4711  for (const auto i : index_range(pp_names))
4712  ordered_map.emplace(std::abs(pp_values(i)), pp_names[i]);
4713 
4714  std::ostringstream oss;
4715  for (const auto & [error_norm, pp_name] : ordered_map)
4716  oss << " {" << pp_name << ", " << error_norm << "},\n";
4717 
4718  mooseError("Aux kernels, user objects appear to have states for real reporter values on ",
4719  exec_type,
4720  ".\nErrors of real reporter values in descending order:\n",
4721  oss.str());
4722  }
4723  }
4724 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:42
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setCurrentExecuteOnFlag(const ExecFlagType &)
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void execute(const ExecFlagType &exec_type)
Convenience function for performing execution of MOOSE systems.
const ReporterData & getReporterData() const
Provides const access the ReporterData object.
DenseVector< Real > getAllRealReporterValues() const
Get all real reporter values including postprocessor and vector postprocessor values into a dense vec...
Definition: ReporterData.C:81
unsigned int n_vars
Real l2_norm() const
std::vector< std::string > getAllRealReporterFullNames() const
Get full names of all real reporter values Note: For a postprocessor, the full name is the postproces...
Definition: ReporterData.C:106
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
void executeSamplers(const ExecFlagType &exec_type)
Performs setup and execute calls for Sampler objects.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
AuxiliarySystem & getAuxiliarySystem()
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void customSetup(const ExecFlagType &exec_type) override
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual unsigned int size() const override final
std::shared_ptr< DisplacedProblem > _displaced_problem
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
auto index_range(const T &sizable)
void computeSystems(const ExecFlagType &type)
Do generic system computations.
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ executeAllObjects()

void FEProblemBase::executeAllObjects ( const ExecFlagType exec_type)
virtualinherited

Definition at line 4579 of file FEProblemBase.C.

Referenced by Executor::exec().

4580 {
4581 }

◆ executeControls()

void FEProblemBase::executeControls ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Control objects.

Definition at line 5022 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

5023 {
5024  if (_control_warehouse[exec_type].hasActiveObjects())
5025  {
5026  TIME_SECTION("executeControls", 1, "Executing Controls");
5027 
5029 
5030  auto controls_wh = _control_warehouse[exec_type];
5031  // Add all of the dependencies into the resolver and sort them
5032  for (const auto & it : controls_wh.getActiveObjects())
5033  {
5034  // Make sure an item with no dependencies comes out too!
5035  resolver.addItem(it);
5036 
5037  std::vector<std::string> & dependent_controls = it->getDependencies();
5038  for (const auto & depend_name : dependent_controls)
5039  {
5040  if (controls_wh.hasActiveObject(depend_name))
5041  {
5042  auto dep_control = controls_wh.getActiveObject(depend_name);
5043  resolver.addEdge(dep_control, it);
5044  }
5045  else
5046  mooseError("The Control \"",
5047  depend_name,
5048  "\" was not created, did you make a "
5049  "spelling mistake or forget to include it "
5050  "in your input file?");
5051  }
5052  }
5053 
5054  const auto & ordered_controls = resolver.getSortedValues();
5055 
5056  if (!ordered_controls.empty())
5057  {
5058  _control_warehouse.setup(exec_type);
5059  // Run the controls in the proper order
5060  for (const auto & control : ordered_controls)
5061  control->execute();
5062  }
5063  }
5064 }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
const std::vector< T > & getSortedValues()
This function also returns dependency resolved values but with a simpler single vector interface...
void setup(const ExecFlagType &exec_flag, THREAD_ID tid=0) const
void addEdge(const T &a, const T &b)
Add an edge between nodes &#39;a&#39; and &#39;b&#39;.
void addItem(const T &value)
Add an independent item to the set.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
Class that represents the dependecy as a graph.

◆ executeSamplers()

void FEProblemBase::executeSamplers ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Sampler objects.

Definition at line 5067 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

5068 {
5069  // TODO: This should be done in a threaded loop, but this should be super quick so for now
5070  // do a serial loop.
5071  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5072  {
5073  std::vector<Sampler *> objects;
5074  theWarehouse()
5075  .query()
5076  .condition<AttribSystem>("Sampler")
5077  .condition<AttribThread>(tid)
5078  .condition<AttribExecOns>(exec_type)
5079  .queryInto(objects);
5080 
5081  if (!objects.empty())
5082  {
5083  TIME_SECTION("executeSamplers", 1, "Executing Samplers");
5084  FEProblemBase::objectSetupHelper<Sampler>(objects, exec_type);
5085  FEProblemBase::objectExecuteHelper<Sampler>(objects);
5086  }
5087  }
5088 }
unsigned int n_threads()
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ externalSolve()

virtual void MFEMProblem::externalSolve ( )
inlineoverridevirtual

New interface for solving an External problem.

"solve()" is finalized here to provide callbacks for solution syncing.

Implements ExternalProblem.

Definition at line 26 of file MFEMProblem.h.

26 {}

◆ feBackend()

Moose::FEBackend MFEMProblem::feBackend ( ) const
inlineoverridevirtual

Reimplemented from FEProblemBase.

Definition at line 199 of file MFEMProblem.h.

◆ finalizeMultiApps()

void FEProblemBase::finalizeMultiApps ( )
inherited

Definition at line 5479 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5480 {
5481  const auto & multi_apps = _multi_apps.getActiveObjects();
5482 
5483  for (const auto & multi_app : multi_apps)
5484  multi_app->finalize();
5485 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ finalNonlinearResidual()

Real FEProblemBase::finalNonlinearResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6591 of file FEProblemBase.C.

6592 {
6593  return _nl[nl_sys_num]->finalNonlinearResidual();
6594 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ finishMultiAppStep()

void FEProblemBase::finishMultiAppStep ( ExecFlagType  type,
bool  recurse_through_multiapp_levels = false 
)
inherited

Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.

Optionally recurse through all multi-app levels

Definition at line 5507 of file FEProblemBase.C.

Referenced by FEProblemBase::advanceMultiApps(), TransientBase::execute(), TransientMultiApp::finishStep(), and TransientBase::incrementStepOrReject().

5508 {
5509  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5510 
5511  if (multi_apps.size())
5512  {
5513  if (_verbose_multiapps)
5514  _console << COLOR_CYAN << "\nAdvancing MultiApps on " << type.name() << COLOR_DEFAULT
5515  << std::endl;
5516 
5517  for (const auto & multi_app : multi_apps)
5518  multi_app->finishStep(recurse_through_multiapp_levels);
5519 
5521 
5522  if (_verbose_multiapps)
5523  _console << COLOR_CYAN << "Finished Advancing MultiApps on " << type.name() << "\n"
5524  << COLOR_DEFAULT << std::endl;
5525  }
5526 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ forceOutput()

void FEProblemBase::forceOutput ( )
inherited

Indicates that the next call to outputStep should be forced.

This is needed by the MultiApp system, if forceOutput is called the next call to outputStep, regardless of the type supplied to the call, will be executed with EXEC_FORCED.

Forced output will NOT override the allowOutput flag.

Definition at line 6715 of file FEProblemBase.C.

Referenced by TransientMultiApp::solveStep().

6716 {
6718 }
void forceOutput()
Indicates that the next call to outputStep should be forced This is private, users should utilize FEP...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ fvBCsIntegrityCheck() [1/2]

bool FEProblemBase::fvBCsIntegrityCheck ( ) const
inlineinherited
Returns
whether to perform a boundary condition integrity check for finite volume

Definition at line 2280 of file FEProblemBase.h.

2280 { return _fv_bcs_integrity_check; }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ fvBCsIntegrityCheck() [2/2]

void FEProblemBase::fvBCsIntegrityCheck ( bool  fv_bcs_integrity_check)
inlineinherited
Parameters
fv_bcs_integrity_checkWhether to perform a boundary condition integrity check for finite volume

Definition at line 3284 of file FEProblemBase.h.

3285 {
3287  // the user has requested that we don't check integrity so we will honor that
3288  return;
3289 
3290  _fv_bcs_integrity_check = fv_bcs_integrity_check;
3291 }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ geomSearchData()

virtual GeometricSearchData& FEProblemBase::geomSearchData ( )
inlineoverridevirtualinherited

◆ getActiveElementalMooseVariables()

const std::set< MooseVariableFEBase * > & SubProblem::getActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Get the MOOSE variables to be reinited on each element.

Parameters
tidThe thread id

Definition at line 454 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), FEProblemBase::prepareMaterials(), and SystemBase::reinitElem().

455 {
457 }
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) ...
Definition: SubProblem.h:1075

◆ getActiveFEVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 390 of file SubProblem.C.

391 {
393 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
Definition: SubProblem.h:1081

◆ getActiveFEVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 396 of file SubProblem.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

397 {
399 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
Definition: SubProblem.h:1083

◆ getActiveScalarVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 431 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit().

432 {
434 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
Definition: SubProblem.h:1085

◆ getActiveScalarVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 437 of file SubProblem.C.

438 {
440 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
Definition: SubProblem.h:1087

◆ getActualFieldVariable()

MooseVariableFieldBase & FEProblemBase::getActualFieldVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariableField which may be in any system.

Implements SubProblem.

Definition at line 5724 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSampleTransfer::execute().

5725 {
5726  for (auto & sys : _solver_systems)
5727  if (sys->hasVariable(var_name))
5728  return sys->getActualFieldVariable<Real>(tid, var_name);
5729  if (_aux->hasVariable(var_name))
5730  return _aux->getActualFieldVariable<Real>(tid, var_name);
5731 
5732  mooseError("Unknown variable " + var_name);
5733 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getArrayVariable()

ArrayMooseVariable & FEProblemBase::getArrayVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested ArrayMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5748 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), and PointwiseRenormalizeVector::PointwiseRenormalizeVector().

5749 {
5750  for (auto & sys : _solver_systems)
5751  if (sys->hasVariable(var_name))
5752  return sys->getFieldVariable<RealEigenVector>(tid, var_name);
5753  if (_aux->hasVariable(var_name))
5754  return _aux->getFieldVariable<RealEigenVector>(tid, var_name);
5755 
5756  mooseError("Unknown variable " + var_name);
5757 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
Eigen::Matrix< Real, Eigen::Dynamic, 1 > RealEigenVector
Definition: MooseTypes.h:146

◆ getAuxiliarySystem()

AuxiliarySystem& FEProblemBase::getAuxiliarySystem ( )
inlineinherited

◆ getAuxVariableNames()

std::vector< VariableName > MFEMProblem::getAuxVariableNames ( )
virtual

Returns all the variable names from the auxiliary system base.

This is helpful in the syncSolutions() method when transferring variable data.

Definition at line 459 of file MFEMProblem.C.

460 {
462 }
virtual const SystemBase & systemBaseAuxiliary() const override
Return the auxiliary system object as a base class reference.
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ getAxisymmetricRadialCoord()

unsigned int SubProblem::getAxisymmetricRadialCoord ( ) const
inherited

Returns the desired radial direction for RZ coordinate transformation.

Returns
The coordinate direction for the radial direction

Definition at line 796 of file SubProblem.C.

797 {
798  return mesh().getAxisymmetricRadialCoord();
799 }
virtual MooseMesh & mesh()=0
unsigned int getAxisymmetricRadialCoord() const
Returns the desired radial direction for RZ coordinate transformation.
Definition: MooseMesh.C:4294

◆ getBase()

const std::string& MooseBase::getBase ( ) const
inlineinherited
Returns
The registered base for this object (set via InputParameters::registerBase())

Definition at line 143 of file MooseBase.h.

Referenced by Factory::copyConstruct(), and MooseBase::uniqueParameterName().

143 { return _pars.getBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & getBase() const

◆ getBndMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getBndMaterialPropertyStorage ( )
inlineinherited

Definition at line 1700 of file FEProblemBase.h.

1700 { return _bnd_material_props; }
MaterialPropertyStorage & _bnd_material_props

◆ getCheckedPointerParam()

template<typename T >
T MooseBase::getCheckedPointerParam ( const std::string &  name,
const std::string &  error_string = "" 
) const
inherited

Verifies that the requested parameter exists and is not NULL and returns it to the caller.

The template parameter must be a pointer or an error will be thrown.

Definition at line 428 of file MooseBase.h.

429 {
430  return _pars.getCheckedPointerParam<T>(name, error_string);
431 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
T getCheckedPointerParam(const std::string &name, const std::string &error_string="") const
Verifies that the requested parameter exists and is not NULL and returns it to the caller...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getCoefficients()

Moose::MFEM::CoefficientManager& MFEMProblem::getCoefficients ( )
inline

Method to get the PropertyManager object for storing material properties and converting them to MFEM coefficients.

This is used by Material and Kernel classes (among others).

Definition at line 180 of file MFEMProblem.h.

Referenced by addFunction(), addGridFunction(), addPostprocessor(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MFEMGeneralUserObject::getScalarCoefficientByName(), and MFEMGeneralUserObject::getVectorCoefficientByName().

180 { return _problem_data.coefficients; }
MFEMProblemData _problem_data
Definition: MFEMProblem.h:209
Moose::MFEM::CoefficientManager coefficients

◆ getConsumedPropertyMap()

const std::map< MooseObjectName, std::set< std::string > > & SubProblem::getConsumedPropertyMap ( ) const
inherited

Return the map that tracks the object with consumed material properties.

Definition at line 742 of file SubProblem.C.

Referenced by MaterialPropertyDebugOutput::output().

743 {
745 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ getControlWarehouse()

ExecuteMooseObjectWarehouse<Control>& FEProblemBase::getControlWarehouse ( )
inlineinherited

Reference to the control logic warehouse.

Definition at line 2072 of file FEProblemBase.h.

Referenced by LibtorchArtificialNeuralNetParameters::initialSetup(), and LibtorchControlValuePostprocessor::initialSetup().

2072 { return _control_warehouse; }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.

◆ getConvergence()

Convergence & FEProblemBase::getConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Gets a Convergence object.

Definition at line 2623 of file FEProblemBase.C.

Referenced by TransientBase::convergedToSteadyState(), FEProblemSolve::convergenceSetup(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), TransientBase::init(), ParsedConvergence::initializeConvergenceSymbol(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

2624 {
2625  auto * const ret = dynamic_cast<Convergence *>(_convergences.getActiveObject(name, tid).get());
2626  if (!ret)
2627  mooseError("The Convergence object '", name, "' does not exist.");
2628 
2629  return *ret;
2630 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
Base class for convergence criteria.
Definition: Convergence.h:21
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getConvergenceObjects()

const std::vector< std::shared_ptr< Convergence > > & FEProblemBase::getConvergenceObjects ( const THREAD_ID  tid = 0) const
virtualinherited

Gets the Convergence objects.

Definition at line 2633 of file FEProblemBase.C.

2634 {
2635  return _convergences.getActiveObjects(tid);
2636 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse

◆ getCoordSystem()

Moose::CoordinateSystemType SubProblem::getCoordSystem ( SubdomainID  sid) const
inherited

Definition at line 1278 of file SubProblem.C.

Referenced by BlockRestrictable::getBlockCoordSystem(), MultiApp::getBoundingBox(), Assembly::reinitLowerDElem(), Assembly::reinitNeighborLowerDElem(), and Assembly::setCoordinateTransformation().

1279 {
1280  return mesh().getCoordSystem(sid);
1281 }
virtual MooseMesh & mesh()=0
Moose::CoordinateSystemType getCoordSystem(SubdomainID sid) const
Get the coordinate system type, e.g.
Definition: MooseMesh.C:4175

◆ getCurrentAlgebraicBndNodeRange()

const ConstBndNodeRange & FEProblemBase::getCurrentAlgebraicBndNodeRange ( )
inherited

Definition at line 9379 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::setInitialSolution().

9380 {
9382  return *_mesh.getBoundaryNodeRange();
9383 
9385 }
MooseMesh & _mesh
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289

◆ getCurrentAlgebraicElementRange()

const ConstElemRange & FEProblemBase::getCurrentAlgebraicElementRange ( )
inherited

These are the element and nodes that contribute to the jacobian and residual for this local processor.

getCurrentAlgebraicElementRange() returns the element range that contributes to the system getCurrentAlgebraicNodeRange() returns the node range that contributes to the system getCurrentAlgebraicBndNodeRange returns the boundary node ranges that contributes to the system

Definition at line 9363 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::computeScaling().

9364 {
9367 
9369 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range
MooseMesh & _mesh

◆ getCurrentAlgebraicNodeRange()

const ConstNodeRange & FEProblemBase::getCurrentAlgebraicNodeRange ( )
inherited

Definition at line 9371 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

9372 {
9374  return *_mesh.getLocalNodeRange();
9375 
9377 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
MooseMesh & _mesh

◆ getCurrentExecuteOnFlag()

const ExecFlagType & FEProblemBase::getCurrentExecuteOnFlag ( ) const
inherited

Return/set the current execution flag.

Returns EXEC_NONE when not being executed.

See also
FEProblemBase::execute

Definition at line 4567 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), MultiAppGeneralFieldTransfer::closestToPosition(), MultiAppGeneralFieldNearestLocationTransfer::computeNumSources(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), NearestPositionsDivision::divisionIndex(), PositionsFunctorValueSampler::execute(), PIDTransientControl::execute(), Terminator::execute(), Control::getControllableParameterByName(), Material::getMaterialByName(), MultiAppGeneralFieldNearestLocationTransfer::getNumDivisions(), NumPositions::getValue(), PositionsFunctorValueSampler::initialize(), DistributedPositions::initialize(), TransformedPositions::initialize(), ParsedDownSelectionPositions::initialize(), MultiAppGeneralFieldTransfer::locatePointReceivers(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), NonlinearThread::printGeneralExecutionInformation(), MultiApp::restore(), SolutionInvalidityOutput::shouldOutput(), NodalReporter::shouldStore(), ElementReporter::shouldStore(), GeneralReporter::shouldStore(), and WebServerControl::startServer().

4568 {
4569  return _current_execute_on_flag;
4570 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ getCurrentICState()

unsigned short FEProblemBase::getCurrentICState ( )
inherited

Retrieves the current initial condition state.

Returns
current initial condition state

Definition at line 9422 of file FEProblemBase.C.

Referenced by ComputeInitialConditionThread::operator()().

9423 {
9424  return _current_ic_state;
9425 }
unsigned short _current_ic_state

◆ getDataFileName()

std::string DataFileInterface::getDataFileName ( const std::string &  param) const
inherited

Deprecated method.

The data file paths are now automatically set within the InputParameters object, so using getParam<DataFileName>("param_name") is now sufficient.

Definition at line 21 of file DataFileInterface.C.

22 {
23  _parent.mooseDeprecated("getDataFileName() is deprecated. The file path is now directly set "
24  "within the InputParameters.\nUse getParam<DataFileName>(\"",
25  param,
26  "\") instead.");
27  return _parent.getParam<DataFileName>(param);
28 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const ParallelParamObject & _parent

◆ getDataFileNameByName()

std::string DataFileInterface::getDataFileNameByName ( const std::string &  relative_path) const
inherited

Deprecated method.

Use getDataFilePath() instead.

Definition at line 31 of file DataFileInterface.C.

32 {
33  _parent.mooseDeprecated("getDataFileNameByName() is deprecated. Use getDataFilePath(\"",
34  relative_path,
35  "\") instead.");
36  return getDataFilePath(relative_path);
37 }
std::string getDataFilePath(const std::string &relative_path) const
Returns the path of a data file for a given relative file path.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const ParallelParamObject & _parent

◆ getDataFilePath()

std::string DataFileInterface::getDataFilePath ( const std::string &  relative_path) const
inherited

Returns the path of a data file for a given relative file path.

This can be used for hardcoded datafile names and will search the same locations as getDataFileName

Definition at line 40 of file DataFileInterface.C.

Referenced by DataFileInterface::getDataFileNameByName().

41 {
42  // This should only ever be used with relative paths. There is no point to
43  // use this search path with an absolute path.
44  if (std::filesystem::path(relative_path).is_absolute())
45  _parent.mooseWarning("While using getDataFilePath(\"",
46  relative_path,
47  "\"): This API should not be used for absolute paths.");
48 
49  // Throw on error so that if getPath() fails, we can throw an error
50  // with the context of _parent.mooseError()
51  const auto throw_on_error_before = Moose::_throw_on_error;
53  std::optional<std::string> error;
54 
55  // This will search the data paths for this relative path
56  Moose::DataFileUtils::Path found_path;
57  try
58  {
59  found_path = Moose::DataFileUtils::getPath(relative_path);
60  }
61  catch (std::exception & e)
62  {
63  error = e.what();
64  }
65 
66  Moose::_throw_on_error = throw_on_error_before;
67  if (error)
68  _parent.mooseError(*error);
69 
70  mooseAssert(found_path.context == Moose::DataFileUtils::Context::DATA,
71  "Should only ever obtain data");
72  mooseAssert(found_path.data_name, "Should be set");
73 
74  const std::string msg =
75  "Using data file '" + found_path.path + "' from " + *found_path.data_name + " data";
76  _parent.mooseInfo(msg);
77 
78  return found_path.path;
79 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
Context context
Context for the file (where it came from)
Definition: DataFileUtils.h:48
Representation of a data file path.
Definition: DataFileUtils.h:36
Path getPath(std::string path, const std::optional< std::string > &base=std::optional< std::string >())
Get the data path for a given path, searching the registered data.
Definition: DataFileUtils.C:22
std::optional< std::string > data_name
The name of the data registry the file came from (with context == DATA)
Definition: DataFileUtils.h:50
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _throw_on_error
Variable to turn on exceptions during mooseError(), should only be used within MOOSE unit tests or wh...
Definition: Moose.C:780
const ParallelParamObject & _parent

◆ getDiracElements()

void FEProblemBase::getDiracElements ( std::set< const Elem *> &  elems)
overridevirtualinherited

Fills "elems" with the elements that should be looped over for Dirac Kernels.

Implements SubProblem.

Definition at line 2443 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2444 {
2445  // First add in the undisplaced elements
2446  elems = _dirac_kernel_info.getElements();
2447 
2448  if (_displaced_problem)
2449  {
2450  std::set<const Elem *> displaced_elements;
2451  _displaced_problem->getDiracElements(displaced_elements);
2452 
2453  { // Use the ids from the displaced elements to get the undisplaced elements
2454  // and add them to the list
2455  for (const auto & elem : displaced_elements)
2456  elems.insert(_mesh.elemPtr(elem->id()));
2457  }
2458  }
2459 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
std::set< const Elem * > & getElements()
Returns a writeable reference to the _elements container.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ getDiscreteMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getDiscreteMaterialWarehouse ( ) const
inlineinherited

Definition at line 1923 of file FEProblemBase.h.

1923 { return _discrete_materials; }
MaterialWarehouse _discrete_materials

◆ getDisplacedProblem() [1/2]

virtual std::shared_ptr<const DisplacedProblem> FEProblemBase::getDisplacedProblem ( ) const
inlinevirtualinherited

◆ getDisplacedProblem() [2/2]

virtual std::shared_ptr<DisplacedProblem> FEProblemBase::getDisplacedProblem ( )
inlinevirtualinherited

Definition at line 1642 of file FEProblemBase.h.

1642 { return _displaced_problem; }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ getDistribution()

Distribution & FEProblemBase::getDistribution ( const std::string &  name)
virtualinherited

Definition at line 2693 of file FEProblemBase.C.

Referenced by DistributionInterface::getDistribution(), and DistributionInterface::getDistributionByName().

2694 {
2695  std::vector<Distribution *> objs;
2696  theWarehouse()
2697  .query()
2698  .condition<AttribSystem>("Distribution")
2699  .condition<AttribName>(name)
2700  .queryInto(objs);
2701  if (objs.empty())
2702  mooseError("Unable to find Distribution with name '" + name + "'");
2703  return *(objs[0]);
2704 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getEvaluableElementRange()

const ConstElemRange & FEProblemBase::getEvaluableElementRange ( )
inherited

In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}.

That is, the number of evaluable elements does NOT necessarily equal to the number of local and algebraic ghosting elements. For example, if using a Lagrange basis for all variables, if a non-local, non-algebraically-ghosted element is surrounded by neighbors which are local or algebraically ghosted, then all the nodal (Lagrange) degrees of freedom associated with the non-local, non-algebraically-ghosted element will be evaluable, and hence that element will be considered evaluable.

getNonlinearEvaluableElementRange() returns the evaluable element range based on the nonlinear system dofmap; getAuxliaryEvaluableElementRange() returns the evaluable element range based on the auxiliary system dofmap; getEvaluableElementRange() returns the element range that is evaluable based on both the nonlinear dofmap and the auxliary dofmap.

Definition at line 831 of file FEProblemBase.C.

Referenced by NodalPatchRecoveryBase::finalize().

832 {
834  {
835  std::vector<const DofMap *> dof_maps(es().n_systems());
836  for (const auto i : make_range(es().n_systems()))
837  {
838  const auto & sys = es().get_system(i);
839  dof_maps[i] = &sys.get_dof_map();
840  }
842  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
843  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
844  }
846 }
const T_sys & get_system(std::string_view name) const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
IntRange< T > make_range(T beg, T end)
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range

◆ getExecutor()

virtual Executor& FEProblemBase::getExecutor ( const std::string &  name)
inlinevirtualinherited

Definition at line 2024 of file FEProblemBase.h.

2024 { return _app.getExecutor(name); }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
Executor * getExecutor() const
Definition: MooseApp.h:328

◆ getFailNextNonlinearConvergenceCheck()

bool FEProblemBase::getFailNextNonlinearConvergenceCheck ( ) const
inlineinherited

Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2412 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), NonlinearSystem::converged(), Moose::PetscSupport::petscNonlinearConverged(), and ComputeResidualFunctor::residual().

bool getFailNextSystemConvergenceCheck() const
Whether it will fail the next system convergence check(s), triggering failed step behavior...

◆ getFailNextSystemConvergenceCheck()

bool FEProblemBase::getFailNextSystemConvergenceCheck ( ) const
inlineinherited

Whether it will fail the next system convergence check(s), triggering failed step behavior.

Definition at line 2414 of file FEProblemBase.h.

Referenced by FEProblemBase::getFailNextNonlinearConvergenceCheck(), and Moose::PetscSupport::petscLinearConverged().

bool _fail_next_system_convergence_check

◆ getFunction()

Function & FEProblemBase::getFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2572 of file FEProblemBase.C.

Referenced by addFunction(), FunctionInterface::getFunction(), FunctionInterface::getFunctionByName(), IterationAdaptiveDT::init(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), and ParsedConvergence::initializeFunctionSymbol().

2573 {
2574  // This thread lock is necessary since this method will create functions
2575  // for all threads if one is missing.
2576  Threads::spin_mutex::scoped_lock lock(get_function_mutex);
2577 
2578  if (!hasFunction(name, tid))
2579  {
2580  // If we didn't find a function, it might be a default function, attempt to construct one now
2581  std::istringstream ss(name);
2582  Real real_value;
2583 
2584  // First see if it's just a constant. If it is, build a ConstantFunction
2585  if (ss >> real_value && ss.eof())
2586  {
2587  InputParameters params = _factory.getValidParams("ConstantFunction");
2588  params.set<Real>("value") = real_value;
2589  addFunction("ConstantFunction", ss.str(), params);
2590  }
2591  else
2592  {
2594  std::string vars = "x,y,z,t,NaN,pi,e";
2595  if (fp.Parse(name, vars) == -1) // -1 for success
2596  {
2597  // It parsed ok, so build a MooseParsedFunction
2598  InputParameters params = _factory.getValidParams("ParsedFunction");
2599  params.set<std::string>("expression") = name;
2600  addFunction("ParsedFunction", name, params);
2601  }
2602  }
2603 
2604  // Try once more
2605  if (!hasFunction(name, tid))
2606  mooseError("Unable to find function " + name);
2607  }
2608 
2609  auto * const ret = dynamic_cast<Function *>(_functions.getActiveObject(name, tid).get());
2610  if (!ret)
2611  mooseError("No function named ", name, " of appropriate type");
2612 
2613  return *ret;
2614 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
Threads::spin_mutex get_function_mutex
char ** vars
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MooseObjectWarehouse< Function > _functions
functions
virtual bool hasFunction(const std::string &name, const THREAD_ID tid=0)

◆ getFunctor()

template<typename T >
const Moose::Functor< T > & SubProblem::getFunctor ( const std::string &  name,
const THREAD_ID  tid,
const std::string &  requestor_name,
bool  requestor_is_ad 
)
inherited
Template Parameters
TThe type that the functor will return when evaluated, e.g. ADReal or Real
Parameters
nameThe name of the functor to retrieve
tidThe thread ID that we are retrieving the functor property for
requestor_nameThe name of the object that is requesting this functor property
requestor_is_adWhether the requesting object is an AD object
Returns
a constant reference to the functor

Definition at line 1214 of file SubProblem.h.

Referenced by FunctorInterface::getFunctorByName().

1218 {
1219  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1220 
1221  // Log the requestor
1222  _functor_to_requestors["wraps_" + name].insert(requestor_name);
1223 
1224  constexpr bool requested_functor_is_ad =
1225  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1226 
1227  auto & functor_to_request_info = _functor_to_request_info[tid];
1228 
1229  // Get the requested functor if we already have it
1230  auto & functors = _functors[tid];
1231  if (auto find_ret = functors.find("wraps_" + name); find_ret != functors.end())
1232  {
1233  if (functors.count("wraps_" + name) > 1)
1234  mooseError("Attempted to get a functor with the name '",
1235  name,
1236  "' but multiple (" + std::to_string(functors.count("wraps_" + name)) +
1237  ") functors match. Make sure that you do not have functor material "
1238  "properties, functions, postprocessors or variables with the same names.");
1239 
1240  auto & [true_functor_is, non_ad_functor, ad_functor] = find_ret->second;
1241  auto & functor_wrapper = requested_functor_is_ad ? *ad_functor : *non_ad_functor;
1242 
1243  auto * const functor = dynamic_cast<Moose::Functor<T> *>(&functor_wrapper);
1244  if (!functor)
1245  mooseError("A call to SubProblem::getFunctor requested a functor named '",
1246  name,
1247  "' that returns the type: '",
1248  libMesh::demangle(typeid(T).name()),
1249  "'. However, that functor already exists and returns a different type: '",
1250  functor_wrapper.returnType(),
1251  "'");
1252 
1253  if (functor->template wrapsType<Moose::NullFunctor<T>>())
1254  // Store for future checking when the actual functor gets added
1255  functor_to_request_info.emplace(name,
1256  std::make_pair(requested_functor_is_ad, requestor_is_ad));
1257  else
1258  {
1259  // We already have the actual functor
1260  if (true_functor_is == SubProblem::TrueFunctorIs::UNSET)
1261  mooseError("We already have the functor; it should not be unset");
1262 
1263  // Check for whether this is a valid request
1264  // We allow auxiliary variables and linear variables to be retrieved as non AD
1265  if (!requested_functor_is_ad && requestor_is_ad &&
1266  true_functor_is == SubProblem::TrueFunctorIs::AD &&
1268  mooseError("The AD object '",
1269  requestor_name,
1270  "' is requesting the functor '",
1271  name,
1272  "' as a non-AD functor even though it is truly an AD functor, which is not "
1273  "allowed, since this may unintentionally drop derivatives.");
1274  }
1275 
1276  return *functor;
1277  }
1278 
1279  // We don't have the functor yet but we could have it in the future. We'll create null functors
1280  // for now
1281  functor_to_request_info.emplace(name, std::make_pair(requested_functor_is_ad, requestor_is_ad));
1282  if constexpr (requested_functor_is_ad)
1283  {
1284  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1285  typedef T ADType;
1286 
1287  auto emplace_ret =
1288  functors.emplace("wraps_" + name,
1289  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1290  std::make_unique<Moose::Functor<NonADType>>(
1291  std::make_unique<Moose::NullFunctor<NonADType>>()),
1292  std::make_unique<Moose::Functor<ADType>>(
1293  std::make_unique<Moose::NullFunctor<ADType>>())));
1294 
1295  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1296  ? std::get<2>(emplace_ret->second)
1297  : std::get<1>(emplace_ret->second)));
1298  }
1299  else
1300  {
1301  typedef T NonADType;
1302  typedef typename Moose::ADType<T>::type ADType;
1303 
1304  auto emplace_ret =
1305  functors.emplace("wraps_" + name,
1306  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1307  std::make_unique<Moose::Functor<NonADType>>(
1308  std::make_unique<Moose::NullFunctor<NonADType>>()),
1309  std::make_unique<Moose::Functor<ADType>>(
1310  std::make_unique<Moose::NullFunctor<ADType>>())));
1311 
1312  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1313  ? std::get<2>(emplace_ret->second)
1314  : std::get<1>(emplace_ret->second)));
1315  }
1316 }
std::map< std::string, std::set< std::string > > _functor_to_requestors
The requestors of functors where the key is the prop name and the value is a set of names of requesto...
Definition: SubProblem.h:1157
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
std::string demangle(const char *name)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
virtual bool hasLinearVariable(const std::string &var_name) const
Whether or not this problem has this linear variable.
Definition: SubProblem.C:802
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...
virtual bool hasAuxiliaryVariable(const std::string &var_name) const
Whether or not this problem has this auxiliary variable.
Definition: SubProblem.C:811

◆ getFVInitialConditionWarehouse()

const FVInitialConditionWarehouse& FEProblemBase::getFVInitialConditionWarehouse ( ) const
inlineinherited

Return FVInitialCondition storage.

Definition at line 1727 of file FEProblemBase.h.

Referenced by ComputeFVInitialConditionThread::operator()(), and ComputeFVInitialConditionThread::printGeneralExecutionInformation().

1727 { return _fv_ics; }
FVInitialConditionWarehouse _fv_ics

◆ getFVMatsAndDependencies()

void FEProblemBase::getFVMatsAndDependencies ( SubdomainID  block_id,
std::vector< std::shared_ptr< MaterialBase >> &  face_materials,
std::vector< std::shared_ptr< MaterialBase >> &  neighbor_materials,
std::set< MooseVariableFieldBase *> &  variables,
const THREAD_ID  tid 
)
inherited

Get the materials and variables potentially needed for FV.

Parameters
block_idSubdomainID The subdomain id that we want to retrieve materials for
face_materialsThe face materials container that we will fill
neighbor_materialsThe neighbor materials container that we will fill
variablesThe variables container that we will fill that our materials depend on
tidThe thread id

Definition at line 9058 of file FEProblemBase.C.

9064 {
9065  if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9066  {
9067  auto & this_face_mats =
9069  for (std::shared_ptr<MaterialBase> face_mat : this_face_mats)
9070  if (face_mat->ghostable())
9071  {
9072  face_materials.push_back(face_mat);
9073  auto & var_deps = face_mat->getMooseVariableDependencies();
9074  for (auto * var : var_deps)
9075  {
9076  if (!var->isFV())
9077  mooseError(
9078  "Ghostable materials should only have finite volume variables coupled into them.");
9079  else if (face_mat->hasStatefulProperties())
9080  mooseError("Finite volume materials do not currently support stateful properties.");
9081  variables.insert(var);
9082  }
9083  }
9084  }
9085 
9086  if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9087  {
9088  auto & this_neighbor_mats =
9090  for (std::shared_ptr<MaterialBase> neighbor_mat : this_neighbor_mats)
9091  if (neighbor_mat->ghostable())
9092  {
9093  neighbor_materials.push_back(neighbor_mat);
9094 #ifndef NDEBUG
9095  auto & var_deps = neighbor_mat->getMooseVariableDependencies();
9096  for (auto * var : var_deps)
9097  {
9098  if (!var->isFV())
9099  mooseError(
9100  "Ghostable materials should only have finite volume variables coupled into them.");
9101  else if (neighbor_mat->hasStatefulProperties())
9102  mooseError("Finite volume materials do not currently support stateful properties.");
9103  auto pr = variables.insert(var);
9104  mooseAssert(!pr.second,
9105  "We should not have inserted any new variables dependencies from our "
9106  "neighbor materials that didn't exist for our face materials");
9107  }
9108 #endif
9109  }
9110  }
9111 }
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialWarehouse _materials

◆ getGridFunction()

std::shared_ptr< mfem::ParGridFunction > MFEMProblem::getGridFunction ( const std::string &  name)
Returns
a shared pointer to an MFEM parallel grid function

Definition at line 502 of file MFEMProblem.C.

Referenced by MFEMScalarIC::execute(), and MFEMVectorIC::execute().

503 {
504  return getUserObject<MFEMVariable>(name).getGridFunction();
505 }
std::shared_ptr< mfem::ParGridFunction > getGridFunction(const std::string &name)
Definition: MFEMProblem.C:502
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getHitNode()

const hit::Node* MooseBase::getHitNode ( ) const
inlineinherited
Returns
The block-level hit node for this object, if any

Definition at line 132 of file MooseBase.h.

Referenced by FEProblemBase::addAnyRedistributers(), MooseBase::callMooseError(), MooseBase::getHitNode(), and MooseBase::messagePrefix().

132 { return getHitNode(_pars); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const hit::Node * getHitNode() const
Definition: MooseBase.h:132

◆ getIndicatorWarehouse()

const MooseObjectWarehouse<Indicator>& FEProblemBase::getIndicatorWarehouse ( )
inlineinherited

Return indicator/marker storage.

Definition at line 1711 of file FEProblemBase.h.

1711 { return _indicators; }
MooseObjectWarehouse< Indicator > _indicators

◆ getInitialConditionWarehouse()

const InitialConditionWarehouse& FEProblemBase::getInitialConditionWarehouse ( ) const
inlineinherited

Return InitialCondition storage.

Definition at line 1722 of file FEProblemBase.h.

Referenced by ComputeBoundaryInitialConditionThread::onNode(), ComputeInitialConditionThread::operator()(), and ComputeInitialConditionThread::printGeneralExecutionInformation().

1722 { return _ics; }
InitialConditionWarehouse _ics

◆ getInterfaceMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getInterfaceMaterialsWarehouse ( ) const
inlineinherited

Definition at line 1924 of file FEProblemBase.h.

1924 { return _interface_materials; }
MaterialWarehouse _interface_materials

◆ getInternalSideIndicatorWarehouse()

const MooseObjectWarehouse<InternalSideIndicatorBase>& FEProblemBase::getInternalSideIndicatorWarehouse ( )
inlineinherited

Definition at line 1712 of file FEProblemBase.h.

1713  {
1715  }
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators

◆ getLinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getLinearConvergenceNames ( ) const
inherited

Gets the linear convergence object name(s).

Definition at line 9167 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscLinearConverged().

9168 {
9170  return *_linear_convergence_names;
9171  mooseError("The linear convergence name(s) have not been set.");
9172 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ getLinearSystem() [1/2]

LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3230 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Moose::compute_linear_system(), ComputeLinearFVGreenGaussGradientFaceThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Moose::PetscSupport::petscSetDefaults(), and FEProblemSolve::solve().

3231 {
3232  mooseAssert(sys_num < _linear_systems.size(),
3233  "System number greater than the number of linear systems");
3234  return *_linear_systems[sys_num];
3235 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystem() [2/2]

const LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3238 of file FEProblemBase.h.

3239 {
3240  mooseAssert(sys_num < _linear_systems.size(),
3241  "System number greater than the number of linear systems");
3242  return *_linear_systems[sys_num];
3243 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystemNames()

const std::vector<LinearSystemName>& FEProblemBase::getLinearSystemNames ( ) const
inlineinherited
Returns
the linear system names in the problem

Definition at line 2493 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), and MultiSystemSolveObject::MultiSystemSolveObject().

2493 { return _linear_sys_names; }
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.

◆ getLineSearch()

LineSearch* FEProblemBase::getLineSearch ( )
inlineoverridevirtualinherited

getter for the MOOSE line search

Implements SubProblem.

Definition at line 725 of file FEProblemBase.h.

Referenced by DisplacedProblem::getLineSearch().

725 { return _line_search.get(); }
std::shared_ptr< LineSearch > _line_search

◆ getMarkerWarehouse()

const MooseObjectWarehouse<Marker>& FEProblemBase::getMarkerWarehouse ( )
inlineinherited

Definition at line 1716 of file FEProblemBase.h.

1716 { return _markers; }
MooseObjectWarehouse< Marker > _markers

◆ getMaterial()

std::shared_ptr< MaterialBase > FEProblemBase::getMaterial ( std::string  name,
Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
bool  no_warn = false 
)
inherited

Return a pointer to a MaterialBase object.

If no_warn is true, suppress warning about retrieving a material reference potentially during the material's calculation.

This will return enabled or disabled objects, the main purpose is for iterative materials.

Definition at line 3746 of file FEProblemBase.C.

Referenced by MaterialPropertyInterface::getMaterialByName().

3750 {
3751  switch (type)
3752  {
3754  name += "_neighbor";
3755  break;
3757  name += "_face";
3758  break;
3759  default:
3760  break;
3761  }
3762 
3763  std::shared_ptr<MaterialBase> material = _all_materials[type].getActiveObject(name, tid);
3764  if (!no_warn && material->getParam<bool>("compute") && type == Moose::BLOCK_MATERIAL_DATA)
3765  mooseWarning("You are retrieving a Material object (",
3766  material->name(),
3767  "), but its compute flag is set to true. This indicates that MOOSE is "
3768  "computing this property which may not be desired and produce un-expected "
3769  "results.");
3770 
3771  return material;
3772 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
MaterialWarehouse _all_materials

◆ getMaterialData()

MaterialData & FEProblemBase::getMaterialData ( Moose::MaterialDataType  type,
const THREAD_ID  tid = 0 
) const
inherited

Definition at line 3775 of file FEProblemBase.C.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and FEProblemBase::resizeMaterialData().

3776 {
3777  switch (type)
3778  {
3780  return _material_props.getMaterialData(tid);
3787  }
3788 
3789  mooseError("FEProblemBase::getMaterialData(): Invalid MaterialDataType ", type);
3790 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyBlockNames()

std::vector< SubdomainName > SubProblem::getMaterialPropertyBlockNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 489 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBlockNames().

490 {
491  std::set<SubdomainID> blocks = getMaterialPropertyBlocks(prop_name);
492  std::vector<SubdomainName> block_names;
493  block_names.reserve(blocks.size());
494  for (const auto & block_id : blocks)
495  {
496  SubdomainName name;
497  name = mesh().getMesh().subdomain_name(block_id);
498  if (name.empty())
499  {
500  std::ostringstream oss;
501  oss << block_id;
502  name = oss.str();
503  }
504  block_names.push_back(name);
505  }
506 
507  return block_names;
508 }
virtual MooseMesh & mesh()=0
char ** blocks
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
std::string & subdomain_name(subdomain_id_type id)
virtual std::set< SubdomainID > getMaterialPropertyBlocks(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:473

◆ getMaterialPropertyBlocks()

std::set< SubdomainID > SubProblem::getMaterialPropertyBlocks ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 473 of file SubProblem.C.

Referenced by SubProblem::getMaterialPropertyBlockNames(), and MaterialPropertyInterface::getMaterialPropertyBlocks().

474 {
475  std::set<SubdomainID> blocks;
476 
477  for (const auto & it : _map_block_material_props)
478  {
479  const std::set<std::string> & prop_names = it.second;
480  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
481  if (name_it != prop_names.end())
482  blocks.insert(it.first);
483  }
484 
485  return blocks;
486 }
char ** blocks
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ getMaterialPropertyBoundaryIDs()

std::set< BoundaryID > SubProblem::getMaterialPropertyBoundaryIDs ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 525 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryIDs(), and SubProblem::getMaterialPropertyBoundaryNames().

526 {
527  std::set<BoundaryID> boundaries;
528 
529  for (const auto & it : _map_boundary_material_props)
530  {
531  const std::set<std::string> & prop_names = it.second;
532  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
533  if (name_it != prop_names.end())
534  boundaries.insert(it.first);
535  }
536 
537  return boundaries;
538 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ getMaterialPropertyBoundaryNames()

std::vector< BoundaryName > SubProblem::getMaterialPropertyBoundaryNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 541 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryNames().

542 {
543  std::set<BoundaryID> boundaries = getMaterialPropertyBoundaryIDs(prop_name);
544  std::vector<BoundaryName> boundary_names;
545  boundary_names.reserve(boundaries.size());
546  const BoundaryInfo & boundary_info = mesh().getMesh().get_boundary_info();
547 
548  for (const auto & bnd_id : boundaries)
549  {
550  BoundaryName name;
551  if (bnd_id == Moose::ANY_BOUNDARY_ID)
552  name = "ANY_BOUNDARY_ID";
553  else
554  {
555  name = boundary_info.get_sideset_name(bnd_id);
556  if (name.empty())
557  {
558  std::ostringstream oss;
559  oss << bnd_id;
560  name = oss.str();
561  }
562  }
563  boundary_names.push_back(name);
564  }
565 
566  return boundary_names;
567 }
virtual MooseMesh & mesh()=0
virtual std::set< BoundaryID > getMaterialPropertyBoundaryIDs(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:525
const BoundaryInfo & get_boundary_info() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
const std::string & get_sideset_name(boundary_id_type id) const
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ getMaterialPropertyRegistry()

const MaterialPropertyRegistry& FEProblemBase::getMaterialPropertyRegistry ( ) const
inlineinherited
Returns
A reference to the material property registry

Definition at line 1689 of file FEProblemBase.h.

Referenced by MaterialBase::checkStatefulSanity().

1690  {
1691  return _material_prop_registry;
1692  }
MaterialPropertyRegistry _material_prop_registry

◆ getMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getMaterialPropertyStorage ( )
inlineinherited

Return a reference to the material property storage.

Returns
A const reference to the material property storage

Definition at line 1699 of file FEProblemBase.h.

1699 { return _material_props; }
MaterialPropertyStorage & _material_props

◆ getMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getMaterialWarehouse ( ) const
inlineinherited

◆ getMatrixTagID()

TagID SubProblem::getMatrixTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 342 of file SubProblem.C.

Referenced by Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), DisplacedProblem::getMatrixTagID(), TaggingInterface::TaggingInterface(), and TaggingInterface::useMatrixTag().

343 {
344  auto tag_name_upper = MooseUtils::toUpper(tag_name);
345 
346  if (!matrixTagExists(tag_name))
347  mooseError("Matrix tag: ",
348  tag_name,
349  " does not exist. ",
350  "If this is a TimeKernel then this may have happened because you didn't "
351  "specify a Transient Executioner.");
352 
353  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
354 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ getMatrixTags()

virtual std::map<TagName, TagID>& SubProblem::getMatrixTags ( )
inlinevirtualinherited

Return all matrix tags in the system, where a tag is represented by a map from name to ID.

Definition at line 253 of file SubProblem.h.

Referenced by NonlinearSystemBase::computeJacobian(), FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), NonlinearSystemBase::computeJacobianBlocks(), EigenProblem::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

253 { return _matrix_tag_name_to_tag_id; }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041

◆ getMaxQps()

unsigned int FEProblemBase::getMaxQps ( ) const
inherited
Returns
The maximum number of quadrature points in use on any element in this problem.

Definition at line 1589 of file FEProblemBase.C.

Referenced by MaterialBase::getMaxQps(), MaterialPropertyInterface::getMaxQps(), FEProblemBase::initialSetup(), FEProblemBase::reinitDirac(), Material::subdomainSetup(), and FEProblemBase::updateMaxQps().

1590 {
1592  mooseError("Max QPS uninitialized");
1593  return _max_qps;
1594 }
auto max(const L &left, const R &right)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
unsigned int _max_qps
Maximum number of quadrature points used in the problem.

◆ getMaxScalarOrder()

Order FEProblemBase::getMaxScalarOrder ( ) const
inherited
Returns
The maximum order for all scalar variables in this problem's systems.

Definition at line 1597 of file FEProblemBase.C.

Referenced by ScalarCoupleable::coupledScalarOrder(), ScalarCoupleable::getADDefaultValue(), and ScalarCoupleable::getDefaultValue().

1598 {
1599  return _max_scalar_order;
1600 }
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ getMeshDisplacementGridFunction()

std::optional< std::reference_wrapper< mfem::ParGridFunction const > > MFEMProblem::getMeshDisplacementGridFunction ( )

Returns optional reference to the displacement GridFunction to apply to nodes.

Definition at line 444 of file MFEMProblem.C.

Referenced by displaceMesh().

445 {
446  // If C++23 transform were available this would be easier
447  auto const displacement_variable = mesh().getMeshDisplacementVariable();
448  if (displacement_variable)
449  {
450  return *_problem_data.gridfunctions.Get(displacement_variable.value());
451  }
452  else
453  {
454  return std::nullopt;
455  }
456 }
std::optional< std::reference_wrapper< std::string const > > getMeshDisplacementVariable() const
Returns an optional reference to displacement variable name.
Definition: MFEMMesh.h:62
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:465
MFEMProblemData _problem_data
Definition: MFEMProblem.h:209
T * Get(const std::string &field_name) const
Returns a non-owning pointer to the field. This is guaranteed to return a non-null pointer...
Moose::MFEM::GridFunctions gridfunctions

◆ getMeshDivision()

MeshDivision & FEProblemBase::getMeshDivision ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get a MeshDivision.

Definition at line 2654 of file FEProblemBase.C.

Referenced by NestedDivision::NestedDivision().

2655 {
2656  auto * const ret = dynamic_cast<MeshDivision *>(_mesh_divisions.getActiveObject(name, tid).get());
2657  if (!ret)
2658  mooseError("No MeshDivision object named ", name, " of appropriate type");
2659  return *ret;
2660 }
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getMooseApp()

MooseApp& MooseBase::getMooseApp ( ) const
inlineinherited

Get the MooseApp this class is associated with.

Definition at line 83 of file MooseBase.h.

Referenced by ChainControlSetupAction::act(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::advanceState(), ParsedChainControl::buildFunction(), ReporterTransferInterface::checkHasReporterValue(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), Coupleable::checkWritableVar(), ComponentPhysicsInterface::ComponentPhysicsInterface(), Coupleable::Coupleable(), MortarData::createMortarInterface(), EigenProblem::doFreeNonlinearPowerIterations(), Terminator::execute(), FEProblemSolve::FEProblemSolve(), SolutionInvalidInterface::flagInvalidSolutionInternal(), ChainControl::getChainControlDataSystem(), DefaultConvergenceBase::getSharedExecutionerParam(), ChainControlDataPostprocessor::initialSetup(), MaterialPropertyInterface::MaterialPropertyInterface(), MooseVariableDataFV< OutputType >::MooseVariableDataFV(), ProgressOutput::output(), PetscOutputInterface::petscLinearOutput(), PetscOutputInterface::petscNonlinearOutput(), PetscOutputInterface::PetscOutputInterface(), PostprocessorInterface::postprocessorsAdded(), MultiApp::preTransfer(), Reporter::Reporter(), ReporterInterface::reportersAdded(), MultiApp::restore(), and VectorPostprocessorInterface::vectorPostprocessorsAdded().

83 { return _app; }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ getMortarInterface() [1/2]

const AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
) const
inherited

Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains.

Definition at line 7837 of file FEProblemBase.C.

7841 {
7843  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
7844 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterface() [2/2]

AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
)
inherited

Definition at line 7847 of file FEProblemBase.C.

7851 {
7853  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
7854 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterfaces()

const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & FEProblemBase::getMortarInterfaces ( bool  on_displaced) const
inherited

Definition at line 7857 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectsInternal(), and NonlinearSystemBase::initialSetup().

7858 {
7859  return _mortar_data.getMortarInterfaces(on_displaced);
7860 }
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
Return all automatic mortar generation objects on either the displaced or undisplaced mesh...
Definition: MortarData.h:73
MortarData _mortar_data

◆ getMultiApp()

std::shared_ptr< MultiApp > FEProblemBase::getMultiApp ( const std::string &  multi_app_name) const
inherited

Get a MultiApp object by name.

Definition at line 5318 of file FEProblemBase.C.

Referenced by FEProblemBase::addTransfer(), MultiAppPositions::initialize(), and MultiAppTransfer::MultiAppTransfer().

5319 {
5320  return _multi_apps.getObject(multi_app_name);
5321 }
std::shared_ptr< T > getObject(const std::string &name, THREAD_ID tid=0) const
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getMultiAppFixedPointConvergenceName()

const ConvergenceName & FEProblemBase::getMultiAppFixedPointConvergenceName ( ) const
inherited

Gets the MultiApp fixed point convergence object name.

Definition at line 9175 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

9176 {
9179  else
9180  mooseError("The fixed point convergence name has not been set.");
9181 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getMultiAppTransferWarehouse()

const ExecuteMooseObjectWarehouse< Transfer > & FEProblemBase::getMultiAppTransferWarehouse ( Transfer::DIRECTION  direction) const
inherited

Return the complete warehouse for MultiAppTransfer object for the given direction.

Definition at line 5413 of file FEProblemBase.C.

5414 {
5415  if (direction == MultiAppTransfer::TO_MULTIAPP)
5416  return _to_multi_app_transfers;
5417  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5419  else
5421 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getMultiAppWarehouse()

ExecuteMooseObjectWarehouse<MultiApp>& FEProblemBase::getMultiAppWarehouse ( )
inlineinherited

Definition at line 2096 of file FEProblemBase.h.

Referenced by MooseApp::errorCheck().

2096 { return _multi_apps; }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getNeighborMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getNeighborMaterialPropertyStorage ( )
inlineinherited

Definition at line 1701 of file FEProblemBase.h.

1702  {
1703  return _neighbor_material_props;
1704  }
MaterialPropertyStorage & _neighbor_material_props

◆ getNonlinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getNonlinearConvergenceNames ( ) const
inherited

Gets the nonlinear system convergence object name(s).

Definition at line 9143 of file FEProblemBase.C.

Referenced by ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), FEProblemSolve::convergenceSetup(), and Moose::PetscSupport::petscNonlinearConverged().

9144 {
9147  mooseError("The nonlinear system convergence name(s) have not been set.");
9148 }
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getNonlinearEvaluableElementRange()

const ConstElemRange & FEProblemBase::getNonlinearEvaluableElementRange ( )
inherited

Definition at line 849 of file FEProblemBase.C.

Referenced by ElemSideNeighborLayersTester::execute().

850 {
852  {
853  std::vector<const DofMap *> dof_maps(_nl.size());
854  for (const auto i : index_range(dof_maps))
855  dof_maps[i] = &_nl[i]->dofMap();
857  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
858  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
859  }
860 
862 }
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
MooseMesh & _mesh
auto index_range(const T &sizable)

◆ getNonlinearSystem()

NonlinearSystem & FEProblemBase::getNonlinearSystem ( const unsigned int  sys_num)
virtualinherited

Reimplemented in FEProblem.

Definition at line 2669 of file FEProblemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), and PNGOutput::makeMeshFunc().

2670 {
2671  mooseDeprecated("FEProblemBase::getNonlinearSystem() is deprecated, please use "
2672  "FEProblemBase::getNonlinearSystemBase() \n");
2673 
2674  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
2675  auto nl_sys = std::dynamic_pointer_cast<NonlinearSystem>(_nl[sys_num]);
2676 
2677  if (!nl_sys)
2678  mooseError("This is not a NonlinearSystem");
2679 
2680  return *nl_sys;
2681 }
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
Nonlinear system to be solved.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getNonlinearSystemBase() [1/2]

NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num)
inlineinherited

Definition at line 3186 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Adaptivity::adaptMesh(), DisplacedProblem::addTimeIntegrator(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), Eigenvalue::checkIntegrity(), PseudoTimestep::currentResidualNorm(), DisplacedProblem::DisplacedProblem(), AB2PredictorCorrector::estimateTimeError(), VariableResidual::execute(), MatrixSymmetryCheck::execute(), GreaterThanLessThanPostprocessor::execute(), Executioner::Executioner(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NumResidualEvaluations::getValue(), Residual::getValue(), Adaptivity::init(), ReferenceResidualConvergence::initialSetup(), ActivateElementsUserObjectBase::initSolutions(), Kernel::Kernel(), BoundaryElemIntegrityCheckThread::operator()(), DOFMapOutput::output(), SolutionHistory::output(), ConsoleUtils::outputExecutionInformation(), Console::outputSystemInformation(), Moose::PetscSupport::petscSetDefaults(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Moose::PetscSupport::setLineSearchFromParams(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), AB2PredictorCorrector::step(), DisplacedProblem::syncSolutions(), and Console::writeVariableNorms().

3187 {
3188  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3189  return *_nl[sys_num];
3190 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemBase() [2/2]

const NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num) const
inlineinherited

Definition at line 3193 of file FEProblemBase.h.

3194 {
3195  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3196  return *_nl[sys_num];
3197 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemNames()

const std::vector<NonlinearSystemName>& FEProblemBase::getNonlinearSystemNames ( ) const
inlineinherited
Returns
the nolinear system names in the problem

Definition at line 2489 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), Console::meshChanged(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputExecutionInformation(), and Console::outputSystemInformation().

2489 { return _nl_sys_names; }
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.

◆ getNumCyclesCompleted()

unsigned int FEProblemBase::getNumCyclesCompleted ( )
inlineinherited
Returns
The number of adaptivity cycles completed.

Definition at line 1752 of file FEProblemBase.h.

1752 { return _cycles_completed; }
unsigned int _cycles_completed

◆ getParam() [1/2]

template<typename T >
const T & MooseBase::getParam ( const std::string &  name) const
inherited

Retrieve a parameter for the object.

Parameters
nameThe name of the parameter
Returns
The value of the parameter

Definition at line 384 of file MooseBase.h.

Referenced by CreateDisplacedProblemAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FEProblemBase::addOutput(), DiffusionPhysicsBase::addPostprocessors(), ADNodalKernel::ADNodalKernel(), ArrayParsedAux::ArrayParsedAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), ComponentPhysicsInterface::ComponentPhysicsInterface(), FunctorAux::computeValue(), Console::Console(), FEProblemBase::createTagSolutions(), CutMeshByLevelSetGenerator::CutMeshByLevelSetGenerator(), DebugResidualAux::DebugResidualAux(), AccumulateReporter::declareLateValues(), DerivativeParsedMaterialTempl< is_ad >::DerivativeParsedMaterialTempl(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), EigenKernel::EigenKernel(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), FEProblemSolve::FEProblemSolve(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), ParsedSubdomainGeneratorBase::functionInitialize(), FVInterfaceKernel::FVInterfaceKernel(), BoundaryLayerSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), BlockDeletionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), GeneratedMeshGenerator::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), MeshExtruderGenerator::generate(), GenericConstantRankTwoTensorTempl< is_ad >::GenericConstantRankTwoTensorTempl(), GenericConstantSymmetricRankTwoTensorTempl< is_ad >::GenericConstantSymmetricRankTwoTensorTempl(), MooseApp::getCheckpointDirectories(), DataFileInterface::getDataFileName(), ExecutorInterface::getExecutor(), GhostingUserObject::GhostingUserObject(), FixedPointIterationAdaptiveDT::init(), TimeSequenceStepper::init(), IterationAdaptiveDT::init(), AdvancedOutput::init(), AttribThread::initFrom(), AttribSysNum::initFrom(), AttribResidualObject::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), Console::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseMesh::MooseMesh(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MultiSystemSolveObject::MultiSystemSolveObject(), NEML2ModelExecutor::NEML2ModelExecutor(), NestedDivision::NestedDivision(), PerfGraphOutput::output(), Console::outputSystemInformation(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedElementDeletionGenerator::ParsedElementDeletionGenerator(), ParsedGenerateNodeset::ParsedGenerateNodeset(), ParsedGenerateSideset::ParsedGenerateSideset(), ParsedMaterialTempl< is_ad >::ParsedMaterialTempl(), ParsedNodeTransformGenerator::ParsedNodeTransformGenerator(), ParsedODEKernel::ParsedODEKernel(), ParsedPostprocessor::ParsedPostprocessor(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), PiecewiseConstantByBlockMaterialTempl< is_ad >::PiecewiseConstantByBlockMaterialTempl(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), Moose::FV::setInterpolationMethod(), SetupMeshAction::setupMesh(), Output::setWallTimeIntervalFromCommandLineParam(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), TimePeriod::TimePeriod(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and VectorOfPostprocessors::VectorOfPostprocessors().

385 {
386  return InputParameters::getParamHelper<T>(name, _pars);
387 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getParam() [2/2]

template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > MooseBase::getParam ( const std::string &  param1,
const std::string &  param2 
) const
inherited

Retrieve two parameters and provide pair of parameters for the object.

Parameters
param1The name of first parameter
param2The name of second parameter
Returns
Vector of pairs of first and second parameters

Definition at line 421 of file MooseBase.h.

422 {
423  return _pars.get<T1, T2>(param1, param2);
424 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.

◆ getPetscOptions()

Moose::PetscSupport::PetscOptions& FEProblemBase::getPetscOptions ( )
inlineinherited

◆ getPositionsObject()

const Positions & FEProblemBase::getPositionsObject ( const std::string &  name) const
inherited

Get the Positions object by its name.

Parameters
nameThe name of the Positions object being retrieved
Returns
Const reference to the Positions object

Definition at line 4389 of file FEProblemBase.C.

Referenced by DistributedPositions::DistributedPositions(), MultiApp::fillPositions(), ParsedDownSelectionPositions::initialize(), Positions::initialized(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), and TransformedPositions::TransformedPositions().

4390 {
4391  std::vector<Positions *> objs;
4392  theWarehouse()
4393  .query()
4394  .condition<AttribSystem>("UserObject")
4395  .condition<AttribName>(name)
4396  .queryInto(objs);
4397  if (objs.empty())
4398  mooseError("Unable to find Positions object with name '" + name + "'");
4399  mooseAssert(objs.size() == 1, "Should only find one Positions");
4400  return *(objs[0]);
4401 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getPostprocessorValueByName()

const PostprocessorValue & FEProblemBase::getPostprocessorValueByName ( const PostprocessorName &  name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the value associated with a Postprocessor that exists.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for retrieving values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4423 of file FEProblemBase.C.

Referenced by addPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appPostprocessorValue(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), EigenProblem::formNorm(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializePostprocessorSymbol(), EigenExecutionerBase::inversePowerIteration(), Exodus::outputPostprocessors(), TableOutput::outputPostprocessorsRow(), EigenProblem::postScaleEigenVector(), and TableOutput::shouldOutputPostprocessorsRow().

4425 {
4427  t_index);
4428 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ getProblemData()

MFEMProblemData& MFEMProblem::getProblemData ( )
inline

Method to get the current MFEMProblemData object storing the current data specifying the FE problem.

Definition at line 186 of file MFEMProblem.h.

Referenced by addBoundaryCondition(), addFESpace(), addGridFunction(), addKernel(), addMFEMNonlinearSolver(), addMFEMSolver(), addSubMesh(), setMesh(), solverTypeString(), and MultiAppMFEMCopyTransfer::transfer().

186 { return _problem_data; }
MFEMProblemData _problem_data
Definition: MFEMProblem.h:209

◆ getRegularMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getRegularMaterialsWarehouse ( ) const
inlineinherited

Definition at line 1922 of file FEProblemBase.h.

Referenced by Moose::Mortar::setupMortarMaterials().

1922 { return _materials; }
MaterialWarehouse _materials

◆ getRenamedParam()

template<typename T >
const T & MooseBase::getRenamedParam ( const std::string &  old_name,
const std::string &  new_name 
) const
inherited

Retrieve a renamed parameter for the object.

This helper makes sure we check both names before erroring, and that only one parameter is passed to avoid silent errors

Parameters
old_namethe old name for the parameter
new_namethe new name for the parameter

Definition at line 398 of file MooseBase.h.

399 {
400  // Most important: accept new parameter
401  if (isParamSetByUser(new_name) && !isParamValid(old_name))
402  return getParam<T>(new_name);
403  // Second most: accept old parameter
404  if (isParamValid(old_name) && !isParamSetByUser(new_name))
405  return getParam<T>(old_name);
406  // Third most: accept default for new parameter
407  if (isParamValid(new_name) && !isParamValid(old_name))
408  return getParam<T>(new_name);
409  // Refuse: no default, no value passed
410  if (!isParamValid(old_name) && !isParamValid(new_name))
411  mooseError("parameter '" + new_name +
412  "' is being retrieved without being set.\nDid you misspell it?");
413  // Refuse: both old and new parameters set by user
414  else
415  mooseError("Parameter '" + new_name + "' may not be provided alongside former parameter '" +
416  old_name + "'");
417 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195
bool isParamSetByUser(const std::string &name) const
Test if the supplied parameter is set by a user, as opposed to not set or set to default.
Definition: MooseBase.h:201

◆ getReporterData() [1/2]

const ReporterData& FEProblemBase::getReporterData ( ) const
inlineinherited

Provides const access the ReporterData object.

NOTE: There is a private non-const version of this function that uses a key object only constructable by the correct interfaces. This was done by design to encourage the use of the Reporter and ReporterInterface classes.

Definition at line 1109 of file FEProblemBase.h.

Referenced by ReporterTransferInterface::addReporterTransferMode(), ReporterTransferInterface::checkHasReporterValue(), ReporterTransferInterface::clearVectorReporter(), ConstantPostprocessor::ConstantPostprocessor(), AccumulateReporter::declareAccumulateHelper(), ReporterTransferInterface::declareClone(), AccumulateReporter::declareLateValues(), VectorPostprocessor::declareVector(), ReporterTransferInterface::declareVectorClone(), FEProblemBase::execute(), PostprocessorInterface::getPostprocessorValueByNameInternal(), VectorPostprocessorInterface::getVectorPostprocessorByNameHelper(), VectorPostprocessorInterface::getVectorPostprocessorContextByNameHelper(), PostprocessorInterface::hasPostprocessorByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterPositions::initialize(), ReporterTimes::initialize(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializeSymbols(), JSONOutput::initialSetup(), PostprocessorInterface::isDefaultPostprocessorValueByName(), ReporterDebugOutput::output(), Receiver::Receiver(), ReporterTransferInterface::resizeReporter(), ReporterTransferInterface::sumVectorReporter(), ReporterTransferInterface::transferFromVectorReporter(), ReporterTransferInterface::transferReporter(), and ReporterTransferInterface::transferToVectorReporter().

1109 { return _reporter_data; }
ReporterData _reporter_data

◆ getReporterData() [2/2]

ReporterData& FEProblemBase::getReporterData ( ReporterData::WriteKey  )
inlineinherited

Provides non-const access the ReporterData object that is used to store reporter values.

see ReporterData.h

Definition at line 1116 of file FEProblemBase.h.

1116 { return _reporter_data; }
ReporterData _reporter_data

◆ getRestartableData()

template<typename T , typename... Args>
const T & Restartable::getRestartableData ( const std::string &  data_name) const
protectedinherited

Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object.

Forwarded arguments are not allowed in this case because we assume that the object is restarted and we won't need different constructors to initialize it.

NOTE: This returns a const reference! Make sure you store it in a const reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)

Definition at line 287 of file Restartable.h.

288 {
289  return declareRestartableDataHelper<T>(data_name, nullptr).get();
290 }

◆ getSampler()

Sampler & FEProblemBase::getSampler ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2717 of file FEProblemBase.C.

Referenced by SamplerInterface::getSampler(), and SamplerInterface::getSamplerByName().

2718 {
2719  std::vector<Sampler *> objs;
2720  theWarehouse()
2721  .query()
2722  .condition<AttribSystem>("Sampler")
2723  .condition<AttribThread>(tid)
2724  .condition<AttribName>(name)
2725  .queryInto(objs);
2726  if (objs.empty())
2727  mooseError(
2728  "Unable to find Sampler with name '" + name +
2729  "', if you are attempting to access this object in the constructor of another object then "
2730  "the object being retrieved must occur prior to the caller within the input file.");
2731  return *(objs[0]);
2732 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getScalarVariable()

MooseVariableScalar & FEProblemBase::getScalarVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the scalar variable reference from whichever system contains it.

Implements SubProblem.

Definition at line 5772 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppScalarToAuxScalarTransfer::execute(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), TableOutput::outputScalarVariables(), and Exodus::outputScalarVariables().

5773 {
5774  for (auto & sys : _solver_systems)
5775  if (sys->hasScalarVariable(var_name))
5776  return sys->getScalarVariable(tid, var_name);
5777  if (_aux->hasScalarVariable(var_name))
5778  return _aux->getScalarVariable(tid, var_name);
5779 
5780  mooseError("Unknown variable " + var_name);
5781 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSharedPtr() [1/2]

std::shared_ptr< MooseObject > MooseObject::getSharedPtr ( )
inherited

Get another shared pointer to this object that has the same ownership group.

Wrapper around shared_from_this().

Definition at line 61 of file MooseObject.C.

Referenced by addBoundaryCondition(), addKernel(), and addMFEMSolver().

62 {
63  try
64  {
65  return shared_from_this();
66  }
67  catch (std::bad_weak_ptr &)
68  {
69  mooseError(not_shared_error);
70  }
71 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSharedPtr() [2/2]

std::shared_ptr< const MooseObject > MooseObject::getSharedPtr ( ) const
inherited

Definition at line 74 of file MooseObject.C.

75 {
76  try
77  {
78  return shared_from_this();
79  }
80  catch (std::bad_weak_ptr &)
81  {
82  mooseError(not_shared_error);
83  }
84 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSolverSystem() [1/2]

SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3200 of file FEProblemBase.h.

Referenced by MooseApp::attachRelationshipManagers(), MooseMesh::cacheFaceInfoVariableOwnership(), MooseMesh::cacheFVElementalDoFs(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputSolverSystemInformation(), Moose::PetscSupport::petscSetDefaultKSPNormType(), and Moose::PetscSupport::petscSetDefaultPCSide().

3201 {
3202  mooseAssert(sys_num < _solver_systems.size(),
3203  "System number greater than the number of solver systems");
3204  return *_solver_systems[sys_num];
3205 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystem() [2/2]

const SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3208 of file FEProblemBase.h.

3209 {
3210  mooseAssert(sys_num < _solver_systems.size(),
3211  "System number greater than the number of solver systems");
3212  return *_solver_systems[sys_num];
3213 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystemNames()

const std::vector<SolverSystemName>& FEProblemBase::getSolverSystemNames ( ) const
inlineinherited
Returns
the solver system names in the problem

Definition at line 2497 of file FEProblemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

2497 { return _solver_sys_names; }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.

◆ getStandardVariable()

MooseVariable & FEProblemBase::getStandardVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5712 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), and LinearFVKernel::requestVariableCellGradient().

5713 {
5714  for (auto & sys : _solver_systems)
5715  if (sys->hasVariable(var_name))
5716  return sys->getFieldVariable<Real>(tid, var_name);
5717  if (_aux->hasVariable(var_name))
5718  return _aux->getFieldVariable<Real>(tid, var_name);
5719 
5720  mooseError("Unknown variable " + var_name);
5721 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSteadyStateConvergenceName()

const ConvergenceName & FEProblemBase::getSteadyStateConvergenceName ( ) const
inherited

Gets the steady-state detection convergence object name.

Definition at line 9184 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultSteadyStateConvergence(), TransientBase::convergedToSteadyState(), and TransientBase::init().

9185 {
9187  return _steady_state_convergence_name.value();
9188  else
9189  mooseError("The steady convergence name has not been set.");
9190 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSystem()

System & FEProblemBase::getSystem ( const std::string &  var_name)
overridevirtualinherited

Returns the equation system containing the variable provided.

Implements SubProblem.

Definition at line 5784 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), and MultiApp::appTransferVector().

5785 {
5786  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
5787  if (var_in_sys)
5788  return _solver_systems[sys_num]->system();
5789  else if (_aux->hasVariable(var_name) || _aux->hasScalarVariable(var_name))
5790  return _aux->system();
5791  else
5792  mooseError("Unable to find a system containing the variable " + var_name);
5793 }
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSystemBase() [1/3]

const SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num) const
virtualinherited

Get constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 8897 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), PhysicsBase::copyVariablesFromMesh(), and FEProblemBase::getSystemBase().

8898 {
8899  if (sys_num < _solver_systems.size())
8900  return *_solver_systems[sys_num];
8901 
8902  return *_aux;
8903 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [2/3]

SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num)
virtualinherited

Get non-constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 8918 of file FEProblemBase.C.

8919 {
8920  if (sys_num < _solver_systems.size())
8921  return *_solver_systems[sys_num];
8922 
8923  return *_aux;
8924 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [3/3]

SystemBase & FEProblemBase::getSystemBase ( const std::string &  sys_name)
inherited

Get non-constant reference to a system in this problem.

Parameters
sys_nameThe name of the system

Definition at line 8906 of file FEProblemBase.C.

8907 {
8908  if (std::find(_solver_sys_names.begin(), _solver_sys_names.end(), sys_name) !=
8909  _solver_sys_names.end())
8910  return getSystemBase(solverSysNum(sys_name));
8911  else if (sys_name == "aux0")
8912  return *_aux;
8913  else
8914  mooseError("System '" + sys_name + "' was requested from problem but does not exist.");
8915 }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getTimeFromStateArg()

Real FEProblemBase::getTimeFromStateArg ( const Moose::StateArg state) const
inherited

Returns the time associated with the requested state.

Definition at line 6742 of file FEProblemBase.C.

Referenced by Function::evaluate(), Function::evaluateDotHelper(), Function::evaluateGradientHelper(), Function::evaluateHelper(), and ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl().

6743 {
6745  // If we are any iteration type other than time (e.g. nonlinear), then temporally we are still
6746  // in the present time
6747  return time();
6748 
6749  switch (state.state)
6750  {
6751  case 0:
6752  return time();
6753 
6754  case 1:
6755  return timeOld();
6756 
6757  default:
6758  mooseError("Unhandled state ", state.state, " in FEProblemBase::getTimeFromStateArg");
6759  }
6760 }
virtual Real & time() const
SolutionIterationType iteration_type
The solution iteration type, e.g. time or nonlinear.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual Real & timeOld() const
unsigned int state
The state.

◆ getTransfers() [1/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
) const
inherited

Get Transfers by ExecFlagType and direction.

Definition at line 5391 of file FEProblemBase.C.

5392 {
5393  if (direction == MultiAppTransfer::TO_MULTIAPP)
5395  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5397  else
5399 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getTransfers() [2/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( Transfer::DIRECTION  direction) const
inherited

Definition at line 5402 of file FEProblemBase.C.

5403 {
5404  if (direction == MultiAppTransfer::TO_MULTIAPP)
5406  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5408  else
5410 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getUserObject()

template<class T >
T& FEProblemBase::getUserObject ( const std::string &  name,
unsigned int  tid = 0 
) const
inlineinherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
Returns
Const reference to the user object

Definition at line 1136 of file FEProblemBase.h.

Referenced by ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ReporterTransferInterface::hideVariableHelper(), EigenExecutionerBase::init(), Eigenvalue::init(), IntegralPreservingFunctionIC::initialSetup(), and EigenExecutionerBase::inversePowerIteration().

1137  {
1138  std::vector<T *> objs;
1139  theWarehouse()
1140  .query()
1141  .condition<AttribSystem>("UserObject")
1142  .condition<AttribThread>(tid)
1143  .condition<AttribName>(name)
1144  .queryInto(objs);
1145  if (objs.empty())
1146  mooseError("Unable to find user object with name '" + name + "'");
1147  return *(objs[0]);
1148  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectBase()

const UserObject & FEProblemBase::getUserObjectBase ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
tidThe thread of the user object (defaults to 0)
Returns
Const reference to the user object

Definition at line 4373 of file FEProblemBase.C.

Referenced by addBoundaryCondition(), addKernel(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appUserObjectBase(), EigenProblem::checkProblemIntegrity(), FunctorAux::computeValue(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectFromFEProblem(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), MultiAppCloneReporterTransfer::initialSetup(), MultiAppConservativeTransfer::initialSetup(), Terminator::initialSetup(), and FunctorIC::value().

4374 {
4375  std::vector<UserObject *> objs;
4376  theWarehouse()
4377  .query()
4378  .condition<AttribSystem>("UserObject")
4379  .condition<AttribThread>(tid)
4380  .condition<AttribName>(name)
4381  .queryInto(objs);
4382  if (objs.empty())
4383  mooseError("Unable to find user object with name '" + name + "'");
4384  mooseAssert(objs.size() == 1, "Should only find one UO");
4385  return *(objs[0]);
4386 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectJacobianVariables()

const std::vector<const MooseVariableFEBase *>& FEProblemBase::getUserObjectJacobianVariables ( const THREAD_ID  tid) const
inlineinherited

Definition at line 309 of file FEProblemBase.h.

Referenced by ComputeUserObjectsThread::onBoundary(), and ComputeUserObjectsThread::onElement().

310  {
311  return _uo_jacobian_moose_vars[tid];
312  }
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars

◆ getUserObjects()

const ExecuteMooseObjectWarehouse<UserObject>& FEProblemBase::getUserObjects ( ) const
inlineinherited

Definition at line 1123 of file FEProblemBase.h.

1124  {
1126  "This function is deprecated, use theWarehouse().query() to construct a query instead");
1127  return _all_user_objects;
1128  }
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310

◆ getVariable() [1/4]

virtual const MooseVariableFieldBase& SubProblem::getVariable
inherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

◆ getVariable() [2/4]

virtual MooseVariableFieldBase& SubProblem::getVariable
inlineinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariable() [3/4]

const MooseVariableFieldBase & FEProblemBase::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
) const
overridevirtualinherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

Implements SubProblem.

Definition at line 5702 of file FEProblemBase.C.

Referenced by FEProblemBase::addFVInitialCondition(), FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppGeneralFieldShapeEvaluationTransfer::buildMeshFunctions(), CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppProjectionTransfer::execute(), NodalNormalsPreprocessor::execute(), MultiAppGeometricInterpolationTransfer::execute(), MultiAppUserObjectTransfer::execute(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppProjectionTransfer::initialSetup(), AdvancedOutput::initShowHideLists(), SolutionUserObjectBase::pointValueWrapper(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MultiAppProjectionTransfer::projectSolution(), MultiAppDofCopyTransfer::transfer(), and MultiAppShapeEvaluationTransfer::transferVariable().

5706 {
5707  return getVariableHelper(
5708  tid, var_name, expected_var_type, expected_var_field_type, _solver_systems, *_aux);
5709 }
MooseVariableFieldBase & getVariableHelper(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
Helper function called by getVariable that handles the logic for checking whether Variables of the re...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVariable() [4/4]

virtual MooseVariableFieldBase& SubProblem::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
)
inlinevirtualinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const =0
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariableHelper() [1/2]

template<typename T >
MooseVariableFEBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  systems,
const SystemBase aux 
) const
inherited

Definition at line 818 of file SubProblem.C.

824 {
825  // Eventual return value
826  MooseVariableFEBase * var = nullptr;
827 
828  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
829 
830  // First check that the variable is found on the expected system.
831  if (expected_var_type == Moose::VarKindType::VAR_ANY)
832  {
833  if (var_in_sys)
834  var = &(systems[sys_num]->getVariable(tid, var_name));
835  else if (aux.hasVariable(var_name))
836  var = &(aux.getVariable(tid, var_name));
837  else
838  mooseError("Unknown variable " + var_name);
839  }
840  else if (expected_var_type == Moose::VarKindType::VAR_SOLVER && var_in_sys &&
841  systems[sys_num]->hasVariable(var_name))
842  var = &(systems[sys_num]->getVariable(tid, var_name));
843  else if (expected_var_type == Moose::VarKindType::VAR_AUXILIARY && aux.hasVariable(var_name))
844  var = &(aux.getVariable(tid, var_name));
845  else
846  {
847  std::string expected_var_type_string =
848  (expected_var_type == Moose::VarKindType::VAR_SOLVER ? "nonlinear" : "auxiliary");
849  mooseError("No ",
850  expected_var_type_string,
851  " variable named ",
852  var_name,
853  " found. "
854  "Did you specify an auxiliary variable when you meant to specify a nonlinear "
855  "variable (or vice-versa)?");
856  }
857 
858  // Now make sure the var found has the expected field type.
859  if ((expected_var_field_type == Moose::VarFieldType::VAR_FIELD_ANY) ||
860  (expected_var_field_type == var->fieldType()))
861  return *var;
862  else
863  {
864  std::string expected_var_field_type_string =
865  MooseUtils::toLower(Moose::stringify(expected_var_field_type));
866  std::string var_field_type_string = MooseUtils::toLower(Moose::stringify(var->fieldType()));
867 
868  mooseError("No ",
869  expected_var_field_type_string,
870  " variable named ",
871  var_name,
872  " found. "
873  "Did you specify a ",
874  var_field_type_string,
875  " variable when you meant to specify a ",
876  expected_var_field_type_string,
877  " variable?");
878  }
879 }
std::string toLower(const std::string &name)
Convert supplied string to lower case.
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const =0
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual Moose::VarFieldType fieldType() const =0
Field type of this variable.
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getVariableHelper() [2/2]

template<typename T >
MooseVariableFieldBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  nls,
const SystemBase aux 
) const
protectedinherited

Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available.

Referenced by DisplacedProblem::getVariable(), and FEProblemBase::getVariable().

◆ getVariableNames()

std::vector< VariableName > FEProblemBase::getVariableNames ( )
virtualinherited

Returns a list of all the variables in the problem (both from the NL and Aux systems.

Definition at line 8657 of file FEProblemBase.C.

Referenced by EigenProblem::adjustEigenVector(), and AdvancedOutput::initAvailableLists().

8658 {
8659  std::vector<VariableName> names;
8660 
8661  for (auto & sys : _solver_systems)
8662  {
8663  const std::vector<VariableName> & var_names = sys->getVariableNames();
8664  names.insert(names.end(), var_names.begin(), var_names.end());
8665  }
8666 
8667  const std::vector<VariableName> & aux_var_names = _aux->getVariableNames();
8668  names.insert(names.end(), aux_var_names.begin(), aux_var_names.end());
8669 
8670  return names;
8671 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVectorPostprocessorObjectByName()

const VectorPostprocessor & FEProblemBase::getVectorPostprocessorObjectByName ( const std::string &  object_name,
const THREAD_ID  tid = 0 
) const
inherited

Return the VPP object given the name.

Parameters
object_nameThe name of the VPP object
Returns
Desired VPP object

This is used by various output objects as well as the scatter value handling.

See also
CSV.C, XMLOutput.C, VectorPostprocessorInterface.C

Definition at line 4467 of file FEProblemBase.C.

Referenced by VectorPostprocessorInterface::isVectorPostprocessorDistributedByName(), CSV::output(), and XMLOutput::outputVectorPostprocessors().

4469 {
4470  return getUserObject<VectorPostprocessor>(object_name, tid);
4471 }

◆ getVectorPostprocessorValueByName()

const VectorPostprocessorValue & FEProblemBase::getVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the vector value associated with the VectorPostprocessor.

Parameters
object_nameThe name of the VPP object.
vector_nameThe namve of the decalred vector within the object.
Returns
Referent to the vector of data.

Note: This method is only for retrieving values that already exist, the VectorPostprocessor and VectorPostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4448 of file FEProblemBase.C.

Referenced by HistogramVectorPostprocessor::execute().

4451 {
4453  VectorPostprocessorReporterName(object_name, vector_name), t_index);
4454 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ getVectorTag()

const VectorTag & SubProblem::getVectorTag ( const TagID  tag_id) const
virtualinherited

Get a VectorTag from a TagID.

Reimplemented in DisplacedProblem.

Definition at line 161 of file SubProblem.C.

Referenced by FEProblemBase::addCachedResidualDirectly(), Assembly::cacheResidual(), Assembly::cacheResidualNodes(), DisplacedProblem::getVectorTag(), SubProblem::getVectorTags(), TaggingInterface::prepareVectorTagInternal(), TaggingInterface::prepareVectorTagLower(), TaggingInterface::prepareVectorTagNeighbor(), FEProblemBase::setResidual(), and FEProblemBase::setResidualNeighbor().

162 {
163  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
164 
165  if (!vectorTagExists(tag_id))
166  mooseError("Vector tag with ID ", tag_id, " does not exist");
167 
168  return _vector_tags[tag_id];
169 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getVectorTagID()

TagID SubProblem::getVectorTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 203 of file SubProblem.C.

Referenced by Coupleable::coupledVectorTagArrayGradient(), Coupleable::coupledVectorTagArrayGradients(), Coupleable::coupledVectorTagArrayValues(), Coupleable::coupledVectorTagDofValues(), Coupleable::coupledVectorTagGradient(), Coupleable::coupledVectorTagGradients(), Coupleable::coupledVectorTagValues(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), DisplacedProblem::getVectorTagID(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), ReferenceResidualConvergence::ReferenceResidualConvergence(), SolverSystem::setSolution(), TaggingInterface::TaggingInterface(), MultiAppDofCopyTransfer::transfer(), TaggingInterface::useVectorTag(), Coupleable::vectorTagDofValueHelper(), and Coupleable::vectorTagValueHelper().

204 {
205  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
206 
207  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
208  const auto search = _vector_tags_name_map.find(tag_name_upper);
209  if (search != _vector_tags_name_map.end())
210  return search->second;
211 
212  std::string message =
213  tag_name_upper == "TIME"
214  ? ".\n\nThis may occur if "
215  "you have a TimeKernel in your problem but did not specify a transient executioner."
216  : "";
217  mooseError("Vector tag '", tag_name_upper, "' does not exist", message);
218 }
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getVectorTags() [1/2]

std::vector< VectorTag > SubProblem::getVectorTags ( const std::set< TagID > &  tag_ids) const
inherited

Definition at line 172 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), EigenProblem::computeResidualAB(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), DisplacedProblem::getVectorTags(), SubProblem::numVectorTags(), ComputeMortarFunctor::operator()(), and FEProblemBase::setCurrentResidualVectorTags().

173 {
174  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
175 
176  std::vector<VectorTag> tags;
177  tags.reserve(tag_ids.size());
178  for (const auto & tag_id : tag_ids)
179  tags.push_back(getVectorTag(tag_id));
180  return tags;
181 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161

◆ getVectorTags() [2/2]

const std::vector< VectorTag > & SubProblem::getVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

Return all vector tags, where a tag is represented by a map from name to ID.

Can optionally be limited to a vector tag type.

Reimplemented in DisplacedProblem.

Definition at line 184 of file SubProblem.C.

185 {
186  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
187 
189  return _vector_tags;
190  else
191  return _typed_vector_tags[type];
192 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174

◆ getVectorVariable()

VectorMooseVariable & FEProblemBase::getVectorVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested VectorMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5736 of file FEProblemBase.C.

5737 {
5738  for (auto & sys : _solver_systems)
5739  if (sys->hasVariable(var_name))
5740  return sys->getFieldVariable<RealVectorValue>(tid, var_name);
5741  if (_aux->hasVariable(var_name))
5742  return _aux->getFieldVariable<RealVectorValue>(tid, var_name);
5743 
5744  mooseError("Unknown variable " + var_name);
5745 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getXFEM()

std::shared_ptr<XFEMInterface> FEProblemBase::getXFEM ( )
inlineinherited

Get a pointer to the XFEM controller object.

Definition at line 1769 of file FEProblemBase.h.

1769 { return _xfem; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ ghostedElems()

virtual std::set<dof_id_type>& SubProblem::ghostedElems ( )
inlinevirtualinherited

Return the list of elements that should have their DoFs ghosted to this processor.

Returns
The list

Reimplemented in DisplacedProblem.

Definition at line 672 of file SubProblem.h.

Referenced by SystemBase::augmentSendList(), NearestNodeLocator::findNodes(), DisplacedProblem::ghostedElems(), and NearestNodeLocator::updatePatch().

672 { return _ghosted_elems; }
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093

◆ ghostGhostedBoundaries()

void FEProblemBase::ghostGhostedBoundaries ( )
overridevirtualinherited

Causes the boundaries added using addGhostedBoundary to actually be ghosted.

Implements SubProblem.

Definition at line 2097 of file FEProblemBase.C.

Referenced by DisplacedProblem::ghostGhostedBoundaries(), FEProblemBase::init(), and FEProblemBase::meshChanged().

2098 {
2099  TIME_SECTION("ghostGhostedBoundaries", 3, "Ghosting Ghosted Boundaries");
2100 
2102 
2103  if (_displaced_problem)
2105 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void ghostGhostedBoundaries()
Actually do the ghosting of boundaries that need to be ghosted to this processor. ...
Definition: MooseMesh.C:3314
MooseMesh * _displaced_mesh

◆ hasActiveElementalMooseVariables()

bool SubProblem::hasActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Whether or not a list of active elemental moose variables has been set.

Returns
True if there has been a list of active elemental moose variables set, False otherwise

Definition at line 460 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), and SystemBase::reinitElem().

461 {
463 }
std::vector< unsigned int > _has_active_elemental_moose_variables
Whether or not there is currently a list of active elemental moose variables.
Definition: SubProblem.h:1079

◆ hasActiveMaterialProperties()

bool FEProblemBase::hasActiveMaterialProperties ( const THREAD_ID  tid) const
inherited

Method to check whether or not a list of active material roperties has been set.

This method is called by reinitMaterials to determine whether Material computeProperties methods need to be called. If the return is False, this check prevents unnecessary material property computation

Parameters
tidThe thread id
Returns
True if there has been a list of active material properties set, False otherwise

Definition at line 5904 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::onElement(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsInterface(), and FEProblemBase::reinitMaterialsNeighbor().

5905 {
5906  return _has_active_material_properties[tid];
5907 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ hasAuxiliaryVariable()

bool SubProblem::hasAuxiliaryVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this auxiliary variable.

Definition at line 811 of file SubProblem.C.

Referenced by SubProblem::getFunctor(), and NearestNodeValueAux::NearestNodeValueAux().

812 {
813  return systemBaseAuxiliary().hasVariable(var_name);
814 }
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843

◆ hasBase()

bool MooseBase::hasBase ( ) const
inlineinherited
Returns
Whether or not this object has a registered base (set via InputParameters::registerBase())

Definition at line 138 of file MooseBase.h.

138 { return _pars.hasBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
bool hasBase() const

◆ hasBlockMaterialProperty()

bool SubProblem::hasBlockMaterialProperty ( SubdomainID  block_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 511 of file SubProblem.C.

512 {
513  auto it = _map_block_material_props.find(bid);
514  if (it == _map_block_material_props.end())
515  return false;
516 
517  if (it->second.count(prop_name) > 0)
518  return true;
519  else
520  return false;
521 }
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ hasBoundaryMaterialProperty()

bool SubProblem::hasBoundaryMaterialProperty ( BoundaryID  boundary_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 570 of file SubProblem.C.

571 {
572  auto it = _map_boundary_material_props.find(bid);
573  if (it == _map_boundary_material_props.end())
574  return false;
575 
576  if (it->second.count(prop_name) > 0)
577  return true;
578  else
579  return false;
580 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ hasConvergence()

bool FEProblemBase::hasConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Returns true if the problem has a Convergence object of the given name.

Definition at line 2617 of file FEProblemBase.C.

Referenced by ParsedConvergence::initializeSymbols().

2618 {
2619  return _convergences.hasActiveObject(name, tid);
2620 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasDampers()

bool FEProblemBase::hasDampers ( )
inlineinherited

Whether or not this system has dampers.

Definition at line 1273 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::preInit(), and NonlinearSystem::solve().

1273 { return _has_dampers; }
bool _has_dampers
Whether or not this system has any Dampers associated with it.

◆ hasException()

virtual bool FEProblemBase::hasException ( )
inlinevirtualinherited

Whether or not an exception has occurred.

Definition at line 475 of file FEProblemBase.h.

Referenced by NonlinearSystem::converged(), ThreadedElementLoop< ConstElemPointerRange >::keepGoing(), and ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::keepGoing().

475 { return _has_exception; }
bool _has_exception
Whether or not an exception has occurred.

◆ hasFunction()

bool FEProblemBase::hasFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2566 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), FunctorIC::FunctorIC(), FEProblemBase::getFunction(), FunctionInterface::hasFunctionByName(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), ParsedConvergence::initializeSymbols(), and MooseParsedFunction::initialSetup().

2567 {
2568  return _functions.hasActiveObject(name, tid);
2569 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.
MooseObjectWarehouse< Function > _functions
functions

◆ hasFunctor()

bool SubProblem::hasFunctor ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor corresponding to name on the thread id tid

Definition at line 1270 of file SubProblem.C.

Referenced by FunctorInterface::isFunctor().

1271 {
1272  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1273  auto & functors = _functors[tid];
1274  return (functors.find("wraps_" + name) != functors.end());
1275 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasFunctorWithType()

template<typename T >
bool SubProblem::hasFunctorWithType ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor of type T corresponding to name on the thread id tid

Definition at line 1320 of file SubProblem.h.

1321 {
1322  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1323  auto & functors = _functors[tid];
1324 
1325  const auto & it = functors.find("wraps_" + name);
1326  constexpr bool requested_functor_is_ad =
1327  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1328 
1329  if (it == functors.end())
1330  return false;
1331  else
1332  return dynamic_cast<Moose::Functor<T> *>(
1333  requested_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get());
1334 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1155
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasInitialAdaptivity() [1/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1757 of file FEProblemBase.h.

1757 { return _adaptivity.getInitialSteps() > 0; }
Adaptivity _adaptivity
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98

◆ hasInitialAdaptivity() [2/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1762 of file FEProblemBase.h.

1762 { return false; }

◆ hasJacobian()

bool FEProblemBase::hasJacobian ( ) const
inherited

Returns _has_jacobian.

Definition at line 8812 of file FEProblemBase.C.

8813 {
8814  return _has_jacobian;
8815 }
bool _has_jacobian
Indicates if the Jacobian was computed.

◆ hasLinearConvergenceObjects()

bool FEProblemBase::hasLinearConvergenceObjects ( ) const
inherited

Whether we have linear convergence objects.

Definition at line 9151 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscSetDefaults().

9152 {
9153  // If false,this means we have not set one, not that we are querying this too early
9154  // TODO: once there is a default linear CV object, error on the 'not set' case
9155  return _linear_convergence_names.has_value();
9156 }
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ hasLinearVariable()

bool SubProblem::hasLinearVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this linear variable.

Definition at line 802 of file SubProblem.C.

Referenced by SubProblem::getFunctor().

803 {
804  for (const auto i : make_range(numLinearSystems()))
805  if (systemBaseLinear(i).hasVariable(var_name))
806  return true;
807  return false;
808 }
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
IntRange< T > make_range(T beg, T end)
virtual const SystemBase & systemBaseLinear(const unsigned int sys_num) const =0
Return the linear system object as a base class reference given the system number.
virtual std::size_t numLinearSystems() const =0

◆ hasMortarCoupling()

virtual bool FEProblemBase::hasMortarCoupling ( ) const
inlinevirtualinherited

Whether the simulation has mortar coupling.

Definition at line 2219 of file FEProblemBase.h.

2219 { return _has_mortar; }
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ hasMultiApp()

bool FEProblemBase::hasMultiApp ( const std::string &  name) const
inherited

Definition at line 5312 of file FEProblemBase.C.

5313 {
5314  return _multi_apps.hasActiveObject(multi_app_name);
5315 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasMultiApps() [1/2]

bool FEProblemBase::hasMultiApps ( ) const
inlineinherited

Returns whether or not the current simulation has any multiapps.

Definition at line 1259 of file FEProblemBase.h.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), FEProblemBase::checkProblemIntegrity(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), and DefaultMultiAppFixedPointConvergence::preExecute().

1259 { return _multi_apps.hasActiveObjects(); }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasMultiApps() [2/2]

bool FEProblemBase::hasMultiApps ( ExecFlagType  type) const
inherited

Definition at line 5306 of file FEProblemBase.C.

5307 {
5308  return _multi_apps[type].hasActiveObjects();
5309 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasNeighborCoupling()

virtual bool FEProblemBase::hasNeighborCoupling ( ) const
inlinevirtualinherited

Whether the simulation has neighbor coupling.

Definition at line 2214 of file FEProblemBase.h.

bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ hasNonlocalCoupling()

virtual bool FEProblemBase::hasNonlocalCoupling ( ) const
inlineoverridevirtualinherited

Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian.

For this to return true, there must be at least one active nonlocal kernel or boundary condition

Implements SubProblem.

Definition at line 2476 of file FEProblemBase.h.

Referenced by DisplacedProblem::hasNonlocalCoupling().

2476 { return _has_nonlocal_coupling; }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.

◆ hasPostprocessor()

bool FEProblemBase::hasPostprocessor ( const std::string &  name) const
inherited

Deprecated.

Use hasPostprocessorValueByName

Definition at line 4440 of file FEProblemBase.C.

Referenced by GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl().

4441 {
4442  mooseDeprecated("FEProblemBase::hasPostprocssor is being removed; use "
4443  "hasPostprocessorValueByName instead.");
4445 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
bool hasPostprocessorValueByName(const PostprocessorName &name) const
Whether or not a Postprocessor value exists by a given name.

◆ hasPostprocessorValueByName()

bool FEProblemBase::hasPostprocessorValueByName ( const PostprocessorName &  name) const
inherited

Whether or not a Postprocessor value exists by a given name.

Parameters
nameThe name of the Postprocessor
Returns
True if a Postprocessor value exists

Note: You should prioritize the use of PostprocessorInterface::hasPostprocessor and PostprocessorInterface::hasPostprocessorByName over this method when possible.

Definition at line 4417 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), FunctorAux::computeValue(), FunctorExtremaPositions::FunctorExtremaPositions(), FEProblemBase::hasPostprocessor(), MooseParsedFunction::initialSetup(), and FunctorIC::value().

4418 {
4420 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143
bool hasReporterValue(const ReporterName &reporter_name) const
Return True if a Reporter value with the given type and name have been created.
Definition: ReporterData.h:445

◆ hasScalarVariable()

bool FEProblemBase::hasScalarVariable ( const std::string &  var_name) const
overridevirtualinherited

Returns a Boolean indicating whether any system contains a variable with the name provided.

Implements SubProblem.

Definition at line 5760 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), EigenProblem::adjustEigenVector(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), AdvancedOutput::initAvailableLists(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), AdvancedOutput::initShowHideLists(), and Split::setup().

5761 {
5762  for (auto & sys : _solver_systems)
5763  if (sys->hasScalarVariable(var_name))
5764  return true;
5765  if (_aux->hasScalarVariable(var_name))
5766  return true;
5767 
5768  return false;
5769 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ hasScalingVector()

void SubProblem::hasScalingVector ( const unsigned int  nl_sys_num)
inherited

Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector.

Definition at line 1170 of file SubProblem.C.

Referenced by SystemBase::addScalingVector().

1171 {
1172  for (const THREAD_ID tid : make_range(libMesh::n_threads()))
1173  assembly(tid, nl_sys_num).hasScalingVector();
1174 }
unsigned int n_threads()
void hasScalingVector()
signals this object that a vector containing variable scaling factors should be used when doing resid...
Definition: Assembly.C:4574
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ hasSetMultiAppFixedPointConvergenceName()

bool FEProblemBase::hasSetMultiAppFixedPointConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the fixed point convergence name.

Definition at line 667 of file FEProblemBase.h.

668  {
669  return _multiapp_fixed_point_convergence_name.has_value();
670  }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ hasSetSteadyStateConvergenceName()

bool FEProblemBase::hasSetSteadyStateConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the steady-state detection convergence name.

Definition at line 672 of file FEProblemBase.h.

673  {
674  return _steady_state_convergence_name.has_value();
675  }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ hasSolverVariable()

bool FEProblemBase::hasSolverVariable ( const std::string &  var_name) const
inherited

Definition at line 5692 of file FEProblemBase.C.

5693 {
5694  for (auto & sys : _solver_systems)
5695  if (sys->hasVariable(var_name))
5696  return true;
5697 
5698  return false;
5699 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ hasTimeIntegrator()

bool FEProblemBase::hasTimeIntegrator ( ) const
inlineinherited

Returns whether or not this Problem has a TimeIntegrator.

Definition at line 2005 of file FEProblemBase.h.

Referenced by TransientBase::setupTimeIntegrator().

2005 { return _has_time_integrator; }
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)

◆ hasUOAuxStateCheck()

bool FEProblemBase::hasUOAuxStateCheck ( ) const
inlineinherited

Whether or not MOOSE will perform a user object/auxiliary kernel state check.

Definition at line 189 of file FEProblemBase.h.

189 { return _uo_aux_state_check; }
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.

◆ hasUserObject()

bool FEProblemBase::hasUserObject ( const std::string &  name) const
inherited

Check if there if a user object of given name.

Parameters
nameThe name of the user object being checked for
Returns
true if the user object exists, false otherwise

Definition at line 4404 of file FEProblemBase.C.

Referenced by addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), FunctorAux::computeValue(), DistributedPositions::DistributedPositions(), UserObjectInterface::hasUserObjectByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterTransferInterface::hideVariableHelper(), ParsedDownSelectionPositions::initialize(), and TransformedPositions::TransformedPositions().

4405 {
4406  std::vector<UserObject *> objs;
4407  theWarehouse()
4408  .query()
4409  .condition<AttribSystem>("UserObject")
4410  .condition<AttribThread>(0)
4411  .condition<AttribName>(name)
4412  .queryInto(objs);
4413  return !objs.empty();
4414 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ hasVariable()

bool FEProblemBase::hasVariable ( const std::string &  var_name) const
overridevirtualinherited

Whether or not this problem has the variable.

Implements SubProblem.

Definition at line 5680 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), FEProblemBase::addFVInitialCondition(), DiffusionFV::addFVKernels(), FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), MultiAppTransfer::checkVariable(), FunctorIC::FunctorIC(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MooseParsedFunction::initialSetup(), AdvancedOutput::initShowHideLists(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), and Split::setup().

5681 {
5682  for (auto & sys : _solver_systems)
5683  if (sys->hasVariable(var_name))
5684  return true;
5685  if (_aux->hasVariable(var_name))
5686  return true;
5687 
5688  return false;
5689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ haveADObjects() [1/4]

bool SubProblem::haveADObjects ( ) const
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::init().

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [2/4]

virtual void SubProblem::haveADObjects
inlineinherited

Method for setting whether we have any ad objects.

Definition at line 767 of file SubProblem.h.

767 { _have_ad_objects = have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [3/4]

bool SubProblem::haveADObjects
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [4/4]

void FEProblemBase::haveADObjects ( bool  have_ad_objects)
overridevirtualinherited

Method for setting whether we have any ad objects.

Reimplemented from SubProblem.

Definition at line 8889 of file FEProblemBase.C.

8890 {
8891  _have_ad_objects = have_ad_objects;
8892  if (_displaced_problem)
8893  _displaced_problem->SubProblem::haveADObjects(have_ad_objects);
8894 }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveDisplaced()

bool FEProblemBase::haveDisplaced ( ) const
inlinefinaloverridevirtualinherited

Whether we have a displaced problem in our simulation.

Implements SubProblem.

Definition at line 2310 of file FEProblemBase.h.

2310 { return _displaced_problem.get(); }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveFV()

virtual bool FEProblemBase::haveFV ( ) const
inlineoverridevirtualinherited

◆ havePRefinement()

bool SubProblem::havePRefinement ( ) const
inlineinherited

Query whether p-refinement has been requested at any point during the simulation.

Definition at line 1009 of file SubProblem.h.

Referenced by AdvancedOutput::initAvailableLists(), and FEProblemBase::meshChanged().

1009 { return _have_p_refinement; }
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202

◆ haveXFEM()

bool FEProblemBase::haveXFEM ( )
inlineinherited

Find out whether the current analysis is using XFEM.

Definition at line 1772 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), FixedPointSolve::solveStep(), TransientBase::takeStep(), and FEProblemBase::updateMeshXFEM().

1772 { return _xfem != nullptr; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ identifyVariableGroupsInNL()

bool FEProblemBase::identifyVariableGroupsInNL ( ) const
inlineinherited

Whether to identify variable groups in nonlinear systems.

This affects dof ordering

Definition at line 2481 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase().

const bool _identify_variable_groups_in_nl
Whether to identify variable groups in nonlinear systems. This affects dof ordering.

◆ ignoreZerosInJacobian()

bool FEProblemBase::ignoreZerosInJacobian ( ) const
inlineinherited

Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.

Note that this can make preserving the matrix sparsity pattern impossible.

Definition at line 1977 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

1977 { return _ignore_zeros_in_jacobian; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ immediatelyPrintInvalidSolution()

bool FEProblemBase::immediatelyPrintInvalidSolution ( ) const
inlineinherited

Whether or not the solution invalid warnings are printed out immediately.

Definition at line 2002 of file FEProblemBase.h.

Referenced by SolutionInvalidInterface::flagInvalidSolutionInternal().

const bool & _immediately_print_invalid_solution

◆ incrementMultiAppTStep()

void FEProblemBase::incrementMultiAppTStep ( ExecFlagType  type)
inherited

Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType.

Definition at line 5497 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject().

5498 {
5499  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5500 
5501  if (multi_apps.size())
5502  for (const auto & multi_app : multi_apps)
5503  multi_app->incrementTStep(_time);
5504 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ init()

void FEProblemBase::init ( )
overridevirtualinherited

Implements Problem.

Reimplemented in FEProblem, and EigenProblem.

Definition at line 6178 of file FEProblemBase.C.

Referenced by EigenProblem::init(), and FEProblem::init().

6179 {
6180  if (_initialized)
6181  return;
6182 
6183  TIME_SECTION("init", 2, "Initializing");
6184 
6185  // call executioner's preProblemInit so that it can do some setups before problem init
6187 
6188  // If we have AD and we are doing global AD indexing, then we should by default set the matrix
6189  // coupling to full. If the user has told us to trust their coupling matrix, then this call will
6190  // not do anything
6193 
6194  for (const auto i : index_range(_nl))
6195  {
6196  auto & nl = _nl[i];
6197  auto & cm = _cm[i];
6198 
6199  unsigned int n_vars = nl->nVariables();
6200  {
6201  TIME_SECTION("fillCouplingMatrix", 3, "Filling Coupling Matrix");
6202 
6203  switch (_coupling)
6204  {
6205  case Moose::COUPLING_DIAG:
6206  cm = std::make_unique<CouplingMatrix>(n_vars);
6207  for (unsigned int i = 0; i < n_vars; i++)
6208  (*cm)(i, i) = 1;
6209  break;
6210 
6211  // for full jacobian
6212  case Moose::COUPLING_FULL:
6213  cm = std::make_unique<CouplingMatrix>(n_vars);
6214  for (unsigned int i = 0; i < n_vars; i++)
6215  for (unsigned int j = 0; j < n_vars; j++)
6216  (*cm)(i, j) = 1;
6217  break;
6218 
6220  // do nothing, _cm was already set through couplingMatrix() call
6221  break;
6222  }
6223  }
6224 
6225  nl->dofMap()._dof_coupling = cm.get();
6226 
6227  // If there are no variables, make sure to pass a nullptr coupling
6228  // matrix, to avoid warnings about non-nullptr yet empty
6229  // CouplingMatrices.
6230  if (n_vars == 0)
6231  nl->dofMap()._dof_coupling = nullptr;
6232 
6233  nl->dofMap().attach_extra_sparsity_function(&extraSparsity, nl.get());
6234  nl->dofMap().attach_extra_send_list_function(&extraSendList, nl.get());
6235  _aux->dofMap().attach_extra_send_list_function(&extraSendList, _aux.get());
6236 
6237  if (!_skip_nl_system_check && _solve && n_vars == 0)
6238  mooseError("No variables specified in nonlinear system '", nl->name(), "'.");
6239  }
6240 
6241  ghostGhostedBoundaries(); // We do this again right here in case new boundaries have been added
6242 
6243  // We may have added element/nodes to the mesh in ghostGhostedBoundaries so we need to update
6244  // all of our mesh information. We need to make sure that mesh information is up-to-date before
6245  // EquationSystems::init because that will call through to updateGeomSearch (for sparsity
6246  // augmentation) and if we haven't added back boundary node information before that latter call,
6247  // then we're screwed. We'll get things like "Unable to find closest node!"
6248  _mesh.meshChanged();
6249  if (_displaced_problem)
6251 
6252  if (_mesh.doingPRefinement())
6253  {
6255  if (_displaced_problem)
6256  _displaced_problem->preparePRefinement();
6257  }
6258 
6259  // do not assemble system matrix for JFNK solve
6260  for (auto & nl : _nl)
6261  if (solverParams(nl->number())._type == Moose::ST_JFNK)
6262  nl->turnOffJacobian();
6263 
6264  for (auto & sys : _solver_systems)
6265  sys->preInit();
6266  _aux->preInit();
6267 
6268  // Build the mortar segment meshes, if they haven't been already, for a couple reasons:
6269  // 1) Get the ghosting correct for both static and dynamic meshes
6270  // 2) Make sure the mortar mesh is built for mortar constraints that live on the static mesh
6271  //
6272  // It is worth-while to note that mortar meshes that live on a dynamic mesh will be built
6273  // during residual and Jacobian evaluation because when displacements are solution variables
6274  // the mortar mesh will move and change during the course of a non-linear solve. We DO NOT
6275  // redo ghosting during non-linear solve, so for purpose 1) the below call has to be made
6276  if (!_mortar_data.initialized())
6277  updateMortarMesh();
6278 
6279  {
6280  TIME_SECTION("EquationSystems::Init", 2, "Initializing Equation Systems");
6281  es().init();
6282  }
6283 
6284  for (auto & sys : _solver_systems)
6285  sys->postInit();
6286  _aux->postInit();
6287 
6288  // Now that the equation system and the dof distribution is done, we can generate the
6289  // finite volume-related parts if needed.
6290  if (haveFV())
6292 
6293  for (auto & sys : _solver_systems)
6294  sys->update();
6295  _aux->update();
6296 
6297  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
6298  for (const auto i : index_range(_nl))
6299  {
6300  mooseAssert(
6301  _cm[i],
6302  "Coupling matrix not set for system "
6303  << i
6304  << ". This should only happen if a preconditioner was not setup for this system");
6305  _assembly[tid][i]->init(_cm[i].get());
6306  }
6307 
6308  if (_displaced_problem)
6309  _displaced_problem->init();
6310 
6311  _initialized = true;
6312 }
void extraSparsity(libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz, void *context)
Free function used for a libMesh callback.
Definition: SystemBase.C:48
unsigned int n_threads()
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
bool globalADIndexing()
Whether we are using global AD indexing.
Definition: ADUtils.h:28
bool initialized() const
Definition: MortarData.h:127
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void preparePRefinement()
Prepare DofMap and Assembly classes with our p-refinement information.
Definition: SubProblem.C:1332
const bool _skip_nl_system_check
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const bool & _solve
Whether or not to actually solve the nonlinear system.
unsigned int n_vars
Moose::CouplingType _coupling
Type of variable coupling.
void extraSendList(std::vector< dof_id_type > &send_list, void *context)
///< Type of coordinate system
Definition: SystemBase.C:40
Jacobian-Free Newton Krylov.
Definition: MooseTypes.h:846
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
Executioner * getExecutioner() const
Retrieve the Executioner for this App.
Definition: MooseApp.C:2123
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
virtual void preProblemInit()
Perform initializations during executing actions right before init_problem task.
Definition: Executioner.h:57
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1347
auto index_range(const T &sizable)
const std::string & _type
The type of this class.
Definition: MooseBase.h:356
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:882
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4072

◆ initElementStatefulProps()

void FEProblemBase::initElementStatefulProps ( const libMesh::ConstElemRange elem_range,
const bool  threaded 
)
inherited

Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 8252 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::finalize(), ElementSubdomainModifierBase::initElementStatefulProps(), and FEProblemBase::initialSetup().

8253 {
8256  if (threaded)
8257  Threads::parallel_reduce(elem_range, cmt);
8258  else
8259  cmt(elem_range, true);
8260 }
MaterialPropertyStorage & _bnd_material_props
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props

◆ initialAdaptMesh()

void FEProblemBase::initialAdaptMesh ( )
virtualinherited

Definition at line 7925 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

7926 {
7927  unsigned int n = adaptivity().getInitialSteps();
7928  _cycles_completed = 0;
7929  if (n)
7930  {
7931  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
7932  mooseError("HFEM does not support mesh adaptivity currently.");
7933 
7934  TIME_SECTION("initialAdaptMesh", 2, "Performing Initial Adaptivity");
7935 
7936  for (unsigned int i = 0; i < n; i++)
7937  {
7939  computeMarkers();
7940 
7942  {
7943  meshChanged(
7944  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
7945 
7946  // reproject the initial condition
7947  projectSolution();
7948 
7950  }
7951  else
7952  {
7953  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
7954  return;
7955  }
7956  }
7957  }
7958 }
bool initialAdaptMesh()
Used during initial adaptivity.
Definition: Adaptivity.C:268
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
unsigned int _cycles_completed
virtual void computeMarkers()
void projectSolution()
virtual void computeIndicators()
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1407
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
Adaptivity & adaptivity()

◆ initialSetup()

void MFEMProblem::initialSetup ( )
overridevirtual

Reimplemented from SubProblem.

Definition at line 41 of file MFEMProblem.C.

Referenced by MFEMSteady::init().

42 {
45 }
void addMFEMNonlinearSolver()
Add the nonlinear solver to the system.
Definition: MFEMProblem.C:77
void initialSetup() override

◆ initNullSpaceVectors()

void FEProblemBase::initNullSpaceVectors ( const InputParameters parameters,
std::vector< std::shared_ptr< NonlinearSystemBase >> &  nl 
)
virtualinherited

Definition at line 740 of file FEProblemBase.C.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

742 {
743  TIME_SECTION("initNullSpaceVectors", 5, "Initializing Null Space Vectors");
744 
745  unsigned int dimNullSpace = parameters.get<unsigned int>("null_space_dimension");
746  unsigned int dimTransposeNullSpace =
747  parameters.get<unsigned int>("transpose_null_space_dimension");
748  unsigned int dimNearNullSpace = parameters.get<unsigned int>("near_null_space_dimension");
749  for (unsigned int i = 0; i < dimNullSpace; ++i)
750  {
751  std::ostringstream oss;
752  oss << "_" << i;
753  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
754  // builder might march over all nodes
755  for (auto & nl : nls)
756  nl->addVector("NullSpace" + oss.str(), false, libMesh::GHOSTED);
757  }
758  _subspace_dim["NullSpace"] = dimNullSpace;
759  for (unsigned int i = 0; i < dimTransposeNullSpace; ++i)
760  {
761  std::ostringstream oss;
762  oss << "_" << i;
763  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
764  // builder might march over all nodes
765  for (auto & nl : nls)
766  nl->addVector("TransposeNullSpace" + oss.str(), false, libMesh::GHOSTED);
767  }
768  _subspace_dim["TransposeNullSpace"] = dimTransposeNullSpace;
769  for (unsigned int i = 0; i < dimNearNullSpace; ++i)
770  {
771  std::ostringstream oss;
772  oss << "_" << i;
773  // do not project, since this will be recomputed, but make it ghosted, since the near-nullspace
774  // builder might march over all semilocal nodes
775  for (auto & nl : nls)
776  nl->addVector("NearNullSpace" + oss.str(), false, libMesh::GHOSTED);
777  }
778  _subspace_dim["NearNullSpace"] = dimNearNullSpace;
779 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ initPetscOutputAndSomeSolverSettings()

void FEProblemBase::initPetscOutputAndSomeSolverSettings ( )
virtualinherited

Reinitialize PETSc output for proper linear/nonlinear iteration display.

This also may be used for some PETSc-related solver settings

Reimplemented in EigenProblem.

Definition at line 6721 of file FEProblemBase.C.

Referenced by FEProblemBase::possiblyRebuildGeomSearchPatches(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), and FEProblemBase::solve().

6722 {
6725 }
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:446
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void solveSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ initXFEM()

void FEProblemBase::initXFEM ( std::shared_ptr< XFEMInterface xfem)
inherited

Create XFEM controller object.

Definition at line 8023 of file FEProblemBase.C.

8024 {
8025  _xfem = xfem;
8026  _xfem->setMesh(&_mesh);
8027  if (_displaced_mesh)
8028  _xfem->setDisplacedMesh(_displaced_mesh);
8029 
8030  auto fill_data = [](auto & storage)
8031  {
8032  std::vector<MaterialData *> data(libMesh::n_threads());
8033  for (const auto tid : make_range(libMesh::n_threads()))
8034  data[tid] = &storage.getMaterialData(tid);
8035  return data;
8036  };
8037  _xfem->setMaterialData(fill_data(_material_props));
8038  _xfem->setBoundaryMaterialData(fill_data(_bnd_material_props));
8039 
8040  unsigned int n_threads = libMesh::n_threads();
8041  for (unsigned int i = 0; i < n_threads; ++i)
8042  for (const auto nl_sys_num : index_range(_nl))
8043  {
8044  _assembly[i][nl_sys_num]->setXFEM(_xfem);
8045  if (_displaced_problem)
8046  _displaced_problem->assembly(i, nl_sys_num).setXFEM(_xfem);
8047  }
8048 }
void fill_data(std::map< processor_id_type, std::vector< std::set< unsigned int >>> &data, int M)
MaterialPropertyStorage & _bnd_material_props
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ isMatPropRequested()

bool SubProblem::isMatPropRequested ( const std::string &  prop_name) const
virtualinherited

Find out if a material property has been requested by any object.

Definition at line 730 of file SubProblem.C.

731 {
732  return _material_property_requested.find(prop_name) != _material_property_requested.end();
733 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ isParamSetByUser()

bool MooseBase::isParamSetByUser ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is set by a user, as opposed to not set or set to default.

Parameters
nameThe name of the parameter to test

Definition at line 201 of file MooseBase.h.

Referenced by SetupDebugAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEBCs(), DiffusionPhysicsBase::addInitialConditions(), MFEMMesh::buildMesh(), LibtorchNeuralNetControl::conditionalParameterError(), MooseApp::copyInputs(), DiffusionPhysicsBase::DiffusionPhysicsBase(), ElementSubdomainModifierBase::ElementSubdomainModifierBase(), MooseApp::errorCheck(), MooseBase::getRenamedParam(), DefaultConvergenceBase::getSharedExecutionerParam(), AddVariableAction::init(), PhysicsBase::initializePhysics(), ElementSubdomainModifierBase::initialSetup(), MatrixSymmetryCheck::MatrixSymmetryCheck(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), SolutionInvalidityOutput::output(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), PetscExternalPartitioner::partition(), PiecewiseTabularBase::PiecewiseTabularBase(), MooseMesh::prepare(), SolutionUserObjectBase::readXda(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::runInputFile(), MooseApp::runInputs(), MFEMSolverBase::setPreconditioner(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), TimedSubdomainModifier::TimedSubdomainModifier(), and XYDelaunayGenerator::XYDelaunayGenerator().

202  {
203  return _pars.isParamSetByUser(name);
204  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.

◆ isParamValid()

bool MooseBase::isParamValid ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is valid.

Parameters
nameThe name of the parameter to test

Definition at line 195 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), CopyNodalVarsAction::act(), SetupMeshAction::act(), SetupDebugAction::act(), ComposeTimeStepperAction::act(), CreateDisplacedProblemAction::act(), SetAdaptivityOptionsAction::act(), AddVariableAction::act(), CommonOutputAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), DiffusionPhysicsBase::addInitialConditions(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), DiffusionPhysicsBase::addPostprocessors(), AdvectiveFluxAux::AdvectiveFluxAux(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayVarReductionAux::ArrayVarReductionAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), ParsedChainControl::buildFunction(), GeneratedMesh::buildMesh(), MooseMesh::buildTypedMesh(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), LibmeshPartitioner::clone(), SampledOutput::cloneMesh(), CombinerGenerator::CombinerGenerator(), FunctorAux::computeValue(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), FEProblemSolve::convergenceSetup(), CopyMeshPartitioner::CopyMeshPartitioner(), CSVReaderVectorPostprocessor::CSVReaderVectorPostprocessor(), CutMeshByLevelSetGeneratorBase::CutMeshByLevelSetGeneratorBase(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), DGKernelBase::DGKernelBase(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), PIDTransientControl::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), Exodus::Exodus(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), FunctionDT::FunctionDT(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FVInterfaceKernel::FVInterfaceKernel(), FVMassMatrix::FVMassMatrix(), FileMeshGenerator::generate(), AddMetaDataGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementGenerator::generate(), ExtraNodesetGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), BlockDeletionGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), MeshExtruderGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYZDelaunayGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), SubdomainBoundingBoxGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), PropertyReadFile::getFileNames(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getRenamedParam(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), Terminator::handleMessage(), HFEMDirichletBC::HFEMDirichletBC(), EigenExecutionerBase::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AdvancedOutput::initExecutionTypes(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), MultiAppVariableValueSampleTransfer::initialSetup(), PiecewiseTabularBase::initialSetup(), ParsedConvergence::initialSetup(), SolutionScalarAux::initialSetup(), SolutionAux::initialSetup(), Console::initialSetup(), MooseParsedVectorFunction::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), MooseParsedGradFunction::initialSetup(), MooseParsedFunction::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::IterationAdaptiveDT(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MassMatrix::MassMatrix(), MatCoupledForce::MatCoupledForce(), MatDiffusionBase< Real >::MatDiffusionBase(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMProblemSolve::MFEMProblemSolve(), MooseMesh::MooseMesh(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableFV< Real >::MooseVariableFV(), MortarConstraintBase::MortarConstraintBase(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NodeSetsGeneratorBase::NodeSetsGeneratorBase(), EigenExecutionerBase::normalizeSolution(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), ParsedCurveGenerator::ParsedCurveGenerator(), PetscOutput::PetscOutput(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseTabularBase::PiecewiseTabularBase(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), MooseMesh::prepare(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), SolutionUserObjectBase::readExodusII(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), ReporterPointSource::ReporterPointSource(), PhysicsBase::reportPotentiallyMissedParameters(), ParsedSubdomainMeshGenerator::setBlockName(), MooseMesh::setCoordSystem(), FileOutput::setFileBase(), FileOutput::setFileBaseInternal(), Split::setup(), SideSetsGeneratorBase::setup(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), Output::setWallTimeIntervalFromCommandLineParam(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsGeneratorBase::SideSetsGeneratorBase(), SolutionUserObjectBase::SolutionUserObjectBase(), WebServerControl::startServer(), Terminator::Terminator(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriod::TimePeriod(), MultiAppDofCopyTransfer::transfer(), TransformGenerator::TransformGenerator(), TransientBase::TransientBase(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

195 { return _pars.isParamValid(name); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isSNESMFReuseBaseSetbyUser()

bool FEProblemBase::isSNESMFReuseBaseSetbyUser ( )
inlineinherited

Return a flag to indicate if _snesmf_reuse_base is set by users.

Definition at line 2140 of file FEProblemBase.h.

bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.

◆ isSolverSystemNonlinear()

bool FEProblemBase::isSolverSystemNonlinear ( const unsigned int  sys_num)
inlineinherited

◆ isSolveTerminationRequested()

virtual bool Problem::isSolveTerminationRequested ( ) const
inlinevirtualinherited

Check of termination has been requested.

This should be called by transient Executioners in the keepGoing() member.

Definition at line 43 of file Problem.h.

Referenced by WebServerControl::execute(), and TransientBase::keepGoing().

43 { return _termination_requested; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ isTransient()

virtual bool FEProblemBase::isTransient ( ) const
inlineoverridevirtualinherited

◆ jacobianSetup()

void FEProblemBase::jacobianSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9207 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::jacobianSetup().

9208 {
9210  // We need to setup all the nonlinear systems other than our current one which actually called
9211  // this method (so we have to make sure we don't go in a circle)
9212  for (const auto i : make_range(numNonlinearSystems()))
9213  if (i != currentNlSysNum())
9214  _nl[i]->jacobianSetup();
9215  // We don't setup the aux sys because that's been done elsewhere
9216  if (_displaced_problem)
9217  _displaced_problem->jacobianSetup();
9218 }
virtual std::size_t numNonlinearSystems() const override
virtual void jacobianSetup()
Definition: SubProblem.C:1209
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ linearSysNum()

unsigned int FEProblemBase::linearSysNum ( const LinearSystemName &  linear_sys_name) const
overridevirtualinherited
Returns
the linear system number corresponding to the provided linear_sys_name

Implements SubProblem.

Definition at line 6326 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), LinearSystem::computeGradients(), FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and DisplacedProblem::linearSysNum().

6327 {
6328  std::istringstream ss(linear_sys_name);
6329  unsigned int linear_sys_num;
6330  if (!(ss >> linear_sys_num) || !ss.eof())
6331  linear_sys_num = libmesh_map_find(_linear_sys_name_to_num, linear_sys_name);
6332 
6333  return linear_sys_num;
6334 }
std::map< LinearSystemName, unsigned int > _linear_sys_name_to_num
Map from linear system name to number.

◆ lineSearch()

void FEProblemBase::lineSearch ( )
virtualinherited

execute MOOSE line search

Definition at line 2663 of file FEProblemBase.C.

Referenced by ComputeLineSearchObjectWrapper::linesearch().

2664 {
2665  _line_search->lineSearch();
2666 }
std::shared_ptr< LineSearch > _line_search

◆ logAdd()

void FEProblemBase::logAdd ( const std::string &  system,
const std::string &  name,
const std::string &  type,
const InputParameters params 
) const
inherited

Output information about the object just added to the problem.

Definition at line 4187 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addIndicator(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addOutput(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), and FEProblemBase::setResidualObjectParamsAndLog().

4191 {
4192  if (_verbose_setup != "false")
4193  _console << "[DBG] Adding " << system << " '" << name << "' of type " << type << std::endl;
4194  if (_verbose_setup == "extra")
4195  _console << params << std::endl;
4196 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.

◆ markFamilyPRefinement()

void SubProblem::markFamilyPRefinement ( const InputParameters params)
protectedinherited

Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable.

Definition at line 1367 of file SubProblem.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

1368 {
1369  auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
1370  bool flag = _default_families_without_p_refinement.count(family);
1371  if (params.isParamValid("disable_p_refinement"))
1372  flag = params.get<bool>("disable_p_refinement");
1373 
1374  auto [it, inserted] = _family_for_p_refinement.emplace(family, flag);
1375  if (!inserted && flag != it->second)
1376  mooseError("'disable_p_refinement' not set consistently for variables in ", family);
1377 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
static const std::unordered_set< FEFamily > _default_families_without_p_refinement
The set of variable families by default disable p-refinement.
Definition: SubProblem.h:1207
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ markMatPropRequested()

void SubProblem::markMatPropRequested ( const std::string &  prop_name)
virtualinherited

Helper method for adding a material property name to the _material_property_requested set.

Definition at line 724 of file SubProblem.C.

Referenced by MaterialBase::markMatPropRequested(), and MaterialPropertyInterface::markMatPropRequested().

725 {
726  _material_property_requested.insert(prop_name);
727 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ matrixTagExists() [1/2]

bool SubProblem::matrixTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 328 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), SystemBase::associateMatrixToTag(), Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), SystemBase::disassociateDefaultMatrixTags(), SystemBase::disassociateMatrixFromTag(), SystemBase::getMatrix(), SubProblem::getMatrixTagID(), SystemBase::matrixTagActive(), DisplacedProblem::matrixTagExists(), SystemBase::removeMatrix(), and TaggingInterface::useMatrixTag().

329 {
330  auto tag_name_upper = MooseUtils::toUpper(tag_name);
331 
332  return _matrix_tag_name_to_tag_id.find(tag_name_upper) != _matrix_tag_name_to_tag_id.end();
333 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.

◆ matrixTagExists() [2/2]

bool SubProblem::matrixTagExists ( TagID  tag_id) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 336 of file SubProblem.C.

337 {
338  return _matrix_tag_id_to_tag_name.find(tag_id) != _matrix_tag_id_to_tag_name.end();
339 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ matrixTagName()

TagName SubProblem::matrixTagName ( TagID  tag)
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 357 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), DisplacedProblem::matrixTagName(), and SystemBase::removeMatrix().

358 {
359  return _matrix_tag_id_to_tag_name[tag];
360 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ mesh() [1/3]

MFEMMesh & MFEMProblem::mesh ( )
overridevirtual

Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMesh.

Reimplemented from FEProblemBase.

Definition at line 465 of file MFEMProblem.C.

Referenced by addMFEMFESpaceFromMOOSEVariable(), MFEMGMRESSolver::constructSolver(), MFEMHypreFGMRES::constructSolver(), MFEMCGSolver::constructSolver(), MFEMHyprePCG::constructSolver(), MFEMHypreGMRES::constructSolver(), MFEMSuperLU::constructSolver(), displaceMesh(), getMeshDisplacementGridFunction(), MFEMSimplifiedFESpace::getProblemDim(), mesh(), setMesh(), MFEMHyprePCG::updateSolver(), MFEMHypreFGMRES::updateSolver(), and MFEMHypreGMRES::updateSolver().

466 {
467  mooseAssert(ExternalProblem::mesh().type() == "MFEMMesh",
468  "Please choose the MFEMMesh mesh type for an MFEMProblem\n");
469  return static_cast<MFEMMesh &>(_mesh);
470 }
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
MFEMMesh inherits a MOOSE mesh class which allows us to work with other MOOSE objects.
Definition: MFEMMesh.h:22
virtual MooseMesh & mesh() override

◆ mesh() [2/3]

const MFEMMesh & MFEMProblem::mesh ( ) const
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 473 of file MFEMProblem.C.

474 {
475  return const_cast<MFEMProblem *>(this)->mesh();
476 }
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:465

◆ mesh() [3/3]

const MooseMesh & FEProblemBase::mesh ( bool  use_displaced) const
overridevirtualinherited

Implements SubProblem.

Definition at line 645 of file FEProblemBase.C.

646 {
647  if (use_displaced && !_displaced_problem)
648  mooseWarning("Displaced mesh was requested but the displaced problem does not exist. "
649  "Regular mesh will be returned");
650  return ((use_displaced && _displaced_problem) ? _displaced_problem->mesh() : mesh());
651 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
virtual MooseMesh & mesh() override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ meshChanged() [1/2]

void FEProblemBase::meshChanged ( bool  intermediate_change,
bool  contract_mesh,
bool  clean_refinement_flags 
)
virtualinherited

Update data after a mesh change.

Iff intermediate_change is true, only perform updates as necessary to prepare for another mesh change immediately-subsequent. An example of data that is not updated during an intermediate change is libMesh System matrix data. An example of data that is updated during an intermediate change is libMesh System vectors. These vectors are projected or restricted based off of adaptive mesh refinement or the changing of element subdomain IDs. The flags contract_mesh and clean_refinement_flags should generally only be set to true when the mesh has changed due to mesh refinement. contract_mesh deletes children of coarsened elements and renumbers nodes and elements. clean_refinement_flags resets refinement flags such that any subsequent calls to System::restrict_vectors or System::prolong_vectors before another AMR step do not mistakenly attempt to re-do the restriction/prolongation which occurred in this method

Definition at line 8078 of file FEProblemBase.C.

Referenced by SidesetAroundSubdomainUpdater::finalize(), ActivateElementsUserObjectBase::finalize(), Exodus::handleExodusIOMeshRenumbering(), ElementSubdomainModifierBase::modify(), and Adaptivity::uniformRefineWithProjection().

8081 {
8082  TIME_SECTION("meshChanged", 3, "Handling Mesh Changes");
8083 
8086  _mesh.cacheChangedLists(); // Currently only used with adaptivity and stateful material
8087  // properties
8088 
8089  // Clear these out because they corresponded to the old mesh
8090  _ghosted_elems.clear();
8092 
8093  // The mesh changed. We notify the MooseMesh first, because
8094  // callbacks (e.g. for sparsity calculations) triggered by the
8095  // EquationSystems reinit may require up-to-date MooseMesh caches.
8096  _mesh.meshChanged();
8097 
8098  // If we're just going to alter the mesh again, all we need to
8099  // handle here is AMR and projections, not full system reinit
8100  if (intermediate_change)
8101  es().reinit_solutions();
8102  else
8103  es().reinit();
8104 
8105  if (contract_mesh)
8106  // Once vectors are restricted, we can delete children of coarsened elements
8107  _mesh.getMesh().contract();
8108  if (clean_refinement_flags)
8109  {
8110  // Finally clear refinement flags so that if someone tries to project vectors again without
8111  // an intervening mesh refinement to clear flags they won't run into trouble
8112  MeshRefinement refinement(_mesh.getMesh());
8113  refinement.clean_refinement_flags();
8114  }
8115 
8116  if (!intermediate_change)
8117  {
8118  // Since the mesh has changed, we need to make sure that we update any of our
8119  // MOOSE-system specific data.
8120  for (auto & sys : _solver_systems)
8121  sys->reinit();
8122  _aux->reinit();
8123  }
8124 
8125  // Updating MooseMesh first breaks other adaptivity code, unless we
8126  // then *again* update the MooseMesh caches. E.g. the definition of
8127  // "active" and "local" may have been *changed* by refinement and
8128  // repartitioning done in EquationSystems::reinit().
8129  _mesh.meshChanged();
8130 
8131  // If we have finite volume variables, we will need to recompute additional elemental/face
8132  // quantities
8135 
8136  // Let the meshChangedInterface notify the mesh changed event before we update the active
8137  // semilocal nodes, because the set of ghosted elements may potentially be updated during a mesh
8138  // changed event.
8139  for (const auto & mci : _notify_when_mesh_changes)
8140  mci->meshChanged();
8141 
8142  // Since the Mesh changed, update the PointLocator object used by DiracKernels.
8144 
8145  // Need to redo ghosting
8147 
8148  if (_displaced_problem)
8149  {
8150  _displaced_problem->meshChanged(contract_mesh, clean_refinement_flags);
8152  }
8153 
8155 
8158 
8159  // Just like we reinitialized our geometric search objects, we also need to reinitialize our
8160  // mortar meshes. Note that this needs to happen after DisplacedProblem::meshChanged because the
8161  // mortar mesh discretization will depend necessarily on the displaced mesh being re-displaced
8162  updateMortarMesh();
8163 
8164  // Nonlinear systems hold the mortar mesh functors. The domains of definition of the mortar
8165  // functors might have changed when the mesh changed.
8166  for (auto & nl_sys : _nl)
8167  nl_sys->reinitMortarFunctors();
8168 
8169  reinitBecauseOfGhostingOrNewGeomObjects(/*mortar_changed=*/true);
8170 
8171  // We need to create new storage for newly active elements, and copy
8172  // stateful properties from the old elements.
8175  {
8176  if (havePRefinement())
8178 
8179  // Prolong properties onto newly refined elements' children
8180  {
8182  /* refine = */ true, *this, _material_props, _bnd_material_props, _assembly);
8183  const auto & range = *_mesh.refinedElementRange();
8184  Threads::parallel_reduce(range, pmp);
8185 
8186  // Concurrent erasure from the shared hash map is not safe while we are reading from it in
8187  // ProjectMaterialProperties, so we handle erasure here. Moreover, erasure based on key is
8188  // not thread safe in and of itself because it is a read-write operation. Note that we do not
8189  // do the erasure for p-refinement because the coarse level element is the same as our active
8190  // refined level element
8191  if (!doingPRefinement())
8192  for (const auto & elem : range)
8193  {
8197  }
8198  }
8199 
8200  // Restrict properties onto newly coarsened elements
8201  {
8203  /* refine = */ false, *this, _material_props, _bnd_material_props, _assembly);
8204  const auto & range = *_mesh.coarsenedElementRange();
8205  Threads::parallel_reduce(range, pmp);
8206  // Note that we do not do the erasure for p-refinement because the coarse level element is the
8207  // same as our active refined level element
8208  if (!doingPRefinement())
8209  for (const auto & elem : range)
8210  {
8211  auto && coarsened_children = _mesh.coarsenedElementChildren(elem);
8212  for (auto && child : coarsened_children)
8213  {
8217  }
8218  }
8219  }
8220  }
8221 
8224 
8225  _has_jacobian = false; // we have to recompute jacobian when mesh changed
8226 
8227  // Now for backwards compatibility with user code that overrode the old no-arg meshChanged we must
8228  // call it here
8229  meshChanged();
8230 }
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool isFiniteVolumeInfoDirty() const
Definition: MooseMesh.h:1304
virtual void meshChanged()
Deprecated.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
MaterialPropertyStorage & _bnd_material_props
bool _has_jacobian
Indicates if the Jacobian was computed.
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void eraseProperty(const Elem *elem)
Remove the property storage and element pointer from internal data structures Use this when elements ...
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void cacheChangedLists()
Cache information about what elements were refined and coarsened in the previous step.
Definition: MooseMesh.C:913
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
ConstElemPointerRange * refinedElementRange() const
Return a range that is suitable for threaded execution over elements that were just refined...
Definition: MooseMesh.C:931
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
bool havePRefinement() const
Query whether p-refinement has been requested at any point during the simulation. ...
Definition: SubProblem.h:1009
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void reinit()
Completely redo all geometric search objects.
bool doingPRefinement() const
Definition: SubProblem.C:1361
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
const std::vector< const Elem * > & coarsenedElementChildren(const Elem *elem) const
Get the newly removed children element ids for an element that was just coarsened.
Definition: MooseMesh.C:943
virtual bool contract()=0
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
MaterialPropertyStorage & _neighbor_material_props
ConstElemPointerRange * coarsenedElementRange() const
Return a range that is suitable for threaded execution over elements that were just coarsened...
Definition: MooseMesh.C:937
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
MaterialPropertyStorage & _material_props
void updatePointLocator(const MooseMesh &mesh)
Called during FEProblemBase::meshChanged() to update the PointLocator object used by the DiracKernels...
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:882
void buildPRefinementAndCoarseningMaps(Assembly *assembly)
Definition: MooseMesh.C:2368
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4072

◆ meshChanged() [2/2]

virtual void FEProblemBase::meshChanged ( )
inlineprotectedvirtualinherited

Deprecated.

Users should switch to overriding the meshChanged which takes arguments

Definition at line 2519 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::initialAdaptMesh(), FEProblemBase::meshChanged(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateMeshXFEM().

2519 {}

◆ meshDisplaced()

void FEProblemBase::meshDisplaced ( )
protectedvirtualinherited

Update data after a mesh displaced.

Definition at line 8245 of file FEProblemBase.C.

Referenced by DisplacedProblem::updateMesh().

8246 {
8247  for (const auto & mdi : _notify_when_mesh_displaces)
8248  mdi->meshDisplaced();
8249 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ messagePrefix()

std::string MooseBase::messagePrefix ( const bool  hit_prefix = true) const
inlineinherited
Returns
A prefix to be used in messages that contain the input file location associated with this object (if any) and the name and type of the object.

Definition at line 252 of file MooseBase.h.

Referenced by MooseBase::callMooseError(), MooseBase::errorPrefix(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), and MooseBase::mooseWarning().

253  {
254  return messagePrefix(_pars, hit_prefix);
255  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseDeprecated()

template<typename... Args>
void MooseBase::mooseDeprecated ( Args &&...  args) const
inlineinherited

Definition at line 310 of file MooseBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::advanceMultiApps(), MultiApp::appProblem(), MooseMesh::buildSideList(), ChangeOverTimestepPostprocessor::ChangeOverTimestepPostprocessor(), AddVariableAction::determineType(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), MooseMesh::elem(), UserForcingFunction::f(), FaceFaceConstraint::FaceFaceConstraint(), FunctionDT::FunctionDT(), RandomICBase::generateRandom(), MooseMesh::getBoundariesToElems(), DataFileInterface::getDataFileName(), DataFileInterface::getDataFileNameByName(), Control::getExecuteOptions(), FEProblemBase::getNonlinearSystem(), MooseApp::getRecoverFileBase(), FEProblemBase::getUserObjects(), FEProblemBase::hasPostprocessor(), MooseApp::hasRecoverFileBase(), MatDiffusionBase< Real >::MatDiffusionBase(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), NodalScalarKernel::NodalScalarKernel(), MooseMesh::node(), FixedPointSolve::numPicardIts(), RelationshipManager::operator>=(), PercentChangePostprocessor::PercentChangePostprocessor(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Residual::Residual(), MooseMesh::setBoundaryToNormalMap(), Exodus::setOutputDimension(), MooseApp::setupOptions(), UserForcingFunction::UserForcingFunction(), and VariableResidual::VariableResidual().

311  {
313  _console, false, true, messagePrefix(true), std::forward<Args>(args)...);
314  }
void mooseDeprecatedStream(S &oss, const bool expired, const bool print_title, Args &&... args)
Definition: MooseError.h:275
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseDocumentedError()

template<typename... Args>
void MooseBase::mooseDocumentedError ( const std::string &  repo_name,
const unsigned int  issue_num,
Args &&...  args 
) const
inlineinherited

Definition at line 273 of file MooseBase.h.

Referenced by ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), DGLowerDKernel::DGLowerDKernel(), HFEMDirichletBC::HFEMDirichletBC(), and LowerDIntegratedBC::LowerDIntegratedBC().

276  {
278  repo_name, issue_num, argumentsToString(std::forward<Args>(args)...)),
279  /* with_prefix = */ true);
280  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102
std::string formatMooseDocumentedError(const std::string &repo_name, const unsigned int issue_num, const std::string &msg)
Formats a documented error.
Definition: MooseError.C:105

◆ mooseError()

template<typename... Args>
void MooseBase::mooseError ( Args &&...  args) const
inlineinherited

Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available.

Definition at line 267 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), PetscExternalPartitioner::_do_partition(), MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), InitProblemAction::act(), AddICAction::act(), AddBoundsVectorsAction::act(), AutoCheckpointAction::act(), CreateExecutionerAction::act(), CheckFVBCAction::act(), SetupMeshCompleteAction::act(), AddVectorPostprocessorAction::act(), AddMeshGeneratorAction::act(), CheckIntegrityAction::act(), AddFVICAction::act(), CreateProblemDefaultAction::act(), CreateProblemAction::act(), CombineComponentsMeshes::act(), SetupMeshAction::act(), SplitMeshAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), ChainControlSetupAction::act(), DeprecatedBlockAction::act(), SetupPredictorAction::act(), SetupTimeStepperAction::act(), CreateDisplacedProblemAction::act(), MaterialDerivativeTestAction::act(), SetAdaptivityOptionsAction::act(), MaterialOutputAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::adaptMesh(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), MooseVariableFV< Real >::adCurlSln(), MooseVariableFV< Real >::adCurlSlnNeighbor(), AddActionComponentAction::AddActionComponentAction(), addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), DiffusionCG::addBoundaryConditionsFromComponents(), PhysicsComponentInterface::addBoundaryConditionsFromComponents(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), DistributedRectilinearMeshGenerator::addElement(), MooseApp::addExecutor(), FEProblemBase::addFunction(), SubProblem::addFunctor(), FEProblemBase::addFVInitialCondition(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInitialCondition(), PhysicsComponentInterface::addInitialConditionsFromComponents(), FEProblemBase::addInterfaceKernel(), addKernel(), FEProblemBase::addKernel(), FEProblem::addLineSearch(), FEProblemBase::addLineSearch(), addMaterial(), MeshGenerator::addMeshSubgenerator(), addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), SubProblem::addPiecewiseByBlockLambdaFunctor(), DiracKernelBase::addPoint(), DistributedRectilinearMeshGenerator::addPoint(), DiracKernelBase::addPointWithValidId(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), MooseMesh::addQuadratureNode(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addScalarKernel(), AddVariableAction::addVariable(), FEProblemBase::addVectorPostprocessor(), SubProblem::addVectorTag(), MooseLinearVariableFV< Real >::adError(), ADInterfaceKernelTempl< T >::ADInterfaceKernelTempl(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), MooseVariableScalar::adUDot(), Output::advancedExecuteOn(), AdvectiveFluxAux::AdvectiveFluxAux(), MooseVariableBase::allDofIndices(), NEML2ModelExecutor::applyPredictor(), MooseApp::appNameToLibName(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayConstantIC::ArrayConstantIC(), ArrayDGKernel::ArrayDGKernel(), ArrayDiffusion::ArrayDiffusion(), ArrayFunctionIC::ArrayFunctionIC(), ArrayReaction::ArrayReaction(), ArrayTimeDerivative::ArrayTimeDerivative(), MooseApp::attachRelationshipManagers(), AddPeriodicBCAction::autoTranslationBoundaries(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), Axisymmetric2D3DSolutionFunction::Axisymmetric2D3DSolutionFunction(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), BoundingValueElementDamper::BoundingValueElementDamper(), BoundingValueNodalDamper::BoundingValueNodalDamper(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), MooseMesh::buildCoarseningMap(), MultiApp::buildComm(), DistributedRectilinearMeshGenerator::buildCube(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), TimedSubdomainModifier::buildFromParameters(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), MooseMesh::buildLowerDMesh(), TiledMesh::buildMesh(), GeneratedMesh::buildMesh(), SpiralAnnularMesh::buildMesh(), MeshGeneratorMesh::buildMesh(), ImageMeshGenerator::buildMesh3D(), ImageMesh::buildMesh3D(), MooseMesh::buildRefinementMap(), MaterialBase::buildRequiredMaterials(), MooseMesh::buildSideList(), MooseMesh::buildTypedMesh(), MooseMesh::cacheFaceInfoVariableOwnership(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), EigenExecutionerBase::chebyshev(), SubProblem::checkBlockMatProps(), PhysicsBase::checkBlockRestrictionIdentical(), ComponentBoundaryConditionInterface::checkBoundaryConditionsAllRequested(), SubProblem::checkBoundaryMatProps(), PhysicsBase::checkComponentType(), IterationCountConvergence::checkConvergence(), MooseMesh::checkCoordinateSystems(), DiffusionLHDGAssemblyHelper::checkCoupling(), FEProblemBase::checkDependMaterialsHelper(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), DefaultConvergenceBase::checkDuplicateSetSharedExecutionerParams(), MooseMesh::checkDuplicateSubdomainNames(), FEProblemBase::checkExceptionAndStopSolve(), NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), MeshGenerator::checkGetMesh(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Steady::checkIntegrity(), EigenExecutionerBase::checkIntegrity(), Eigenvalue::checkIntegrity(), DefaultMultiAppFixedPointConvergence::checkIterationType(), DefaultNonlinearConvergence::checkIterationType(), DefaultSteadyStateConvergence::checkIterationType(), ExplicitTimeIntegrator::checkLinearConvergence(), MooseApp::checkMetaDataIntegrity(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), Sampler::checkReinitStatus(), MooseApp::checkReservedCapability(), MultiAppGeneralFieldNearestLocationTransfer::checkRestrictionsForSource(), MultiAppPostprocessorToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppScalarToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppPostprocessorTransfer::checkSiblingsTransferSupported(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), MultiAppMFEMCopyTransfer::checkSiblingsTransferSupported(), MultiAppCopyTransfer::checkSiblingsTransferSupported(), MultiAppTransfer::checkSiblingsTransferSupported(), MaterialBase::checkStatefulSanity(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), FEProblemBase::checkUserObjects(), Moose::PetscSupport::checkUserProvidedPetscOption(), DomainUserObject::checkVariable(), MultiAppTransfer::checkVariable(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), LibmeshPartitioner::clone(), MooseMesh::clone(), CombinerGenerator::CombinerGenerator(), ComparisonPostprocessor::comparisonIsTrue(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), ElementH1ErrorFunctionAux::compute(), NodalPatchRecovery::compute(), FEProblemBase::computeBounds(), VariableCondensationPreconditioner::computeDInverseDiag(), CompositionDT::computeDT(), ArrayDGKernel::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighResidual(), InternalSideIntegralPostprocessor::computeFaceInfoIntegral(), SideIntegralPostprocessor::computeFaceInfoIntegral(), MooseVariableFieldBase::computeFaceValues(), TimeSequenceStepperBase::computeFailedDT(), IterationAdaptiveDT::computeFailedDT(), TimeStepper::computeFailedDT(), MooseMesh::computeFiniteVolumeCoords(), HistogramVectorPostprocessor::computeHistogram(), ArrayKernel::computeJacobian(), ArrayIntegratedBC::computeJacobian(), FVFluxKernel::computeJacobian(), NodalConstraint::computeJacobian(), FEProblemBase::computeJacobianTags(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), EigenProblem::computeMatricesTags(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), ArrayKernel::computeOffDiagJacobian(), ArrayIntegratedBC::computeOffDiagJacobian(), FVElementalKernel::computeOffDiagJacobian(), MortarScalarBase::computeOffDiagJacobianScalar(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), MaterialBase::computeProperties(), SideFVFluxBCIntegral::computeQpIntegral(), ScalarKernel::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), NodalEqualValueConstraint::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), NodeElemConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), ScalarKernel::computeQpResidual(), MassMatrix::computeQpResidual(), HDGKernel::computeQpResidual(), DiffusionLHDGDirichletBC::computeQpResidual(), NodalEqualValueConstraint::computeQpResidual(), DiffusionLHDGPrescribedGradientBC::computeQpResidual(), IPHDGBC::computeQpResidual(), KernelValue::computeQpResidual(), TorchScriptMaterial::computeQpValues(), InterfaceQpValueUserObject::computeRealValue(), ArrayKernel::computeResidual(), ArrayIntegratedBC::computeResidual(), FVFluxBC::computeResidual(), FVFluxKernel::computeResidual(), NodalConstraint::computeResidual(), FVFluxKernel::computeResidualAndJacobian(), ResidualObject::computeResidualAndJacobian(), FEProblemBase::computeResidualAndJacobian(), HDGKernel::computeResidualAndJacobianOnSide(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), KernelScalarBase::computeScalarOffDiagJacobian(), ADKernelScalarBase::computeScalarQpResidual(), ADMortarScalarBase::computeScalarQpResidual(), MortarScalarBase::computeScalarQpResidual(), KernelScalarBase::computeScalarQpResidual(), TimeStepper::computeStep(), ActuallyExplicitEuler::computeTimeDerivatives(), ExplicitEuler::computeTimeDerivatives(), ImplicitEuler::computeTimeDerivatives(), BDF2::computeTimeDerivatives(), NewmarkBeta::computeTimeDerivatives(), CentralDifference::computeTimeDerivatives(), CrankNicolson::computeTimeDerivatives(), LStableDirk2::computeTimeDerivatives(), LStableDirk3::computeTimeDerivatives(), ImplicitMidpoint::computeTimeDerivatives(), ExplicitTVDRK2::computeTimeDerivatives(), AStableDirk4::computeTimeDerivatives(), LStableDirk4::computeTimeDerivatives(), ExplicitRK2::computeTimeDerivatives(), MultiAppGeometricInterpolationTransfer::computeTransformation(), BuildArrayVariableAux::computeValue(), TagVectorArrayVariableAux::computeValue(), NearestNodeValueAux::computeValue(), ProjectionAux::computeValue(), PenetrationAux::computeValue(), ConcentricCircleMesh::ConcentricCircleMesh(), ConditionalEnableControl::ConditionalEnableControl(), TimeStepper::constrainStep(), LibtorchNeuralNetControl::controlNeuralNet(), TransientBase::convergedToSteadyState(), ParsedConvergence::convertRealToBool(), MooseApp::copyInputs(), CopyMeshPartitioner::CopyMeshPartitioner(), CoupledForceNodalKernel::CoupledForceNodalKernel(), MultiApp::createApp(), MooseApp::createExecutors(), AddVariableAction::createInitialConditionAction(), MooseApp::createRMFromTemplateAndInit(), Function::curl(), MooseVariableFV< Real >::curlPhi(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), SidesetInfoVectorPostprocessor::dataHelper(), ReporterTransferInterface::declareClone(), MeshGenerator::declareMeshProperty(), ReporterTransferInterface::declareVectorClone(), DefaultSteadyStateConvergence::DefaultSteadyStateConvergence(), FunctorRelationshipManager::delete_remote_elements(), MooseMesh::deleteRemoteElements(), BicubicSplineFunction::derivative(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), MooseMesh::detectPairedSidesets(), MooseApp::determineLibtorchDeviceType(), FEProblemBase::determineSolverSystem(), DGKernel::DGKernel(), MeshDiagnosticsGenerator::diagnosticsLog(), DistributedPositions::DistributedPositions(), Function::div(), FunctorBinnedValuesDivision::divisionIndex(), MooseVariableFV< Real >::divPhi(), FunctorRelationshipManager::dofmap_reinit(), EigenProblem::doFreeNonlinearPowerIterations(), FEProblemBase::duplicateVariableCheck(), MooseApp::dynamicAllRegistration(), MooseApp::dynamicAppRegistration(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), Eigenvalues::Eigenvalues(), ElementalVariableValue::ElementalVariableValue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementIntegerAux::ElementIntegerAux(), ElementMaterialSampler::ElementMaterialSampler(), ElementQualityAux::ElementQualityAux(), ElementSubdomainModifierBase::ElementSubdomainModifierBase(), ElementUOAux::ElementUOAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), DistributedRectilinearMeshGenerator::elemId(), ProjectionAux::elemOnNodeVariableIsDefinedOn(), EigenKernel::enabled(), MooseApp::errorCheck(), MooseMesh::errorIfDistributedMesh(), MultiAppTransfer::errorIfObjectExecutesOnTransferInSourceApp(), SideIntegralPostprocessor::errorNoFaceInfo(), SideIntegralFunctorPostprocessorTempl< false >::errorNoFaceInfo(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), FixedPointSolve::examineFixedPointConvergence(), MultiAppGeneralFieldTransfer::examineReceivedValueConflicts(), RealToBoolChainControl::execute(), RestartableDataReporter::execute(), DiscreteElementUserObject::execute(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppScalarToAuxScalarTransfer::execute(), NodalValueSampler::execute(), PositionsFunctorValueSampler::execute(), MultiAppPostprocessorTransfer::execute(), MultiAppPostprocessorInterpolationTransfer::execute(), ElementQualityChecker::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), FindValueOnLine::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppMFEMCopyTransfer::execute(), MultiAppCopyTransfer::execute(), MultiAppUserObjectTransfer::execute(), InterfaceQpUserObjectBase::execute(), MultiAppGeometricInterpolationTransfer::execute(), WebServerControl::execute(), TransientBase::execute(), LeastSquaresFit::execute(), VectorPostprocessorComparison::execute(), LeastSquaresFitHistory::execute(), Eigenvalue::execute(), TimeExtremeValue::execute(), DomainUserObject::execute(), FEProblemBase::execute(), FEProblemBase::executeControls(), MooseApp::executeExecutioner(), MultiAppVectorPostprocessorTransfer::executeFromMultiapp(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), Exodus::Exodus(), ExplicitSSPRungeKutta::ExplicitSSPRungeKutta(), MultiAppGeneralFieldTransfer::extractOutgoingPoints(), NEML2ModelExecutor::extractOutputs(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), NEML2ModelExecutor::fillInputs(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), VerifyNodalUniqueID::finalize(), VerifyElementUniqueID::finalize(), DiscreteElementUserObject::finalize(), ElementQualityChecker::finalize(), MemoryUsage::finalize(), PointSamplerBase::finalize(), DiscreteVariableResidualNorm::finalize(), NearestPointAverage::finalize(), NearestPointIntegralVariablePostprocessor::finalize(), MooseApp::finalizeRestore(), Transfer::find_sys(), BreakMeshByBlockGeneratorBase::findFreeBoundaryId(), FunctionDT::FunctionDT(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FunctionScalarAux::FunctionScalarAux(), FunctionScalarIC::FunctionScalarIC(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVMassMatrix::FVMassMatrix(), FVMatAdvection::FVMatAdvection(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), GapValueAux::GapValueAux(), WorkBalance::gather(), Boundary2DDelaunayGenerator::General2DDelaunay(), ElementOrderConversionGenerator::generate(), RenameBoundaryGenerator::generate(), SideSetsFromNormalsGenerator::generate(), SmoothMeshGenerator::generate(), SubdomainPerElementGenerator::generate(), TiledMeshGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), MoveNodeGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), SideSetsFromPointsGenerator::generate(), StitchMeshGenerator::generate(), GeneratedMeshGenerator::generate(), FlipSidesetGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), MeshDiagnosticsGenerator::generate(), MeshRepairGenerator::generate(), SideSetsFromBoundingBoxGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), MeshCollectionGenerator::generate(), AdvancedExtruderGenerator::generate(), AllSideSetsByNormalsGenerator::generate(), CombinerGenerator::generate(), MeshExtruderGenerator::generate(), ParsedGenerateNodeset::generate(), SpiralAnnularMeshGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), CutMeshByLevelSetGeneratorBase::generate(), SubdomainBoundingBoxGenerator::generate(), PatternedMeshGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), BoundingBoxNodeSetGenerator::generate(), MeshGenerator::generateData(), GeneratedMesh::GeneratedMesh(), GeneratedMeshGenerator::GeneratedMeshGenerator(), MeshGenerator::generateInternal(), CircularBoundaryCorrectionGenerator::generateRadialCorrectionFactor(), RandomICBase::generateRandom(), GenericConstantMaterialTempl< is_ad >::GenericConstantMaterialTempl(), GenericConstantVectorMaterialTempl< is_ad >::GenericConstantVectorMaterialTempl(), GenericFunctionMaterialTempl< is_ad >::GenericFunctionMaterialTempl(), GenericFunctionVectorMaterialTempl< is_ad >::GenericFunctionVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), DisplacedProblem::getActualFieldVariable(), FEProblemBase::getActualFieldVariable(), DisplacedProblem::getArrayVariable(), FEProblemBase::getArrayVariable(), MooseMesh::getAxisymmetricRadialCoord(), MFEMFESpace::getBasis(), NEML2BatchIndexGenerator::getBatchIndex(), MooseMesh::getBlockConnectedBlocks(), VariableOldValueBounds::getBound(), MooseMesh::getBoundaryID(), MultiApp::getBoundingBox(), ChainControl::getChainControlDataByName(), MooseMesh::getCoarseningMap(), MultiApp::getCommandLineArgs(), MooseVariableBase::getContinuity(), Control::getControllableParameterByName(), FEProblemBase::getConvergence(), MooseMesh::getCoordSystem(), PhysicsBase::getCoupledPhysics(), PropertyReadFile::getData(), DataFileInterface::getDataFilePath(), TransfiniteMeshGenerator::getDiscreteEdge(), FEProblemBase::getDistribution(), MooseVariableBase::getDofIndices(), VariableCondensationPreconditioner::getDofToCondense(), TransfiniteMeshGenerator::getEdge(), GhostingUserObject::getElementalValue(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), PropertyReadFile::getElementData(), MooseMesh::getElementIDIndex(), Material::getElementIDNeighbor(), Material::getElementIDNeighborByName(), MooseMesh::getElemIDMapping(), MooseMesh::getElemIDsOnBlocks(), MultiAppFieldTransfer::getEquationSystem(), MultiApp::getExecutioner(), MooseApp::getExecutor(), MFEMVectorFESpace::getFECName(), MultiAppTransfer::getFromMultiApp(), MultiAppTransfer::getFromMultiAppInfo(), FEProblemBase::getFunction(), SubProblem::getFunctor(), FEProblemBase::getFVMatsAndDependencies(), MooseMesh::getGeneralAxisymmetricCoordAxis(), DistributedRectilinearMeshGenerator::getGhostNeighbors(), DistributedRectilinearMeshGenerator::getIndices(), FEProblemBase::getLinearConvergenceNames(), SolutionUserObjectBase::getLocalVarIndex(), Material::getMaterialByName(), FEProblemBase::getMaterialData(), SubProblem::getMatrixTagID(), GeneratedMesh::getMaxInDimension(), AnnularMesh::getMaxInDimension(), FEProblemBase::getMaxQps(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), AnnularMesh::getMinInDimension(), GeneratedMesh::getMinInDimension(), MultiAppTransfer::getMultiApp(), FEProblemBase::getMultiAppFixedPointConvergenceName(), DistributedRectilinearMeshGenerator::getNeighbors(), Times::getNextTime(), MooseMesh::getNodeBlockIds(), PropertyReadFile::getNodeData(), MooseMesh::getNodeList(), FEProblemBase::getNonlinearConvergenceNames(), EigenProblem::getNonlinearEigenSystem(), FEProblemBase::getNonlinearSystem(), NEML2ModelExecutor::getOutput(), NEML2ModelExecutor::getOutputDerivative(), NEML2ModelExecutor::getOutputParameterDerivative(), MooseMesh::getPairedBoundaryMapping(), MaterialOutputAction::getParams(), ImageMeshGenerator::GetPixelInfo(), ImageMesh::GetPixelInfo(), PlaneIDMeshGenerator::getPlaneID(), Positions::getPosition(), Positions::getPositions(), FEProblemBase::getPositionsObject(), Positions::getPositionsVector2D(), Positions::getPositionsVector3D(), Positions::getPositionsVector4D(), PostprocessorInterface::getPostprocessorValueByNameInternal(), Times::getPreviousTime(), ComponentMaterialPropertyInterface::getPropertyValue(), InterfaceQpUserObjectBase::getQpValue(), MooseMesh::getRefinementMap(), MooseBase::getRenamedParam(), ReporterInterface::getReporterContextBaseByName(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), MooseApp::getRMClone(), FEProblemBase::getSampler(), WebServerControl::getScalarJSONValue(), DisplacedProblem::getScalarVariable(), FEProblemBase::getScalarVariable(), MooseObject::getSharedPtr(), InterfaceQpUserObjectBase::getSideAverageValue(), PhysicsBase::getSolverSystem(), DisplacedProblem::getStandardVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSteadyStateConvergenceName(), MooseMesh::getSubdomainBoundaryIds(), TimedSubdomainModifier::getSubdomainIDAndCheck(), DisplacedProblem::getSystem(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), Times::getTimeAtIndex(), FEProblemBase::getTimeFromStateArg(), TransientBase::getTimeIntegratorNames(), Times::getTimes(), MultiAppTransfer::getToMultiApp(), MultiAppTransfer::getToMultiAppInfo(), MooseMesh::getUniqueCoordSystem(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectName(), NumRelationshipManagers::getValue(), VectorPostprocessorComponent::getValue(), Residual::getValue(), SideAverageValue::getValue(), JSONFileReader::getValue(), LineValueSampler::getValue(), FindValueOnLine::getValueAtPoint(), SubProblem::getVariableHelper(), JSONFileReader::getVector(), VectorPostprocessorInterface::getVectorPostprocessorName(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), DisplacedProblem::getVectorVariable(), FEProblemBase::getVectorVariable(), GhostingFromUOAux::GhostingFromUOAux(), MultiApp::globalAppToLocal(), MooseParsedVectorFunction::gradient(), Function::gradient(), FEProblemBase::handleException(), Terminator::handleMessage(), MooseVariableBase::hasDoFsOnNodes(), PostprocessorInterface::hasPostprocessor(), PostprocessorInterface::hasPostprocessorByName(), ReporterInterface::hasReporterValue(), ReporterInterface::hasReporterValueByName(), VectorPostprocessorInterface::hasVectorPostprocessor(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), HDGKernel::HDGKernel(), TransientBase::incrementStepOrReject(), FixedPointIterationAdaptiveDT::init(), CrankNicolson::init(), CSVTimeSequenceStepper::init(), EigenExecutionerBase::init(), ExplicitTimeIntegrator::init(), TransientBase::init(), FEProblem::init(), AddAuxVariableAction::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AddVariableAction::init(), MooseMesh::init(), Sampler::init(), FEProblemBase::init(), MultiApp::init(), FEProblemBase::initialAdaptMesh(), NestedDivision::initialize(), DistributedPositions::initialize(), ReporterPositions::initialize(), TransformedPositions::initialize(), ElementGroupCentroidPositions::initialize(), FunctorPositions::initialize(), ReporterTimes::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), ParsedConvergence::initializeConstantSymbol(), PhysicsBase::initializePhysics(), SteffensenSolve::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), ChainControlDataPostprocessor::initialSetup(), PiecewiseLinearBase::initialSetup(), IntegralPreservingFunctionIC::initialSetup(), MultiAppConservativeTransfer::initialSetup(), FullSolveMultiApp::initialSetup(), PiecewiseLinear::initialSetup(), CoarsenedPiecewiseLinear::initialSetup(), LinearFVDiffusion::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), SolutionScalarAux::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), LinearFVAdvection::initialSetup(), SolutionAux::initialSetup(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), NodalVariableValue::initialSetup(), Axisymmetric2D3DSolutionFunction::initialSetup(), Exodus::initialSetup(), CSV::initialSetup(), MooseParsedFunction::initialSetup(), SolutionUserObjectBase::initialSetup(), FEProblemBase::initialSetup(), SubProblem::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initShowHideLists(), Function::integral(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), InterfaceTimeKernel::InterfaceTimeKernel(), InternalSideIndicatorBase::InternalSideIndicatorBase(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), EigenExecutionerBase::inversePowerIteration(), InversePowerMethod::InversePowerMethod(), Sampler::isAdaptiveSamplingCompleted(), MooseMesh::isBoundaryFullyExternalToSubdomains(), MooseVariableBase::isNodal(), IterationAdaptiveDT::IterationAdaptiveDT(), IterationCountConvergence::IterationCountConvergence(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), MooseApp::libNameToAppName(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationPostprocessor::LinearCombinationPostprocessor(), LinearNodalConstraint::LinearNodalConstraint(), LineMaterialSamplerBase< Real >::LineMaterialSamplerBase(), LineSearch::lineSearch(), LineValueSampler::LineValueSampler(), MooseApp::loadLibraryAndDependencies(), MultiAppGeneralFieldTransfer::locatePointReceivers(), LowerBoundNodalKernel::LowerBoundNodalKernel(), MooseLinearVariableFV< Real >::lowerDError(), PNGOutput::makePNG(), ReporterPointMarker::markerSetup(), SubProblem::markFamilyPRefinement(), MassMatrix::MassMatrix(), Material::Material(), MaterialRealTensorValueAuxTempl< is_ad >::MaterialRealTensorValueAuxTempl(), MaterialRealVectorValueAuxTempl< T, is_ad, is_functor >::MaterialRealVectorValueAuxTempl(), MaterialStdVectorRealGradientAux::MaterialStdVectorRealGradientAux(), Distribution::median(), FunctorRelationshipManager::mesh_reinit(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshExtruderGenerator::MeshExtruderGenerator(), MeshRepairGenerator::MeshRepairGenerator(), SetupMeshAction::modifyParamsForUseSplit(), MeshMetaDataInterface::mooseErrorInternal(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), MooseMesh::MooseMesh(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableConstMonomial::MooseVariableConstMonomial(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NearestNodeDistanceAux::NearestNodeDistanceAux(), FEProblemBase::needsPreviousNewtonIteration(), NewmarkBeta::NewmarkBeta(), NodalConstraint::NodalConstraint(), MooseVariableFV< Real >::nodalDofIndex(), MooseVariableFV< Real >::nodalDofIndexNeighbor(), MooseLinearVariableFV< Real >::nodalError(), MooseVariableFV< Real >::nodalMatrixTagValue(), NodalPatchRecoveryBase::nodalPatchRecovery(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalScalarKernel::NodalScalarKernel(), MooseVariableFV< Real >::nodalValueArray(), MooseVariableFV< Real >::nodalValueOldArray(), MooseVariableFV< Real >::nodalValueOlderArray(), NodalVariableValue::NodalVariableValue(), MooseVariableFV< Real >::nodalVectorTagValue(), DistributedRectilinearMeshGenerator::nodeId(), MooseVariableFV< Real >::numberOfDofsNeighbor(), NumDOFs::NumDOFs(), NumFailedTimeSteps::NumFailedTimeSteps(), DistributedRectilinearMeshGenerator::numNeighbors(), NumNonlinearIterations::NumNonlinearIterations(), NumVars::NumVars(), Output::onInterval(), FunctorRelationshipManager::operator()(), RelationshipManager::operator==(), ActionComponent::outerSurfaceArea(), ActionComponent::outerSurfaceBoundaries(), XDA::output(), SolutionHistory::output(), Exodus::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), AdvancedOutput::outputInput(), MooseApp::outputMachineReadableData(), AdvancedOutput::outputNodalVariables(), AdvancedOutput::outputPostprocessors(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), Exodus::outputSetup(), AdvancedOutput::outputSystemInformation(), Console::outputVectorPostprocessors(), AdvancedOutput::outputVectorPostprocessors(), DistributedRectilinearMeshGenerator::paritionSquarely(), PiecewiseBilinear::parse(), ParsedConvergence::ParsedConvergence(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), MultiAppConservativeTransfer::performAdjustment(), ExplicitTimeIntegrator::performExplicitSolve(), PetscExternalPartitioner::PetscExternalPartitioner(), MooseVariableFV< Real >::phiLowerSize(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseMulticonstant::PiecewiseMulticonstant(), PiecewiseMultiInterpolation::PiecewiseMultiInterpolation(), PiecewiseTabularBase::PiecewiseTabularBase(), CutMeshByLevelSetGeneratorBase::pointPairLevelSetInterception(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessorByName(), LStableDirk2::postResidual(), LStableDirk3::postResidual(), ImplicitMidpoint::postResidual(), ExplicitTVDRK2::postResidual(), AStableDirk4::postResidual(), LStableDirk4::postResidual(), ExplicitRK2::postResidual(), EigenProblem::postScaleEigenVector(), VariableCondensationPreconditioner::preallocateCondensedJacobian(), ADKernelValueTempl< T >::precomputeQpJacobian(), Predictor::Predictor(), TransientBase::preExecute(), MooseMesh::prepare(), MooseMesh::prepared(), FixedPointSolve::printFixedPointConvergenceReason(), PseudoTimestep::PseudoTimestep(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readExodusII(), SolutionUserObjectBase::readXda(), CoarsenBlockGenerator::recursiveCoarsen(), MooseApp::recursivelyCreateExecutors(), FunctorRelationshipManager::redistribute(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseApp::registerRestartableData(), MooseApp::registerRestartableNameWithFilter(), Sampler::reinit(), RelativeSolutionDifferenceNorm::RelativeSolutionDifferenceNorm(), MFEMTransient::relativeSolutionDifferenceNorm(), MooseApp::removeRelationshipManager(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::restore(), RinglebMesh::RinglebMesh(), RinglebMeshGenerator::RinglebMeshGenerator(), MooseApp::run(), MooseApp::runInputs(), PiecewiseMultiInterpolation::sample(), ScalarComponentIC::ScalarComponentIC(), MortarScalarBase::scalarVariable(), DistributedRectilinearMeshGenerator::scaleNodalPositions(), BicubicSplineFunction::secondDerivative(), MooseVariableFV< Real >::secondPhi(), MooseVariableFV< Real >::secondPhiFace(), MooseVariableFV< Real >::secondPhiFaceNeighbor(), MooseVariableFV< Real >::secondPhiNeighbor(), FunctorRelationshipManager::set_mesh(), MooseVariableBase::setActiveTags(), DistributedRectilinearMeshGenerator::setBoundaryNames(), MooseMesh::setCoordSystem(), FEProblemBase::setCoupling(), PiecewiseBase::setData(), FileOutput::setFileBaseInternal(), MooseMesh::setGeneralAxisymmetricCoordAxes(), FEProblemSolve::setInnerSolve(), MeshGenerator::setMeshProperty(), MooseApp::setMFEMDevice(), FVPointValueConstraint::setMyElem(), FEProblemBase::setNonlocalCouplingMatrix(), Sampler::setNumberOfCols(), Sampler::setNumberOfRandomSeeds(), Sampler::setNumberOfRows(), Exodus::setOutputDimensionInExodusWriter(), AddPeriodicBCAction::setPeriodicVars(), MFEMSolverBase::setPreconditioner(), MultiAppGeneralFieldTransfer::setSolutionVectorValues(), Split::setup(), TransientMultiApp::setupApp(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), TimeSequenceStepperBase::setupSequence(), TransientBase::setupTimeIntegrator(), TimePeriodBase::setupTimes(), IntegratedBCBase::shouldApply(), PhysicsBase::shouldCreateIC(), PhysicsBase::shouldCreateTimeDerivative(), PhysicsBase::shouldCreateVariable(), SideAdvectiveFluxIntegralTempl< is_ad >::SideAdvectiveFluxIntegralTempl(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsFromNormalsGenerator::SideSetsFromNormalsGenerator(), SideSetsFromPointsGenerator::SideSetsFromPointsGenerator(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), MooseVariableBase::sizeMatrixTagData(), SolutionTimeAdaptiveDT::SolutionTimeAdaptiveDT(), SolutionUserObjectBase::SolutionUserObjectBase(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TimeIntegrator::solve(), FEProblemBase::solverSysNum(), FullSolveMultiApp::solveStep(), SpatialAverageBase::SpatialAverageBase(), UserObject::spatialPoints(), NearestPointAverage::spatialValue(), NearestPointIntegralVariablePostprocessor::spatialValue(), MeshDivisionFunctorReductionVectorPostprocessor::spatialValue(), UserObject::spatialValue(), SpiralAnnularMesh::SpiralAnnularMesh(), SpiralAnnularMeshGenerator::SpiralAnnularMeshGenerator(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), WebServerControl::stringifyJSONType(), MultiAppGeometricInterpolationTransfer::subdomainIDsNode(), Constraint::subdomainSetup(), NodalUserObject::subdomainSetup(), GeneralUserObject::subdomainSetup(), MaterialBase::subdomainSetup(), FEProblemBase::swapBackMaterialsNeighbor(), DisplacedProblem::systemBaseLinear(), Console::systemInfoFlags(), FEProblemBase::systemNumForVariable(), TerminateChainControl::terminate(), Terminator::Terminator(), CutMeshByLevelSetGeneratorBase::tet4ElemCutter(), ThreadedGeneralUserObject::threadJoin(), DiscreteElementUserObject::threadJoin(), GeneralUserObject::threadJoin(), Function::timeDerivative(), TimedSubdomainModifier::TimedSubdomainModifier(), TimeExtremeValue::TimeExtremeValue(), Function::timeIntegral(), MooseLinearVariableFV< Real >::timeIntegratorError(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriodBase::TimePeriodBase(), VectorPostprocessorVisualizationAux::timestepSetup(), WebServerControl::toMiniJson(), MultiAppDofCopyTransfer::transfer(), MultiAppMFEMCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransformedPositions::TransformedPositions(), FEProblemBase::trustUserCouplingMatrix(), MooseVariableScalar::uDot(), MooseVariableScalar::uDotDot(), MooseVariableScalar::uDotDotOld(), FEProblemBase::uDotDotOldRequested(), MooseVariableScalar::uDotOld(), FEProblemBase::uDotOldRequested(), MooseBase::uniqueName(), Positions::unrollMultiDPositions(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), Checkpoint::updateCheckpointFiles(), EqualValueBoundaryConstraint::updateConstrainedNodes(), SolutionUserObjectBase::updateExodusBracketingTimeIndices(), FEProblemBase::updateMaxQps(), MFEMHypreAMS::updateSolver(), MFEMHypreADS::updateSolver(), MFEMHyprePCG::updateSolver(), MFEMHypreBoomerAMG::updateSolver(), MFEMHypreFGMRES::updateSolver(), MFEMOperatorJacobiSmoother::updateSolver(), MFEMCGSolver::updateSolver(), MFEMGMRESSolver::updateSolver(), MFEMHypreGMRES::updateSolver(), MFEMSuperLU::updateSolver(), UpperBoundNodalKernel::UpperBoundNodalKernel(), NearestPointAverage::userObjectValue(), NearestPointIntegralVariablePostprocessor::userObjectValue(), BoundingBoxIC::value(), PiecewiseConstantFromCSV::value(), IntegralPreservingFunctionIC::value(), Axisymmetric2D3DSolutionFunction::value(), Function::value(), ValueRangeMarker::ValueRangeMarker(), ValueThresholdMarker::ValueThresholdMarker(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VariableTimeIntegrationAux::VariableTimeIntegrationAux(), AddVariableAction::variableType(), VariableValueVolumeHistogram::VariableValueVolumeHistogram(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), VectorNodalBC::VectorNodalBC(), SubProblem::vectorTagName(), SubProblem::vectorTagType(), MooseParsedGradFunction::vectorValue(), MooseParsedFunction::vectorValue(), Function::vectorValue(), SubProblem::verifyVectorTags(), ActionComponent::volume(), VTKOutput::VTKOutput(), WebServerControl::WebServerControl(), MooseApp::writeRestartableMetaData(), DOFMapOutput::writeStreamToFile(), and Console::writeStreamToFile().

268  {
269  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ true);
270  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102

◆ mooseErrorNonPrefixed()

template<typename... Args>
void MooseBase::mooseErrorNonPrefixed ( Args &&...  args) const
inlineinherited

Emits an error without the prefixing included in mooseError().

Definition at line 286 of file MooseBase.h.

287  {
288  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ false);
289  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102

◆ mooseInfo()

template<typename... Args>
void MooseBase::mooseInfo ( Args &&...  args) const
inlineinherited

Definition at line 317 of file MooseBase.h.

Referenced by SetupRecoverFileBaseAction::act(), AStableDirk4::AStableDirk4(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MultiAppGeneralFieldNearestLocationTransfer::evaluateInterpValuesNearestNode(), PIDTransientControl::execute(), Executioner::Executioner(), ExplicitRK2::ExplicitRK2(), ExplicitTVDRK2::ExplicitTVDRK2(), DataFileInterface::getDataFilePath(), MFEMScalarFESpace::getFECName(), MultiAppTransfer::getPointInTargetAppFrame(), ImplicitMidpoint::ImplicitMidpoint(), ParsedDownSelectionPositions::initialize(), PropertyReadFile::initialize(), MultiAppGeneralFieldTransfer::initialSetup(), InversePowerMethod::InversePowerMethod(), LStableDirk2::LStableDirk2(), LStableDirk3::LStableDirk3(), LStableDirk4::LStableDirk4(), PNGOutput::makeMeshFunc(), NonlinearEigen::NonlinearEigen(), SolutionInvalidityOutput::output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramInfo(), ProjectionAux::ProjectionAux(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MFEMDataCollection::registerFields(), FEProblemBase::setRestartFile(), MooseApp::setupOptions(), SolutionUserObjectBase::SolutionUserObjectBase(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TransientBase::takeStep(), and TransientBase::TransientBase().

318  {
319  moose::internal::mooseInfoStream(_console, messagePrefix(true), std::forward<Args>(args)...);
320  }
void mooseInfoStream(S &oss, Args &&... args)
Definition: MooseError.h:268
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseWarning()

template<typename... Args>
void MooseBase::mooseWarning ( Args &&...  args) const
inlineinherited

Emits a warning prefixed with object name and type.

Definition at line 295 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), AddKernelAction::act(), MeshOnlyAction::act(), AddFunctionAction::act(), MaterialOutputAction::act(), CommonOutputAction::act(), addFunction(), MooseMesh::addPeriodicVariable(), DiracKernelBase::addPoint(), BoundaryMarker::BoundaryMarker(), DistributedRectilinearMeshGenerator::buildCube(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), CartesianMeshGenerator::CartesianMeshGenerator(), CheckOutputAction::checkConsoleOutput(), MultiAppTransfer::checkMultiAppExecuteOn(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), SampledOutput::cloneMesh(), MultiAppGeneralFieldTransfer::closestToPosition(), VariableValueElementSubdomainModifier::computeSubdomainID(), GapValueAux::computeValue(), MultiApp::createApp(), DebugResidualAux::DebugResidualAux(), MeshDiagnosticsGenerator::diagnosticsLog(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), ElementMaterialSampler::ElementMaterialSampler(), Postprocessor::evaluateDotWarning(), MeshDivisionFunctorReductionVectorPostprocessor::execute(), ElementQualityChecker::finalize(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), SubdomainPerElementGenerator::generate(), StitchMeshGenerator::generate(), ParsedGenerateSideset::generate(), MultiAppTransfer::getAppInfo(), FunctorBinnedValuesDivision::getBinIndex(), DataFileInterface::getDataFilePath(), PointSamplerBase::getLocalElemContainingPoint(), FEProblemBase::getMaterial(), LineValueSampler::getValue(), Terminator::handleMessage(), IndicatorMarker::IndicatorMarker(), CartesianGridDivision::initialize(), CylindricalGridDivision::initialize(), SphericalGridDivision::initialize(), ElementGroupCentroidPositions::initialize(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), BoundsBase::initialSetup(), ReferenceResidualConvergence::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), LeastSquaresFit::LeastSquaresFit(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseApp::loadLibraryAndDependencies(), FEProblemBase::mesh(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), NewmarkBeta::NewmarkBeta(), NodalPatchRecovery::NodalPatchRecovery(), NonlocalIntegratedBC::NonlocalIntegratedBC(), NonlocalKernel::NonlocalKernel(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramWarning(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), Executioner::problem(), PropertyReadFile::readData(), TestSourceStepper::rejectStep(), PhysicsBase::reportPotentiallyMissedParameters(), MaterialBase::resetQpProperties(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), MooseMesh::setCoordSystem(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), FEProblemBase::sizeZeroes(), TransientMultiApp::solveStep(), Tecplot::Tecplot(), TimeDerivativeAux::TimeDerivativeAux(), Checkpoint::updateCheckpointFiles(), SampledOutput::updateSample(), PiecewiseConstantFromCSV::value(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

296  {
297  moose::internal::mooseWarningStream(_console, messagePrefix(true), std::forward<Args>(args)...);
298  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:220
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseWarningNonPrefixed()

template<typename... Args>
void MooseBase::mooseWarningNonPrefixed ( Args &&...  args) const
inlineinherited

Emits a warning without the prefixing included in mooseWarning().

Definition at line 304 of file MooseBase.h.

305  {
306  moose::internal::mooseWarningStream(_console, std::forward<Args>(args)...);
307  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:220
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ mortarData() [1/2]

const MortarData& FEProblemBase::mortarData ( ) const
inlineinherited

Returns the mortar data object.

Definition at line 2208 of file FEProblemBase.h.

2208 { return _mortar_data; }
MortarData _mortar_data

◆ mortarData() [2/2]

MortarData& FEProblemBase::mortarData ( )
inlineinherited

Definition at line 2209 of file FEProblemBase.h.

2209 { return _mortar_data; }
MortarData _mortar_data

◆ name()

const std::string& MooseBase::name ( ) const
inlineinherited

Get the name of the class.

Returns
The name of the class

Definition at line 99 of file MooseBase.h.

Referenced by AddElementalFieldAction::act(), CopyNodalVarsAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), DeprecatedBlockAction::act(), SetupTimeIntegratorAction::act(), AddActionComponentAction::act(), SetupResidualDebugAction::act(), DisplayGhostingAction::act(), MaterialOutputAction::act(), AddPeriodicBCAction::act(), FEProblemBase::addAnyRedistributers(), Executioner::addAttributeReporter(), addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), DisplacedProblem::addAuxVariable(), addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), PhysicsComponentInterface::addComponent(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), Registry::addDataFilePath(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), addFESpace(), addFunction(), FEProblemBase::addFunction(), SubProblem::addFunctor(), addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FunctorMaterial::addFunctorProperty(), FunctorMaterial::addFunctorPropertyByBlocks(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), addInitialCondition(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), DiffusionLHDGKernel::additionalROVariables(), IPHDGAssemblyHelper::additionalROVariables(), addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), ComponentMaterialPropertyInterface::addMaterials(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), ComponentMeshTransformHelper::addMeshGenerators(), CylinderComponent::addMeshGenerators(), MeshGenerator::addMeshSubgenerator(), addMFEMPreconditioner(), addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), InitialConditionWarehouse::addObject(), FEProblemBase::addObject(), ComponentPhysicsInterface::addPhysics(), SubProblem::addPiecewiseByBlockLambdaFunctor(), addPostprocessor(), FEProblemBase::addPostprocessor(), InitialConditionBase::addPostprocessorDependencyHelper(), UserObject::addPostprocessorDependencyHelper(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), InitialConditionBase::addUserObjectDependencyHelper(), UserObject::addUserObjectDependencyHelper(), AuxKernelTempl< Real >::addUserObjectDependencyHelper(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), UserObject::addVectorPostprocessorDependencyHelper(), MooseLinearVariableFV< Real >::adError(), Output::advancedExecuteOn(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), MooseVariableBase::allDofIndices(), MooseApp::appBinaryName(), MooseApp::appendMeshGenerator(), Registry::appNameFromAppPath(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayDGKernel::ArrayDGKernel(), ArrayParsedAux::ArrayParsedAux(), PhysicsBase::assignBlocks(), AStableDirk4::AStableDirk4(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), MultiApp::backup(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), MFEMFESpace::buildFEC(), PiecewiseTabularBase::buildFromFile(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), MooseBase::callMooseError(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), PhysicsBase::checkBlockRestrictionIdentical(), PhysicsBase::checkComponentType(), ParsedConvergence::checkConvergence(), DefaultNonlinearConvergence::checkConvergence(), FEProblemBase::checkDependMaterialsHelper(), SamplerBase::checkForStandardFieldVariableType(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Material::checkMaterialProperty(), MooseApp::checkMetaDataIntegrity(), Damper::checkMinDamping(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), Checkpoint::checkpointInfo(), DomainUserObject::checkVariable(), BlockRestrictable::checkVariable(), Coupleable::checkWritableVar(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), MaterialBase::computeProperties(), FEProblemBase::computeUserObjectByName(), VectorPostprocessorVisualizationAux::computeValue(), MooseBase::connectControllableParams(), ConstantPostprocessor::ConstantPostprocessor(), Coupleable::coupledName(), CommonOutputAction::create(), MultiApp::createApp(), MooseApp::createExecutors(), MeshGeneratorSystem::createMeshGeneratorOrder(), MooseApp::createRecoverablePerfGraph(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), DebugResidualAux::DebugResidualAux(), MaterialBase::declareADProperty(), MeshGenerator::declareMeshesForSubByName(), MeshGenerator::declareNullMeshName(), MaterialBase::declareProperty(), DOFMapOutput::demangle(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), Registry::determineDataFilePath(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DomainUserObject::DomainUserObject(), DumpObjectsProblem::dumpObjectHelper(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementMaterialSampler::ElementMaterialSampler(), ElementValueSampler::ElementValueSampler(), EigenKernel::enabled(), MooseMesh::errorIfDistributedMesh(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), SideValueSampler::execute(), RestartableDataReporter::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), WebServerControl::execute(), MultiAppGeneralFieldTransfer::execute(), ActionWarehouse::executeActionsWithAction(), Exodus::Exodus(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), PointSamplerBase::finalize(), ChainControl::fullControlDataName(), FunctionArrayAux::FunctionArrayAux(), FunctionDT::FunctionDT(), FunctionIC::functionName(), FVFunctionIC::functionName(), FunctorPositions::FunctorPositions(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), GapValueAux::GapValueAux(), MooseServer::gatherDocumentSymbols(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BreakMeshByBlockGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), StitchBoundaryMeshGenerator::generate(), StitchMeshGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), MeshGenerator::generateInternal(), InterfaceMaterial::getADMaterialProperty(), Material::getADMaterialProperty(), MultiAppTransfer::getAppInfo(), MultiApp::getBoundingBox(), MooseBase::getCheckedPointerParam(), MooseApp::getCheckpointDirectories(), Control::getControllableParameterByName(), Control::getControllableValue(), Control::getControllableValueByName(), FEProblemBase::getConvergence(), Registry::getDataFilePath(), UserObject::getDependObjects(), DistributionInterface::getDistribution(), FEProblemBase::getDistribution(), DistributionInterface::getDistributionByName(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), MultiApp::getExecutioner(), MooseApp::getExecutor(), FEProblemBase::getExecutor(), OutputWarehouse::getFileNumbers(), FEProblemBase::getFunction(), SubProblem::getFunctor(), NodalPatchRecovery::getGenericMaterialProperty(), InterfaceMaterial::getGenericMaterialProperty(), Material::getGenericMaterialProperty(), AuxKernelTempl< Real >::getGenericMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialPropertyByName(), Material::getGenericOptionalMaterialProperty(), MaterialBase::getGenericZeroMaterialProperty(), getGridFunction(), SolutionUserObjectBase::getLocalVarIndex(), Marker::getMarkerValue(), Material::getMaterial(), FEProblemBase::getMaterial(), Material::getMaterialByName(), NodalPatchRecovery::getMaterialProperty(), InterfaceMaterial::getMaterialProperty(), Material::getMaterialProperty(), AuxKernelTempl< Real >::getMaterialProperty(), SubProblem::getMaterialPropertyBlockNames(), SubProblem::getMaterialPropertyBoundaryNames(), NodalPatchRecovery::getMaterialPropertyOld(), InterfaceMaterial::getMaterialPropertyOld(), Material::getMaterialPropertyOld(), AuxKernelTempl< Real >::getMaterialPropertyOld(), NodalPatchRecovery::getMaterialPropertyOlder(), InterfaceMaterial::getMaterialPropertyOlder(), Material::getMaterialPropertyOlder(), AuxKernelTempl< Real >::getMaterialPropertyOlder(), MFEMGeneralUserObject::getMatrixCoefficient(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MeshGenerator::getMesh(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshesByName(), MooseApp::getMeshGenerator(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), ActionWarehouse::getMooseAppName(), MultiAppTransfer::getMultiApp(), InterfaceMaterial::getNeighborADMaterialProperty(), InterfaceMaterial::getNeighborMaterialProperty(), InterfaceMaterial::getNeighborMaterialPropertyOld(), InterfaceMaterial::getNeighborMaterialPropertyOlder(), MooseServer::getObjectParameters(), Material::getOptionalADMaterialProperty(), Material::getOptionalMaterialProperty(), Material::getOptionalMaterialPropertyOld(), Material::getOptionalMaterialPropertyOlder(), OutputWarehouse::getOutput(), MooseBase::getParam(), FEProblemBase::getPositionsObject(), FEProblemBase::getPostprocessorValueByName(), ComponentMaterialPropertyInterface::getPropertyValue(), ReporterData::getReporterInfo(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), FEProblemBase::getSampler(), MFEMGeneralUserObject::getScalarCoefficient(), MFEMGeneralUserObject::getScalarCoefficientByName(), TransientBase::getTimeStepperName(), ProjectedStatefulMaterialStorageAction::getTypeEnum(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), MFEMGeneralUserObject::getVectorCoefficient(), MFEMGeneralUserObject::getVectorCoefficientByName(), Terminator::handleMessage(), Control::hasControllableParameterByName(), FEProblemBase::hasConvergence(), FEProblemBase::hasFunction(), SubProblem::hasFunctor(), SubProblem::hasFunctorWithType(), MooseApp::hasMeshGenerator(), AdvancedOutput::hasOutputHelper(), FEProblemBase::hasPostprocessor(), FEProblemBase::hasPostprocessorValueByName(), MooseApp::hasRelationshipManager(), MooseApp::hasRestartableDataMap(), MooseApp::hasRestartableMetaData(), FEProblemBase::hasUserObject(), IterationAdaptiveDT::init(), AddVariableAction::init(), AdvancedOutput::init(), AdvancedOutput::initExecutionTypes(), AttribName::initFrom(), NestedDivision::initialize(), TransformedPositions::initialize(), BoundaryRestrictable::initializeBoundaryRestrictable(), JSONOutput::initialSetup(), SideFVFluxBCIntegral::initialSetup(), SolutionScalarAux::initialSetup(), MultiAppProjectionTransfer::initialSetup(), NodalVariableValue::initialSetup(), Console::initialSetup(), SolutionUserObjectBase::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), Function::integral(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), MeshGenerator::isChildMeshGenerator(), DerivativeMaterialInterface< MortarScalarBase >::isNotObjectVariable(), MeshGenerator::isNullMeshName(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MeshGenerator::isParentMeshGenerator(), LinearCombinationFunction::LinearCombinationFunction(), FEProblemBase::logAdd(), MooseLinearVariableFV< Real >::lowerDError(), Marker::Marker(), MaterialBase::markMatPropRequested(), MatDiffusionBase< Real >::MatDiffusionBase(), Material::Material(), MaterialDerivativeTestKernelBase< Real >::MaterialDerivativeTestKernelBase(), Distribution::median(), MemoryUsageReporter::MemoryUsageReporter(), MeshGenerator::meshPropertyPrefix(), MooseBase::messagePrefix(), OutputWarehouse::mooseConsole(), MooseVariableBase::MooseVariableBase(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MooseLinearVariableFV< Real >::nodalError(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalValueSampler::NodalValueSampler(), Registry::objData(), MeshGenerator::Comparator::operator()(), ProgressOutput::output(), DOFMapOutput::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), ConsoleUtils::outputExecutionInformation(), MaterialOutputAction::outputHelper(), AdvancedOutput::outputInput(), AdvancedOutput::outputNodalVariables(), Exodus::outputPostprocessors(), AdvancedOutput::outputPostprocessors(), TableOutput::outputReporter(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), AdvancedOutput::outputSystemInformation(), AdvancedOutput::outputVectorPostprocessors(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), ComponentPhysicsInterface::physicsExists(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), MooseApp::possiblyLoadRestartableMetaData(), PhysicsBase::prefix(), MooseMesh::prepare(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), PerfGraphLivePrint::printStats(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), Receiver::Receiver(), Executor::Result::record(), AppFactory::reg(), Registry::registerObjectsTo(), FEProblemBase::registerRandomInterface(), MooseApp::registerRestartableDataMapName(), MooseApp::registerRestartableNameWithFilter(), GlobalParamsAction::remove(), MaterialBase::resetQpProperties(), MultiApp::restore(), ScalarComponentIC::ScalarComponentIC(), MultiApp::setAppOutputFileBase(), MooseMesh::setBoundaryName(), Control::setControllableValue(), Control::setControllableValueByName(), GlobalParamsAction::setDoubleIndexParam(), OutputWarehouse::setFileNumbers(), GlobalParamsAction::setParam(), FEProblemBase::setPostprocessorValueByName(), FEProblemBase::setResidualObjectParamsAndLog(), GlobalParamsAction::setScalarParam(), MooseMesh::setSubdomainName(), GlobalParamsAction::setTripleIndexParam(), NodeSetsGeneratorBase::setup(), Split::setup(), SideSetsGeneratorBase::setup(), TransientMultiApp::setupApp(), GlobalParamsAction::setVectorParam(), FullSolveMultiApp::showStatusMessage(), SideSetExtruderGenerator::SideSetExtruderGenerator(), TransientMultiApp::solveStep(), UserObject::spatialValue(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), SubProblem::storeBoundaryDelayedCheckMatProp(), SubProblem::storeBoundaryMatPropName(), MaterialBase::storeBoundaryZeroMatProp(), SubProblem::storeBoundaryZeroMatProp(), SubProblem::storeSubdomainDelayedCheckMatProp(), SubProblem::storeSubdomainMatPropName(), MaterialBase::storeSubdomainZeroMatProp(), SubProblem::storeSubdomainZeroMatProp(), ConstraintWarehouse::subdomainsCovered(), MaterialBase::subdomainSetup(), TaggingInterface::TaggingInterface(), MooseLinearVariableFV< Real >::timeIntegratorError(), VectorPostprocessorVisualizationAux::timestepSetup(), to_json(), MultiAppDofCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransientMultiApp::TransientMultiApp(), MooseServer::traverseParseTreeAndFillSymbols(), MooseBase::typeAndName(), MooseBase::uniqueParameterName(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), UserObject::UserObject(), UserObjectInterface::userObjectName(), ParsedAux::validateGenericVectorNames(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), Convergence::verboseOutput(), AdvancedOutput::wantOutput(), Coupleable::writableCoupledValue(), Coupleable::writableVariable(), Console::write(), and MooseApp::writeRestartableMetaData().

100  {
101  mooseAssert(_name.size(), "Empty name");
102  return _name;
103  }
const std::string & _name
The name of this class.
Definition: MooseBase.h:359

◆ needBoundaryMaterialOnSide()

bool FEProblemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

These methods are used to determine whether stateful material properties need to be stored on internal sides.

There are five situations where this may be the case: 1) DGKernels 2) IntegratedBCs 3)InternalSideUserObjects 4)ElementalAuxBCs 5)InterfaceUserObjects

Method 1:

Parameters
bnd_idthe boundary id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Method 2:

Parameters
subdomain_idthe subdomain id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Definition at line 8699 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onBoundary(), and ProjectMaterialProperties::onBoundary().

8700 {
8701  if (_bnd_mat_side_cache[tid].find(bnd_id) == _bnd_mat_side_cache[tid].end())
8702  {
8703  auto & bnd_mat_side_cache = _bnd_mat_side_cache[tid][bnd_id];
8704  bnd_mat_side_cache = false;
8705 
8706  if (_aux->needMaterialOnSide(bnd_id))
8707  {
8708  bnd_mat_side_cache = true;
8709  return true;
8710  }
8711  else
8712  for (auto & nl : _nl)
8713  if (nl->needBoundaryMaterialOnSide(bnd_id, tid))
8714  {
8715  bnd_mat_side_cache = true;
8716  return true;
8717  }
8718 
8719  if (theWarehouse()
8720  .query()
8721  .condition<AttribThread>(tid)
8722  .condition<AttribInterfaces>(Interfaces::SideUserObject)
8723  .condition<AttribBoundaries>(bnd_id)
8724  .count() > 0)
8725  {
8726  bnd_mat_side_cache = true;
8727  return true;
8728  }
8729  }
8730 
8731  return _bnd_mat_side_cache[tid][bnd_id];
8732 }
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
Cache for calculating materials on side.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needFV()

virtual void FEProblemBase::needFV ( )
inlineoverridevirtualinherited

marks this problem as including/needing finite volume functionality.

Implements SubProblem.

Definition at line 2473 of file FEProblemBase.h.

Referenced by DiffusionFV::initializePhysicsAdditional(), and DisplacedProblem::needFV().

2473 { _have_fv = true; }
bool _have_fv
Whether we are performing some calculations with finite volume discretizations.

◆ needInterfaceMaterialOnSide()

bool FEProblemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8735 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface().

8736 {
8737  if (_interface_mat_side_cache[tid].find(bnd_id) == _interface_mat_side_cache[tid].end())
8738  {
8739  auto & interface_mat_side_cache = _interface_mat_side_cache[tid][bnd_id];
8740  interface_mat_side_cache = false;
8741 
8742  for (auto & nl : _nl)
8743  if (nl->needInterfaceMaterialOnSide(bnd_id, tid))
8744  {
8745  interface_mat_side_cache = true;
8746  return true;
8747  }
8748 
8749  if (theWarehouse()
8750  .query()
8751  .condition<AttribThread>(tid)
8752  .condition<AttribInterfaces>(Interfaces::InterfaceUserObject)
8753  .condition<AttribBoundaries>(bnd_id)
8754  .count() > 0)
8755  {
8756  interface_mat_side_cache = true;
8757  return true;
8758  }
8759  else if (_interface_materials.hasActiveBoundaryObjects(bnd_id, tid))
8760  {
8761  interface_mat_side_cache = true;
8762  return true;
8763  }
8764  }
8765  return _interface_mat_side_cache[tid][bnd_id];
8766 }
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
Cache for calculating materials on interface.

◆ needSolutionState()

void FEProblemBase::needSolutionState ( unsigned int  oldest_needed,
Moose::SolutionIterationType  iteration_type 
)
inherited

Declare that we need up to old (1) or older (2) solution states for a given type of iteration.

Parameters
oldest_neededoldest solution state needed
iteration_typethe type of iteration for which old/older states are needed

Definition at line 718 of file FEProblemBase.C.

Referenced by FEProblemBase::createTagSolutions().

719 {
720  for (auto & sys : _solver_systems)
721  sys->needSolutionState(state, iteration_type);
722  _aux->needSolutionState(state, iteration_type);
723 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ needsPreviousNewtonIteration() [1/2]

void FEProblemBase::needsPreviousNewtonIteration ( bool  state)
inherited

Set a flag that indicated that user required values for the previous Newton iterate.

Definition at line 8804 of file FEProblemBase.C.

Referenced by Coupleable::coupledGradientPreviousNL(), Coupleable::coupledNodalValuePreviousNL(), Coupleable::coupledSecondPreviousNL(), Coupleable::coupledValuePreviousNL(), and NonlinearSystem::solve().

8805 {
8807  mooseError("Previous nonlinear solution is required but not added through "
8808  "Problem/previous_nl_solution_required=true");
8809 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needsPreviousNewtonIteration() [2/2]

bool FEProblemBase::needsPreviousNewtonIteration ( ) const
inherited

Check to see whether we need to compute the variable values of the previous Newton iterate.

Returns
true if the user required values of the previous Newton iterate

Definition at line 8798 of file FEProblemBase.C.

8799 {
8801 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needSubdomainMaterialOnSide()

bool FEProblemBase::needSubdomainMaterialOnSide ( SubdomainID  subdomain_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8769 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::subdomainChanged(), and ProjectMaterialProperties::subdomainChanged().

8770 {
8771  if (_block_mat_side_cache[tid].find(subdomain_id) == _block_mat_side_cache[tid].end())
8772  {
8773  _block_mat_side_cache[tid][subdomain_id] = false;
8774 
8775  for (auto & nl : _nl)
8776  if (nl->needSubdomainMaterialOnSide(subdomain_id, tid))
8777  {
8778  _block_mat_side_cache[tid][subdomain_id] = true;
8779  return true;
8780  }
8781 
8782  if (theWarehouse()
8783  .query()
8784  .condition<AttribThread>(tid)
8785  .condition<AttribInterfaces>(Interfaces::InternalSideUserObject)
8786  .condition<AttribSubdomains>(subdomain_id)
8787  .count() > 0)
8788  {
8789  _block_mat_side_cache[tid][subdomain_id] = true;
8790  return true;
8791  }
8792  }
8793 
8794  return _block_mat_side_cache[tid][subdomain_id];
8795 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
Cache for calculating materials on side.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needToAddDefaultMultiAppFixedPointConvergence()

bool FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default fixed point convergence.

Definition at line 642 of file FEProblemBase.h.

643  {
645  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ needToAddDefaultNonlinearConvergence()

bool FEProblemBase::needToAddDefaultNonlinearConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default nonlinear convergence.

Definition at line 637 of file FEProblemBase.h.

638  {
640  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ needToAddDefaultSteadyStateConvergence()

bool FEProblemBase::needToAddDefaultSteadyStateConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default steady-state detection convergence.

Definition at line 647 of file FEProblemBase.h.

648  {
650  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ neighborSubdomainSetup()

void FEProblemBase::neighborSubdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2486 of file FEProblemBase.C.

Referenced by ThreadedFaceLoop< RangeType >::neighborSubdomainChanged().

2487 {
2488  _all_materials.neighborSubdomainSetup(subdomain, tid);
2489 }
virtual void neighborSubdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials

◆ newAssemblyArray()

void FEProblemBase::newAssemblyArray ( std::vector< std::shared_ptr< SolverSystem >> &  solver_systems)
virtualinherited

Definition at line 726 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

727 {
728  unsigned int n_threads = libMesh::n_threads();
729 
730  _assembly.resize(n_threads);
731  for (const auto i : make_range(n_threads))
732  {
733  _assembly[i].resize(solver_systems.size());
734  for (const auto j : index_range(solver_systems))
735  _assembly[i][j] = std::make_unique<Assembly>(*solver_systems[j], i);
736  }
737 }
unsigned int n_threads()
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
auto index_range(const T &sizable)

◆ nlConverged()

bool SubProblem::nlConverged ( const unsigned int  nl_sys_num)
virtualinherited
Returns
whether the given nonlinear system nl_sys_num is converged.

Definition at line 716 of file SubProblem.C.

717 {
718  mooseAssert(nl_sys_num < numNonlinearSystems(),
719  "The nonlinear system number is higher than the number of systems we have!");
720  return solverSystemConverged(nl_sys_num);
721 }
virtual std::size_t numNonlinearSystems() const =0
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ nLinearIterations()

unsigned int FEProblemBase::nLinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6585 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6586 {
6587  return _nl[nl_sys_num]->nLinearIterations();
6588 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nlSysNum()

unsigned int FEProblemBase::nlSysNum ( const NonlinearSystemName &  nl_sys_name) const
overridevirtualinherited
Returns
the nonlinear system number corresponding to the provided nl_sys_name

Implements SubProblem.

Definition at line 6315 of file FEProblemBase.C.

Referenced by DisplacedProblem::nlSysNum().

6316 {
6317  std::istringstream ss(nl_sys_name);
6318  unsigned int nl_sys_num;
6319  if (!(ss >> nl_sys_num) || !ss.eof())
6320  nl_sys_num = libmesh_map_find(_nl_sys_name_to_num, nl_sys_name);
6321 
6322  return nl_sys_num;
6323 }
std::map< NonlinearSystemName, unsigned int > _nl_sys_name_to_num
Map from nonlinear system name to number.

◆ nNonlinearIterations()

unsigned int FEProblemBase::nNonlinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6579 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6580 {
6581  return _nl[nl_sys_num]->nNonlinearIterations();
6582 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nonlocalCouplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::nonlocalCouplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6172 of file FEProblemBase.C.

Referenced by ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

6173 {
6174  return _assembly[tid][nl_sys]->nonlocalCouplingEntries();
6175 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ nonlocalCouplingMatrix()

const libMesh::CouplingMatrix & FEProblemBase::nonlocalCouplingMatrix ( const unsigned  i) const
overridevirtualinherited
Returns
the nonlocal coupling matrix for the i'th nonlinear system

Implements SubProblem.

Definition at line 9443 of file FEProblemBase.C.

Referenced by DisplacedProblem::nonlocalCouplingMatrix().

9444 {
9445  return _nonlocal_cm[i];
9446 }
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix

◆ notifyWhenMeshChanges()

void FEProblemBase::notifyWhenMeshChanges ( MeshChangedInterface mci)
inherited

Register an object that derives from MeshChangedInterface to be notified when the mesh changes.

Definition at line 8233 of file FEProblemBase.C.

Referenced by MeshChangedInterface::MeshChangedInterface().

8234 {
8235  _notify_when_mesh_changes.push_back(mci);
8236 }
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.

◆ notifyWhenMeshDisplaces()

void FEProblemBase::notifyWhenMeshDisplaces ( MeshDisplacedInterface mdi)
inherited

Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated.

Definition at line 8239 of file FEProblemBase.C.

Referenced by MeshDisplacedInterface::MeshDisplacedInterface().

8240 {
8241  _notify_when_mesh_displaces.push_back(mdi);
8242 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ numGridSteps()

void FEProblemBase::numGridSteps ( unsigned int  num_grid_steps)
inlineinherited

Set the number of steps in a grid sequences.

Definition at line 2230 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2230 { _num_grid_steps = num_grid_steps; }
unsigned int _num_grid_steps
Number of steps in a grid sequence.

◆ numLinearSystems()

virtual std::size_t FEProblemBase::numLinearSystems ( ) const
inlineoverridevirtualinherited

◆ numMatrixTags()

virtual unsigned int SubProblem::numMatrixTags ( ) const
inlinevirtualinherited

◆ numNonlinearSystems()

virtual std::size_t FEProblemBase::numNonlinearSystems ( ) const
inlineoverridevirtualinherited

◆ numSolverSystems()

virtual std::size_t FEProblemBase::numSolverSystems ( ) const
inlineoverridevirtualinherited

◆ numVectorTags()

unsigned int SubProblem::numVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

The total number of tags, which can be limited to the tag type.

Reimplemented in DisplacedProblem.

Definition at line 195 of file SubProblem.C.

Referenced by NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeResidualInternal(), ComputeResidualThread::determineObjectWarehouses(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), MooseVariableScalar::MooseVariableScalar(), DisplacedProblem::numVectorTags(), ComputeNodalKernelBcsThread::pre(), and ComputeNodalKernelsThread::pre().

196 {
197  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
198 
199  return getVectorTags(type).size();
200 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ objectExecuteHelper()

template<typename T >
void FEProblemBase::objectExecuteHelper ( const std::vector< T *> &  objects)
staticinherited

Definition at line 3153 of file FEProblemBase.h.

3154 {
3155  for (T * obj_ptr : objects)
3156  obj_ptr->execute();
3157 }

◆ objectSetupHelper()

template<typename T >
void FEProblemBase::objectSetupHelper ( const std::vector< T *> &  objects,
const ExecFlagType exec_flag 
)
staticinherited

Helpers for calling the necessary setup/execute functions for the supplied objects.

Definition at line 3119 of file FEProblemBase.h.

3120 {
3121  if (exec_flag == EXEC_INITIAL)
3122  {
3123  for (T * obj_ptr : objects)
3124  obj_ptr->initialSetup();
3125  }
3126 
3127  else if (exec_flag == EXEC_TIMESTEP_BEGIN)
3128  {
3129  for (const auto obj_ptr : objects)
3130  obj_ptr->timestepSetup();
3131  }
3132  else if (exec_flag == EXEC_SUBDOMAIN)
3133  {
3134  for (const auto obj_ptr : objects)
3135  obj_ptr->subdomainSetup();
3136  }
3137 
3138  else if (exec_flag == EXEC_NONLINEAR)
3139  {
3140  for (const auto obj_ptr : objects)
3141  obj_ptr->jacobianSetup();
3142  }
3143 
3144  else if (exec_flag == EXEC_LINEAR)
3145  {
3146  for (const auto obj_ptr : objects)
3147  obj_ptr->residualSetup();
3148  }
3149 }
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ onlyAllowDefaultNonlinearConvergence()

virtual bool FEProblemBase::onlyAllowDefaultNonlinearConvergence ( ) const
inlinevirtualinherited

Returns true if an error will result if the user supplies 'nonlinear_convergence'.

Some problems are strongly tied to their convergence, and it does not make sense to use any convergence other than their default and additionally would be error-prone.

Reimplemented in ReferenceResidualProblem.

Definition at line 691 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

691 { return false; }

◆ onTimestepBegin()

void FEProblemBase::onTimestepBegin ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 6728 of file FEProblemBase.C.

Referenced by MFEMTransient::takeStep(), and TransientBase::takeStep().

6729 {
6730  TIME_SECTION("onTimestepBegin", 2);
6731 
6732  for (auto & nl : _nl)
6733  nl->onTimestepBegin();
6734 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ onTimestepEnd()

void FEProblemBase::onTimestepEnd ( )
overridevirtualinherited

◆ outputStep()

void FEProblemBase::outputStep ( ExecFlagType  type)
virtualinherited

Output the current step.

Will ensure that everything is in the proper state to be outputted. Then tell the OutputWarehouse to do its thing

Parameters
typeThe type execution flag (see Moose.h)

Reimplemented in DumpObjectsProblem.

Definition at line 6691 of file FEProblemBase.C.

Referenced by TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), Eigenvalue::execute(), InversePowerMethod::init(), NonlinearEigen::init(), EigenExecutionerBase::postExecute(), TransientBase::preExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), and FixedPointSolve::solveStep().

6692 {
6693  TIME_SECTION("outputStep", 1, "Outputting");
6694 
6696 
6697  for (auto & sys : _solver_systems)
6698  sys->update();
6699  _aux->update();
6700 
6701  if (_displaced_problem)
6702  _displaced_problem->syncSolutions();
6704 
6706 }
void outputStep(ExecFlagType type)
Calls the outputStep method for each output object.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void setCurrentExecuteOnFlag(const ExecFlagType &)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::shared_ptr< DisplacedProblem > _displaced_problem
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ paramError()

template<typename... Args>
void MooseBase::paramError ( const std::string &  param,
Args...  args 
) const
inherited

Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseError - only printing a message using the given args.

Definition at line 435 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), AutoCheckpointAction::act(), SetupDebugAction::act(), CommonOutputAction::act(), AddPeriodicBCAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), NEML2ModelExecutor::addGatheredParameter(), NEML2ModelExecutor::addGatheredVariable(), ADDGKernel::ADDGKernel(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), ReporterPointSource::addPoints(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ADNodalKernel::ADNodalKernel(), ADPenaltyPeriodicSegmentalConstraint::ADPenaltyPeriodicSegmentalConstraint(), ADPeriodicSegmentalConstraint::ADPeriodicSegmentalConstraint(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), AdvectiveFluxAux::AdvectiveFluxAux(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), ArrayBodyForce::ArrayBodyForce(), ArrayDGKernel::ArrayDGKernel(), ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayDirichletBC::ArrayDirichletBC(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), ArrayParsedAux::ArrayParsedAux(), ArrayPenaltyDirichletBC::ArrayPenaltyDirichletBC(), ArrayVacuumBC::ArrayVacuumBC(), ArrayVarReductionAux::ArrayVarReductionAux(), ParsedSubdomainIDsGenerator::assignElemSubdomainID(), AuxKernelTempl< Real >::AuxKernelTempl(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BlockDeletionGenerator::BlockDeletionGenerator(), BlockWeightedPartitioner::BlockWeightedPartitioner(), BoundsBase::BoundsBase(), BreakMeshByBlockGenerator::BreakMeshByBlockGenerator(), BuildArrayVariableAux::BuildArrayVariableAux(), PiecewiseTabularBase::buildFromFile(), MFEMMesh::buildMesh(), CartesianGridDivision::CartesianGridDivision(), checkComponent(), MeshGenerator::checkGetMesh(), ComponentInitialConditionInterface::checkInitialConditionsAllRequested(), BatchMeshGeneratorAction::checkInputParameterType(), PhysicsBase::checkIntegrityEarly(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), Coupleable::checkVar(), MultiAppTransfer::checkVariable(), CircularBoundaryCorrectionGenerator::CircularBoundaryCorrectionGenerator(), CircularBoundaryCorrectionGenerator::circularCenterCalculator(), MultiAppGeneralFieldTransfer::closestToPosition(), CoarsenBlockGenerator::CoarsenBlockGenerator(), CombinerGenerator::CombinerGenerator(), ComponentInitialConditionInterface::ComponentInitialConditionInterface(), ComponentMaterialPropertyInterface::ComponentMaterialPropertyInterface(), CompositionDT::CompositionDT(), FunctorAux::computeValue(), ConcentricCircleMeshGenerator::ConcentricCircleMeshGenerator(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), ConstantVectorPostprocessor::ConstantVectorPostprocessor(), ContainsPointAux::ContainsPointAux(), CopyValueAux::CopyValueAux(), Coupleable::Coupleable(), CoupledForceTempl< is_ad >::CoupledForceTempl(), CoupledValueFunctionMaterialTempl< is_ad >::CoupledValueFunctionMaterialTempl(), MultiApp::createApp(), MeshGeneratorSystem::createMeshGenerator(), CylindricalGridDivision::CylindricalGridDivision(), DebugResidualAux::DebugResidualAux(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), AccumulateReporter::declareLateValues(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DGLowerDKernel::DGLowerDKernel(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementLengthAux::ElementLengthAux(), ElementLpNormAux::ElementLpNormAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), ElementValueSampler::ElementValueSampler(), ElementVectorL2Error::ElementVectorL2Error(), EqualValueEmbeddedConstraintTempl< is_ad >::EqualValueEmbeddedConstraintTempl(), ReporterPointSource::errorCheck(), StitchMeshGeneratorBase::errorMissingBoundary(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), ExtraElementIDAux::ExtraElementIDAux(), ExtraElementIntegerDivision::ExtraElementIntegerDivision(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileMeshGenerator::FileMeshGenerator(), FillBetweenCurvesGenerator::FillBetweenCurvesGenerator(), FillBetweenSidesetsGenerator::FillBetweenSidesetsGenerator(), ReporterPointSource::fillPoint(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), InternalSideIndicatorBase::finalize(), ForcingFunctionAux::ForcingFunctionAux(), FullSolveMultiApp::FullSolveMultiApp(), FunctionArrayAux::FunctionArrayAux(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FunctorADConverterTempl< T >::FunctorADConverterTempl(), FunctorAux::FunctorAux(), FunctorBinnedValuesDivision::FunctorBinnedValuesDivision(), FunctorCoordinatesFunctionAux::FunctorCoordinatesFunctionAux(), FunctorElementalGradientAuxTempl< is_ad >::FunctorElementalGradientAuxTempl(), FunctorExtremaPositions::FunctorExtremaPositions(), FunctorIC::FunctorIC(), FunctorPositions::FunctorPositions(), FunctorVectorElementalAuxTempl< is_ad >::FunctorVectorElementalAuxTempl(), FVAdvection::FVAdvection(), FVFluxBC::FVFluxBC(), FVInterfaceKernel::FVInterfaceKernel(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), FVTwoVarContinuityConstraint::FVTwoVarContinuityConstraint(), Boundary2DDelaunayGenerator::General2DDelaunay(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), AddMetaDataGenerator::generate(), ElementsToTetrahedronsConverter::generate(), BlockToMeshConverterGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenSidesetsGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BlockDeletionGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BoundaryElementConversionGenerator::generate(), CoarsenBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), BreakMeshByBlockGenerator::generate(), AdvancedExtruderGenerator::generate(), BreakMeshByElementGenerator::generate(), CircularBoundaryCorrectionGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedCurveGenerator::generate(), ParsedExtraElementIDGenerator::generate(), CombinerGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CutMeshByLevelSetGeneratorBase::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), PatternedMeshGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), GeneratedMeshGenerator::GeneratedMeshGenerator(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), PropertyReadFile::getBlockData(), ComponentBoundaryConditionInterface::getBoundaryCondition(), MultiApp::getCommandLineArgs(), PropertyReadFile::getData(), PropertyReadFile::getFileNames(), Sampler::getGlobalSamples(), ComponentInitialConditionInterface::getInitialCondition(), NEML2Action::getInputParameterMapping(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), Sampler::getLocalSamples(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), Sampler::getNextLocalRow(), FEProblemSolve::getParamFromNonlinearSystemVectorParam(), PostprocessorInterface::getPostprocessorNameInternal(), PostprocessorInterface::getPostprocessorValueInternal(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), UserObjectInterface::getUserObjectBase(), UserObjectInterface::getUserObjectName(), HFEMDirichletBC::HFEMDirichletBC(), AddVariableAction::init(), MultiApp::init(), DistributedPositions::initialize(), BlockWeightedPartitioner::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), PhysicsBase::initializePhysics(), JSONOutput::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), SideFVFluxBCIntegral::initialSetup(), ElementSubdomainModifierBase::initialSetup(), MultiAppVariableValueSamplePostprocessorTransfer::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), HistogramVectorPostprocessor::initialSetup(), ReferenceResidualConvergence::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), LibtorchControlValuePostprocessor::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), SampledOutput::initSample(), AddMetaDataGenerator::inputChecker(), IntegratedBC::IntegratedBC(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceValueUserObjectAux::InterfaceValueUserObjectAux(), InternalSideIndicatorBase::InternalSideIndicatorBase(), InterpolatedStatefulMaterialTempl< T >::InterpolatedStatefulMaterialTempl(), InversePowerMethod::InversePowerMethod(), IterationAdaptiveDT::IterationAdaptiveDT(), MultiApp::keepSolutionDuringRestore(), Kernel::Kernel(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationFunction::LinearCombinationFunction(), LinearFVAdvectionDiffusionFunctorRobinBC::LinearFVAdvectionDiffusionFunctorRobinBC(), LowerDIntegratedBC::LowerDIntegratedBC(), PNGOutput::makeMeshFunc(), MatCoupledForce::MatCoupledForce(), MaterialADConverterTempl< T >::MaterialADConverterTempl(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MatrixSymmetryCheck::MatrixSymmetryCheck(), PatternedMeshGenerator::mergeSubdomainNameMaps(), MeshCollectionGenerator::MeshCollectionGenerator(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshDivisionAux::MeshDivisionAux(), MeshGenerator::MeshGenerator(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMGenericFunctorMaterial::MFEMGenericFunctorMaterial(), MFEMGenericFunctorVectorMaterial::MFEMGenericFunctorVectorMaterial(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), UserObjectInterface::mooseObjectError(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MortarConstraintBase::MortarConstraintBase(), MortarNodalAuxKernelTempl< ComputeValueType >::MortarNodalAuxKernelTempl(), MultiApp::moveApp(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorToAuxScalarTransfer::MultiAppPostprocessorToAuxScalarTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppProjectionTransfer::MultiAppProjectionTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppScalarToAuxScalarTransfer::MultiAppScalarToAuxScalarTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiAppVectorPostprocessorTransfer::MultiAppVectorPostprocessorTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NearestNodeValueAux::NearestNodeValueAux(), NEML2Action::NEML2Action(), NestedDivision::NestedDivision(), NodalBC::NodalBC(), NodalEqualValueConstraint::NodalEqualValueConstraint(), NodalKernel::NodalKernel(), NodalPatchRecoveryAux::NodalPatchRecoveryAux(), NodalValueSampler::NodalValueSampler(), Output::Output(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), ParsedPostprocessor::ParsedPostprocessor(), PatternedMeshGenerator::PatternedMeshGenerator(), PenaltyPeriodicSegmentalConstraint::PenaltyPeriodicSegmentalConstraint(), PeriodicSegmentalConstraint::PeriodicSegmentalConstraint(), PIDTransientControl::PIDTransientControl(), PlaneDeletionGenerator::PlaneDeletionGenerator(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), PolyLineMeshGenerator::PolyLineMeshGenerator(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessor(), LibmeshPartitioner::prepareBlocksForSubdomainPartitioner(), ProjectedMaterialPropertyNodalPatchRecoveryAux::ProjectedMaterialPropertyNodalPatchRecoveryAux(), ProjectionAux::ProjectionAux(), PropertyReadFile::PropertyReadFile(), RandomIC::RandomIC(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readXda(), ReferenceResidualConvergence::ReferenceResidualConvergence(), RefineBlockGenerator::RefineBlockGenerator(), RefineSidesetGenerator::RefineSidesetGenerator(), RenameBlockGenerator::RenameBlockGenerator(), RenameBoundaryGenerator::RenameBoundaryGenerator(), ReporterPointSource::ReporterPointSource(), FEProblemBase::restoreSolutions(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), FEProblemBase::setLinearConvergenceNames(), FEProblemBase::setNonlinearConvergenceNames(), MooseMesh::setPartitioner(), NodeSetsGeneratorBase::setup(), SideSetsGeneratorBase::setup(), NEML2Action::setupDerivativeMappings(), NEML2Action::setupParameterDerivativeMappings(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), SideValueSampler::SideValueSampler(), SingleRankPartitioner::SingleRankPartitioner(), SphericalGridDivision::SphericalGridDivision(), StitchBoundaryMeshGenerator::StitchBoundaryMeshGenerator(), StitchMeshGenerator::StitchMeshGenerator(), SymmetryTransformGenerator::SymmetryTransformGenerator(), Terminator::Terminator(), TimeDerivativeAux::TimeDerivativeAux(), Transfer::Transfer(), TransformGenerator::TransformGenerator(), TransientMultiApp::TransientMultiApp(), ParsedCurveGenerator::tSectionSpaceDefiner(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), TimeSequenceStepperBase::updateSequence(), UserObject::UserObject(), Checkpoint::validateExecuteOn(), ParsedAux::validateGenericVectorNames(), ParsedMaterialBase::validateVectorNames(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VolumeAux::VolumeAux(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), XYMeshLineCutter::XYMeshLineCutter(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

436 {
437  _pars.paramError(param, std::forward<Args>(args)...);
438 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...

◆ parameters()

const InputParameters& MooseBase::parameters ( ) const
inlineinherited

Get the parameters of the object.

Returns
The parameters of the object

Definition at line 127 of file MooseBase.h.

Referenced by MeshOnlyAction::act(), SplitMeshAction::act(), SetupDebugAction::act(), AddActionComponentAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::addAnyRedistributers(), addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), addAuxVariable(), DisplacedProblem::addAuxVariable(), addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::addDefaultSteadyStateConvergence(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), addFESpace(), addFunction(), FEProblemBase::addFunction(), addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), addGridFunction(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), addInitialCondition(), FEProblemBase::addInitialCondition(), DiffusionPhysicsBase::addInitialConditions(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblem::addLineSearch(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMeshDivision(), addMFEMFESpaceFromMOOSEVariable(), addMFEMPreconditioner(), addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), addPostprocessor(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), addSubMesh(), FEProblemBase::addTimeIntegrator(), addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), addVariable(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), AdvancedOutput::AdvancedOutput(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), Action::associateWithParameter(), AuxKernelTempl< Real >::AuxKernelTempl(), AuxScalarKernel::AuxScalarKernel(), BoundsBase::BoundsBase(), MooseMesh::buildTypedMesh(), PostprocessorInterface::checkParam(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), SampledOutput::cloneMesh(), LibtorchNeuralNetControl::conditionalParameterError(), Console::Console(), CommonOutputAction::create(), MultiApp::createApp(), Postprocessor::declareValue(), DumpObjectsProblem::deduceNecessaryParameters(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DumpObjectsProblem::dumpObjectHelper(), DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementMaterialSampler::ElementMaterialSampler(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), Executor::Executor(), Exodus::Exodus(), FEProblem::FEProblem(), FixedPointSolve::FixedPointSolve(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), GapValueAux::GapValueAux(), ParsedSubdomainGeneratorBase::generate(), ActionWarehouse::getCurrentActionName(), ExecutorInterface::getExecutor(), Material::getMaterial(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorInterface::getVectorPostprocessorName(), GhostingUserObject::GhostingUserObject(), MeshGeneratorSystem::hasDataDrivenAllowed(), AttribSystem::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), FullSolveMultiApp::initialSetup(), FEProblemBase::initNullSpaceVectors(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), isValid(), IterationAdaptiveDT::IterationAdaptiveDT(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MFEMCGSolver::MFEMCGSolver(), MFEMGMRESSolver::MFEMGMRESSolver(), MFEMHypreADS::MFEMHypreADS(), MFEMHypreAMS::MFEMHypreAMS(), MFEMHypreBoomerAMG::MFEMHypreBoomerAMG(), MFEMHypreFGMRES::MFEMHypreFGMRES(), MFEMHypreGMRES::MFEMHypreGMRES(), MFEMHyprePCG::MFEMHyprePCG(), MFEMOperatorJacobiSmoother::MFEMOperatorJacobiSmoother(), MFEMSuperLU::MFEMSuperLU(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiApp::MultiApp(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NodeFaceConstraint::NodeFaceConstraint(), ConsoleUtils::outputLegacyInformation(), OverlayMeshGenerator::OverlayMeshGenerator(), MooseServer::parseDocumentForDiagnostics(), PenetrationAux::PenetrationAux(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), NEML2Action::printSummary(), ProjectedStatefulMaterialStorageAction::processProperty(), PropertyReadFile::PropertyReadFile(), PseudoTimestep::PseudoTimestep(), RandomIC::RandomIC(), ReferenceResidualConvergence::ReferenceResidualConvergence(), InputParameterWarehouse::removeInputParameters(), FEProblem::setInputParametersFEProblem(), FEProblemBase::setInputParametersFEProblem(), FEProblemBase::setResidualObjectParamsAndLog(), SideSetsGeneratorBase::setup(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), Moose::PetscSupport::storePetscOptions(), DumpObjectsProblem::stringifyParameters(), TaggingInterface::TaggingInterface(), Transfer::Transfer(), TransientBase::TransientBase(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), and MooseApp::~MooseApp().

127 { return _pars; }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362

◆ paramInfo()

template<typename... Args>
void MooseBase::paramInfo ( const std::string &  param,
Args...  args 
) const
inherited

Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseInfo - only printing a message using the given args.

Definition at line 449 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), ComboMarker::ComboMarker(), Control::Control(), FunctorIC::FunctorIC(), and TransientMultiApp::TransientMultiApp().

450 {
451  mooseInfo(_pars.paramMessage(param, std::forward<Args>(args)...));
452 }
std::string paramMessage(const std::string &param, Args... args) const
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362

◆ paramWarning()

template<typename... Args>
void MooseBase::paramWarning ( const std::string &  param,
Args...  args 
) const
inherited

Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseWarning - only printing a message using the given args.

Definition at line 442 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), EigenProblem::checkProblemIntegrity(), CombinerGenerator::copyIntoMesh(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), MultiAppNearestNodeTransfer::execute(), FEProblemSolve::FEProblemSolve(), UniqueExtraIDMeshGenerator::generate(), PlaneIDMeshGenerator::generate(), Terminator::initialSetup(), SampledOutput::initSample(), MooseMesh::MooseMesh(), FEProblemBase::setPreserveMatrixSparsityPattern(), and Terminator::Terminator().

443 {
444  mooseWarning(_pars.paramMessage(param, std::forward<Args>(args)...));
445 }
std::string paramMessage(const std::string &param, Args... args) const
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ parentOutputPositionChanged()

void FEProblemBase::parentOutputPositionChanged ( )
inherited

Calls parentOutputPositionChanged() on all sub apps.

Definition at line 4474 of file FEProblemBase.C.

Referenced by TransientBase::parentOutputPositionChanged().

4475 {
4476  for (const auto & it : _multi_apps)
4477  {
4478  const auto & objects = it.second.getActiveObjects();
4479  for (const auto & obj : objects)
4480  obj->parentOutputPositionChanged();
4481  }
4482 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:166

◆ petscOptionsDatabase()

PetscOptions& FEProblemBase::petscOptionsDatabase ( )
inlineinherited

Definition at line 2148 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2148 { return _petsc_option_data_base; }
PetscOptions _petsc_option_data_base

◆ petscOptionsInserted()

bool& FEProblemBase::petscOptionsInserted ( )
inlineinherited

If PETSc options are already inserted.

Definition at line 2145 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2145 { return _is_petsc_options_inserted; }
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.

◆ possiblyRebuildGeomSearchPatches()

void FEProblemBase::possiblyRebuildGeomSearchPatches ( )
virtualinherited

Definition at line 7863 of file FEProblemBase.C.

Referenced by FEProblemBase::solve().

7864 {
7865  if (_displaced_problem) // Only need to do this if things are moving...
7866  {
7867  TIME_SECTION("possiblyRebuildGeomSearchPatches", 5, "Rebuilding Geometric Search Patches");
7868 
7869  switch (_mesh.getPatchUpdateStrategy())
7870  {
7871  case Moose::Never:
7872  break;
7873  case Moose::Iteration:
7874  // Update the list of ghosted elements at the start of the time step
7877 
7878  _displaced_problem->geomSearchData().updateGhostedElems();
7880 
7881  // The commands below ensure that the sparsity of the Jacobian matrix is
7882  // augmented at the start of the time step using neighbor nodes from the end
7883  // of the previous time step.
7884 
7886 
7887  // This is needed to reinitialize PETSc output
7889 
7890  break;
7891 
7892  case Moose::Auto:
7893  {
7894  Real max = _displaced_problem->geomSearchData().maxPatchPercentage();
7896 
7897  // If we haven't moved very far through the patch
7898  if (max < 0.4)
7899  break;
7900  }
7901  libmesh_fallthrough();
7902 
7903  // Let this fall through if things do need to be updated...
7904  case Moose::Always:
7905  // Flush output here to see the message before the reinitialization, which could take a
7906  // while
7907  _console << "\n\nUpdating geometric search patches\n" << std::endl;
7908 
7911 
7912  _displaced_problem->geomSearchData().clearNearestNodeLocators();
7914 
7916 
7917  // This is needed to reinitialize PETSc output
7919  }
7920  }
7921 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
auto max(const L &left, const R &right)
void updateGhostedElems()
Updates the list of ghosted elements at the start of each time step for the nonlinear iteration patch...
MooseMesh & _mesh
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
void max(const T &r, T &o, Request &req) const
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
const Moose::PatchUpdateType & getPatchUpdateStrategy() const
Get the current patch update strategy.
Definition: MooseMesh.C:3413
void clearNearestNodeLocators()
Clear out the Penetration Locators so they will redo the search.
MooseMesh * _displaced_mesh

◆ postExecute()

void FEProblemBase::postExecute ( )
virtualinherited

Method called at the end of the simulation.

Definition at line 5488 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5489 {
5490  const auto & multi_apps = _multi_apps.getActiveObjects();
5491 
5492  for (const auto & multi_app : multi_apps)
5493  multi_app->postExecute();
5494 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ predictorCleanup()

void FEProblemBase::predictorCleanup ( NumericVector< libMesh::Number > &  ghosted_solution)
virtualinherited

Perform cleanup tasks after application of predictor to solution vector.

Parameters
ghosted_solutionGhosted solution vector

Definition at line 7770 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::setInitialSolution().

7771 {
7772 }

◆ prepare() [1/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ prepare() [2/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
unsigned int  ivar,
unsigned int  jvar,
const std::vector< dof_id_type > &  dof_indices,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ prepareAssembly()

void FEProblemBase::prepareAssembly ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1811 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), NonlinearSystemBase::reinitNodeFace(), and NonlinearSystemBase::setConstraintSecondaryValues().

1812 {
1813  _assembly[tid][_current_nl_sys->number()]->prepare();
1815  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
1816 
1818  {
1819  _displaced_problem->prepareAssembly(tid);
1821  _displaced_problem->prepareNonlocal(tid);
1822  }
1823 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ prepareFace()

void FEProblemBase::prepareFace ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1725 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onInterface(), and ComputeUserObjectsThread::onInternalSide().

1726 {
1727  for (auto & nl : _nl)
1728  nl->prepareFace(tid, true);
1729  _aux->prepareFace(tid, false);
1730 
1732  _displaced_problem->prepareFace(_displaced_mesh->elemPtr(elem->id()), tid);
1733 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ prepareFaceShapes()

void FEProblemBase::prepareFaceShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2070 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary().

2071 {
2072  _assembly[tid][_current_nl_sys->number()]->copyFaceShapes(var);
2073 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ prepareMaterials()

void FEProblemBase::prepareMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props,
const SubdomainID  blk_id,
const THREAD_ID  tid 
)
inherited

Add the MooseVariables and the material properties that the current materials depend on to the dependency list.

Parameters
consumer_needed_mat_propsThe material properties needed by consumer objects (other than the materials themselves)
blk_idThe subdomain ID for which we are preparing our list of needed vars and props
tidThe thread ID we are preparing the requirements for

This MUST be done after the moose variable dependency list has been set for all the other objects using the setActiveElementalMooseVariables API!

Definition at line 3969 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

3972 {
3973  std::set<MooseVariableFEBase *> needed_moose_vars;
3974  std::unordered_set<unsigned int> needed_mat_props;
3975 
3976  if (_all_materials.hasActiveBlockObjects(blk_id, tid))
3977  {
3978  _all_materials.updateVariableDependency(needed_moose_vars, tid);
3979  _all_materials.updateBlockMatPropDependency(blk_id, needed_mat_props, tid);
3980  }
3981 
3982  const auto & ids = _mesh.getSubdomainBoundaryIds(blk_id);
3983  for (const auto id : ids)
3984  {
3985  _materials.updateBoundaryVariableDependency(id, needed_moose_vars, tid);
3986  _materials.updateBoundaryMatPropDependency(id, needed_mat_props, tid);
3987  }
3988 
3989  const auto & current_active_elemental_moose_variables = getActiveElementalMooseVariables(tid);
3990  needed_moose_vars.insert(current_active_elemental_moose_variables.begin(),
3991  current_active_elemental_moose_variables.end());
3992 
3993  needed_mat_props.insert(consumer_needed_mat_props.begin(), consumer_needed_mat_props.end());
3994 
3995  setActiveElementalMooseVariables(needed_moose_vars, tid);
3996  setActiveMaterialProperties(needed_mat_props, tid);
3997 }
void updateVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
Update variable dependency vector.
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::set< BoundaryID > & getSubdomainBoundaryIds(const SubdomainID subdomain_id) const
Get the list of boundary ids associated with the given subdomain id.
Definition: MooseMesh.C:3497
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
Set the MOOSE variables to be reinited on each element.
MooseMesh & _mesh
void updateBoundaryMatPropDependency(std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBlockMatPropDependency(SubdomainID id, std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBoundaryVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
MaterialWarehouse _all_materials
MaterialWarehouse _materials

◆ prepareNeighborShapes()

void FEProblemBase::prepareNeighborShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2076 of file FEProblemBase.C.

2077 {
2078  _assembly[tid][_current_nl_sys->number()]->copyNeighborShapes(var);
2079 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preparePRefinement()

void SubProblem::preparePRefinement ( )
inherited

Prepare DofMap and Assembly classes with our p-refinement information.

Definition at line 1332 of file SubProblem.C.

Referenced by FEProblemBase::init().

1333 {
1334  std::unordered_set<FEFamily> disable_families;
1335  for (const auto & [family, flag] : _family_for_p_refinement)
1336  if (flag)
1337  disable_families.insert(family);
1338 
1339  for (const auto tid : make_range(libMesh::n_threads()))
1340  for (const auto s : make_range(numNonlinearSystems()))
1341  assembly(tid, s).havePRefinement(disable_families);
1342 
1343  auto & eq = es();
1344  for (const auto family : disable_families)
1345  for (const auto i : make_range(eq.n_systems()))
1346  {
1347  auto & system = eq.get_system(i);
1348  auto & dof_map = system.get_dof_map();
1349  for (const auto vg : make_range(system.n_variable_groups()))
1350  {
1351  const auto & var_group = system.variable_group(vg);
1352  if (var_group.type().family == family)
1353  dof_map.should_p_refine(vg, false);
1354  }
1355  }
1356 
1357  _have_p_refinement = true;
1358 }
unsigned int n_threads()
virtual libMesh::EquationSystems & es()=0
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
void havePRefinement(const std::unordered_set< FEFamily > &disable_p_refinement_for_families)
Indicate that we have p-refinement.
Definition: Assembly.C:4859
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ prepareShapes()

void FEProblemBase::prepareShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2064 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onElement().

2065 {
2066  _assembly[tid][_current_nl_sys->number()]->copyShapes(var);
2067 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preserveMatrixSparsityPattern()

bool FEProblemBase::preserveMatrixSparsityPattern ( ) const
inlineinherited

Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve.

This is usually the Jacobian.

Definition at line 1966 of file FEProblemBase.h.

bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...

◆ projectInitialConditionOnCustomRange()

void FEProblemBase::projectInitialConditionOnCustomRange ( libMesh::ConstElemRange elem_range,
ConstBndNodeRange bnd_node_range 
)
inherited

Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 3693 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::applyIC(), and ActivateElementsUserObjectBase::initSolutions().

3695 {
3696  ComputeInitialConditionThread cic(*this);
3697  Threads::parallel_reduce(elem_range, cic);
3698 
3699  // Need to close the solution vector here so that boundary ICs take precendence
3700  for (auto & nl : _nl)
3701  nl->solution().close();
3702  _aux->solution().close();
3703 
3705  Threads::parallel_reduce(bnd_nodes, cbic);
3706 
3707  for (auto & nl : _nl)
3708  nl->solution().close();
3709  _aux->solution().close();
3710 
3711  // Also, load values into the SCALAR dofs
3712  // Note: We assume that all SCALAR dofs are on the
3713  // processor with highest ID
3714  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3715  {
3716  const auto & ics = _scalar_ics.getActiveObjects();
3717  for (const auto & ic : ics)
3718  {
3719  MooseVariableScalar & var = ic->variable();
3720  var.reinit();
3721 
3722  DenseVector<Number> vals(var.order());
3723  ic->compute(vals);
3724 
3725  const unsigned int n_SCALAR_dofs = var.dofIndices().size();
3726  for (unsigned int i = 0; i < n_SCALAR_dofs; i++)
3727  {
3728  const dof_id_type global_index = var.dofIndices()[i];
3729  var.sys().solution().set(global_index, vals(i));
3730  var.setValue(i, vals(i));
3731  }
3732  }
3733  }
3734 
3735  for (auto & nl : _nl)
3736  {
3737  nl->solution().close();
3738  nl->solution().localize(*nl->system().current_local_solution, nl->dofMap().get_send_list());
3739  }
3740 
3741  _aux->solution().close();
3742  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3743 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
Class for scalar variables (they are different).
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
uint8_t dof_id_type

◆ projectSolution()

void FEProblemBase::projectSolution ( )
inherited

Definition at line 3625 of file FEProblemBase.C.

Referenced by FEProblemBase::initialAdaptMesh(), and FEProblemBase::initialSetup().

3626 {
3627  TIME_SECTION("projectSolution", 2, "Projecting Initial Solutions")
3628 
3629  FloatingPointExceptionGuard fpe_guard(_app);
3630 
3631  ConstElemRange & elem_range = *_mesh.getActiveLocalElementRange();
3632  ComputeInitialConditionThread cic(*this);
3633  Threads::parallel_reduce(elem_range, cic);
3634 
3635  if (haveFV())
3636  {
3638  ElemInfoRange elem_info_range(_mesh.ownedElemInfoBegin(), _mesh.ownedElemInfoEnd());
3639 
3640  ComputeFVInitialConditionThread cfvic(*this);
3641  Threads::parallel_reduce(elem_info_range, cfvic);
3642  }
3643 
3644  // Need to close the solution vector here so that boundary ICs take precendence
3645  for (auto & nl : _nl)
3646  nl->solution().close();
3647  _aux->solution().close();
3648 
3649  // now run boundary-restricted initial conditions
3650  ConstBndNodeRange & bnd_nodes = *_mesh.getBoundaryNodeRange();
3652  Threads::parallel_reduce(bnd_nodes, cbic);
3653 
3654  for (auto & nl : _nl)
3655  nl->solution().close();
3656  _aux->solution().close();
3657 
3658  // Also, load values into the SCALAR dofs
3659  // Note: We assume that all SCALAR dofs are on the
3660  // processor with highest ID
3661  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3662  {
3663  const auto & ics = _scalar_ics.getActiveObjects();
3664  for (const auto & ic : ics)
3665  {
3666  MooseVariableScalar & var = ic->variable();
3667  var.reinit();
3668 
3669  DenseVector<Number> vals(var.order());
3670  ic->compute(vals);
3671 
3672  const unsigned int n_SCALAR_dofs = var.dofIndices().size();
3673  for (unsigned int i = 0; i < n_SCALAR_dofs; i++)
3674  {
3675  const dof_id_type global_index = var.dofIndices()[i];
3676  var.sys().solution().set(global_index, vals(i));
3677  var.setValue(i, vals(i));
3678  }
3679  }
3680  }
3681 
3682  for (auto & sys : _solver_systems)
3683  {
3684  sys->solution().close();
3685  sys->solution().localize(*sys->system().current_local_solution, sys->dofMap().get_send_list());
3686  }
3687 
3688  _aux->solution().close();
3689  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3690 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Scope guard for starting and stopping Floating Point Exception Trapping.
elem_info_iterator ownedElemInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1528
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
MooseMesh & _mesh
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
if(!dmm->_nl) SETERRQ(PETSC_COMM_WORLD
Class for scalar variables (they are different).
elem_info_iterator ownedElemInfoEnd()
Definition: MooseMesh.C:1536
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289
uint8_t dof_id_type

◆ queryParam()

template<typename T >
const T * MooseBase::queryParam ( const std::string &  name) const
inherited

Query a parameter for the object.

If the parameter is not valid, nullptr will be returned

Parameters
nameThe name of the parameter
Returns
A pointer to the parameter value, if it exists

Definition at line 391 of file MooseBase.h.

392 {
393  return isParamValid(name) ? &getParam<T>(name) : nullptr;
394 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195

◆ registerRandomInterface()

void FEProblemBase::registerRandomInterface ( RandomInterface random_interface,
const std::string &  name 
)
inherited

Definition at line 8689 of file FEProblemBase.C.

Referenced by RandomInterface::setRandomResetFrequency().

8690 {
8691  auto insert_pair = moose_try_emplace(
8692  _random_data_objects, name, std::make_unique<RandomData>(*this, random_interface));
8693 
8694  auto random_data_ptr = insert_pair.first->second.get();
8695  random_interface.setRandomDataPointer(random_data_ptr);
8696 }
std::pair< typename M::iterator, bool > moose_try_emplace(M &m, const typename M::key_type &k, Args &&... args)
Function to mirror the behavior of the C++17 std::map::try_emplace() method (no hint).
Definition: Moose.h:98
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
void setRandomDataPointer(RandomData *random_data)

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerUnfilledFunctorRequest()

template<typename T >
void SubProblem::registerUnfilledFunctorRequest ( T *  functor_interface,
const std::string &  functor_name,
const THREAD_ID  tid 
)
inherited

Register an unfulfilled functor request.

◆ reinitBecauseOfGhostingOrNewGeomObjects()

void FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects ( bool  mortar_changed = false)
protectedinherited

Call when it is possible that the needs for ghosted elements has changed.

Parameters
mortar_changedWhether an update of mortar data has been requested since the last EquationSystems (re)initialization

Definition at line 5124 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), and FEProblemBase::possiblyRebuildGeomSearchPatches().

5125 {
5126  TIME_SECTION("reinitBecauseOfGhostingOrNewGeomObjects",
5127  3,
5128  "Reinitializing Because of Geometric Search Objects");
5129 
5130  // Need to see if _any_ processor has ghosted elems or geometry objects.
5131  bool needs_reinit = !_ghosted_elems.empty();
5132  needs_reinit = needs_reinit || !_geometric_search_data._nearest_node_locators.empty() ||
5133  (_mortar_data.hasObjects() && mortar_changed);
5134  needs_reinit =
5135  needs_reinit || (_displaced_problem &&
5136  (!_displaced_problem->geomSearchData()._nearest_node_locators.empty() ||
5137  (_mortar_data.hasDisplacedObjects() && mortar_changed)));
5138  _communicator.max(needs_reinit);
5139 
5140  if (needs_reinit)
5141  {
5142  // Call reinit to get the ghosted vectors correct now that some geometric search has been done
5143  es().reinit();
5144 
5145  if (_displaced_mesh)
5146  _displaced_problem->es().reinit();
5147  }
5148 }
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
bool hasObjects() const
Returns whether we have any active AutomaticMortarGeneration objects.
Definition: MortarData.h:104
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
void max(const T &r, T &o, Request &req) const
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
MooseMesh * _displaced_mesh

◆ reinitDirac()

bool FEProblemBase::reinitDirac ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Returns true if the Problem has Dirac kernels it needs to compute on elem.

The maximum number of qps can rise if several Dirac points are added to a single element. In that case we need to resize the zeros to compensate.

Implements SubProblem.

Definition at line 2115 of file FEProblemBase.C.

Referenced by ComputeDiracThread::onElement().

2116 {
2117  std::vector<Point> & points = _dirac_kernel_info.getPoints()[elem].first;
2118 
2119  unsigned int n_points = points.size();
2120 
2121  if (n_points)
2122  {
2123  if (n_points > _max_qps)
2124  {
2125  _max_qps = n_points;
2126 
2131  unsigned int max_qpts = getMaxQps();
2132  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
2133  {
2134  // the highest available order in libMesh is 43
2135  _scalar_zero[tid].resize(FORTYTHIRD, 0);
2136  _zero[tid].resize(max_qpts, 0);
2137  _grad_zero[tid].resize(max_qpts, RealGradient(0.));
2138  _second_zero[tid].resize(max_qpts, RealTensor(0.));
2139  _vector_zero[tid].resize(max_qpts, RealGradient(0.));
2140  _vector_curl_zero[tid].resize(max_qpts, RealGradient(0.));
2141  }
2142  }
2143 
2144  for (const auto i : index_range(_nl))
2145  {
2146  _assembly[tid][i]->reinitAtPhysical(elem, points);
2147  _nl[i]->prepare(tid);
2148  }
2149  _aux->prepare(tid);
2150 
2151  reinitElem(elem, tid);
2152  }
2153 
2154  _assembly[tid][_current_nl_sys->number()]->prepare();
2156  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
2157 
2158  bool have_points = n_points > 0;
2160  {
2161  have_points |= _displaced_problem->reinitDirac(_displaced_mesh->elemPtr(elem->id()), tid);
2163  _displaced_problem->prepareNonlocal(tid);
2164  }
2165 
2166  return have_points;
2167 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
unsigned int n_threads()
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< VariableSecond > _second_zero
std::vector< VectorVariableCurl > _vector_curl_zero
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MultiPointMap & getPoints()
Returns a writeable reference to the _points container.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::vector< VariableGradient > _grad_zero
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< VectorVariableValue > _vector_zero
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh
unsigned int getMaxQps() const

◆ reinitElem()

void FEProblemBase::reinitElem ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2170 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeElemDampingThread::onElement(), ComputeIndicatorThread::onElement(), ComputeMaterialsObjectThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeInitialConditionThread::operator()(), FEProblemBase::reinitDirac(), and FEProblemBase::reinitElemPhys().

2171 {
2172  for (auto & sys : _solver_systems)
2173  sys->reinitElem(elem, tid);
2174  _aux->reinitElem(elem, tid);
2175 
2177  _displaced_problem->reinitElem(_displaced_mesh->elemPtr(elem->id()), tid);
2178 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemFace() [1/2]

void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
BoundaryID  ,
const THREAD_ID  tid 
)
inherited

◆ reinitElemFace() [2/2]

virtual void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitElemFaceRef()

void FEProblemBase::reinitElemFaceRef ( const Elem elem,
unsigned int  side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9028 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9034 {
9035  SubProblem::reinitElemFaceRef(elem, side, tolerance, pts, weights, tid);
9036 
9037  if (_displaced_problem)
9038  _displaced_problem->reinitElemFaceRef(
9039  _displaced_mesh->elemPtr(elem->id()), side, tolerance, pts, weights, tid);
9040 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
dof_id_type id() const
virtual void reinitElemFaceRef(const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given element on a given side at a given set of reference points and the...
Definition: SubProblem.C:882
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemNeighborAndLowerD()

void FEProblemBase::reinitElemNeighborAndLowerD ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2356 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInternalSide(), and NonlinearThread::onInternalSide().

2359 {
2360  reinitNeighbor(elem, side, tid);
2361 
2362  const Elem * lower_d_elem = _mesh.getLowerDElem(elem, side);
2363  if (lower_d_elem && _mesh.interiorLowerDBlocks().count(lower_d_elem->subdomain_id()) > 0)
2364  reinitLowerDElem(lower_d_elem, tid);
2365  else
2366  {
2367  // with mesh refinement, lower-dimensional element might be defined on neighbor side
2368  auto & neighbor = _assembly[tid][0]->neighbor();
2369  auto & neighbor_side = _assembly[tid][0]->neighborSide();
2370  const Elem * lower_d_elem_neighbor = _mesh.getLowerDElem(neighbor, neighbor_side);
2371  if (lower_d_elem_neighbor &&
2372  _mesh.interiorLowerDBlocks().count(lower_d_elem_neighbor->subdomain_id()) > 0)
2373  {
2374  auto qps = _assembly[tid][0]->qPointsFaceNeighbor().stdVector();
2375  std::vector<Point> reference_points;
2376  FEMap::inverse_map(
2377  lower_d_elem_neighbor->dim(), lower_d_elem_neighbor, qps, reference_points);
2378  reinitLowerDElem(lower_d_elem_neighbor, tid, &reference_points);
2379  }
2380  }
2381 
2383  _displaced_problem->reinitElemNeighborAndLowerD(
2384  _displaced_mesh->elemPtr(elem->id()), side, tid);
2385 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
const Elem * getLowerDElem(const Elem *, unsigned short int) const
Returns a const pointer to a lower dimensional element that corresponds to a side of a higher dimensi...
Definition: MooseMesh.C:1701
dof_id_type id() const
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
virtual unsigned short dim() const=0
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void reinitNeighbor(const Elem *elem, unsigned int side, const THREAD_ID tid) override
MooseMesh * _displaced_mesh

◆ reinitElemPhys()

void FEProblemBase::reinitElemPhys ( const Elem elem,
const std::vector< Point > &  phys_points_in_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2181 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

2184 {
2185  mooseAssert(_mesh.queryElemPtr(elem->id()) == elem,
2186  "Are you calling this method with a displaced mesh element?");
2187 
2188  for (const auto i : index_range(_solver_systems))
2189  {
2190  _assembly[tid][i]->reinitAtPhysical(elem, phys_points_in_elem);
2191  _solver_systems[i]->prepare(tid);
2192  _assembly[tid][i]->prepare();
2194  _assembly[tid][i]->prepareNonlocal();
2195  }
2196  _aux->prepare(tid);
2197 
2198  reinitElem(elem, tid);
2199 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual Elem * queryElemPtr(const dof_id_type i)
Definition: MooseMesh.C:3125
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
auto index_range(const T &sizable)

◆ reinitFVFace()

void SubProblem::reinitFVFace ( const THREAD_ID  tid,
const FaceInfo fi 
)
inherited

reinitialize the finite volume assembly data for the provided face and thread

Definition at line 1284 of file SubProblem.C.

1285 {
1286  for (const auto nl : make_range(numNonlinearSystems()))
1287  assembly(tid, nl).reinitFVFace(fi);
1288 }
void reinitFVFace(const FaceInfo &fi)
Definition: Assembly.C:1855
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitLowerDElem()

void FEProblemBase::reinitLowerDElem ( const Elem lower_d_elem,
const THREAD_ID  tid,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2229 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::prepareFace(), and FEProblemBase::reinitElemNeighborAndLowerD().

2233 {
2234  SubProblem::reinitLowerDElem(lower_d_elem, tid, pts, weights);
2235 
2237  _displaced_problem->reinitLowerDElem(
2238  _displaced_mesh->elemPtr(lower_d_elem->id()), tid, pts, weights);
2239 }
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr)
Definition: SubProblem.C:957
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitMaterials()

void FEProblemBase::reinitMaterials ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4000 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeDiracThread::onElement(), and ComputeUserObjectsThread::onElement().

4001 {
4002  if (hasActiveMaterialProperties(tid))
4003  {
4004  auto && elem = _assembly[tid][0]->elem();
4005  unsigned int n_points = _assembly[tid][0]->qRule()->n_points();
4006 
4007  auto & material_data = _material_props.getMaterialData(tid);
4008  material_data.resize(n_points);
4009 
4010  // Only swap if requested
4011  if (swap_stateful)
4012  material_data.swap(*elem);
4013 
4014  if (_discrete_materials.hasActiveBlockObjects(blk_id, tid))
4015  material_data.reset(_discrete_materials.getActiveBlockObjects(blk_id, tid));
4016 
4017  if (_materials.hasActiveBlockObjects(blk_id, tid))
4018  material_data.reinit(_materials.getActiveBlockObjects(blk_id, tid));
4019  }
4020 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsBoundary()

void FEProblemBase::reinitMaterialsBoundary ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on a boundary

Parameters
boundary_idThe boundary on which to reinit corresponding materials
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4093 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4097 {
4098  if (hasActiveMaterialProperties(tid))
4099  {
4100  auto && elem = _assembly[tid][0]->elem();
4101  unsigned int side = _assembly[tid][0]->side();
4102  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4103 
4104  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4105  bnd_material_data.resize(n_points);
4106 
4107  if (swap_stateful && !bnd_material_data.isSwapped())
4108  bnd_material_data.swap(*elem, side);
4109 
4110  if (_discrete_materials.hasActiveBoundaryObjects(boundary_id, tid))
4111  bnd_material_data.reset(_discrete_materials.getActiveBoundaryObjects(boundary_id, tid));
4112 
4113  if (reinit_mats)
4114  bnd_material_data.reinit(*reinit_mats);
4115  else if (_materials.hasActiveBoundaryObjects(boundary_id, tid))
4116  bnd_material_data.reinit(_materials.getActiveBoundaryObjects(boundary_id, tid));
4117  }
4118 }
MaterialPropertyStorage & _bnd_material_props
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFace()

void FEProblemBase::reinitMaterialsFace ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on element faces

Parameters
blk_idThe subdomain on which the element owning the face lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4023 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearThread::prepareFace().

4027 {
4028  if (hasActiveMaterialProperties(tid))
4029  {
4030  auto && elem = _assembly[tid][0]->elem();
4031  unsigned int side = _assembly[tid][0]->side();
4032  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4033 
4034  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4035  bnd_material_data.resize(n_points);
4036 
4037  if (swap_stateful && !bnd_material_data.isSwapped())
4038  bnd_material_data.swap(*elem, side);
4039 
4040  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4041  bnd_material_data.reset(
4042  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4043 
4044  if (reinit_mats)
4045  bnd_material_data.reinit(*reinit_mats);
4046  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4047  bnd_material_data.reinit(
4048  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4049  }
4050 }
MaterialPropertyStorage & _bnd_material_props
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsInterface()

void FEProblemBase::reinitMaterialsInterface ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4121 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), and ComputeUserObjectsThread::onInterface().

4124 {
4125  if (hasActiveMaterialProperties(tid))
4126  {
4127  const Elem * const & elem = _assembly[tid][0]->elem();
4128  unsigned int side = _assembly[tid][0]->side();
4129  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4130 
4131  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4132  bnd_material_data.resize(n_points);
4133 
4134  if (swap_stateful && !bnd_material_data.isSwapped())
4135  bnd_material_data.swap(*elem, side);
4136 
4137  if (_interface_materials.hasActiveBoundaryObjects(boundary_id, tid))
4138  bnd_material_data.reinit(_interface_materials.getActiveBoundaryObjects(boundary_id, tid));
4139  }
4140 }
MaterialPropertyStorage & _bnd_material_props
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ reinitMaterialsNeighbor()

void FEProblemBase::reinitMaterialsNeighbor ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on the neighboring element face

Parameters
blk_idThe subdomain on which the neighbor element lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4053 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearSystemBase::reinitNodeFace().

4057 {
4058  if (hasActiveMaterialProperties(tid))
4059  {
4060  // NOTE: this will not work with h-adaptivity
4061  // lindsayad: why not?
4062 
4063  const Elem * neighbor = _assembly[tid][0]->neighbor();
4064  unsigned int neighbor_side = neighbor->which_neighbor_am_i(_assembly[tid][0]->elem());
4065 
4066  mooseAssert(neighbor, "neighbor should be non-null");
4067  mooseAssert(blk_id == neighbor->subdomain_id(),
4068  "The provided blk_id " << blk_id << " and neighbor subdomain ID "
4069  << neighbor->subdomain_id() << " do not match.");
4070 
4071  unsigned int n_points = _assembly[tid][0]->qRuleNeighbor()->n_points();
4072 
4073  auto & neighbor_material_data = _neighbor_material_props.getMaterialData(tid);
4074  neighbor_material_data.resize(n_points);
4075 
4076  // Only swap if requested
4077  if (swap_stateful)
4078  neighbor_material_data.swap(*neighbor, neighbor_side);
4079 
4080  if (_discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4081  neighbor_material_data.reset(
4082  _discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4083 
4084  if (reinit_mats)
4085  neighbor_material_data.reinit(*reinit_mats);
4086  else if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4087  neighbor_material_data.reinit(
4088  _materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4089  }
4090 }
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
subdomain_id_type subdomain_id() const
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMortarElem()

void SubProblem::reinitMortarElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

Reinit a mortar element to obtain a valid JxW.

Definition at line 994 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

995 {
996  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
997  assembly(tid, nl_sys_num).reinitMortarElem(elem);
998 }
void reinitMortarElem(const Elem *elem)
reinitialize a mortar segment mesh element in order to get a proper JxW
Definition: Assembly.C:2402
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitMortarUserObjects()

void FEProblemBase::reinitMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced 
)
inherited

Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics.

Definition at line 9293 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9296 {
9297  const auto mortar_uos =
9298  getMortarUserObjects(primary_boundary_id, secondary_boundary_id, displaced);
9299  for (auto * const mortar_uo : mortar_uos)
9300  {
9301  mortar_uo->setNormals();
9302  mortar_uo->reinit();
9303  }
9304 }
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...

◆ reinitNeighbor()

void FEProblemBase::reinitNeighbor ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2317 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and FEProblemBase::reinitElemNeighborAndLowerD().

2318 {
2319  setNeighborSubdomainID(elem, side, tid);
2320 
2321  const Elem * neighbor = elem->neighbor_ptr(side);
2322  unsigned int neighbor_side = neighbor->which_neighbor_am_i(elem);
2323 
2324  for (const auto i : index_range(_nl))
2325  {
2326  _assembly[tid][i]->reinitElemAndNeighbor(elem, side, neighbor, neighbor_side);
2327  _nl[i]->prepareNeighbor(tid);
2328  // Called during stateful material property evaluation outside of solve
2329  _assembly[tid][i]->prepareNeighbor();
2330  }
2331  _aux->prepareNeighbor(tid);
2332 
2333  for (auto & nl : _nl)
2334  {
2335  nl->reinitElemFace(elem, side, tid);
2336  nl->reinitNeighborFace(neighbor, neighbor_side, tid);
2337  }
2338  _aux->reinitElemFace(elem, side, tid);
2339  _aux->reinitNeighborFace(neighbor, neighbor_side, tid);
2340 
2342  {
2343  // There are cases like for cohesive zone modeling without significant sliding where we cannot
2344  // use FEInterface::inverse_map in Assembly::reinitElemAndNeighbor in the displaced problem
2345  // because the physical points coming from the element don't actually lie on the neighbor.
2346  // Moreover, what's the point of doing another physical point inversion in other cases? We only
2347  // care about the reference points which we can just take from the undisplaced computation
2348  const auto & displaced_ref_pts = _assembly[tid][0]->qRuleNeighbor()->get_points();
2349 
2350  _displaced_problem->reinitNeighbor(
2351  _displaced_mesh->elemPtr(elem->id()), side, tid, &displaced_ref_pts);
2352  }
2353 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
unsigned int which_neighbor_am_i(const Elem *e) const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const Elem * neighbor_ptr(unsigned int i) const
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNeighborFaceRef()

void FEProblemBase::reinitNeighborFaceRef ( const Elem neighbor_elem,
unsigned int  neighbor_side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9043 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9049 {
9050  SubProblem::reinitNeighborFaceRef(neighbor_elem, neighbor_side, tolerance, pts, weights, tid);
9051 
9052  if (_displaced_problem)
9053  _displaced_problem->reinitNeighborFaceRef(
9054  _displaced_mesh->elemPtr(neighbor_elem->id()), neighbor_side, tolerance, pts, weights, tid);
9055 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
virtual void reinitNeighborFaceRef(const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given neighbor element on a given side at a given set of reference point...
Definition: SubProblem.C:921
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitNeighborLowerDElem()

void SubProblem::reinitNeighborLowerDElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

reinitialize a neighboring lower dimensional element

Definition at line 987 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

988 {
989  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
990  assembly(tid, nl_sys_num).reinitNeighborLowerDElem(elem);
991 }
void reinitNeighborLowerDElem(const Elem *elem)
reinitialize a neighboring lower dimensional element
Definition: Assembly.C:2381
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitNeighborPhys() [1/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
unsigned int  neighbor_side,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ reinitNeighborPhys() [2/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitNode()

void FEProblemBase::reinitNode ( const Node node,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2242 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), NonlinearSystemBase::computeResidualInternal(), ComputeNodalUserObjectsThread::onNode(), ComputeNodalDampingThread::onNode(), ComputeNodalKernelsThread::onNode(), and ComputeNodalKernelJacobiansThread::onNode().

2243 {
2245  _displaced_problem->reinitNode(&_displaced_mesh->nodeRef(node->id()), tid);
2246 
2247  for (const auto i : index_range(_nl))
2248  {
2249  _assembly[tid][i]->reinit(node);
2250  _nl[i]->reinitNode(node, tid);
2251  }
2252  _aux->reinitNode(node, tid);
2253 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:834
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodeFace()

void FEProblemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2256 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), ComputeNodalKernelBcsThread::onNode(), ComputeNodalKernelBCJacobiansThread::onNode(), NonlinearSystemBase::reinitNodeFace(), NonlinearSystemBase::setConstraintSecondaryValues(), and NonlinearSystemBase::setInitialSolution().

2257 {
2259  _displaced_problem->reinitNodeFace(&_displaced_mesh->nodeRef(node->id()), bnd_id, tid);
2260 
2261  for (const auto i : index_range(_nl))
2262  {
2263  _assembly[tid][i]->reinit(node);
2264  _nl[i]->reinitNodeFace(node, bnd_id, tid);
2265  }
2266  _aux->reinitNodeFace(node, bnd_id, tid);
2267 }
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:834
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodes()

void FEProblemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2270 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2271 {
2273  _displaced_problem->reinitNodes(nodes, tid);
2274 
2275  for (auto & nl : _nl)
2276  nl->reinitNodes(nodes, tid);
2277  _aux->reinitNodes(nodes, tid);
2278 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitNodesNeighbor()

void FEProblemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2281 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2282 {
2284  _displaced_problem->reinitNodesNeighbor(nodes, tid);
2285 
2286  for (auto & nl : _nl)
2287  nl->reinitNodesNeighbor(nodes, tid);
2288  _aux->reinitNodesNeighbor(nodes, tid);
2289 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitOffDiagScalars()

void FEProblemBase::reinitOffDiagScalars ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 2309 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians(), NonlinearSystemBase::constraintJacobians(), and NonlinearThread::onElement().

2310 {
2311  _assembly[tid][_current_nl_sys->number()]->prepareOffDiagScalar();
2312  if (_displaced_problem)
2313  _displaced_problem->reinitOffDiagScalars(tid);
2314 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitScalars()

void FEProblemBase::reinitScalars ( const THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
overridevirtualinherited

fills the VariableValue arrays for scalar variables from the solution vector

Parameters
tidThe thread id
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Implements SubProblem.

Definition at line 2292 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeResidualTags(), NonlinearSystemBase::computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), and FEProblemBase::initialSetup().

2293 {
2294  TIME_SECTION("reinitScalars", 3, "Reinitializing Scalar Variables");
2295 
2297  _displaced_problem->reinitScalars(tid, reinit_for_derivative_reordering);
2298 
2299  for (auto & nl : _nl)
2300  nl->reinitScalars(tid, reinit_for_derivative_reordering);
2301  _aux->reinitScalars(tid, reinit_for_derivative_reordering);
2302 
2303  // This is called outside of residual/Jacobian call-backs
2304  for (auto & assembly : _assembly[tid])
2306 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void prepareScalar()
Definition: Assembly.C:2945
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ removeAlgebraicGhostingFunctor()

void SubProblem::removeAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf)
inherited

Remove an algebraic ghosting functor from this problem's DofMaps.

Definition at line 1067 of file SubProblem.C.

1068 {
1069  EquationSystems & eq = es();
1070  const auto n_sys = eq.n_systems();
1071  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1072 
1073  const bool found_in_root_sys =
1074  std::find(nl_dof_map.algebraic_ghosting_functors_begin(),
1075  nl_dof_map.algebraic_ghosting_functors_end(),
1076  &algebraic_gf) != nl_dof_map.algebraic_ghosting_functors_end();
1077 
1078 #ifndef NDEBUG
1079  const bool found_in_our_map =
1080  _root_alg_gf_to_sys_clones.find(&algebraic_gf) != _root_alg_gf_to_sys_clones.end();
1081  mooseAssert(found_in_root_sys == found_in_our_map,
1082  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1083  "it in our gf to clones map");
1084 #endif
1085 
1086  if (found_in_root_sys) // libMesh yells if we try to remove
1087  // something that's not there
1088  nl_dof_map.remove_algebraic_ghosting_functor(algebraic_gf);
1089 
1090  auto it = _root_alg_gf_to_sys_clones.find(&algebraic_gf);
1091  if (it == _root_alg_gf_to_sys_clones.end())
1092  return;
1093 
1094  auto & clones_vec = it->second;
1095  mooseAssert((n_sys - 1) == clones_vec.size(),
1096  "The size of the gf clones vector doesn't match the number of systems minus one");
1097  if (clones_vec.empty())
1098  {
1099  mooseAssert(n_sys == 1, "The clones vector should only be empty if there is only one system");
1100  return;
1101  }
1102 
1103  for (const auto i : make_range(n_sys))
1104  eq.get_system(i + 1).get_dof_map().remove_algebraic_ghosting_functor(*clones_vec[i]);
1105 
1106  _root_alg_gf_to_sys_clones.erase(it->first);
1107 }
unsigned int n_systems() const
GhostingFunctorIterator algebraic_ghosting_functors_begin() const
GhostingFunctorIterator algebraic_ghosting_functors_end() const
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_alg_gf_to_sys_clones
A map from a root algebraic ghosting functor, e.g.
Definition: SubProblem.h:1192
IntRange< T > make_range(T beg, T end)
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)

◆ removeCouplingGhostingFunctor()

void SubProblem::removeCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf)
inherited

Remove a coupling ghosting functor from this problem's DofMaps.

Definition at line 1110 of file SubProblem.C.

1111 {
1112  EquationSystems & eq = es();
1113  const auto num_nl_sys = numNonlinearSystems();
1114  if (!num_nl_sys)
1115  return;
1116 
1117  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1118  const bool found_in_root_sys = std::find(nl_dof_map.coupling_functors_begin(),
1119  nl_dof_map.coupling_functors_end(),
1120  &coupling_gf) != nl_dof_map.coupling_functors_end();
1121 
1122 #ifndef NDEBUG
1123  const bool found_in_our_map =
1125  mooseAssert(found_in_root_sys == found_in_our_map,
1126  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1127  "it in our gf to clones map");
1128 #endif
1129 
1130  if (found_in_root_sys) // libMesh yells if we try to remove
1131  // something that's not there
1132  nl_dof_map.remove_coupling_functor(coupling_gf);
1133 
1134  auto it = _root_coupling_gf_to_sys_clones.find(&coupling_gf);
1135  if (it == _root_coupling_gf_to_sys_clones.end())
1136  return;
1137 
1138  auto & clones_vec = it->second;
1139  mooseAssert((num_nl_sys - 1) == clones_vec.size(),
1140  "The size of the gf clones vector doesn't match the number of systems minus one");
1141  if (clones_vec.empty())
1142  {
1143  mooseAssert(num_nl_sys == 1,
1144  "The clones vector should only be empty if there is only one nonlinear system");
1145  return;
1146  }
1147 
1148  for (const auto i : make_range(num_nl_sys))
1149  eq.get_system(i + 1).get_dof_map().remove_coupling_functor(*clones_vec[i]);
1150 
1151  _root_coupling_gf_to_sys_clones.erase(it->first);
1152 }
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_coupling_gf_to_sys_clones
A map from a root coupling ghosting functor, e.g.
Definition: SubProblem.h:1199
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
GhostingFunctorIterator coupling_functors_end() const
void remove_coupling_functor(GhostingFunctor &coupling_functor)
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
GhostingFunctorIterator coupling_functors_begin() const

◆ reportMooseObjectDependency()

void FEProblemBase::reportMooseObjectDependency ( MooseObject a,
MooseObject b 
)
inherited

Register a MOOSE object dependency so we can either order operations properly or report when we cannot.

a -> b (a depends on b)

Definition at line 5118 of file FEProblemBase.C.

5119 {
5120  //<< "Object " << a->name() << " -> " << b->name() << std::endl;
5121 }

◆ resetFailNextNonlinearConvergenceCheck()

void FEProblemBase::resetFailNextNonlinearConvergenceCheck ( )
inlineinherited

Tell the problem that the nonlinear convergence check(s) may proceed as normal.

Definition at line 2422 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscNonlinearConverged().

void resetFailNextSystemConvergenceCheck()
Tell the problem that the system convergence check(s) may proceed as normal.

◆ resetFailNextSystemConvergenceCheck()

void FEProblemBase::resetFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system convergence check(s) may proceed as normal.

Definition at line 2424 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscLinearConverged(), and FEProblemBase::resetFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ residualSetup()

void FEProblemBase::residualSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9193 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::residualSetup().

9194 {
9196  // We need to setup all the nonlinear systems other than our current one which actually called
9197  // this method (so we have to make sure we don't go in a circle)
9198  for (const auto i : make_range(numNonlinearSystems()))
9199  if (i != currentNlSysNum())
9200  _nl[i]->residualSetup();
9201  // We don't setup the aux sys because that's been done elsewhere
9202  if (_displaced_problem)
9203  _displaced_problem->residualSetup();
9204 }
virtual std::size_t numNonlinearSystems() const override
virtual void residualSetup()
Definition: SubProblem.C:1201
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ resizeMaterialData()

void FEProblemBase::resizeMaterialData ( Moose::MaterialDataType  data_type,
unsigned int  nqp,
const THREAD_ID  tid 
)
inherited

Resize material data.

Parameters
data_typeThe type of material data to resize
nqpThe number of quadrature points to resize for
tidThe thread ID

Definition at line 9114 of file FEProblemBase.C.

9117 {
9118  getMaterialData(data_type, tid).resize(nqp);
9119 }
MPI_Datatype data_type
MaterialData & getMaterialData(Moose::MaterialDataType type, const THREAD_ID tid=0) const
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ restartableName()

std::string Restartable::restartableName ( const std::string &  data_name) const
protectedinherited

Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix.

This should only be used in this interface and in testing.

Definition at line 66 of file Restartable.C.

Referenced by Restartable::declareRecoverableData(), and Restartable::declareRestartableDataHelper().

67 {
68  return _restartable_system_name + "/" + _restartable_name + "/" + data_name;
69 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:243
const std::string _restartable_system_name
The system name this object is in.
Definition: Restartable.h:230

◆ restoreMultiApps()

void FEProblemBase::restoreMultiApps ( ExecFlagType  type,
bool  force = false 
)
inherited

Restore the MultiApps associated with the ExecFlagType.

Parameters
forceForce restoration because something went wrong with the solve

Definition at line 5553 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject(), and FixedPointSolve::solve().

5554 {
5555  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5556 
5557  if (multi_apps.size())
5558  {
5559  if (_verbose_multiapps)
5560  {
5561  if (force)
5562  _console << COLOR_CYAN << "\nRestoring Multiapps on " << type.name()
5563  << " because of solve failure!" << COLOR_DEFAULT << std::endl;
5564  else
5565  _console << COLOR_CYAN << "\nRestoring MultiApps on " << type.name() << COLOR_DEFAULT
5566  << std::endl;
5567  }
5568 
5569  for (const auto & multi_app : multi_apps)
5570  multi_app->restore(force);
5571 
5573 
5574  if (_verbose_multiapps)
5575  _console << COLOR_CYAN << "Finished Restoring MultiApps on " << type.name() << "\n"
5576  << COLOR_DEFAULT << std::endl;
5577  }
5578 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ restoreOldSolutions()

void FEProblemBase::restoreOldSolutions ( )
virtualinherited

Restore old solutions from the backup vectors and deallocate them.

Definition at line 6681 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6682 {
6683  TIME_SECTION("restoreOldSolutions", 5, "Restoring Old Solutions");
6684 
6685  for (auto & sys : _solver_systems)
6686  sys->restoreOldSolutions();
6687  _aux->restoreOldSolutions();
6688 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ restoreOriginalNonzeroPattern()

bool FEProblemBase::restoreOriginalNonzeroPattern ( ) const
inlineinherited
Returns
Whether the original matrix nonzero pattern is restored before each Jacobian assembly

Definition at line 1946 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal().

const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.

◆ restoreSolutions()

void FEProblemBase::restoreSolutions ( )
virtualinherited

Definition at line 6643 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::initSolutions(), TimeStepper::rejectStep(), and FEProblemBase::updateMeshXFEM().

6644 {
6645  TIME_SECTION("restoreSolutions", 5, "Restoring Solutions");
6646 
6647  if (!_not_zeroed_tagged_vectors.empty())
6648  paramError("not_zeroed_tag_vectors",
6649  "There is currently no way to restore not-zeroed vectors.");
6650 
6651  for (auto & sys : _solver_systems)
6652  {
6653  if (_verbose_restore)
6654  _console << "Restoring solutions on system " << sys->name() << "..." << std::endl;
6655  sys->restoreSolutions();
6656  }
6657 
6658  if (_verbose_restore)
6659  _console << "Restoring solutions on Auxiliary system..." << std::endl;
6660  _aux->restoreSolutions();
6661 
6662  if (_verbose_restore)
6663  _console << "Restoring postprocessor, vector-postprocessor, and reporter data..." << std::endl;
6665 
6666  if (_displaced_problem)
6667  _displaced_problem->updateMesh();
6668 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
void restoreState(bool verbose=false)
When a time step fails, this method is called to revert the current reporter values to their old stat...
Definition: ReporterData.C:24

◆ safeAccessTaggedMatrices()

virtual bool SubProblem::safeAccessTaggedMatrices ( ) const
inlinevirtualinherited

Is it safe to access the tagged matrices.

Reimplemented in DisplacedProblem.

Definition at line 731 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedMatrices().

bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108

◆ safeAccessTaggedVectors()

virtual bool SubProblem::safeAccessTaggedVectors ( ) const
inlinevirtualinherited

Is it safe to access the tagged vectors.

Reimplemented in DisplacedProblem.

Definition at line 734 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedVectors().

734 { return _safe_access_tagged_vectors; }
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111

◆ saveOldSolutions()

void FEProblemBase::saveOldSolutions ( )
virtualinherited

Allocate vectors and save old solutions into them.

Definition at line 6671 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6672 {
6673  TIME_SECTION("saveOldSolutions", 5, "Saving Old Solutions");
6674 
6675  for (auto & sys : _solver_systems)
6676  sys->saveOldSolutions();
6677  _aux->saveOldSolutions();
6678 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ selectMatrixTagsFromSystem()

void SubProblem::selectMatrixTagsFromSystem ( const SystemBase system,
const std::map< TagName, TagID > &  input_matrix_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the matrix tags which belong to a specific system.

Parameters
systemReference to the system
input_matrix_tagsA map of matrix tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 300 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys().

303 {
304  selected_tags.clear();
305  for (const auto & matrix_tag_pair : input_matrix_tags)
306  if (system.hasMatrix(matrix_tag_pair.second))
307  selected_tags.insert(matrix_tag_pair.second);
308 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360

◆ selectVectorTagsFromSystem()

void SubProblem::selectVectorTagsFromSystem ( const SystemBase system,
const std::vector< VectorTag > &  input_vector_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the vector tags which belong to a specific system.

Parameters
systemReference to the system
input_vector_tagsA vector of vector tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 289 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), and ComputeResidualAndJacobianThread::determineObjectWarehouses().

292 {
293  selected_tags.clear();
294  for (const auto & vector_tag : input_vector_tags)
295  if (system.hasVector(vector_tag._id))
296  selected_tags.insert(vector_tag._id);
297 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916

◆ setActiveElementalMooseVariables()

void FEProblemBase::setActiveElementalMooseVariables ( const std::set< MooseVariableFEBase *> &  moose_vars,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the MOOSE variables to be reinited on each element.

Parameters
moose_varsA set of variables that need to be reinited each time reinit() is called.
tidThe thread id

Reimplemented from SubProblem.

Definition at line 5834 of file FEProblemBase.C.

Referenced by FEProblemBase::prepareMaterials(), ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

5836 {
5838 
5839  if (_displaced_problem)
5840  _displaced_problem->setActiveElementalMooseVariables(moose_vars, tid);
5841 }
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFieldBase *> &moose_vars, const THREAD_ID tid)
Set the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:443
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::setActiveFEVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5796 of file FEProblemBase.C.

5797 {
5799 
5800  if (_displaced_problem)
5801  _displaced_problem->setActiveFEVariableCoupleableMatrixTags(mtags, tid);
5802 }
virtual void setActiveFEVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:363
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableVectorTags()

void FEProblemBase::setActiveFEVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setActiveMaterialProperties()

void FEProblemBase::setActiveMaterialProperties ( const std::unordered_set< unsigned int > &  mat_prop_ids,
const THREAD_ID  tid 
)
inherited

Record and set the material properties required by the current computing thread.

Parameters
mat_prop_idsThe set of material properties required by the current computing thread.
tidThe thread id

Definition at line 5889 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), FEProblemBase::prepareMaterials(), NodalPatchRecovery::reinitPatch(), NonlinearSystemBase::setConstraintSecondaryValues(), and ComputeDiracThread::subdomainChanged().

5891 {
5892  // mark active properties in every material
5893  for (auto & mat : _all_materials.getObjects(tid))
5894  mat->setActiveProperties(mat_prop_ids);
5895  for (auto & mat : _all_materials[Moose::FACE_MATERIAL_DATA].getObjects(tid))
5896  mat->setActiveProperties(mat_prop_ids);
5897  for (auto & mat : _all_materials[Moose::NEIGHBOR_MATERIAL_DATA].getObjects(tid))
5898  mat->setActiveProperties(mat_prop_ids);
5899 
5900  _has_active_material_properties[tid] = !mat_prop_ids.empty();
5901 }
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.
MaterialWarehouse _all_materials

◆ setActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::setActiveScalarVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5814 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

5816 {
5818 
5819  if (_displaced_problem)
5820  _displaced_problem->setActiveScalarVariableCoupleableMatrixTags(mtags, tid);
5821 }
virtual void setActiveScalarVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:402
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::setActiveScalarVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5824 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

5826 {
5828 
5829  if (_displaced_problem)
5830  _displaced_problem->setActiveScalarVariableCoupleableVectorTags(vtags, tid);
5831 }
virtual void setActiveScalarVariableCoupleableVectorTags(std::set< TagID > &vtags, const THREAD_ID tid)
Definition: SubProblem.C:409
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setAxisymmetricCoordAxis()

void FEProblemBase::setAxisymmetricCoordAxis ( const MooseEnum rz_coord_axis)
inherited

Definition at line 825 of file FEProblemBase.C.

826 {
827  _mesh.setAxisymmetricCoordAxis(rz_coord_axis);
828 }
MooseMesh & _mesh
void setAxisymmetricCoordAxis(const MooseEnum &rz_coord_axis)
For axisymmetric simulations, set the symmetry coordinate axis.
Definition: MooseMesh.C:4213

◆ setConstJacobian()

void FEProblemBase::setConstJacobian ( bool  state)
inlineinherited

Set flag that Jacobian is constant (for optimization purposes)

Parameters
stateTrue if the Jacobian is constant, false otherwise

Definition at line 1825 of file FEProblemBase.h.

Referenced by ExplicitEuler::preSolve(), ExplicitTVDRK2::preSolve(), and ExplicitRK2::preSolve().

1825 { _const_jacobian = state; }
bool _const_jacobian
true if the Jacobian is constant

◆ setCoordSystem()

void FEProblemBase::setCoordSystem ( const std::vector< SubdomainName > &  blocks,
const MultiMooseEnum coord_sys 
)
inherited

Definition at line 817 of file FEProblemBase.C.

819 {
820  TIME_SECTION("setCoordSystem", 5, "Setting Coordinate System");
821  _mesh.setCoordSystem(blocks, coord_sys);
822 }
char ** blocks
MooseMesh & _mesh
void setCoordSystem(const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
Set the coordinate system for the provided blocks to coord_sys.
Definition: MooseMesh.C:4081

◆ setCoupling()

void FEProblemBase::setCoupling ( Moose::CouplingType  type)
inherited

Set the coupling between variables TODO: allow user-defined coupling.

Parameters
typeType of coupling

Definition at line 6065 of file FEProblemBase.C.

Referenced by FEProblemBase::init(), FEProblemBase::setCouplingMatrix(), and Moose::SlepcSupport::setEigenProblemSolverParams().

6066 {
6068  {
6070  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6071  "haven't been provided a coupling matrix!");
6072 
6073  // We've been told to trust the user coupling matrix, so we're going to leave things alone
6074  return;
6075  }
6076 
6077  _coupling = type;
6078 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ setCouplingMatrix() [1/2]

void FEProblemBase::setCouplingMatrix ( std::unique_ptr< libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Set custom coupling matrix.

Parameters
cmcoupling matrix to be set
nl_sys_numwhich nonlinear system we are setting the coupling matrix for

Definition at line 6089 of file FEProblemBase.C.

Referenced by MoosePreconditioner::setCouplingMatrix().

6090 {
6092  _cm[i] = std::move(cm);
6093 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCouplingMatrix() [2/2]

void FEProblemBase::setCouplingMatrix ( libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6081 of file FEProblemBase.C.

6082 {
6083  // TODO: Deprecate method
6085  _cm[i].reset(cm);
6086 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCurrentAlgebraicBndNodeRange()

void FEProblemBase::setCurrentAlgebraicBndNodeRange ( ConstBndNodeRange range)
inherited

Definition at line 9410 of file FEProblemBase.C.

9411 {
9412  if (!range)
9413  {
9415  return;
9416  }
9417 
9418  _current_algebraic_bnd_node_range = std::make_unique<ConstBndNodeRange>(*range);
9419 }
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range

◆ setCurrentAlgebraicElementRange()

void FEProblemBase::setCurrentAlgebraicElementRange ( libMesh::ConstElemRange range)
inherited

These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor.

setCurrentAlgebraicElementRange() sets the element range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicNodeRange() sets the node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicBndNodeRange() sets the boundary node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

Parameters
rangeA pointer to the const range object representing the algebraic elements, nodes, or boundary nodes.

Definition at line 9388 of file FEProblemBase.C.

9389 {
9390  if (!range)
9391  {
9393  return;
9394  }
9395 
9396  _current_algebraic_elem_range = std::make_unique<ConstElemRange>(*range);
9397 }
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range

◆ setCurrentAlgebraicNodeRange()

void FEProblemBase::setCurrentAlgebraicNodeRange ( libMesh::ConstNodeRange range)
inherited

Definition at line 9399 of file FEProblemBase.C.

9400 {
9401  if (!range)
9402  {
9404  return;
9405  }
9406 
9407  _current_algebraic_node_range = std::make_unique<ConstNodeRange>(*range);
9408 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range

◆ setCurrentBoundaryID()

void FEProblemBase::setCurrentBoundaryID ( BoundaryID  bid,
const THREAD_ID  tid 
)
overridevirtualinherited

sets the current boundary ID in assembly

Reimplemented from SubProblem.

Definition at line 9324 of file FEProblemBase.C.

9325 {
9327  if (_displaced_problem)
9328  _displaced_problem->setCurrentBoundaryID(bid, tid);
9329 }
virtual void setCurrentBoundaryID(BoundaryID bid, const THREAD_ID tid)
sets the current boundary ID in assembly
Definition: SubProblem.C:789
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setCurrentExecuteOnFlag()

void FEProblemBase::setCurrentExecuteOnFlag ( const ExecFlagType flag)
inherited

Definition at line 4573 of file FEProblemBase.C.

Referenced by FEProblemBase::execute(), FEProblemBase::initialSetup(), and FEProblemBase::outputStep().

4574 {
4575  _current_execute_on_flag = flag;
4576 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ setCurrentLinearSystem()

void FEProblemBase::setCurrentLinearSystem ( unsigned int  sys_num)
inherited

Set the current linear system pointer.

Parameters
sys_numThe number of linear system

Definition at line 9341 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and FEProblemBase::solveLinearSystem().

9342 {
9343  mooseAssert(sys_num < _linear_systems.size(),
9344  "System number greater than the number of linear systems");
9345  _current_linear_sys = _linear_systems[sys_num].get();
9347 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ setCurrentLowerDElem()

void FEProblemBase::setCurrentLowerDElem ( const Elem *const  lower_d_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the current lower dimensional element.

This can be null

Reimplemented from SubProblem.

Definition at line 9315 of file FEProblemBase.C.

9316 {
9317  SubProblem::setCurrentLowerDElem(lower_d_elem, tid);
9318  if (_displaced_problem)
9319  _displaced_problem->setCurrentLowerDElem(
9320  lower_d_elem ? _displaced_mesh->elemPtr(lower_d_elem->id()) : nullptr, tid);
9321 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
virtual void setCurrentLowerDElem(const Elem *const lower_d_elem, const THREAD_ID tid)
Set the current lower dimensional element.
Definition: SubProblem.C:1380
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ setCurrentlyComputingJacobian()

void SubProblem::setCurrentlyComputingJacobian ( const bool  currently_computing_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 689 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

690  {
691  _currently_computing_jacobian = currently_computing_jacobian;
692  }
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ setCurrentlyComputingResidual()

void FEProblemBase::setCurrentlyComputingResidual ( bool  currently_computing_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the residual.

Reimplemented from SubProblem.

Definition at line 8995 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualTags(), and FEProblemBase::resetState().

8996 {
8997  if (_displaced_problem)
8998  _displaced_problem->setCurrentlyComputingResidual(currently_computing_residual);
8999  _currently_computing_residual = currently_computing_residual;
9000 }
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ setCurrentlyComputingResidualAndJacobian()

void SubProblem::setCurrentlyComputingResidualAndJacobian ( bool  currently_computing_residual_and_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 1493 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

1495 {
1496  _currently_computing_residual_and_jacobian = currently_computing_residual_and_jacobian;
1497 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ setCurrentNonlinearSystem()

void FEProblemBase::setCurrentNonlinearSystem ( const unsigned int  nl_sys_num)
inherited

Definition at line 9332 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), EigenProblem::computeMatricesTags(), EigenProblem::computeResidualTag(), NonlinearSystemBase::computeResidualTags(), FEProblem::FEProblem(), EigenProblem::solve(), and FEProblemBase::solve().

9333 {
9334  mooseAssert(nl_sys_num < _nl.size(),
9335  "System number greater than the number of nonlinear systems");
9336  _current_nl_sys = _nl[nl_sys_num].get();
9338 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.

◆ setCurrentResidualVectorTags()

void FEProblemBase::setCurrentResidualVectorTags ( const std::set< TagID > &  vector_tags)
inlineinherited

Set the current residual vector tag data structure based on the passed in tag IDs.

Definition at line 3300 of file FEProblemBase.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and CrankNicolson::init().

3301 {
3303 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ setCurrentSubdomainID()

void FEProblemBase::setCurrentSubdomainID ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1772 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementalVariableValue::execute(), and ComputeInitialConditionThread::operator()().

1773 {
1774  SubdomainID did = elem->subdomain_id();
1775  for (const auto i : index_range(_solver_systems))
1776  {
1777  _assembly[tid][i]->setCurrentSubdomainID(did);
1778  if (_displaced_problem &&
1780  _displaced_problem->assembly(tid, i).setCurrentSubdomainID(did);
1781  }
1782 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ setDevice()

void MFEMProblem::setDevice ( )

Set the device to use to solve the FE problem.

◆ setErrorOnJacobianNonzeroReallocation()

void FEProblemBase::setErrorOnJacobianNonzeroReallocation ( bool  state)
inlineinherited

Definition at line 1957 of file FEProblemBase.h.

1958  {
1960  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ setException()

void FEProblemBase::setException ( const std::string &  message)
virtualinherited

Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve().

Parameters
messageThe error message describing the exception, which will get printed when checkExceptionAndStopSolve() is called

Definition at line 6434 of file FEProblemBase.C.

Referenced by ComputeThreadedGeneralUserObjectsThread::caughtMooseException(), ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::caughtMooseException(), ThreadedFaceLoop< RangeType >::caughtMooseException(), NonlinearSystemBase::computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), AuxiliarySystem::computeMortarNodalVars(), FEProblemBase::handleException(), ComputeMortarFunctor::operator()(), and DisplacedProblem::updateMesh().

6435 {
6436  _has_exception = true;
6437  _exception_message = message;
6438 }
bool _has_exception
Whether or not an exception has occurred.
std::string _exception_message
The error message to go with an exception.

◆ setExecutionPrinting()

void FEProblemBase::setExecutionPrinting ( const ExecFlagEnum print_exec)
inlineinherited

Definition at line 2430 of file FEProblemBase.h.

2430 { _print_execution_on = print_exec; }
ExecFlagEnum _print_execution_on
When to print the execution of loops.

◆ setFailNextNonlinearConvergenceCheck()

void FEProblemBase::setFailNextNonlinearConvergenceCheck ( )
inlineinherited

Skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2417 of file FEProblemBase.h.

Referenced by Terminator::execute().

void setFailNextSystemConvergenceCheck()
Tell the problem that the system(s) cannot be considered converged next time convergence is checked...

◆ setFailNextSystemConvergenceCheck()

void FEProblemBase::setFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system(s) cannot be considered converged next time convergence is checked.

Definition at line 2419 of file FEProblemBase.h.

Referenced by FEProblemBase::setFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ setFunctorOutput()

void SubProblem::setFunctorOutput ( bool  set_output)
inlineinherited

Setter for debug functor output.

Definition at line 924 of file SubProblem.h.

924 { _output_functors = set_output; }
bool _output_functors
Whether to output a list of the functors used and requested (currently only at initialSetup) ...
Definition: SubProblem.h:1164

◆ setIgnoreZerosInJacobian()

void FEProblemBase::setIgnoreZerosInJacobian ( bool  state)
inlineinherited

Set whether the zeros in the Jacobian should be dropped from the sparsity pattern.

Definition at line 1980 of file FEProblemBase.h.

1980 { _ignore_zeros_in_jacobian = state; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ setInputParametersFEProblem()

virtual void FEProblemBase::setInputParametersFEProblem ( InputParameters parameters)
inlinevirtualinherited

Reimplemented in FEProblem.

Definition at line 851 of file FEProblemBase.h.

Referenced by FEProblem::setInputParametersFEProblem().

852  {
853  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
854  }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.

◆ setKernelCoverageCheck() [1/2]

void FEProblemBase::setKernelCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1831 of file FEProblemBase.h.

1831 { _kernel_coverage_check = mode; }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setKernelCoverageCheck() [2/2]

void FEProblemBase::setKernelCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1837 of file FEProblemBase.h.

1838  {
1840  }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setLinearConvergenceNames()

void FEProblemBase::setLinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the linear convergence object name(s) if there is one.

Definition at line 9159 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9160 {
9161  if (convergence_names.size() != numLinearSystems())
9162  paramError("linear_convergence", "There must be one convergence object per linear system");
9163  _linear_convergence_names = convergence_names;
9164 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)
virtual std::size_t numLinearSystems() const override

◆ setMaterialCoverageCheck() [1/2]

void FEProblemBase::setMaterialCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1848 of file FEProblemBase.h.

1848 { _material_coverage_check = mode; }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMaterialCoverageCheck() [2/2]

void FEProblemBase::setMaterialCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1856 of file FEProblemBase.h.

1857  {
1859  }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMesh()

void MFEMProblem::setMesh ( )

Set the mesh used by MFEM.

Definition at line 48 of file MFEMProblem.C.

Referenced by MFEMProblem().

49 {
50  auto pmesh = mesh().getMFEMParMeshPtr();
51  getProblemData().pmesh = pmesh;
52  getProblemData().comm = pmesh->GetComm();
53  MPI_Comm_size(pmesh->GetComm(), &(getProblemData().num_procs));
54  MPI_Comm_rank(pmesh->GetComm(), &(getProblemData().myid));
55 }
std::shared_ptr< mfem::ParMesh > pmesh
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
virtual MFEMMesh & mesh() override
Overwritten mesh() method from base MooseMesh to retrieve the correct mesh type, in this case MFEMMes...
Definition: MFEMProblem.C:465
std::shared_ptr< mfem::ParMesh > getMFEMParMeshPtr()
Copy a shared_ptr to the mfem::ParMesh object.
Definition: MFEMMesh.h:42

◆ setMultiAppFixedPointConvergenceName()

void FEProblemBase::setMultiAppFixedPointConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the MultiApp fixed point convergence object name if there is one.

Definition at line 9131 of file FEProblemBase.C.

Referenced by FixedPointSolve::FixedPointSolve().

9132 {
9133  _multiapp_fixed_point_convergence_name = convergence_name;
9134 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ setNeedToAddDefaultMultiAppFixedPointConvergence()

void FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence ( )
inlineinherited

Sets _need_to_add_default_multiapp_fixed_point_convergence to true.

Definition at line 657 of file FEProblemBase.h.

Referenced by FixedPointSolve::FixedPointSolve().

658  {
660  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ setNeedToAddDefaultNonlinearConvergence()

void FEProblemBase::setNeedToAddDefaultNonlinearConvergence ( )
inlineinherited

Sets _need_to_add_default_nonlinear_convergence to true.

Definition at line 652 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

653  {
655  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ setNeedToAddDefaultSteadyStateConvergence()

void FEProblemBase::setNeedToAddDefaultSteadyStateConvergence ( )
inlineinherited

Sets _need_to_add_default_steady_state_convergence to true.

Definition at line 662 of file FEProblemBase.h.

Referenced by TransientBase::TransientBase().

663  {
665  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ setNeighborSubdomainID() [1/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setNeighborSubdomainID() [2/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
const THREAD_ID  tid 
)
virtualinherited

◆ setNonlinearConvergenceNames()

void FEProblemBase::setNonlinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the nonlinear convergence object name(s) if there is one.

Definition at line 9122 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9123 {
9124  if (convergence_names.size() != numNonlinearSystems())
9125  paramError("nonlinear_convergence",
9126  "There must be one convergence object per nonlinear system");
9127  _nonlinear_convergence_names = convergence_names;
9128 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
virtual std::size_t numNonlinearSystems() const override
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)

◆ setNonlocalCouplingMatrix()

void FEProblemBase::setNonlocalCouplingMatrix ( )
inherited

Set custom coupling matrix for variables requiring nonlocal contribution.

Definition at line 6106 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6107 {
6108  TIME_SECTION("setNonlocalCouplingMatrix", 5, "Setting Nonlocal Coupling Matrix");
6109 
6110  if (_nl.size() > 1)
6111  mooseError("Nonlocal kernels are weirdly stored on the FEProblem so we don't currently support "
6112  "multiple nonlinear systems with nonlocal kernels.");
6113 
6114  for (const auto nl_sys_num : index_range(_nl))
6115  {
6116  auto & nl = _nl[nl_sys_num];
6117  auto & nonlocal_cm = _nonlocal_cm[nl_sys_num];
6118  unsigned int n_vars = nl->nVariables();
6119  nonlocal_cm.resize(n_vars);
6120  const auto & vars = nl->getVariables(0);
6121  const auto & nonlocal_kernel = _nonlocal_kernels.getObjects();
6122  const auto & nonlocal_integrated_bc = _nonlocal_integrated_bcs.getObjects();
6123  for (const auto & ivar : vars)
6124  {
6125  for (const auto & kernel : nonlocal_kernel)
6126  {
6127  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6128  if (i == kernel->variable().number())
6129  for (const auto & jvar : vars)
6130  {
6131  const auto it = _var_dof_map.find(jvar->name());
6132  if (it != _var_dof_map.end())
6133  {
6134  unsigned int j = jvar->number();
6135  nonlocal_cm(i, j) = 1;
6136  }
6137  }
6138  }
6139  for (const auto & integrated_bc : nonlocal_integrated_bc)
6140  {
6141  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6142  if (i == integrated_bc->variable().number())
6143  for (const auto & jvar : vars)
6144  {
6145  const auto it = _var_dof_map.find(jvar->name());
6146  if (it != _var_dof_map.end())
6147  {
6148  unsigned int j = jvar->number();
6149  nonlocal_cm(i, j) = 1;
6150  }
6151  }
6152  }
6153  }
6154  }
6155 }
char ** vars
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
unsigned int n_vars
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
auto index_range(const T &sizable)
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ setParallelBarrierMessaging()

void FEProblemBase::setParallelBarrierMessaging ( bool  flag)
inlineinherited

Toggle parallel barrier messaging (defaults to on).

Definition at line 1864 of file FEProblemBase.h.

1864 { _parallel_barrier_messaging = flag; }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.

◆ setPostprocessorValueByName()

void FEProblemBase::setPostprocessorValueByName ( const PostprocessorName &  name,
const PostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a PostprocessorValue.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for setting values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

WARNING! This method should be used with caution. It exists to allow Transfers and other similar objects to modify Postprocessor values. It is not intended for general use.

Definition at line 4431 of file FEProblemBase.C.

Referenced by MultiAppPostprocessorTransfer::execute(), PIDTransientControl::execute(), FEProblemBase::joinAndFinalize(), SecantSolve::transformPostprocessors(), SteffensenSolve::transformPostprocessors(), and PicardSolve::transformPostprocessors().

4434 {
4436  PostprocessorReporterName(name), value, t_index);
4437 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ setPreserveMatrixSparsityPattern()

void FEProblemBase::setPreserveMatrixSparsityPattern ( bool  preserve)
inherited

Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved.

This global setting can be retrieved by kernels, notably those using AD, to decide whether to take additional care to preserve the sparsity pattern

Definition at line 3793 of file FEProblemBase.C.

3794 {
3795  if (_ignore_zeros_in_jacobian && preserve)
3796  paramWarning(
3797  "ignore_zeros_in_jacobian",
3798  "We likely cannot preserve the sparsity pattern if ignoring zeros in the Jacobian, which "
3799  "leads to removing those entries from the Jacobian sparsity pattern");
3801 }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.
bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...
void paramWarning(const std::string &param, Args... args) const
Emits a warning prefixed with the file and line number of the given param (from the input file) along...
Definition: MooseBase.h:442

◆ setResidual() [1/2]

virtual void SubProblem::setResidual ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidual() [2/2]

void FEProblemBase::setResidual ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1906 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1907 {
1908  _assembly[tid][_current_nl_sys->number()]->setResidual(
1909  residual,
1911  getVectorTag(_nl[_current_nl_sys->number()]->residualVectorTag()));
1912  if (_displaced_problem)
1913  _displaced_problem->setResidual(residual, tid);
1914 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ setResidualNeighbor() [1/2]

virtual void SubProblem::setResidualNeighbor ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidualNeighbor() [2/2]

void FEProblemBase::setResidualNeighbor ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1917 of file FEProblemBase.C.

1918 {
1919  _assembly[tid][_current_nl_sys->number()]->setResidualNeighbor(
1921  if (_displaced_problem)
1922  _displaced_problem->setResidualNeighbor(residual, tid);
1923 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
TagID residualVectorTag() const override
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ setRestartFile()

void FEProblemBase::setRestartFile ( const std::string &  file_name)
inherited

Communicate to the Resurector the name of the restart filer.

Parameters
file_nameThe file name for restarting from

Definition at line 8642 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and FEProblemBase::FEProblemBase().

8643 {
8644  if (_app.isRecovering())
8645  {
8646  mooseInfo("Restart file ", file_name, " is NOT being used since we are performing recovery.");
8647  }
8648  else
8649  {
8650  _app.setRestart(true);
8651  _app.setRestartRecoverFileBase(file_name);
8652  mooseInfo("Using ", file_name, " for restart.");
8653  }
8654 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
void setRestartRecoverFileBase(const std::string &file_base)
mutator for recover_base (set by RecoverBaseAction)
Definition: MooseApp.h:499
void setRestart(bool value)
Sets the restart/recover flags.
Definition: MooseApp.C:2912
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1801

◆ setSNESMFReuseBase()

void FEProblemBase::setSNESMFReuseBase ( bool  reuse,
bool  set_by_user 
)
inlineinherited

If or not to reuse the base vector for matrix-free calculation.

Definition at line 2119 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2120  {
2121  _snesmf_reuse_base = reuse, _snesmf_reuse_base_set_by_user = set_by_user;
2122  }
bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ setSteadyStateConvergenceName()

void FEProblemBase::setSteadyStateConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the steady-state detection convergence object name if there is one.

Definition at line 9137 of file FEProblemBase.C.

Referenced by TransientBase::TransientBase().

9138 {
9139  _steady_state_convergence_name = convergence_name;
9140 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ setUDotDotOldRequested()

virtual void FEProblemBase::setUDotDotOldRequested ( const bool  u_dotdot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution second time derivative.

Definition at line 2167 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2168  {
2169  _u_dotdot_old_requested = u_dotdot_old_requested;
2170  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.

◆ setUDotDotRequested()

virtual void FEProblemBase::setUDotDotRequested ( const bool  u_dotdot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution second time derivative.

Definition at line 2155 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2156  {
2157  _u_dotdot_requested = u_dotdot_requested;
2158  }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ setUDotOldRequested()

virtual void FEProblemBase::setUDotOldRequested ( const bool  u_dot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution time derivative.

Definition at line 2161 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2162  {
2163  _u_dot_old_requested = u_dot_old_requested;
2164  }
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ setUDotRequested()

virtual void FEProblemBase::setUDotRequested ( const bool  u_dot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution time derivative.

Definition at line 2152 of file FEProblemBase.h.

Referenced by TimeIntegrator::TimeIntegrator().

2152 { _u_dot_requested = u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ setupDampers()

void FEProblemBase::setupDampers ( )
inherited

Definition at line 5175 of file FEProblemBase.C.

5176 {
5177  for (auto & nl : _nl)
5178  nl->setupDampers();
5179 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ setVariableAllDoFMap()

void FEProblemBase::setVariableAllDoFMap ( const std::vector< const MooseVariableFEBase *> &  moose_vars)
inherited

Definition at line 1680 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

1681 {
1682  for (unsigned int i = 0; i < moose_vars.size(); ++i)
1683  {
1684  VariableName var_name = moose_vars[i]->name();
1685  auto & sys = _solver_systems[moose_vars[i]->sys().number()];
1686  sys->setVariableGlobalDoFs(var_name);
1687  _var_dof_map[var_name] = sys->getVariableGlobalDoFs();
1688  }
1689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674

◆ setVectorPostprocessorValueByName()

void FEProblemBase::setVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
const VectorPostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a VectorPostprocessor vector.

Parameters
object_nameThe name of the VPP object
vector_nameThe name of the declared vector
valueThe data to apply to the vector
t_indexFlag for getting current (0), old (1), or older (2) values

Definition at line 4457 of file FEProblemBase.C.

4461 {
4463  VectorPostprocessorReporterName(object_name, vector_name), value, t_index);
4464 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ setVerboseProblem()

void FEProblemBase::setVerboseProblem ( bool  verbose)
inherited

Make the problem be verbose.

Definition at line 9307 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and PhysicsBase::initializePhysics().

9308 {
9309  _verbose_setup = verbose ? "true" : "false";
9310  _verbose_multiapps = verbose;
9311  _verbose_restore = verbose;
9312 }
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ shouldPrintExecution()

bool FEProblemBase::shouldPrintExecution ( const THREAD_ID  tid) const
inherited

Check whether the problem should output execution orders at this time.

Definition at line 9249 of file FEProblemBase.C.

Referenced by FEProblemBase::joinAndFinalize(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

9250 {
9251  // For now, only support printing from thread 0
9252  if (tid != 0)
9253  return false;
9254 
9257  return true;
9258  else
9259  return false;
9260 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_ALWAYS
Definition: Moose.C:51
ExecFlagEnum _print_execution_on
When to print the execution of loops.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.

◆ shouldSolve()

bool FEProblemBase::shouldSolve ( ) const
inlineinherited

Definition at line 2203 of file FEProblemBase.h.

Referenced by FEProblemSolve::solve(), MFEMProblemSolve::solve(), and TransientBase::TransientBase().

2203 { return _solve; }
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ shouldUpdateSolution()

bool FEProblemBase::shouldUpdateSolution ( )
virtualinherited

Check to see whether the problem should update the solution.

Returns
true if the problem should update the solution, false otherwise

Definition at line 7757 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck(), and NonlinearSystem::solve().

7758 {
7759  return false;
7760 }

◆ showInvalidSolutionConsole()

bool FEProblemBase::showInvalidSolutionConsole ( ) const
inlineinherited

Whether or not to print out the invalid solutions summary table in console.

Definition at line 1997 of file FEProblemBase.h.

Referenced by SolverSystem::checkInvalidSolution().

const bool _show_invalid_solution_console

◆ sizeZeroes()

void FEProblemBase::sizeZeroes ( unsigned int  size,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2108 of file FEProblemBase.C.

2109 {
2110  mooseDoOnce(mooseWarning(
2111  "This function is deprecated and no longer performs any function. Please do not call it."));
2112 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ skipExceptionCheck()

void FEProblemBase::skipExceptionCheck ( bool  skip_exception_check)
inlineinherited

Set a flag that indicates if we want to skip exception and stop solve.

Definition at line 2132 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2133  {
2134  _skip_exception_check = skip_exception_check;
2135  }
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.

◆ solve()

void ExternalProblem::solve ( unsigned int  nl_sys_num = 0)
finaloverridevirtualinherited

Solve is implemented to providing syncing to/from the "transfer" mesh.

Reimplemented from FEProblemBase.

Definition at line 61 of file ExternalProblem.C.

62 {
63  TIME_SECTION("solve", 1, "Solving", false)
64 
65  syncSolutions(Direction::TO_EXTERNAL_APP);
66  externalSolve();
67  syncSolutions(Direction::FROM_EXTERNAL_APP);
68 }
virtual void syncSolutions(Direction direction)=0
Method to transfer data to/from the external application to the associated transfer mesh...
virtual void externalSolve()=0
New interface for solving an External problem.

◆ solveLinearSystem()

void FEProblemBase::solveLinearSystem ( const unsigned int  linear_sys_num,
const Moose::PetscSupport::PetscOptions po = nullptr 
)
virtualinherited

Build and solve a linear system.

Parameters
linear_sys_numThe number of the linear system (1,..,num. of lin. systems)
poThe petsc options for the solve, if not supplied, the defaults are used

Reimplemented in DumpObjectsProblem.

Definition at line 6530 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

6532 {
6533  TIME_SECTION("solve", 1, "Solving", false);
6534 
6535  setCurrentLinearSystem(linear_sys_num);
6536 
6537  const Moose::PetscSupport::PetscOptions & options = po ? *po : _petsc_options;
6538  auto & solver_params = _solver_params[numNonlinearSystems() + linear_sys_num];
6539 
6540  // Set custom convergence criteria
6542 
6543 #if PETSC_RELEASE_LESS_THAN(3, 12, 0)
6544  LibmeshPetscCall(Moose::PetscSupport::petscSetOptions(
6545  options, solver_params)); // Make sure the PETSc options are setup for this app
6546 #else
6547  // Now this database will be the default
6548  // Each app should have only one database
6549  if (!_app.isUltimateMaster())
6550  LibmeshPetscCall(PetscOptionsPush(_petsc_option_data_base));
6551 
6552  // We did not add PETSc options to database yet
6554  {
6555  Moose::PetscSupport::petscSetOptions(options, solver_params, this);
6557  }
6558 #endif
6559 
6560  if (_solve)
6562 
6563 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
6564  if (!_app.isUltimateMaster())
6565  LibmeshPetscCall(PetscOptionsPop());
6566 #endif
6567 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
virtual std::size_t numNonlinearSystems() const override
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:446
std::vector< SolverParams > _solver_params
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
A struct for storing the various types of petsc options and values.
Definition: PetscSupport.h:44
PetscOptions _petsc_option_data_base
const bool & _solve
Whether or not to actually solve the nonlinear system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
virtual void solve() override
Solve the system (using libMesh magic)
Definition: LinearSystem.C:299
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
A function for setting the PETSc options in PETSc from the options supplied to MOOSE.
Definition: PetscSupport.C:230
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
Moose::PetscSupport::PetscOptions _petsc_options
PETSc option storage.

◆ solverParams() [1/2]

SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0)
inherited

Get the solver parameters.

Definition at line 8674 of file FEProblemBase.C.

Referenced by NonlinearEigenSystem::attachPreconditioner(), SolverSystem::compute(), SlepcEigenSolverConfiguration::configure_solver(), Eigenvalue::Eigenvalue(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), FEProblemSolve::FEProblemSolve(), ExplicitTimeIntegrator::init(), EigenProblem::init(), FEProblemBase::init(), EigenProblem::isNonlinearEigenvalueSolver(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), ConsoleUtils::outputExecutionInformation(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), Eigenvalue::prepareSolverOptions(), NonlinearSystem::residualAndJacobianTogether(), Moose::SlepcSupport::setEigenProblemSolverParams(), Moose::PetscSupport::setLineSearchFromParams(), Moose::PetscSupport::setMFFDTypeFromParams(), Moose::PetscSupport::setSinglePetscOption(), Moose::PetscSupport::setSolveTypeFromParams(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), EigenProblem::solve(), FEProblemBase::solverParams(), EigenProblem::solverTypeString(), FEProblemBase::solverTypeString(), and Moose::SlepcSupport::storeSolveType().

8675 {
8676  mooseAssert(solver_sys_num < numSolverSystems(),
8677  "Solver system number '" << solver_sys_num << "' is out of bounds. We have '"
8678  << numSolverSystems() << "' solver systems");
8679  return _solver_params[solver_sys_num];
8680 }
std::vector< SolverParams > _solver_params
virtual std::size_t numSolverSystems() const override

◆ solverParams() [2/2]

const SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0) const
inherited

const version

Definition at line 8683 of file FEProblemBase.C.

8684 {
8685  return const_cast<FEProblemBase *>(this)->solverParams(solver_sys_num);
8686 }
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ solverSysNum()

unsigned int FEProblemBase::solverSysNum ( const SolverSystemName &  solver_sys_name) const
overridevirtualinherited
Returns
the solver system number corresponding to the provided solver_sys_name

Implements SubProblem.

Definition at line 6337 of file FEProblemBase.C.

Referenced by FEProblemBase::addVariable(), FEProblemBase::getSystemBase(), MultiSystemSolveObject::MultiSystemSolveObject(), and DisplacedProblem::solverSysNum().

6338 {
6339  std::istringstream ss(solver_sys_name);
6340  unsigned int solver_sys_num;
6341  if (!(ss >> solver_sys_num) || !ss.eof())
6342  {
6343  const auto & search = _solver_sys_name_to_num.find(solver_sys_name);
6344  if (search == _solver_sys_name_to_num.end())
6345  mooseError("The solver system number was requested for system '" + solver_sys_name,
6346  "' but this system does not exist in the Problem. Systems can be added to the "
6347  "problem using the 'nl_sys_names'/'linear_sys_names' parameter.\nSystems in the "
6348  "Problem: " +
6350  solver_sys_num = search->second;
6351  }
6352 
6353  return solver_sys_num;
6354 }
std::map< SolverSystemName, unsigned int > _solver_sys_name_to_num
Map connecting solver system names with their respective systems.
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ solverSystemConverged()

bool FEProblemBase::solverSystemConverged ( const unsigned int  sys_num)
overridevirtualinherited
Returns
whether the given solver system sys_num is converged

Reimplemented from SubProblem.

Reimplemented in EigenProblem.

Definition at line 6570 of file FEProblemBase.C.

6571 {
6572  if (_solve)
6573  return _solver_systems[sys_num]->converged();
6574  else
6575  return true;
6576 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ solverTypeString()

std::string MFEMProblem::solverTypeString ( unsigned int  solver_sys_num)
overridevirtual

Return solver type as a human readable string.

Reimplemented from FEProblemBase.

Definition at line 517 of file MFEMProblem.C.

518 {
519  mooseAssert(solver_sys_num == 0, "No support for multi-system with MFEM right now");
520  return MooseUtils::prettyCppType(getProblemData().jacobian_solver.get());
521 }
MFEMProblemData & getProblemData()
Method to get the current MFEMProblemData object storing the current data specifying the FE problem...
Definition: MFEMProblem.h:186
std::string prettyCppType(const std::string &cpp_type)
Definition: MooseUtils.C:1246

◆ startedInitialSetup()

virtual bool FEProblemBase::startedInitialSetup ( )
inlinevirtualinherited

Returns true if we are in or beyond the initialSetup stage.

Definition at line 509 of file FEProblemBase.h.

Referenced by NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), and MaterialPropertyInterface::checkExecutionStage().

509 { return _started_initial_setup; }
bool _started_initial_setup
At or beyond initialSteup stage.

◆ storeBoundaryDelayedCheckMatProp()

void SubProblem::storeBoundaryDelayedCheckMatProp ( const std::string &  requestor,
BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties to validate.

Parameters
requestorThe MOOSE object name requesting the material property
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 615 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

618 {
619  _map_boundary_material_props_check[boundary_id].insert(std::make_pair(requestor, name));
620 }
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeBoundaryMatPropName()

void SubProblem::storeBoundaryMatPropName ( BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on boundary ids.

This is method is called from within the Material class when the property is first registered.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 589 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

590 {
591  _map_boundary_material_props[boundary_id].insert(name);
592 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeBoundaryZeroMatProp()

void SubProblem::storeBoundaryZeroMatProp ( BoundaryID  boundary_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 601 of file SubProblem.C.

Referenced by MaterialBase::storeBoundaryZeroMatProp().

602 {
603  _zero_boundary_material_props[boundary_id].insert(name);
604 }
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeSubdomainDelayedCheckMatProp()

void SubProblem::storeSubdomainDelayedCheckMatProp ( const std::string &  requestor,
SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on block ids of material properties to validate.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 607 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

610 {
611  _map_block_material_props_check[block_id].insert(std::make_pair(requestor, name));
612 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070

◆ storeSubdomainMatPropName()

void SubProblem::storeSubdomainMatPropName ( SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on block ids.

This is method is called from within the Material class when the property is first registered.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 583 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

584 {
585  _map_block_material_props[block_id].insert(name);
586 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ storeSubdomainZeroMatProp()

void SubProblem::storeSubdomainZeroMatProp ( SubdomainID  block_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on block ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 595 of file SubProblem.C.

Referenced by MaterialBase::storeSubdomainZeroMatProp().

596 {
597  _zero_block_material_props[block_id].insert(name);
598 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058

◆ subdomainSetup()

void FEProblemBase::subdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2471 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), ComputeUserObjectsThread::subdomainChanged(), and ThreadedFaceLoop< RangeType >::subdomainChanged().

2472 {
2473  _all_materials.subdomainSetup(subdomain, tid);
2474  // Call the subdomain methods of the output system, these are not threaded so only call it once
2475  if (tid == 0)
2477 
2478  for (auto & nl : _nl)
2479  nl->subdomainSetup(subdomain, tid);
2480 
2481  // FIXME: call displaced_problem->subdomainSetup() ?
2482  // When adding possibility with materials being evaluated on displaced mesh
2483 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void subdomainSetup()
Calls the subdomainSetup function for each of the output objects.
virtual void subdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ subspaceDim()

unsigned int FEProblemBase::subspaceDim ( const std::string &  prefix) const
inlineinherited

Dimension of the subspace spanned by vectors with a given prefix.

Parameters
prefixPrefix of the vectors spanning the subspace.

Definition at line 1906 of file FEProblemBase.h.

Referenced by FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), and FEProblemBase::computeTransposeNullSpace().

1907  {
1908  if (_subspace_dim.count(prefix))
1909  return _subspace_dim.find(prefix)->second;
1910  else
1911  return 0;
1912  }
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ swapBackMaterials()

void FEProblemBase::swapBackMaterials ( const THREAD_ID  tid)
virtualinherited

Definition at line 4143 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), LineMaterialSamplerBase< Real >::execute(), ComputeMarkerThread::onElement(), ComputeElemAuxVarsThread< AuxKernelType >::onElement(), ComputeIndicatorThread::onElement(), NonlinearThread::onElement(), and ComputeUserObjectsThread::onElement().

4144 {
4145  auto && elem = _assembly[tid][0]->elem();
4147 }
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ swapBackMaterialsFace()

void FEProblemBase::swapBackMaterialsFace ( const THREAD_ID  tid)
virtualinherited

Definition at line 4150 of file FEProblemBase.C.

Referenced by NonlinearThread::onBoundary(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4151 {
4152  auto && elem = _assembly[tid][0]->elem();
4153  unsigned int side = _assembly[tid][0]->side();
4154  _bnd_material_props.getMaterialData(tid).swapBack(*elem, side);
4155 }
MaterialPropertyStorage & _bnd_material_props
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ swapBackMaterialsNeighbor()

void FEProblemBase::swapBackMaterialsNeighbor ( const THREAD_ID  tid)
virtualinherited

Definition at line 4158 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4159 {
4160  // NOTE: this will not work with h-adaptivity
4161  const Elem * neighbor = _assembly[tid][0]->neighbor();
4162  unsigned int neighbor_side =
4163  neighbor ? neighbor->which_neighbor_am_i(_assembly[tid][0]->elem()) : libMesh::invalid_uint;
4164 
4165  if (!neighbor)
4166  {
4167  if (haveFV())
4168  {
4169  // If neighbor is null, then we're on the neighbor side of a mesh boundary, e.g. we're off
4170  // the mesh in ghost-land. If we're using the finite volume method, then variable values and
4171  // consequently material properties have well-defined values in this ghost region outside of
4172  // the mesh and we really do want to reinit our neighbor materials in this case. Since we're
4173  // off in ghost land it's safe to do swaps with `MaterialPropertyStorage` using the elem and
4174  // elem_side keys
4175  neighbor = _assembly[tid][0]->elem();
4176  neighbor_side = _assembly[tid][0]->side();
4177  mooseAssert(neighbor, "We should have an appropriate value for elem coming from Assembly");
4178  }
4179  else
4180  mooseError("neighbor is null in Assembly!");
4181  }
4182 
4183  _neighbor_material_props.getMaterialData(tid).swapBack(*neighbor, neighbor_side);
4184 }
const unsigned int invalid_uint
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ syncSolutions()

virtual void MFEMProblem::syncSolutions ( Direction  direction)
inlineoverridevirtual

Method to transfer data to/from the external application to the associated transfer mesh.

Implements ExternalProblem.

Definition at line 27 of file MFEMProblem.h.

27 {}

◆ systemBaseAuxiliary() [1/2]

const SystemBase & FEProblemBase::systemBaseAuxiliary ( ) const
overridevirtualinherited

Return the auxiliary system object as a base class reference.

Implements SubProblem.

Definition at line 8973 of file FEProblemBase.C.

Referenced by PhysicsBase::copyVariablesFromMesh(), and getAuxVariableNames().

8974 {
8975  return *_aux;
8976 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseAuxiliary() [2/2]

SystemBase & FEProblemBase::systemBaseAuxiliary ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 8979 of file FEProblemBase.C.

8980 {
8981  return *_aux;
8982 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseLinear() [1/2]

const SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num) const
overridevirtualinherited

Get a constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 8941 of file FEProblemBase.C.

8942 {
8943  mooseAssert(sys_num < _linear_systems.size(),
8944  "System number greater than the number of linear systems");
8945  return *_linear_systems[sys_num];
8946 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseLinear() [2/2]

SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num)
overridevirtualinherited

Get a non-constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 8949 of file FEProblemBase.C.

8950 {
8951  mooseAssert(sys_num < _linear_systems.size(),
8952  "System number greater than the number of linear systems");
8953  return *_linear_systems[sys_num];
8954 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseNonlinear() [1/2]

const SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num) const
overridevirtualinherited

Return the nonlinear system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 8927 of file FEProblemBase.C.

8928 {
8929  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
8930  return *_nl[sys_num];
8931 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseNonlinear() [2/2]

SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 8934 of file FEProblemBase.C.

8935 {
8936  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
8937  return *_nl[sys_num];
8938 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseSolver() [1/2]

const SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num) const
overridevirtualinherited

Return the solver system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 8957 of file FEProblemBase.C.

8958 {
8959  mooseAssert(sys_num < _solver_systems.size(),
8960  "System number greater than the number of solver systems");
8961  return *_solver_systems[sys_num];
8962 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemBaseSolver() [2/2]

SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 8965 of file FEProblemBase.C.

8966 {
8967  mooseAssert(sys_num < _solver_systems.size(),
8968  "System number greater than the number of solver systems");
8969  return *_solver_systems[sys_num];
8970 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemNumForVariable()

unsigned int FEProblemBase::systemNumForVariable ( const VariableName &  variable_name) const
inherited
Returns
the system number for the provided variable_name Can be nonlinear or auxiliary

Definition at line 6357 of file FEProblemBase.C.

6358 {
6359  for (const auto & solver_sys : _solver_systems)
6360  if (solver_sys->hasVariable(variable_name))
6361  return solver_sys->number();
6362  mooseAssert(_aux, "Should have an auxiliary system");
6363  if (_aux->hasVariable(variable_name))
6364  return _aux->number();
6365 
6366  mooseError("Variable '",
6367  variable_name,
6368  "' was not found in any solver (nonlinear/linear) or auxiliary system");
6369 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ terminateSolve()

virtual void Problem::terminateSolve ( )
inlinevirtualinherited

Allow objects to request clean termination of the solve.

Definition at line 37 of file Problem.h.

Referenced by WebServerControl::execute(), Terminator::execute(), and TerminateChainControl::terminate().

37 { _termination_requested = true; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ theWarehouse()

TheWarehouse& FEProblemBase::theWarehouse ( ) const
inlineinherited

Definition at line 2114 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), NonlinearSystemBase::addKernel(), NonlinearSystemBase::addNodalKernel(), FEProblemBase::addObject(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), FEProblemBase::addUserObject(), NonlinearSystemBase::checkKernelCoverage(), FEProblemBase::checkUserObjectJacobianRequirement(), FEProblemBase::checkUserObjects(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), LinearSystem::containsTimeKernel(), NonlinearSystemBase::customSetup(), FEProblemBase::customSetup(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), FEProblemBase::executeSamplers(), ComputeLinearFVElementalThread::fetchBlockSystemContributionObjects(), ComputeLinearFVFaceThread::fetchBlockSystemContributionObjects(), FEProblemBase::getDistribution(), FEProblemBase::getMortarUserObjects(), FEProblemBase::getPositionsObject(), FEProblemBase::getSampler(), CompositionDT::getTimeSteppers(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), FEProblemBase::hasUserObject(), SideFVFluxBCIntegral::initialSetup(), ExplicitTimeIntegrator::initialSetup(), LinearSystem::initialSetup(), NonlinearSystemBase::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needSubdomainMaterialOnSide(), JSONOutput::outputReporters(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), ComputeLinearFVElementalThread::setupSystemContributionObjects(), ComputeLinearFVFaceThread::setupSystemContributionObjects(), NonlinearThread::subdomainChanged(), NonlinearSystemBase::timestepSetup(), and FEProblemBase::timestepSetup().

2114 { return _app.theWarehouse(); }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
TheWarehouse & theWarehouse()
Definition: MooseApp.h:130

◆ time()

virtual Real& FEProblemBase::time ( ) const
inlinevirtualinherited

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeOld()

virtual Real& FEProblemBase::timeOld ( ) const
inlinevirtualinherited

◆ timeStep()

virtual int& FEProblemBase::timeStep ( ) const
inlinevirtualinherited

◆ timestepSetup()

void FEProblemBase::timestepSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1487 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), and TransientBase::takeStep().

1488 {
1490 
1491  if (_t_step > 1 && _num_grid_steps)
1492  {
1493  libMesh::MeshRefinement mesh_refinement(_mesh);
1494  std::unique_ptr<libMesh::MeshRefinement> displaced_mesh_refinement(nullptr);
1495  if (_displaced_mesh)
1496  displaced_mesh_refinement = std::make_unique<libMesh::MeshRefinement>(*_displaced_mesh);
1497 
1498  for (MooseIndex(_num_grid_steps) i = 0; i < _num_grid_steps; ++i)
1499  {
1500  if (_displaced_problem)
1501  // If the DisplacedProblem is active, undisplace the DisplacedMesh in preparation for
1502  // refinement. We can't safely refine the DisplacedMesh directly, since the Hilbert keys
1503  // computed on the inconsistenly-displaced Mesh are different on different processors,
1504  // leading to inconsistent Hilbert keys. We must do this before the undisplaced Mesh is
1505  // coarsensed, so that the element and node numbering is still consistent. We also have to
1506  // make sure this is done during every step of coarsening otherwise different partitions
1507  // will be generated for the reference and displaced meshes (even for replicated)
1508  _displaced_problem->undisplaceMesh();
1509 
1510  mesh_refinement.uniformly_coarsen();
1511  if (_displaced_mesh)
1512  displaced_mesh_refinement->uniformly_coarsen();
1513 
1514  // Mark this as an intermediate change because we do not yet want to reinit_systems. E.g. we
1515  // need things to happen in the following order for the undisplaced problem:
1516  // u1) EquationSystems::reinit_solutions. This will restrict the solution vectors and then
1517  // contract the mesh
1518  // u2) MooseMesh::meshChanged. This will update the node/side lists and other
1519  // things which needs to happen after the contraction
1520  // u3) GeometricSearchData::reinit. Once the node/side lists are updated we can perform our
1521  // geometric searches which will aid in determining sparsity patterns
1522  //
1523  // We do these things for the displaced problem (if it exists)
1524  // d1) EquationSystems::reinit. Restrict the displaced problem vector copies and then contract
1525  // the mesh. It's safe to do a full reinit with the displaced because there are no
1526  // matrices that sparsity pattern calculations will be conducted for
1527  // d2) MooseMesh::meshChanged. This will update the node/side lists and other
1528  // things which needs to happen after the contraction
1529  // d3) UpdateDisplacedMeshThread::operator(). Re-displace the mesh using the *displaced*
1530  // solution vector copy because we don't know the state of the reference solution vector.
1531  // It's safe to use the displaced copy because we are outside of a non-linear solve,
1532  // and there is no concern about differences between solution and current_local_solution
1533  // d4) GeometricSearchData::reinit. With the node/side lists updated and the mesh
1534  // re-displaced, we can perform our geometric searches, which will aid in determining the
1535  // sparsity pattern of the matrix held by the libMesh::ImplicitSystem held by the
1536  // NonlinearSystem held by this
1537  meshChanged(
1538  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
1539  }
1540 
1541  // u4) Now that all the geometric searches have been done (both undisplaced and displaced),
1542  // we're ready to update the sparsity pattern
1543  es().reinit_systems();
1544  }
1545 
1546  if (_line_search)
1547  _line_search->timestepSetup();
1548 
1549  // Random interface objects
1550  for (const auto & it : _random_data_objects)
1551  it.second->updateSeeds(EXEC_TIMESTEP_BEGIN);
1552 
1553  unsigned int n_threads = libMesh::n_threads();
1554  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1555  {
1558  }
1559 
1560  _aux->timestepSetup();
1561  for (auto & sys : _solver_systems)
1562  sys->timestepSetup();
1563 
1564  if (_displaced_problem)
1565  // timestepSetup for displaced systems
1566  _displaced_problem->timestepSetup();
1567 
1568  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1569  {
1572  _markers.timestepSetup(tid);
1573  }
1574 
1575  std::vector<UserObject *> userobjs;
1576  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
1577  for (auto obj : userobjs)
1578  obj->timestepSetup();
1579 
1580  // Timestep setup of output objects
1582 
1585  _has_nonlocal_coupling = true;
1586 }
virtual void meshChanged()
Deprecated.
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
virtual void timestepSetup(THREAD_ID tid=0) const
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
unsigned int _num_grid_steps
Number of steps in a grid sequence.
virtual void reinit_systems()
TheWarehouse & theWarehouse() const
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
virtual void timestepSetup(THREAD_ID tid=0) const
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
MooseObjectWarehouse< Indicator > _indicators
virtual void timestepSetup()
Definition: SubProblem.C:1185
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
void timestepSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
MooseMesh * _displaced_mesh
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
std::shared_ptr< LineSearch > _line_search
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ transient()

virtual void FEProblemBase::transient ( bool  trans)
inlinevirtualinherited

Definition at line 524 of file FEProblemBase.h.

Referenced by EigenExecutionerBase::EigenExecutionerBase(), and TransientBase::TransientBase().

524 { _transient = trans; }

◆ trustUserCouplingMatrix()

void FEProblemBase::trustUserCouplingMatrix ( )
inherited

Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix.

See https://github.com/idaholab/moose/issues/16395 for detailed background

Definition at line 6096 of file FEProblemBase.C.

Referenced by SingleMatrixPreconditioner::SingleMatrixPreconditioner().

6097 {
6099  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6100  "haven't been provided a coupling matrix!");
6101 
6103 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ type()

const std::string& MooseBase::type ( ) const
inlineinherited

Get the type of this class.

Returns
the name of the type of this class

Definition at line 89 of file MooseBase.h.

Referenced by CreateProblemDefaultAction::act(), SetupDebugAction::act(), MaterialDerivativeTestAction::act(), MaterialOutputAction::act(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConvergence(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), addFunction(), FEProblemBase::addFunction(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), MeshGenerator::addMeshSubgenerator(), FEProblemBase::addObject(), addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addTimeIntegrator(), MooseServer::addValuesToList(), DisplacedProblem::addVectorTag(), SubProblem::addVectorTag(), FEProblemBase::advanceMultiApps(), MooseApp::appendMeshGenerator(), AuxKernelTempl< Real >::AuxKernelTempl(), FEProblemBase::backupMultiApps(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BoundaryPreservedMarker::BoundaryPreservedMarker(), DistributedRectilinearMeshGenerator::buildCube(), MooseMesh::buildHRefinementAndCoarseningMaps(), MooseMesh::buildLowerDMesh(), MooseMesh::buildPRefinementAndCoarseningMaps(), PhysicsBase::checkComponentType(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), ADDGKernel::computeElemNeighJacobian(), DGKernel::computeElemNeighJacobian(), ElemElemConstraint::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighJacobian(), ADDGKernel::computeElemNeighResidual(), DGKernel::computeElemNeighResidual(), ElemElemConstraint::computeElemNeighResidual(), ArrayDGKernel::computeElemNeighResidual(), LowerDIntegratedBC::computeLowerDJacobian(), ArrayLowerDIntegratedBC::computeLowerDJacobian(), DGLowerDKernel::computeLowerDJacobian(), ArrayDGLowerDKernel::computeLowerDJacobian(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayHFEMDirichletBC::computeLowerDQpJacobian(), ArrayHFEMDiffusion::computeLowerDQpJacobian(), HFEMDirichletBC::computeLowerDQpJacobian(), HFEMDiffusion::computeLowerDQpJacobian(), ArrayHFEMDirichletBC::computeLowerDQpOffDiagJacobian(), HFEMDirichletBC::computeLowerDQpOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDQpOffDiagJacobian(), ArrayDGLowerDKernel::computeLowerDQpOffDiagJacobian(), FEProblemBase::computeMultiAppsDT(), ADDGKernel::computeOffDiagElemNeighJacobian(), DGKernel::computeOffDiagElemNeighJacobian(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), DGConvection::computeQpJacobian(), ScalarKernel::computeQpJacobian(), InterfaceDiffusion::computeQpJacobian(), InterfaceReaction::computeQpJacobian(), ArrayDGDiffusion::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), DGDiffusion::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), HFEMTestJump::computeQpOffDiagJacobian(), HFEMTrialJump::computeQpOffDiagJacobian(), ArrayDGKernel::computeQpOffDiagJacobian(), ArrayHFEMDiffusion::computeQpResidual(), DGConvection::computeQpResidual(), HFEMDiffusion::computeQpResidual(), ScalarKernel::computeQpResidual(), InterfaceDiffusion::computeQpResidual(), ADMatInterfaceReaction::computeQpResidual(), InterfaceReaction::computeQpResidual(), ADDGAdvection::computeQpResidual(), ArrayDGDiffusion::computeQpResidual(), CoupledTiedValueConstraint::computeQpResidual(), TiedValueConstraint::computeQpResidual(), DGDiffusion::computeQpResidual(), LinearNodalConstraint::computeQpResidual(), ADDGDiffusion::computeQpResidual(), HFEMTestJump::computeQpResidual(), HFEMTrialJump::computeQpResidual(), EqualValueBoundaryConstraint::computeQpResidual(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), FEProblemBase::computeUserObjectsInternal(), DisplacedProblem::createQRules(), FEProblemBase::createQRules(), MooseApp::createRecoverablePerfGraph(), DumpObjectsProblem::deduceNecessaryParameters(), DumpObjectsProblem::dumpObjectHelper(), FEProblemBase::duplicateVariableCheck(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), FEProblemBase::execTransfers(), WebServerControl::execute(), SteadyBase::execute(), ActionWarehouse::executeActionsWithAction(), FEProblemBase::finishMultiAppStep(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), MooseServer::gatherDocumentReferencesLocations(), Boundary2DDelaunayGenerator::General2DDelaunay(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), Boundary2DDelaunayGenerator::generate(), PatternedMeshGenerator::generate(), MeshGenerator::generateInternal(), MultiAppTransfer::getAppInfo(), TransfiniteMeshGenerator::getEdge(), ElementGenerator::getElemType(), MooseServer::getInputLookupDefinitionNodes(), FEProblemBase::getMaterial(), FEProblemBase::getMaterialData(), MaterialOutputAction::getParams(), ReporterData::getReporterInfo(), FEProblemBase::getTransfers(), DisplacedProblem::getVectorTags(), SubProblem::getVectorTags(), CommonOutputAction::hasConsole(), FEProblemBase::hasMultiApps(), AdvancedOutput::hasOutput(), FEProblemBase::incrementMultiAppTStep(), AdvancedOutput::initAvailableLists(), FunctorPositions::initialize(), FunctorTimes::initialize(), MultiAppConservativeTransfer::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), LinearFVDiffusion::initialSetup(), LinearFVAdvection::initialSetup(), ArrayDGDiffusion::initQpResidual(), AdvancedOutput::initShowHideLists(), RelationshipManager::isType(), FEProblemBase::logAdd(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), mesh(), MooseObject::MooseObject(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), DisplacedProblem::numVectorTags(), SubProblem::numVectorTags(), Console::output(), AdvancedOutput::output(), ConsoleUtils::outputExecutionInformation(), SampledOutput::outputStep(), Output::outputStep(), FEProblemBase::outputStep(), MooseServer::parseDocumentForDiagnostics(), MooseMesh::prepare(), ProjectedStatefulMaterialStorageAction::processProperty(), MooseApp::recursivelyCreateExecutors(), SolutionInvalidInterface::registerInvalidSolutionInternal(), FEProblemBase::restoreMultiApps(), MeshRepairGenerator::separateSubdomainsByElementType(), FEProblemBase::setCoupling(), MooseApp::setupOptions(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), WebServerControl::startServer(), Reporter::store(), MooseBase::typeAndName(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), DisplacedProblem::updateGeomSearch(), FEProblemBase::updateGeomSearch(), UserObjectInterface::userObjectType(), and AdvancedOutput::wantOutput().

90  {
91  mooseAssert(_type.size(), "Empty type");
92  return _type;
93  }
const std::string & _type
The type of this class.
Definition: MooseBase.h:356

◆ typeAndName()

std::string MooseBase::typeAndName ( ) const
inherited

Get the class's combined type and name; useful in error handling.

Returns
The type and name of this class in the form '<type()> "<name()>"'.

Definition at line 54 of file MooseBase.C.

Referenced by FEProblemBase::addPostprocessor(), MaterialPropertyStorage::addProperty(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MeshGeneratorSystem::dataDrivenError(), ReporterContext< std::vector< T > >::finalize(), and ReporterData::getReporterInfo().

55 {
56  return type() + std::string(" \"") + name() + std::string("\"");
57 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ uDotDotOldRequested()

virtual bool FEProblemBase::uDotDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution second time derivative needs to be stored.

Definition at line 2190 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2191  {
2193  mooseError("FEProblemBase: When requesting old second time derivative of solution, current "
2194  "second time derivation of solution should also be stored. Please set "
2195  "`u_dotdot_requested` to true using setUDotDotRequested.");
2196  return _u_dotdot_old_requested;
2197  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotDotRequested()

virtual bool FEProblemBase::uDotDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution second time derivative needs to be stored.

Definition at line 2176 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors(), and FEProblemBase::addTimeIntegrator().

2176 { return _u_dotdot_requested; }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotOldRequested()

virtual bool FEProblemBase::uDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution time derivative needs to be stored.

Definition at line 2179 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2180  {
2182  mooseError("FEProblemBase: When requesting old time derivative of solution, current time "
2183  "derivative of solution should also be stored. Please set `u_dot_requested` to "
2184  "true using setUDotRequested.");
2185 
2186  return _u_dot_old_requested;
2187  }
bool _u_dot_requested
Whether solution time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ uDotRequested()

virtual bool FEProblemBase::uDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution time derivative needs to be stored.

Definition at line 2173 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2173 { return _u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ uniformRefine()

void FEProblemBase::uniformRefine ( )
inherited

uniformly refine the problem mesh(es).

This will also prolong the the solution, and in order for that to be safe, we can only perform one refinement at a time

Definition at line 9003 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

9004 {
9005  // ResetDisplacedMeshThread::onNode looks up the reference mesh by ID, so we need to make sure
9006  // we undisplace before adapting the reference mesh
9007  if (_displaced_problem)
9008  _displaced_problem->undisplaceMesh();
9009 
9011  if (_displaced_problem)
9013 
9014  meshChanged(
9015  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
9016 }
virtual void meshChanged()
Deprecated.
static void uniformRefine(MooseMesh *mesh, unsigned int level=libMesh::invalid_uint)
Performs uniform refinement of the passed Mesh object.
Definition: Adaptivity.C:274
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ uniqueName()

MooseObjectName MooseBase::uniqueName ( ) const
inherited
Returns
The unique name for accessing input parameters of this object in the InputParameterWarehouse

Definition at line 66 of file MooseBase.C.

Referenced by MooseBase::connectControllableParams(), and Action::uniqueActionName().

67 {
68  if (!_pars.have_parameter<std::string>(unique_name_param))
69  mooseError("uniqueName(): Object does not have a unique name");
70  return MooseObjectName(_pars.get<std::string>(unique_name_param));
71 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
static const std::string unique_name_param
The name of the parameter that contains the unique object name.
Definition: MooseBase.h:57
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
A class for storing the names of MooseObject by tag and object name.

◆ uniqueParameterName()

MooseObjectParameterName MooseBase::uniqueParameterName ( const std::string &  parameter_name) const
inherited
Returns
The unique parameter name of a valid parameter of this object for accessing parameter controls

Definition at line 60 of file MooseBase.C.

61 {
62  return MooseObjectParameterName(getBase(), name(), parameter_name);
63 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
A class for storing an input parameter name.
const std::string & getBase() const
Definition: MooseBase.h:143

◆ updateActiveObjects()

void FEProblemBase::updateActiveObjects ( )
virtualinherited

Update the active objects in the warehouses.

Reimplemented in DumpObjectsProblem.

Definition at line 5091 of file FEProblemBase.C.

Referenced by MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5092 {
5093  TIME_SECTION("updateActiveObjects", 5, "Updating Active Objects");
5094 
5095  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5096  {
5097  for (auto & nl : _nl)
5098  nl->updateActive(tid);
5099  _aux->updateActive(tid);
5102  _markers.updateActive(tid);
5104  _materials.updateActive(tid);
5106  }
5107 
5115 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
void updateActive(THREAD_ID tid=0) override
Updates the active objects storage.
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void updateActive(THREAD_ID tid=0)
Update the active status of Kernels.
MooseObjectWarehouse< Indicator > _indicators
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
MaterialWarehouse _discrete_materials
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ updateGeomSearch()

void FEProblemBase::updateGeomSearch ( GeometricSearchData::GeometricSearchType  type = GeometricSearchData::ALL)
overridevirtualinherited

Implements SubProblem.

Definition at line 7784 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::augmentSparsity(), and FEProblemBase::initialSetup().

7785 {
7786  TIME_SECTION("updateGeometricSearch", 3, "Updating Geometric Search");
7787 
7789 
7790  if (_displaced_problem)
7791  _displaced_problem->updateGeomSearch(type);
7792 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void update(GeometricSearchType type=ALL)
Update all of the search objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data

◆ updateMeshXFEM()

bool FEProblemBase::updateMeshXFEM ( )
virtualinherited

Update the mesh due to changing XFEM cuts.

Definition at line 8051 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FixedPointSolve::solveStep().

8052 {
8053  TIME_SECTION("updateMeshXFEM", 5, "Updating XFEM");
8054 
8055  bool updated = false;
8056  if (haveXFEM())
8057  {
8058  if (_xfem->updateHeal())
8059  // XFEM exodiff tests rely on a given numbering because they cannot use map = true due to
8060  // having coincident elements. While conceptually speaking we do not need to contract the
8061  // mesh, we need its call to renumber_nodes_and_elements in order to preserve these tests
8062  meshChanged(
8063  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8064 
8065  updated = _xfem->update(_time, _nl, *_aux);
8066  if (updated)
8067  {
8068  meshChanged(
8069  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8070  _xfem->initSolution(_nl, *_aux);
8071  restoreSolutions();
8072  }
8073  }
8074  return updated;
8075 }
virtual void meshChanged()
Deprecated.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void restoreSolutions()
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ updateMortarMesh()

void FEProblemBase::updateMortarMesh ( )
virtualinherited

Definition at line 7795 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::init(), FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

7796 {
7797  TIME_SECTION("updateMortarMesh", 5, "Updating Mortar Mesh");
7798 
7799  FloatingPointExceptionGuard fpe_guard(_app);
7800 
7801  _mortar_data.update();
7802 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MortarData _mortar_data
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void update()
Builds mortar segment meshes for each mortar interface.
Definition: MortarData.C:149

◆ updateSolution()

bool FEProblemBase::updateSolution ( NumericVector< libMesh::Number > &  vec_solution,
NumericVector< libMesh::Number > &  ghosted_solution 
)
virtualinherited

Update the solution.

Parameters
vec_solutionLocal solution vector that gets modified by this method
ghosted_solutionGhosted solution vector
Returns
true if the solution was modified, false otherwise

Definition at line 7763 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7765 {
7766  return false;
7767 }

◆ useSNESMFReuseBase()

bool FEProblemBase::useSNESMFReuseBase ( )
inlineinherited

Return a flag that indicates if we are reusing the vector base.

Definition at line 2127 of file FEProblemBase.h.

Referenced by NonlinearSystem::potentiallySetupFiniteDifferencing().

2127 { return _snesmf_reuse_base; }
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ validParams()

InputParameters MFEMProblem::validParams ( )
static

Definition at line 25 of file MFEMProblem.C.

26 {
28  params.addClassDescription("Problem type for building and solving finite element problem using"
29  " the MFEM finite element library.");
30  return params;
31 }
static InputParameters validParams()
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void addClassDescription(const std::string &doc_string)
This method adds a description of the class that will be displayed in the input file syntax dump...

◆ vectorTagExists() [1/2]

virtual bool SubProblem::vectorTagExists ( const TagID  tag_id) const
inlinevirtualinherited

◆ vectorTagExists() [2/2]

bool SubProblem::vectorTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists by using Tag name.

Reimplemented in DisplacedProblem.

Definition at line 136 of file SubProblem.C.

137 {
138  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
139 
140  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
141  for (const auto & vector_tag : _vector_tags)
142  if (vector_tag._name == tag_name_upper)
143  return true;
144 
145  return false;
146 }
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241

◆ vectorTagName()

TagName SubProblem::vectorTagName ( const TagID  tag) const
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 221 of file SubProblem.C.

Referenced by SystemBase::closeTaggedVector(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), SystemBase::removeVector(), NonlinearSystemBase::residualGhosted(), DisplacedProblem::vectorTagName(), and SystemBase::zeroTaggedVector().

222 {
223  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
224  if (!vectorTagExists(tag_id))
225  mooseError("Vector tag with ID ", tag_id, " does not exist");
226 
227  return _vector_tags[tag_id]._name;
228 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ vectorTagNotZeroed()

bool SubProblem::vectorTagNotZeroed ( const TagID  tag) const
inherited

Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that is currently being checked
Returns
false if the tag is not within the set of vectors that are intended to not be zero or if the set is empty. returns true otherwise

Definition at line 155 of file SubProblem.C.

Referenced by SystemBase::zeroTaggedVector().

156 {
157  return _not_zeroed_tagged_vectors.count(tag);
158 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ vectorTagType()

Moose::VectorTagType SubProblem::vectorTagType ( const TagID  tag_id) const
virtualinherited

Reimplemented in DisplacedProblem.

Definition at line 231 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit(), TaggingInterface::TaggingInterface(), and DisplacedProblem::vectorTagType().

232 {
233  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
234  if (!vectorTagExists(tag_id))
235  mooseError("Vector tag with ID ", tag_id, " does not exist");
236 
237  return _vector_tags[tag_id]._type;
238 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ verboseMultiApps()

bool FEProblemBase::verboseMultiApps ( ) const
inlineinherited

Whether or not to use verbose printing for MultiApps.

Definition at line 1872 of file FEProblemBase.h.

Referenced by MultiApp::backup(), MultiApp::createApp(), MultiApp::restore(), FullSolveMultiApp::showStatusMessage(), and TransientMultiApp::solveStep().

1872 { return _verbose_multiapps; }
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ verifyVectorTags()

bool SubProblem::verifyVectorTags ( ) const
protectedinherited

Verify the integrity of _vector_tags and _typed_vector_tags.

Definition at line 241 of file SubProblem.C.

Referenced by SubProblem::addVectorTag(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), SubProblem::getVectorTags(), SubProblem::numVectorTags(), SubProblem::vectorTagExists(), SubProblem::vectorTagName(), and SubProblem::vectorTagType().

242 {
243  for (TagID tag_id = 0; tag_id < _vector_tags.size(); ++tag_id)
244  {
245  const auto & vector_tag = _vector_tags[tag_id];
246 
247  if (vector_tag._id != tag_id)
248  mooseError("Vector tag ", vector_tag._id, " id mismatch in _vector_tags");
249  if (vector_tag._type == Moose::VECTOR_TAG_ANY)
250  mooseError("Vector tag '", vector_tag._name, "' has type VECTOR_TAG_ANY");
251 
252  const auto search = _vector_tags_name_map.find(vector_tag._name);
253  if (search == _vector_tags_name_map.end())
254  mooseError("Vector tag ", vector_tag._id, " is not in _vector_tags_name_map");
255  else if (search->second != tag_id)
256  mooseError("Vector tag ", vector_tag._id, " has incorrect id in _vector_tags_name_map");
257 
258  unsigned int found_in_type = 0;
259  for (TagTypeID tag_type_id = 0; tag_type_id < _typed_vector_tags[vector_tag._type].size();
260  ++tag_type_id)
261  {
262  const auto & vector_tag_type = _typed_vector_tags[vector_tag._type][tag_type_id];
263  if (vector_tag_type == vector_tag)
264  {
265  ++found_in_type;
266  if (vector_tag_type._type_id != tag_type_id)
267  mooseError("Type ID for Vector tag ", tag_id, " is incorrect");
268  }
269  }
270 
271  if (found_in_type == 0)
272  mooseError("Vector tag ", tag_id, " not found in _typed_vector_tags");
273  if (found_in_type > 1)
274  mooseError("Vector tag ", tag_id, " found multiple times in _typed_vector_tags");
275  }
276 
277  unsigned int num_typed_vector_tags = 0;
278  for (const auto & typed_vector_tags : _typed_vector_tags)
279  num_typed_vector_tags += typed_vector_tags.size();
280  if (num_typed_vector_tags != _vector_tags.size())
281  mooseError("Size mismatch between _vector_tags and _typed_vector_tags");
282  if (_vector_tags_name_map.size() != _vector_tags.size())
283  mooseError("Size mismatch between _vector_tags and _vector_tags_name_map");
284 
285  return true;
286 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

Member Data Documentation

◆ _action_factory

ActionFactory& ParallelParamObject::_action_factory
protectedinherited

◆ _active_elemental_moose_variables

std::vector<std::set<MooseVariableFieldBase *> > SubProblem::_active_elemental_moose_variables
protectedinherited

This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem)

Definition at line 1075 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::getActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _active_fe_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_matrix_tags
protectedinherited

◆ _active_fe_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_vector_tags
protectedinherited

◆ _active_sc_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_matrix_tags
protectedinherited

◆ _active_sc_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_vector_tags
protectedinherited

◆ _ad_grad_zero

std::vector<MooseArray<ADRealVectorValue> > FEProblemBase::_ad_grad_zero
inherited

◆ _ad_second_zero

std::vector<MooseArray<ADRealTensorValue> > FEProblemBase::_ad_second_zero
inherited

◆ _ad_zero

std::vector<MooseArray<ADReal> > FEProblemBase::_ad_zero
inherited

◆ _adaptivity

Adaptivity FEProblemBase::_adaptivity
protectedinherited

◆ _all_materials

MaterialWarehouse FEProblemBase::_all_materials
protectedinherited

◆ _all_user_objects

ExecuteMooseObjectWarehouse<UserObject> FEProblemBase::_all_user_objects
protectedinherited

◆ _app

MooseApp& MooseBase::_app
protectedinherited

The MOOSE application this is associated with.

Definition at line 353 of file MooseBase.h.

◆ _assembly

std::vector<std::vector<std::unique_ptr<Assembly> > > FEProblemBase::_assembly
protectedinherited

The Assembly objects.

The first index corresponds to the thread ID and the second index corresponds to the nonlinear system number

Definition at line 2664 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::assembly(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::couplingEntries(), FEProblemBase::createQRules(), FEProblemBase::init(), FEProblemBase::initElementStatefulProps(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::meshChanged(), FEProblemBase::newAssemblyArray(), FEProblemBase::nonlocalCouplingEntries(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsInterface(), FEProblemBase::reinitMaterialsNeighbor(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::swapBackMaterials(), FEProblemBase::swapBackMaterialsFace(), and FEProblemBase::swapBackMaterialsNeighbor().

◆ _aux

std::shared_ptr<AuxiliarySystem> FEProblemBase::_aux
protectedinherited

The auxiliary system.

Definition at line 2654 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addIndicator(), FEProblemBase::addMarker(), FEProblemBase::addMultiApp(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::advanceState(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeIndicators(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeMarkers(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::customSetup(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), FEProblemBase::execute(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getAuxiliarySystem(), FEProblemBase::getScalarVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasVariable(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::systemBaseAuxiliary(), FEProblemBase::systemNumForVariable(), FEProblemBase::timestepSetup(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _aux_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_aux_evaluable_local_elem_range
protectedinherited

Definition at line 2934 of file FEProblemBase.h.

◆ _between_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_between_multi_app_transfers
protectedinherited

◆ _block_mat_side_cache

std::vector<std::unordered_map<SubdomainID, bool> > FEProblemBase::_block_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2741 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needSubdomainMaterialOnSide().

◆ _bnd_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_bnd_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2744 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needBoundaryMaterialOnSide().

◆ _bnd_material_props

MaterialPropertyStorage& FEProblemBase::_bnd_material_props
protectedinherited

◆ _boundary_restricted_elem_integrity_check

const bool FEProblemBase::_boundary_restricted_elem_integrity_check
protectedinherited

whether to perform checking of boundary restricted elemental object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 2873 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _boundary_restricted_node_integrity_check

const bool FEProblemBase::_boundary_restricted_node_integrity_check
protectedinherited

whether to perform checking of boundary restricted nodal object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 2869 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _calculate_jacobian_in_uo

bool FEProblemBase::_calculate_jacobian_in_uo
protectedinherited

◆ _cli_option_found

bool Problem::_cli_option_found
protectedinherited

True if the CLI option is found.

Definition at line 52 of file Problem.h.

Referenced by Problem::_setCLIOption().

◆ _cm

std::vector<std::unique_ptr<libMesh::CouplingMatrix> > FEProblemBase::_cm
protectedinherited

◆ _color_output

bool Problem::_color_output
protectedinherited

True if we're going to attempt to write color output.

Definition at line 55 of file Problem.h.

◆ _computing_nonlinear_residual

bool SubProblem::_computing_nonlinear_residual
protectedinherited

Whether the non-linear residual is being evaluated.

Definition at line 1102 of file SubProblem.h.

Referenced by SubProblem::computingNonlinearResid(), and FEProblemBase::computingNonlinearResid().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), NonlinearSystemBase::computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), NonlinearSystemBase::computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), InversePowerMethod::init(), NonlinearEigen::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), NonlinearSystemBase::setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), NonlinearSystem::solve(), FixedPointSolve::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _const_jacobian

bool FEProblemBase::_const_jacobian
protectedinherited

true if the Jacobian is constant

Definition at line 2841 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::constJacobian(), and FEProblemBase::setConstJacobian().

◆ _control_warehouse

ExecuteMooseObjectWarehouse<Control> FEProblemBase::_control_warehouse
protectedinherited

The control logic warehouse.

Definition at line 2919 of file FEProblemBase.h.

Referenced by FEProblemBase::executeControls(), FEProblemBase::getControlWarehouse(), and FEProblemBase::updateActiveObjects().

◆ _convergences

MooseObjectWarehouse<Convergence> FEProblemBase::_convergences
protectedinherited

◆ _coupling

Moose::CouplingType FEProblemBase::_coupling
protectedinherited

◆ _current_algebraic_bnd_node_range

std::unique_ptr<ConstBndNodeRange> FEProblemBase::_current_algebraic_bnd_node_range
protectedinherited

◆ _current_algebraic_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_current_algebraic_elem_range
protectedinherited

◆ _current_algebraic_node_range

std::unique_ptr<libMesh::ConstNodeRange> FEProblemBase::_current_algebraic_node_range
protectedinherited

◆ _current_execute_on_flag

ExecFlagType FEProblemBase::_current_execute_on_flag
protectedinherited

◆ _current_ic_state

unsigned short FEProblemBase::_current_ic_state
protectedinherited

◆ _current_linear_sys

LinearSystem* FEProblemBase::_current_linear_sys
protectedinherited

◆ _current_nl_sys

NonlinearSystemBase* FEProblemBase::_current_nl_sys
protectedinherited

The current nonlinear system that we are solving.

Definition at line 2636 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeDamping(), FEProblemBase::computeJacobianBlock(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), FEProblemBase::computeTransposeNullSpace(), FEProblemBase::currentNonlinearSystem(), EigenProblem::doFreeNonlinearPowerIterations(), EigenProblem::EigenProblem(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), EigenProblem::solve(), and FEProblemBase::solve().

◆ _current_solver_sys

SolverSystem* FEProblemBase::_current_solver_sys
protectedinherited

The current solver system.

Definition at line 2639 of file FEProblemBase.h.

Referenced by FEProblemBase::setCurrentLinearSystem(), and FEProblemBase::setCurrentNonlinearSystem().

◆ _currently_computing_jacobian

bool SubProblem::_currently_computing_jacobian
protectedinherited

◆ _currently_computing_residual

bool SubProblem::_currently_computing_residual
protectedinherited

◆ _currently_computing_residual_and_jacobian

bool SubProblem::_currently_computing_residual_and_jacobian
protectedinherited

Flag to determine whether the problem is currently computing the residual and Jacobian.

Definition at line 1099 of file SubProblem.h.

Referenced by SubProblem::currentlyComputingResidualAndJacobian(), and SubProblem::setCurrentlyComputingResidualAndJacobian().

◆ _cycles_completed

unsigned int FEProblemBase::_cycles_completed
protectedinherited

◆ _default_ghosting

bool SubProblem::_default_ghosting
protectedinherited

Whether or not to use default libMesh coupling.

Definition at line 1090 of file SubProblem.h.

Referenced by SubProblem::defaultGhosting().

◆ _dirac_kernel_info

DiracKernelInfo SubProblem::_dirac_kernel_info
protectedinherited

◆ _discrete_materials

MaterialWarehouse FEProblemBase::_discrete_materials
protectedinherited

◆ _displaced_mesh

MooseMesh* FEProblemBase::_displaced_mesh
protectedinherited

◆ _displaced_problem

std::shared_ptr<DisplacedProblem> FEProblemBase::_displaced_problem
protectedinherited

Definition at line 2808 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::addAnyRedistributers(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addCachedJacobian(), FEProblemBase::addCachedResidual(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addConstraint(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDisplacedProblem(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVKernel(), FEProblemBase::addGhostedBoundary(), FEProblemBase::addIndicator(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::automaticScaling(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::cacheJacobian(), FEProblemBase::cacheJacobianNeighbor(), FEProblemBase::cacheResidual(), FEProblemBase::cacheResidualNeighbor(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::clearActiveElementalMooseVariables(), FEProblemBase::clearActiveFEVariableCoupleableMatrixTags(), FEProblemBase::clearActiveFEVariableCoupleableVectorTags(), FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::clearActiveScalarVariableCoupleableVectorTags(), FEProblemBase::clearDiracInfo(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::computingNonlinearResid(), FEProblemBase::createMortarInterface(), FEProblemBase::createQRules(), FEProblemBase::customSetup(), FEProblemBase::execute(), FEProblemBase::getDiracElements(), FEProblemBase::getDisplacedProblem(), FEProblemBase::getMortarUserObjects(), FEProblemBase::ghostGhostedBoundaries(), FEProblemBase::haveADObjects(), FEProblemBase::haveDisplaced(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::mesh(), FEProblemBase::meshChanged(), FEProblemBase::outputStep(), FEProblemBase::possiblyRebuildGeomSearchPatches(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFace(), FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemFaceRef(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitLowerDElem(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNeighborFaceRef(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::resetState(), FEProblemBase::residualSetup(), FEProblemBase::restoreSolutions(), FEProblemBase::setActiveElementalMooseVariables(), FEProblemBase::setActiveFEVariableCoupleableMatrixTags(), FEProblemBase::setActiveFEVariableCoupleableVectorTags(), FEProblemBase::setActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::setActiveScalarVariableCoupleableVectorTags(), FEProblemBase::setCurrentBoundaryID(), FEProblemBase::setCurrentLowerDElem(), FEProblemBase::setCurrentlyComputingResidual(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::setResidualObjectParamsAndLog(), EigenProblem::solve(), FEProblemBase::solve(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateGeomSearch().

◆ _dt

Real& FEProblemBase::_dt
protectedinherited

◆ _dt_old

Real& FEProblemBase::_dt_old
protectedinherited

Definition at line 2596 of file FEProblemBase.h.

Referenced by FEProblemBase::dtOld(), and FEProblemBase::FEProblemBase().

◆ _enabled

const bool& MooseObject::_enabled
protectedinherited

Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.

Definition at line 50 of file MooseObject.h.

Referenced by MooseObject::enabled().

◆ _evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_evaluable_local_elem_range
protectedinherited

◆ _exception_message

std::string FEProblemBase::_exception_message
protectedinherited

The error message to go with an exception.

Definition at line 2913 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), and FEProblemBase::setException().

◆ _factory

Factory& SubProblem::_factory
protectedinherited

◆ _fe_matrix_tags

std::set<TagID> FEProblemBase::_fe_matrix_tags
protectedinherited

◆ _fe_vector_tags

std::set<TagID> FEProblemBase::_fe_vector_tags
protectedinherited

◆ _from_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_from_multi_app_transfers
protectedinherited

◆ _functions

MooseObjectWarehouse<Function> FEProblemBase::_functions
protectedinherited

◆ _fv_bcs_integrity_check

bool FEProblemBase::_fv_bcs_integrity_check
protectedinherited

Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset.

Definition at line 2880 of file FEProblemBase.h.

Referenced by FEProblemBase::fvBCsIntegrityCheck().

◆ _fv_ics

FVInitialConditionWarehouse FEProblemBase::_fv_ics
protectedinherited

◆ _geometric_search_data

GeometricSearchData FEProblemBase::_geometric_search_data
protectedinherited

◆ _ghosted_elems

std::set<dof_id_type> SubProblem::_ghosted_elems
protectedinherited

◆ _grad_phi_zero

std::vector<VariablePhiGradient> FEProblemBase::_grad_phi_zero
inherited

◆ _grad_zero

std::vector<VariableGradient> FEProblemBase::_grad_zero
inherited

◆ _has_active_elemental_moose_variables

std::vector<unsigned int> SubProblem::_has_active_elemental_moose_variables
protectedinherited

Whether or not there is currently a list of active elemental moose variables.

Definition at line 1079 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::hasActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _has_active_material_properties

std::vector<unsigned char> FEProblemBase::_has_active_material_properties
protectedinherited

◆ _has_constraints

bool FEProblemBase::_has_constraints
protectedinherited

Whether or not this system has any Constraints.

Definition at line 2826 of file FEProblemBase.h.

Referenced by FEProblemBase::addConstraint(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

◆ _has_dampers

bool FEProblemBase::_has_dampers
protectedinherited

Whether or not this system has any Dampers associated with it.

Definition at line 2823 of file FEProblemBase.h.

Referenced by FEProblemBase::addDamper(), FEProblemBase::computeDamping(), FEProblemBase::computePostCheck(), and FEProblemBase::hasDampers().

◆ _has_exception

bool FEProblemBase::_has_exception
protectedinherited

Whether or not an exception has occurred.

Definition at line 2898 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::hasException(), and FEProblemBase::setException().

◆ _has_initialized_stateful

bool FEProblemBase::_has_initialized_stateful
protectedinherited

Whether nor not stateful materials have been initialized.

Definition at line 2838 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

◆ _has_jacobian

bool FEProblemBase::_has_jacobian
protectedinherited

Indicates if the Jacobian was computed.

Definition at line 2844 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::hasJacobian(), and FEProblemBase::meshChanged().

◆ _has_nonlocal_coupling

bool FEProblemBase::_has_nonlocal_coupling
protectedinherited

◆ _has_time_integrator

bool FEProblemBase::_has_time_integrator
protectedinherited

Indicates whether or not this executioner has a time integrator (during setup)

Definition at line 2895 of file FEProblemBase.h.

Referenced by FEProblemBase::addTimeIntegrator(), and FEProblemBase::hasTimeIntegrator().

◆ _have_ad_objects

bool SubProblem::_have_ad_objects
protectedinherited

AD flag indicating whether any AD objects have been added.

Definition at line 1114 of file SubProblem.h.

Referenced by DisplacedProblem::haveADObjects(), SubProblem::haveADObjects(), and FEProblemBase::haveADObjects().

◆ _ics

InitialConditionWarehouse FEProblemBase::_ics
protectedinherited

◆ _indicators

MooseObjectWarehouse<Indicator> FEProblemBase::_indicators
protectedinherited

◆ _initialized

bool FEProblemBase::_initialized
protectedinherited

Definition at line 2567 of file FEProblemBase.h.

Referenced by FEProblemBase::init().

◆ _input_file_saved

bool FEProblemBase::_input_file_saved
protectedinherited

whether input file has been written

Definition at line 2820 of file FEProblemBase.h.

◆ _interface_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_interface_mat_side_cache
protectedinherited

Cache for calculating materials on interface.

Definition at line 2747 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needInterfaceMaterialOnSide().

◆ _interface_materials

MaterialWarehouse FEProblemBase::_interface_materials
protectedinherited

◆ _internal_side_indicators

MooseObjectWarehouse<InternalSideIndicatorBase> FEProblemBase::_internal_side_indicators
protectedinherited

◆ _is_petsc_options_inserted

bool FEProblemBase::_is_petsc_options_inserted
protectedinherited

If or not PETSc options have been added to database.

Definition at line 2928 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), FEProblemBase::petscOptionsInserted(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _kernel_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_kernel_coverage_blocks
protectedinherited

◆ _kernel_coverage_check

CoverageCheckMode FEProblemBase::_kernel_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active kernel.

Definition at line 2864 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setKernelCoverageCheck().

◆ _line_search

std::shared_ptr<LineSearch> FEProblemBase::_line_search
protectedinherited

◆ _linear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_linear_convergence_names
protectedinherited

Linear system(s) convergence name(s) (if any)

Definition at line 2572 of file FEProblemBase.h.

Referenced by FEProblemBase::getLinearConvergenceNames(), FEProblemBase::hasLinearConvergenceObjects(), and FEProblemBase::setLinearConvergenceNames().

◆ _linear_matrix_tags

std::set<TagID> FEProblemBase::_linear_matrix_tags
protectedinherited

Temporary storage for filtered matrix tags for linear systems.

Definition at line 2586 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _linear_sys_name_to_num

std::map<LinearSystemName, unsigned int> FEProblemBase::_linear_sys_name_to_num
protectedinherited

Map from linear system name to number.

Definition at line 2615 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::linearSysNum().

◆ _linear_sys_names

const std::vector<LinearSystemName> FEProblemBase::_linear_sys_names
protectedinherited

◆ _linear_systems

std::vector<std::shared_ptr<LinearSystem> > FEProblemBase::_linear_systems
protectedinherited

◆ _linear_vector_tags

std::set<TagID> FEProblemBase::_linear_vector_tags
protectedinherited

Temporary storage for filtered vector tags for linear systems.

Definition at line 2583 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _map_block_material_props

std::map<SubdomainID, std::set<std::string> > SubProblem::_map_block_material_props
protectedinherited

Map of material properties (block_id -> list of properties)

Definition at line 1052 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), SubProblem::getMaterialPropertyBlocks(), SubProblem::hasBlockMaterialProperty(), and SubProblem::storeSubdomainMatPropName().

◆ _map_block_material_props_check

std::map<SubdomainID, std::multimap<std::string, std::string> > SubProblem::_map_block_material_props_check
protectedinherited

Data structures of the requested material properties.

We store them in a map from boundary/block id to multimap. Each of the multimaps is a list of requestor object names to material property names.

Definition at line 1070 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), and SubProblem::storeSubdomainDelayedCheckMatProp().

◆ _map_boundary_material_props

std::map<BoundaryID, std::set<std::string> > SubProblem::_map_boundary_material_props
protectedinherited

Map for boundary material properties (boundary_id -> list of properties)

Definition at line 1055 of file SubProblem.h.

Referenced by SubProblem::checkBoundaryMatProps(), SubProblem::getMaterialPropertyBoundaryIDs(), SubProblem::hasBoundaryMaterialProperty(), and SubProblem::storeBoundaryMatPropName().

◆ _map_boundary_material_props_check

std::map<BoundaryID, std::multimap<std::string, std::string> > SubProblem::_map_boundary_material_props_check
protectedinherited

◆ _markers

MooseObjectWarehouse<Marker> FEProblemBase::_markers
protectedinherited

◆ _material_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_material_coverage_blocks
protectedinherited

◆ _material_coverage_check

CoverageCheckMode FEProblemBase::_material_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active material.

Definition at line 2876 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setMaterialCoverageCheck().

◆ _material_dependency_check

const bool FEProblemBase::_material_dependency_check
protectedinherited

Determines whether a check to verify material dependencies on every subdomain.

Definition at line 2883 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity().

◆ _material_prop_registry

MaterialPropertyRegistry FEProblemBase::_material_prop_registry
protectedinherited

Definition at line 2691 of file FEProblemBase.h.

Referenced by FEProblemBase::getMaterialPropertyRegistry().

◆ _material_property_requested

std::set<std::string> SubProblem::_material_property_requested
protectedinherited

set containing all material property names that have been requested by getMaterialProperty*

Definition at line 1062 of file SubProblem.h.

Referenced by SubProblem::isMatPropRequested(), and SubProblem::markMatPropRequested().

◆ _material_props

MaterialPropertyStorage& FEProblemBase::_material_props
protectedinherited

◆ _materials

MaterialWarehouse FEProblemBase::_materials
protectedinherited

◆ _matrix_tag_id_to_tag_name

std::map<TagID, TagName> SubProblem::_matrix_tag_id_to_tag_name
protectedinherited

Reverse map.

Definition at line 1044 of file SubProblem.h.

Referenced by SubProblem::addMatrixTag(), SubProblem::matrixTagExists(), and SubProblem::matrixTagName().

◆ _matrix_tag_name_to_tag_id

std::map<TagName, TagID> SubProblem::_matrix_tag_name_to_tag_id
protectedinherited

◆ _max_qps

unsigned int FEProblemBase::_max_qps
protectedinherited

Maximum number of quadrature points used in the problem.

Definition at line 2889 of file FEProblemBase.h.

Referenced by FEProblemBase::getMaxQps(), FEProblemBase::reinitDirac(), and FEProblemBase::updateMaxQps().

◆ _max_scalar_order

libMesh::Order FEProblemBase::_max_scalar_order
protectedinherited

Maximum scalar variable order.

Definition at line 2892 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxScalarVariable(), and FEProblemBase::getMaxScalarOrder().

◆ _mesh

MooseMesh& FEProblemBase::_mesh
protectedinherited

◆ _mesh_divisions

MooseObjectWarehouse<MeshDivision> FEProblemBase::_mesh_divisions
protectedinherited

Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best.

Definition at line 2669 of file FEProblemBase.h.

Referenced by FEProblemBase::addMeshDivision(), and FEProblemBase::getMeshDivision().

◆ _mortar_data

MortarData FEProblemBase::_mortar_data
protectedinherited

◆ _multi_apps

ExecuteMooseObjectWarehouse<MultiApp> FEProblemBase::_multi_apps
protectedinherited

◆ _multiapp_fixed_point_convergence_name

std::optional<ConvergenceName> FEProblemBase::_multiapp_fixed_point_convergence_name
protectedinherited

◆ _name

const std::string& MooseBase::_name
protectedinherited

The name of this class.

Definition at line 359 of file MooseBase.h.

Referenced by AddBCAction::act(), AddConstraintAction::act(), AddPostprocessorAction::act(), PartitionerAction::act(), AddMeshGeneratorAction::act(), AddDamperAction::act(), AddInterfaceKernelAction::act(), AddFVInterfaceKernelAction::act(), AddMaterialAction::act(), AddVectorPostprocessorAction::act(), AddNodalKernelAction::act(), AddScalarKernelAction::act(), AddTransferAction::act(), AddDiracKernelAction::act(), AddFunctorMaterialAction::act(), AddUserObjectAction::act(), AddFVInitialConditionAction::act(), AddKernelAction::act(), AddDGKernelAction::act(), ReadExecutorParamsAction::act(), AddMarkerAction::act(), AddMultiAppAction::act(), AddIndicatorAction::act(), AddInitialConditionAction::act(), AddPositionsAction::act(), AddReporterAction::act(), AddTimesAction::act(), AddFieldSplitAction::act(), AddFVKernelAction::act(), AddFVBCAction::act(), AddConvergenceAction::act(), AddMeshDivisionAction::act(), AddHDGKernelAction::act(), AddTimeStepperAction::act(), AddDistributionAction::act(), SetupPreconditionerAction::act(), SetupTimeIntegratorAction::act(), AddFunctionAction::act(), AddOutputAction::act(), AddLinearFVBCAction::act(), AddLinearFVKernelAction::act(), AddCorrectorAction::act(), AddMeshModifiersAction::act(), AddSamplerAction::act(), AddControlAction::act(), AddMFEMFESpaceAction::act(), AddMFEMSubMeshAction::act(), AddMFEMPreconditionerAction::act(), AddMFEMSolverAction::act(), AddPeriodicBCAction::act(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), CombinerGenerator::CombinerGenerator(), Executor::Executor(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), FunctionDT::FunctionDT(), FillBetweenPointVectorsGenerator::generate(), FillBetweenSidesetsGenerator::generate(), FillBetweenCurvesGenerator::generate(), MooseBase::MooseBase(), NearestPointBase< LayeredSideDiffusiveFluxAverage, SideIntegralVariableUserObject >::name(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseBase::setData(), and AddVariableAction::varName().

◆ _need_to_add_default_multiapp_fixed_point_convergence

bool FEProblemBase::_need_to_add_default_multiapp_fixed_point_convergence
protectedinherited

Flag that the problem needs to add the default fixed point convergence.

Definition at line 2601 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence(), and FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence().

◆ _need_to_add_default_nonlinear_convergence

bool FEProblemBase::_need_to_add_default_nonlinear_convergence
protectedinherited

Flag that the problem needs to add the default nonlinear convergence.

Definition at line 2599 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultNonlinearConvergence(), and FEProblemBase::setNeedToAddDefaultNonlinearConvergence().

◆ _need_to_add_default_steady_state_convergence

bool FEProblemBase::_need_to_add_default_steady_state_convergence
protectedinherited

Flag that the problem needs to add the default steady convergence.

Definition at line 2603 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultSteadyStateConvergence(), and FEProblemBase::setNeedToAddDefaultSteadyStateConvergence().

◆ _needs_old_newton_iter

bool FEProblemBase::_needs_old_newton_iter
protectedinherited

Indicates that we need to compute variable values for previous Newton iteration.

Definition at line 2847 of file FEProblemBase.h.

◆ _neighbor_material_props

MaterialPropertyStorage& FEProblemBase::_neighbor_material_props
protectedinherited

◆ _nl

std::vector<std::shared_ptr<NonlinearSystemBase> > FEProblemBase::_nl
protectedinherited

The nonlinear systems.

Definition at line 2630 of file FEProblemBase.h.

Referenced by FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addKernel(), FEProblemBase::addNodalKernel(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::checkNonlocalCoupling(), FEProblemBase::checkProblemIntegrity(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computingPreSMOResidual(), FEProblemBase::currentNlSysNum(), FEProblemBase::customSetup(), DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::finalNonlinearResidual(), FEProblemBase::getNonlinearEvaluableElementRange(), FEProblemBase::getNonlinearSystem(), FEProblemBase::getNonlinearSystemBase(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needSubdomainMaterialOnSide(), FEProblemBase::nLinearIterations(), FEProblemBase::nNonlinearIterations(), FEProblemBase::onTimestepBegin(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::residualSetup(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setNonlocalCouplingMatrix(), FEProblemBase::setResidual(), FEProblemBase::setResidualObjectParamsAndLog(), FEProblemBase::setupDampers(), FEProblemBase::subdomainSetup(), FEProblemBase::systemBaseNonlinear(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _nl_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_nl_evaluable_local_elem_range
protectedinherited

◆ _nl_sys_name_to_num

std::map<NonlinearSystemName, unsigned int> FEProblemBase::_nl_sys_name_to_num
protectedinherited

Map from nonlinear system name to number.

Definition at line 2633 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::nlSysNum().

◆ _nl_sys_names

const std::vector<NonlinearSystemName> FEProblemBase::_nl_sys_names
protectedinherited

◆ _nonlinear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_nonlinear_convergence_names
protectedinherited

Nonlinear system(s) convergence name(s)

Definition at line 2570 of file FEProblemBase.h.

Referenced by FEProblemBase::getNonlinearConvergenceNames(), and FEProblemBase::setNonlinearConvergenceNames().

◆ _nonlocal_integrated_bcs

MooseObjectWarehouse<IntegratedBCBase> FEProblemBase::_nonlocal_integrated_bcs
protectedinherited

◆ _nonlocal_kernels

MooseObjectWarehouse<KernelBase> FEProblemBase::_nonlocal_kernels
protectedinherited

◆ _not_zeroed_tagged_vectors

std::unordered_set<TagID> SubProblem::_not_zeroed_tagged_vectors
protectedinherited

the list of vector tags that will not be zeroed when all other tags are

Definition at line 1117 of file SubProblem.h.

Referenced by SubProblem::addNotZeroedVectorTag(), FEProblemBase::restoreSolutions(), and SubProblem::vectorTagNotZeroed().

◆ _notify_when_mesh_changes

std::vector<MeshChangedInterface *> FEProblemBase::_notify_when_mesh_changes
protectedinherited

Objects to be notified when the mesh changes.

Definition at line 2750 of file FEProblemBase.h.

Referenced by FEProblemBase::meshChanged(), and FEProblemBase::notifyWhenMeshChanges().

◆ _notify_when_mesh_displaces

std::vector<MeshDisplacedInterface *> FEProblemBase::_notify_when_mesh_displaces
protectedinherited

Objects to be notified when the mesh displaces.

Definition at line 2753 of file FEProblemBase.h.

Referenced by FEProblemBase::meshDisplaced(), and FEProblemBase::notifyWhenMeshDisplaces().

◆ _num_linear_sys

const std::size_t FEProblemBase::_num_linear_sys
protectedinherited

◆ _num_nl_sys

const std::size_t FEProblemBase::_num_nl_sys
protectedinherited

◆ _parallel_barrier_messaging

bool FEProblemBase::_parallel_barrier_messaging
protectedinherited

◆ _pars

const InputParameters& MooseBase::_pars
protectedinherited

The object's parameters.

Definition at line 362 of file MooseBase.h.

Referenced by AddFVICAction::act(), AddICAction::act(), CreateProblemAction::act(), CreateProblemDefaultAction::act(), SetupMeshAction::act(), ComposeTimeStepperAction::act(), SetupDebugAction::act(), AddAuxKernelAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FunctorMaterial::addFunctorPropertyByBlocks(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), PiecewiseTabularBase::buildFromFile(), PNGOutput::calculateRescalingValues(), MooseBase::callMooseError(), MooseBase::connectControllableParams(), Console::Console(), MooseApp::copyInputs(), MaterialBase::declareADProperty(), MaterialBase::declareProperty(), FEProblemSolve::FEProblemSolve(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FileMeshGenerator::generate(), MooseBase::getBase(), MooseBase::getCheckedPointerParam(), MaterialBase::getGenericZeroMaterialProperty(), MooseBase::getHitNode(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getParam(), MooseBase::hasBase(), MeshGenerator::hasGenerateData(), AddVariableAction::init(), AdvancedOutput::initExecutionTypes(), Console::initialSetup(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MultiApp::keepSolutionDuringRestore(), MooseBase::messagePrefix(), MooseBase::MooseBase(), MooseApp::outputMachineReadableData(), MooseBase::paramError(), GlobalParamsAction::parameters(), MooseBase::parameters(), MooseBase::paramInfo(), MooseBase::paramWarning(), MooseMesh::prepare(), Eigenvalue::prepareSolverOptions(), MooseMesh::setCoordSystem(), MooseMesh::setPartitionerHelper(), SetupMeshAction::setupMesh(), TransientBase::setupTimeIntegrator(), MooseApp::showInputs(), and MooseBase::uniqueName().

◆ _petsc_option_data_base

PetscOptions FEProblemBase::_petsc_option_data_base
protectedinherited

◆ _petsc_options

Moose::PetscSupport::PetscOptions FEProblemBase::_petsc_options
protectedinherited

PETSc option storage.

Definition at line 2922 of file FEProblemBase.h.

Referenced by FEProblemBase::getPetscOptions(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _phi_zero

std::vector<VariablePhiValue> FEProblemBase::_phi_zero
inherited

◆ _point_zero

std::vector<Point> FEProblemBase::_point_zero
inherited

Definition at line 2064 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _previous_nl_solution_required

bool FEProblemBase::_previous_nl_solution_required
protectedinherited

Indicates we need to save the previous NL iteration variable values.

Definition at line 2850 of file FEProblemBase.h.

Referenced by FEProblemBase::createTagSolutions().

◆ _problem_data

MFEMProblemData MFEMProblem::_problem_data
protected

Definition at line 209 of file MFEMProblem.h.

Referenced by getCoefficients(), getMeshDisplacementGridFunction(), and getProblemData().

◆ _random_data_objects

std::map<std::string, std::unique_ptr<RandomData> > FEProblemBase::_random_data_objects
protectedinherited

◆ _real_zero

std::vector<Real> FEProblemBase::_real_zero
inherited

Convenience zeros.

Definition at line 2053 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _reinit_displaced_elem

bool FEProblemBase::_reinit_displaced_elem
protectedinherited

◆ _reinit_displaced_face

bool FEProblemBase::_reinit_displaced_face
protectedinherited

◆ _reinit_displaced_neighbor

bool FEProblemBase::_reinit_displaced_neighbor
protectedinherited

◆ _reporter_data

ReporterData FEProblemBase::_reporter_data
protectedinherited

◆ _restartable_app

MooseApp& Restartable::_restartable_app
protectedinherited

Reference to the application.

Definition at line 227 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp(), and Restartable::registerRestartableNameWithFilterOnApp().

◆ _restartable_read_only

const bool Restartable::_restartable_read_only
protectedinherited

Flag for toggling read only status (see ReporterData)

Definition at line 236 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp().

◆ _restartable_system_name

const std::string Restartable::_restartable_system_name
protectedinherited

The system name this object is in.

Definition at line 230 of file Restartable.h.

Referenced by Restartable::restartableName().

◆ _restartable_tid

const THREAD_ID Restartable::_restartable_tid
protectedinherited

The thread ID for this object.

Definition at line 233 of file Restartable.h.

Referenced by Restartable::declareRestartableDataHelper().

◆ _safe_access_tagged_matrices

bool SubProblem::_safe_access_tagged_matrices
protectedinherited

◆ _safe_access_tagged_vectors

bool SubProblem::_safe_access_tagged_vectors
protectedinherited

◆ _scalar_ics

ScalarInitialConditionWarehouse FEProblemBase::_scalar_ics
protectedinherited

◆ _scalar_zero

std::vector<VariableValue> FEProblemBase::_scalar_zero
inherited

◆ _second_phi_zero

std::vector<VariablePhiSecond> FEProblemBase::_second_phi_zero
inherited

◆ _second_zero

std::vector<VariableSecond> FEProblemBase::_second_zero
inherited

◆ _skip_exception_check

bool FEProblemBase::_skip_exception_check
protectedinherited

If or not skip 'exception and stop solve'.

Definition at line 2832 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::initialSetup(), and FEProblemBase::skipExceptionCheck().

◆ _snesmf_reuse_base

bool FEProblemBase::_snesmf_reuse_base
protectedinherited

If or not to resuse the base vector for matrix-free calculation.

Definition at line 2829 of file FEProblemBase.h.

Referenced by FEProblemBase::setSNESMFReuseBase(), and FEProblemBase::useSNESMFReuseBase().

◆ _snesmf_reuse_base_set_by_user

bool FEProblemBase::_snesmf_reuse_base_set_by_user
protectedinherited

If or not _snesmf_reuse_base is set by user.

Definition at line 2835 of file FEProblemBase.h.

Referenced by FEProblemBase::isSNESMFReuseBaseSetbyUser(), and FEProblemBase::setSNESMFReuseBase().

◆ _solve

const bool& FEProblemBase::_solve
protectedinherited

◆ _solver_params

std::vector<SolverParams> FEProblemBase::_solver_params
protectedinherited

◆ _solver_sys_name_to_num

std::map<SolverSystemName, unsigned int> FEProblemBase::_solver_sys_name_to_num
protectedinherited

Map connecting solver system names with their respective systems.

Definition at line 2648 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::solverSysNum().

◆ _solver_sys_names

std::vector<SolverSystemName> FEProblemBase::_solver_sys_names
protectedinherited

◆ _solver_systems

std::vector<std::shared_ptr<SolverSystem> > FEProblemBase::_solver_systems
protectedinherited

Combined container to base pointer of every solver system.

Definition at line 2642 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::computeSystems(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getScalarVariable(), FEProblemBase::getSolverSystem(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasSolverVariable(), FEProblemBase::hasVariable(), FEProblem::init(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::projectSolution(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::setCurrentSubdomainID(), Moose::PetscSupport::setSinglePetscOption(), FEProblemBase::setVariableAllDoFMap(), FEProblemBase::solverSystemConverged(), FEProblemBase::systemBaseSolver(), FEProblemBase::systemNumForVariable(), and FEProblemBase::timestepSetup().

◆ _solver_var_to_sys_num

std::map<SolverVariableName, unsigned int> FEProblemBase::_solver_var_to_sys_num
protectedinherited

Map connecting variable names with their respective solver systems.

Definition at line 2645 of file FEProblemBase.h.

Referenced by FEProblemBase::addVariable(), and FEProblemBase::determineSolverSystem().

◆ _steady_state_convergence_name

std::optional<ConvergenceName> FEProblemBase::_steady_state_convergence_name
protectedinherited

◆ _subspace_dim

std::map<std::string, unsigned int> FEProblemBase::_subspace_dim
protectedinherited

Dimension of the subspace spanned by the vectors with a given prefix.

Definition at line 2660 of file FEProblemBase.h.

Referenced by FEProblemBase::initNullSpaceVectors(), and FEProblemBase::subspaceDim().

◆ _t_step

int& FEProblemBase::_t_step
protectedinherited

◆ _termination_requested

bool Problem::_termination_requested
protectedinherited

True if termination of the solve has been requested.

Definition at line 58 of file Problem.h.

Referenced by Problem::isSolveTerminationRequested(), and Problem::terminateSolve().

◆ _time

Real& FEProblemBase::_time
protectedinherited

◆ _time_old

Real& FEProblemBase::_time_old
protectedinherited

◆ _to_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_to_multi_app_transfers
protectedinherited

◆ _transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_transfers
protectedinherited

◆ _transient

bool FEProblemBase::_transient
protectedinherited

Definition at line 2591 of file FEProblemBase.h.

Referenced by FEProblemBase::isTransient(), and FEProblemBase::transient().

◆ _transient_multi_apps

ExecuteMooseObjectWarehouse<TransientMultiApp> FEProblemBase::_transient_multi_apps
protectedinherited

Storage for TransientMultiApps (only needed for calling 'computeDT')

Definition at line 2723 of file FEProblemBase.h.

Referenced by FEProblemBase::addMultiApp(), FEProblemBase::computeMultiAppsDT(), and FEProblemBase::updateActiveObjects().

◆ _type

const std::string& MooseBase::_type
protectedinherited

◆ _uo_aux_state_check

const bool FEProblemBase::_uo_aux_state_check
protectedinherited

Whether or not checking the state of uo/aux evaluation.

Definition at line 2886 of file FEProblemBase.h.

Referenced by FEProblemBase::execute(), and FEProblemBase::hasUOAuxStateCheck().

◆ _uo_jacobian_moose_vars

std::vector<std::vector<const MooseVariableFEBase *> > FEProblemBase::_uo_jacobian_moose_vars
protectedinherited

◆ _use_hash_table_matrix_assembly

const bool FEProblemBase::_use_hash_table_matrix_assembly
protectedinherited

Whether to assemble matrices using hash tables instead of preallocating matrix memory.

This can be a good option if the sparsity pattern changes throughout the course of the simulation

Definition at line 2949 of file FEProblemBase.h.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

◆ _using_ad_mat_props

bool FEProblemBase::_using_ad_mat_props
protectedinherited

Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property.

Definition at line 2942 of file FEProblemBase.h.

◆ _using_default_nl

const bool FEProblemBase::_using_default_nl
protectedinherited

Boolean to check if we have the default nonlinear system.

Definition at line 2621 of file FEProblemBase.h.

◆ _var_dof_map

std::map<std::string, std::vector<dof_id_type> > SubProblem::_var_dof_map
inherited

◆ _vector_curl_zero

std::vector<VectorVariableCurl> FEProblemBase::_vector_curl_zero
inherited

◆ _vector_zero

std::vector<VectorVariableValue> FEProblemBase::_vector_zero
inherited

◆ _verbose_multiapps

bool FEProblemBase::_verbose_multiapps
protectedinherited

◆ _verbose_restore

bool FEProblemBase::_verbose_restore
protectedinherited

Whether or not to be verbose on solution restoration post a failed time step.

Definition at line 2910 of file FEProblemBase.h.

Referenced by FEProblemBase::restoreSolutions(), and FEProblemBase::setVerboseProblem().

◆ _verbose_setup

MooseEnum FEProblemBase::_verbose_setup
protectedinherited

Whether or not to be verbose during setup.

Definition at line 2904 of file FEProblemBase.h.

Referenced by FEProblemBase::logAdd(), and FEProblemBase::setVerboseProblem().

◆ _xfem

std::shared_ptr<XFEMInterface> FEProblemBase::_xfem
protectedinherited

Pointer to XFEM controller.

Definition at line 2804 of file FEProblemBase.h.

Referenced by FEProblemBase::getXFEM(), FEProblemBase::haveXFEM(), FEProblemBase::initXFEM(), and FEProblemBase::updateMeshXFEM().

◆ _zero

std::vector<VariableValue> FEProblemBase::_zero
inherited

◆ _zero_block_material_props

std::map<SubdomainID, std::set<MaterialPropertyName> > SubProblem::_zero_block_material_props
protectedinherited

Set of properties returned as zero properties.

Definition at line 1058 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), FEProblemBase::checkDependMaterialsHelper(), and SubProblem::storeSubdomainZeroMatProp().

◆ _zero_boundary_material_props

std::map<BoundaryID, std::set<MaterialPropertyName> > SubProblem::_zero_boundary_material_props
protectedinherited

◆ app_param

const std::string MooseBase::app_param = "_moose_app"
staticinherited

◆ moose_base_param

const std::string MooseBase::moose_base_param = "_moose_base"
staticinherited

The name of the parameter that contains the moose system base.

Definition at line 61 of file MooseBase.h.

Referenced by InputParameters::getBase(), InputParameters::hasBase(), and InputParameters::registerBase().

◆ name_param

const std::string MooseBase::name_param = "_object_name"
staticinherited

◆ type_param

const std::string MooseBase::type_param = "_type"
staticinherited

◆ unique_name_param

const std::string MooseBase::unique_name_param = "_unique_name"
staticinherited

The name of the parameter that contains the unique object name.

Definition at line 57 of file MooseBase.h.

Referenced by InputParameterWarehouse::addInputParameters(), AppFactory::create(), InputParameterWarehouse::removeInputParameters(), MooseBase::uniqueName(), and MooseBase::validParams().


The documentation for this class was generated from the following files: