https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
FEProblem Class Referenceabstract

Specialization of SubProblem for solving nonlinear equations plus auxiliary equations. More...

#include <FEProblem.h>

Inheritance diagram for FEProblem:
[legend]

Public Types

enum  CoverageCheckMode {
  CoverageCheckMode::FALSE, CoverageCheckMode::TRUE, CoverageCheckMode::OFF, CoverageCheckMode::ON,
  CoverageCheckMode::SKIP_LIST, CoverageCheckMode::ONLY_LIST
}
 
using DataFileParameterType = DataFileName
 The parameter type this interface expects for a data file name. More...
 

Public Member Functions

 FEProblem (const InputParameters &parameters)
 
virtual bool getUseNonlinear () const
 
virtual void setUseNonlinear (bool use_nonlinear)
 
virtual void setInputParametersFEProblem (InputParameters &parameters) override
 
virtual NonlinearSystemgetNonlinearSystem (const unsigned int nl_sys_num) override
 
virtual void addLineSearch (const InputParameters &parameters) override
 add a MOOSE line search More...
 
virtual void init () override
 
virtual libMesh::EquationSystemses () override
 
virtual MooseMeshmesh () override
 
virtual const MooseMeshmesh () const override
 
const MooseMeshmesh (bool use_displaced) const override
 
void setCoordSystem (const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
 
void setAxisymmetricCoordAxis (const MooseEnum &rz_coord_axis)
 
void setCoupling (Moose::CouplingType type)
 Set the coupling between variables TODO: allow user-defined coupling. More...
 
Moose::CouplingType coupling () const
 
void setCouplingMatrix (std::unique_ptr< libMesh::CouplingMatrix > cm, const unsigned int nl_sys_num)
 Set custom coupling matrix. More...
 
void setCouplingMatrix (libMesh::CouplingMatrix *cm, const unsigned int nl_sys_num)
 
const libMesh::CouplingMatrixcouplingMatrix (const unsigned int nl_sys_num) const override
 The coupling matrix defining what blocks exist in the preconditioning matrix. More...
 
void setNonlocalCouplingMatrix ()
 Set custom coupling matrix for variables requiring nonlocal contribution. More...
 
bool areCoupled (const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
 
bool hasUOAuxStateCheck () const
 Whether or not MOOSE will perform a user object/auxiliary kernel state check. More...
 
bool checkingUOAuxState () const
 Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e. More...
 
void trustUserCouplingMatrix ()
 Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix. More...
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & nonlocalCouplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
virtual bool hasVariable (const std::string &var_name) const override
 Whether or not this problem has the variable. More...
 
bool hasSolverVariable (const std::string &var_name) const
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const=0
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
MooseVariableFieldBasegetActualFieldVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariableField which may be in any system. More...
 
virtual MooseVariablegetStandardVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariable which may be in any system. More...
 
virtual VectorMooseVariablegetVectorVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested VectorMooseVariable which may be in any system. More...
 
virtual ArrayMooseVariablegetArrayVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested ArrayMooseVariable which may be in any system. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const override
 Returns a Boolean indicating whether any system contains a variable with the name provided. More...
 
virtual MooseVariableScalargetScalarVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the scalar variable reference from whichever system contains it. More...
 
virtual libMesh::SystemgetSystem (const std::string &var_name) override
 Returns the equation system containing the variable provided. More...
 
const RestartableEquationSystemsgetRestartableEquationSystems () const
 Get the RestartableEquationSystems object. More...
 
virtual void setActiveElementalMooseVariables (const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
 Set the MOOSE variables to be reinited on each element. More...
 
virtual void clearActiveElementalMooseVariables (const THREAD_ID tid) override
 Clear the active elemental MooseVariableFEBase. More...
 
virtual void clearActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void createQRules (libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
 
void bumpVolumeQRuleOrder (libMesh::Order order, SubdomainID block)
 Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower. More...
 
void bumpAllQRuleOrder (libMesh::Order order, SubdomainID block)
 
unsigned int getMaxQps () const
 
libMesh::Order getMaxScalarOrder () const
 
void checkNonlocalCoupling ()
 
void checkUserObjectJacobianRequirement (THREAD_ID tid)
 
void setVariableAllDoFMap (const std::vector< const MooseVariableFEBase *> &moose_vars)
 
const std::vector< const MooseVariableFEBase * > & getUserObjectJacobianVariables (const THREAD_ID tid) const
 
virtual Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) override
 
virtual const Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) const override
 
Moose::Kokkos::AssemblykokkosAssembly ()
 
const Moose::Kokkos::AssemblykokkosAssembly () const
 
virtual std::vector< VariableName > getVariableNames ()
 Returns a list of all the variables in the problem (both from the NL and Aux systems. More...
 
void initialSetup () override
 
void checkDuplicatePostprocessorVariableNames ()
 
void timestepSetup () override
 
void customSetup (const ExecFlagType &exec_type) override
 
void residualSetup () override
 
void jacobianSetup () override
 
virtual void prepare (const Elem *elem, const THREAD_ID tid) override
 
virtual void prepare (const Elem *elem, unsigned int ivar, unsigned int jvar, const std::vector< dof_id_type > &dof_indices, const THREAD_ID tid) override
 
virtual void prepareFace (const Elem *elem, const THREAD_ID tid) override
 
virtual void setCurrentSubdomainID (const Elem *elem, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, const THREAD_ID tid)
 
virtual void prepareAssembly (const THREAD_ID tid) override
 
virtual void addGhostedElem (dof_id_type elem_id) override
 Will make sure that all dofs connected to elem_id are ghosted to this processor. More...
 
virtual void addGhostedBoundary (BoundaryID boundary_id) override
 Will make sure that all necessary elements from boundary_id are ghosted to this processor. More...
 
virtual void ghostGhostedBoundaries () override
 Causes the boundaries added using addGhostedBoundary to actually be ghosted. More...
 
virtual void sizeZeroes (unsigned int size, const THREAD_ID tid)
 
virtual bool reinitDirac (const Elem *elem, const THREAD_ID tid) override
 Returns true if the Problem has Dirac kernels it needs to compute on elem. More...
 
virtual void reinitElem (const Elem *elem, const THREAD_ID tid) override
 
virtual void reinitElemPhys (const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid) override
 
void reinitElemFace (const Elem *elem, unsigned int side, BoundaryID, const THREAD_ID tid)
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitLowerDElem (const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 
virtual void reinitNode (const Node *node, const THREAD_ID tid) override
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNeighbor (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitElemNeighborAndLowerD (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitScalars (const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
 fills the VariableValue arrays for scalar variables from the solution vector More...
 
virtual void reinitOffDiagScalars (const THREAD_ID tid) override
 
virtual void getDiracElements (std::set< const Elem *> &elems) override
 Fills "elems" with the elements that should be looped over for Dirac Kernels. More...
 
virtual void clearDiracInfo () override
 Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in. More...
 
virtual void subdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void neighborSubdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void newAssemblyArray (std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
 
virtual void initNullSpaceVectors (const InputParameters &parameters, std::vector< std::shared_ptr< NonlinearSystemBase >> &nl)
 
virtual void solve (const unsigned int nl_sys_num)
 
void initKokkos ()
 Construct Kokkos assembly and systems and allocate Kokkos material property storages. More...
 
virtual void solveLinearSystem (const unsigned int linear_sys_num, const Moose::PetscSupport::PetscOptions *po=nullptr)
 Build and solve a linear system. More...
 
virtual void setException (const std::string &message)
 Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve(). More...
 
virtual bool hasException ()
 Whether or not an exception has occurred. More...
 
virtual void checkExceptionAndStopSolve (bool print_message=true)
 Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut. More...
 
virtual bool solverSystemConverged (const unsigned int solver_sys_num) override
 
virtual unsigned int nNonlinearIterations (const unsigned int nl_sys_num) const override
 
virtual unsigned int nLinearIterations (const unsigned int nl_sys_num) const override
 
virtual Real finalNonlinearResidual (const unsigned int nl_sys_num) const override
 
virtual bool computingPreSMOResidual (const unsigned int nl_sys_num) const override
 Returns true if the problem is in the process of computing it's initial residual. More...
 
virtual std::string solverTypeString (unsigned int solver_sys_num=0)
 Return solver type as a human readable string. More...
 
virtual bool startedInitialSetup ()
 Returns true if we are in or beyond the initialSetup stage. More...
 
virtual void onTimestepBegin () override
 
virtual void onTimestepEnd () override
 
virtual Realtime () const
 
virtual RealtimeOld () const
 
virtual inttimeStep () const
 
virtual Realdt () const
 
virtual RealdtOld () const
 
Real getTimeFromStateArg (const Moose::StateArg &state) const
 Returns the time associated with the requested state. More...
 
virtual void transient (bool trans)
 
virtual bool isTransient () const override
 
virtual void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void addPredictor (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void copySolutionsBackwards ()
 
virtual void advanceState ()
 Advance all of the state holding vectors / datastructures so that we can move to the next timestep. More...
 
virtual void restoreSolutions ()
 
virtual void saveOldSolutions ()
 Allocate vectors and save old solutions into them. More...
 
virtual void restoreOldSolutions ()
 Restore old solutions from the backup vectors and deallocate them. More...
 
void needSolutionState (unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
 Declare that we need up to old (1) or older (2) solution states for a given type of iteration. More...
 
virtual void outputStep (ExecFlagType type)
 Output the current step. More...
 
virtual void postExecute ()
 Method called at the end of the simulation. More...
 
void forceOutput ()
 Indicates that the next call to outputStep should be forced. More...
 
virtual void initPetscOutputAndSomeSolverSettings ()
 Reinitialize PETSc output for proper linear/nonlinear iteration display. More...
 
Moose::PetscSupport::PetscOptionsgetPetscOptions ()
 Retrieve a writable reference the PETSc options (used by PetscSupport) More...
 
void logAdd (const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
 Output information about the object just added to the problem. More...
 
virtual void addFunction (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual bool hasFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual FunctiongetFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual void addMeshDivision (const std::string &type, const std::string &name, InputParameters &params)
 Add a MeshDivision. More...
 
MeshDivisiongetMeshDivision (const std::string &name, const THREAD_ID tid=0) const
 Get a MeshDivision. More...
 
virtual void addConvergence (const std::string &type, const std::string &name, InputParameters &parameters)
 Adds a Convergence object. More...
 
virtual ConvergencegetConvergence (const std::string &name, const THREAD_ID tid=0) const
 Gets a Convergence object. More...
 
virtual const std::vector< std::shared_ptr< Convergence > > & getConvergenceObjects (const THREAD_ID tid=0) const
 Gets the Convergence objects. More...
 
virtual bool hasConvergence (const std::string &name, const THREAD_ID tid=0) const
 Returns true if the problem has a Convergence object of the given name. More...
 
bool needToAddDefaultNonlinearConvergence () const
 Returns true if the problem needs to add the default nonlinear convergence. More...
 
bool needToAddDefaultMultiAppFixedPointConvergence () const
 Returns true if the problem needs to add the default fixed point convergence. More...
 
bool needToAddDefaultSteadyStateConvergence () const
 Returns true if the problem needs to add the default steady-state detection convergence. More...
 
void setNeedToAddDefaultNonlinearConvergence ()
 Sets _need_to_add_default_nonlinear_convergence to true. More...
 
void setNeedToAddDefaultMultiAppFixedPointConvergence ()
 Sets _need_to_add_default_multiapp_fixed_point_convergence to true. More...
 
void setNeedToAddDefaultSteadyStateConvergence ()
 Sets _need_to_add_default_steady_state_convergence to true. More...
 
bool hasSetMultiAppFixedPointConvergenceName () const
 Returns true if the problem has set the fixed point convergence name. More...
 
bool hasSetSteadyStateConvergenceName () const
 Returns true if the problem has set the steady-state detection convergence name. More...
 
virtual void addDefaultNonlinearConvergence (const InputParameters &params)
 Adds the default nonlinear Convergence associated with the problem. More...
 
virtual bool onlyAllowDefaultNonlinearConvergence () const
 Returns true if an error will result if the user supplies 'nonlinear_convergence'. More...
 
void addDefaultMultiAppFixedPointConvergence (const InputParameters &params)
 Adds the default fixed point Convergence associated with the problem. More...
 
void addDefaultSteadyStateConvergence (const InputParameters &params)
 Adds the default steady-state detection Convergence. More...
 
virtual void lineSearch ()
 execute MOOSE line search More...
 
LineSearchgetLineSearch () override
 getter for the MOOSE line search More...
 
virtual void addDistribution (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import distributions. More...
 
virtual DistributiongetDistribution (const std::string &name)
 
virtual void addSampler (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import Samplers. More...
 
virtual SamplergetSampler (const std::string &name, const THREAD_ID tid=0)
 
NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num)
 
const NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num) const
 
void setCurrentNonlinearSystem (const unsigned int nl_sys_num)
 
NonlinearSystemBasecurrentNonlinearSystem ()
 
const NonlinearSystemBasecurrentNonlinearSystem () const
 
virtual const SystemBasesystemBaseNonlinear (const unsigned int sys_num) const override
 Return the nonlinear system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseNonlinear (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseSolver (const unsigned int sys_num) const override
 Return the solver system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseSolver (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseAuxiliary () const override
 Return the auxiliary system object as a base class reference. More...
 
virtual SystemBasesystemBaseAuxiliary () override
 
Moose::Kokkos::Array< Moose::Kokkos::System > & getKokkosSystems ()
 Get all Kokkos systems that are associated with MOOSE nonlinear and auxiliary systems. More...
 
const Moose::Kokkos::Array< Moose::Kokkos::System > & getKokkosSystems () const
 
virtual const SystemBasegetSystemBase (const unsigned int sys_num) const
 Get constant reference to a system in this problem. More...
 
virtual SystemBasegetSystemBase (const unsigned int sys_num)
 Get non-constant reference to a system in this problem. More...
 
SystemBasegetSystemBase (const std::string &sys_name)
 Get non-constant reference to a system in this problem. More...
 
LinearSystemgetLinearSystem (unsigned int sys_num)
 Get non-constant reference to a linear system. More...
 
const LinearSystemgetLinearSystem (unsigned int sys_num) const
 Get a constant reference to a linear system. More...
 
SolverSystemgetSolverSystem (unsigned int sys_num)
 Get non-constant reference to a solver system. More...
 
const SolverSystemgetSolverSystem (unsigned int sys_num) const
 Get a constant reference to a solver system. More...
 
void setCurrentLinearSystem (unsigned int sys_num)
 Set the current linear system pointer. More...
 
LinearSystemcurrentLinearSystem ()
 Get a non-constant reference to the current linear system. More...
 
const LinearSystemcurrentLinearSystem () const
 Get a constant reference to the current linear system. More...
 
virtual const SystemBasesystemBaseLinear (unsigned int sys_num) const override
 Get a constant base class reference to a linear system. More...
 
virtual SystemBasesystemBaseLinear (unsigned int sys_num) override
 Get a non-constant base class reference to a linear system. More...
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding a non-linear variable. More...
 
virtual void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 
virtual void addAuxVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding an auxiliary variable. More...
 
virtual void addAuxVariable (const std::string &var_name, const libMesh::FEType &type, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxArrayVariable (const std::string &var_name, const libMesh::FEType &type, unsigned int components, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarVariable (const std::string &var_name, libMesh::Order order, Real scale_factor=1., const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addAuxScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
AuxiliarySystemgetAuxiliarySystem ()
 
virtual void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInterfaceKernel (const std::string &fv_ik_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 Add an initial condition for a finite volume variables. More...
 
void projectSolution ()
 
unsigned short getCurrentICState ()
 Retrieves the current initial condition state. More...
 
void projectInitialConditionOnCustomRange (libMesh::ConstElemRange &elem_range, ConstBndNodeRange &bnd_node_range, const std::optional< std::set< VariableName >> &target_vars=std::nullopt)
 Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
void projectFunctionOnCustomRange (ConstElemRange &elem_range, Number(*func)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &), Gradient(*func_grad)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &), const libMesh::Parameters &params, const VariableName &target_var)
 Project a function onto a range of elements for a given variable. More...
 
virtual void addMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addMaterialHelper (std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addFunctorMaterial (const std::string &functor_material_name, const std::string &name, InputParameters &parameters)
 
virtual void addKokkosMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
void prepareMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props, const SubdomainID blk_id, const THREAD_ID tid)
 Add the MooseVariables and the material properties that the current materials depend on to the dependency list. More...
 
void reinitMaterials (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true)
 
void reinitMaterialsFace (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on element faces More...
 
void reinitMaterialsFaceOnBoundary (const BoundaryID boundary_id, const SubdomainID blk_id, const THREAD_ID tid, const bool swap_stateful=true, const std::deque< MaterialBase *> *const reinit_mats=nullptr)
 reinit materials on element faces on a boundary (internal or external) This specific routine helps us not reinit when don't need to More...
 
void reinitMaterialsNeighborOnBoundary (const BoundaryID boundary_id, const SubdomainID blk_id, const THREAD_ID tid, const bool swap_stateful=true, const std::deque< MaterialBase *> *const reinit_mats=nullptr)
 reinit materials on neighbor element (usually faces) on a boundary (internal or external) This specific routine helps us not reinit when don't need to More...
 
void reinitMaterialsNeighbor (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on the neighboring element face More...
 
void reinitMaterialsBoundary (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on a boundary More...
 
void reinitMaterialsInterface (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true)
 
void prepareKokkosMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props)
 
void reinitKokkosMaterials ()
 
virtual void swapBackMaterials (const THREAD_ID tid)
 
virtual void swapBackMaterialsFace (const THREAD_ID tid)
 
virtual void swapBackMaterialsNeighbor (const THREAD_ID tid)
 
void setActiveMaterialProperties (const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
 Record and set the material properties required by the current computing thread. More...
 
bool hasActiveMaterialProperties (const THREAD_ID tid) const
 Method to check whether or not a list of active material roperties has been set. More...
 
void clearActiveMaterialProperties (const THREAD_ID tid)
 Clear the active material properties. More...
 
template<typename T >
std::vector< std::shared_ptr< T > > addObject (const std::string &type, const std::string &name, InputParameters &parameters, const bool threaded=true, const std::string &var_param_name="variable")
 Method for creating and adding an object to the warehouse. More...
 
virtual void addPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addVectorPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addReporter (const std::string &type, const std::string &name, InputParameters &parameters)
 Add a Reporter object to the simulation. More...
 
const ReporterDatagetReporterData () const
 Provides const access the ReporterData object. More...
 
ReporterDatagetReporterData (ReporterData::WriteKey)
 Provides non-const access the ReporterData object that is used to store reporter values. More...
 
virtual std::vector< std::shared_ptr< UserObject > > addUserObject (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 
const ExecuteMooseObjectWarehouse< UserObject > & getUserObjects () const
 
template<class T >
T & getUserObject (const std::string &name, unsigned int tid=0) const
 Get the user object by its name. More...
 
const UserObjectgetUserObjectBase (const std::string &name, const THREAD_ID tid=0) const
 Get the user object by its name. More...
 
const PositionsgetPositionsObject (const std::string &name) const
 Get the Positions object by its name. More...
 
bool hasUserObject (const std::string &name) const
 Check if there if a user object of given name. More...
 
bool hasPostprocessorValueByName (const PostprocessorName &name) const
 Whether or not a Postprocessor value exists by a given name. More...
 
const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name, std::size_t t_index=0) const
 Get a read-only reference to the value associated with a Postprocessor that exists. More...
 
void setPostprocessorValueByName (const PostprocessorName &name, const PostprocessorValue &value, std::size_t t_index=0)
 Set the value of a PostprocessorValue. More...
 
bool hasPostprocessor (const std::string &name) const
 Deprecated. More...
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, std::size_t t_index=0) const
 Get a read-only reference to the vector value associated with the VectorPostprocessor. More...
 
void setVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, const VectorPostprocessorValue &value, std::size_t t_index=0)
 Set the value of a VectorPostprocessor vector. More...
 
const VectorPostprocessorgetVectorPostprocessorObjectByName (const std::string &object_name, const THREAD_ID tid=0) const
 Return the VPP object given the name. More...
 
virtual void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 
void setupDampers ()
 
bool hasDampers ()
 Whether or not this system has dampers. More...
 
virtual void addIndicator (const std::string &indicator_name, const std::string &name, InputParameters &parameters)
 
virtual void addMarker (const std::string &marker_name, const std::string &name, InputParameters &parameters)
 
virtual void addMultiApp (const std::string &multi_app_name, const std::string &name, InputParameters &parameters)
 Add a MultiApp to the problem. More...
 
std::shared_ptr< MultiAppgetMultiApp (const std::string &multi_app_name) const
 Get a MultiApp object by name. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (ExecFlagType type, Transfer::DIRECTION direction) const
 Get Transfers by ExecFlagType and direction. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (Transfer::DIRECTION direction) const
 
const ExecuteMooseObjectWarehouse< Transfer > & getMultiAppTransferWarehouse (Transfer::DIRECTION direction) const
 Return the complete warehouse for MultiAppTransfer object for the given direction. More...
 
void execMultiAppTransfers (ExecFlagType type, Transfer::DIRECTION direction)
 Execute MultiAppTransfers associated with execution flag and direction. More...
 
bool execMultiApps (ExecFlagType type, bool auto_advance=true)
 Execute the MultiApps associated with the ExecFlagType. More...
 
void finalizeMultiApps ()
 
void incrementMultiAppTStep (ExecFlagType type)
 Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType. More...
 
void advanceMultiApps (ExecFlagType type)
 Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose. More...
 
void finishMultiAppStep (ExecFlagType type, bool recurse_through_multiapp_levels=false)
 Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType. More...
 
void backupMultiApps (ExecFlagType type)
 Backup the MultiApps associated with the ExecFlagType. More...
 
void restoreMultiApps (ExecFlagType type, bool force=false)
 Restore the MultiApps associated with the ExecFlagType. More...
 
Real computeMultiAppsDT (ExecFlagType type)
 Find the smallest timestep over all MultiApps. More...
 
virtual void addTransfer (const std::string &transfer_name, const std::string &name, InputParameters &parameters)
 Add a Transfer to the problem. More...
 
void execTransfers (ExecFlagType type)
 Execute the Transfers associated with the ExecFlagType. More...
 
Real computeResidualL2Norm (NonlinearSystemBase &sys)
 Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
Real computeResidualL2Norm (LinearSystem &sys)
 Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual Real computeResidualL2Norm ()
 Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual void computeResidualSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
void computeResidual (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
virtual void computeResidual (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const unsigned int nl_sys_num)
 Form a residual with default tags (nontime, time, residual). More...
 
void computeResidualAndJacobian (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a residual and Jacobian with default tags. More...
 
virtual void computeResidualTag (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag. More...
 
virtual void computeResidualType (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag and "residual" tag. More...
 
virtual void computeResidualInternal (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const std::set< TagID > &tags)
 Form a residual vector for a set of tags. More...
 
virtual void computeResidualTags (const std::set< TagID > &tags)
 Form multiple residual vectors and each is associated with one tag. More...
 
virtual void computeJacobianSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a Jacobian matrix. More...
 
virtual void computeJacobian (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
 Form a Jacobian matrix with the default tag (system). More...
 
virtual void computeJacobianTag (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, TagID tag)
 Form a Jacobian matrix for a given tag. More...
 
virtual void computeJacobianInternal (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
 Form a Jacobian matrix for multiple tags. More...
 
virtual void computeJacobianTags (const std::set< TagID > &tags)
 Form multiple matrices, and each is associated with a tag. More...
 
virtual void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
virtual void computeJacobianBlock (libMesh::SparseMatrix< libMesh::Number > &jacobian, libMesh::System &precond_system, unsigned int ivar, unsigned int jvar)
 Really not a good idea to use this. More...
 
virtual void computeLinearSystemSys (libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
 Assemble both the right hand side and the system matrix of a given linear system. More...
 
void computeLinearSystemTags (const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
 Assemble the current linear system given a set of vector and matrix tags. More...
 
virtual Real computeDamping (const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)
 
virtual bool shouldUpdateSolution ()
 Check to see whether the problem should update the solution. More...
 
virtual bool updateSolution (NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
 Update the solution. More...
 
virtual void predictorCleanup (NumericVector< libMesh::Number > &ghosted_solution)
 Perform cleanup tasks after application of predictor to solution vector. More...
 
virtual void computeBounds (libMesh::NonlinearImplicitSystem &sys, NumericVector< libMesh::Number > &lower, NumericVector< libMesh::Number > &upper)
 
virtual void computeNearNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeTransposeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computePostCheck (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &old_soln, NumericVector< libMesh::Number > &search_direction, NumericVector< libMesh::Number > &new_soln, bool &changed_search_direction, bool &changed_new_soln)
 
virtual void computeIndicatorsAndMarkers ()
 
virtual void computeIndicators ()
 
virtual void computeMarkers ()
 
virtual void addResidual (const THREAD_ID tid) override
 
virtual void addResidualNeighbor (const THREAD_ID tid) override
 
virtual void addResidualLower (const THREAD_ID tid) override
 
virtual void addResidualScalar (const THREAD_ID tid=0)
 
virtual void cacheResidual (const THREAD_ID tid) override
 
virtual void cacheResidualNeighbor (const THREAD_ID tid) override
 
virtual void addCachedResidual (const THREAD_ID tid) override
 
virtual void addCachedResidualDirectly (NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
 Allows for all the residual contributions that are currently cached to be added directly into the vector passed in. More...
 
virtual void setResidual (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidual (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void setResidualNeighbor (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidualNeighbor (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void addJacobian (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const libMesh::DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)=0
 
virtual void addJacobianNeighborLowerD (const THREAD_ID tid) override
 
virtual void addJacobianLowerD (const THREAD_ID tid) override
 
virtual void addJacobianBlockTags (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)
 
virtual void addJacobianScalar (const THREAD_ID tid=0)
 
virtual void addJacobianOffDiagScalar (unsigned int ivar, const THREAD_ID tid=0)
 
virtual void cacheJacobian (const THREAD_ID tid) override
 
virtual void cacheJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addCachedJacobian (const THREAD_ID tid) override
 
virtual void prepareShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareFaceShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareNeighborShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void addDisplacedProblem (std::shared_ptr< DisplacedProblem > displaced_problem)
 
virtual std::shared_ptr< const DisplacedProblemgetDisplacedProblem () const
 
virtual std::shared_ptr< DisplacedProblemgetDisplacedProblem ()
 
virtual void updateGeomSearch (GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
 
virtual void updateMortarMesh ()
 
void createMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
 
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces (bool on_displaced) const
 
virtual void possiblyRebuildGeomSearchPatches ()
 
virtual GeometricSearchDatageomSearchData () override
 
void setRestartFile (const std::string &file_name)
 Communicate to the Resurector the name of the restart filer. More...
 
const MaterialPropertyRegistrygetMaterialPropertyRegistry () const
 
const InitialConditionWarehousegetInitialConditionWarehouse () const
 Return InitialCondition storage. More...
 
const FVInitialConditionWarehousegetFVInitialConditionWarehouse () const
 Return FVInitialCondition storage. More...
 
SolverParamssolverParams (unsigned int solver_sys_num=0)
 Get the solver parameters. More...
 
const SolverParamssolverParams (unsigned int solver_sys_num=0) const
 const version More...
 
Adaptivityadaptivity ()
 
virtual void initialAdaptMesh ()
 
virtual bool adaptMesh ()
 
unsigned int getNumCyclesCompleted ()
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
void initXFEM (std::shared_ptr< XFEMInterface > xfem)
 Create XFEM controller object. More...
 
std::shared_ptr< XFEMInterfacegetXFEM ()
 Get a pointer to the XFEM controller object. More...
 
bool haveXFEM ()
 Find out whether the current analysis is using XFEM. More...
 
virtual bool updateMeshXFEM ()
 Update the mesh due to changing XFEM cuts. More...
 
virtual void meshChanged (bool intermediate_change, bool contract_mesh, bool clean_refinement_flags)
 Update data after a mesh change. More...
 
void notifyWhenMeshChanges (MeshChangedInterface *mci)
 Register an object that derives from MeshChangedInterface to be notified when the mesh changes. More...
 
void notifyWhenMeshDisplaces (MeshDisplacedInterface *mdi)
 Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated. More...
 
void initElementStatefulProps (const libMesh::ConstElemRange &elem_range, const bool threaded)
 Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
void initKokkosStatefulProps ()
 
virtual void checkProblemIntegrity ()
 Method called to perform a series of sanity checks before a simulation is run. More...
 
void registerRandomInterface (RandomInterface &random_interface, const std::string &name)
 
void setConstJacobian (bool state)
 Set flag that Jacobian is constant (for optimization purposes) More...
 
void setKernelCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setKernelCoverageCheck (bool flag)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setMaterialCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setMaterialCoverageCheck (bool flag)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setParallelBarrierMessaging (bool flag)
 Toggle parallel barrier messaging (defaults to on). More...
 
void setVerboseProblem (bool verbose)
 Make the problem be verbose. More...
 
bool verboseMultiApps () const
 Whether or not to use verbose printing for MultiApps. More...
 
void parentOutputPositionChanged ()
 Calls parentOutputPositionChanged() on all sub apps. More...
 
unsigned int subspaceDim (const std::string &prefix) const
 Dimension of the subspace spanned by vectors with a given prefix. More...
 
const MaterialWarehousegetMaterialWarehouse () const
 
const MaterialWarehousegetRegularMaterialsWarehouse () const
 
const MaterialWarehousegetDiscreteMaterialWarehouse () const
 
const MaterialWarehousegetInterfaceMaterialsWarehouse () const
 
const MaterialWarehousegetKokkosMaterialsWarehouse () const
 
std::shared_ptr< MaterialBasegetMaterial (std::string name, Moose::MaterialDataType type, const THREAD_ID tid=0, bool no_warn=false)
 Return a pointer to a MaterialBase object. More...
 
MaterialDatagetMaterialData (Moose::MaterialDataType type, const THREAD_ID tid=0, const MooseObject *object=nullptr) const
 
MaterialDatagetKokkosMaterialData (Moose::MaterialDataType type, const MooseObject *object=nullptr) const
 
const std::set< const MooseObject * > & getMaterialPropertyStorageConsumers (Moose::MaterialDataType type) const
 
const std::set< const MooseObject * > & getKokkosMaterialPropertyStorageConsumers (Moose::MaterialDataType type) const
 
bool restoreOriginalNonzeroPattern () const
 
bool errorOnJacobianNonzeroReallocation () const
 Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc. More...
 
void setErrorOnJacobianNonzeroReallocation (bool state)
 
bool preserveMatrixSparsityPattern () const
 Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve. More...
 
void setPreserveMatrixSparsityPattern (bool preserve)
 Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved. More...
 
bool ignoreZerosInJacobian () const
 Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern. More...
 
void setIgnoreZerosInJacobian (bool state)
 Set whether the zeros in the Jacobian should be dropped from the sparsity pattern. More...
 
bool acceptInvalidSolution () const
 Whether or not to accept the solution based on its invalidity. More...
 
bool allowInvalidSolution () const
 Whether to accept / allow an invalid solution. More...
 
bool showInvalidSolutionConsole () const
 Whether or not to print out the invalid solutions summary table in console. More...
 
bool immediatelyPrintInvalidSolution () const
 Whether or not the solution invalid warnings are printed out immediately. More...
 
bool hasTimeIntegrator () const
 Returns whether or not this Problem has a TimeIntegrator. More...
 
virtual void execute (const ExecFlagType &exec_type)
 Convenience function for performing execution of MOOSE systems. More...
 
virtual void executeAllObjects (const ExecFlagType &exec_type)
 
virtual ExecutorgetExecutor (const std::string &name)
 
virtual void computeUserObjects (const ExecFlagType &type, const Moose::AuxGroup &group)
 Call compute methods on UserObjects. More...
 
virtual void computeUserObjectByName (const ExecFlagType &type, const Moose::AuxGroup &group, const std::string &name)
 Compute an user object with the given name. More...
 
void needsPreviousNewtonIteration (bool state)
 Set a flag that indicated that user required values for the previous Newton iterate. More...
 
bool needsPreviousNewtonIteration () const
 Check to see whether we need to compute the variable values of the previous Newton iterate. More...
 
ExecuteMooseObjectWarehouse< Control > & getControlWarehouse ()
 Reference to the control logic warehouse. More...
 
void executeControls (const ExecFlagType &exec_type)
 Performs setup and execute calls for Control objects. More...
 
void executeSamplers (const ExecFlagType &exec_type)
 Performs setup and execute calls for Sampler objects. More...
 
virtual void updateActiveObjects ()
 Update the active objects in the warehouses. More...
 
void reportMooseObjectDependency (MooseObject *a, MooseObject *b)
 Register a MOOSE object dependency so we can either order operations properly or report when we cannot. More...
 
ExecuteMooseObjectWarehouse< MultiApp > & getMultiAppWarehouse ()
 
bool hasJacobian () const
 Returns _has_jacobian. More...
 
bool constJacobian () const
 Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed) More...
 
void addOutput (const std::string &, const std::string &, InputParameters &)
 Adds an Output object. More...
 
TheWarehousetheWarehouse () const
 
void setSNESMFReuseBase (bool reuse, bool set_by_user)
 If or not to reuse the base vector for matrix-free calculation. More...
 
bool useSNESMFReuseBase ()
 Return a flag that indicates if we are reusing the vector base. More...
 
void skipExceptionCheck (bool skip_exception_check)
 Set a flag that indicates if we want to skip exception and stop solve. More...
 
bool isSNESMFReuseBaseSetbyUser ()
 Return a flag to indicate if _snesmf_reuse_base is set by users. More...
 
bool & petscOptionsInserted ()
 If PETSc options are already inserted. More...
 
PetscOptions & petscOptionsDatabase ()
 
virtual void setUDotRequested (const bool u_dot_requested)
 Set boolean flag to true to store solution time derivative. More...
 
virtual void setUDotDotRequested (const bool u_dotdot_requested)
 Set boolean flag to true to store solution second time derivative. More...
 
virtual void setUDotOldRequested (const bool u_dot_old_requested)
 Set boolean flag to true to store old solution time derivative. More...
 
virtual void setUDotDotOldRequested (const bool u_dotdot_old_requested)
 Set boolean flag to true to store old solution second time derivative. More...
 
virtual bool uDotRequested ()
 Get boolean flag to check whether solution time derivative needs to be stored. More...
 
virtual bool uDotDotRequested ()
 Get boolean flag to check whether solution second time derivative needs to be stored. More...
 
virtual bool uDotOldRequested ()
 Get boolean flag to check whether old solution time derivative needs to be stored. More...
 
virtual bool uDotDotOldRequested ()
 Get boolean flag to check whether old solution second time derivative needs to be stored. More...
 
void haveADObjects (bool have_ad_objects) override
 Method for setting whether we have any ad objects. More...
 
virtual void haveADObjects (bool have_ad_objects)
 Method for setting whether we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool shouldSolve () const
 
const MortarDatamortarData () const
 Returns the mortar data object. More...
 
MortarDatamortarData ()
 
virtual bool hasNeighborCoupling () const
 Whether the simulation has neighbor coupling. More...
 
virtual bool hasMortarCoupling () const
 Whether the simulation has mortar coupling. More...
 
void computingNonlinearResid (bool computing_nonlinear_residual) final
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
virtual void computingNonlinearResid (const bool computing_nonlinear_residual)
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
void setCurrentlyComputingResidual (bool currently_computing_residual) final
 Set whether or not the problem is in the process of computing the residual. More...
 
void numGridSteps (unsigned int num_grid_steps)
 Set the number of steps in a grid sequences. More...
 
void uniformRefine ()
 uniformly refine the problem mesh(es). More...
 
void automaticScaling (bool automatic_scaling) override
 Automatic scaling setter. More...
 
virtual void automaticScaling (bool automatic_scaling)
 Automatic scaling setter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
virtual void reinitElemFaceRef (const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data. More...
 
virtual void reinitNeighborFaceRef (const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data. More...
 
bool fvBCsIntegrityCheck () const
 
void fvBCsIntegrityCheck (bool fv_bcs_integrity_check)
 
void getFVMatsAndDependencies (SubdomainID block_id, std::vector< std::shared_ptr< MaterialBase >> &face_materials, std::vector< std::shared_ptr< MaterialBase >> &neighbor_materials, std::set< MooseVariableFieldBase *> &variables, const THREAD_ID tid)
 Get the materials and variables potentially needed for FV. More...
 
void resizeMaterialData (Moose::MaterialDataType data_type, unsigned int nqp, const THREAD_ID tid)
 Resize material data. More...
 
bool haveDisplaced () const override final
 Whether we have a displaced problem in our simulation. More...
 
bool hasLinearConvergenceObjects () const
 Whether we have linear convergence objects. More...
 
void setNonlinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the nonlinear convergence object name(s) if there is one. More...
 
void setLinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the linear convergence object name(s) if there is one. More...
 
void setMultiAppFixedPointConvergenceName (const ConvergenceName &convergence_name)
 Sets the MultiApp fixed point convergence object name if there is one. More...
 
void setSteadyStateConvergenceName (const ConvergenceName &convergence_name)
 Sets the steady-state detection convergence object name if there is one. More...
 
const std::vector< ConvergenceName > & getNonlinearConvergenceNames () const
 Gets the nonlinear system convergence object name(s). More...
 
const std::vector< ConvergenceName > & getLinearConvergenceNames () const
 Gets the linear convergence object name(s). More...
 
const ConvergenceName & getMultiAppFixedPointConvergenceName () const
 Gets the MultiApp fixed point convergence object name. More...
 
const ConvergenceName & getSteadyStateConvergenceName () const
 Gets the steady-state detection convergence object name. More...
 
void computingScalingJacobian (bool computing_scaling_jacobian)
 Setter for whether we're computing the scaling jacobian. More...
 
bool computingScalingJacobian () const override final
 Getter for whether we're computing the scaling jacobian. More...
 
void computingScalingResidual (bool computing_scaling_residual)
 Setter for whether we're computing the scaling residual. More...
 
bool computingScalingResidual () const override final
 
MooseAppCoordTransformcoordTransform ()
 
virtual std::size_t numNonlinearSystems () const override
 
virtual std::size_t numLinearSystems () const override
 
virtual std::size_t numSolverSystems () const override
 
bool isSolverSystemNonlinear (const unsigned int sys_num)
 Check if the solver system is nonlinear. More...
 
virtual unsigned int currentNlSysNum () const override
 
virtual unsigned int currentLinearSysNum () const override
 
virtual unsigned int nlSysNum (const NonlinearSystemName &nl_sys_name) const override
 
unsigned int linearSysNum (const LinearSystemName &linear_sys_name) const override
 
unsigned int solverSysNum (const SolverSystemName &solver_sys_name) const override
 
unsigned int systemNumForVariable (const VariableName &variable_name) const
 
bool getFailNextNonlinearConvergenceCheck () const
 Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
bool getFailNextSystemConvergenceCheck () const
 Whether it will fail the next system convergence check(s), triggering failed step behavior. More...
 
void setFailNextNonlinearConvergenceCheck ()
 Skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
void setFailNextSystemConvergenceCheck ()
 Tell the problem that the system(s) cannot be considered converged next time convergence is checked. More...
 
void resetFailNextNonlinearConvergenceCheck ()
 Tell the problem that the nonlinear convergence check(s) may proceed as normal. More...
 
void resetFailNextSystemConvergenceCheck ()
 Tell the problem that the system convergence check(s) may proceed as normal. More...
 
void setExecutionPrinting (const ExecFlagEnum &print_exec)
 
bool shouldPrintExecution (const THREAD_ID tid) const
 Check whether the problem should output execution orders at this time. More...
 
void reinitMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced)
 Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics. More...
 
virtual const std::vector< VectorTag > & currentResidualVectorTags () const override
 Return the residual vector tags we are currently computing. More...
 
void setCurrentResidualVectorTags (const std::set< TagID > &vector_tags)
 Set the current residual vector tag data structure based on the passed in tag IDs. More...
 
void clearCurrentResidualVectorTags ()
 Clear the current residual vector tag data structure. More...
 
void clearCurrentJacobianMatrixTags ()
 Clear the current Jacobian matrix tag data structure ... More...
 
virtual void needFV () override
 marks this problem as including/needing finite volume functionality. More...
 
virtual bool haveFV () const override
 returns true if this problem includes/needs finite volume functionality. More...
 
virtual bool hasNonlocalCoupling () const override
 Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian. More...
 
bool identifyVariableGroupsInNL () const
 Whether to identify variable groups in nonlinear systems. More...
 
virtual void setCurrentLowerDElem (const Elem *const lower_d_elem, const THREAD_ID tid) override
 Set the current lower dimensional element. More...
 
virtual void setCurrentBoundaryID (BoundaryID bid, const THREAD_ID tid) override
 sets the current boundary ID in assembly More...
 
const std::vector< NonlinearSystemName > & getNonlinearSystemNames () const
 
const std::vector< LinearSystemName > & getLinearSystemNames () const
 
const std::vector< SolverSystemName > & getSolverSystemNames () const
 
virtual const libMesh::CouplingMatrixnonlocalCouplingMatrix (const unsigned i) const override
 
virtual bool checkNonlocalCouplingRequirement () const override
 
virtual Moose::FEBackend feBackend () const
 
void createTagMatrices (CreateTaggedMatrixKey)
 
bool hasKokkosObjects () const
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
virtual bool nlConverged (const unsigned int nl_sys_num)
 
virtual bool converged (const unsigned int sys_num)
 Eventually we want to convert this virtual over to taking a solver system number argument. More...
 
bool defaultGhosting ()
 Whether or not the user has requested default ghosting ot be on. More...
 
virtual TagID addVectorTag (const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
 Create a Tag. More...
 
void addNotZeroedVectorTag (const TagID tag)
 Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are. More...
 
bool vectorTagNotZeroed (const TagID tag) const
 Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are. More...
 
virtual const VectorTaggetVectorTag (const TagID tag_id) const
 Get a VectorTag from a TagID. More...
 
std::vector< VectorTaggetVectorTags (const std::set< TagID > &tag_ids) const
 
virtual const std::vector< VectorTag > & getVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 Return all vector tags, where a tag is represented by a map from name to ID. More...
 
virtual TagID getVectorTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName vectorTagName (const TagID tag) const
 Retrieve the name associated with a TagID. More...
 
virtual bool vectorTagExists (const TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual bool vectorTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists by using Tag name. More...
 
virtual unsigned int numVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 The total number of tags, which can be limited to the tag type. More...
 
virtual Moose::VectorTagType vectorTagType (const TagID tag_id) const
 
virtual TagID addMatrixTag (TagName tag_name)
 Create a Tag. More...
 
virtual TagID getMatrixTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName matrixTagName (TagID tag)
 Retrieve the name associated with a TagID. More...
 
virtual bool matrixTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists. More...
 
virtual bool matrixTagExists (TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual unsigned int numMatrixTags () const
 The total number of tags. More...
 
virtual std::map< TagName, TagID > & getMatrixTags ()
 Return all matrix tags in the system, where a tag is represented by a map from name to ID. More...
 
virtual bool hasLinearVariable (const std::string &var_name) const
 Whether or not this problem has this linear variable. More...
 
virtual bool hasAuxiliaryVariable (const std::string &var_name) const
 Whether or not this problem has this auxiliary variable. More...
 
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables (const THREAD_ID tid) const
 Get the MOOSE variables to be reinited on each element. More...
 
virtual bool hasActiveElementalMooseVariables (const THREAD_ID tid) const
 Whether or not a list of active elemental moose variables has been set. More...
 
Moose::CoordinateSystemType getCoordSystem (SubdomainID sid) const
 
unsigned int getAxisymmetricRadialCoord () const
 Returns the desired radial direction for RZ coordinate transformation. More...
 
virtual DiracKernelInfodiracKernelInfo ()
 
void reinitNeighborLowerDElem (const Elem *elem, const THREAD_ID tid=0)
 reinitialize a neighboring lower dimensional element More...
 
void reinitMortarElem (const Elem *elem, const THREAD_ID tid=0)
 Reinit a mortar element to obtain a valid JxW. More...
 
virtual void storeSubdomainMatPropName (SubdomainID block_id, const std::string &name)
 Adds the given material property to a storage map based on block ids. More...
 
virtual void storeBoundaryMatPropName (BoundaryID boundary_id, const std::string &name)
 Adds the given material property to a storage map based on boundary ids. More...
 
virtual void storeSubdomainZeroMatProp (SubdomainID block_id, const MaterialPropertyName &name)
 Adds to a map based on block ids of material properties for which a zero value can be returned. More...
 
virtual void storeBoundaryZeroMatProp (BoundaryID boundary_id, const MaterialPropertyName &name)
 Adds to a map based on boundary ids of material properties for which a zero value can be returned. More...
 
virtual void storeSubdomainDelayedCheckMatProp (const std::string &requestor, SubdomainID block_id, const std::string &name)
 Adds to a map based on block ids of material properties to validate. More...
 
virtual void storeBoundaryDelayedCheckMatProp (const std::string &requestor, BoundaryID boundary_id, const std::string &name)
 Adds to a map based on boundary ids of material properties to validate. More...
 
virtual void checkBlockMatProps ()
 Checks block material properties integrity. More...
 
virtual void checkBoundaryMatProps ()
 Checks boundary material properties integrity. More...
 
virtual void markMatPropRequested (const std::string &)
 Helper method for adding a material property name to the _material_property_requested set. More...
 
virtual bool isMatPropRequested (const std::string &prop_name) const
 Find out if a material property has been requested by any object. More...
 
void addConsumedPropertyName (const MooseObjectName &obj_name, const std::string &prop_name)
 Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput. More...
 
const std::map< MooseObjectName, std::set< std::string > > & getConsumedPropertyMap () const
 Return the map that tracks the object with consumed material properties. More...
 
virtual std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBlockMaterialProperty (SubdomainID block_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBoundaryMaterialProperty (BoundaryID boundary_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< dof_id_type > & ghostedElems ()
 Return the list of elements that should have their DoFs ghosted to this processor. More...
 
const bool & currentlyComputingJacobian () const
 Returns true if the problem is in the process of computing the Jacobian. More...
 
void setCurrentlyComputingJacobian (const bool currently_computing_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
const bool & currentlyComputingResidualAndJacobian () const
 Returns true if the problem is in the process of computing the residual and the Jacobian. More...
 
void setCurrentlyComputingResidualAndJacobian (bool currently_computing_residual_and_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
virtual bool safeAccessTaggedMatrices () const
 Is it safe to access the tagged matrices. More...
 
virtual bool safeAccessTaggedVectors () const
 Is it safe to access the tagged vectors. More...
 
const std::set< TagID > & getActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
void addAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
 Add an algebraic ghosting functor to this problem's DofMaps. More...
 
void addCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
 Add a coupling functor to this problem's DofMaps. More...
 
void removeAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf)
 Remove an algebraic ghosting functor from this problem's DofMaps. More...
 
void removeCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf)
 Remove a coupling ghosting functor from this problem's DofMaps. More...
 
void hasScalingVector (const unsigned int nl_sys_num)
 Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector. More...
 
void clearAllDofIndices ()
 Clear dof indices from variables in nl and aux systems. More...
 
template<typename T >
const Moose::Functor< T > & getFunctor (const std::string &name, const THREAD_ID tid, const std::string &requestor_name, bool requestor_is_ad)
 
bool hasFunctor (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor corresponding to name on the thread id tid More...
 
template<typename T >
bool hasFunctorWithType (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor of type T corresponding to name on the thread id tid More...
 
template<typename T >
void addFunctor (const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
 add a functor to the problem functor container More...
 
template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & addPiecewiseByBlockLambdaFunctor (const std::string &name, PolymorphicLambda my_lammy, const std::set< ExecFlagType > &clearance_schedule, const MooseMesh &mesh, const std::set< SubdomainID > &block_ids, const THREAD_ID tid)
 Add a functor that has block-wise lambda definitions, e.g. More...
 
void setFunctorOutput (bool set_output)
 Setter for debug functor output. More...
 
template<typename T >
void registerUnfilledFunctorRequest (T *functor_interface, const std::string &functor_name, const THREAD_ID tid)
 Register an unfulfilled functor request. More...
 
void reinitFVFace (const THREAD_ID tid, const FaceInfo &fi)
 reinitialize the finite volume assembly data for the provided face and thread More...
 
void preparePRefinement ()
 Prepare DofMap and Assembly classes with our p-refinement information. More...
 
bool doingPRefinement () const
 
bool havePRefinement () const
 Query whether p-refinement has been requested at any point during the simulation. More...
 
template<typename T >
MooseVariableFEBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &systems, const SystemBase &aux) const
 
void _setCLIOption ()
 For Internal Use. More...
 
virtual void terminateSolve ()
 Allow objects to request clean termination of the solve. More...
 
virtual bool isSolveTerminationRequested () const
 Check of termination has been requested. More...
 
const ConsoleStreamconsole () const
 Return console handle. More...
 
virtual bool enabled () const
 Return the enabled status of the object. More...
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 Get another shared pointer to this object that has the same ownership group. More...
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
bool isKokkosObject (IsKokkosObjectKey &&) const
 Get whether this object is a Kokkos functor The parameter is set by the Kokkos base classes: More...
 
MooseAppgetMooseApp () const
 Get the MooseApp this class is associated with. More...
 
const std::string & type () const
 Get the type of this class. More...
 
const std::string & name () const
 Get the name of the class. More...
 
std::string typeAndName () const
 Get the class's combined type and name; useful in error handling. More...
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
MooseObjectName uniqueName () const
 
const InputParametersparameters () const
 Get the parameters of the object. More...
 
const hit::Node * getHitNode () const
 
bool hasBase () const
 
const std::string & getBase () const
 
template<typename T >
const T & getParam (const std::string &name) const
 Retrieve a parameter for the object. More...
 
template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 Retrieve two parameters and provide pair of parameters for the object. More...
 
template<typename T >
const T * queryParam (const std::string &name) const
 Query a parameter for the object. More...
 
template<typename T >
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 Retrieve a renamed parameter for the object. More...
 
template<typename T >
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 Verifies that the requested parameter exists and is not NULL and returns it to the caller. More...
 
bool isParamValid (const std::string &name) const
 Test if the supplied parameter is valid. More...
 
bool isParamSetByUser (const std::string &name) const
 Test if the supplied parameter is set by a user, as opposed to not set or set to default. More...
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 Connect controllable parameter of this action with the controllable parameters of the objects added by this action. More...
 
template<typename... Args>
void paramError (const std::string &param, Args... args) const
 Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramWarning (const std::string &param, Args... args) const
 Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramInfo (const std::string &param, Args... args) const
 Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
std::string messagePrefix (const bool hit_prefix=true) const
 
std::string errorPrefix (const std::string &) const
 Deprecated message prefix; the error type is no longer used. More...
 
template<typename... Args>
void mooseError (Args &&... args) const
 Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available. More...
 
template<typename... Args>
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
template<typename... Args>
void mooseErrorNonPrefixed (Args &&... args) const
 Emits an error without the prefixing included in mooseError(). More...
 
template<typename... Args>
void mooseWarning (Args &&... args) const
 Emits a warning prefixed with object name and type. More...
 
template<typename... Args>
void mooseWarningNonPrefixed (Args &&... args) const
 Emits a warning without the prefixing included in mooseWarning(). More...
 
template<typename... Args>
void mooseDeprecated (Args &&... args) const
 
template<typename... Args>
void mooseInfo (Args &&... args) const
 
void callMooseError (std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
 External method for calling moose error with added object context. More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
std::string getDataFileName (const std::string &param) const
 Deprecated method. More...
 
std::string getDataFileNameByName (const std::string &relative_path) const
 Deprecated method. More...
 
std::string getDataFilePath (const std::string &relative_path) const
 Returns the path of a data file for a given relative file path. More...
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
const libMesh::ConstElemRangegetEvaluableElementRange ()
 In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}. More...
 
const libMesh::ConstElemRangegetNonlinearEvaluableElementRange ()
 
const libMesh::ConstElemRangegetCurrentAlgebraicElementRange ()
 These are the element and nodes that contribute to the jacobian and residual for this local processor. More...
 
const libMesh::ConstNodeRangegetCurrentAlgebraicNodeRange ()
 
const ConstBndNodeRangegetCurrentAlgebraicBndNodeRange ()
 
void setCurrentAlgebraicElementRange (libMesh::ConstElemRange *range)
 These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor. More...
 
void setCurrentAlgebraicNodeRange (libMesh::ConstNodeRange *range)
 
void setCurrentAlgebraicBndNodeRange (ConstBndNodeRange *range)
 
void allowOutput (bool state)
 Ability to enable/disable all output calls. More...
 
template<typename T >
void allowOutput (bool state)
 
bool hasMultiApps () const
 Returns whether or not the current simulation has any multiapps. More...
 
bool hasMultiApps (ExecFlagType type) const
 
bool hasMultiApp (const std::string &name) const
 
const AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced) const
 Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains. More...
 
AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced)
 
const MaterialPropertyStoragegetMaterialPropertyStorage ()
 Return a reference to the material property storage. More...
 
const MaterialPropertyStoragegetBndMaterialPropertyStorage ()
 
const MaterialPropertyStoragegetNeighborMaterialPropertyStorage ()
 
Moose::Kokkos::MaterialPropertyStoragegetKokkosMaterialPropertyStorage ()
 
Moose::Kokkos::MaterialPropertyStoragegetKokkosBndMaterialPropertyStorage ()
 
Moose::Kokkos::MaterialPropertyStoragegetKokkosNeighborMaterialPropertyStorage ()
 
const MooseObjectWarehouse< Indicator > & getIndicatorWarehouse ()
 Return indicator/marker storage. More...
 
const MooseObjectWarehouse< InternalSideIndicatorBase > & getInternalSideIndicatorWarehouse ()
 
const MooseObjectWarehouse< Marker > & getMarkerWarehouse ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 These methods are used to determine whether stateful material properties need to be stored on internal sides. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 
bool needInternalNeighborSideMaterial (SubdomainID subdomain_id, const THREAD_ID tid)
 
const ExecFlagTypegetCurrentExecuteOnFlag () const
 Return/set the current execution flag. More...
 
void setCurrentExecuteOnFlag (const ExecFlagType &)
 

Static Public Member Functions

static InputParameters validParams ()
 
static void selectVectorTagsFromSystem (const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
 Select the vector tags which belong to a specific system. More...
 
static void selectMatrixTagsFromSystem (const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
 Select the matrix tags which belong to a specific system. More...
 
static void callMooseError (MooseApp *const app, const InputParameters &params, std::string msg, const bool with_prefix, const hit::Node *node)
 External method for calling moose error with added object context. More...
 
template<typename T >
static void objectSetupHelper (const std::vector< T *> &objects, const ExecFlagType &exec_flag)
 Helpers for calling the necessary setup/execute functions for the supplied objects. More...
 
template<typename T >
static void objectExecuteHelper (const std::vector< T *> &objects)
 

Public Attributes

std::map< std::string, std::vector< dof_id_type > > _var_dof_map
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 
std::vector< Real_real_zero
 Convenience zeros. More...
 
std::vector< VariableValue_scalar_zero
 
std::vector< VariableValue_zero
 
std::vector< VariablePhiValue_phi_zero
 
std::vector< MooseArray< ADReal > > _ad_zero
 
std::vector< VariableGradient_grad_zero
 
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
 
std::vector< VariablePhiGradient_grad_phi_zero
 
std::vector< VariableSecond_second_zero
 
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
 
std::vector< VariablePhiSecond_second_phi_zero
 
std::vector< Point > _point_zero
 
std::vector< VectorVariableValue_vector_zero
 
std::vector< VectorVariableCurl_vector_curl_zero
 

Static Public Attributes

static const std::string type_param = "_type"
 The name of the parameter that contains the object type. More...
 
static const std::string name_param = "_object_name"
 The name of the parameter that contains the object name. More...
 
static const std::string unique_name_param = "_unique_name"
 The name of the parameter that contains the unique object name. More...
 
static const std::string app_param = "_moose_app"
 The name of the parameter that contains the MooseApp. More...
 
static const std::string moose_base_param = "_moose_base"
 The name of the parameter that contains the moose system base. More...
 
static const std::string kokkos_object_param = "_kokkos_object"
 The name of the parameter that indicates an object is a Kokkos functor. More...
 

Protected Member Functions

virtual void meshChanged ()
 Deprecated. More...
 
void createTagVectors ()
 Create extra tagged vectors and matrices. More...
 
void createTagSolutions ()
 Create extra tagged solution vectors. More...
 
virtual void meshDisplaced ()
 Update data after a mesh displaced. More...
 
void computeSystems (const ExecFlagType &type)
 Do generic system computations. More...
 
bool duplicateVariableCheck (const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
 Helper to check for duplicate variable names across systems or within a single system. More...
 
void computeUserObjectsInternal (const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
 
void checkDisplacementOrders ()
 Verify that SECOND order mesh uses SECOND order displacements. More...
 
void checkUserObjects ()
 
void checkDependMaterialsHelper (const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
 Helper method for checking Material object dependency. More...
 
void checkCoordinateSystems ()
 Verify that there are no element type/coordinate type conflicts. More...
 
void reinitBecauseOfGhostingOrNewGeomObjects (bool mortar_changed=false)
 Call when it is possible that the needs for ghosted elements has changed. More...
 
void addObjectParamsHelper (InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
 Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject(). More...
 
template<typename T >
MooseVariableFieldBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
 Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available. More...
 
bool verifyVectorTags () const
 Verify the integrity of _vector_tags and _typed_vector_tags. More...
 
void markFamilyPRefinement (const InputParameters &params)
 Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 
template<typename T , typename... Args>
T & declareRestartableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declares a piece of "managed" restartable data and initialize it. More...
 
template<typename T , typename... Args>
const T & getRestartableData (const std::string &data_name) const
 Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "recoverable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 Declare a piece of data as "restartable". More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 Declare a piece of data as "restartable". More...
 
std::string restartableName (const std::string &data_name) const
 Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix. More...
 

Protected Attributes

bool _use_nonlinear
 
std::vector< std::shared_ptr< NonlinearSystem > > _nl_sys
 
MooseMesh_mesh
 
bool _initialized
 
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
 Nonlinear system(s) convergence name(s) More...
 
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
 Linear system(s) convergence name(s) (if any) More...
 
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
 MultiApp fixed point convergence name. More...
 
std::optional< ConvergenceName > _steady_state_convergence_name
 Steady-state detection convergence name. More...
 
std::set< TagID_fe_vector_tags
 
std::set< TagID_fe_matrix_tags
 
std::set< TagID_linear_vector_tags
 Temporary storage for filtered vector tags for linear systems. More...
 
std::set< TagID_linear_matrix_tags
 Temporary storage for filtered matrix tags for linear systems. More...
 
const bool & _solve
 Whether or not to actually solve the nonlinear system. More...
 
bool _transient
 
Real_time
 
Real_time_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _need_to_add_default_nonlinear_convergence
 Flag that the problem needs to add the default nonlinear convergence. More...
 
bool _need_to_add_default_multiapp_fixed_point_convergence
 Flag that the problem needs to add the default fixed point convergence. More...
 
bool _need_to_add_default_steady_state_convergence
 Flag that the problem needs to add the default steady convergence. More...
 
const std::vector< LinearSystemName > _linear_sys_names
 The linear system names. More...
 
const std::size_t _num_linear_sys
 The number of linear systems. More...
 
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
 The vector of linear systems. More...
 
std::map< LinearSystemName, unsigned int_linear_sys_name_to_num
 Map from linear system name to number. More...
 
LinearSystem_current_linear_sys
 The current linear system that we are solving. More...
 
const bool _using_default_nl
 Boolean to check if we have the default nonlinear system. More...
 
const std::vector< NonlinearSystemName > _nl_sys_names
 The nonlinear system names. More...
 
const std::size_t _num_nl_sys
 The number of nonlinear systems. More...
 
std::map< NonlinearSystemName, unsigned int_nl_sys_name_to_num
 Map from nonlinear system name to number. More...
 
NonlinearSystemBase_current_nl_sys
 The current nonlinear system that we are solving. More...
 
SolverSystem_current_solver_sys
 The current solver system. More...
 
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
 Combined container to base pointer of every solver system. More...
 
std::map< SolverVariableName, unsigned int_solver_var_to_sys_num
 Map connecting variable names with their respective solver systems. More...
 
std::map< SolverSystemName, unsigned int_solver_sys_name_to_num
 Map connecting solver system names with their respective systems. More...
 
std::vector< SolverSystemName > _solver_sys_names
 The union of nonlinear and linear system names. More...
 
std::shared_ptr< AuxiliarySystem_aux
 The auxiliary system. More...
 
Moose::CouplingType _coupling
 Type of variable coupling. More...
 
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
 Coupling matrix for variables. More...
 
Moose::Kokkos::Array< Moose::Kokkos::System_kokkos_systems
 
std::map< std::string, unsigned int_subspace_dim
 Dimension of the subspace spanned by the vectors with a given prefix. More...
 
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
 The Assembly objects. More...
 
Moose::Kokkos::Assembly _kokkos_assembly
 
MooseObjectWarehouse< MeshDivision_mesh_divisions
 Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best. More...
 
MooseObjectWarehouse< Function_functions
 functions More...
 
MooseObjectWarehouse< Convergence_convergences
 convergence warehouse More...
 
MooseObjectWarehouse< KernelBase_nonlocal_kernels
 nonlocal kernels More...
 
MooseObjectWarehouse< IntegratedBCBase_nonlocal_integrated_bcs
 nonlocal integrated_bcs More...
 
MaterialPropertyRegistry _material_prop_registry
 
MaterialPropertyStorage_material_props
 
MaterialPropertyStorage_bnd_material_props
 
MaterialPropertyStorage_neighbor_material_props
 
Moose::Kokkos::MaterialPropertyStorage_kokkos_material_props
 
Moose::Kokkos::MaterialPropertyStorage_kokkos_bnd_material_props
 
Moose::Kokkos::MaterialPropertyStorage_kokkos_neighbor_material_props
 
MooseObjectWarehouse< Marker_markers
 
ReporterData _reporter_data
 
ExecuteMooseObjectWarehouse< UserObject_all_user_objects
 
ExecuteMooseObjectWarehouse< MultiApp_multi_apps
 MultiApp Warehouse. More...
 
ExecuteMooseObjectWarehouse< TransientMultiApp_transient_multi_apps
 Storage for TransientMultiApps (only needed for calling 'computeDT') More...
 
ExecuteMooseObjectWarehouse< Transfer_transfers
 Normal Transfers. More...
 
ExecuteMooseObjectWarehouse< Transfer_to_multi_app_transfers
 Transfers executed just before MultiApps to transfer data to them. More...
 
ExecuteMooseObjectWarehouse< Transfer_from_multi_app_transfers
 Transfers executed just after MultiApps to transfer data from them. More...
 
ExecuteMooseObjectWarehouse< Transfer_between_multi_app_transfers
 Transfers executed just before MultiApps to transfer data between them. More...
 
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
 A map of objects that consume random numbers. More...
 
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
 Cache for calculating materials on interface. More...
 
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
 Objects to be notified when the mesh changes. More...
 
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
 Objects to be notified when the mesh displaces. More...
 
Adaptivity _adaptivity
 
unsigned int _cycles_completed
 
std::shared_ptr< XFEMInterface_xfem
 Pointer to XFEM controller. More...
 
MooseMesh_displaced_mesh
 
std::shared_ptr< DisplacedProblem_displaced_problem
 
GeometricSearchData _geometric_search_data
 
MortarData _mortar_data
 
bool _reinit_displaced_elem
 Whether to call DisplacedProblem::reinitElem when this->reinitElem is called. More...
 
bool _reinit_displaced_face
 Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called. More...
 
bool _reinit_displaced_neighbor
 Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called. More...
 
bool _input_file_saved
 whether input file has been written More...
 
bool _has_dampers
 Whether or not this system has any Dampers associated with it. More...
 
bool _has_constraints
 Whether or not this system has any Constraints. More...
 
bool _snesmf_reuse_base
 If or not to resuse the base vector for matrix-free calculation. More...
 
bool _skip_exception_check
 If or not skip 'exception and stop solve'. More...
 
bool _snesmf_reuse_base_set_by_user
 If or not _snesmf_reuse_base is set by user. More...
 
bool _has_initialized_stateful
 Whether nor not stateful materials have been initialized. More...
 
bool _const_jacobian
 true if the Jacobian is constant More...
 
bool _has_jacobian
 Indicates if the Jacobian was computed. More...
 
bool _needs_old_newton_iter
 Indicates that we need to compute variable values for previous Newton iteration. More...
 
bool _previous_nl_solution_required
 Indicates we need to save the previous NL iteration variable values. More...
 
bool _has_nonlocal_coupling
 Indicates if nonlocal coupling is required/exists. More...
 
bool _calculate_jacobian_in_uo
 
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
 
std::vector< unsigned char > _has_active_material_properties
 Whether there are active material properties on each thread. More...
 
std::vector< SolverParams_solver_params
 
CoverageCheckMode _kernel_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active kernel. More...
 
std::vector< SubdomainName > _kernel_coverage_blocks
 
const bool _boundary_restricted_node_integrity_check
 whether to perform checking of boundary restricted nodal object variable dependencies, e.g. More...
 
const bool _boundary_restricted_elem_integrity_check
 whether to perform checking of boundary restricted elemental object variable dependencies, e.g. More...
 
CoverageCheckMode _material_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active material. More...
 
std::vector< SubdomainName > _material_coverage_blocks
 
bool _fv_bcs_integrity_check
 Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset. More...
 
const bool _material_dependency_check
 Determines whether a check to verify material dependencies on every subdomain. More...
 
const bool _uo_aux_state_check
 Whether or not checking the state of uo/aux evaluation. More...
 
unsigned int _max_qps
 Maximum number of quadrature points used in the problem. More...
 
libMesh::Order _max_scalar_order
 Maximum scalar variable order. More...
 
bool _has_time_integrator
 Indicates whether or not this executioner has a time integrator (during setup) More...
 
bool _has_exception
 Whether or not an exception has occurred. More...
 
bool _parallel_barrier_messaging
 Whether or not information about how many transfers have completed is printed. More...
 
MooseEnum _verbose_setup
 Whether or not to be verbose during setup. More...
 
bool _verbose_multiapps
 Whether or not to be verbose with multiapps. More...
 
bool _verbose_restore
 Whether or not to be verbose on solution restoration post a failed time step. More...
 
std::string _exception_message
 The error message to go with an exception. More...
 
ExecFlagType _current_execute_on_flag
 Current execute_on flag. More...
 
ExecuteMooseObjectWarehouse< Control_control_warehouse
 The control logic warehouse. More...
 
Moose::PetscSupport::PetscOptions _petsc_options
 PETSc option storage. More...
 
PetscOptions _petsc_option_data_base
 
bool _is_petsc_options_inserted
 If or not PETSc options have been added to database. More...
 
std::shared_ptr< LineSearch_line_search
 
std::unique_ptr< libMesh::ConstElemRange_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_nl_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_aux_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_current_algebraic_elem_range
 
std::unique_ptr< libMesh::ConstNodeRange_current_algebraic_node_range
 
std::unique_ptr< ConstBndNodeRange_current_algebraic_bnd_node_range
 
bool _using_ad_mat_props
 Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property. More...
 
unsigned short _current_ic_state
 
const bool _use_hash_table_matrix_assembly
 Whether to assemble matrices using hash tables instead of preallocating matrix memory. More...
 
std::map< TagName, TagID_matrix_tag_name_to_tag_id
 The currently declared tags. More...
 
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
 Reverse map. More...
 
Factory_factory
 The Factory for building objects. More...
 
DiracKernelInfo _dirac_kernel_info
 
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
 Map of material properties (block_id -> list of properties) More...
 
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
 Map for boundary material properties (boundary_id -> list of properties) More...
 
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
 Set of properties returned as zero properties. More...
 
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
 
std::set< std::string > _material_property_requested
 set containing all material property names that have been requested by getMaterialProperty* More...
 
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
 This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) More...
 
std::vector< unsigned int_has_active_elemental_moose_variables
 Whether or not there is currently a list of active elemental moose variables. More...
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
 
bool _default_ghosting
 Whether or not to use default libMesh coupling. More...
 
std::set< dof_id_type_ghosted_elems
 Elements that should have Dofs ghosted to the local processor. More...
 
bool _currently_computing_jacobian
 Flag to determine whether the problem is currently computing Jacobian. More...
 
bool _currently_computing_residual_and_jacobian
 Flag to determine whether the problem is currently computing the residual and Jacobian. More...
 
bool _computing_nonlinear_residual
 Whether the non-linear residual is being evaluated. More...
 
bool _currently_computing_residual
 Whether the residual is being evaluated. More...
 
bool _safe_access_tagged_matrices
 Is it safe to retrieve data from tagged matrices. More...
 
bool _safe_access_tagged_vectors
 Is it safe to retrieve data from tagged vectors. More...
 
bool _have_ad_objects
 AD flag indicating whether any AD objects have been added. More...
 
std::unordered_set< TagID_not_zeroed_tagged_vectors
 the list of vector tags that will not be zeroed when all other tags are More...
 
bool _cli_option_found
 True if the CLI option is found. More...
 
bool _color_output
 True if we're going to attempt to write color output. More...
 
bool _termination_requested
 True if termination of the solve has been requested. More...
 
const bool & _enabled
 Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects. More...
 
MooseApp_app
 The MOOSE application this is associated with. More...
 
ActionFactory_action_factory
 Builds Actions. More...
 
const std::string & _type
 The type of this class. More...
 
const std::string & _name
 The name of this class. More...
 
const InputParameters_pars
 The object's parameters. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseApp_restartable_app
 Reference to the application. More...
 
const std::string _restartable_system_name
 The system name this object is in. More...
 
const THREAD_ID _restartable_tid
 The thread ID for this object. More...
 
const bool _restartable_read_only
 Flag for toggling read only status (see ReporterData) More...
 
InitialConditionWarehouse _ics
 
FVInitialConditionWarehouse _fv_ics
 
ScalarInitialConditionWarehouse _scalar_ics
 
MaterialWarehouse _materials
 
MaterialWarehouse _interface_materials
 
MaterialWarehouse _discrete_materials
 
MaterialWarehouse _all_materials
 
MaterialWarehouse _kokkos_materials
 
MooseObjectWarehouse< Indicator_indicators
 
MooseObjectWarehouse< InternalSideIndicatorBase_internal_side_indicators
 
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
 Data structures of the requested material properties. More...
 
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
 

Private Attributes

std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
 The nonlinear systems. More...
 

Detailed Description

Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.

Definition at line 20 of file FEProblem.h.

Member Typedef Documentation

◆ DataFileParameterType

using DataFileInterface::DataFileParameterType = DataFileName
inherited

The parameter type this interface expects for a data file name.

Definition at line 27 of file DataFileInterface.h.

Member Enumeration Documentation

◆ CoverageCheckMode

enum FEProblemBase::CoverageCheckMode
stronginherited
Enumerator
FALSE 
TRUE 
OFF 
ON 
SKIP_LIST 
ONLY_LIST 

Definition at line 152 of file FEProblemBase.h.

153  {
154  FALSE,
155  TRUE,
156  OFF,
157  ON,
158  SKIP_LIST,
159  ONLY_LIST,
160  };

Constructor & Destructor Documentation

◆ FEProblem()

FEProblem::FEProblem ( const InputParameters parameters)

Definition at line 35 of file FEProblem.C.

36  : FEProblemBase(parameters), _use_nonlinear(getParam<bool>("use_nonlinear"))
37 {
38  if (_num_nl_sys)
39  {
40  for (const auto i : index_range(_nl_sys_names))
41  {
42  const auto & sys_name = _nl_sys_names[i];
43  auto & nl = _nl[i];
44  nl = _use_nonlinear ? (std::make_shared<NonlinearSystem>(*this, sys_name))
45  : (std::make_shared<MooseEigenSystem>(*this, sys_name));
46  _nl_sys.push_back(std::dynamic_pointer_cast<NonlinearSystem>(nl));
48  }
49 
50  // backwards compatibility for AD for objects that depend on initializing derivatives during
51  // construction
53  }
54 
55  if (_num_linear_sys)
56  for (const auto i : index_range(_linear_sys_names))
57  {
58  _linear_systems[i] = std::make_shared<LinearSystem>(*this, _linear_sys_names[i]);
61  }
62 
63  if (_solver_systems.size() > 1)
64  for (auto & solver_system : _solver_systems)
65  solver_system->system().prefix_with_name(true);
66 
67  _aux = std::make_shared<AuxiliarySystem>(*this, "aux0");
68 
70  for (auto & solver_system : _solver_systems)
71  solver_system->system().prefer_hash_table_matrix_assembly(_use_hash_table_matrix_assembly);
72 
73  if (_num_nl_sys)
75 
76  es().parameters.set<FEProblem *>("_fe_problem") = this;
77 
78  // Create extra vectors if any
80 
81  // Create extra solution vectors if any
83 }
std::vector< std::shared_ptr< NonlinearSystem > > _nl_sys
Definition: FEProblem.h:39
bool _use_nonlinear
Definition: FEProblem.h:38
const std::size_t _num_nl_sys
The number of nonlinear systems.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Definition: FEProblem.h:20
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
virtual void newAssemblyArray(std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
FEProblemBase(const InputParameters &parameters)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
void createTagSolutions()
Create extra tagged solution vectors.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void createTagVectors()
Create extra tagged vectors and matrices.
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void initNullSpaceVectors(const InputParameters &parameters, std::vector< std::shared_ptr< NonlinearSystemBase >> &nl)
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.
T & set(const std::string &)
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.
const std::size_t _num_linear_sys
The number of linear systems.
const bool _use_hash_table_matrix_assembly
Whether to assemble matrices using hash tables instead of preallocating matrix memory.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.
void prefix_with_name(bool value)
auto index_range(const T &sizable)

Member Function Documentation

◆ _setCLIOption()

void Problem::_setCLIOption ( )
inlineinherited

For Internal Use.

Definition at line 32 of file Problem.h.

32 { _cli_option_found = true; }
bool _cli_option_found
True if the CLI option is found.
Definition: Problem.h:52

◆ acceptInvalidSolution()

bool FEProblemBase::acceptInvalidSolution ( ) const
inherited

Whether or not to accept the solution based on its invalidity.

If this returns false, it means that an invalid solution was encountered (an error) that was not allowed.

Definition at line 3939 of file FEProblemBase.C.

Referenced by SolverSystem::checkInvalidSolution(), and NonlinearSystem::converged().

3940 {
3941  return allowInvalidSolution() || // invalid solutions are always allowed
3942  !_app.solutionInvalidity().hasInvalidSolutionError(); // if not allowed, check for errors
3943 }
bool hasInvalidSolutionError() const
Whether or not an invalid solution was encountered that was an error.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
bool allowInvalidSolution() const
Whether to accept / allow an invalid solution.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357

◆ adaptivity()

Adaptivity& FEProblemBase::adaptivity ( )
inlineinherited

◆ adaptMesh()

bool FEProblemBase::adaptMesh ( )
virtualinherited
Returns
Whether or not the mesh was changed

Reimplemented in DumpObjectsProblem.

Definition at line 8174 of file FEProblemBase.C.

Referenced by SteadyBase::execute(), Eigenvalue::execute(), and TransientBase::incrementStepOrReject().

8175 {
8176  // reset cycle counter
8177  _cycles_completed = 0;
8178 
8180  return false;
8181 
8182  TIME_SECTION("adaptMesh", 3, "Adapting Mesh");
8183 
8184  unsigned int cycles_per_step = _adaptivity.getCyclesPerStep();
8185 
8186  bool mesh_changed = false;
8187 
8188  for (unsigned int i = 0; i < cycles_per_step; ++i)
8189  {
8190  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
8191  mooseError("HFEM does not support mesh adaptivity currently.");
8192 
8193  // Markers were already computed once by Executioner
8194  if (_adaptivity.getRecomputeMarkersFlag() && i > 0)
8195  computeMarkers();
8196 
8197  bool mesh_changed_this_step;
8198  mesh_changed_this_step = _adaptivity.adaptMesh();
8199 
8200  if (mesh_changed_this_step)
8201  {
8202  mesh_changed = true;
8203 
8204  meshChanged(
8205  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
8207  }
8208  else
8209  {
8210  // If the mesh didn't change, we still need to update the displaced mesh
8211  // to undo the undisplacement performed in Adaptivity::adaptMesh
8212  if (_displaced_problem)
8213  _displaced_problem->updateMesh();
8214 
8215  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
8216  break;
8217  }
8218 
8219  // Show adaptivity progress
8220  _console << std::flush;
8221  }
8222 
8223  // We're done with all intermediate changes; now get systems ready
8224  // for real if necessary.
8225  if (mesh_changed)
8226  es().reinit_systems();
8227 
8228  // Execute multi-apps that need to run after adaptivity, but before the next timestep.
8230 
8231  return mesh_changed;
8232 }
bool adaptMesh(std::string marker_name=std::string())
Adapts the mesh based on the error estimator used.
Definition: Adaptivity.C:131
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1429
unsigned int _cycles_completed
unsigned int getCyclesPerStep() const
Pull out the number of cycles_per_step previously set through the AdaptivityAction.
Definition: Adaptivity.h:112
virtual void computeMarkers()
virtual void reinit_systems()
bool getRecomputeMarkersFlag() const
Pull out the _recompute_markers_during_cycles flag previously set through the AdaptivityAction.
Definition: Adaptivity.h:125
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1433
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isAdaptivityDue()
Query if an adaptivity step should be performed at the current time / time step.
Definition: Adaptivity.C:393
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
const ExecFlagType EXEC_POST_ADAPTIVITY
Definition: Moose.C:58

◆ addAlgebraicGhostingFunctor()

void SubProblem::addAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf,
bool  to_mesh = true 
)
inherited

Add an algebraic ghosting functor to this problem's DofMaps.

Definition at line 1023 of file SubProblem.C.

1024 {
1025  EquationSystems & eq = es();
1026  const auto n_sys = eq.n_systems();
1027  if (!n_sys)
1028  return;
1029 
1030  eq.get_system(0).get_dof_map().add_algebraic_ghosting_functor(algebraic_gf, to_mesh);
1031  cloneAlgebraicGhostingFunctor(algebraic_gf, to_mesh);
1032 }
unsigned int n_systems() const
void cloneAlgebraicGhostingFunctor(libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided algebraic ghosting functor (corresponding to the nonlinear...
Definition: SubProblem.C:1001
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0

◆ addAuxArrayVariable()

void FEProblemBase::addAuxArrayVariable ( const std::string &  var_name,
const libMesh::FEType type,
unsigned int  components,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3221 of file FEProblemBase.C.

3225 {
3226  parallel_object_only();
3227 
3228  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3229 
3230  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3231  return;
3232 
3233  InputParameters params = _factory.getValidParams("ArrayMooseVariable");
3234  params.set<FEProblemBase *>("_fe_problem_base") = this;
3236  params.set<MooseEnum>("order") = type.order.get_order();
3237  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3238  params.set<unsigned int>("components") = components;
3239 
3240  if (active_subdomains)
3241  for (const SubdomainID & id : *active_subdomains)
3242  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3243 
3244  logAdd("Variable", var_name, "ArrayMooseVariable", params);
3245  _aux->addVariable("ArrayMooseVariable", var_name, params);
3246  if (_displaced_problem)
3247  _displaced_problem->addAuxVariable("ArrayMooseVariable", var_name, params);
3248 
3249  markFamilyPRefinement(params);
3250 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxKernel()

void FEProblemBase::addAuxKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3287 of file FEProblemBase.C.

3290 {
3291  parallel_object_only();
3292 
3293  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3294  {
3295  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3296  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3297  parameters.set<SystemBase *>("_nl_sys") = &_displaced_problem->solverSys(0);
3298  if (!parameters.get<std::vector<BoundaryName>>("boundary").empty())
3299  _reinit_displaced_face = true;
3300  else
3301  _reinit_displaced_elem = true;
3302  }
3303  else
3304  {
3305  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3306  {
3307  // We allow AuxKernels to request that they use_displaced_mesh,
3308  // but then be overridden when no displacements variables are
3309  // provided in the Mesh block. If that happened, update the value
3310  // of use_displaced_mesh appropriately for this AuxKernel.
3311  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3312  parameters.set<bool>("use_displaced_mesh") = false;
3313  }
3314 
3315  parameters.set<SubProblem *>("_subproblem") = this;
3316  parameters.set<SystemBase *>("_sys") = _aux.get();
3317  parameters.set<SystemBase *>("_nl_sys") = _solver_systems[0].get();
3318  }
3319 
3320  logAdd("AuxKernel", name, kernel_name, parameters);
3321  _aux->addKernel(kernel_name, name, parameters);
3322 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarKernel()

void FEProblemBase::addAuxScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3325 of file FEProblemBase.C.

3328 {
3329  parallel_object_only();
3330 
3331  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3332  {
3333  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3334  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3335  }
3336  else
3337  {
3338  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3339  {
3340  // We allow AuxScalarKernels to request that they use_displaced_mesh,
3341  // but then be overridden when no displacements variables are
3342  // provided in the Mesh block. If that happened, update the value
3343  // of use_displaced_mesh appropriately for this AuxScalarKernel.
3344  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3345  parameters.set<bool>("use_displaced_mesh") = false;
3346  }
3347 
3348  parameters.set<SubProblem *>("_subproblem") = this;
3349  parameters.set<SystemBase *>("_sys") = _aux.get();
3350  }
3351 
3352  logAdd("AuxScalarKernel", name, kernel_name, parameters);
3353  _aux->addScalarKernel(kernel_name, name, parameters);
3354 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarVariable()

void FEProblemBase::addAuxScalarVariable ( const std::string &  var_name,
libMesh::Order  order,
Real  scale_factor = 1.,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3253 of file FEProblemBase.C.

3257 {
3258  parallel_object_only();
3259 
3260  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3261 
3262  if (order > _max_scalar_order)
3263  _max_scalar_order = order;
3264 
3265  FEType type(order, SCALAR);
3266  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3267  return;
3268 
3269  InputParameters params = _factory.getValidParams("MooseVariableScalar");
3270  params.set<FEProblemBase *>("_fe_problem_base") = this;
3272 
3273  params.set<MooseEnum>("order") = type.order.get_order();
3274  params.set<MooseEnum>("family") = "SCALAR";
3275  params.set<std::vector<Real>>("scaling") = {1};
3276  if (active_subdomains)
3277  for (const SubdomainID & id : *active_subdomains)
3278  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3279 
3280  logAdd("ScalarVariable", var_name, "MooseVariableScalar", params);
3281  _aux->addVariable("MooseVariableScalar", var_name, params);
3282  if (_displaced_problem)
3283  _displaced_problem->addAuxVariable("MooseVariableScalar", var_name, params);
3284 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ addAuxVariable() [1/2]

void FEProblemBase::addAuxVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters params 
)
virtualinherited

Canonical method for adding an auxiliary variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in MFEMProblem.

Definition at line 3150 of file FEProblemBase.C.

Referenced by AddElementalFieldAction::init(), and AddAuxVariableAction::init().

3153 {
3154  parallel_object_only();
3155 
3156  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
3157  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
3158  const auto fe_type = FEType(order, family);
3159 
3160  const auto active_subdomains_vector =
3161  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
3162  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
3163  active_subdomains_vector.end());
3164 
3165  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ true, &active_subdomains))
3166  return;
3167 
3168  params.set<FEProblemBase *>("_fe_problem_base") = this;
3170 
3171  logAdd("AuxVariable", var_name, var_type, params);
3172  _aux->addVariable(var_type, var_name, params);
3173  if (_displaced_problem)
3174  // MooseObjects need to be unique so change the name here
3175  _displaced_problem->addAuxVariable(var_type, var_name, params);
3176 
3177  markFamilyPRefinement(params);
3178 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1775
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxVariable() [2/2]

void FEProblemBase::addAuxVariable ( const std::string &  var_name,
const libMesh::FEType type,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3181 of file FEProblemBase.C.

3184 {
3185  parallel_object_only();
3186 
3187  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3188 
3189  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3190  return;
3191 
3192  std::string var_type;
3193  if (type == FEType(0, MONOMIAL))
3194  var_type = "MooseVariableConstMonomial";
3195  else if (type.family == SCALAR)
3196  var_type = "MooseVariableScalar";
3197  else if (FEInterface::field_type(type) == TYPE_VECTOR)
3198  var_type = "VectorMooseVariable";
3199  else
3200  var_type = "MooseVariable";
3201 
3202  InputParameters params = _factory.getValidParams(var_type);
3203  params.set<FEProblemBase *>("_fe_problem_base") = this;
3205  params.set<MooseEnum>("order") = type.order.get_order();
3206  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3207 
3208  if (active_subdomains)
3209  for (const SubdomainID & id : *active_subdomains)
3210  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3211 
3212  logAdd("AuxVariable", var_name, var_type, params);
3213  _aux->addVariable(var_type, var_name, params);
3214  if (_displaced_problem)
3215  _displaced_problem->addAuxVariable("MooseVariable", var_name, params);
3216 
3217  markFamilyPRefinement(params);
3218 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addBoundaryCondition()

void FEProblemBase::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3079 of file FEProblemBase.C.

Referenced by DiffusionCG::addBoundaryConditionsFromComponents(), and DiffusionCG::addFEBCs().

3082 {
3083  parallel_object_only();
3084 
3085  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3086  if (!isSolverSystemNonlinear(nl_sys_num))
3087  mooseError(
3088  "You are trying to add a BoundaryCondition to a linear variable/system, which is not "
3089  "supported at the moment!");
3090 
3092  bc_name, name, parameters, nl_sys_num, "BoundaryCondition", _reinit_displaced_face);
3093  _nl[nl_sys_num]->addBoundaryCondition(bc_name, name, parameters);
3094 }
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addCachedJacobian()

void FEProblemBase::addCachedJacobian ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidual()

void FEProblemBase::addCachedResidual ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidualDirectly()

void FEProblemBase::addCachedResidualDirectly ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
virtualinherited

Allows for all the residual contributions that are currently cached to be added directly into the vector passed in.

Parameters
residualThe vector to add the cached contributions to.
tidThe thread id.

Definition at line 1923 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

1924 {
1926  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1928 
1930  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1932 
1933  // We do this because by adding the cached residual directly, we cannot ensure that all of the
1934  // cached residuals are emptied after only the two add calls above
1935  _assembly[tid][_current_nl_sys->number()]->clearCachedResiduals(Assembly::GlobalDataKey{});
1936 
1937  if (_displaced_problem)
1938  _displaced_problem->addCachedResidualDirectly(residual, tid);
1939 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
TagID nonTimeVectorTag() const override
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
TagID timeVectorTag() const override
Ideally, we should not need this API.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addConstraint()

void FEProblemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3097 of file FEProblemBase.C.

3100 {
3101  parallel_object_only();
3102 
3103  _has_constraints = true;
3104 
3105  auto determine_var_param_name = [&parameters, this]()
3106  {
3107  if (parameters.isParamValid("variable"))
3108  return "variable";
3109  else
3110  {
3111  // must be a mortar constraint
3112  const bool has_secondary_var = parameters.isParamValid("secondary_variable");
3113  const bool has_primary_var = parameters.isParamValid("primary_variable");
3114  if (!has_secondary_var && !has_primary_var)
3115  mooseError(
3116  "Either a 'secondary_variable' or 'primary_variable' parameter must be supplied for '",
3118  "'");
3119  return has_secondary_var ? "secondary_variable" : "primary_variable";
3120  }
3121  };
3122 
3123  const auto nl_sys_num =
3124  determineSolverSystem(parameters.varName(determine_var_param_name(), name), true).second;
3125  if (!isSolverSystemNonlinear(nl_sys_num))
3126  mooseError("You are trying to add a Constraint to a linear variable/system, which is not "
3127  "supported at the moment!");
3128 
3129  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3130  {
3131  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3132  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3133  _reinit_displaced_face = true;
3134  }
3135  else
3136  {
3137  // It might _want_ to use a displaced mesh... but we're not so set it to false
3138  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3139  parameters.set<bool>("use_displaced_mesh") = false;
3140 
3141  parameters.set<SubProblem *>("_subproblem") = this;
3142  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3143  }
3144 
3145  logAdd("Constraint", name, c_name, parameters);
3146  _nl[nl_sys_num]->addConstraint(c_name, name, parameters);
3147 }
const std::string & getObjectName() const
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_constraints
Whether or not this system has any Constraints.
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addConsumedPropertyName()

void SubProblem::addConsumedPropertyName ( const MooseObjectName obj_name,
const std::string &  prop_name 
)
inherited

Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput.

Definition at line 736 of file SubProblem.C.

Referenced by MaterialPropertyInterface::addConsumedPropertyName().

737 {
738  _consumed_material_properties[obj_name].insert(prop_name);
739 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ addConvergence()

void FEProblemBase::addConvergence ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a Convergence object.

Definition at line 2554 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), and FEProblemBase::addDefaultSteadyStateConvergence().

2557 {
2558  parallel_object_only();
2559 
2560  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2561  {
2562  std::shared_ptr<Convergence> conv = _factory.create<Convergence>(type, name, parameters, tid);
2563  _convergences.addObject(conv, tid);
2564  }
2565 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
virtual std::unique_ptr< Base > create()=0
Base class for convergence criteria.
Definition: Convergence.h:21
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addCouplingGhostingFunctor()

void SubProblem::addCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf,
bool  to_mesh = true 
)
inherited

Add a coupling functor to this problem's DofMaps.

Definition at line 1056 of file SubProblem.C.

1057 {
1058  const auto num_nl_sys = numNonlinearSystems();
1059  if (!num_nl_sys)
1060  return;
1061 
1062  systemBaseNonlinear(0).system().get_dof_map().add_coupling_functor(coupling_gf, to_mesh);
1063  cloneCouplingGhostingFunctor(coupling_gf, to_mesh);
1064 }
void cloneCouplingGhostingFunctor(libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided coupling ghosting functor (corresponding to the nonlinear ...
Definition: SubProblem.C:1035
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void add_coupling_functor(GhostingFunctor &coupling_functor, bool to_mesh=true)
virtual std::size_t numNonlinearSystems() const =0
const DofMap & get_dof_map() const

◆ addDamper()

void FEProblemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5342 of file FEProblemBase.C.

5345 {
5346  parallel_object_only();
5347 
5348  const auto nl_sys_num =
5349  parameters.isParamValid("variable")
5350  ? determineSolverSystem(parameters.varName("variable", name), true).second
5351  : (unsigned int)0;
5352 
5353  if (!isSolverSystemNonlinear(nl_sys_num))
5354  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
5355  "supported at the moment!");
5356 
5357  parameters.set<SubProblem *>("_subproblem") = this;
5358  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
5359 
5360  _has_dampers = true;
5361  logAdd("Damper", name, damper_name, parameters);
5362  _nl[nl_sys_num]->addDamper(damper_name, name, parameters);
5363 }
bool _has_dampers
Whether or not this system has any Dampers associated with it.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addDefaultMultiAppFixedPointConvergence()

void FEProblemBase::addDefaultMultiAppFixedPointConvergence ( const InputParameters params)
inherited

Adds the default fixed point Convergence associated with the problem.

This is called if the user does not supply 'multiapp_fixed_point_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2580 of file FEProblemBase.C.

2581 {
2582  const std::string class_name = "DefaultMultiAppFixedPointConvergence";
2583  InputParameters params = _factory.getValidParams(class_name);
2584  params.applyParameters(params_to_apply);
2585  params.applyParameters(parameters());
2586  params.set<bool>("added_as_default") = true;
2588 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.
const ConvergenceName & getMultiAppFixedPointConvergenceName() const
Gets the MultiApp fixed point convergence object name.

◆ addDefaultNonlinearConvergence()

void FEProblemBase::addDefaultNonlinearConvergence ( const InputParameters params)
virtualinherited

Adds the default nonlinear Convergence associated with the problem.

This is called if the user does not supply 'nonlinear_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Reimplemented in ReferenceResidualProblem.

Definition at line 2568 of file FEProblemBase.C.

2569 {
2570  const std::string class_name = "DefaultNonlinearConvergence";
2571  InputParameters params = _factory.getValidParams(class_name);
2572  params.applyParameters(params_to_apply);
2573  params.applyParameters(parameters());
2574  params.set<bool>("added_as_default") = true;
2575  for (const auto & conv_name : getNonlinearConvergenceNames())
2576  addConvergence(class_name, conv_name, params);
2577 }
const std::vector< ConvergenceName > & getNonlinearConvergenceNames() const
Gets the nonlinear system convergence object name(s).
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDefaultSteadyStateConvergence()

void FEProblemBase::addDefaultSteadyStateConvergence ( const InputParameters params)
inherited

Adds the default steady-state detection Convergence.

This is called if the user does not supply 'steady_state_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2591 of file FEProblemBase.C.

2592 {
2593  const std::string class_name = "DefaultSteadyStateConvergence";
2594  InputParameters params = _factory.getValidParams(class_name);
2595  params.applyParameters(params_to_apply);
2596  params.applyParameters(parameters());
2597  params.set<bool>("added_as_default") = true;
2598  addConvergence(class_name, getSteadyStateConvergenceName(), params);
2599 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
const ConvergenceName & getSteadyStateConvergenceName() const
Gets the steady-state detection convergence object name.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDGKernel()

void FEProblemBase::addDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3397 of file FEProblemBase.C.

3400 {
3401  parallel_object_only();
3402 
3403  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3404  if (!isSolverSystemNonlinear(nl_sys_num))
3405  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
3406  "supported at the moment!");
3407 
3408  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3409  {
3410  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3411  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3413  }
3414  else
3415  {
3416  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3417  {
3418  // We allow DGKernels to request that they use_displaced_mesh,
3419  // but then be overridden when no displacements variables are
3420  // provided in the Mesh block. If that happened, update the value
3421  // of use_displaced_mesh appropriately for this DGKernel.
3422  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3423  parameters.set<bool>("use_displaced_mesh") = false;
3424  }
3425 
3426  parameters.set<SubProblem *>("_subproblem") = this;
3427  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3428  }
3429 
3430  logAdd("DGKernel", name, dg_kernel_name, parameters);
3431  _nl[nl_sys_num]->addDGKernel(dg_kernel_name, name, parameters);
3432 
3434 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addDiracKernel()

void FEProblemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3357 of file FEProblemBase.C.

3360 {
3361  parallel_object_only();
3362 
3363  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3364  if (!isSolverSystemNonlinear(nl_sys_num))
3365  mooseError("You are trying to add a DiracKernel to a linear variable/system, which is not "
3366  "supported at the moment!");
3367 
3368  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3369  {
3370  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3371  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3372  _reinit_displaced_elem = true;
3373  }
3374  else
3375  {
3376  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3377  {
3378  // We allow DiracKernels to request that they use_displaced_mesh,
3379  // but then be overridden when no displacements variables are
3380  // provided in the Mesh block. If that happened, update the value
3381  // of use_displaced_mesh appropriately for this DiracKernel.
3382  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3383  parameters.set<bool>("use_displaced_mesh") = false;
3384  }
3385 
3386  parameters.set<SubProblem *>("_subproblem") = this;
3387  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3388  }
3389 
3390  logAdd("DiracKernel", name, kernel_name, parameters);
3391  _nl[nl_sys_num]->addDiracKernel(kernel_name, name, parameters);
3392 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addDisplacedProblem()

void FEProblemBase::addDisplacedProblem ( std::shared_ptr< DisplacedProblem displaced_problem)
virtualinherited

Definition at line 7988 of file FEProblemBase.C.

7989 {
7990  parallel_object_only();
7991 
7994 }
std::shared_ptr< DisplacedProblem > displaced_problem
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ addDistribution()

void FEProblemBase::addDistribution ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import distributions.

Definition at line 2720 of file FEProblemBase.C.

2723 {
2724  parameters.set<std::string>("type") = type;
2725  addObject<Distribution>(type, name, parameters, /* threaded = */ false);
2726 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ addFunction()

void FEProblemBase::addFunction ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 2528 of file FEProblemBase.C.

Referenced by MFEMProblem::addFunction(), and FEProblemBase::getFunction().

2531 {
2532  parallel_object_only();
2533 
2534  parameters.set<SubProblem *>("_subproblem") = this;
2535 
2536  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2537  {
2538  std::shared_ptr<Function> func = _factory.create<Function>(type, name, parameters, tid);
2539  logAdd("Function", name, type, parameters);
2540  _functions.addObject(func, tid);
2541 
2542  if (auto * const functor = dynamic_cast<Moose::FunctorBase<Real> *>(func.get()))
2543  {
2544  this->addFunctor(name, *functor, tid);
2545  if (_displaced_problem)
2546  _displaced_problem->addFunctor(name, *functor, tid);
2547  }
2548  else
2549  mooseError("Unrecognized function functor type");
2550  }
2551 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFunctor()

template<typename T >
void SubProblem::addFunctor ( const std::string &  name,
const Moose::FunctorBase< T > &  functor,
const THREAD_ID  tid 
)
inherited

add a functor to the problem functor container

Definition at line 1375 of file SubProblem.h.

Referenced by FEProblemBase::addFunction(), SubProblem::addPiecewiseByBlockLambdaFunctor(), FEProblemBase::addUserObject(), and SystemBase::addVariable().

1378 {
1379  constexpr bool added_functor_is_ad =
1380  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1381 
1382  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1383 
1384  auto & functor_to_request_info = _functor_to_request_info[tid];
1385  auto & functors = _functors[tid];
1386  auto it = functors.find("wraps_" + name);
1387  if (it != functors.end())
1388  {
1389  // We have this functor already. If it's a null functor, we want to replace it with the valid
1390  // functor we have now. If it's not then we'll add a new entry into the multimap and then we'll
1391  // error later if a user requests a functor because their request is ambiguous. This is the
1392  // reason that the functors container is a multimap: for nice error messages
1393  auto * const existing_wrapper_base =
1394  added_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get();
1395  auto * const existing_wrapper = dynamic_cast<Moose::Functor<T> *>(existing_wrapper_base);
1396  if (existing_wrapper && existing_wrapper->template wrapsType<Moose::NullFunctor<T>>())
1397  {
1398  // Sanity check
1399  auto [request_info_it, request_info_end_it] = functor_to_request_info.equal_range(name);
1400  if (request_info_it == request_info_end_it)
1401  mooseError("We are wrapping a NullFunctor but we don't have any unfilled functor request "
1402  "info. This doesn't make sense.");
1403 
1404  // Check for valid requests
1405  while (request_info_it != request_info_end_it)
1406  {
1407  auto & [requested_functor_is_ad, requestor_is_ad] = request_info_it->second;
1408  if (!requested_functor_is_ad && requestor_is_ad && added_functor_is_ad)
1409  mooseError("We are requesting a non-AD functor '" + name +
1410  "' from an AD object, but the true functor is AD. This means we could be "
1411  "dropping important derivatives. We will not allow this");
1412  // We're going to eventually check whether we've fulfilled all functor requests and our
1413  // check will be that the multimap is empty. This request is fulfilled, so erase it from the
1414  // map now
1415  request_info_it = functor_to_request_info.erase(request_info_it);
1416  }
1417 
1418  // Ok we didn't have the functor before, so we will add it now
1419  std::get<0>(it->second) =
1421  existing_wrapper->assign(functor);
1422  // Finally we create the non-AD or AD complement of the just added functor
1423  if constexpr (added_functor_is_ad)
1424  {
1425  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1426  auto * const existing_non_ad_wrapper_base = std::get<1>(it->second).get();
1427  auto * const existing_non_ad_wrapper =
1428  dynamic_cast<Moose::Functor<NonADType> *>(existing_non_ad_wrapper_base);
1429  mooseAssert(existing_non_ad_wrapper->template wrapsType<Moose::NullFunctor<NonADType>>(),
1430  "Both members of pair should have been wrapping a NullFunctor");
1431  existing_non_ad_wrapper->assign(
1432  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1433  }
1434  else
1435  {
1436  typedef typename Moose::ADType<T>::type ADType;
1437  auto * const existing_ad_wrapper_base = std::get<2>(it->second).get();
1438  auto * const existing_ad_wrapper =
1439  dynamic_cast<Moose::Functor<ADType> *>(existing_ad_wrapper_base);
1440  mooseAssert(existing_ad_wrapper->template wrapsType<Moose::NullFunctor<ADType>>(),
1441  "Both members of pair should have been wrapping a NullFunctor");
1442  existing_ad_wrapper->assign(std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1443  }
1444  return;
1445  }
1446  else if (!existing_wrapper)
1447  {
1448  // Functor was emplaced but the cast failed. This could be a double definition with
1449  // different types, or it could be a request with one type then a definition with another
1450  // type. Either way it is going to error later, but it is cleaner to catch it now
1451  mooseError("Functor '",
1452  name,
1453  "' is being added with return type '",
1454  MooseUtils::prettyCppType<T>(),
1455  "' but it has already been defined or requested with return type '",
1456  existing_wrapper_base->returnType(),
1457  "'.");
1458  }
1459  }
1460 
1461  // We are a new functor, create the opposite ADType one and store it with other functors
1462  if constexpr (added_functor_is_ad)
1463  {
1464  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1465  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<NonADType>>(
1466  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1467  auto new_ad_wrapper = std::make_unique<Moose::Functor<T>>(functor);
1468  _functors[tid].emplace("wraps_" + name,
1469  std::make_tuple(SubProblem::TrueFunctorIs::AD,
1470  std::move(new_non_ad_wrapper),
1471  std::move(new_ad_wrapper)));
1472  }
1473  else
1474  {
1475  typedef typename Moose::ADType<T>::type ADType;
1476  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<T>>((functor));
1477  auto new_ad_wrapper = std::make_unique<Moose::Functor<ADType>>(
1478  std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1479  _functors[tid].emplace("wraps_" + name,
1480  std::make_tuple(SubProblem::TrueFunctorIs::NONAD,
1481  std::move(new_non_ad_wrapper),
1482  std::move(new_ad_wrapper)));
1483  }
1484 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1133
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
Wraps non-AD functors such that they can be used in objects that have requested the functor as AD...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...

◆ addFunctorMaterial()

void FEProblemBase::addFunctorMaterial ( const std::string &  functor_material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3946 of file FEProblemBase.C.

3949 {
3950  parallel_object_only();
3951 
3952  auto add_functor_materials = [&](const auto & parameters, const auto & name)
3953  {
3954  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
3955  {
3956  // Create the general Block/Boundary MaterialBase object
3957  std::shared_ptr<MaterialBase> material =
3958  _factory.create<MaterialBase>(functor_material_name, name, parameters, tid);
3959  logAdd("FunctorMaterial", name, functor_material_name, parameters);
3960  _all_materials.addObject(material, tid);
3961  _materials.addObject(material, tid);
3962  }
3963  };
3964 
3965  parameters.set<SubProblem *>("_subproblem") = this;
3966  add_functor_materials(parameters, name);
3967  if (_displaced_problem)
3968  {
3969  auto disp_params = parameters;
3970  disp_params.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3971  add_functor_materials(disp_params, name + "_displaced");
3972  }
3973 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ addFVBC()

void FEProblemBase::addFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3451 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVBCs().

3454 {
3455  addObject<FVBoundaryCondition>(fv_bc_name, name, parameters);
3456 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addFVInitialCondition()

void FEProblemBase::addFVInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add an initial condition for a finite volume variables.

Parameters
ic_nameThe name of the boundary condition object
nameThe user-defined name from the input file
parametersThe input parameters for construction

Definition at line 3620 of file FEProblemBase.C.

3623 {
3624  parallel_object_only();
3625 
3626  // before we start to mess with the initial condition, we need to check parameters for errors.
3628  const std::string & var_name = parameters.get<VariableName>("variable");
3629 
3630  // Forbid initial conditions on a restarted problem, as they would override the restart
3631  checkICRestartError(ic_name, name, var_name);
3632 
3633  parameters.set<SubProblem *>("_subproblem") = this;
3634 
3635  // field IC
3636  if (hasVariable(var_name))
3637  {
3638  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3639  {
3640  auto & var = getVariable(
3642  parameters.set<SystemBase *>("_sys") = &var.sys();
3643  std::shared_ptr<FVInitialConditionBase> ic;
3644  if (var.isFV())
3645  ic = _factory.create<FVInitialCondition>(ic_name, name, parameters, tid);
3646  else
3647  mooseError(
3648  "Your variable for an FVInitialCondition needs to be an a finite volume variable!");
3649  _fv_ics.addObject(ic, tid);
3650  }
3651  }
3652  else
3653  mooseError("Variable '",
3654  var_name,
3655  "' requested in finite volume initial condition '",
3656  name,
3657  "' does not exist.");
3658 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
void addObject(std::shared_ptr< FVInitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
FVInitialConditionWarehouse _fv_ics
This is a template class that implements the workhorse compute and computeNodal methods.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFVInterfaceKernel()

void FEProblemBase::addFVInterfaceKernel ( const std::string &  fv_ik_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

We assume that variable1 and variable2 can live on different systems, in this case the user needs to create two interface kernels with flipped variables and parameters

Definition at line 3459 of file FEProblemBase.C.

3462 {
3465  addObject<FVInterfaceKernel>(
3466  fv_ik_name, name, parameters, /*threaded=*/true, /*variable_param_name=*/"variable1");
3467 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addFVKernel()

void FEProblemBase::addFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3437 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVKernels().

3440 {
3441  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3442  // FVElementalKernels are computed in the historically finite element threaded loops. They rely
3443  // on Assembly data like _current_elem. When we call reinit on the FEProblemBase we will only
3444  // reinit the DisplacedProblem and its associated Assembly objects if we mark this boolean as
3445  // true
3446  _reinit_displaced_elem = true;
3447  addObject<FVKernel>(fv_kernel_name, name, parameters);
3448 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addGhostedBoundary()

void FEProblemBase::addGhostedBoundary ( BoundaryID  boundary_id)
overridevirtualinherited

Will make sure that all necessary elements from boundary_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2125 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedBoundary().

2126 {
2127  _mesh.addGhostedBoundary(boundary_id);
2128  if (_displaced_problem)
2129  _displaced_mesh->addGhostedBoundary(boundary_id);
2130 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void addGhostedBoundary(BoundaryID boundary_id)
This will add the boundary ids to be ghosted to this processor.
Definition: MooseMesh.C:3269
MooseMesh * _displaced_mesh

◆ addGhostedElem()

void FEProblemBase::addGhostedElem ( dof_id_type  elem_id)
overridevirtualinherited

Will make sure that all dofs connected to elem_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2118 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedElem(), and NodalPatchRecovery::NodalPatchRecovery().

2119 {
2120  if (_mesh.elemPtr(elem_id)->processor_id() != processor_id())
2121  _ghosted_elems.insert(elem_id);
2122 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
MooseMesh & _mesh
processor_id_type processor_id() const
processor_id_type processor_id() const

◆ addHDGKernel()

void FEProblemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 2993 of file FEProblemBase.C.

2996 {
2997  parallel_object_only();
2998  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2999  if (!isSolverSystemNonlinear(nl_sys_num))
3000  mooseError("You are trying to add a HDGKernel to a linear variable/system, which is not "
3001  "supported at the moment!");
3003  kernel_name, name, parameters, nl_sys_num, "HDGKernel", _reinit_displaced_elem);
3004 
3005  _nl[nl_sys_num]->addHDGKernel(kernel_name, name, parameters);
3006 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addIndicator()

void FEProblemBase::addIndicator ( const std::string &  indicator_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5373 of file FEProblemBase.C.

5376 {
5377  parallel_object_only();
5378 
5379  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5380  {
5381  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5382  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5383  _reinit_displaced_elem = true;
5384  }
5385  else
5386  {
5387  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5388  {
5389  // We allow Indicators to request that they use_displaced_mesh,
5390  // but then be overridden when no displacements variables are
5391  // provided in the Mesh block. If that happened, update the value
5392  // of use_displaced_mesh appropriately for this Indicator.
5393  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5394  parameters.set<bool>("use_displaced_mesh") = false;
5395  }
5396 
5397  parameters.set<SubProblem *>("_subproblem") = this;
5398  parameters.set<SystemBase *>("_sys") = _aux.get();
5399  }
5400 
5401  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5402  {
5403  std::shared_ptr<Indicator> indicator =
5404  _factory.create<Indicator>(indicator_name, name, parameters, tid);
5405  logAdd("Indicator", name, indicator_name, parameters);
5406  std::shared_ptr<InternalSideIndicatorBase> isi =
5408  if (isi)
5410  else
5411  _indicators.addObject(indicator, tid);
5412  }
5413 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseObjectWarehouse< Indicator > _indicators
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInitialCondition()

void FEProblemBase::addInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3560 of file FEProblemBase.C.

Referenced by DiffusionPhysicsBase::addInitialConditions(), and DiffusionPhysicsBase::addInitialConditionsFromComponents().

3563 {
3564  parallel_object_only();
3565 
3566  // before we start to mess with the initial condition, we need to check parameters for errors.
3568  const std::string & var_name = parameters.get<VariableName>("variable");
3569 
3570  // Forbid initial conditions on a restarted problem, as they would override the restart
3571  checkICRestartError(ic_name, name, var_name);
3572 
3573  parameters.set<SubProblem *>("_subproblem") = this;
3574 
3575  // field IC
3576  if (hasVariable(var_name))
3577  {
3578  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3579  {
3582  parameters.set<SystemBase *>("_sys") = &var.sys();
3583  std::shared_ptr<InitialConditionBase> ic;
3584  if (dynamic_cast<MooseVariable *>(&var))
3585  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3586  else if (dynamic_cast<VectorMooseVariable *>(&var))
3587  ic = _factory.create<VectorInitialCondition>(ic_name, name, parameters, tid);
3588  else if (dynamic_cast<ArrayMooseVariable *>(&var))
3589  ic = _factory.create<ArrayInitialCondition>(ic_name, name, parameters, tid);
3590  else if (dynamic_cast<MooseVariableFVReal *>(&var))
3591  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3592  else if (dynamic_cast<MooseLinearVariableFVReal *>(&var))
3593  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3594  else
3595  mooseError("Your FE variable in initial condition ",
3596  name,
3597  " must be either of scalar or vector type");
3598  logAdd("IC", name, ic_name, parameters);
3599  _ics.addObject(ic, tid);
3600  }
3601  }
3602 
3603  // scalar IC
3604  else if (hasScalarVariable(var_name))
3605  {
3606  MooseVariableScalar & var = getScalarVariable(0, var_name);
3607  parameters.set<SystemBase *>("_sys") = &var.sys();
3608  std::shared_ptr<ScalarInitialCondition> ic =
3610  logAdd("ScalarIC", name, ic_name, parameters);
3611  _scalar_ics.addObject(ic);
3612  }
3613 
3614  else
3615  mooseError(
3616  "Variable '", var_name, "' requested in initial condition '", name, "' does not exist.");
3617 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
This is a template class that implements the workhorse compute and computeNodal methods.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
This class provides an interface for common operations on field variables of both FE and FV types wit...
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
ScalarInitialConditionWarehouse _scalar_ics
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
virtual MooseVariableScalar & getScalarVariable(const THREAD_ID tid, const std::string &var_name) override
Returns the scalar variable reference from whichever system contains it.
void addObject(std::shared_ptr< InitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
InitialConditions are objects that set the initial value of variables.
InitialConditionWarehouse _ics
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for scalar variables (they are different).
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true)
Adds an object to the storage structure.
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
SystemBase & sys()
Get the system this variable is part of.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInterfaceKernel()

void FEProblemBase::addInterfaceKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3488 of file FEProblemBase.C.

3491 {
3492  parallel_object_only();
3493 
3494  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3495  if (!isSolverSystemNonlinear(nl_sys_num))
3496  mooseError("You are trying to add a InterfaceKernel to a linear variable/system, which is not "
3497  "supported at the moment!");
3498 
3499  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3500  {
3501  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3502  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3504  }
3505  else
3506  {
3507  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3508  {
3509  // We allow InterfaceKernels to request that they use_displaced_mesh,
3510  // but then be overridden when no displacements variables are
3511  // provided in the Mesh block. If that happened, update the value
3512  // of use_displaced_mesh appropriately for this InterfaceKernel.
3513  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3514  parameters.set<bool>("use_displaced_mesh") = false;
3515  }
3516 
3517  parameters.set<SubProblem *>("_subproblem") = this;
3518  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3519  }
3520 
3521  logAdd("InterfaceKernel", name, interface_kernel_name, parameters);
3522  _nl[nl_sys_num]->addInterfaceKernel(interface_kernel_name, name, parameters);
3523 
3525 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addInterfaceMaterial()

void FEProblemBase::addInterfaceMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3984 of file FEProblemBase.C.

3987 {
3989 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
MaterialWarehouse _interface_materials
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addJacobian()

void FEProblemBase::addJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1962 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1963 {
1964  _assembly[tid][_current_nl_sys->number()]->addJacobian(Assembly::GlobalDataKey{});
1966  _assembly[tid][_current_nl_sys->number()]->addJacobianNonlocal(Assembly::GlobalDataKey{});
1967  if (_displaced_problem)
1968  {
1969  _displaced_problem->addJacobian(tid);
1971  _displaced_problem->addJacobianNonlocal(tid);
1972  }
1973 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianBlockTags()

void FEProblemBase::addJacobianBlockTags ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2037 of file FEProblemBase.C.

Referenced by ComputeJacobianBlocksThread::postElement().

2044 {
2045  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockTags(
2046  jacobian, ivar, jvar, dof_map, dof_indices, Assembly::GlobalDataKey{}, tags);
2047 
2049  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2050  {
2051  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2052  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockNonlocalTags(
2053  jacobian,
2054  ivar,
2055  jvar,
2056  dof_map,
2057  dof_indices,
2058  jv.allDofIndices(),
2060  tags);
2061  }
2062 
2063  if (_displaced_problem)
2064  {
2065  _displaced_problem->addJacobianBlockTags(jacobian, ivar, jvar, dof_map, dof_indices, tags, tid);
2067  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2068  {
2069  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2070  _displaced_problem->addJacobianBlockNonlocal(
2071  jacobian, ivar, jvar, dof_map, dof_indices, jv.allDofIndices(), tags, tid);
2072  }
2073  }
2074 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
This class provides an interface for common operations on field variables of both FE and FV types wit...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::vector< dof_id_type > & allDofIndices() const
Get all global dofindices for the variable.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianLowerD()

void FEProblemBase::addJacobianLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1992 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateLower(), and ComputeJacobianThread::accumulateLower().

1993 {
1994  _assembly[tid][_current_nl_sys->number()]->addJacobianLowerD(Assembly::GlobalDataKey{});
1995  if (_displaced_problem)
1996  _displaced_problem->addJacobianLowerD(tid);
1997 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianNeighbor() [1/3]

virtual void SubProblem::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const libMesh::DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
pure virtualinherited

Implemented in DisplacedProblem.

◆ addJacobianNeighbor() [2/3]

void FEProblemBase::addJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1976 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeJacobianThread::accumulateNeighbor(), and ComputeJacobianBlocksThread::postInternalSide().

1977 {
1978  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighbor(Assembly::GlobalDataKey{});
1979  if (_displaced_problem)
1980  _displaced_problem->addJacobianNeighbor(tid);
1981 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianNeighbor() [3/3]

virtual void FEProblemBase::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap &  dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ addJacobianNeighborLowerD()

void FEProblemBase::addJacobianNeighborLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1984 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighborLower(), and ComputeJacobianThread::accumulateNeighborLower().

1985 {
1986  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighborLowerD(Assembly::GlobalDataKey{});
1987  if (_displaced_problem)
1988  _displaced_problem->addJacobianNeighborLowerD(tid);
1989 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianOffDiagScalar()

void FEProblemBase::addJacobianOffDiagScalar ( unsigned int  ivar,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2006 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

2007 {
2008  _assembly[tid][_current_nl_sys->number()]->addJacobianOffDiagScalar(ivar,
2010 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addJacobianScalar()

void FEProblemBase::addJacobianScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 2000 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

2001 {
2002  _assembly[tid][_current_nl_sys->number()]->addJacobianScalar(Assembly::GlobalDataKey{});
2003 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addKernel()

void FEProblemBase::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 2977 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEKernels().

2980 {
2981  parallel_object_only();
2982  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2983  if (!isSolverSystemNonlinear(nl_sys_num))
2984  mooseError("You are trying to add a Kernel to a linear variable/system, which is not "
2985  "supported at the moment!");
2987  kernel_name, name, parameters, nl_sys_num, "Kernel", _reinit_displaced_elem);
2988 
2989  _nl[nl_sys_num]->addKernel(kernel_name, name, parameters);
2990 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addKokkosBoundaryCondition()

virtual void FEProblemBase::addKokkosBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosKernel()

virtual void FEProblemBase::addKokkosKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosMaterial()

virtual void FEProblemBase::addKokkosMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addKokkosNodalKernel()

virtual void FEProblemBase::addKokkosNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

◆ addLinearFVBC()

void FEProblemBase::addLinearFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3478 of file FEProblemBase.C.

3481 {
3482  addObject<LinearFVBoundaryCondition>(bc_name, name, parameters);
3483 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addLinearFVKernel()

void FEProblemBase::addLinearFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3470 of file FEProblemBase.C.

3473 {
3474  addObject<LinearFVKernel>(kernel_name, name, parameters);
3475 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ addLineSearch()

void FEProblem::addLineSearch ( const InputParameters )
overridevirtual

add a MOOSE line search

Reimplemented from FEProblemBase.

Definition at line 105 of file FEProblem.C.

106 {
107  MooseEnum line_search = parameters.get<MooseEnum>("line_search");
108  Moose::LineSearchType enum_line_search = Moose::stringToEnum<Moose::LineSearchType>(line_search);
109  if (enum_line_search == Moose::LS_CONTACT || enum_line_search == Moose::LS_PROJECT)
110  {
111  if (enum_line_search == Moose::LS_CONTACT)
112  {
113  InputParameters ls_params = _factory.getValidParams("PetscContactLineSearch");
114 
115  bool affect_ltol = parameters.isParamValid("contact_line_search_ltol");
116  ls_params.set<bool>("affect_ltol") = affect_ltol;
117  ls_params.set<unsigned>("allowed_lambda_cuts") =
118  parameters.get<unsigned>("contact_line_search_allowed_lambda_cuts");
119  ls_params.set<Real>("contact_ltol") = affect_ltol
120  ? parameters.get<Real>("contact_line_search_ltol")
121  : parameters.get<Real>("l_tol");
122  ls_params.set<FEProblem *>("_fe_problem") = this;
123 
124  _line_search =
125  _factory.create<LineSearch>("PetscContactLineSearch", "contact_line_search", ls_params);
126  }
127  else
128  {
129  InputParameters ls_params = _factory.getValidParams("PetscProjectSolutionOntoBounds");
130  ls_params.set<FEProblem *>("_fe_problem") = this;
131 
133  "PetscProjectSolutionOntoBounds", "project_solution_onto_bounds_line_search", ls_params);
134  }
135  }
136  else
137  mooseError("Requested line search ", line_search.operator std::string(), " is not supported");
138 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Definition: FEProblem.h:20
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
std::shared_ptr< MooseObject > create(const std::string &obj_name, const std::string &name, const InputParameters &parameters, THREAD_ID tid=0, bool print_deprecated=true)
Definition: Factory.C:111
InputParameters getValidParams(const std::string &name) const
Get valid parameters for the object.
Definition: Factory.C:68
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
LineSearchType
Type of the line search.
Definition: MooseTypes.h:926
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< LineSearch > _line_search
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addMarker()

void FEProblemBase::addMarker ( const std::string &  marker_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5416 of file FEProblemBase.C.

5419 {
5420  parallel_object_only();
5421 
5422  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5423  {
5424  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5425  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5426  _reinit_displaced_elem = true;
5427  }
5428  else
5429  {
5430  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5431  {
5432  // We allow Markers to request that they use_displaced_mesh,
5433  // but then be overridden when no displacements variables are
5434  // provided in the Mesh block. If that happened, update the value
5435  // of use_displaced_mesh appropriately for this Marker.
5436  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5437  parameters.set<bool>("use_displaced_mesh") = false;
5438  }
5439 
5440  parameters.set<SubProblem *>("_subproblem") = this;
5441  parameters.set<SystemBase *>("_sys") = _aux.get();
5442  }
5443 
5444  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5445  {
5446  std::shared_ptr<Marker> marker = _factory.create<Marker>(marker_name, name, parameters, tid);
5447  logAdd("Marker", name, marker_name, parameters);
5448  _markers.addObject(marker, tid);
5449  }
5450 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Definition: Marker.h:41
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMaterial()

void FEProblemBase::addMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3976 of file FEProblemBase.C.

Referenced by ComponentMaterialPropertyInterface::addMaterials().

3979 {
3980  addMaterialHelper({&_materials}, mat_name, name, parameters);
3981 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MaterialWarehouse _materials

◆ addMaterialHelper()

void FEProblemBase::addMaterialHelper ( std::vector< MaterialWarehouse *>  warehouse,
const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3992 of file FEProblemBase.C.

Referenced by FEProblemBase::addInterfaceMaterial(), and FEProblemBase::addMaterial().

3996 {
3997  parallel_object_only();
3998 
3999  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4000  {
4001  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4003  }
4004  else
4005  {
4006  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
4007  {
4008  // We allow Materials to request that they use_displaced_mesh,
4009  // but then be overridden when no displacements variables are
4010  // provided in the Mesh block. If that happened, update the value
4011  // of use_displaced_mesh appropriately for this Material.
4012  if (parameters.have_parameter<bool>("use_displaced_mesh"))
4013  parameters.set<bool>("use_displaced_mesh") = false;
4014  }
4015 
4016  parameters.set<SubProblem *>("_subproblem") = this;
4017  }
4018 
4019  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
4020  {
4021  // Create the general Block/Boundary MaterialBase object
4022  std::shared_ptr<MaterialBase> material =
4023  _factory.create<MaterialBase>(mat_name, name, parameters, tid);
4024  logAdd("Material", name, mat_name, parameters);
4025  bool discrete = !material->getParam<bool>("compute");
4026 
4027  // If the object is boundary restricted or if it is a functor material we do not create the
4028  // neighbor and face objects
4029  if (material->boundaryRestricted() || dynamic_cast<FunctorMaterial *>(material.get()))
4030  {
4031  _all_materials.addObject(material, tid);
4032  if (discrete)
4033  _discrete_materials.addObject(material, tid);
4034  else
4035  for (auto && warehouse : warehouses)
4036  warehouse->addObject(material, tid);
4037  }
4038 
4039  // Non-boundary restricted require face and neighbor objects
4040  else
4041  {
4042  // TODO: we only need to do this if we have needs for face materials (e.g.
4043  // FV, DG, etc.) - but currently we always do it. Figure out how to fix
4044  // this.
4045 
4046  // The name of the object being created, this is changed multiple times as objects are
4047  // created below
4048  std::string object_name;
4049 
4050  // Create a copy of the supplied parameters to the setting for "_material_data_type" isn't
4051  // used from a previous tid loop
4052  InputParameters current_parameters = parameters;
4053 
4054  // face material
4055  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
4057  object_name = name + "_face";
4058  std::shared_ptr<MaterialBase> face_material =
4059  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
4060 
4061  // neighbor material
4062  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
4064  current_parameters.set<bool>("_neighbor") = true;
4065  object_name = name + "_neighbor";
4066  std::shared_ptr<MaterialBase> neighbor_material =
4067  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
4068 
4069  // Store the material objects
4070  _all_materials.addObjects(material, neighbor_material, face_material, tid);
4071 
4072  if (discrete)
4073  _discrete_materials.addObjects(material, neighbor_material, face_material, tid);
4074  else
4075  for (auto && warehouse : warehouses)
4076  warehouse->addObjects(material, neighbor_material, face_material, tid);
4077 
4078  // Names of all controllable parameters for this Material object
4079  const std::string & base = parameters.getBase();
4080  MooseObjectParameterName name(MooseObjectName(base, material->name()), "*");
4081  const auto param_names =
4083 
4084  // Connect parameters of the primary Material object to those on the face and neighbor
4085  // objects
4086  for (const auto & p_name : param_names)
4087  {
4088  MooseObjectParameterName primary_name(MooseObjectName(base, material->name()),
4089  p_name.parameter());
4090  MooseObjectParameterName face_name(MooseObjectName(base, face_material->name()),
4091  p_name.parameter());
4092  MooseObjectParameterName neighbor_name(MooseObjectName(base, neighbor_material->name()),
4093  p_name.parameter());
4095  primary_name, face_name, false);
4097  primary_name, neighbor_name, false);
4098  }
4099  }
4100  }
4101 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addControllableParameterConnection(const MooseObjectParameterName &primary, const MooseObjectParameterName &secondary, bool error_on_empty=true)
Method for linking control parameters of different names.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2940
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
MaterialDataType
MaterialData types.
Definition: MooseTypes.h:692
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & getBase() const
std::vector< MooseObjectParameterName > getControllableParameterNames(const MooseObjectParameterName &input) const
Return a vector of parameters names matching the supplied name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
FunctorMaterials compute functor material properties.
virtual std::unique_ptr< Base > create()=0
void addObjects(std::shared_ptr< MaterialBase > block, std::shared_ptr< MaterialBase > neighbor, std::shared_ptr< MaterialBase > face, THREAD_ID tid=0)
A special method unique to this class for adding Block, Neighbor, and Face material objects...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
MaterialWarehouse _discrete_materials
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A class for storing an input parameter name.
A class for storing the names of MooseObject by tag and object name.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMatrixTag()

TagID SubProblem::addMatrixTag ( TagName  tag_name)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated

Reimplemented in DisplacedProblem.

Definition at line 311 of file SubProblem.C.

Referenced by DisplacedProblem::addMatrixTag(), FEProblemBase::createTagMatrices(), LinearSystem::LinearSystem(), and NonlinearSystemBase::NonlinearSystemBase().

312 {
313  auto tag_name_upper = MooseUtils::toUpper(tag_name);
314  auto existing_tag = _matrix_tag_name_to_tag_id.find(tag_name_upper);
315  if (existing_tag == _matrix_tag_name_to_tag_id.end())
316  {
317  auto tag_id = _matrix_tag_name_to_tag_id.size();
318 
319  _matrix_tag_name_to_tag_id[tag_name_upper] = tag_id;
320 
321  _matrix_tag_id_to_tag_name[tag_id] = tag_name_upper;
322  }
323 
324  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
325 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(std::string name)
Convert supplied string to upper case.
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ addMeshDivision()

void FEProblemBase::addMeshDivision ( const std::string &  type,
const std::string &  name,
InputParameters params 
)
virtualinherited

Add a MeshDivision.

Definition at line 2675 of file FEProblemBase.C.

2678 {
2679  parallel_object_only();
2680  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
2681  parameters.set<SubProblem *>("_subproblem") = this;
2682  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2683  {
2684  std::shared_ptr<MeshDivision> func = _factory.create<MeshDivision>(type, name, parameters, tid);
2685  _mesh_divisions.addObject(func, tid);
2686  }
2687 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMultiApp()

void FEProblemBase::addMultiApp ( const std::string &  multi_app_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a MultiApp to the problem.

Definition at line 5453 of file FEProblemBase.C.

5456 {
5457  parallel_object_only();
5458 
5459  parameters.set<MPI_Comm>("_mpi_comm") = _communicator.get();
5460 
5461  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5462  {
5463  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5464  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5465  _reinit_displaced_elem = true;
5466  }
5467  else
5468  {
5469  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5470  {
5471  // We allow MultiApps to request that they use_displaced_mesh,
5472  // but then be overridden when no displacements variables are
5473  // provided in the Mesh block. If that happened, update the value
5474  // of use_displaced_mesh appropriately for this MultiApp.
5475  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5476  parameters.set<bool>("use_displaced_mesh") = false;
5477  }
5478 
5479  parameters.set<SubProblem *>("_subproblem") = this;
5480  parameters.set<SystemBase *>("_sys") = _aux.get();
5481  }
5482 
5483  std::shared_ptr<MultiApp> multi_app = _factory.create<MultiApp>(multi_app_name, name, parameters);
5484  logAdd("MultiApp", name, multi_app_name, parameters);
5485  multi_app->setupPositions();
5486 
5487  _multi_apps.addObject(multi_app);
5488 
5489  // Store TransientMultiApp objects in another container, this is needed for calling computeDT
5490  std::shared_ptr<TransientMultiApp> trans_multi_app =
5492  if (trans_multi_app)
5493  _transient_multi_apps.addObject(trans_multi_app);
5494 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
MultiApp Implementation for Transient Apps.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A MultiApp represents one or more MOOSE applications that are running simultaneously.
Definition: MultiApp.h:112

◆ addNodalKernel()

void FEProblemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3009 of file FEProblemBase.C.

3012 {
3013  parallel_object_only();
3014 
3015  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3016  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3017  {
3018  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3019  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3020  _reinit_displaced_elem = true;
3021  }
3022  else
3023  {
3024  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3025  {
3026  // We allow NodalKernels to request that they use_displaced_mesh,
3027  // but then be overridden when no displacements variables are
3028  // provided in the Mesh block. If that happened, update the value
3029  // of use_displaced_mesh appropriately for this NodalKernel.
3030  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3031  parameters.set<bool>("use_displaced_mesh") = false;
3032  }
3033 
3034  parameters.set<SubProblem *>("_subproblem") = this;
3035  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3036  }
3037  logAdd("NodalKernel", name, kernel_name, parameters);
3038  _nl[nl_sys_num]->addNodalKernel(kernel_name, name, parameters);
3039 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addNotZeroedVectorTag()

void SubProblem::addNotZeroedVectorTag ( const TagID  tag)
inherited

Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that will be manually managed

Definition at line 149 of file SubProblem.C.

Referenced by FEProblemBase::createTagVectors().

150 {
151  _not_zeroed_tagged_vectors.insert(tag);
152 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ addObject()

template<typename T >
std::vector< std::shared_ptr< T > > FEProblemBase::addObject ( const std::string &  type,
const std::string &  name,
InputParameters parameters,
const bool  threaded = true,
const std::string &  var_param_name = "variable" 
)
inherited

Method for creating and adding an object to the warehouse.

Template Parameters
TThe base object type (registered in the Factory)
Parameters
typeString type of the object (registered in the Factory)
nameName for the object to be created
parametersInputParameters for the object
threadedWhether or not to create n_threads copies of the object
var_param_nameThe name of the parameter on the object which holds the primary variable.
Returns
A vector of shared_ptrs to the added objects

Definition at line 3368 of file FEProblemBase.h.

3373 {
3374  parallel_object_only();
3375 
3376  logAdd(MooseUtils::prettyCppType<T>(), name, type, parameters);
3377  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
3378  addObjectParamsHelper(parameters, name, var_param_name);
3379 
3380  const auto n_threads = threaded ? libMesh::n_threads() : 1;
3381  std::vector<std::shared_ptr<T>> objects(n_threads);
3382  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
3383  {
3384  std::shared_ptr<T> obj = _factory.create<T>(type, name, parameters, tid);
3385  theWarehouse().add(obj);
3386  objects[tid] = std::move(obj);
3387  }
3388 
3389  return objects;
3390 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::shared_ptr< MooseObject > create(const std::string &obj_name, const std::string &name, const InputParameters &parameters, THREAD_ID tid=0, bool print_deprecated=true)
Definition: Factory.C:111
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addObjectParamsHelper()

void FEProblemBase::addObjectParamsHelper ( InputParameters params,
const std::string &  object_name,
const std::string &  var_param_name = "variable" 
)
protectedinherited

Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().

This is needed due to header includes/forward declaration issues

Definition at line 4386 of file FEProblemBase.C.

Referenced by FEProblemBase::addObject(), and FEProblemBase::addUserObject().

4389 {
4390  // Due to objects like SolutionUserObject which manipulate libmesh objects
4391  // and variables directly at the back end, we need a default option here
4392  // which is going to be the pointer to the first solver system within this
4393  // problem
4394  unsigned int sys_num = 0;
4395  if (parameters.isParamValid(var_param_name))
4396  {
4397  const auto variable_name = parameters.varName(var_param_name, object_name);
4398  if (this->hasVariable(variable_name) || this->hasScalarVariable(variable_name))
4399  sys_num = getSystem(variable_name).number();
4400  }
4401  if (parameters.isParamValid("solver_sys"))
4402  {
4403  const auto var_sys_num = sys_num;
4404  sys_num = getSystemBase(parameters.get<SolverSystemName>("solver_sys")).number();
4405  if (sys_num != var_sys_num && parameters.isParamValid(var_param_name))
4406  mooseError("We dont support setting 'variable' to a variable that is not set to the same "
4407  "system as the 'solver_sys' parameter");
4408  }
4409 
4410  if (_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4411  parameters.get<bool>("use_displaced_mesh"))
4412  {
4413  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4414  if (sys_num == _aux->number())
4415  parameters.set<SystemBase *>("_sys") = &_displaced_problem->systemBaseAuxiliary();
4416  else
4417  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(sys_num);
4418  }
4419  else
4420  {
4421  // The object requested use_displaced_mesh, but it was overridden
4422  // due to there being no displacements variables in the [Mesh] block.
4423  // If that happened, update the value of use_displaced_mesh appropriately.
4424  if (!_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4425  parameters.get<bool>("use_displaced_mesh"))
4426  parameters.set<bool>("use_displaced_mesh") = false;
4427 
4428  parameters.set<SubProblem *>("_subproblem") = this;
4429 
4430  if (sys_num == _aux->number())
4431  parameters.set<SystemBase *>("_sys") = _aux.get();
4432  else
4433  parameters.set<SystemBase *>("_sys") = _solver_systems[sys_num].get();
4434  }
4435 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
unsigned int number() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addOutput()

void FEProblemBase::addOutput ( const std::string &  object_type,
const std::string &  object_name,
InputParameters parameters 
)
inherited

Adds an Output object.

Definition at line 9049 of file FEProblemBase.C.

9052 {
9053  parallel_object_only();
9054 
9055  // Get a reference to the OutputWarehouse
9056  OutputWarehouse & output_warehouse = _app.getOutputWarehouse();
9057 
9058  // Reject the reserved names for objects not built by MOOSE
9059  if (!parameters.get<bool>("_built_by_moose") && output_warehouse.isReservedName(object_name))
9060  mooseError("The name '", object_name, "' is a reserved name for output objects");
9061 
9062  // Check that an object by the same name does not already exist; this must be done before the
9063  // object is created to avoid getting misleading errors from the Parser
9064  if (output_warehouse.hasOutput(object_name))
9065  mooseError("An output object named '", object_name, "' already exists");
9066 
9067  // Add a pointer to the FEProblemBase class
9068  parameters.addPrivateParam<FEProblemBase *>("_fe_problem_base", this);
9069 
9070  // Create common parameter exclude list
9071  std::vector<std::string> exclude;
9072  if (object_type == "Console")
9073  {
9074  exclude.push_back("execute_on");
9075 
9076  // --show-input should enable the display of the input file on the screen
9077  if (_app.getParam<bool>("show_input") && parameters.get<bool>("output_screen"))
9078  parameters.set<ExecFlagEnum>("execute_input_on") = EXEC_INITIAL;
9079  }
9080  // Need this because Checkpoint::validParams changes the default value of
9081  // execute_on
9082  else if (object_type == "Checkpoint")
9083  exclude.push_back("execute_on");
9084 
9085  // Apply the common parameters loaded with Outputs input syntax
9086  const InputParameters * common = output_warehouse.getCommonParameters();
9087  if (common)
9088  parameters.applyParameters(*common, exclude);
9089  if (common && std::find(exclude.begin(), exclude.end(), "execute_on") != exclude.end() &&
9090  common->isParamSetByUser("execute_on") && object_type != "Console")
9092  "'execute_on' parameter specified in [Outputs] block is ignored for object '" +
9093  object_name +
9094  "'.\nDefine this object in its own sub-block of [Outputs] to modify its "
9095  "execution schedule.");
9096 
9097  // Set the correct value for the binary flag for XDA/XDR output
9098  if (object_type == "XDR")
9099  parameters.set<bool>("_binary") = true;
9100  else if (object_type == "XDA")
9101  parameters.set<bool>("_binary") = false;
9102 
9103  // Adjust the checkpoint suffix if auto recovery was enabled
9104  if (object_name == "auto_recovery_checkpoint")
9105  parameters.set<std::string>("suffix") = "auto_recovery";
9106 
9107  // Create the object and add it to the warehouse
9108  std::shared_ptr<Output> output = _factory.create<Output>(object_type, object_name, parameters);
9109  logAdd("Output", object_name, object_type, parameters);
9110  output_warehouse.addOutput(output);
9111 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:388
void addPrivateParam(const std::string &name, const T &value)
These method add a parameter to the InputParameters object which can be retrieved like any other para...
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
bool isReservedName(const std::string &name)
Test if the given name is reserved.
bool hasOutput(const std::string &name) const
Returns true if the output object exists.
void mooseInfoRepeated(Args &&... args)
Emit an informational message with the given stringified, concatenated args.
Definition: MooseError.h:398
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Based class for output objects.
Definition: Output.h:43
virtual std::unique_ptr< Base > create()=0
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
Class for storing and utilizing output objects.
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
const InputParameters * getCommonParameters() const
Get a reference to the common output parameters.
void addOutput(std::shared_ptr< Output > output)
Adds an existing output object to the warehouse.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ addPiecewiseByBlockLambdaFunctor()

template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & SubProblem::addPiecewiseByBlockLambdaFunctor ( const std::string &  name,
PolymorphicLambda  my_lammy,
const std::set< ExecFlagType > &  clearance_schedule,
const MooseMesh mesh,
const std::set< SubdomainID > &  block_ids,
const THREAD_ID  tid 
)
inherited

Add a functor that has block-wise lambda definitions, e.g.

the evaluations of the functor are based on a user-provided lambda expression.

Parameters
nameThe name of the functor to add
my_lammyThe lambda expression that will be called when the functor is evaluated
clearance_scheduleHow often to clear functor evaluations. The default value is always, which means that the functor will be re-evaluated every time it is called. If it is something other than always, than cached values may be returned
meshThe mesh on which this functor operates
block_idsThe blocks on which the lambda expression is defined
tidThe thread on which the functor we are adding will run
Returns
The added functor

Definition at line 1338 of file SubProblem.h.

Referenced by FunctorMaterial::addFunctorPropertyByBlocks().

1344 {
1345  auto & pbblf_functors = _pbblf_functors[tid];
1346 
1347  auto [it, first_time_added] =
1348  pbblf_functors.emplace(name,
1349  std::make_unique<PiecewiseByBlockLambdaFunctor<T>>(
1350  name, my_lammy, clearance_schedule, mesh, block_ids));
1351 
1352  auto * functor = dynamic_cast<PiecewiseByBlockLambdaFunctor<T> *>(it->second.get());
1353  if (!functor)
1354  {
1355  if (first_time_added)
1356  mooseError("This should be impossible. If this was the first time we added the functor, then "
1357  "the dynamic cast absolutely should have succeeded");
1358  else
1359  mooseError("Attempted to add a lambda functor with the name '",
1360  name,
1361  "' but another lambda functor of that name returns a different type");
1362  }
1363 
1364  if (first_time_added)
1365  addFunctor(name, *functor, tid);
1366  else
1367  // The functor already exists
1368  functor->setFunctor(mesh, block_ids, my_lammy);
1369 
1370  return *functor;
1371 }
virtual MooseMesh & mesh()=0
A material property that is evaluated on-the-fly via calls to various overloads of operator() ...
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::map< std::string, std::unique_ptr< Moose::FunctorAbstract > > > _pbblf_functors
Container to hold PiecewiseByBlockLambdaFunctors.
Definition: SubProblem.h:1147
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ addPostprocessor()

void FEProblemBase::addPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 4438 of file FEProblemBase.C.

Referenced by MFEMProblem::addPostprocessor(), and DiffusionPhysicsBase::addPostprocessors().

4441 {
4442  // Check for name collision
4443  if (hasUserObject(name))
4444  mooseError("A ",
4446  " already exists. You may not add a Postprocessor by the same name.");
4447 
4448  addUserObject(pp_name, name, parameters);
4449 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:57
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addPredictor()

void FEProblemBase::addPredictor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 7011 of file FEProblemBase.C.

Referenced by AB2PredictorCorrector::AB2PredictorCorrector().

7014 {
7015  parallel_object_only();
7016 
7018  mooseError("Vector bounds cannot be used with LinearSystems!");
7019 
7020  parameters.set<SubProblem *>("_subproblem") = this;
7021  std::shared_ptr<Predictor> predictor = _factory.create<Predictor>(type, name, parameters);
7022  logAdd("Predictor", name, type, parameters);
7023 
7024  for (auto & nl : _nl)
7025  nl->setPredictor(predictor);
7026 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
virtual std::size_t numNonlinearSystems() const override
Base class for predictors.
Definition: Predictor.h:28
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual std::size_t numLinearSystems() const override

◆ addReporter()

void FEProblemBase::addReporter ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a Reporter object to the simulation.

Parameters
typeC++ object type to construct
nameA uniquely identifying object name
parametersComplete parameters for the object to be created.

For an example use, refer to AddReporterAction.C/h

Definition at line 4466 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer().

4469 {
4470  // Check for name collision
4471  if (hasUserObject(name))
4472  mooseError("A ",
4474  " already exists. You may not add a Reporter by the same name.");
4475 
4477 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:57
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addResidual()

void FEProblemBase::addResidual ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1862 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1863 {
1864  _assembly[tid][_current_nl_sys->number()]->addResidual(Assembly::GlobalDataKey{},
1866 
1867  if (_displaced_problem)
1868  _displaced_problem->addResidual(tid);
1869 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addResidualLower()

void FEProblemBase::addResidualLower ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1882 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateLower(), ComputeResidualAndJacobianThread::accumulateLower(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1883 {
1884  _assembly[tid][_current_nl_sys->number()]->addResidualLower(Assembly::GlobalDataKey{},
1886 
1887  if (_displaced_problem)
1888  _displaced_problem->addResidualLower(tid);
1889 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addResidualNeighbor()

void FEProblemBase::addResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1872 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateNeighbor(), ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1873 {
1874  _assembly[tid][_current_nl_sys->number()]->addResidualNeighbor(Assembly::GlobalDataKey{},
1876 
1877  if (_displaced_problem)
1878  _displaced_problem->addResidualNeighbor(tid);
1879 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addResidualScalar()

void FEProblemBase::addResidualScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 1892 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1893 {
1894  _assembly[tid][_current_nl_sys->number()]->addResidualScalar(Assembly::GlobalDataKey{},
1896 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ addSampler()

void FEProblemBase::addSampler ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import Samplers.

Definition at line 2743 of file FEProblemBase.C.

2746 {
2747  const auto samplers = addObject<Sampler>(type, name, parameters);
2748  for (auto & sampler : samplers)
2749  sampler->init();
2750 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ addScalarKernel()

void FEProblemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3042 of file FEProblemBase.C.

3045 {
3046  parallel_object_only();
3047 
3048  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3049  if (!isSolverSystemNonlinear(nl_sys_num))
3050  mooseError("You are trying to add a ScalarKernel to a linear variable/system, which is not "
3051  "supported at the moment!");
3052 
3053  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3054  {
3055  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3056  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3057  }
3058  else
3059  {
3060  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3061  {
3062  // We allow ScalarKernels to request that they use_displaced_mesh,
3063  // but then be overridden when no displacements variables are
3064  // provided in the Mesh block. If that happened, update the value
3065  // of use_displaced_mesh appropriately for this ScalarKernel.
3066  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3067  parameters.set<bool>("use_displaced_mesh") = false;
3068  }
3069 
3070  parameters.set<SubProblem *>("_subproblem") = this;
3071  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3072  }
3073 
3074  logAdd("ScalarKernel", name, kernel_name, parameters);
3075  _nl[nl_sys_num]->addScalarKernel(kernel_name, name, parameters);
3076 }
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTimeIntegrator()

void FEProblemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 6976 of file FEProblemBase.C.

Referenced by TransientBase::setupTimeIntegrator().

6979 {
6980  parallel_object_only();
6981 
6982  parameters.set<SubProblem *>("_subproblem") = this;
6983  logAdd("TimeIntegrator", name, type, parameters);
6984  _aux->addTimeIntegrator(type, name + ":aux", parameters);
6985  for (auto & sys : _solver_systems)
6986  sys->addTimeIntegrator(type, name + ":" + sys->name(), parameters);
6987  _has_time_integrator = true;
6988 
6989  // add vectors to store u_dot, u_dotdot, udot_old, u_dotdot_old and
6990  // solution vectors older than 2 time steps, if requested by the time
6991  // integrator
6992  _aux->addDotVectors();
6993  for (auto & nl : _nl)
6994  {
6995  nl->addDotVectors();
6996 
6997  auto tag_udot = nl->getTimeIntegrators()[0]->uDotFactorTag();
6998  if (!nl->hasVector(tag_udot))
6999  nl->associateVectorToTag(*nl->solutionUDot(), tag_udot);
7000  auto tag_udotdot = nl->getTimeIntegrators()[0]->uDotDotFactorTag();
7001  if (!nl->hasVector(tag_udotdot) && uDotDotRequested())
7002  nl->associateVectorToTag(*nl->solutionUDotDot(), tag_udotdot);
7003  }
7004 
7005  if (_displaced_problem)
7006  // Time integrator does not exist when displaced problem is created.
7007  _displaced_problem->addTimeIntegrator();
7008 }
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTransfer()

void FEProblemBase::addTransfer ( const std::string &  transfer_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a Transfer to the problem.

Reimplemented in MFEMProblem.

Definition at line 5799 of file FEProblemBase.C.

Referenced by MFEMProblem::addTransfer().

5802 {
5803  parallel_object_only();
5804 
5805  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5806  {
5807  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5808  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5809  _reinit_displaced_elem = true;
5810  }
5811  else
5812  {
5813  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5814  {
5815  // We allow Transfers to request that they use_displaced_mesh,
5816  // but then be overridden when no displacements variables are
5817  // provided in the Mesh block. If that happened, update the value
5818  // of use_displaced_mesh appropriately for this Transfer.
5819  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5820  parameters.set<bool>("use_displaced_mesh") = false;
5821  }
5822 
5823  parameters.set<SubProblem *>("_subproblem") = this;
5824  parameters.set<SystemBase *>("_sys") = _aux.get();
5825  }
5826 
5827  // Handle the "SAME_AS_MULTIAPP" execute option. The get method is used to test for the
5828  // flag so the set by user flag is not reset, calling set with the true flag causes the set
5829  // by user status to be reset, which should only be done if the EXEC_SAME_AS_MULTIAPP is
5830  // being applied to the object.
5832  {
5833  ExecFlagEnum & exec_enum = parameters.set<ExecFlagEnum>("execute_on", true);
5834  std::shared_ptr<MultiApp> multiapp;
5835  if (parameters.isParamValid("multi_app"))
5836  multiapp = getMultiApp(parameters.get<MultiAppName>("multi_app"));
5837  // This catches the sibling transfer case, where we want to be executing only as often as the
5838  // receiving application. A transfer 'to' a multiapp is executed before that multiapp
5839  else if (parameters.isParamValid("to_multi_app"))
5840  multiapp = getMultiApp(parameters.get<MultiAppName>("to_multi_app"));
5841  else if (parameters.isParamValid("from_multi_app"))
5842  multiapp = getMultiApp(parameters.get<MultiAppName>("from_multi_app"));
5843  // else do nothing because the user has provided invalid input. They should get a nice error
5844  // about this during transfer construction. This necessitates checking for null in this next
5845  // line, however
5846  if (multiapp)
5847  exec_enum = multiapp->getParam<ExecFlagEnum>("execute_on");
5848  }
5849 
5850  // Create the Transfer objects
5851  std::shared_ptr<Transfer> transfer = _factory.create<Transfer>(transfer_name, name, parameters);
5852  logAdd("Transfer", name, transfer_name, parameters);
5853 
5854  // Add MultiAppTransfer object
5855  std::shared_ptr<MultiAppTransfer> multi_app_transfer =
5857  if (multi_app_transfer)
5858  {
5859  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::TO_MULTIAPP))
5860  _to_multi_app_transfers.addObject(multi_app_transfer);
5861  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::FROM_MULTIAPP))
5862  _from_multi_app_transfers.addObject(multi_app_transfer);
5863  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::BETWEEN_MULTIAPP))
5864  _between_multi_app_transfers.addObject(multi_app_transfer);
5865  }
5866  else
5867  _transfers.addObject(transfer);
5868 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::shared_ptr< MultiApp > getMultiApp(const std::string &multi_app_name) const
Get a MultiApp object by name.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Base class for all MultiAppTransfer objects.
const ExecFlagType EXEC_SAME_AS_MULTIAPP
Definition: Moose.C:53
std::shared_ptr< DisplacedProblem > _displaced_problem
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
Base class for all Transfer objects.
Definition: Transfer.h:36
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addUserObject()

std::vector< std::shared_ptr< UserObject > > FEProblemBase::addUserObject ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4480 of file FEProblemBase.C.

Referenced by MFEMProblem::addAuxKernel(), MFEMProblem::addBoundaryCondition(), MFEMProblem::addFESpace(), MFEMProblem::addFunctorMaterial(), MFEMProblem::addGridFunction(), MFEMProblem::addInitialCondition(), MFEMProblem::addKernel(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), MFEMProblem::addSubMesh(), MFEMProblem::addTransfer(), and FEProblemBase::addVectorPostprocessor().

4483 {
4484  parallel_object_only();
4485 
4486  std::vector<std::shared_ptr<UserObject>> uos;
4487 
4488  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
4490 
4491  for (const auto tid : make_range(libMesh::n_threads()))
4492  {
4493  // Create the UserObject
4494  std::shared_ptr<UserObject> user_object =
4495  _factory.create<UserObject>(user_object_name, name, parameters, tid);
4496  logAdd("UserObject", name, user_object_name, parameters);
4497  uos.push_back(user_object);
4498 
4499  if (tid != 0)
4500  user_object->setPrimaryThreadCopy(uos[0].get());
4501 
4502  // TODO: delete this line after apps have been updated to not call getUserObjects
4503  _all_user_objects.addObject(user_object, tid);
4504 
4505  theWarehouse().add(user_object);
4506 
4507  // Attempt to create all the possible UserObject types
4508  auto euo = std::dynamic_pointer_cast<ElementUserObject>(user_object);
4509  auto suo = std::dynamic_pointer_cast<SideUserObject>(user_object);
4510  auto isuo = std::dynamic_pointer_cast<InternalSideUserObject>(user_object);
4511  auto iuo = std::dynamic_pointer_cast<InterfaceUserObjectBase>(user_object);
4512  auto nuo = std::dynamic_pointer_cast<NodalUserObject>(user_object);
4513  auto duo = std::dynamic_pointer_cast<DomainUserObject>(user_object);
4514  auto guo = std::dynamic_pointer_cast<GeneralUserObject>(user_object);
4515  auto tguo = std::dynamic_pointer_cast<ThreadedGeneralUserObject>(user_object);
4516  auto muo = std::dynamic_pointer_cast<MortarUserObject>(user_object);
4517 
4518  // Account for displaced mesh use
4519  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4520  {
4521  // Whether to re-init or not depends on the attributes of the base classes.
4522  // For example, InterfaceUOBase has "_current_side_elem" and "_neighbor_elem"
4523  // so it needs to reinit on displaced neighbors and faces
4524  // _reinit_displaced_elem -> _current_elem will be reinited
4525  // _reinit_displaced_face -> _current_elem, lowerD if any and _current_side_elem to be
4526  // reinited _reinit_displaced_neighbor -> _current_elem, lowerD if any and _current_neighbor
4527  // to be reinited Note that as soon as you use materials on the displaced mesh, all three get
4528  // turned on.
4529  if (euo || nuo || duo)
4530  _reinit_displaced_elem = true;
4531  if (suo || duo || isuo || iuo)
4532  _reinit_displaced_face = true;
4533  if (iuo || duo || isuo)
4535  }
4536 
4537  // These objects only require one thread
4538  if ((guo && !tguo) || muo)
4539  break;
4540  }
4541 
4542  // Add as a Functor if it is one. We usually need to add the user object from thread 0 as the
4543  // registered functor for all threads because when user objects are thread joined, generally only
4544  // the primary thread copy ends up with all the data
4545  for (const auto tid : make_range(libMesh::n_threads()))
4546  {
4547  const decltype(uos)::size_type uo_index = uos.front()->needThreadedCopy() ? tid : 0;
4548  if (const auto functor = dynamic_cast<Moose::FunctorBase<Real> *>(uos[uo_index].get()))
4549  {
4550  this->addFunctor(name, *functor, tid);
4551  if (_displaced_problem)
4552  _displaced_problem->addFunctor(name, *functor, tid);
4553  }
4554  }
4555 
4556  return uos;
4557 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
Base class for implementing interface user objects.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for user objects executed one or more sidesets, which may be on the outer boundary of the ...
This user object allows related evaluations on elements, boundaries, internal sides, interfaces in one single place.
Base class for creating new nodally-based mortar user objects.
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
A user object that runs over all the nodes and does an aggregation step to compute a single value...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for user objects executed on all element sides internal to one or more blocks...
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
IntRange< T > make_range(T beg, T end)
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
std::shared_ptr< DisplacedProblem > _displaced_problem
Base class for user-specific data.
Definition: UserObject.h:40
An instance of this object type has one copy per thread that runs on each thread. ...

◆ addVariable()

void FEProblemBase::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters params 
)
virtualinherited

Canonical method for adding a non-linear variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in MFEMProblem.

Definition at line 2882 of file FEProblemBase.C.

Referenced by MFEMProblem::addGridFunction(), DiffusionFV::addSolverVariables(), DiffusionCG::addSolverVariables(), and AddVariableAction::init().

2885 {
2886  parallel_object_only();
2887 
2888  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
2889  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
2890  const auto fe_type = FEType(order, family);
2891 
2892  const auto active_subdomains_vector =
2893  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
2894  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
2895  active_subdomains_vector.end());
2896 
2897  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ false, &active_subdomains))
2898  return;
2899 
2900  params.set<FEProblemBase *>("_fe_problem_base") = this;
2901  params.set<Moose::VarKindType>("_var_kind") = Moose::VarKindType::VAR_SOLVER;
2902  SolverSystemName sys_name = params.get<SolverSystemName>("solver_sys");
2903 
2904  const auto solver_system_number = solverSysNum(sys_name);
2905  logAdd("Variable", var_name, var_type, params);
2906  _solver_systems[solver_system_number]->addVariable(var_type, var_name, params);
2907  if (_displaced_problem)
2908  // MooseObjects need to be unique so change the name here
2909  _displaced_problem->addVariable(var_type, var_name, params, solver_system_number);
2910 
2911  _solver_var_to_sys_num[var_name] = solver_system_number;
2912 
2913  markFamilyPRefinement(params);
2914 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::map< SolverVariableName, unsigned int > _solver_var_to_sys_num
Map connecting variable names with their respective solver systems.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1775
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addVectorPostprocessor()

void FEProblemBase::addVectorPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4452 of file FEProblemBase.C.

Referenced by ExtraIDIntegralReporter::ExtraIDIntegralReporter().

4455 {
4456  // Check for name collision
4457  if (hasUserObject(name))
4458  mooseError("A ",
4460  " already exists. You may not add a VectorPostprocessor by the same name.");
4461 
4462  addUserObject(pp_name, name, parameters);
4463 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:57
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addVectorTag()

TagID SubProblem::addVectorTag ( const TagName &  tag_name,
const Moose::VectorTagType  type = Moose::VECTOR_TAG_RESIDUAL 
)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag, but the type must be the same.

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated
typeThe type of the tag

Reimplemented in DisplacedProblem.

Definition at line 92 of file SubProblem.C.

Referenced by DisplacedProblem::addVectorTag(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), LinearSystem::LinearSystem(), SystemBase::needSolutionState(), and NonlinearSystemBase::NonlinearSystemBase().

94 {
96  mooseError("Vector tag type cannot be VECTOR_TAG_ANY");
97 
98  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
99 
100  // First, see if the tag exists already
101  for (const auto & vector_tag : _vector_tags)
102  {
103  mooseAssert(_vector_tags[vector_tag._id] == vector_tag, "Vector tags index mismatch");
104  if (vector_tag._name == tag_name_upper)
105  {
106  if (vector_tag._type != type)
107  mooseError("While attempting to add vector tag with name '",
108  tag_name_upper,
109  "' and type ",
110  type,
111  ",\na tag with the same name but type ",
112  vector_tag._type,
113  " was found.\n\nA tag can only exist with one type.");
114 
115  return vector_tag._id;
116  }
117  }
118 
119  // Doesn't exist - create it
120  const TagID new_tag_id = _vector_tags.size();
121  const TagTypeID new_tag_type_id = _typed_vector_tags[type].size();
122  // Primary storage for all tags where the index in the vector == the tag ID
123  _vector_tags.emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
124  // Secondary storage for each type so that we can have quick access to all tags of a type
125  _typed_vector_tags[type].emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
126  // Name map storage for quick name access
127  _vector_tags_name_map.emplace(tag_name_upper, new_tag_id);
128 
129  // Make sure that _vector_tags, _typed_vector_tags, and _vector_tags_name_map are sane
131 
132  return new_tag_id;
133 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
std::string toUpper(std::string name)
Convert supplied string to upper case.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ advanceMultiApps()

void FEProblemBase::advanceMultiApps ( ExecFlagType  type)
inlineinherited

Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose.

Definition at line 1465 of file FEProblemBase.h.

1466  {
1467  mooseDeprecated("Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep "
1468  "depending on your purpose");
1470  }
void finishMultiAppStep(ExecFlagType type, bool recurse_through_multiapp_levels=false)
Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ advanceState()

void FEProblemBase::advanceState ( )
virtualinherited

Advance all of the state holding vectors / datastructures so that we can move to the next timestep.

Reimplemented in DumpObjectsProblem.

Definition at line 6815 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), TransientBase::incrementStepOrReject(), NonlinearEigen::init(), TransientMultiApp::setupApp(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), NonlinearEigen::takeStep(), and InversePowerMethod::takeStep().

6816 {
6817  TIME_SECTION("advanceState", 5, "Advancing State");
6818 
6819  for (auto & sys : _solver_systems)
6820  sys->copyOldSolutions();
6821  _aux->copyOldSolutions();
6822 
6823  if (_displaced_problem)
6824  {
6825  for (const auto i : index_range(_solver_systems))
6826  _displaced_problem->solverSys(i).copyOldSolutions();
6827  _displaced_problem->auxSys().copyOldSolutions();
6828  }
6829 
6831 
6833 
6836 
6839 
6842 
6843 #ifdef MOOSE_KOKKOS_ENABLED
6846 
6849 
6852 #endif
6853 }
void shift()
Shift the material properties in time.
MaterialPropertyStorage & _bnd_material_props
void shift()
Shift current, old, and older material property data storages.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void copyValuesBack()
Copies current chain control data values into old values.
MooseApp & getMooseApp() const
Get the MooseApp this class is associated with.
Definition: MooseBase.h:87
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void copyValuesBack()
At the end of a timestep this method is called to copy the values back in time in preparation for the...
Definition: ReporterData.C:17
Moose::Kokkos::MaterialPropertyStorage & _kokkos_material_props
ChainControlDataSystem & getChainControlDataSystem()
Gets the system that manages the ChainControls.
Definition: MooseApp.h:845
std::shared_ptr< DisplacedProblem > _displaced_problem
MaterialPropertyStorage & _neighbor_material_props
Moose::Kokkos::MaterialPropertyStorage & _kokkos_bnd_material_props
MaterialPropertyStorage & _material_props
Moose::Kokkos::MaterialPropertyStorage & _kokkos_neighbor_material_props
auto index_range(const T &sizable)

◆ allowInvalidSolution()

bool FEProblemBase::allowInvalidSolution ( ) const
inlineinherited

Whether to accept / allow an invalid solution.

Definition at line 2174 of file FEProblemBase.h.

Referenced by FEProblemBase::acceptInvalidSolution().

2174 { return _allow_invalid_solution; }
const bool _allow_invalid_solution

◆ allowOutput() [1/2]

void FEProblemBase::allowOutput ( bool  state)
inherited

Ability to enable/disable all output calls.

This is needed by Multiapps and applications to disable output for cases when executioners call other executions and when Multiapps are sub cycling.

Definition at line 6922 of file FEProblemBase.C.

Referenced by TransientMultiApp::resetApp(), and TransientMultiApp::solveStep().

6923 {
6925 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482

◆ allowOutput() [2/2]

template<typename T >
void FEProblemBase::allowOutput ( bool  state)
inherited

Definition at line 3319 of file FEProblemBase.h.

3320 {
3321  _app.getOutputWarehouse().allowOutput<T>(state);
3322 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482

◆ areCoupled()

bool FEProblemBase::areCoupled ( const unsigned int  ivar,
const unsigned int  jvar,
const unsigned int  nl_sys_num 
) const
inherited

Definition at line 6355 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

6358 {
6359  return (*_cm[nl_sys])(ivar, jvar);
6360 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ assembly() [1/2]

Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
)
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3467 of file FEProblemBase.h.

Referenced by ArrayNodalBC::computeJacobian(), VectorNodalBC::computeJacobian(), NodalBC::computeJacobian(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), VectorNodalBC::computeOffDiagJacobian(), ArrayNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NonlinearSystemBase::constraintJacobians(), FEProblemBase::initialSetup(), ComputeBoundaryInitialConditionThread::onNode(), MaxQpsThread::operator()(), and FEProblemBase::reinitScalars().

3468 {
3469  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3470  mooseAssert(sys_num < _assembly[tid].size(),
3471  "System number larger than the assembly container size");
3472  return *_assembly[tid][sys_num];
3473 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ assembly() [2/2]

const Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
) const
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3476 of file FEProblemBase.h.

3477 {
3478  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3479  mooseAssert(sys_num < _assembly[tid].size(),
3480  "System number larger than the assembly container size");
3481  return *_assembly[tid][sys_num];
3482 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ automaticScaling() [1/4]

bool SubProblem::automaticScaling ( ) const
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

Referenced by FEProblemBase::automaticScaling(), and DisplacedProblem::DisplacedProblem().

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122

◆ automaticScaling() [2/4]

void SubProblem::automaticScaling
inherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 1155 of file SubProblem.C.

1156 {
1157  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1158  systemBaseNonlinear(nl_sys_num).automaticScaling(automatic_scaling);
1159 }
virtual std::size_t numNonlinearSystems() const override
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.
IntRange< T > make_range(T beg, T end)

◆ automaticScaling() [3/4]

bool SubProblem::automaticScaling
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.

◆ automaticScaling() [4/4]

void FEProblemBase::automaticScaling ( bool  automatic_scaling)
overridevirtualinherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Reimplemented from SubProblem.

Definition at line 9244 of file FEProblemBase.C.

Referenced by DisplacedProblem::DisplacedProblem(), and FEProblemSolve::FEProblemSolve().

9245 {
9246  if (_displaced_problem)
9247  _displaced_problem->automaticScaling(automatic_scaling);
9248 
9249  SubProblem::automaticScaling(automatic_scaling);
9250 }
bool automaticScaling() const
Automatic scaling getter.
Definition: SubProblem.C:1162
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ backupMultiApps()

void FEProblemBase::backupMultiApps ( ExecFlagType  type)
inherited

Backup the MultiApps associated with the ExecFlagType.

Definition at line 5720 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), MFEMProblemSolve::solve(), and FixedPointSolve::solve().

5721 {
5722  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5723 
5724  if (multi_apps.size())
5725  {
5726  TIME_SECTION("backupMultiApps", 5, "Backing Up MultiApp");
5727 
5728  if (_verbose_multiapps)
5729  _console << COLOR_CYAN << "\nBacking Up MultiApps on " << type.name() << COLOR_DEFAULT
5730  << std::endl;
5731 
5732  for (const auto & multi_app : multi_apps)
5733  multi_app->backup();
5734 
5736 
5737  if (_verbose_multiapps)
5738  _console << COLOR_CYAN << "Finished Backing Up MultiApps on " << type.name() << "\n"
5739  << COLOR_DEFAULT << std::endl;
5740  }
5741 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ bumpAllQRuleOrder()

void FEProblemBase::bumpAllQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Definition at line 6212 of file FEProblemBase.C.

6213 {
6214  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6215  for (const auto i : index_range(_nl))
6216  _assembly[tid][i]->bumpAllQRuleOrder(order, block);
6217 
6218  if (_displaced_problem)
6219  _displaced_problem->bumpAllQRuleOrder(order, block);
6220 
6221  updateMaxQps();
6222 }
unsigned int n_threads()
void bumpAllQRuleOrder(libMesh::Order order, SubdomainID block)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ bumpVolumeQRuleOrder()

void FEProblemBase::bumpVolumeQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower.

This can only cause the quadrature level to increase. If volume_order is lower than or equal to the current volume/elem quadrature rule order, then nothing is done (i.e. this function is idempotent).

Definition at line 6199 of file FEProblemBase.C.

6200 {
6201  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6202  for (const auto i : index_range(_nl))
6203  _assembly[tid][i]->bumpVolumeQRuleOrder(order, block);
6204 
6205  if (_displaced_problem)
6206  _displaced_problem->bumpVolumeQRuleOrder(order, block);
6207 
6208  updateMaxQps();
6209 }
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void bumpVolumeQRuleOrder(libMesh::Order order, SubdomainID block)
Increases the element/volume quadrature order for the specified mesh block if and only if the current...
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ cacheJacobian()

void FEProblemBase::cacheJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2013 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulate(), NonlinearSystemBase::constraintJacobians(), and ComputeJacobianThread::postElement().

2014 {
2016  if (_displaced_problem)
2017  _displaced_problem->cacheJacobian(tid);
2018 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheJacobian(const THREAD_ID tid)
Definition: SubProblem.C:1312

◆ cacheJacobianNeighbor()

void FEProblemBase::cacheJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2021 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

2022 {
2024  if (_displaced_problem)
2025  _displaced_problem->cacheJacobianNeighbor(tid);
2026 }
virtual void cacheJacobianNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1320
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidual()

void FEProblemBase::cacheResidual ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1899 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulate(), ComputeResidualAndJacobianThread::accumulate(), and NonlinearSystemBase::constraintResiduals().

1900 {
1902  if (_displaced_problem)
1903  _displaced_problem->cacheResidual(tid);
1904 }
virtual void cacheResidual(const THREAD_ID tid)
Definition: SubProblem.C:1291
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidualNeighbor()

void FEProblemBase::cacheResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1907 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1908 {
1910  if (_displaced_problem)
1911  _displaced_problem->cacheResidualNeighbor(tid);
1912 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheResidualNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1298

◆ callMooseError() [1/2]

void MooseBase::callMooseError ( std::string  msg,
const bool  with_prefix,
const hit::Node *  node = nullptr 
) const
inherited

External method for calling moose error with added object context.

Parameters
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 105 of file MooseBase.C.

Referenced by InputParameters::callMooseError(), MooseBase::mooseDocumentedError(), MooseBase::mooseError(), and MooseBase::mooseErrorNonPrefixed().

108 {
109  callMooseError(&_app, _pars, msg, with_prefix, node);
110 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357

◆ callMooseError() [2/2]

void MooseBase::callMooseError ( MooseApp *const  app,
const InputParameters params,
std::string  msg,
const bool  with_prefix,
const hit::Node *  node 
)
staticinherited

External method for calling moose error with added object context.

Needed so that objects without the MooseBase context (InputParameters) can call errors with context

Parameters
appThe app pointer (if available); adds multiapp context and clears the console
paramsThe parameters, needed to obtain object information
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 113 of file MooseBase.C.

118 {
119  if (!node)
120  node = MooseBase::getHitNode(params);
121 
122  std::string multiapp_prefix = "";
123  if (app)
124  {
125  if (!app->isUltimateMaster())
126  multiapp_prefix = app->name();
128  }
129 
130  if (with_prefix)
131  // False here because the hit context will get processed by the node
132  msg = messagePrefix(params, false) + msg;
133 
134  moose::internal::mooseErrorRaw(msg, multiapp_prefix, node);
135 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
void mooseErrorRaw(std::string msg, const std::string &prefix="", const hit::Node *node=nullptr)
Main callback for emitting a moose error.
Definition: MooseError.C:53
void mooseConsole()
Send current output buffer to Console output objects.
const hit::Node * getHitNode() const
Definition: MooseBase.h:136
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ checkBlockMatProps()

void SubProblem::checkBlockMatProps ( )
virtualinherited

Checks block material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 623 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

624 {
625  // Variable for storing all available blocks/boundaries from the mesh
626  std::set<SubdomainID> all_ids(mesh().meshSubdomains());
627 
628  std::stringstream errors;
629 
630  // Loop through the properties to check
631  for (const auto & check_it : _map_block_material_props_check)
632  {
633  // The current id for the property being checked (BoundaryID || BlockID)
634  SubdomainID check_id = check_it.first;
635 
636  std::set<SubdomainID> check_ids = {check_id};
637 
638  // Loop through all the block/boundary ids
639  for (const auto & id : check_ids)
640  {
641  // Loop through all the stored properties
642  for (const auto & prop_it : check_it.second)
643  {
644  // Produce an error if the material property is not defined on the current block/boundary
645  // and any block/boundary
646  // and not is not a zero material property.
647  if (_map_block_material_props[id].count(prop_it.second) == 0 &&
648  _zero_block_material_props[id].count(prop_it.second) == 0)
649  {
650  std::string check_name = restrictionSubdomainCheckName(id);
651  if (check_name.empty())
652  check_name = std::to_string(id);
653  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
654  << "' is not defined on block " << check_name << "\n";
655  }
656  }
657  }
658  }
659 
660  if (!errors.str().empty())
661  mooseError(errors.str());
662 }
virtual MooseMesh & mesh()=0
std::string restrictionSubdomainCheckName(SubdomainID check_id)
Helper functions for checking MaterialProperties.
Definition: SubProblem.C:772
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ checkBoundaryMatProps()

void SubProblem::checkBoundaryMatProps ( )
virtualinherited

Checks boundary material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 665 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

666 {
667  // Variable for storing the value for ANY_BOUNDARY_ID
669 
670  // Variable for storing all available blocks/boundaries from the mesh
671  std::set<BoundaryID> all_ids(mesh().getBoundaryIDs());
672 
673  std::stringstream errors;
674 
675  // Loop through the properties to check
676  for (const auto & check_it : _map_boundary_material_props_check)
677  {
678  // The current id for the property being checked (BoundaryID || BlockID)
679  BoundaryID check_id = check_it.first;
680 
681  // In the case when the material being checked has an ID is set to ANY, then loop through all
682  // the possible ids and verify that the material property is defined.
683  std::set<BoundaryID> check_ids{check_id};
684  if (check_id == any_id)
685  check_ids = all_ids;
686 
687  // Loop through all the block/boundary ids
688  for (const auto & id : check_ids)
689  {
690  // Loop through all the stored properties
691  for (const auto & prop_it : check_it.second)
692  {
693  // Produce an error if the material property is not defined on the current block/boundary
694  // and any block/boundary
695  // and not is not a zero material property.
696  if (_map_boundary_material_props[id].count(prop_it.second) == 0 &&
697  _map_boundary_material_props[any_id].count(prop_it.second) == 0 &&
698  _zero_boundary_material_props[id].count(prop_it.second) == 0 &&
699  _zero_boundary_material_props[any_id].count(prop_it.second) == 0)
700  {
701  std::string check_name = restrictionBoundaryCheckName(id);
702  if (check_name.empty())
703  check_name = std::to_string(id);
704  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
705  << "' is not defined on boundary " << check_name << "\n";
706  }
707  }
708  }
709  }
710 
711  if (!errors.str().empty())
712  mooseError(errors.str());
713 }
virtual MooseMesh & mesh()=0
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
std::string restrictionBoundaryCheckName(BoundaryID check_id)
Definition: SubProblem.C:783
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
boundary_id_type BoundaryID
std::vector< BoundaryID > getBoundaryIDs(const libMesh::MeshBase &mesh, const std::vector< BoundaryName > &boundary_name, bool generate_unknown, const std::set< BoundaryID > &mesh_boundary_ids)
Gets the boundary IDs with their names.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ checkCoordinateSystems()

void FEProblemBase::checkCoordinateSystems ( )
protectedinherited

Verify that there are no element type/coordinate type conflicts.

Definition at line 8853 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8854 {
8856 }
MooseMesh & _mesh
void checkCoordinateSystems()
Performs a sanity check for every element in the mesh.
Definition: MooseMesh.C:4347

◆ checkDependMaterialsHelper()

void FEProblemBase::checkDependMaterialsHelper ( const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &  materials_map)
protectedinherited

Helper method for checking Material object dependency.

See also
checkProblemIntegrity

These two sets are used to make sure that all dependent props on a block are actually supplied

Definition at line 8732 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8734 {
8735  for (const auto & it : materials_map)
8736  {
8738  std::set<std::string> block_depend_props, block_supplied_props;
8739 
8740  for (const auto & mat1 : it.second)
8741  {
8742  auto & alldeps = mat1->getMatPropDependencies(); // includes requested stateful props
8743  for (auto & dep : alldeps)
8744  block_depend_props.insert(_material_prop_registry.getName(dep));
8745 
8746  // See if any of the active materials supply this property
8747  for (const auto & mat2 : it.second)
8748  {
8749  const std::set<std::string> & supplied_props = mat2->MaterialBase::getSuppliedItems();
8750  block_supplied_props.insert(supplied_props.begin(), supplied_props.end());
8751  }
8752  }
8753 
8754  // Add zero material properties specific to this block and unrestricted
8755  block_supplied_props.insert(_zero_block_material_props[it.first].begin(),
8756  _zero_block_material_props[it.first].end());
8757 
8758  // Error check to make sure all properties consumed by materials are supplied on this block
8759  std::set<std::string> difference;
8760  std::set_difference(block_depend_props.begin(),
8761  block_depend_props.end(),
8762  block_supplied_props.begin(),
8763  block_supplied_props.end(),
8764  std::inserter(difference, difference.end()));
8765 
8766  if (!difference.empty())
8767  {
8768  std::ostringstream oss;
8769  oss << "One or more Material Properties were not supplied on block ";
8770  const std::string & subdomain_name = _mesh.getSubdomainName(it.first);
8771  if (subdomain_name.length() > 0)
8772  oss << subdomain_name << " (" << it.first << ")";
8773  else
8774  oss << it.first;
8775  oss << ":\n";
8776  for (const auto & name : difference)
8777  oss << name << "\n";
8778  mooseError(oss.str());
8779  }
8780  }
8781 
8782  // This loop checks that materials are not supplied by multiple Material objects
8783  for (const auto & it : materials_map)
8784  {
8785  const auto & materials = it.second;
8786  std::set<std::string> inner_supplied, outer_supplied;
8787 
8788  for (const auto & outer_mat : materials)
8789  {
8790  // Storage for properties for this material (outer) and all other materials (inner)
8791  outer_supplied = outer_mat->getSuppliedItems();
8792  inner_supplied.clear();
8793 
8794  // Property to material map for error reporting
8795  std::map<std::string, std::set<std::string>> prop_to_mat;
8796  for (const auto & name : outer_supplied)
8797  prop_to_mat[name].insert(outer_mat->name());
8798 
8799  for (const auto & inner_mat : materials)
8800  {
8801  if (outer_mat == inner_mat)
8802  continue;
8803 
8804  // Check whether these materials are an AD pair
8805  auto outer_mat_type = outer_mat->type();
8806  auto inner_mat_type = inner_mat->type();
8807  removeSubstring(outer_mat_type, "<RESIDUAL>");
8808  removeSubstring(outer_mat_type, "<JACOBIAN>");
8809  removeSubstring(inner_mat_type, "<RESIDUAL>");
8810  removeSubstring(inner_mat_type, "<JACOBIAN>");
8811  if (outer_mat_type == inner_mat_type && outer_mat_type != outer_mat->type() &&
8812  inner_mat_type != inner_mat->type())
8813  continue;
8814 
8815  inner_supplied.insert(inner_mat->getSuppliedItems().begin(),
8816  inner_mat->getSuppliedItems().end());
8817 
8818  for (const auto & inner_supplied_name : inner_supplied)
8819  prop_to_mat[inner_supplied_name].insert(inner_mat->name());
8820  }
8821 
8822  // Test that a property isn't supplied on multiple blocks
8823  std::set<std::string> intersection;
8824  std::set_intersection(outer_supplied.begin(),
8825  outer_supplied.end(),
8826  inner_supplied.begin(),
8827  inner_supplied.end(),
8828  std::inserter(intersection, intersection.end()));
8829 
8830  if (!intersection.empty())
8831  {
8832  std::ostringstream oss;
8833  oss << "The following material properties are declared on block " << it.first
8834  << " by multiple materials:\n";
8835  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << "Material Property"
8836  << "Material Objects\n";
8837  for (const auto & outer_name : intersection)
8838  {
8839  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << outer_name;
8840  for (const auto & inner_name : prop_to_mat[outer_name])
8841  oss << inner_name << " ";
8842  oss << '\n';
8843  }
8844 
8845  mooseError(oss.str());
8846  break;
8847  }
8848  }
8849  }
8850 }
std::string indent(unsigned int spaces)
Create empty string for indenting.
Definition: ConsoleUtils.C:41
MaterialPropertyRegistry _material_prop_registry
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1801
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseMesh & _mesh
void removeSubstring(std::string &main, const std::string &sub)
find, erase, length algorithm for removing a substring from a string
Definition: MooseUtils.C:1197
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
const std::string & getName(const unsigned int id) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
for(PetscInt i=0;i< nvars;++i)

◆ checkDisplacementOrders()

void FEProblemBase::checkDisplacementOrders ( )
protectedinherited

Verify that SECOND order mesh uses SECOND order displacements.

Definition at line 8656 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8657 {
8658  if (_displaced_problem)
8659  {
8660  bool mesh_has_second_order_elements = false;
8661  for (const auto & elem : as_range(_displaced_mesh->activeLocalElementsBegin(),
8663  {
8664  if (elem->default_order() == SECOND)
8665  {
8666  mesh_has_second_order_elements = true;
8667  break;
8668  }
8669  }
8670 
8671  // We checked our local elements, so take the max over all processors.
8672  _displaced_mesh->comm().max(mesh_has_second_order_elements);
8673 
8674  // If the Mesh has second order elements, make sure the
8675  // displacement variables are second-order.
8676  if (mesh_has_second_order_elements)
8677  {
8678  const std::vector<std::string> & displacement_variables =
8679  _displaced_problem->getDisplacementVarNames();
8680 
8681  for (const auto & var_name : displacement_variables)
8682  {
8683  MooseVariableFEBase & mv =
8684  _displaced_problem->getVariable(/*tid=*/0,
8685  var_name,
8688  if (mv.order() != SECOND)
8689  mooseError("Error: mesh has SECOND order elements, so all displacement variables must be "
8690  "SECOND order.");
8691  }
8692  }
8693  }
8694 }
const Parallel::Communicator & comm() const
This class provides an interface for common operations on field variables of both FE and FV types wit...
SECOND
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
MeshBase::element_iterator activeLocalElementsBegin()
Calls active_local_nodes_begin/end() on the underlying libMesh mesh object.
Definition: MooseMesh.C:3091
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
void max(const T &r, T &o, Request &req) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
const MeshBase::element_iterator activeLocalElementsEnd()
Definition: MooseMesh.C:3097
MooseMesh * _displaced_mesh

◆ checkDuplicatePostprocessorVariableNames()

void FEProblemBase::checkDuplicatePostprocessorVariableNames ( )
inherited

Definition at line 1514 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

1515 {
1516  for (const auto & pp : _reporter_data.getPostprocessorNames())
1517  if (hasScalarVariable(pp))
1518  mooseError("Postprocessor \"" + pp +
1519  "\" has the same name as a scalar variable in the system.");
1520 }
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
ReporterData _reporter_data
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::set< std::string > getPostprocessorNames() const
Return a list of all postprocessor names.
Definition: ReporterData.C:71

◆ checkExceptionAndStopSolve()

void FEProblemBase::checkExceptionAndStopSolve ( bool  print_message = true)
virtualinherited

Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut.

Notes:

  • The exception have be registered by calling setException() prior to calling this.
  • This is collective on MPI, and must be called simultaneously by all processors!
  • If called when the solve can be interruped, it will do so and also throw a MooseException, which must be handled.
  • If called at a stage in the execution when the solve cannot be interupted (i.e., there is no solve active), it will generate an error and terminate the application.
  • DO NOT CALL THIS IN A THREADED REGION! This is meant to be called just after a threaded section.
Parameters
print_messagewhether to print a message with exception information

Definition at line 6643 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::handleException(), and DisplacedProblem::updateMesh().

6644 {
6646  return;
6647 
6648  TIME_SECTION("checkExceptionAndStopSolve", 5);
6649 
6650  // See if any processor had an exception. If it did, get back the
6651  // processor that the exception occurred on.
6652  unsigned int processor_id;
6653 
6655 
6656  if (_has_exception)
6657  {
6659 
6662  {
6663  // Print the message
6664  if (_communicator.rank() == 0 && print_message)
6665  {
6666  _console << "\n" << _exception_message << "\n";
6667  if (isTransient())
6668  _console
6669  << "To recover, the solution will fail and then be re-attempted with a reduced time "
6670  "step.\n"
6671  << std::endl;
6672  }
6673 
6674  // Stop the solve -- this entails setting
6675  // SNESSetFunctionDomainError() or directly inserting NaNs in the
6676  // residual vector to let PETSc >= 3.6 return DIVERGED_NANORINF.
6677  if (_current_nl_sys)
6679 
6680  if (_current_linear_sys)
6682 
6683  // and close Aux system (we MUST do this here; see #11525)
6684  _aux->solution().close();
6685 
6686  // We've handled this exception, so we no longer have one.
6687  _has_exception = false;
6688 
6689  // Force the next non-linear convergence check to fail (and all further residual evaluation
6690  // to be skipped).
6692 
6693  // Repropagate the exception, so it can be caught at a higher level, typically
6694  // this is NonlinearSystem::computeResidual().
6696  }
6697  else
6698  mooseError("The following parallel-communicated exception was detected during " +
6699  Moose::stringify(_current_execute_on_flag) + " evaluation:\n" +
6701  "\nBecause this did not occur during residual evaluation, there"
6702  " is no way to handle this, so the solution is aborting.\n");
6703  }
6704 }
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close) override
Quit the current solve as soon as possible.
Definition: LinearSystem.C:326
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
ExecFlagType _current_execute_on_flag
Current execute_on flag.
processor_id_type rank() const
bool _has_exception
Whether or not an exception has occurred.
const Parallel::Communicator & _communicator
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
void maxloc(T &r, unsigned int &max_id) const
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::string _exception_message
The error message to go with an exception.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
Quit the current solve as soon as possible.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::set< TagID > _fe_vector_tags
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
virtual bool isTransient() const override
bool _fail_next_system_convergence_check
processor_id_type processor_id() const

◆ checkingUOAuxState()

bool FEProblemBase::checkingUOAuxState ( ) const
inlineinherited

Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e.

the check has been activated by users through Problem/check_uo_aux_state input parameter.

Definition at line 209 of file FEProblemBase.h.

Referenced by MemoryUsage::execute(), VectorMemoryUsage::execute(), PerfGraphData::finalize(), MemoryUsage::finalize(), and VectorMemoryUsage::finalize().

209 { return _checking_uo_aux_state; }
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.

◆ checkNonlocalCoupling()

void FEProblemBase::checkNonlocalCoupling ( )
inherited
Returns
Flag indicating nonlocal coupling exists or not.

Definition at line 1639 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1640 {
1641  TIME_SECTION("checkNonlocalCoupling", 5, "Checking Nonlocal Coupling");
1642 
1643  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1644  for (auto & nl : _nl)
1645  {
1646  const auto & all_kernels = nl->getKernelWarehouse();
1647  const auto & kernels = all_kernels.getObjects(tid);
1648  for (const auto & kernel : kernels)
1649  {
1650  std::shared_ptr<NonlocalKernel> nonlocal_kernel =
1652  if (nonlocal_kernel)
1653  {
1656  _nonlocal_kernels.addObject(kernel, tid);
1657  }
1658  }
1659  const MooseObjectWarehouse<IntegratedBCBase> & all_integrated_bcs =
1660  nl->getIntegratedBCWarehouse();
1661  const auto & integrated_bcs = all_integrated_bcs.getObjects(tid);
1662  for (const auto & integrated_bc : integrated_bcs)
1663  {
1664  std::shared_ptr<NonlocalIntegratedBC> nonlocal_integrated_bc =
1666  if (nonlocal_integrated_bc)
1667  {
1670  _nonlocal_integrated_bcs.addObject(integrated_bc, tid);
1671  }
1672  }
1673  }
1674 }
unsigned int n_threads()
NonlocalIntegratedBC is used for solving integral terms in integro-differential equations.
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
NonlocalKernel is used for solving integral terms in integro-differential equations.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ checkNonlocalCouplingRequirement()

bool FEProblemBase::checkNonlocalCouplingRequirement ( ) const
overridevirtualinherited
Returns
whether there will be nonlocal coupling at any point in the simulation, e.g. whether there are any active or inactive nonlocal kernels or boundary conditions

Implements SubProblem.

Definition at line 9674 of file FEProblemBase.C.

Referenced by DisplacedProblem::checkNonlocalCouplingRequirement(), ComputeJacobianThread::compute(), ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

9675 {
9677 }
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag

◆ checkProblemIntegrity()

void FEProblemBase::checkProblemIntegrity ( )
virtualinherited

Method called to perform a series of sanity checks before a simulation is run.

This method doesn't return when errors are found, instead it generally calls mooseError() directly.

If a material is specified for any block in the simulation, then all blocks must have a material specified.

unsigned int is necessary to print SubdomainIDs in the statement below

vector is necessary to get the subdomain names

Reimplemented in EigenProblem.

Definition at line 8484 of file FEProblemBase.C.

Referenced by EigenProblem::checkProblemIntegrity().

8485 {
8486  TIME_SECTION("checkProblemIntegrity", 5);
8487 
8488  // Subdomains specified by the "Problem/block" parameter
8489  const auto & subdomain_names = getParam<std::vector<SubdomainName>>("block");
8490  auto mesh_subdomains_vec = MooseMeshUtils::getSubdomainIDs(_mesh, subdomain_names);
8491  std::set<SubdomainID> mesh_subdomains(mesh_subdomains_vec.begin(), mesh_subdomains_vec.end());
8492 
8493  // Check kernel coverage of subdomains (blocks) in the mesh
8496  {
8497  std::set<SubdomainID> blocks;
8500  blocks = mesh_subdomains;
8502  {
8503  blocks = mesh_subdomains;
8504  for (const auto & subdomain_name : _kernel_coverage_blocks)
8505  {
8506  const auto id = _mesh.getSubdomainID(subdomain_name);
8507  if (id == Moose::INVALID_BLOCK_ID)
8508  paramError("kernel_coverage_block_list",
8509  "Subdomain \"",
8510  subdomain_name,
8511  "\" not found in mesh.");
8512  blocks.erase(id);
8513  }
8514  }
8516  for (const auto & subdomain_name : _kernel_coverage_blocks)
8517  {
8518  const auto id = _mesh.getSubdomainID(subdomain_name);
8519  if (id == Moose::INVALID_BLOCK_ID)
8520  paramError("kernel_coverage_block_list",
8521  "Subdomain \"",
8522  subdomain_name,
8523  "\" not found in mesh.");
8524  blocks.insert(id);
8525  }
8526  if (!blocks.empty())
8527  for (auto & nl : _nl)
8528  nl->checkKernelCoverage(blocks);
8529  }
8530 
8531  // Check materials
8532  {
8533 #ifdef LIBMESH_ENABLE_AMR
8534  if ((_adaptivity.isOn() || _num_grid_steps) &&
8537  {
8538  _console << "Using EXPERIMENTAL Stateful Material Property projection with Adaptivity!\n"
8539  << std::flush;
8540  }
8541 #endif
8542 
8543  std::set<SubdomainID> local_mesh_subs(mesh_subdomains);
8544 
8547  {
8552  bool check_material_coverage = false;
8553  std::set<SubdomainID> ids = _all_materials.getActiveBlocks();
8554  for (const auto & id : ids)
8555  {
8556  local_mesh_subs.erase(id);
8557  check_material_coverage = true;
8558  }
8559 
8560  // did the user limit the subdomains to be checked?
8562  {
8563  for (const auto & subdomain_name : _material_coverage_blocks)
8564  {
8565  const auto id = _mesh.getSubdomainID(subdomain_name);
8566  if (id == Moose::INVALID_BLOCK_ID)
8567  paramError("material_coverage_block_list",
8568  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8569  local_mesh_subs.erase(id);
8570  }
8571  }
8573  {
8574  std::set<SubdomainID> blocks(local_mesh_subs);
8575  for (const auto & subdomain_name : _material_coverage_blocks)
8576  {
8577  const auto id = _mesh.getSubdomainID(subdomain_name);
8578  if (id == Moose::INVALID_BLOCK_ID)
8579  paramError("material_coverage_block_list",
8580  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8581  blocks.erase(id);
8582  }
8583  for (const auto id : blocks)
8584  local_mesh_subs.erase(id);
8585  }
8586 
8587  // also exclude mortar spaces from the material check
8588  auto && mortar_subdomain_ids = _mortar_data.getMortarSubdomainIDs();
8589  for (auto subdomain_id : mortar_subdomain_ids)
8590  local_mesh_subs.erase(subdomain_id);
8591 
8592  // Check Material Coverage
8593  if (check_material_coverage && !local_mesh_subs.empty())
8594  {
8595  std::stringstream extra_subdomain_ids;
8597  std::copy(local_mesh_subs.begin(),
8598  local_mesh_subs.end(),
8599  std::ostream_iterator<unsigned int>(extra_subdomain_ids, " "));
8601  std::vector<SubdomainID> local_mesh_subs_vec(local_mesh_subs.begin(),
8602  local_mesh_subs.end());
8603 
8604  mooseError("The following blocks from your input mesh do not contain an active material: " +
8605  extra_subdomain_ids.str() +
8606  "(names: " + Moose::stringify(_mesh.getSubdomainNames(local_mesh_subs_vec)) +
8607  ")\nWhen ANY mesh block contains a Material object, "
8608  "all blocks must contain a Material object.\n");
8609  }
8610  }
8611 
8612  // Check material properties on blocks and boundaries
8615 
8616  // Check that material properties exist when requested by other properties on a given block
8617  const auto & materials = _all_materials.getActiveObjects();
8618  for (const auto & material : materials)
8619  material->checkStatefulSanity();
8620 
8621  // auto mats_to_check = _materials.getActiveBlockObjects();
8622  // const auto & discrete_materials = _discrete_materials.getActiveBlockObjects();
8623  // for (const auto & map_it : discrete_materials)
8624  // for (const auto & container_element : map_it.second)
8625  // mats_to_check[map_it.first].push_back(container_element);
8628  }
8629 
8630  checkUserObjects();
8631 
8632  // Verify that we don't have any Element type/Coordinate Type conflicts
8634 
8635  // Coordinate transforms are only intended for use with MultiApps at this time. If you are not
8636  // using multiapps but still require these, contact a moose developer
8638  !hasMultiApps())
8639  mooseError("Coordinate transformation parameters, listed below, are only to be used in the "
8640  "context of application to application field transfers at this time. The mesh is "
8641  "not modified by these parameters within an application.\n"
8642  "You should likely use a 'TransformGenerator' in the [Mesh] block to achieve the "
8643  "desired mesh modification.\n\n",
8645 
8646  // If using displacements, verify that the order of the displacement
8647  // variables matches the order of the elements in the displaced
8648  // mesh.
8650 
8651  // Check for postprocessor names with same name as a scalar variable
8653 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
MaterialPropertyStorage & _bnd_material_props
void checkDependMaterialsHelper(const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
Helper method for checking Material object dependency.
static InputParameters validParams()
Describes the parameters this object can take to setup transformations.
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
char ** blocks
std::vector< SubdomainName > _kernel_coverage_blocks
std::vector< SubdomainName > _material_coverage_blocks
unsigned int _num_grid_steps
Number of steps in a grid sequence.
std::vector< subdomain_id_type > getSubdomainIDs(const libMesh::MeshBase &mesh, const std::vector< SubdomainName > &subdomain_name)
Get the associated subdomainIDs for the subdomain names that are passed in.
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
const bool _skip_nl_system_check
const SubdomainID INVALID_BLOCK_ID
Definition: MooseTypes.C:20
virtual void checkBoundaryMatProps()
Checks boundary material properties integrity.
Definition: SubProblem.C:665
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const bool & _solve
Whether or not to actually solve the nonlinear system.
std::set< SubdomainID > getActiveBlocks(THREAD_ID tid=0) const
Return a set of active SubdomainsIDs.
bool hasScalingOrRotationTransformation() const
Returns true if the app has scaling and/or rotation transformation.
void checkUserObjects()
void checkDisplacementOrders()
Verify that SECOND order mesh uses SECOND order displacements.
MortarData _mortar_data
MooseMesh & _mesh
virtual void checkBlockMatProps()
Checks block material properties integrity.
Definition: SubProblem.C:623
Adaptivity _adaptivity
const std::set< SubdomainID > & getMortarSubdomainIDs() const
Returns the mortar covered subdomains.
Definition: MortarData.h:84
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1807
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1931
void checkDuplicatePostprocessorVariableNames()
const bool _material_dependency_check
Determines whether a check to verify material dependencies on every subdomain.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...
MaterialPropertyStorage & _neighbor_material_props
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool hasMultiApps() const
Returns whether or not the current simulation has any multiapps.
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...
MaterialPropertyStorage & _material_props
MaterialWarehouse _all_materials
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1769
void checkCoordinateSystems()
Verify that there are no element type/coordinate type conflicts.

◆ checkUserObjectJacobianRequirement()

void FEProblemBase::checkUserObjectJacobianRequirement ( THREAD_ID  tid)
inherited

Definition at line 1677 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1678 {
1679  std::set<const MooseVariableFEBase *> uo_jacobian_moose_vars;
1680  {
1681  std::vector<ShapeElementUserObject *> objs;
1682  theWarehouse()
1683  .query()
1685  .condition<AttribThread>(tid)
1686  .queryInto(objs);
1687 
1688  for (const auto & uo : objs)
1689  {
1690  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1691  const auto & mv_deps = uo->jacobianMooseVariables();
1692  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1693  }
1694  }
1695  {
1696  std::vector<ShapeSideUserObject *> objs;
1697  theWarehouse()
1698  .query()
1700  .condition<AttribThread>(tid)
1701  .queryInto(objs);
1702  for (const auto & uo : objs)
1703  {
1704  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1705  const auto & mv_deps = uo->jacobianMooseVariables();
1706  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1707  }
1708  }
1709 
1710  _uo_jacobian_moose_vars[tid].assign(uo_jacobian_moose_vars.begin(), uo_jacobian_moose_vars.end());
1711  std::sort(
1712  _uo_jacobian_moose_vars[tid].begin(), _uo_jacobian_moose_vars[tid].end(), sortMooseVariables);
1713 }
bool _calculate_jacobian_in_uo
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ checkUserObjects()

void FEProblemBase::checkUserObjects ( )
protectedinherited

Definition at line 8697 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8698 {
8699  // Check user_objects block coverage
8700  std::set<SubdomainID> mesh_subdomains = _mesh.meshSubdomains();
8701  std::set<SubdomainID> user_objects_blocks;
8702 
8703  // gather names of all user_objects that were defined in the input file
8704  // and the blocks that they are defined on
8705  std::set<std::string> names;
8706 
8707  std::vector<UserObject *> objects;
8709 
8710  for (const auto & obj : objects)
8711  names.insert(obj->name());
8712 
8713  // See if all referenced blocks are covered
8714  std::set<SubdomainID> difference;
8715  std::set_difference(user_objects_blocks.begin(),
8716  user_objects_blocks.end(),
8717  mesh_subdomains.begin(),
8718  mesh_subdomains.end(),
8719  std::inserter(difference, difference.end()));
8720 
8721  if (!difference.empty())
8722  {
8723  std::ostringstream oss;
8724  oss << "One or more UserObjects is referencing a nonexistent block:\n";
8725  for (const auto & id : difference)
8726  oss << id << "\n";
8727  mooseError(oss.str());
8728  }
8729 }
TheWarehouse & theWarehouse() const
MooseMesh & _mesh
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3211

◆ clearActiveElementalMooseVariables()

void FEProblemBase::clearActiveElementalMooseVariables ( const THREAD_ID  tid)
overridevirtualinherited

Clear the active elemental MooseVariableFEBase.

If there are no active variables then they will all be reinited. Call this after finishing the computation that was using a restricted set of MooseVariableFEBases

Parameters
tidThe thread id

Reimplemented from SubProblem.

Definition at line 6041 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::post(), ComputeMarkerThread::post(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

6042 {
6044 
6045  if (_displaced_problem)
6046  _displaced_problem->clearActiveElementalMooseVariables(tid);
6047 }
virtual void clearActiveElementalMooseVariables(const THREAD_ID tid)
Clear the active elemental MooseVariableFieldBase.
Definition: SubProblem.C:466
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6050 of file FEProblemBase.C.

6051 {
6053 
6054  if (_displaced_problem)
6055  _displaced_problem->clearActiveFEVariableCoupleableMatrixTags(tid);
6056 }
virtual void clearActiveFEVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:384
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableVectorTags()

void FEProblemBase::clearActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6059 of file FEProblemBase.C.

6060 {
6062 
6063  if (_displaced_problem)
6064  _displaced_problem->clearActiveFEVariableCoupleableVectorTags(tid);
6065 }
virtual void clearActiveFEVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:378
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveMaterialProperties()

void FEProblemBase::clearActiveMaterialProperties ( const THREAD_ID  tid)
inherited

Clear the active material properties.

Should be called at the end of every computing thread

Parameters
tidThe thread id

Definition at line 6107 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

6108 {
6110 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ clearActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6068 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

6069 {
6071 
6072  if (_displaced_problem)
6073  _displaced_problem->clearActiveScalarVariableCoupleableMatrixTags(tid);
6074 }
virtual void clearActiveScalarVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:425
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::clearActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6077 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

6078 {
6080 
6081  if (_displaced_problem)
6082  _displaced_problem->clearActiveScalarVariableCoupleableVectorTags(tid);
6083 }
virtual void clearActiveScalarVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:419
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearAllDofIndices()

void SubProblem::clearAllDofIndices ( )
inherited

Clear dof indices from variables in nl and aux systems.

Definition at line 1177 of file SubProblem.C.

Referenced by FEProblemBase::solve().

1178 {
1179  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1182 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
void clearAllDofIndices()
Clear all dof indices from moose variables.
Definition: SystemBase.C:1613

◆ clearCurrentJacobianMatrixTags()

void FEProblemBase::clearCurrentJacobianMatrixTags ( )
inlineinherited

Clear the current Jacobian matrix tag data structure ...

if someone creates it

Definition at line 2653 of file FEProblemBase.h.

Referenced by FEProblemBase::resetState().

2653 {}

◆ clearCurrentResidualVectorTags()

void FEProblemBase::clearCurrentResidualVectorTags ( )
inlineinherited

Clear the current residual vector tag data structure.

Definition at line 3513 of file FEProblemBase.h.

Referenced by CrankNicolson::init(), and FEProblemBase::resetState().

3514 {
3516 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ clearDiracInfo()

void FEProblemBase::clearDiracInfo ( )
overridevirtualinherited

Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in.

Implements SubProblem.

Definition at line 2498 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2499 {
2501 
2502  if (_displaced_problem)
2503  _displaced_problem->clearDiracInfo();
2504 }
void clearPoints()
Remove all of the current points and elements.
std::shared_ptr< DisplacedProblem > _displaced_problem
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ computeBounds()

void FEProblemBase::computeBounds ( libMesh::NonlinearImplicitSystem sys,
NumericVector< libMesh::Number > &  lower,
NumericVector< libMesh::Number > &  upper 
)
virtualinherited

Definition at line 7662 of file FEProblemBase.C.

Referenced by Moose::compute_bounds().

7665 {
7666  try
7667  {
7668  try
7669  {
7670  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7671  "I expect these system numbers to be the same");
7672 
7673  if (!_current_nl_sys->hasVector("lower_bound") || !_current_nl_sys->hasVector("upper_bound"))
7674  return;
7675 
7676  TIME_SECTION("computeBounds", 1, "Computing Bounds");
7677 
7678  NumericVector<Number> & _lower = _current_nl_sys->getVector("lower_bound");
7679  NumericVector<Number> & _upper = _current_nl_sys->getVector("upper_bound");
7680  _lower.swap(lower);
7681  _upper.swap(upper);
7682  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
7684 
7685  _aux->residualSetup();
7687  _lower.swap(lower);
7688  _upper.swap(upper);
7689  }
7690  catch (...)
7691  {
7692  handleException("computeBounds");
7693  }
7694  }
7695  catch (MooseException & e)
7696  {
7697  mooseError("Irrecoverable exception: " + std::string(e.what()));
7698  }
7699  catch (...)
7700  {
7701  mooseError("Unexpected exception type");
7702  }
7703 }
virtual const char * what() const
Get out the error message.
unsigned int n_threads()
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
unsigned int number() const
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
Provides a way for users to bail out of the current solve.
virtual void swap(NumericVector< T > &v)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933
MaterialWarehouse _all_materials
void computeSystems(const ExecFlagType &type)
Do generic system computations.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeDamping()

Real FEProblemBase::computeDamping ( const NumericVector< libMesh::Number > &  soln,
const NumericVector< libMesh::Number > &  update 
)
virtualinherited

Definition at line 7941 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7943 {
7944  // Default to no damping
7945  Real damping = 1.0;
7946 
7947  if (_has_dampers)
7948  {
7949  TIME_SECTION("computeDamping", 1, "Computing Damping");
7950 
7951  // Save pointer to the current solution
7952  const NumericVector<Number> * _saved_current_solution = _current_nl_sys->currentSolution();
7953 
7955  // For now, do not re-compute auxiliary variables. Doing so allows a wild solution increment
7956  // to get to the material models, which may not be able to cope with drastically different
7957  // values. Once more complete dependency checking is in place, auxiliary variables (and
7958  // material properties) will be computed as needed by dampers.
7959  // _aux.compute();
7960  damping = _current_nl_sys->computeDamping(soln, update);
7961 
7962  // restore saved solution
7963  _current_nl_sys->setSolution(*_saved_current_solution);
7964  }
7965 
7966  return damping;
7967 }
Real computeDamping(const NumericVector< Number > &solution, const NumericVector< Number > &update)
Compute damping.
bool _has_dampers
Whether or not this system has any Dampers associated with it.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ computeIndicators()

void FEProblemBase::computeIndicators ( )
virtualinherited

Reimplemented in DumpObjectsProblem.

Definition at line 4679 of file FEProblemBase.C.

Referenced by FEProblemBase::computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and FEProblemBase::initialAdaptMesh().

4680 {
4681  // Initialize indicator aux variable fields
4683  {
4684  TIME_SECTION("computeIndicators", 1, "Computing Indicators");
4685 
4686  // Internal side indicators may lead to creating a much larger sparsity pattern than dictated by
4687  // the actual finite element scheme (e.g. CFEM)
4688  const auto old_do_derivatives = ADReal::do_derivatives;
4689  ADReal::do_derivatives = false;
4690 
4691  std::vector<std::string> fields;
4692 
4693  // Indicator Fields
4694  const auto & indicators = _indicators.getActiveObjects();
4695  for (const auto & indicator : indicators)
4696  fields.push_back(indicator->name());
4697 
4698  // InternalSideIndicator Fields
4699  const auto & internal_indicators = _internal_side_indicators.getActiveObjects();
4700  for (const auto & internal_indicator : internal_indicators)
4701  fields.push_back(internal_indicator->name());
4702 
4703  _aux->zeroVariables(fields);
4704 
4705  // compute Indicators
4706  ComputeIndicatorThread cit(*this);
4708  _aux->solution().close();
4709  _aux->update();
4710 
4711  ComputeIndicatorThread finalize_cit(*this, true);
4713  _aux->solution().close();
4714  _aux->update();
4715 
4716  ADReal::do_derivatives = old_do_derivatives;
4717  }
4718 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseObjectWarehouse< Indicator > _indicators
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const

◆ computeIndicatorsAndMarkers()

void FEProblemBase::computeIndicatorsAndMarkers ( )
virtualinherited

Definition at line 4672 of file FEProblemBase.C.

4673 {
4675  computeMarkers();
4676 }
virtual void computeMarkers()
virtual void computeIndicators()

◆ computeJacobian()

void FEProblemBase::computeJacobian ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a Jacobian matrix with the default tag (system).

Definition at line 7497 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianSys().

7500 {
7501  setCurrentNonlinearSystem(nl_sys_num);
7502 
7503  _fe_matrix_tags.clear();
7504 
7505  auto & tags = getMatrixTags();
7506  for (auto & tag : tags)
7507  _fe_matrix_tags.insert(tag.second);
7508 
7509  computeJacobianInternal(soln, jacobian, _fe_matrix_tags);
7510 }
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
virtual void computeJacobianInternal(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
Form a Jacobian matrix for multiple tags.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
std::set< TagID > _fe_matrix_tags

◆ computeJacobianBlock()

void FEProblemBase::computeJacobianBlock ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
libMesh::System precond_system,
unsigned int  ivar,
unsigned int  jvar 
)
virtualinherited

Really not a good idea to use this.

It computes just one block of the Jacobian into a smaller matrix. Calling this in a loop is EXTREMELY ineffecient! Try to use computeJacobianBlocks() instead!

Parameters
jacobianThe matrix you want to fill
precond_systemThe libMesh::system of the preconditioning system
ivarthe block-row of the Jacobian
jvarthe block-column of the Jacobian

Definition at line 7650 of file FEProblemBase.C.

7654 {
7655  JacobianBlock jac_block(precond_system, jacobian, ivar, jvar);
7656  std::vector<JacobianBlock *> blocks = {&jac_block};
7657  mooseAssert(_current_nl_sys, "This should be non-null");
7659 }
Helper class for holding the preconditioning blocks to fill.
char ** blocks
virtual void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ computeJacobianBlocks()

void FEProblemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const unsigned int  nl_sys_num 
)
virtualinherited

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Reimplemented in EigenProblem.

Definition at line 7630 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianBlock(), and PhysicsBasedPreconditioner::setup().

7632 {
7633  TIME_SECTION("computeTransientImplicitJacobian", 2);
7634  setCurrentNonlinearSystem(nl_sys_num);
7635 
7636  if (_displaced_problem)
7637  {
7639  _displaced_problem->updateMesh();
7640  }
7641 
7643 
7647 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
std::shared_ptr< DisplacedProblem > _displaced_problem
void computeSystems(const ExecFlagType &type)
Do generic system computations.

◆ computeJacobianInternal()

void FEProblemBase::computeJacobianInternal ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const std::set< TagID > &  tags 
)
virtualinherited

Form a Jacobian matrix for multiple tags.

It should not be called directly by users.

Definition at line 7513 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian().

7516 {
7517  TIME_SECTION("computeJacobianInternal", 1);
7518 
7520 
7522 
7523  computeJacobianTags(tags);
7524 
7526 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianSys()

void FEProblemBase::computeJacobianSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
virtualinherited

Form a Jacobian matrix.

It is called by Libmesh.

Definition at line 7475 of file FEProblemBase.C.

Referenced by Moose::compute_jacobian(), and NonlinearSystem::computeScalingJacobian().

7478 {
7479  computeJacobian(soln, jacobian, sys.number());
7480 }
unsigned int number() const
virtual void computeJacobian(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
Form a Jacobian matrix with the default tag (system).

◆ computeJacobianTag()

void FEProblemBase::computeJacobianTag ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
TagID  tag 
)
virtualinherited

Form a Jacobian matrix for a given tag.

Definition at line 7483 of file FEProblemBase.C.

Referenced by ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

7486 {
7488 
7489  _current_nl_sys->associateMatrixToTag(jacobian, tag);
7490 
7491  computeJacobianTags({tag});
7492 
7494 }
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianTags()

void FEProblemBase::computeJacobianTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple matrices, and each is associated with a tag.

Definition at line 7529 of file FEProblemBase.C.

Referenced by EigenProblem::computeJacobianAB(), FEProblemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), FEProblemBase::computeJacobianTag(), and EigenProblem::computeMatricesTags().

7530 {
7531  try
7532  {
7533  try
7534  {
7535  if (!_has_jacobian || !_const_jacobian)
7536  {
7537  TIME_SECTION("computeJacobianTags", 5, "Computing Jacobian");
7538 
7539  for (auto tag : tags)
7540  if (_current_nl_sys->hasMatrix(tag))
7541  {
7542  auto & matrix = _current_nl_sys->getMatrix(tag);
7545  else
7546  matrix.zero();
7548  // PETSc algorithms require diagonal allocations regardless of whether there is
7549  // non-zero diagonal dependence. With global AD indexing we only add non-zero
7550  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7551  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7552  matrix.add(index, index, 0);
7553  }
7554 
7555  _aux->zeroVariablesForJacobian();
7556 
7557  unsigned int n_threads = libMesh::n_threads();
7558 
7559  // Random interface objects
7560  for (const auto & it : _random_data_objects)
7561  it.second->updateSeeds(EXEC_NONLINEAR);
7562 
7565  if (_displaced_problem)
7566  _displaced_problem->setCurrentlyComputingJacobian(true);
7567 
7570 
7571  for (unsigned int tid = 0; tid < n_threads; tid++)
7572  reinitScalars(tid);
7573 
7575 
7576  _aux->jacobianSetup();
7577 
7578  if (_displaced_problem)
7579  {
7581  _displaced_problem->updateMesh();
7582  }
7583 
7584  for (unsigned int tid = 0; tid < n_threads; tid++)
7585  {
7588  }
7589 
7591 
7593 
7595 
7597 
7599 
7601 
7602  // For explicit Euler calculations for example we often compute the Jacobian one time and
7603  // then re-use it over and over. If we're performing automatic scaling, we don't want to
7604  // use that kernel, diagonal-block only Jacobian for our actual matrix when performing
7605  // solves!
7607  _has_jacobian = true;
7608  }
7609  }
7610  catch (...)
7611  {
7612  handleException("computeJacobianTags");
7613  }
7614  }
7615  catch (const MooseException &)
7616  {
7617  // The buck stops here, we have already handled the exception by
7618  // calling the system's stopSolve() method, it is now up to PETSc to return a
7619  // "diverged" reason during the next solve.
7620  }
7621  catch (...)
7622  {
7623  mooseError("Unexpected exception type");
7624  }
7625 
7626  resetState();
7627 }
virtual void restore_original_nonzero_pattern()
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
bool _has_jacobian
Indicates if the Jacobian was computed.
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
bool computingScalingJacobian() const
Whether we are computing an initial Jacobian for automatic variable scaling.
Definition: SystemBase.C:1552
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool has_static_condensation() const
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void jacobianSetup(THREAD_ID tid=0) const
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _const_jacobian
true if the Jacobian is constant
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeLinearSystemSys()

void FEProblemBase::computeLinearSystemSys ( libMesh::LinearImplicitSystem sys,
libMesh::SparseMatrix< libMesh::Number > &  system_matrix,
NumericVector< libMesh::Number > &  rhs,
const bool  compute_gradients = true 
)
virtualinherited

Assemble both the right hand side and the system matrix of a given linear system.

Parameters
sysThe linear system which should be assembled
system_matrixThe sparse matrix which should hold the system matrix
rhsThe vector which should hold the right hand side
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7706 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), and FEProblemBase::computeResidualL2Norm().

7710 {
7711  TIME_SECTION("computeLinearSystemSys", 5);
7712 
7714 
7717 
7718  // We are using the residual tag system for right hand sides so we fetch everything
7719  const auto & vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7720 
7721  // We filter out tags which do not have associated vectors in the current
7722  // system. This is essential to be able to use system-dependent vector tags.
7725 
7729  compute_gradients);
7730 
7735  // We reset the tags to the default containers for further operations
7740 }
TagID rightHandSideVectorTag() const
Definition: LinearSystem.h:114
virtual TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
Definition: LinearSystem.h:115
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
SparseMatrix< Number > & getSystemMatrix()
Fetching the system matrix from the libmesh system.
Definition: LinearSystem.h:126
std::set< TagID > _linear_matrix_tags
Temporary storage for filtered matrix tags for linear systems.
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
NumericVector< Number > & getRightHandSideVector()
Fetching the right hand side vector from the libmesh system.
Definition: LinearSystem.h:119
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
static void selectMatrixTagsFromSystem(const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
Select the matrix tags which belong to a specific system.
Definition: SubProblem.C:300
void computeLinearSystemTags(const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Assemble the current linear system given a set of vector and matrix tags.
unsigned int linearSysNum(const LinearSystemName &linear_sys_name) const override
const std::string & name() const
std::set< TagID > _linear_vector_tags
Temporary storage for filtered vector tags for linear systems.

◆ computeLinearSystemTags()

void FEProblemBase::computeLinearSystemTags ( const NumericVector< libMesh::Number > &  soln,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags,
const bool  compute_gradients = true 
)
inherited

Assemble the current linear system given a set of vector and matrix tags.

Parameters
solnThe solution which should be used for the system assembly
vector_tagsThe vector tags for the right hand side
matrix_tagsThe matrix tags for the matrix
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7743 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys().

7747 {
7748  TIME_SECTION("computeLinearSystemTags", 5, "Computing Linear System");
7749 
7751 
7752  for (auto tag : matrix_tags)
7753  {
7754  auto & matrix = _current_linear_sys->getMatrix(tag);
7755  matrix.zero();
7756  }
7757 
7758  unsigned int n_threads = libMesh::n_threads();
7759 
7761 
7762  // Random interface objects
7763  for (const auto & it : _random_data_objects)
7764  it.second->updateSeeds(EXEC_NONLINEAR);
7765 
7768 
7770 
7771  _aux->jacobianSetup();
7772 
7773  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7774  {
7776  }
7777 
7778  try
7779  {
7781  }
7782  catch (MooseException & e)
7783  {
7784  _console << "\nA MooseException was raised during Auxiliary variable computation.\n"
7785  << "The next solve will fail, the timestep will be reduced, and we will try again.\n"
7786  << std::endl;
7787 
7788  // We know the next solve is going to fail, so there's no point in
7789  // computing anything else after this. Plus, using incompletely
7790  // computed AuxVariables in subsequent calculations could lead to
7791  // other errors or unhandled exceptions being thrown.
7792  return;
7793  }
7794 
7797 
7799 
7800  _current_linear_sys->computeLinearSystemTags(vector_tags, matrix_tags, compute_gradients);
7801 
7802  // Reset execution flag as after this point we are no longer on LINEAR
7804 
7805  // These are the relevant parts of resetState()
7808 }
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void zero()=0
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
MooseObjectWarehouse< Function > _functions
functions
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void computeLinearSystemTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Compute the right hand side and the system matrix of the system for given tags.
Definition: LinearSystem.C:141
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMarkers()

void FEProblemBase::computeMarkers ( )
virtualinherited

Reimplemented in DumpObjectsProblem.

Definition at line 4721 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeIndicatorsAndMarkers(), TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), and FEProblemBase::initialAdaptMesh().

4722 {
4723  if (_markers.hasActiveObjects())
4724  {
4725  TIME_SECTION("computeMarkers", 1, "Computing Markers");
4726 
4727  std::vector<std::string> fields;
4728 
4729  // Marker Fields
4730  const auto & markers = _markers.getActiveObjects();
4731  for (const auto & marker : markers)
4732  fields.push_back(marker->name());
4733 
4734  _aux->zeroVariables(fields);
4735 
4737 
4738  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
4739  {
4740  const auto & markers = _markers.getActiveObjects(tid);
4741  for (const auto & marker : markers)
4742  marker->markerSetup();
4743  }
4744 
4745  ComputeMarkerThread cmt(*this);
4747 
4748  _aux->solution().close();
4749  _aux->update();
4750  }
4751 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
unsigned int n_threads()
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void updateErrorVectors()
Update the ErrorVectors that have been requested through calls to getErrorVector().
Definition: Adaptivity.C:372
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
Adaptivity _adaptivity
PetscErrorCode PetscInt const PetscInt fields[]
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMultiAppsDT()

Real FEProblemBase::computeMultiAppsDT ( ExecFlagType  type)
inherited

Find the smallest timestep over all MultiApps.

Definition at line 5772 of file FEProblemBase.C.

Referenced by TransientBase::constrainDTFromMultiApp().

5773 {
5774  const auto & multi_apps = _transient_multi_apps[type].getActiveObjects();
5775 
5776  Real smallest_dt = std::numeric_limits<Real>::max();
5777 
5778  for (const auto & multi_app : multi_apps)
5779  smallest_dt = std::min(smallest_dt, multi_app->computeDT());
5780 
5781  return smallest_dt;
5782 }
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
auto max(const L &left, const R &right)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto min(const L &left, const R &right)

◆ computeNearNullSpace()

void FEProblemBase::computeNearNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7811 of file FEProblemBase.C.

Referenced by Moose::compute_nearnullspace().

7813 {
7814  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7815  "I expect these system numbers to be the same");
7816 
7817  sp.clear();
7818  for (unsigned int i = 0; i < subspaceDim("NearNullSpace"); ++i)
7819  {
7820  std::stringstream postfix;
7821  postfix << "_" << i;
7822  std::string modename = "NearNullSpace" + postfix.str();
7823  sp.push_back(&_current_nl_sys->getVector(modename));
7824  }
7825 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeNullSpace()

void FEProblemBase::computeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7828 of file FEProblemBase.C.

Referenced by Moose::compute_nullspace().

7830 {
7831  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7832  "I expect these system numbers to be the same");
7833  sp.clear();
7834  for (unsigned int i = 0; i < subspaceDim("NullSpace"); ++i)
7835  {
7836  std::stringstream postfix;
7837  postfix << "_" << i;
7838  sp.push_back(&_current_nl_sys->getVector("NullSpace" + postfix.str()));
7839  }
7840 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computePostCheck()

void FEProblemBase::computePostCheck ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  old_soln,
NumericVector< libMesh::Number > &  search_direction,
NumericVector< libMesh::Number > &  new_soln,
bool &  changed_search_direction,
bool &  changed_new_soln 
)
virtualinherited

Definition at line 7858 of file FEProblemBase.C.

Referenced by Moose::compute_postcheck().

7864 {
7865  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7866  "I expect these system numbers to be the same");
7867 
7868  // This function replaces the old PetscSupport::dampedCheck() function.
7869  //
7870  // 1.) Recreate code in PetscSupport::dampedCheck() for constructing
7871  // ghosted "soln" and "update" vectors.
7872  // 2.) Call FEProblemBase::computeDamping() with these ghost vectors.
7873  // 3.) Recreate the code in PetscSupport::dampedCheck() to actually update
7874  // the solution vector based on the damping, and set the "changed" flags
7875  // appropriately.
7876 
7877  TIME_SECTION("computePostCheck", 2, "Computing Post Check");
7878 
7880 
7881  // MOOSE's FEProblemBase doesn't update the solution during the
7882  // postcheck, but FEProblemBase-derived classes might.
7884  {
7885  // We need ghosted versions of new_soln and search_direction (the
7886  // ones we get from libmesh/PETSc are PARALLEL vectors. To make
7887  // our lives simpler, we use the same ghosting pattern as the
7888  // system's current_local_solution to create new ghosted vectors.
7889 
7890  // Construct zeroed-out clones with the same ghosted dofs as the
7891  // System's current_local_solution.
7892  std::unique_ptr<NumericVector<Number>> ghosted_solution =
7893  sys.current_local_solution->zero_clone(),
7894  ghosted_search_direction =
7895  sys.current_local_solution->zero_clone();
7896 
7897  // Copy values from input vectors into clones with ghosted values.
7898  *ghosted_solution = new_soln;
7899  *ghosted_search_direction = search_direction;
7900 
7901  if (_has_dampers)
7902  {
7903  // Compute the damping coefficient using the ghosted vectors
7904  Real damping = computeDamping(*ghosted_solution, *ghosted_search_direction);
7905 
7906  // If some non-trivial damping was computed, update the new_soln
7907  // vector accordingly.
7908  if (damping < 1.0)
7909  {
7910  new_soln = old_soln;
7911  new_soln.add(-damping, search_direction);
7912  changed_new_soln = true;
7913  }
7914  }
7915 
7916  if (shouldUpdateSolution())
7917  {
7918  // Update the ghosted copy of the new solution, if necessary.
7919  if (changed_new_soln)
7920  *ghosted_solution = new_soln;
7921 
7922  bool updated_solution = updateSolution(new_soln, *ghosted_solution);
7923  if (updated_solution)
7924  changed_new_soln = true;
7925  }
7926  }
7927 
7929  {
7931  _aux->copyCurrentIntoPreviousNL();
7932  }
7933 
7934  // MOOSE doesn't change the search_direction
7935  changed_search_direction = false;
7936 
7938 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void setPreviousNewtonSolution(const NumericVector< Number > &soln)
bool _has_dampers
Whether or not this system has any Dampers associated with it.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual bool shouldUpdateSolution()
Check to see whether the problem should update the solution.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual bool updateSolution(NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
Update the solution.
virtual void add(const numeric_index_type i, const T value)=0
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual Real computeDamping(const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)

◆ computeResidual() [1/2]

void FEProblemBase::computeResidual ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
inherited

This function is called by Libmesh to form a residual.

This is deprecated. We should remove this as soon as RattleSnake is fixed.

Referenced by FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualSys(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

◆ computeResidual() [2/2]

virtual void FEProblemBase::computeResidual ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a residual with default tags (nontime, time, residual).

◆ computeResidualAndJacobian()

void FEProblemBase::computeResidualAndJacobian ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
inherited

Form a residual and Jacobian with default tags.

Definition at line 7120 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobian::residual_and_jacobian().

7123 {
7124  try
7125  {
7126  try
7127  {
7128  // vector tags
7130  const auto & residual_vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7131 
7132  mooseAssert(_fe_vector_tags.empty(),
7133  "This should be empty indicating a clean starting state");
7134  // We filter out tags which do not have associated vectors in the current nonlinear
7135  // system. This is essential to be able to use system-dependent residual tags.
7137 
7139 
7140  // matrix tags
7141  {
7142  _fe_matrix_tags.clear();
7143 
7144  auto & tags = getMatrixTags();
7145  for (auto & tag : tags)
7146  _fe_matrix_tags.insert(tag.second);
7147  }
7148 
7150 
7153 
7154  for (const auto tag : _fe_matrix_tags)
7155  if (_current_nl_sys->hasMatrix(tag))
7156  {
7157  auto & matrix = _current_nl_sys->getMatrix(tag);
7158  matrix.zero();
7160  // PETSc algorithms require diagonal allocations regardless of whether there is non-zero
7161  // diagonal dependence. With global AD indexing we only add non-zero
7162  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7163  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7164  matrix.add(index, index, 0);
7165  }
7166 
7167  _aux->zeroVariablesForResidual();
7168 
7169  unsigned int n_threads = libMesh::n_threads();
7170 
7172 
7173  // Random interface objects
7174  for (const auto & it : _random_data_objects)
7175  it.second->updateSeeds(EXEC_LINEAR);
7176 
7180  if (_displaced_problem)
7181  {
7182  _displaced_problem->setCurrentlyComputingResidual(true);
7183  _displaced_problem->setCurrentlyComputingJacobian(true);
7184  _displaced_problem->setCurrentlyComputingResidualAndJacobian(true);
7185  }
7186 
7188 
7190 
7191  for (unsigned int tid = 0; tid < n_threads; tid++)
7192  reinitScalars(tid);
7193 
7195 
7196  _aux->residualSetup();
7197 
7198  if (_displaced_problem)
7199  {
7201  _displaced_problem->updateMesh();
7203  updateMortarMesh();
7204  }
7205 
7206  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7207  {
7210  }
7211 
7213 
7215 
7217 
7219 
7222 
7224 
7227  }
7228  catch (...)
7229  {
7230  handleException("computeResidualAndJacobian");
7231  }
7232  }
7233  catch (const MooseException &)
7234  {
7235  // The buck stops here, we have already handled the exception by
7236  // calling the system's stopSolve() method, it is now up to PETSc to return a
7237  // "diverged" reason during the next solve.
7238  }
7239  catch (...)
7240  {
7241  mooseError("Unexpected exception type");
7242  }
7243 
7244  resetState();
7245  _fe_vector_tags.clear();
7246  _fe_matrix_tags.clear();
7247 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
bool has_static_condensation() const
void setCurrentlyComputingResidualAndJacobian(bool currently_computing_residual_and_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:1493
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
void setCurrentlyComputingJacobian(const bool currently_computing_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:689
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void computeResidualAndJacobianTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Form possibly multiple tag-associated vectors and matrices.
void handleException(const std::string &calling_method)
Handle exceptions.
virtual void zero()=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
TagID residualVectorTag() const override
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
std::set< TagID > _fe_matrix_tags
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::set< TagID > _fe_vector_tags
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeResidualInternal()

void FEProblemBase::computeResidualInternal ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const std::set< TagID > &  tags 
)
virtualinherited

Form a residual vector for a set of tags.

It should not be called directly by users.

Definition at line 7279 of file FEProblemBase.C.

7282 {
7283  parallel_object_only();
7284 
7285  TIME_SECTION("computeResidualInternal", 1);
7286 
7287  try
7288  {
7290 
7292 
7293  computeResidualTags(tags);
7294 
7296  }
7297  catch (MooseException & e)
7298  {
7299  // If a MooseException propagates all the way to here, it means
7300  // that it was thrown from a MOOSE system where we do not
7301  // (currently) properly support the throwing of exceptions, and
7302  // therefore we have no choice but to error out. It may be
7303  // *possible* to handle exceptions from other systems, but in the
7304  // meantime, we don't want to silently swallow any unhandled
7305  // exceptions here.
7306  mooseError("An unhandled MooseException was raised during residual computation. Please "
7307  "contact the MOOSE team for assistance.");
7308  }
7309 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ computeResidualL2Norm() [1/3]

Real FEProblemBase::computeResidualL2Norm ( NonlinearSystemBase sys)
inherited

Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 7029 of file FEProblemBase.C.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), Residual::getValue(), DefaultMultiAppFixedPointConvergence::initialize(), and DefaultMultiAppFixedPointConvergence::preExecute().

7030 {
7031  _current_nl_sys = &sys;
7032  computeResidual(*sys.currentSolution(), sys.RHS(), sys.number());
7033  return sys.RHS().l2_norm();
7034 }
virtual Real l2_norm() const=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.
virtual NumericVector< Number > & RHS()=0

◆ computeResidualL2Norm() [2/3]

Real FEProblemBase::computeResidualL2Norm ( LinearSystem sys)
inherited

Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 7037 of file FEProblemBase.C.

7038 {
7039  _current_linear_sys = &sys;
7040 
7041  // We assemble the current system to check the current residual
7044  *sys.linearImplicitSystem().rhs,
7045  /*compute fresh gradients*/ true);
7046 
7047  // Unfortunate, but we have to allocate a new vector for the residual
7048  auto residual = sys.linearImplicitSystem().rhs->clone();
7049  residual->scale(-1.0);
7050  residual->add_vector(*sys.currentSolution(), *sys.linearImplicitSystem().matrix);
7051  return residual->l2_norm();
7052 }
libMesh::LinearImplicitSystem & linearImplicitSystem()
Return a reference to the stored linear implicit system.
Definition: LinearSystem.h:86
NumericVector< Number > * rhs
virtual std::unique_ptr< NumericVector< T > > clone() const=0
virtual void computeLinearSystemSys(libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
Assemble both the right hand side and the system matrix of a given linear system. ...
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SparseMatrix< Number > * matrix

◆ computeResidualL2Norm() [3/3]

Real FEProblemBase::computeResidualL2Norm ( )
virtualinherited

Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm.

Returns
The L2 norm of the residual

Reimplemented in EigenProblem.

Definition at line 7055 of file FEProblemBase.C.

7056 {
7057  TIME_SECTION("computeResidualL2Norm", 2, "Computing L2 Norm of Residual");
7058 
7059  // We use sum the squared norms of the individual systems and then take the square root of it
7060  Real l2_norm = 0.0;
7061  for (auto sys : _nl)
7062  {
7063  const auto norm = computeResidualL2Norm(*sys);
7064  l2_norm += norm * norm;
7065  }
7066 
7067  for (auto sys : _linear_systems)
7068  {
7069  const auto norm = computeResidualL2Norm(*sys);
7070  l2_norm += norm * norm;
7071  }
7072 
7073  return std::sqrt(l2_norm);
7074 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
auto norm(const T &a) -> decltype(std::abs(a))
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh
virtual Real computeResidualL2Norm()
Computes the residual using whatever is sitting in the current solution vector then returns the L2 no...
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ computeResidualSys()

void FEProblemBase::computeResidualSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
virtualinherited

This function is called by Libmesh to form a residual.

Definition at line 7077 of file FEProblemBase.C.

Referenced by NonlinearSystem::computeScalingResidual(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and NonlinearSystem::solve().

7080 {
7081  parallel_object_only();
7082 
7083  TIME_SECTION("computeResidualSys", 5);
7084 
7085  computeResidual(soln, residual, sys.number());
7086 }
unsigned int number() const
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.

◆ computeResidualTag()

void FEProblemBase::computeResidualTag ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag.

Definition at line 7250 of file FEProblemBase.C.

7253 {
7254  try
7255  {
7257 
7258  _current_nl_sys->associateVectorToTag(residual, tag);
7259 
7260  computeResidualTags({tag});
7261 
7263  }
7264  catch (MooseException & e)
7265  {
7266  // If a MooseException propagates all the way to here, it means
7267  // that it was thrown from a MOOSE system where we do not
7268  // (currently) properly support the throwing of exceptions, and
7269  // therefore we have no choice but to error out. It may be
7270  // *possible* to handle exceptions from other systems, but in the
7271  // meantime, we don't want to silently swallow any unhandled
7272  // exceptions here.
7273  mooseError("An unhandled MooseException was raised during residual computation. Please "
7274  "contact the MOOSE team for assistance.");
7275  }
7276 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ computeResidualTags()

void FEProblemBase::computeResidualTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple residual vectors and each is associated with one tag.

Definition at line 7395 of file FEProblemBase.C.

Referenced by EigenProblem::computeResidualAB(), FEProblemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), FEProblemBase::computeResidualTag(), and FEProblemBase::computeResidualType().

7396 {
7397  parallel_object_only();
7398 
7399  try
7400  {
7401  try
7402  {
7403  TIME_SECTION("computeResidualTags", 5, "Computing Residual");
7404 
7405  ADReal::do_derivatives = false;
7406 
7408 
7409  _aux->zeroVariablesForResidual();
7410 
7411  unsigned int n_threads = libMesh::n_threads();
7412 
7414 
7415  // Random interface objects
7416  for (const auto & it : _random_data_objects)
7417  it.second->updateSeeds(EXEC_LINEAR);
7418 
7420 
7422 
7423  for (unsigned int tid = 0; tid < n_threads; tid++)
7424  reinitScalars(tid);
7425 
7427 
7428  _aux->residualSetup();
7429 
7430  if (_displaced_problem)
7431  {
7433  _displaced_problem->updateMesh();
7435  updateMortarMesh();
7436  }
7437 
7438  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7439  {
7442  }
7443 
7445 
7447 
7449 
7451 
7454  }
7455  catch (...)
7456  {
7457  handleException("computeResidualTags");
7458  }
7459  }
7460  catch (const MooseException &)
7461  {
7462  // The buck stops here, we have already handled the exception by
7463  // calling the system's stopSolve() method, it is now up to PETSc to return a
7464  // "diverged" reason during the next solve.
7465  }
7466  catch (...)
7467  {
7468  mooseError("Unexpected exception type");
7469  }
7470 
7471  resetState();
7472 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
Provides a way for users to bail out of the current solve.
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeResidualType()

void FEProblemBase::computeResidualType ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag and "residual" tag.

Definition at line 7312 of file FEProblemBase.C.

7315 {
7316  TIME_SECTION("computeResidualType", 5);
7317 
7318  try
7319  {
7321 
7323 
7325 
7327  }
7328  catch (MooseException & e)
7329  {
7330  // If a MooseException propagates all the way to here, it means
7331  // that it was thrown from a MOOSE system where we do not
7332  // (currently) properly support the throwing of exceptions, and
7333  // therefore we have no choice but to error out. It may be
7334  // *possible* to handle exceptions from other systems, but in the
7335  // meantime, we don't want to silently swallow any unhandled
7336  // exceptions here.
7337  mooseError("An unhandled MooseException was raised during residual computation. Please "
7338  "contact the MOOSE team for assistance.");
7339  }
7340 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ computeSystems()

void FEProblemBase::computeSystems ( const ExecFlagType type)
protectedinherited

Do generic system computations.

Definition at line 9575 of file FEProblemBase.C.

Referenced by FEProblemBase::computeBounds(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and FEProblemBase::execute().

9576 {
9577  // When performing an adjoint solve in the optimization module, the current solver system is the
9578  // adjoint. However, the adjoint solve requires having accurate time derivative calculations for
9579  // the forward system. The cleanest way to handle such uses is just to compute the time
9580  // derivatives for all solver systems instead of trying to guess which ones we need and don't need
9581  for (auto & solver_sys : _solver_systems)
9582  solver_sys->compute(type);
9583 
9584  _aux->compute(type);
9585 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ computeTransposeNullSpace()

void FEProblemBase::computeTransposeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7843 of file FEProblemBase.C.

Referenced by Moose::compute_transpose_nullspace().

7845 {
7846  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7847  "I expect these system numbers to be the same");
7848  sp.clear();
7849  for (unsigned int i = 0; i < subspaceDim("TransposeNullSpace"); ++i)
7850  {
7851  std::stringstream postfix;
7852  postfix << "_" << i;
7853  sp.push_back(&_current_nl_sys->getVector("TransposeNullSpace" + postfix.str()));
7854  }
7855 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeUserObjectByName()

void FEProblemBase::computeUserObjectByName ( const ExecFlagType type,
const Moose::AuxGroup group,
const std::string &  name 
)
virtualinherited

Compute an user object with the given name.

Definition at line 4971 of file FEProblemBase.C.

Referenced by MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), MultiAppGeneralFieldUserObjectTransfer::execute(), MultiAppUserObjectTransfer::execute(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), and MultiAppConservativeTransfer::postExecute().

4974 {
4975  const auto old_exec_flag = _current_execute_on_flag;
4978  .query()
4979  .condition<AttribSystem>("UserObject")
4980  .condition<AttribExecOns>(type)
4981  .condition<AttribName>(name);
4982  computeUserObjectsInternal(type, group, query);
4983  _current_execute_on_flag = old_exec_flag;
4984 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjects()

void FEProblemBase::computeUserObjects ( const ExecFlagType type,
const Moose::AuxGroup group 
)
virtualinherited

Call compute methods on UserObjects.

Definition at line 4987 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

4988 {
4990  theWarehouse().query().condition<AttribSystem>("UserObject").condition<AttribExecOns>(type);
4991  computeUserObjectsInternal(type, group, query);
4992 }
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjectsInternal()

void FEProblemBase::computeUserObjectsInternal ( const ExecFlagType type,
const Moose::AuxGroup group,
TheWarehouse::Query query 
)
protectedinherited

Definition at line 4995 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectByName(), and FEProblemBase::computeUserObjects().

4998 {
4999  try
5000  {
5001  TIME_SECTION("computeUserObjects", 1, "Computing User Objects");
5002 
5003  // Add group to query
5004  if (group == Moose::PRE_IC)
5005  primary_query.condition<AttribPreIC>(true);
5006  else if (group == Moose::PRE_AUX)
5007  primary_query.condition<AttribPreAux>(type);
5008  else if (group == Moose::POST_AUX)
5009  primary_query.condition<AttribPostAux>(type);
5010 
5011  // query everything first to obtain a list of execution groups
5012  std::vector<UserObject *> uos;
5013  primary_query.clone().queryIntoUnsorted(uos);
5014  std::set<int> execution_groups;
5015  for (const auto & uo : uos)
5016  execution_groups.insert(uo->getParam<int>("execution_order_group"));
5017 
5018  // iterate over execution order groups
5019  for (const auto execution_group : execution_groups)
5020  {
5021  auto query = primary_query.clone().condition<AttribExecutionOrderGroup>(execution_group);
5022 
5023  std::vector<GeneralUserObject *> genobjs;
5024  query.clone().condition<AttribInterfaces>(Interfaces::GeneralUserObject).queryInto(genobjs);
5025 
5026  std::vector<UserObject *> userobjs;
5027  query.clone()
5032  .queryInto(userobjs);
5033 
5034  std::vector<UserObject *> tgobjs;
5035  query.clone()
5037  .queryInto(tgobjs);
5038 
5039  std::vector<UserObject *> nodal;
5040  query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).queryInto(nodal);
5041 
5042  std::vector<MortarUserObject *> mortar;
5043  query.clone().condition<AttribInterfaces>(Interfaces::MortarUserObject).queryInto(mortar);
5044 
5045  if (userobjs.empty() && genobjs.empty() && tgobjs.empty() && nodal.empty() && mortar.empty())
5046  continue;
5047 
5048  // Start the timer here since we have at least one active user object
5049  std::string compute_uo_tag = "computeUserObjects(" + Moose::stringify(type) + ")";
5050 
5051  // Perform Residual/Jacobian setups
5052  if (type == EXEC_LINEAR)
5053  {
5054  for (auto obj : userobjs)
5055  obj->residualSetup();
5056  for (auto obj : nodal)
5057  obj->residualSetup();
5058  for (auto obj : mortar)
5059  obj->residualSetup();
5060  for (auto obj : tgobjs)
5061  obj->residualSetup();
5062  for (auto obj : genobjs)
5063  obj->residualSetup();
5064  }
5065  else if (type == EXEC_NONLINEAR)
5066  {
5067  for (auto obj : userobjs)
5068  obj->jacobianSetup();
5069  for (auto obj : nodal)
5070  obj->jacobianSetup();
5071  for (auto obj : mortar)
5072  obj->jacobianSetup();
5073  for (auto obj : tgobjs)
5074  obj->jacobianSetup();
5075  for (auto obj : genobjs)
5076  obj->jacobianSetup();
5077  }
5078 
5079  for (auto obj : userobjs)
5080  obj->initialize();
5081 
5082  // Execute Side/InternalSide/Interface/Elemental/DomainUserObjects
5083  if (!userobjs.empty())
5084  {
5085  // non-nodal user objects have to be run separately before the nodal user objects run
5086  // because some nodal user objects (NodalNormal related) depend on elemental user objects
5087  // :-(
5088  ComputeUserObjectsThread cppt(*this, query);
5090 
5091  // There is one instance in rattlesnake where an elemental user object's finalize depends
5092  // on a side user object having been finalized first :-(
5099  }
5100 
5101  // if any userobject may have written to variables we need to close the aux solution
5102  for (const auto & uo : userobjs)
5103  if (auto euo = dynamic_cast<const ElementUserObject *>(uo);
5104  euo && euo->hasWritableCoupledVariables())
5105  {
5106  _aux->solution().close();
5107  _aux->system().update();
5108  break;
5109  }
5110 
5111  // Execute NodalUserObjects
5112  // BISON has an axial reloc elemental user object that has a finalize func that depends on a
5113  // nodal user object's prev value. So we can't initialize this until after elemental objects
5114  // have been finalized :-(
5115  for (auto obj : nodal)
5116  obj->initialize();
5117  if (query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).count() > 0)
5118  {
5119  ComputeNodalUserObjectsThread cnppt(*this, query);
5122  }
5123 
5124  // if any userobject may have written to variables we need to close the aux solution
5125  for (const auto & uo : nodal)
5126  if (auto nuo = dynamic_cast<const NodalUserObject *>(uo);
5127  nuo && nuo->hasWritableCoupledVariables())
5128  {
5129  _aux->solution().close();
5130  _aux->system().update();
5131  break;
5132  }
5133 
5134  // Execute MortarUserObjects
5135  {
5136  for (auto obj : mortar)
5137  obj->initialize();
5138  if (!mortar.empty())
5139  {
5140  auto create_and_run_mortar_functors = [this, type, &mortar](const bool displaced)
5141  {
5142  // go over mortar interfaces and construct functors
5143  const auto & mortar_interfaces = getMortarInterfaces(displaced);
5144  for (const auto & mortar_interface : mortar_interfaces)
5145  {
5146  const auto primary_secondary_boundary_pair = mortar_interface.first;
5147  auto mortar_uos_to_execute =
5148  getMortarUserObjects(primary_secondary_boundary_pair.first,
5149  primary_secondary_boundary_pair.second,
5150  displaced,
5151  mortar);
5152  const auto & mortar_generation_object = mortar_interface.second;
5153 
5154  auto * const subproblem = displaced
5155  ? static_cast<SubProblem *>(_displaced_problem.get())
5156  : static_cast<SubProblem *>(this);
5157  MortarUserObjectThread muot(mortar_uos_to_execute,
5158  mortar_generation_object,
5159  *subproblem,
5160  *this,
5161  displaced,
5162  subproblem->assembly(0, 0));
5163 
5164  muot();
5165  }
5166  };
5167 
5168  create_and_run_mortar_functors(false);
5169  if (_displaced_problem)
5170  create_and_run_mortar_functors(true);
5171  }
5172  for (auto obj : mortar)
5173  obj->finalize();
5174  }
5175 
5176  // Execute threaded general user objects
5177  for (auto obj : tgobjs)
5178  obj->initialize();
5179  std::vector<GeneralUserObject *> tguos_zero;
5180  query.clone()
5181  .condition<AttribThread>(0)
5182  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject)
5183  .queryInto(tguos_zero);
5184  for (auto obj : tguos_zero)
5185  {
5186  std::vector<GeneralUserObject *> tguos;
5187  auto q = query.clone()
5188  .condition<AttribName>(obj->name())
5189  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject);
5190  q.queryInto(tguos);
5191 
5193  Threads::parallel_reduce(GeneralUserObjectRange(tguos.begin(), tguos.end()), ctguot);
5194  joinAndFinalize(q);
5195  }
5196 
5197  // Execute general user objects
5199  true);
5200  }
5201  }
5202  catch (...)
5203  {
5204  handleException("computeUserObjectsInternal");
5205  }
5206 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
void joinAndFinalize(TheWarehouse::Query query, bool isgen=false)
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:313
Thread to compute threaded general user objects.
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1313
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:294
void handleException(const std::string &calling_method)
Handle exceptions.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
StoredRange< std::vector< GeneralUserObject * >::iterator, GeneralUserObject * > GeneralUserObjectRange
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:344
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
query_obj query
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for threaded computation of UserObjects.
std::shared_ptr< DisplacedProblem > _displaced_problem
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
virtual std::unique_ptr< Attribute > clone() const =0
clone creates and returns and identical (deep) copy of this attribute - i.e.

◆ computingNonlinearResid() [1/4]

bool SubProblem::computingNonlinearResid ( ) const
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [2/4]

bool SubProblem::computingNonlinearResid
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [3/4]

virtual void SubProblem::computingNonlinearResid
inlineinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Definition at line 712 of file SubProblem.h.

713  {
714  _computing_nonlinear_residual = computing_nonlinear_residual;
715  }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [4/4]

void FEProblemBase::computingNonlinearResid ( bool  computing_nonlinear_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Reimplemented from SubProblem.

Definition at line 9210 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeScaling(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and ComputeResidualAndJacobian::residual_and_jacobian().

9211 {
9212  parallel_object_only();
9213 
9214  if (_displaced_problem)
9215  _displaced_problem->computingNonlinearResid(computing_nonlinear_residual);
9216  _computing_nonlinear_residual = computing_nonlinear_residual;
9217 }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ computingPreSMOResidual()

bool FEProblemBase::computingPreSMOResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Returns true if the problem is in the process of computing it's initial residual.

Returns
Whether or not the problem is currently computing the initial residual.

Implements SubProblem.

Definition at line 6799 of file FEProblemBase.C.

Referenced by DisplacedProblem::computingPreSMOResidual().

6800 {
6801  return _nl[nl_sys_num]->computingPreSMOResidual();
6802 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ computingScalingJacobian() [1/2]

void FEProblemBase::computingScalingJacobian ( bool  computing_scaling_jacobian)
inlineinherited

Setter for whether we're computing the scaling jacobian.

Definition at line 2533 of file FEProblemBase.h.

Referenced by ComputeJacobianThread::compute(), SolverSystem::compute(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingJacobian().

2534  {
2535  _computing_scaling_jacobian = computing_scaling_jacobian;
2536  }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingJacobian() [2/2]

bool FEProblemBase::computingScalingJacobian ( ) const
inlinefinaloverridevirtualinherited

Getter for whether we're computing the scaling jacobian.

Implements SubProblem.

Definition at line 2538 of file FEProblemBase.h.

2538 { return _computing_scaling_jacobian; }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingResidual() [1/2]

void FEProblemBase::computingScalingResidual ( bool  computing_scaling_residual)
inlineinherited

Setter for whether we're computing the scaling residual.

Definition at line 2543 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingResidual().

2544  {
2545  _computing_scaling_residual = computing_scaling_residual;
2546  }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ computingScalingResidual() [2/2]

bool FEProblemBase::computingScalingResidual ( ) const
inlinefinaloverridevirtualinherited
Returns
whether we are currently computing a residual for automatic scaling purposes

Implements SubProblem.

Definition at line 2551 of file FEProblemBase.h.

2551 { return _computing_scaling_residual; }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ connectControllableParams()

void MooseBase::connectControllableParams ( const std::string &  parameter,
const std::string &  object_type,
const std::string &  object_name,
const std::string &  object_parameter 
) const
inherited

Connect controllable parameter of this action with the controllable parameters of the objects added by this action.

Parameters
parameterName of the controllable parameter of this action
object_typeType of the object added by this action.
object_nameName of the object added by this action.
object_parameterName of the parameter of the object.

Definition at line 77 of file MooseBase.C.

81 {
82  auto & factory = _app.getFactory();
83  auto & ip_warehouse = _app.getInputParameterWarehouse();
84 
85  MooseObjectParameterName primary_name(uniqueName(), parameter);
86  const auto base_type = factory.getValidParams(object_type).getBase();
87  MooseObjectParameterName secondary_name(base_type, object_name, object_parameter);
88  ip_warehouse.addControllableParameterConnection(primary_name, secondary_name);
89 
90  const auto & tags = _pars.get<std::vector<std::string>>("control_tags");
91  for (const auto & tag : tags)
92  {
93  if (!tag.empty())
94  {
95  // Only adds the parameter with the different control tags if the derived class
96  // properly registers the parameter to its own syntax
97  MooseObjectParameterName tagged_name(tag, name(), parameter);
98  ip_warehouse.addControllableParameterConnection(
99  tagged_name, secondary_name, /*error_on_empty=*/false);
100  }
101  }
102 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2940
MooseObjectName uniqueName() const
Definition: MooseBase.C:69
Factory & getFactory()
Retrieve a writable reference to the Factory associated with this App.
Definition: MooseApp.h:401
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
A class for storing an input parameter name.

◆ console()

const ConsoleStream& Problem::console ( ) const
inlineinherited

Return console handle.

Definition at line 48 of file Problem.h.

Referenced by Moose::SlepcSupport::mooseSlepcEPSMonitor(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

48 { return _console; }
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ constJacobian()

bool FEProblemBase::constJacobian ( ) const
inherited

Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed)

Definition at line 9043 of file FEProblemBase.C.

Referenced by Moose::SlepcSupport::moosePetscSNESFormMatricesTags(), and Moose::SlepcSupport::moosePetscSNESFormMatrixTag().

9044 {
9045  return _const_jacobian;
9046 }
bool _const_jacobian
true if the Jacobian is constant

◆ converged()

virtual bool SubProblem::converged ( const unsigned int  sys_num)
inlinevirtualinherited

Eventually we want to convert this virtual over to taking a solver system number argument.

We will have to first convert apps to use solverSystemConverged, and then once that is done, we can change this signature. Then we can go through the apps again and convert back to this changed API

Definition at line 113 of file SubProblem.h.

Referenced by FEProblemBase::initialSetup(), EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), DisplacedProblem::solverSystemConverged(), SubProblem::solverSystemConverged(), and AB2PredictorCorrector::step().

113 { return solverSystemConverged(sys_num); }
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ coordTransform()

MooseAppCoordTransform & FEProblemBase::coordTransform ( )
inherited
Returns
the coordinate transformation object that describes how to transform this problem's coordinate system into the canonical/reference coordinate system

Definition at line 9446 of file FEProblemBase.C.

9447 {
9448  return mesh().coordTransform();
9449 }
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1931
virtual MooseMesh & mesh() override

◆ copySolutionsBackwards()

void FEProblemBase::copySolutionsBackwards ( )
virtualinherited

Definition at line 6805 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6806 {
6807  TIME_SECTION("copySolutionsBackwards", 3, "Copying Solutions Backward");
6808 
6809  for (auto & sys : _solver_systems)
6810  sys->copySolutionsBackwards();
6811  _aux->copySolutionsBackwards();
6812 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ coupling()

Moose::CouplingType FEProblemBase::coupling ( ) const
inlineinherited

Definition at line 177 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), and NonlinearSystemBase::computeJacobianInternal().

177 { return _coupling; }
Moose::CouplingType _coupling
Type of variable coupling.

◆ couplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::couplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

◆ couplingMatrix()

const libMesh::CouplingMatrix * FEProblemBase::couplingMatrix ( const unsigned int  nl_sys_num) const
inlineoverridevirtualinherited

The coupling matrix defining what blocks exist in the preconditioning matrix.

Implements SubProblem.

Definition at line 3485 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), DisplacedProblem::couplingMatrix(), and DisplacedProblem::init().

3486 {
3487  return _cm[i].get();
3488 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ createMortarInterface()

void FEProblemBase::createMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced,
bool  periodic,
const bool  debug,
const bool  correct_edge_dropping,
const Real  minimum_projection_angle 
)
inherited

Definition at line 8018 of file FEProblemBase.C.

8026 {
8027  _has_mortar = true;
8028 
8029  if (on_displaced)
8030  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
8031  primary_secondary_subdomain_pair,
8033  on_displaced,
8034  periodic,
8035  debug,
8036  correct_edge_dropping,
8037  minimum_projection_angle);
8038  else
8039  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
8040  primary_secondary_subdomain_pair,
8041  *this,
8042  on_displaced,
8043  periodic,
8044  debug,
8045  correct_edge_dropping,
8046  minimum_projection_angle);
8047 }
void createMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &subdomain_key, SubProblem &subproblem, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
Create mortar generation object.
Definition: MortarData.C:22
MortarData _mortar_data
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ createQRules()

void FEProblemBase::createQRules ( libMesh::QuadratureType  type,
libMesh::Order  order,
libMesh::Order  volume_order = libMesh::INVALID_ORDER,
libMesh::Order  face_order = libMesh::INVALID_ORDER,
SubdomainID  block = Moose::ANY_BLOCK_ID,
bool  allow_negative_qweights = true 
)
virtualinherited

Definition at line 6225 of file FEProblemBase.C.

6231 {
6232  if (order == INVALID_ORDER)
6233  {
6234  // automatically determine the integration order
6235  order = _solver_systems[0]->getMinQuadratureOrder();
6236  for (const auto i : make_range(std::size_t(1), _solver_systems.size()))
6237  if (order < _solver_systems[i]->getMinQuadratureOrder())
6238  order = _solver_systems[i]->getMinQuadratureOrder();
6239  if (order < _aux->getMinQuadratureOrder())
6240  order = _aux->getMinQuadratureOrder();
6241  }
6242 
6243  if (volume_order == INVALID_ORDER)
6244  volume_order = order;
6245 
6246  if (face_order == INVALID_ORDER)
6247  face_order = order;
6248 
6249  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6250  for (const auto i : index_range(_solver_systems))
6251  _assembly[tid][i]->createQRules(
6252  type, order, volume_order, face_order, block, allow_negative_qweights);
6253 
6254  if (_displaced_problem)
6255  _displaced_problem->createQRules(
6256  type, order, volume_order, face_order, block, allow_negative_qweights);
6257 
6258  updateMaxQps();
6259 }
unsigned int n_threads()
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual void createQRules(libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ createTagMatrices()

void FEProblemBase::createTagMatrices ( CreateTaggedMatrixKey  )
inherited

Definition at line 694 of file FEProblemBase.C.

695 {
696  auto & matrices = getParam<std::vector<std::vector<TagName>>>("extra_tag_matrices");
697  for (const auto sys_num : index_range(matrices))
698  for (auto & matrix : matrices[sys_num])
699  {
700  auto tag = addMatrixTag(matrix);
701  _solver_systems[sys_num]->addMatrix(tag);
702  }
703 
704  for (auto & sys : _solver_systems)
705  sys->sizeVariableMatrixData();
706  _aux->sizeVariableMatrixData();
707 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:311
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
auto index_range(const T &sizable)

◆ createTagSolutions()

void FEProblemBase::createTagSolutions ( )
protectedinherited

Create extra tagged solution vectors.

Definition at line 710 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem().

711 {
712  for (auto & vector : getParam<std::vector<TagName>>("extra_tag_solutions"))
713  {
714  auto tag = addVectorTag(vector, Moose::VECTOR_TAG_SOLUTION);
715  for (auto & sys : _solver_systems)
716  sys->addVector(tag, false, libMesh::GHOSTED);
717  _aux->addVector(tag, false, libMesh::GHOSTED);
718  }
719 
721  {
722  // We'll populate the zeroth state of the nonlinear iterations with the current solution for
723  // ease of use in doing things like copying solutions backwards. We're just storing pointers in
724  // the solution states containers so populating the zeroth state does not cost us the memory of
725  // a new vector
727  }
728 
730  for (auto & sys : _solver_systems)
731  sys->associateVectorToTag(*sys->system().current_local_solution.get(), tag);
732  _aux->associateVectorToTag(*_aux->system().current_local_solution.get(), tag);
733 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:388
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _previous_nl_solution_required
Indicates we need to save the previous NL iteration variable values.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void needSolutionState(unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
Declare that we need up to old (1) or older (2) solution states for a given type of iteration...
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ createTagVectors()

void FEProblemBase::createTagVectors ( )
protectedinherited

Create extra tagged vectors and matrices.

Definition at line 672 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem().

673 {
674  // add vectors and their tags to system
675  auto & vectors = getParam<std::vector<std::vector<TagName>>>("extra_tag_vectors");
676  for (const auto sys_num : index_range(vectors))
677  for (auto & vector : vectors[sys_num])
678  {
679  auto tag = addVectorTag(vector);
680  _solver_systems[sys_num]->addVector(tag, false, libMesh::GHOSTED);
681  }
682 
683  auto & not_zeroed_vectors = getParam<std::vector<std::vector<TagName>>>("not_zeroed_tag_vectors");
684  for (const auto sys_num : index_range(not_zeroed_vectors))
685  for (auto & vector : not_zeroed_vectors[sys_num])
686  {
687  auto tag = addVectorTag(vector);
688  _solver_systems[sys_num]->addVector(tag, false, GHOSTED);
690  }
691 }
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
auto index_range(const T &sizable)
void addNotZeroedVectorTag(const TagID tag)
Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are...
Definition: SubProblem.C:149

◆ currentLinearSysNum()

unsigned int FEProblemBase::currentLinearSysNum ( ) const
overridevirtualinherited
Returns
the current linear system number

Implements SubProblem.

Definition at line 9463 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentLinearSysNum().

9464 {
9465  // If we don't have linear systems this should be an invalid number
9466  unsigned int current_linear_sys_num = libMesh::invalid_uint;
9467  if (_linear_systems.size())
9468  current_linear_sys_num = currentLinearSystem().number();
9469 
9470  return current_linear_sys_num;
9471 }
const unsigned int invalid_uint
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
LinearSystem & currentLinearSystem()
Get a non-constant reference to the current linear system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ currentLinearSystem() [1/2]

LinearSystem & FEProblemBase::currentLinearSystem ( )
inlineinherited

Get a non-constant reference to the current linear system.

Definition at line 3453 of file FEProblemBase.h.

Referenced by FEProblemBase::currentLinearSysNum(), and Moose::PetscSupport::petscLinearConverged().

3454 {
3455  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3456  return *_current_linear_sys;
3457 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentLinearSystem() [2/2]

const LinearSystem & FEProblemBase::currentLinearSystem ( ) const
inlineinherited

Get a constant reference to the current linear system.

Definition at line 3460 of file FEProblemBase.h.

3461 {
3462  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3463  return *_current_linear_sys;
3464 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentlyComputingJacobian()

const bool& SubProblem::currentlyComputingJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the Jacobian.

Definition at line 684 of file SubProblem.h.

Referenced by PenetrationLocator::detectPenetration(), ComputeUserObjectsThread::onBoundary(), ComputeUserObjectsThread::onElement(), ComputeUserObjectsThread::printBlockExecutionInformation(), SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ currentlyComputingResidual() [1/2]

const bool& SubProblem::currentlyComputingResidual ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidual() [2/2]

const bool& SubProblem::currentlyComputingResidual
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidualAndJacobian()

const bool & SubProblem::currentlyComputingResidualAndJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual and the Jacobian.

Definition at line 1487 of file SubProblem.h.

Referenced by SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

1488 {
1490 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ currentNlSysNum()

unsigned int FEProblemBase::currentNlSysNum ( ) const
overridevirtualinherited
Returns
the current nonlinear system number

Implements SubProblem.

Definition at line 9452 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentNlSysNum(), FEProblemBase::jacobianSetup(), and FEProblemBase::residualSetup().

9453 {
9454  // If we don't have nonlinear systems this should be an invalid number
9455  unsigned int current_nl_sys_num = libMesh::invalid_uint;
9456  if (_nl.size())
9457  current_nl_sys_num = currentNonlinearSystem().number();
9458 
9459  return current_nl_sys_num;
9460 }
const unsigned int invalid_uint
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase & currentNonlinearSystem()
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ currentNonlinearSystem() [1/2]

NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( )
inlineinherited

◆ currentNonlinearSystem() [2/2]

const NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( ) const
inlineinherited

Definition at line 3430 of file FEProblemBase.h.

3431 {
3432  mooseAssert(_current_nl_sys, "The nonlinear system is not currently set");
3433  return *_current_nl_sys;
3434 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.

◆ currentResidualVectorTags()

const std::vector< VectorTag > & FEProblemBase::currentResidualVectorTags ( ) const
inlineoverridevirtualinherited

Return the residual vector tags we are currently computing.

Implements SubProblem.

Definition at line 3501 of file FEProblemBase.h.

Referenced by FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), and DisplacedProblem::currentResidualVectorTags().

3502 {
3504 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ customSetup()

void FEProblemBase::customSetup ( const ExecFlagType exec_type)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 4771 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

4772 {
4773  SubProblem::customSetup(exec_type);
4774 
4775  if (_line_search)
4776  _line_search->customSetup(exec_type);
4777 
4778  unsigned int n_threads = libMesh::n_threads();
4779  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4780  {
4781  _all_materials.customSetup(exec_type, tid);
4782  _functions.customSetup(exec_type, tid);
4783  }
4784 
4785  _aux->customSetup(exec_type);
4786  for (auto & nl : _nl)
4787  nl->customSetup(exec_type);
4788 
4789  if (_displaced_problem)
4790  _displaced_problem->customSetup(exec_type);
4791 
4792  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4793  {
4794  _internal_side_indicators.customSetup(exec_type, tid);
4795  _indicators.customSetup(exec_type, tid);
4796  _markers.customSetup(exec_type, tid);
4797  }
4798 
4799  std::vector<UserObject *> userobjs;
4800  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
4801  for (auto obj : userobjs)
4802  obj->customSetup(exec_type);
4803 
4804  _app.getOutputWarehouse().customSetup(exec_type);
4805 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
void customSetup(const ExecFlagType &exec_type)
Calls the setup function for each of the output objects.
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SubProblem.C:1193
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
MooseObjectWarehouse< Indicator > _indicators
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
unsigned int THREAD_ID
Definition: MooseTypes.h:209
std::shared_ptr< LineSearch > _line_search

◆ declareManagedRestartableDataWithContext()

template<typename T , typename... Args>
Restartable::ManagedValue< T > Restartable::declareManagedRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declares a piece of "managed" restartable data and initialize it.

Here, "managed" restartable data means that the caller can destruct this data upon destruction of the return value of this method. Therefore, this ManagedValue<T> wrapper should survive after the final calls to dataStore() for it. That is... at the very end.

This is needed for objects whose destruction ordering is important, and enables natural c++ destruction in reverse construction order of the object that declares it.

See delcareRestartableData and declareRestartableDataWithContext for more information.

Definition at line 283 of file Restartable.h.

286 {
287  auto & data_ptr =
288  declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...);
289  return Restartable::ManagedValue<T>(data_ptr);
290 }
Wrapper class for restartable data that is "managed.
Definition: Restartable.h:42

◆ declareRecoverableData()

template<typename T , typename... Args>
T & Restartable::declareRecoverableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "recoverable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

Note - this data will NOT be restored on Restart!

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 358 of file Restartable.h.

359 {
360  const auto full_name = restartableName(data_name);
361 
363 
364  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
365 }
std::string restartableName(const std::string &data_name) const
Gets the name of a piece of restartable data given a data name, adding the system name and object nam...
Definition: Restartable.C:78
void registerRestartableNameWithFilterOnApp(const std::string &name, Moose::RESTARTABLE_FILTER filter)
Helper function for actually registering the restartable data.
Definition: Restartable.C:71

◆ declareRestartableData()

template<typename T , typename... Args>
T & Restartable::declareRestartableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 276 of file Restartable.h.

277 {
278  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
279 }

◆ declareRestartableDataWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 301 of file Restartable.h.

304 {
305  return declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...).set();
306 }

◆ declareRestartableDataWithObjectName()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectName ( const std::string &  data_name,
const std::string &  object_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
argsArguments to forward to the constructor of the data

Definition at line 330 of file Restartable.h.

333 {
334  return declareRestartableDataWithObjectNameWithContext<T>(
335  data_name, object_name, nullptr, std::forward<Args>(args)...);
336 }

◆ declareRestartableDataWithObjectNameWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectNameWithContext ( const std::string &  data_name,
const std::string &  object_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 340 of file Restartable.h.

344 {
345  std::string old_name = _restartable_name;
346 
347  _restartable_name = object_name;
348 
349  T & value = declareRestartableDataWithContext<T>(data_name, context, std::forward<Args>(args)...);
350 
351  _restartable_name = old_name;
352 
353  return value;
354 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:250
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)

◆ defaultGhosting()

bool SubProblem::defaultGhosting ( )
inlineinherited

Whether or not the user has requested default ghosting ot be on.

Definition at line 144 of file SubProblem.h.

Referenced by AuxiliarySystem::AuxiliarySystem(), DisplacedSystem::DisplacedSystem(), and NonlinearSystemBase::NonlinearSystemBase().

144 { return _default_ghosting; }
bool _default_ghosting
Whether or not to use default libMesh coupling.
Definition: SubProblem.h:1090

◆ diracKernelInfo()

DiracKernelInfo & SubProblem::diracKernelInfo ( )
virtualinherited

Definition at line 748 of file SubProblem.C.

749 {
750  return _dirac_kernel_info;
751 }
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ doingPRefinement()

bool SubProblem::doingPRefinement ( ) const
inherited
Returns
whether we're doing p-refinement

Definition at line 1361 of file SubProblem.C.

Referenced by FEProblemBase::meshChanged().

1362 {
1363  return mesh().doingPRefinement();
1364 }
virtual MooseMesh & mesh()=0
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1373

◆ dt()

virtual Real& FEProblemBase::dt ( ) const
inlinevirtualinherited

◆ dtOld()

virtual Real& FEProblemBase::dtOld ( ) const
inlinevirtualinherited

Definition at line 545 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

545 { return _dt_old; }

◆ duplicateVariableCheck()

bool FEProblemBase::duplicateVariableCheck ( const std::string &  var_name,
const libMesh::FEType type,
bool  is_aux,
const std::set< SubdomainID > *const  active_subdomains 
)
protectedinherited

Helper to check for duplicate variable names across systems or within a single system.

Definition at line 2771 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

2775 {
2776  std::set<SubdomainID> subdomainIDs;
2777  if (active_subdomains->size() == 0)
2778  {
2779  const auto subdomains = _mesh.meshSubdomains();
2780  subdomainIDs.insert(subdomains.begin(), subdomains.end());
2781  }
2782  else
2783  subdomainIDs.insert(active_subdomains->begin(), active_subdomains->end());
2784 
2785  for (auto & sys : _solver_systems)
2786  {
2787  SystemBase * curr_sys_ptr = sys.get();
2788  SystemBase * other_sys_ptr = _aux.get();
2789  std::string error_prefix = "";
2790  if (is_aux)
2791  {
2792  curr_sys_ptr = _aux.get();
2793  other_sys_ptr = sys.get();
2794  error_prefix = "aux";
2795  }
2796 
2797  if (other_sys_ptr->hasVariable(var_name))
2798  mooseError("Cannot have an auxiliary variable and a solver variable with the same name: ",
2799  var_name);
2800 
2801  if (curr_sys_ptr->hasVariable(var_name))
2802  {
2803  const Variable & var =
2804  curr_sys_ptr->system().variable(curr_sys_ptr->system().variable_number(var_name));
2805 
2806  // variable type
2807  if (var.type() != type)
2808  {
2809  const auto stringifyType = [](FEType t)
2810  { return Moose::stringify(t.family) + " of order " + Moose::stringify(t.order); };
2811 
2812  mooseError("Mismatching types are specified for ",
2813  error_prefix,
2814  "variable with name '",
2815  var_name,
2816  "': '",
2817  stringifyType(var.type()),
2818  "' and '",
2819  stringifyType(type),
2820  "'");
2821  }
2822 
2823  // block-restriction
2824  if (!(active_subdomains->size() == 0 && var.active_subdomains().size() == 0))
2825  {
2826  const auto varActiveSubdomains = var.active_subdomains();
2827  std::set<SubdomainID> varSubdomainIDs;
2828  if (varActiveSubdomains.size() == 0)
2829  {
2830  const auto subdomains = _mesh.meshSubdomains();
2831  varSubdomainIDs.insert(subdomains.begin(), subdomains.end());
2832  }
2833  else
2834  varSubdomainIDs.insert(varActiveSubdomains.begin(), varActiveSubdomains.end());
2835 
2836  // Is subdomainIDs a subset of varSubdomainIDs? With this we allow the case that the newly
2837  // requested block restriction is only a subset of the existing one.
2838  const auto isSubset = std::includes(varSubdomainIDs.begin(),
2839  varSubdomainIDs.end(),
2840  subdomainIDs.begin(),
2841  subdomainIDs.end());
2842 
2843  if (!isSubset)
2844  {
2845  // helper function: make a string from a set of subdomain ids
2846  const auto stringifySubdomains = [this](std::set<SubdomainID> subdomainIDs)
2847  {
2848  std::stringstream s;
2849  for (auto const i : subdomainIDs)
2850  {
2851  // do we need to insert a comma?
2852  if (s.tellp() != 0)
2853  s << ", ";
2854 
2855  // insert subdomain name and id -or- only the id (if no name is given)
2856  const auto subdomainName = _mesh.getSubdomainName(i);
2857  if (subdomainName.empty())
2858  s << i;
2859  else
2860  s << subdomainName << " (" << i << ")";
2861  }
2862  return s.str();
2863  };
2864 
2865  const std::string msg = "Mismatching block-restrictions are specified for " +
2866  error_prefix + "variable with name '" + var_name + "': {" +
2867  stringifySubdomains(varSubdomainIDs) + "} and {" +
2868  stringifySubdomains(subdomainIDs) + "}";
2869 
2870  mooseError(msg);
2871  }
2872  }
2873 
2874  return true;
2875  }
2876  }
2877 
2878  return false;
2879 }
const Variable & variable(unsigned int var) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1801
unsigned int variable_number(std::string_view var) const
const std::set< subdomain_id_type > & active_subdomains() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3211
const FEType & type() const

◆ enabled()

virtual bool MooseObject::enabled ( ) const
inlinevirtualinherited

Return the enabled status of the object.

Reimplemented in EigenKernel.

Definition at line 46 of file MooseObject.h.

Referenced by EigenKernel::enabled().

46 { return _enabled; }
const bool & _enabled
Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.
Definition: MooseObject.h:80

◆ errorOnJacobianNonzeroReallocation()

bool FEProblemBase::errorOnJacobianNonzeroReallocation ( ) const
inlineinherited

Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc.

Definition at line 2134 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

2135  {
2137  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ errorPrefix()

std::string MooseBase::errorPrefix ( const std::string &  ) const
inlineinherited

Deprecated message prefix; the error type is no longer used.

Definition at line 264 of file MooseBase.h.

264 { return messagePrefix(); }
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ es()

virtual libMesh::EquationSystems& FEProblemBase::es ( )
inlineoverridevirtualinherited

◆ execMultiApps()

bool FEProblemBase::execMultiApps ( ExecFlagType  type,
bool  auto_advance = true 
)
inherited

Execute the MultiApps associated with the ExecFlagType.

Definition at line 5615 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), MFEMSteady::execute(), TransientBase::execute(), SteadyBase::execute(), Eigenvalue::execute(), FEProblemBase::initialSetup(), EigenExecutionerBase::postExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

5616 {
5617  // Active MultiApps
5618  const std::vector<MooseSharedPointer<MultiApp>> & multi_apps =
5620 
5621  // Do anything that needs to be done to Apps before transfers
5622  for (const auto & multi_app : multi_apps)
5623  multi_app->preTransfer(_dt, _time);
5624 
5625  // Execute Transfers _to_ MultiApps
5627 
5628  // Execute Transfers _between_ Multiapps
5630 
5631  // Execute MultiApps
5632  if (multi_apps.size())
5633  {
5634  TIME_SECTION("execMultiApps", 1, "Executing MultiApps", false);
5635 
5636  if (_verbose_multiapps)
5637  _console << COLOR_CYAN << "\nExecuting MultiApps on " << Moose::stringify(type)
5638  << COLOR_DEFAULT << std::endl;
5639 
5640  bool success = true;
5641 
5642  for (const auto & multi_app : multi_apps)
5643  {
5644  success = multi_app->solveStep(_dt, _time, auto_advance);
5645  // no need to finish executing the subapps if one fails
5646  if (!success)
5647  break;
5648  }
5649 
5651 
5652  _communicator.min(success);
5653 
5654  if (!success)
5655  return false;
5656 
5657  if (_verbose_multiapps)
5658  _console << COLOR_CYAN << "Finished Executing MultiApps on " << Moose::stringify(type) << "\n"
5659  << COLOR_DEFAULT << std::endl;
5660  }
5661 
5662  // Execute Transfers _from_ MultiApps
5664 
5665  // If we made it here then everything passed
5666  return true;
5667 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void execMultiAppTransfers(ExecFlagType type, Transfer::DIRECTION direction)
Execute MultiAppTransfers associated with execution flag and direction.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execMultiAppTransfers()

void FEProblemBase::execMultiAppTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
)
inherited

Execute MultiAppTransfers associated with execution flag and direction.

Parameters
typeThe execution flag to execute.
directionThe direction (to or from) to transfer.

Definition at line 5515 of file FEProblemBase.C.

Referenced by FEProblemBase::execMultiApps().

5516 {
5517  bool to_multiapp = direction == MultiAppTransfer::TO_MULTIAPP;
5518  bool from_multiapp = direction == MultiAppTransfer::FROM_MULTIAPP;
5519  std::string string_direction;
5520  if (to_multiapp)
5521  string_direction = " To ";
5522  else if (from_multiapp)
5523  string_direction = " From ";
5524  else
5525  string_direction = " Between ";
5526 
5527  const MooseObjectWarehouse<Transfer> & wh = to_multiapp ? _to_multi_app_transfers[type]
5528  : from_multiapp ? _from_multi_app_transfers[type]
5530 
5531  if (wh.hasActiveObjects())
5532  {
5533  TIME_SECTION("execMultiAppTransfers", 1, "Executing Transfers");
5534 
5535  const auto & transfers = wh.getActiveObjects();
5536 
5537  if (_verbose_multiapps)
5538  {
5539  _console << COLOR_CYAN << "\nTransfers on " << Moose::stringify(type) << string_direction
5540  << "MultiApps" << COLOR_DEFAULT << ":" << std::endl;
5541 
5543  {"Name", "Type", "From", "To"});
5544 
5545  // Build Table of Transfer Info
5546  for (const auto & transfer : transfers)
5547  {
5548  auto multiapp_transfer = dynamic_cast<MultiAppTransfer *>(transfer.get());
5549 
5550  table.addRow(multiapp_transfer->name(),
5551  multiapp_transfer->type(),
5552  multiapp_transfer->getFromName(),
5553  multiapp_transfer->getToName());
5554  }
5555 
5556  // Print it
5557  table.print(_console);
5558  }
5559 
5560  for (const auto & transfer : transfers)
5561  {
5562  transfer->setCurrentDirection(direction);
5563  transfer->execute();
5564  }
5565 
5567 
5568  if (_verbose_multiapps)
5569  _console << COLOR_CYAN << "Transfers on " << Moose::stringify(type) << " Are Finished\n"
5570  << COLOR_DEFAULT << std::endl;
5571  }
5572  else if (_multi_apps[type].getActiveObjects().size())
5573  {
5574  if (_verbose_multiapps)
5575  _console << COLOR_CYAN << "\nNo Transfers on " << Moose::stringify(type) << string_direction
5576  << "MultiApps\n"
5577  << COLOR_DEFAULT << std::endl;
5578  }
5579 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
A class for "pretty printing" a table of data.
Definition: PerfGraph.h:34
void setCurrentDirection(const int direction)
Set this Transfer to be executed in a given direction.
Definition: Transfer.h:89
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const
Base class for all MultiAppTransfer objects.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execTransfers()

void FEProblemBase::execTransfers ( ExecFlagType  type)
inherited

Execute the Transfers associated with the ExecFlagType.

Note: This does not execute MultiApp Transfers! Those are executed automatically when MultiApps are executed.

Definition at line 5785 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::initialSetup(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5786 {
5787  if (_transfers[type].hasActiveObjects())
5788  {
5789  TIME_SECTION("execTransfers", 3, "Executing Transfers");
5790 
5791  const auto & transfers = _transfers[type].getActiveObjects();
5792 
5793  for (const auto & transfer : transfers)
5794  transfer->execute();
5795  }
5796 }
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ execute()

void FEProblemBase::execute ( const ExecFlagType exec_type)
virtualinherited

Convenience function for performing execution of MOOSE systems.

Reimplemented in EigenProblem, and DumpObjectsProblem.

Definition at line 4808 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::chebyshev(), FixedPointSolve::examineFixedPointConvergence(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), EigenProblem::execute(), NonlinearEigen::init(), MFEMSteady::init(), Steady::init(), EigenExecutionerBase::init(), TransientBase::init(), FEProblemBase::initialSetup(), EigenExecutionerBase::makeBXConsistent(), EigenExecutionerBase::normalizeSolution(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), EigenExecutionerBase::postExecute(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), FixedPointSolve::solveStep(), InversePowerMethod::takeStep(), and NonlinearEigen::takeStep().

4809 {
4810  // Set the current flag
4811  setCurrentExecuteOnFlag(exec_type);
4812 
4813  if (exec_type != EXEC_INITIAL)
4814  executeControls(exec_type);
4815 
4816  // intentially call this after executing controls because the setups may rely on the controls
4817  // FIXME: we skip the following flags because they have dedicated setup functions in
4818  // SetupInterface and it may not be appropriate to call them here.
4819  if (!(exec_type == EXEC_INITIAL || exec_type == EXEC_TIMESTEP_BEGIN ||
4820  exec_type == EXEC_SUBDOMAIN || exec_type == EXEC_NONLINEAR || exec_type == EXEC_LINEAR))
4821  customSetup(exec_type);
4822 
4823  // Samplers; EXEC_INITIAL is not called because the Sampler::init() method that is called after
4824  // construction makes the first Sampler::execute() call. This ensures that the random number
4825  // generator object is the correct state prior to any other object (e.g., Transfers) attempts to
4826  // extract data from the Sampler. That is, if the Sampler::execute() call is delayed to here
4827  // then it is not in the correct state for other objects.
4828  if (exec_type != EXEC_INITIAL)
4829  executeSamplers(exec_type);
4830 
4831  // Pre-aux UserObjects
4832  computeUserObjects(exec_type, Moose::PRE_AUX);
4833 
4834  // Systems (includes system time derivative and aux kernel calculations)
4835  computeSystems(exec_type);
4836  // With the auxiliary system solution computed, sync the displaced problem auxiliary solution
4837  // before computation of post-aux user objects. The undisplaced auxiliary system current local
4838  // solution is updated (via System::update) within the AuxiliarySystem class's variable
4839  // computation methods (e.g. computeElementalVarsHelper, computeNodalVarsHelper), so it is safe to
4840  // use it here
4841  if (_displaced_problem)
4842  _displaced_problem->syncAuxSolution(*getAuxiliarySystem().currentSolution());
4843 
4844  // Post-aux UserObjects
4845  computeUserObjects(exec_type, Moose::POST_AUX);
4846 
4847  // Return the current flag to None
4849 
4851  {
4852  // we will only check aux variables and postprocessors
4853  // checking more reporter data can be added in the future if needed
4854  std::unique_ptr<NumericVector<Number>> x = _aux->currentSolution()->clone();
4856 
4857  // call THIS execute one more time for checking the possible states
4858  _checking_uo_aux_state = true;
4859  FEProblemBase::execute(exec_type);
4860  _checking_uo_aux_state = false;
4861 
4862  const Real check_tol = 1e-8;
4863 
4864  const Real xnorm = x->l2_norm();
4865  *x -= *_aux->currentSolution();
4866  if (x->l2_norm() > check_tol * xnorm)
4867  {
4868  const auto & sys = _aux->system();
4869  const unsigned int n_vars = sys.n_vars();
4870  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4871  for (const auto i : make_range(n_vars))
4872  {
4873  const Real vnorm = sys.calculate_norm(*x, i, DISCRETE_L2);
4874  ordered_map.emplace(vnorm, sys.variable_name(i));
4875  }
4876 
4877  std::ostringstream oss;
4878  for (const auto & [error_norm, var_name] : ordered_map)
4879  oss << " {" << var_name << ", " << error_norm << "},\n";
4880 
4881  mooseError("Aux kernels, user objects appear to have states for aux variables on ",
4882  exec_type,
4883  ".\nVariable error norms in descending order:\n",
4884  oss.str());
4885  }
4886 
4888  if (pp_values.size() != new_pp_values.size())
4889  mooseError("Second execution for uo/aux state check should not change the number of "
4890  "real reporter values");
4891 
4892  const Real ppnorm = pp_values.l2_norm();
4893  pp_values -= new_pp_values;
4894  if (pp_values.l2_norm() > check_tol * ppnorm)
4895  {
4896  const auto pp_names = getReporterData().getAllRealReporterFullNames();
4897  std::multimap<Real, std::string, std::greater<Real>> ordered_map;
4898  for (const auto i : index_range(pp_names))
4899  ordered_map.emplace(std::abs(pp_values(i)), pp_names[i]);
4900 
4901  std::ostringstream oss;
4902  for (const auto & [error_norm, pp_name] : ordered_map)
4903  oss << " {" << pp_name << ", " << error_norm << "},\n";
4904 
4905  mooseError("Aux kernels, user objects appear to have states for real reporter values on ",
4906  exec_type,
4907  ".\nErrors of real reporter values in descending order:\n",
4908  oss.str());
4909  }
4910  }
4911 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:42
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setCurrentExecuteOnFlag(const ExecFlagType &)
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void execute(const ExecFlagType &exec_type)
Convenience function for performing execution of MOOSE systems.
const ReporterData & getReporterData() const
Provides const access the ReporterData object.
DenseVector< Real > getAllRealReporterValues() const
Get all real reporter values including postprocessor and vector postprocessor values into a dense vec...
Definition: ReporterData.C:81
unsigned int n_vars
Real l2_norm() const
std::vector< std::string > getAllRealReporterFullNames() const
Get full names of all real reporter values Note: For a postprocessor, the full name is the postproces...
Definition: ReporterData.C:106
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
void executeSamplers(const ExecFlagType &exec_type)
Performs setup and execute calls for Sampler objects.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
AuxiliarySystem & getAuxiliarySystem()
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void customSetup(const ExecFlagType &exec_type) override
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual unsigned int size() const override final
std::shared_ptr< DisplacedProblem > _displaced_problem
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
auto index_range(const T &sizable)
void computeSystems(const ExecFlagType &type)
Do generic system computations.
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ executeAllObjects()

void FEProblemBase::executeAllObjects ( const ExecFlagType exec_type)
virtualinherited

Definition at line 4766 of file FEProblemBase.C.

Referenced by Executor::exec().

4767 {
4768 }

◆ executeControls()

void FEProblemBase::executeControls ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Control objects.

Definition at line 5209 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

5210 {
5211  if (_control_warehouse[exec_type].hasActiveObjects())
5212  {
5213  TIME_SECTION("executeControls", 1, "Executing Controls");
5214 
5216 
5217  auto controls_wh = _control_warehouse[exec_type];
5218  // Add all of the dependencies into the resolver and sort them
5219  for (const auto & it : controls_wh.getActiveObjects())
5220  {
5221  // Make sure an item with no dependencies comes out too!
5222  resolver.addItem(it);
5223 
5224  std::vector<std::string> & dependent_controls = it->getDependencies();
5225  for (const auto & depend_name : dependent_controls)
5226  {
5227  if (controls_wh.hasActiveObject(depend_name))
5228  {
5229  auto dep_control = controls_wh.getActiveObject(depend_name);
5230  resolver.addEdge(dep_control, it);
5231  }
5232  else
5233  mooseError("The Control \"",
5234  depend_name,
5235  "\" was not created, did you make a "
5236  "spelling mistake or forget to include it "
5237  "in your input file?");
5238  }
5239  }
5240 
5241  const auto & ordered_controls = resolver.getSortedValues();
5242 
5243  if (!ordered_controls.empty())
5244  {
5245  _control_warehouse.setup(exec_type);
5246  // Run the controls in the proper order
5247  for (const auto & control : ordered_controls)
5248  control->execute();
5249  }
5250  }
5251 }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
const std::vector< T > & getSortedValues()
This function also returns dependency resolved values but with a simpler single vector interface...
void setup(const ExecFlagType &exec_flag, THREAD_ID tid=0) const
void addEdge(const T &a, const T &b)
Add an edge between nodes &#39;a&#39; and &#39;b&#39;.
void addItem(const T &value)
Add an independent item to the set.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
Class that represents the dependecy as a graph.

◆ executeSamplers()

void FEProblemBase::executeSamplers ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Sampler objects.

Definition at line 5254 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

5255 {
5256  // TODO: This should be done in a threaded loop, but this should be super quick so for now
5257  // do a serial loop.
5258  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5259  {
5260  std::vector<Sampler *> objects;
5261  theWarehouse()
5262  .query()
5263  .condition<AttribSystem>("Sampler")
5264  .condition<AttribThread>(tid)
5265  .condition<AttribExecOns>(exec_type)
5266  .queryInto(objects);
5267 
5268  if (!objects.empty())
5269  {
5270  TIME_SECTION("executeSamplers", 1, "Executing Samplers");
5271  FEProblemBase::objectSetupHelper<Sampler>(objects, exec_type);
5272  FEProblemBase::objectExecuteHelper<Sampler>(objects);
5273  }
5274  }
5275 }
unsigned int n_threads()
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ feBackend()

virtual Moose::FEBackend FEProblemBase::feBackend ( ) const
inlinevirtualinherited

◆ finalizeMultiApps()

void FEProblemBase::finalizeMultiApps ( )
inherited

Definition at line 5670 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5671 {
5672  const auto & multi_apps = _multi_apps.getActiveObjects();
5673 
5674  for (const auto & multi_app : multi_apps)
5675  multi_app->finalize();
5676 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ finalNonlinearResidual()

Real FEProblemBase::finalNonlinearResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6793 of file FEProblemBase.C.

6794 {
6795  return _nl[nl_sys_num]->finalNonlinearResidual();
6796 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ finishMultiAppStep()

void FEProblemBase::finishMultiAppStep ( ExecFlagType  type,
bool  recurse_through_multiapp_levels = false 
)
inherited

Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.

Optionally recurse through all multi-app levels

Definition at line 5698 of file FEProblemBase.C.

Referenced by FEProblemBase::advanceMultiApps(), TransientBase::execute(), TransientMultiApp::finishStep(), and TransientBase::incrementStepOrReject().

5699 {
5700  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5701 
5702  if (multi_apps.size())
5703  {
5704  if (_verbose_multiapps)
5705  _console << COLOR_CYAN << "\nAdvancing MultiApps on " << type.name() << COLOR_DEFAULT
5706  << std::endl;
5707 
5708  for (const auto & multi_app : multi_apps)
5709  multi_app->finishStep(recurse_through_multiapp_levels);
5710 
5712 
5713  if (_verbose_multiapps)
5714  _console << COLOR_CYAN << "Finished Advancing MultiApps on " << type.name() << "\n"
5715  << COLOR_DEFAULT << std::endl;
5716  }
5717 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ forceOutput()

void FEProblemBase::forceOutput ( )
inherited

Indicates that the next call to outputStep should be forced.

This is needed by the MultiApp system, if forceOutput is called the next call to outputStep, regardless of the type supplied to the call, will be executed with EXEC_FORCED.

Forced output will NOT override the allowOutput flag.

Definition at line 6928 of file FEProblemBase.C.

Referenced by TransientMultiApp::solveStep().

6929 {
6931 }
void forceOutput()
Indicates that the next call to outputStep should be forced This is private, users should utilize FEP...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482

◆ fvBCsIntegrityCheck() [1/2]

bool FEProblemBase::fvBCsIntegrityCheck ( ) const
inlineinherited
Returns
whether to perform a boundary condition integrity check for finite volume

Definition at line 2462 of file FEProblemBase.h.

2462 { return _fv_bcs_integrity_check; }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ fvBCsIntegrityCheck() [2/2]

void FEProblemBase::fvBCsIntegrityCheck ( bool  fv_bcs_integrity_check)
inlineinherited
Parameters
fv_bcs_integrity_checkWhether to perform a boundary condition integrity check for finite volume

Definition at line 3491 of file FEProblemBase.h.

3492 {
3494  // the user has requested that we don't check integrity so we will honor that
3495  return;
3496 
3497  _fv_bcs_integrity_check = fv_bcs_integrity_check;
3498 }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ geomSearchData()

virtual GeometricSearchData& FEProblemBase::geomSearchData ( )
inlineoverridevirtualinherited

◆ getActiveElementalMooseVariables()

const std::set< MooseVariableFEBase * > & SubProblem::getActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Get the MOOSE variables to be reinited on each element.

Parameters
tidThe thread id

Definition at line 454 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), FEProblemBase::prepareMaterials(), and SystemBase::reinitElem().

455 {
457 }
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) ...
Definition: SubProblem.h:1075

◆ getActiveFEVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 390 of file SubProblem.C.

391 {
393 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
Definition: SubProblem.h:1081

◆ getActiveFEVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 396 of file SubProblem.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

397 {
399 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
Definition: SubProblem.h:1083

◆ getActiveScalarVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 431 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit().

432 {
434 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
Definition: SubProblem.h:1085

◆ getActiveScalarVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 437 of file SubProblem.C.

438 {
440 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
Definition: SubProblem.h:1087

◆ getActualFieldVariable()

MooseVariableFieldBase & FEProblemBase::getActualFieldVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariableField which may be in any system.

Implements SubProblem.

Definition at line 5915 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSampleTransfer::execute().

5916 {
5917  for (auto & sys : _solver_systems)
5918  if (sys->hasVariable(var_name))
5919  return sys->getActualFieldVariable<Real>(tid, var_name);
5920  if (_aux->hasVariable(var_name))
5921  return _aux->getActualFieldVariable<Real>(tid, var_name);
5922 
5923  mooseError("Unknown variable " + var_name);
5924 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getArrayVariable()

ArrayMooseVariable & FEProblemBase::getArrayVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested ArrayMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5939 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), and PointwiseRenormalizeVector::PointwiseRenormalizeVector().

5940 {
5941  for (auto & sys : _solver_systems)
5942  if (sys->hasVariable(var_name))
5943  return sys->getFieldVariable<RealEigenVector>(tid, var_name);
5944  if (_aux->hasVariable(var_name))
5945  return _aux->getFieldVariable<RealEigenVector>(tid, var_name);
5946 
5947  mooseError("Unknown variable " + var_name);
5948 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
Eigen::Matrix< Real, Eigen::Dynamic, 1 > RealEigenVector
Definition: MooseTypes.h:146

◆ getAuxiliarySystem()

AuxiliarySystem& FEProblemBase::getAuxiliarySystem ( )
inlineinherited

◆ getAxisymmetricRadialCoord()

unsigned int SubProblem::getAxisymmetricRadialCoord ( ) const
inherited

Returns the desired radial direction for RZ coordinate transformation.

Returns
The coordinate direction for the radial direction

Definition at line 796 of file SubProblem.C.

797 {
798  return mesh().getAxisymmetricRadialCoord();
799 }
virtual MooseMesh & mesh()=0
unsigned int getAxisymmetricRadialCoord() const
Returns the desired radial direction for RZ coordinate transformation.
Definition: MooseMesh.C:4334

◆ getBase()

const std::string& MooseBase::getBase ( ) const
inlineinherited
Returns
The registered base for this object (set via InputParameters::registerBase())

Definition at line 147 of file MooseBase.h.

Referenced by Factory::copyConstruct(), and MooseBase::uniqueParameterName().

147 { return _pars.getBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & getBase() const

◆ getBndMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getBndMaterialPropertyStorage ( )
inlineinherited

Definition at line 1832 of file FEProblemBase.h.

1832 { return _bnd_material_props; }
MaterialPropertyStorage & _bnd_material_props

◆ getCheckedPointerParam()

template<typename T >
T MooseBase::getCheckedPointerParam ( const std::string &  name,
const std::string &  error_string = "" 
) const
inherited

Verifies that the requested parameter exists and is not NULL and returns it to the caller.

The template parameter must be a pointer or an error will be thrown.

Definition at line 432 of file MooseBase.h.

433 {
434  return _pars.getCheckedPointerParam<T>(name, error_string);
435 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
T getCheckedPointerParam(const std::string &name, const std::string &error_string="") const
Verifies that the requested parameter exists and is not NULL and returns it to the caller...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ getConsumedPropertyMap()

const std::map< MooseObjectName, std::set< std::string > > & SubProblem::getConsumedPropertyMap ( ) const
inherited

Return the map that tracks the object with consumed material properties.

Definition at line 742 of file SubProblem.C.

Referenced by MaterialPropertyDebugOutput::output().

743 {
745 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ getControlWarehouse()

ExecuteMooseObjectWarehouse<Control>& FEProblemBase::getControlWarehouse ( )
inlineinherited

Reference to the control logic warehouse.

Definition at line 2254 of file FEProblemBase.h.

Referenced by LibtorchArtificialNeuralNetParameters::initialSetup(), and LibtorchControlValuePostprocessor::initialSetup().

2254 { return _control_warehouse; }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.

◆ getConvergence()

Convergence & FEProblemBase::getConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Gets a Convergence object.

Definition at line 2659 of file FEProblemBase.C.

Referenced by TransientBase::convergedToSteadyState(), FEProblemSolve::convergenceSetup(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), TransientBase::init(), ParsedConvergence::initializeConvergenceSymbol(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

2660 {
2661  auto * const ret = dynamic_cast<Convergence *>(_convergences.getActiveObject(name, tid).get());
2662  if (!ret)
2663  mooseError("The Convergence object '", name, "' does not exist.");
2664 
2665  return *ret;
2666 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
Base class for convergence criteria.
Definition: Convergence.h:21
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getConvergenceObjects()

const std::vector< std::shared_ptr< Convergence > > & FEProblemBase::getConvergenceObjects ( const THREAD_ID  tid = 0) const
virtualinherited

Gets the Convergence objects.

Definition at line 2669 of file FEProblemBase.C.

2670 {
2671  return _convergences.getActiveObjects(tid);
2672 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse

◆ getCoordSystem()

Moose::CoordinateSystemType SubProblem::getCoordSystem ( SubdomainID  sid) const
inherited

Definition at line 1278 of file SubProblem.C.

Referenced by BlockRestrictable::getBlockCoordSystem(), MultiApp::getBoundingBox(), Assembly::reinitLowerDElem(), Assembly::reinitNeighborLowerDElem(), and Assembly::setCoordinateTransformation().

1279 {
1280  return mesh().getCoordSystem(sid);
1281 }
virtual MooseMesh & mesh()=0
Moose::CoordinateSystemType getCoordSystem(SubdomainID sid) const
Get the coordinate system type, e.g.
Definition: MooseMesh.C:4215

◆ getCurrentAlgebraicBndNodeRange()

const ConstBndNodeRange & FEProblemBase::getCurrentAlgebraicBndNodeRange ( )
inherited

Definition at line 9604 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::setInitialSolution().

9605 {
9607  return *_mesh.getBoundaryNodeRange();
9608 
9610 }
MooseMesh & _mesh
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1327

◆ getCurrentAlgebraicElementRange()

const ConstElemRange & FEProblemBase::getCurrentAlgebraicElementRange ( )
inherited

These are the element and nodes that contribute to the jacobian and residual for this local processor.

getCurrentAlgebraicElementRange() returns the element range that contributes to the system getCurrentAlgebraicNodeRange() returns the node range that contributes to the system getCurrentAlgebraicBndNodeRange returns the boundary node ranges that contributes to the system

Definition at line 9588 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::computeScaling().

9589 {
9592 
9594 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range
MooseMesh & _mesh

◆ getCurrentAlgebraicNodeRange()

const ConstNodeRange & FEProblemBase::getCurrentAlgebraicNodeRange ( )
inherited

Definition at line 9596 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

9597 {
9599  return *_mesh.getLocalNodeRange();
9600 
9602 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1313
MooseMesh & _mesh

◆ getCurrentExecuteOnFlag()

const ExecFlagType & FEProblemBase::getCurrentExecuteOnFlag ( ) const
inherited

Return/set the current execution flag.

Returns EXEC_NONE when not being executed.

See also
FEProblemBase::execute

Definition at line 4754 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), MultiAppGeneralFieldTransfer::closestToPosition(), MultiAppGeneralFieldNearestLocationTransfer::computeNumSources(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), NearestPositionsDivision::divisionIndex(), PositionsFunctorValueSampler::execute(), PIDTransientControl::execute(), Terminator::execute(), Control::getControllableParameterByName(), Material::getMaterialByName(), MultiAppGeneralFieldNearestLocationTransfer::getNumDivisions(), NumPositions::getValue(), PositionsFunctorValueSampler::initialize(), DistributedPositions::initialize(), TransformedPositions::initialize(), ParsedDownSelectionPositions::initialize(), MultiAppGeneralFieldTransfer::locatePointReceivers(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), NonlinearThread::printGeneralExecutionInformation(), MultiApp::restore(), SolutionInvalidityOutput::shouldOutput(), NodalReporter::shouldStore(), ElementReporter::shouldStore(), GeneralReporter::shouldStore(), and WebServerControl::startServer().

4755 {
4756  return _current_execute_on_flag;
4757 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ getCurrentICState()

unsigned short FEProblemBase::getCurrentICState ( )
inherited

Retrieves the current initial condition state.

Returns
current initial condition state

Definition at line 9647 of file FEProblemBase.C.

Referenced by ComputeInitialConditionThread::operator()().

9648 {
9649  return _current_ic_state;
9650 }
unsigned short _current_ic_state

◆ getDataFileName()

std::string DataFileInterface::getDataFileName ( const std::string &  param) const
inherited

Deprecated method.

The data file paths are now automatically set within the InputParameters object, so using getParam<DataFileName>("param_name") is now sufficient.

Definition at line 21 of file DataFileInterface.C.

22 {
23  _parent.mooseDeprecated("getDataFileName() is deprecated. The file path is now directly set "
24  "within the InputParameters.\nUse getParam<DataFileName>(\"",
25  param,
26  "\") instead.");
27  return _parent.getParam<DataFileName>(param);
28 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:388
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
const ParallelParamObject & _parent

◆ getDataFileNameByName()

std::string DataFileInterface::getDataFileNameByName ( const std::string &  relative_path) const
inherited

Deprecated method.

Use getDataFilePath() instead.

Definition at line 31 of file DataFileInterface.C.

32 {
33  _parent.mooseDeprecated("getDataFileNameByName() is deprecated. Use getDataFilePath(\"",
34  relative_path,
35  "\") instead.");
36  return getDataFilePath(relative_path);
37 }
std::string getDataFilePath(const std::string &relative_path) const
Returns the path of a data file for a given relative file path.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
const ParallelParamObject & _parent

◆ getDataFilePath()

std::string DataFileInterface::getDataFilePath ( const std::string &  relative_path) const
inherited

Returns the path of a data file for a given relative file path.

This can be used for hardcoded datafile names and will search the same locations as getDataFileName

Definition at line 40 of file DataFileInterface.C.

Referenced by DataFileInterface::getDataFileNameByName().

41 {
42  // This should only ever be used with relative paths. There is no point to
43  // use this search path with an absolute path.
44  if (std::filesystem::path(relative_path).is_absolute())
45  _parent.mooseWarning("While using getDataFilePath(\"",
46  relative_path,
47  "\"): This API should not be used for absolute paths.");
48 
49  // This will search the data paths for this relative path
50  std::optional<std::string> error;
51  Moose::DataFileUtils::Path found_path;
52  {
53  // Throw on error so that if getPath() fails, we can throw an error
54  // with the context of _parent.mooseError()
55  Moose::ScopedThrowOnError scoped_throw_on_error;
56 
57  try
58  {
59  found_path = Moose::DataFileUtils::getPath(relative_path);
60  }
61  catch (std::exception & e)
62  {
63  error = e.what();
64  }
65  }
66 
67  if (error)
68  _parent.mooseError(*error);
69 
70  mooseAssert(found_path.context == Moose::DataFileUtils::Context::DATA,
71  "Should only ever obtain data");
72  mooseAssert(found_path.data_name, "Should be set");
73 
74  const std::string msg =
75  "Using data file '" + found_path.path + "' from " + *found_path.data_name + " data";
76  _parent.mooseInfo(msg);
77 
78  return found_path.path;
79 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:321
Context context
Context for the file (where it came from)
Definition: DataFileUtils.h:48
Representation of a data file path.
Definition: DataFileUtils.h:36
Path getPath(std::string path, const std::optional< std::string > &base=std::optional< std::string >())
Get the data path for a given path, searching the registered data.
Definition: DataFileUtils.C:22
std::optional< std::string > data_name
The name of the data registry the file came from (with context == DATA)
Definition: DataFileUtils.h:50
Scoped helper for setting Moose::_throw_on_error during this scope.
Definition: Moose.h:294
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const ParallelParamObject & _parent

◆ getDiracElements()

void FEProblemBase::getDiracElements ( std::set< const Elem *> &  elems)
overridevirtualinherited

Fills "elems" with the elements that should be looped over for Dirac Kernels.

Implements SubProblem.

Definition at line 2479 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2480 {
2481  // First add in the undisplaced elements
2482  elems = _dirac_kernel_info.getElements();
2483 
2484  if (_displaced_problem)
2485  {
2486  std::set<const Elem *> displaced_elements;
2487  _displaced_problem->getDiracElements(displaced_elements);
2488 
2489  { // Use the ids from the displaced elements to get the undisplaced elements
2490  // and add them to the list
2491  for (const auto & elem : displaced_elements)
2492  elems.insert(_mesh.elemPtr(elem->id()));
2493  }
2494  }
2495 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
std::set< const Elem * > & getElements()
Returns a writeable reference to the _elements container.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ getDiscreteMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getDiscreteMaterialWarehouse ( ) const
inlineinherited

Definition at line 2074 of file FEProblemBase.h.

2074 { return _discrete_materials; }
MaterialWarehouse _discrete_materials

◆ getDisplacedProblem() [1/2]

virtual std::shared_ptr<const DisplacedProblem> FEProblemBase::getDisplacedProblem ( ) const
inlinevirtualinherited

◆ getDisplacedProblem() [2/2]

virtual std::shared_ptr<DisplacedProblem> FEProblemBase::getDisplacedProblem ( )
inlinevirtualinherited

Definition at line 1774 of file FEProblemBase.h.

1774 { return _displaced_problem; }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ getDistribution()

Distribution & FEProblemBase::getDistribution ( const std::string &  name)
virtualinherited

Definition at line 2729 of file FEProblemBase.C.

Referenced by DistributionInterface::getDistribution(), and DistributionInterface::getDistributionByName().

2730 {
2731  std::vector<Distribution *> objs;
2732  theWarehouse()
2733  .query()
2734  .condition<AttribSystem>("Distribution")
2735  .condition<AttribName>(name)
2736  .queryInto(objs);
2737  if (objs.empty())
2738  mooseError("Unable to find Distribution with name '" + name + "'");
2739  return *(objs[0]);
2740 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getEvaluableElementRange()

const ConstElemRange & FEProblemBase::getEvaluableElementRange ( )
inherited

In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}.

That is, the number of evaluable elements does NOT necessarily equal to the number of local and algebraic ghosting elements. For example, if using a Lagrange basis for all variables, if a non-local, non-algebraically-ghosted element is surrounded by neighbors which are local or algebraically ghosted, then all the nodal (Lagrange) degrees of freedom associated with the non-local, non-algebraically-ghosted element will be evaluable, and hence that element will be considered evaluable.

getNonlinearEvaluableElementRange() returns the evaluable element range based on the nonlinear system dofmap; getAuxliaryEvaluableElementRange() returns the evaluable element range based on the auxiliary system dofmap; getEvaluableElementRange() returns the element range that is evaluable based on both the nonlinear dofmap and the auxliary dofmap.

Definition at line 849 of file FEProblemBase.C.

Referenced by NodalPatchRecoveryBase::gatherRequestList().

850 {
852  {
853  std::vector<const DofMap *> dof_maps(es().n_systems());
854  for (const auto i : make_range(es().n_systems()))
855  {
856  const auto & sys = es().get_system(i);
857  dof_maps[i] = &sys.get_dof_map();
858  }
860  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
861  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
862  }
864 }
const T_sys & get_system(std::string_view name) const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
IntRange< T > make_range(T beg, T end)
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range

◆ getExecutor()

virtual Executor& FEProblemBase::getExecutor ( const std::string &  name)
inlinevirtualinherited

Definition at line 2206 of file FEProblemBase.h.

2206 { return _app.getExecutor(name); }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
Executor * getExecutor() const
Definition: MooseApp.h:335

◆ getFailNextNonlinearConvergenceCheck()

bool FEProblemBase::getFailNextNonlinearConvergenceCheck ( ) const
inlineinherited

Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2594 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), NonlinearSystem::converged(), Moose::PetscSupport::petscNonlinearConverged(), and ComputeResidualFunctor::residual().

bool getFailNextSystemConvergenceCheck() const
Whether it will fail the next system convergence check(s), triggering failed step behavior...

◆ getFailNextSystemConvergenceCheck()

bool FEProblemBase::getFailNextSystemConvergenceCheck ( ) const
inlineinherited

Whether it will fail the next system convergence check(s), triggering failed step behavior.

Definition at line 2596 of file FEProblemBase.h.

Referenced by FEProblemBase::getFailNextNonlinearConvergenceCheck(), and Moose::PetscSupport::petscLinearConverged().

bool _fail_next_system_convergence_check

◆ getFunction()

Function & FEProblemBase::getFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2608 of file FEProblemBase.C.

Referenced by MFEMProblem::addFunction(), FunctionInterface::getFunction(), FunctionInterface::getFunctionByName(), IterationAdaptiveDT::init(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), and ParsedConvergence::initializeFunctionSymbol().

2609 {
2610  // This thread lock is necessary since this method will create functions
2611  // for all threads if one is missing.
2612  Threads::spin_mutex::scoped_lock lock(get_function_mutex);
2613 
2614  if (!hasFunction(name, tid))
2615  {
2616  // If we didn't find a function, it might be a default function, attempt to construct one now
2617  std::istringstream ss(name);
2618  Real real_value;
2619 
2620  // First see if it's just a constant. If it is, build a ConstantFunction
2621  if (ss >> real_value && ss.eof())
2622  {
2623  InputParameters params = _factory.getValidParams("ConstantFunction");
2624  params.set<Real>("value") = real_value;
2625  addFunction("ConstantFunction", ss.str(), params);
2626  }
2627  else
2628  {
2630  std::string vars = "x,y,z,t,NaN,pi,e";
2631  if (fp.Parse(name, vars) == -1) // -1 for success
2632  {
2633  // It parsed ok, so build a MooseParsedFunction
2634  InputParameters params = _factory.getValidParams("ParsedFunction");
2635  params.set<std::string>("expression") = name;
2636  addFunction("ParsedFunction", name, params);
2637  }
2638  }
2639 
2640  // Try once more
2641  if (!hasFunction(name, tid))
2642  mooseError("Unable to find function " + name);
2643  }
2644 
2645  auto * const ret = dynamic_cast<Function *>(_functions.getActiveObject(name, tid).get());
2646  if (!ret)
2647  mooseError("No function named ", name, " of appropriate type");
2648 
2649  return *ret;
2650 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
Threads::spin_mutex get_function_mutex
char ** vars
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MooseObjectWarehouse< Function > _functions
functions
virtual bool hasFunction(const std::string &name, const THREAD_ID tid=0)

◆ getFunctor()

template<typename T >
const Moose::Functor< T > & SubProblem::getFunctor ( const std::string &  name,
const THREAD_ID  tid,
const std::string &  requestor_name,
bool  requestor_is_ad 
)
inherited
Template Parameters
TThe type that the functor will return when evaluated, e.g. ADReal or Real
Parameters
nameThe name of the functor to retrieve
tidThe thread ID that we are retrieving the functor property for
requestor_nameThe name of the object that is requesting this functor property
requestor_is_adWhether the requesting object is an AD object
Returns
a constant reference to the functor

Definition at line 1214 of file SubProblem.h.

Referenced by FunctorInterface::getFunctorByName().

1218 {
1219  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1220 
1221  // Log the requestor
1222  _functor_to_requestors["wraps_" + name].insert(requestor_name);
1223 
1224  constexpr bool requested_functor_is_ad =
1225  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1226 
1227  auto & functor_to_request_info = _functor_to_request_info[tid];
1228 
1229  // Get the requested functor if we already have it
1230  auto & functors = _functors[tid];
1231  if (auto find_ret = functors.find("wraps_" + name); find_ret != functors.end())
1232  {
1233  if (functors.count("wraps_" + name) > 1)
1234  mooseError("Attempted to get a functor with the name '",
1235  name,
1236  "' but multiple (" + std::to_string(functors.count("wraps_" + name)) +
1237  ") functors match. Make sure that you do not have functor material "
1238  "properties, functions, postprocessors or variables with the same names.");
1239 
1240  auto & [true_functor_is, non_ad_functor, ad_functor] = find_ret->second;
1241  auto & functor_wrapper = requested_functor_is_ad ? *ad_functor : *non_ad_functor;
1242 
1243  auto * const functor = dynamic_cast<Moose::Functor<T> *>(&functor_wrapper);
1244  if (!functor)
1245  mooseError("A call to SubProblem::getFunctor requested a functor named '",
1246  name,
1247  "' that returns the type: '",
1248  libMesh::demangle(typeid(T).name()),
1249  "'. However, that functor already exists and returns a different type: '",
1250  functor_wrapper.returnType(),
1251  "'");
1252 
1253  if (functor->template wrapsType<Moose::NullFunctor<T>>())
1254  // Store for future checking when the actual functor gets added
1255  functor_to_request_info.emplace(name,
1256  std::make_pair(requested_functor_is_ad, requestor_is_ad));
1257  else
1258  {
1259  // We already have the actual functor
1260  if (true_functor_is == SubProblem::TrueFunctorIs::UNSET)
1261  mooseError("We already have the functor; it should not be unset");
1262 
1263  // Check for whether this is a valid request
1264  // We allow auxiliary variables and linear variables to be retrieved as non AD
1265  if (!requested_functor_is_ad && requestor_is_ad &&
1266  true_functor_is == SubProblem::TrueFunctorIs::AD &&
1268  mooseError("The AD object '",
1269  requestor_name,
1270  "' is requesting the functor '",
1271  name,
1272  "' as a non-AD functor even though it is truly an AD functor, which is not "
1273  "allowed, since this may unintentionally drop derivatives.");
1274  }
1275 
1276  return *functor;
1277  }
1278 
1279  // We don't have the functor yet but we could have it in the future. We'll create null functors
1280  // for now
1281  functor_to_request_info.emplace(name, std::make_pair(requested_functor_is_ad, requestor_is_ad));
1282  if constexpr (requested_functor_is_ad)
1283  {
1284  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1285  typedef T ADType;
1286 
1287  auto emplace_ret =
1288  functors.emplace("wraps_" + name,
1289  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1290  std::make_unique<Moose::Functor<NonADType>>(
1291  std::make_unique<Moose::NullFunctor<NonADType>>()),
1292  std::make_unique<Moose::Functor<ADType>>(
1293  std::make_unique<Moose::NullFunctor<ADType>>())));
1294 
1295  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1296  ? std::get<2>(emplace_ret->second)
1297  : std::get<1>(emplace_ret->second)));
1298  }
1299  else
1300  {
1301  typedef T NonADType;
1302  typedef typename Moose::ADType<T>::type ADType;
1303 
1304  auto emplace_ret =
1305  functors.emplace("wraps_" + name,
1306  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1307  std::make_unique<Moose::Functor<NonADType>>(
1308  std::make_unique<Moose::NullFunctor<NonADType>>()),
1309  std::make_unique<Moose::Functor<ADType>>(
1310  std::make_unique<Moose::NullFunctor<ADType>>())));
1311 
1312  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1313  ? std::get<2>(emplace_ret->second)
1314  : std::get<1>(emplace_ret->second)));
1315  }
1316 }
std::map< std::string, std::set< std::string > > _functor_to_requestors
The requestors of functors where the key is the prop name and the value is a set of names of requesto...
Definition: SubProblem.h:1157
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
std::string demangle(const char *name)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
virtual bool hasLinearVariable(const std::string &var_name) const
Whether or not this problem has this linear variable.
Definition: SubProblem.C:802
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...
virtual bool hasAuxiliaryVariable(const std::string &var_name) const
Whether or not this problem has this auxiliary variable.
Definition: SubProblem.C:811

◆ getFVInitialConditionWarehouse()

const FVInitialConditionWarehouse& FEProblemBase::getFVInitialConditionWarehouse ( ) const
inlineinherited

Return FVInitialCondition storage.

Definition at line 1874 of file FEProblemBase.h.

Referenced by ComputeFVInitialConditionThread::operator()(), and ComputeFVInitialConditionThread::printGeneralExecutionInformation().

1874 { return _fv_ics; }
FVInitialConditionWarehouse _fv_ics

◆ getFVMatsAndDependencies()

void FEProblemBase::getFVMatsAndDependencies ( SubdomainID  block_id,
std::vector< std::shared_ptr< MaterialBase >> &  face_materials,
std::vector< std::shared_ptr< MaterialBase >> &  neighbor_materials,
std::set< MooseVariableFieldBase *> &  variables,
const THREAD_ID  tid 
)
inherited

Get the materials and variables potentially needed for FV.

Parameters
block_idSubdomainID The subdomain id that we want to retrieve materials for
face_materialsThe face materials container that we will fill
neighbor_materialsThe neighbor materials container that we will fill
variablesThe variables container that we will fill that our materials depend on
tidThe thread id

Definition at line 9283 of file FEProblemBase.C.

9289 {
9290  if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9291  {
9292  auto & this_face_mats =
9294  for (std::shared_ptr<MaterialBase> face_mat : this_face_mats)
9295  if (face_mat->ghostable())
9296  {
9297  face_materials.push_back(face_mat);
9298  auto & var_deps = face_mat->getMooseVariableDependencies();
9299  for (auto * var : var_deps)
9300  {
9301  if (!var->isFV())
9302  mooseError(
9303  "Ghostable materials should only have finite volume variables coupled into them.");
9304  else if (face_mat->hasStatefulProperties())
9305  mooseError("Finite volume materials do not currently support stateful properties.");
9306  variables.insert(var);
9307  }
9308  }
9309  }
9310 
9311  if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9312  {
9313  auto & this_neighbor_mats =
9315  for (std::shared_ptr<MaterialBase> neighbor_mat : this_neighbor_mats)
9316  if (neighbor_mat->ghostable())
9317  {
9318  neighbor_materials.push_back(neighbor_mat);
9319 #ifndef NDEBUG
9320  auto & var_deps = neighbor_mat->getMooseVariableDependencies();
9321  for (auto * var : var_deps)
9322  {
9323  if (!var->isFV())
9324  mooseError(
9325  "Ghostable materials should only have finite volume variables coupled into them.");
9326  else if (neighbor_mat->hasStatefulProperties())
9327  mooseError("Finite volume materials do not currently support stateful properties.");
9328  auto pr = variables.insert(var);
9329  mooseAssert(!pr.second,
9330  "We should not have inserted any new variables dependencies from our "
9331  "neighbor materials that didn't exist for our face materials");
9332  }
9333 #endif
9334  }
9335  }
9336 }
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MaterialWarehouse _materials

◆ getHitNode()

const hit::Node* MooseBase::getHitNode ( ) const
inlineinherited
Returns
The block-level hit node for this object, if any

Definition at line 136 of file MooseBase.h.

Referenced by FEProblemBase::addAnyRedistributers(), MooseBase::callMooseError(), MooseBase::getHitNode(), and MooseBase::messagePrefix().

136 { return getHitNode(_pars); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const hit::Node * getHitNode() const
Definition: MooseBase.h:136

◆ getIndicatorWarehouse()

const MooseObjectWarehouse<Indicator>& FEProblemBase::getIndicatorWarehouse ( )
inlineinherited

Return indicator/marker storage.

Definition at line 1858 of file FEProblemBase.h.

1858 { return _indicators; }
MooseObjectWarehouse< Indicator > _indicators

◆ getInitialConditionWarehouse()

const InitialConditionWarehouse& FEProblemBase::getInitialConditionWarehouse ( ) const
inlineinherited

Return InitialCondition storage.

Definition at line 1869 of file FEProblemBase.h.

Referenced by ComputeBoundaryInitialConditionThread::onNode(), ComputeInitialConditionThread::operator()(), and ComputeInitialConditionThread::printGeneralExecutionInformation().

1869 { return _ics; }
InitialConditionWarehouse _ics

◆ getInterfaceMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getInterfaceMaterialsWarehouse ( ) const
inlineinherited

Definition at line 2075 of file FEProblemBase.h.

2075 { return _interface_materials; }
MaterialWarehouse _interface_materials

◆ getInternalSideIndicatorWarehouse()

const MooseObjectWarehouse<InternalSideIndicatorBase>& FEProblemBase::getInternalSideIndicatorWarehouse ( )
inlineinherited

Definition at line 1859 of file FEProblemBase.h.

1860  {
1862  }
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators

◆ getKokkosBndMaterialPropertyStorage()

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::getKokkosBndMaterialPropertyStorage ( )
inlineinherited

Definition at line 1843 of file FEProblemBase.h.

1844  {
1846  }
Moose::Kokkos::MaterialPropertyStorage & _kokkos_bnd_material_props

◆ getKokkosMaterialData()

MaterialData& FEProblemBase::getKokkosMaterialData ( Moose::MaterialDataType  type,
const MooseObject object = nullptr 
) const
inherited
Returns
The Kokkos MaterialData for the type type for thread tid

Referenced by BlockRestrictable::initializeBlockRestrictable().

◆ getKokkosMaterialPropertyStorage()

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::getKokkosMaterialPropertyStorage ( )
inlineinherited

Definition at line 1839 of file FEProblemBase.h.

1840  {
1841  return _kokkos_material_props;
1842  }
Moose::Kokkos::MaterialPropertyStorage & _kokkos_material_props

◆ getKokkosMaterialPropertyStorageConsumers()

const std::set<const MooseObject *>& FEProblemBase::getKokkosMaterialPropertyStorageConsumers ( Moose::MaterialDataType  type) const
inherited
Returns
The consumers of the Kokkos MaterialPropertyStorage for the type type

◆ getKokkosMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getKokkosMaterialsWarehouse ( ) const
inlineinherited

Definition at line 2081 of file FEProblemBase.h.

2081 { return _kokkos_materials; }
MaterialWarehouse _kokkos_materials

◆ getKokkosNeighborMaterialPropertyStorage()

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::getKokkosNeighborMaterialPropertyStorage ( )
inlineinherited

Definition at line 1847 of file FEProblemBase.h.

1848  {
1850  }
Moose::Kokkos::MaterialPropertyStorage & _kokkos_neighbor_material_props

◆ getKokkosSystems() [1/2]

Moose::Kokkos::Array<Moose::Kokkos::System>& FEProblemBase::getKokkosSystems ( )
inlineinherited

Get all Kokkos systems that are associated with MOOSE nonlinear and auxiliary systems.

Returns
The array of Kokkos systems{@

Definition at line 792 of file FEProblemBase.h.

792 { return _kokkos_systems; }
Moose::Kokkos::Array< Moose::Kokkos::System > _kokkos_systems

◆ getKokkosSystems() [2/2]

const Moose::Kokkos::Array<Moose::Kokkos::System>& FEProblemBase::getKokkosSystems ( ) const
inlineinherited

Definition at line 793 of file FEProblemBase.h.

794  {
795  return _kokkos_systems;
796  }
Moose::Kokkos::Array< Moose::Kokkos::System > _kokkos_systems

◆ getLinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getLinearConvergenceNames ( ) const
inherited

Gets the linear convergence object name(s).

Definition at line 9392 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscLinearConverged().

9393 {
9395  return *_linear_convergence_names;
9396  mooseError("The linear convergence name(s) have not been set.");
9397 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ getLinearSystem() [1/2]

LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3437 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Moose::compute_linear_system(), ComputeLinearFVGreenGaussGradientFaceThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Moose::PetscSupport::petscSetDefaults(), and FEProblemSolve::solve().

3438 {
3439  mooseAssert(sys_num < _linear_systems.size(),
3440  "System number greater than the number of linear systems");
3441  return *_linear_systems[sys_num];
3442 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystem() [2/2]

const LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3445 of file FEProblemBase.h.

3446 {
3447  mooseAssert(sys_num < _linear_systems.size(),
3448  "System number greater than the number of linear systems");
3449  return *_linear_systems[sys_num];
3450 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystemNames()

const std::vector<LinearSystemName>& FEProblemBase::getLinearSystemNames ( ) const
inlineinherited
Returns
the linear system names in the problem

Definition at line 2675 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), and MultiSystemSolveObject::MultiSystemSolveObject().

2675 { return _linear_sys_names; }
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.

◆ getLineSearch()

LineSearch* FEProblemBase::getLineSearch ( )
inlineoverridevirtualinherited

getter for the MOOSE line search

Implements SubProblem.

Definition at line 752 of file FEProblemBase.h.

Referenced by DisplacedProblem::getLineSearch().

752 { return _line_search.get(); }
std::shared_ptr< LineSearch > _line_search

◆ getMarkerWarehouse()

const MooseObjectWarehouse<Marker>& FEProblemBase::getMarkerWarehouse ( )
inlineinherited

Definition at line 1863 of file FEProblemBase.h.

1863 { return _markers; }
MooseObjectWarehouse< Marker > _markers

◆ getMaterial()

std::shared_ptr< MaterialBase > FEProblemBase::getMaterial ( std::string  name,
Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
bool  no_warn = false 
)
inherited

Return a pointer to a MaterialBase object.

If no_warn is true, suppress warning about retrieving a material reference potentially during the material's calculation.

This will return enabled or disabled objects, the main purpose is for iterative materials.

Definition at line 3854 of file FEProblemBase.C.

Referenced by MaterialPropertyInterface::getMaterialByName().

3858 {
3859  switch (type)
3860  {
3862  name += "_neighbor";
3863  break;
3865  name += "_face";
3866  break;
3867  default:
3868  break;
3869  }
3870 
3871  std::shared_ptr<MaterialBase> material = _all_materials[type].getActiveObject(name, tid);
3872  if (!no_warn && material->getParam<bool>("compute") && type == Moose::BLOCK_MATERIAL_DATA)
3873  mooseWarning("You are retrieving a Material object (",
3874  material->name(),
3875  "), but its compute flag is set to true. This indicates that MOOSE is "
3876  "computing this property which may not be desired and produce un-expected "
3877  "results.");
3878 
3879  return material;
3880 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299
MaterialWarehouse _all_materials

◆ getMaterialData()

MaterialData & FEProblemBase::getMaterialData ( Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
const MooseObject object = nullptr 
) const
inherited
Returns
The MaterialData for the type type for thread tid

Definition at line 3883 of file FEProblemBase.C.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and FEProblemBase::resizeMaterialData().

3886 {
3887  switch (type)
3888  {
3890  if (object)
3891  _material_props.addConsumer(type, object);
3892  return _material_props.getMaterialData(tid);
3894  if (object)
3900  if (object)
3903  }
3904 
3905  mooseError("FEProblemBase::getMaterialData(): Invalid MaterialDataType ", type);
3906 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void addConsumer(Moose::MaterialDataType type, const MooseObject *object)
Add object as the consumer of storage of type type.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyBlockNames()

std::vector< SubdomainName > SubProblem::getMaterialPropertyBlockNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 489 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBlockNames().

490 {
491  std::set<SubdomainID> blocks = getMaterialPropertyBlocks(prop_name);
492  std::vector<SubdomainName> block_names;
493  block_names.reserve(blocks.size());
494  for (const auto & block_id : blocks)
495  {
496  SubdomainName name;
497  name = mesh().getMesh().subdomain_name(block_id);
498  if (name.empty())
499  {
500  std::ostringstream oss;
501  oss << block_id;
502  name = oss.str();
503  }
504  block_names.push_back(name);
505  }
506 
507  return block_names;
508 }
virtual MooseMesh & mesh()=0
char ** blocks
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
std::string & subdomain_name(subdomain_id_type id)
virtual std::set< SubdomainID > getMaterialPropertyBlocks(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:473

◆ getMaterialPropertyBlocks()

std::set< SubdomainID > SubProblem::getMaterialPropertyBlocks ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 473 of file SubProblem.C.

Referenced by SubProblem::getMaterialPropertyBlockNames(), and MaterialPropertyInterface::getMaterialPropertyBlocks().

474 {
475  std::set<SubdomainID> blocks;
476 
477  for (const auto & it : _map_block_material_props)
478  {
479  const std::set<std::string> & prop_names = it.second;
480  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
481  if (name_it != prop_names.end())
482  blocks.insert(it.first);
483  }
484 
485  return blocks;
486 }
char ** blocks
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ getMaterialPropertyBoundaryIDs()

std::set< BoundaryID > SubProblem::getMaterialPropertyBoundaryIDs ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 525 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryIDs(), and SubProblem::getMaterialPropertyBoundaryNames().

526 {
527  std::set<BoundaryID> boundaries;
528 
529  for (const auto & it : _map_boundary_material_props)
530  {
531  const std::set<std::string> & prop_names = it.second;
532  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
533  if (name_it != prop_names.end())
534  boundaries.insert(it.first);
535  }
536 
537  return boundaries;
538 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ getMaterialPropertyBoundaryNames()

std::vector< BoundaryName > SubProblem::getMaterialPropertyBoundaryNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 541 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryNames().

542 {
543  std::set<BoundaryID> boundaries = getMaterialPropertyBoundaryIDs(prop_name);
544  std::vector<BoundaryName> boundary_names;
545  boundary_names.reserve(boundaries.size());
546  const BoundaryInfo & boundary_info = mesh().getMesh().get_boundary_info();
547 
548  for (const auto & bnd_id : boundaries)
549  {
550  BoundaryName name;
551  if (bnd_id == Moose::ANY_BOUNDARY_ID)
552  name = "ANY_BOUNDARY_ID";
553  else
554  {
555  name = boundary_info.get_sideset_name(bnd_id);
556  if (name.empty())
557  {
558  std::ostringstream oss;
559  oss << bnd_id;
560  name = oss.str();
561  }
562  }
563  boundary_names.push_back(name);
564  }
565 
566  return boundary_names;
567 }
virtual MooseMesh & mesh()=0
virtual std::set< BoundaryID > getMaterialPropertyBoundaryIDs(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:525
const BoundaryInfo & get_boundary_info() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
const std::string & get_sideset_name(boundary_id_type id) const
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ getMaterialPropertyRegistry()

const MaterialPropertyRegistry& FEProblemBase::getMaterialPropertyRegistry ( ) const
inlineinherited
Returns
A reference to the material property registry

Definition at line 1821 of file FEProblemBase.h.

Referenced by MaterialBase::checkStatefulSanity().

1822  {
1823  return _material_prop_registry;
1824  }
MaterialPropertyRegistry _material_prop_registry

◆ getMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getMaterialPropertyStorage ( )
inlineinherited

Return a reference to the material property storage.

Returns
A const reference to the material property storage

Definition at line 1831 of file FEProblemBase.h.

1831 { return _material_props; }
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyStorageConsumers()

const std::set< const MooseObject * > & FEProblemBase::getMaterialPropertyStorageConsumers ( Moose::MaterialDataType  type) const
inherited
Returns
The consumers of the MaterialPropertyStorage for the type type

Definition at line 3909 of file FEProblemBase.C.

3910 {
3911  switch (type)
3912  {
3921  }
3922 
3923  mooseError("FEProblemBase::getMaterialPropertyStorageConsumers(): Invalid MaterialDataType ",
3924  type);
3925 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const std::set< const MooseObject * > & getConsumers(Moose::MaterialDataType type) const
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props

◆ getMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getMaterialWarehouse ( ) const
inlineinherited

◆ getMatrixTagID()

TagID SubProblem::getMatrixTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 342 of file SubProblem.C.

Referenced by Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), DisplacedProblem::getMatrixTagID(), TaggingInterface::TaggingInterface(), and TaggingInterface::useMatrixTag().

343 {
344  auto tag_name_upper = MooseUtils::toUpper(tag_name);
345 
346  if (!matrixTagExists(tag_name))
347  mooseError("Matrix tag: ",
348  tag_name,
349  " does not exist. ",
350  "If this is a TimeKernel then this may have happened because you didn't "
351  "specify a Transient Executioner.");
352 
353  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
354 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(std::string name)
Convert supplied string to upper case.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ getMatrixTags()

virtual std::map<TagName, TagID>& SubProblem::getMatrixTags ( )
inlinevirtualinherited

Return all matrix tags in the system, where a tag is represented by a map from name to ID.

Definition at line 253 of file SubProblem.h.

Referenced by NonlinearSystemBase::computeJacobian(), FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), NonlinearSystemBase::computeJacobianBlocks(), EigenProblem::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

253 { return _matrix_tag_name_to_tag_id; }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041

◆ getMaxQps()

unsigned int FEProblemBase::getMaxQps ( ) const
inherited
Returns
The maximum number of quadrature points in use on any element in this problem.

Definition at line 1625 of file FEProblemBase.C.

Referenced by MaterialBase::getMaxQps(), MaterialPropertyInterface::getMaxQps(), FEProblemBase::initialSetup(), FEProblemBase::reinitDirac(), Material::subdomainSetup(), and FEProblemBase::updateMaxQps().

1626 {
1628  mooseError("Max QPS uninitialized");
1629  return _max_qps;
1630 }
auto max(const L &left, const R &right)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
unsigned int _max_qps
Maximum number of quadrature points used in the problem.

◆ getMaxScalarOrder()

Order FEProblemBase::getMaxScalarOrder ( ) const
inherited
Returns
The maximum order for all scalar variables in this problem's systems.

Definition at line 1633 of file FEProblemBase.C.

Referenced by ScalarCoupleable::coupledScalarOrder(), ScalarCoupleable::getADDefaultValue(), and ScalarCoupleable::getDefaultValue().

1634 {
1635  return _max_scalar_order;
1636 }
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ getMeshDivision()

MeshDivision & FEProblemBase::getMeshDivision ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get a MeshDivision.

Definition at line 2690 of file FEProblemBase.C.

Referenced by NestedDivision::NestedDivision().

2691 {
2692  auto * const ret = dynamic_cast<MeshDivision *>(_mesh_divisions.getActiveObject(name, tid).get());
2693  if (!ret)
2694  mooseError("No MeshDivision object named ", name, " of appropriate type");
2695  return *ret;
2696 }
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getMooseApp()

MooseApp& MooseBase::getMooseApp ( ) const
inlineinherited

Get the MooseApp this class is associated with.

Definition at line 87 of file MooseBase.h.

Referenced by ChainControlSetupAction::act(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::advanceState(), ParsedChainControl::buildFunction(), ReporterTransferInterface::checkHasReporterValue(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), Coupleable::checkWritableVar(), ComponentPhysicsInterface::ComponentPhysicsInterface(), Coupleable::Coupleable(), MortarData::createMortarInterface(), EigenProblem::doFreeNonlinearPowerIterations(), Terminator::execute(), FEProblemSolve::FEProblemSolve(), SolutionInvalidInterface::flagInvalidSolutionInternal(), ChainControl::getChainControlDataSystem(), DefaultConvergenceBase::getSharedExecutionerParam(), ChainControlDataPostprocessor::initialSetup(), MooseVariableDataFV< OutputType >::MooseVariableDataFV(), ProgressOutput::output(), PetscOutputInterface::petscLinearOutput(), PetscOutputInterface::petscNonlinearOutput(), PetscOutputInterface::PetscOutputInterface(), PostprocessorInterface::postprocessorsAdded(), MultiApp::preTransfer(), Reporter::Reporter(), ReporterInterface::reportersAdded(), MultiApp::restore(), and VectorPostprocessorInterface::vectorPostprocessorsAdded().

87 { return _app; }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357

◆ getMortarInterface() [1/2]

const AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
) const
inherited

Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains.

Definition at line 8050 of file FEProblemBase.C.

8054 {
8056  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
8057 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterface() [2/2]

AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
)
inherited

Definition at line 8060 of file FEProblemBase.C.

8064 {
8066  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
8067 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterfaces()

const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & FEProblemBase::getMortarInterfaces ( bool  on_displaced) const
inherited

Definition at line 8070 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectsInternal(), and NonlinearSystemBase::initialSetup().

8071 {
8072  return _mortar_data.getMortarInterfaces(on_displaced);
8073 }
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
Return all automatic mortar generation objects on either the displaced or undisplaced mesh...
Definition: MortarData.h:73
MortarData _mortar_data

◆ getMultiApp()

std::shared_ptr< MultiApp > FEProblemBase::getMultiApp ( const std::string &  multi_app_name) const
inherited

Get a MultiApp object by name.

Definition at line 5509 of file FEProblemBase.C.

Referenced by FEProblemBase::addTransfer(), MultiAppPositions::initialize(), and MultiAppTransfer::MultiAppTransfer().

5510 {
5511  return _multi_apps.getObject(multi_app_name);
5512 }
std::shared_ptr< T > getObject(const std::string &name, THREAD_ID tid=0) const
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getMultiAppFixedPointConvergenceName()

const ConvergenceName & FEProblemBase::getMultiAppFixedPointConvergenceName ( ) const
inherited

Gets the MultiApp fixed point convergence object name.

Definition at line 9400 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

9401 {
9404  else
9405  mooseError("The fixed point convergence name has not been set.");
9406 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getMultiAppTransferWarehouse()

const ExecuteMooseObjectWarehouse< Transfer > & FEProblemBase::getMultiAppTransferWarehouse ( Transfer::DIRECTION  direction) const
inherited

Return the complete warehouse for MultiAppTransfer object for the given direction.

Definition at line 5604 of file FEProblemBase.C.

5605 {
5606  if (direction == MultiAppTransfer::TO_MULTIAPP)
5607  return _to_multi_app_transfers;
5608  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5610  else
5612 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getMultiAppWarehouse()

ExecuteMooseObjectWarehouse<MultiApp>& FEProblemBase::getMultiAppWarehouse ( )
inlineinherited

Definition at line 2278 of file FEProblemBase.h.

Referenced by MooseApp::errorCheck().

2278 { return _multi_apps; }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getNeighborMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getNeighborMaterialPropertyStorage ( )
inlineinherited

Definition at line 1833 of file FEProblemBase.h.

1834  {
1835  return _neighbor_material_props;
1836  }
MaterialPropertyStorage & _neighbor_material_props

◆ getNonlinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getNonlinearConvergenceNames ( ) const
inherited

Gets the nonlinear system convergence object name(s).

Definition at line 9368 of file FEProblemBase.C.

Referenced by ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), FEProblemSolve::convergenceSetup(), and Moose::PetscSupport::petscNonlinearConverged().

9369 {
9372  mooseError("The nonlinear system convergence name(s) have not been set.");
9373 }
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getNonlinearEvaluableElementRange()

const ConstElemRange & FEProblemBase::getNonlinearEvaluableElementRange ( )
inherited

Definition at line 867 of file FEProblemBase.C.

Referenced by ElemSideNeighborLayersTester::execute().

868 {
870  {
871  std::vector<const DofMap *> dof_maps(_nl.size());
872  for (const auto i : index_range(dof_maps))
873  dof_maps[i] = &_nl[i]->dofMap();
875  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
876  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
877  }
878 
880 }
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
MooseMesh & _mesh
auto index_range(const T &sizable)

◆ getNonlinearSystem()

NonlinearSystem & FEProblem::getNonlinearSystem ( const unsigned int  nl_sys_num)
inlineoverridevirtual

Reimplemented from FEProblemBase.

Definition at line 48 of file FEProblem.h.

49 {
50  return *_nl_sys[nl_sys_num];
51 }
std::vector< std::shared_ptr< NonlinearSystem > > _nl_sys
Definition: FEProblem.h:39

◆ getNonlinearSystemBase() [1/2]

NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num)
inlineinherited

Definition at line 3393 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Adaptivity::adaptMesh(), DisplacedProblem::addTimeIntegrator(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), Eigenvalue::checkIntegrity(), PseudoTimestep::currentResidualNorm(), DisplacedProblem::DisplacedProblem(), AB2PredictorCorrector::estimateTimeError(), VariableResidual::execute(), MatrixSymmetryCheck::execute(), GreaterThanLessThanPostprocessor::execute(), Executioner::Executioner(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NumResidualEvaluations::getValue(), Residual::getValue(), Adaptivity::init(), ReferenceResidualConvergence::initialSetup(), ActivateElementsUserObjectBase::initSolutions(), Kernel::Kernel(), BoundaryElemIntegrityCheckThread::operator()(), DOFMapOutput::output(), SolutionHistory::output(), ConsoleUtils::outputExecutionInformation(), Console::outputSystemInformation(), Moose::PetscSupport::petscSetDefaults(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Moose::PetscSupport::setLineSearchFromParams(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), AB2PredictorCorrector::step(), DisplacedProblem::syncSolutions(), and Console::writeVariableNorms().

3394 {
3395  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3396  return *_nl[sys_num];
3397 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemBase() [2/2]

const NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num) const
inlineinherited

Definition at line 3400 of file FEProblemBase.h.

3401 {
3402  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3403  return *_nl[sys_num];
3404 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemNames()

const std::vector<NonlinearSystemName>& FEProblemBase::getNonlinearSystemNames ( ) const
inlineinherited
Returns
the nolinear system names in the problem

Definition at line 2671 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), Console::meshChanged(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputExecutionInformation(), and Console::outputSystemInformation().

2671 { return _nl_sys_names; }
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.

◆ getNumCyclesCompleted()

unsigned int FEProblemBase::getNumCyclesCompleted ( )
inlineinherited
Returns
The number of adaptivity cycles completed.

Definition at line 1899 of file FEProblemBase.h.

1899 { return _cycles_completed; }
unsigned int _cycles_completed

◆ getParam() [1/2]

template<typename T >
const T & MooseBase::getParam ( const std::string &  name) const
inherited

Retrieve a parameter for the object.

Parameters
nameThe name of the parameter
Returns
The value of the parameter

Definition at line 388 of file MooseBase.h.

Referenced by CreateDisplacedProblemAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FEProblemBase::addOutput(), DiffusionPhysicsBase::addPostprocessors(), ADNodalKernel::ADNodalKernel(), ArrayParsedAux::ArrayParsedAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), ComponentPhysicsInterface::ComponentPhysicsInterface(), FunctorAux::computeValue(), Console::Console(), FEProblemBase::createTagSolutions(), CutMeshByLevelSetGenerator::CutMeshByLevelSetGenerator(), DebugResidualAux::DebugResidualAux(), AccumulateReporter::declareLateValues(), DerivativeParsedMaterialTempl< is_ad >::DerivativeParsedMaterialTempl(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), EigenKernel::EigenKernel(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), FEProblemSolve::FEProblemSolve(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), ParsedSubdomainGeneratorBase::functionInitialize(), FVInterfaceKernel::FVInterfaceKernel(), BoundaryLayerSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), GeneratedMeshGenerator::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), BlockDeletionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), MeshExtruderGenerator::generate(), GenericConstantRankTwoTensorTempl< is_ad >::GenericConstantRankTwoTensorTempl(), GenericConstantSymmetricRankTwoTensorTempl< is_ad >::GenericConstantSymmetricRankTwoTensorTempl(), GeometricSearchInterface::GeometricSearchInterface(), MooseApp::getCheckpointDirectories(), DataFileInterface::getDataFileName(), ExecutorInterface::getExecutor(), GhostingUserObject::GhostingUserObject(), FixedPointIterationAdaptiveDT::init(), TimeSequenceStepper::init(), IterationAdaptiveDT::init(), AdvancedOutput::init(), AttribThread::initFrom(), AttribSysNum::initFrom(), AttribResidualObject::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), Console::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseMesh::MooseMesh(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MultiSystemSolveObject::MultiSystemSolveObject(), NEML2ModelExecutor::NEML2ModelExecutor(), NestedDivision::NestedDivision(), PerfGraphOutput::output(), Console::outputSystemInformation(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedElementDeletionGenerator::ParsedElementDeletionGenerator(), ParsedGenerateNodeset::ParsedGenerateNodeset(), ParsedGenerateSideset::ParsedGenerateSideset(), ParsedMaterialTempl< is_ad >::ParsedMaterialTempl(), ParsedNodeTransformGenerator::ParsedNodeTransformGenerator(), ParsedODEKernel::ParsedODEKernel(), ParsedPostprocessor::ParsedPostprocessor(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), PiecewiseConstantByBlockMaterialTempl< is_ad >::PiecewiseConstantByBlockMaterialTempl(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), Moose::FV::setInterpolationMethod(), SetupMeshAction::setupMesh(), Output::setWallTimeIntervalFromCommandLineParam(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), TimePeriod::TimePeriod(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and VectorOfPostprocessors::VectorOfPostprocessors().

389 {
390  return InputParameters::getParamHelper<T>(name, _pars);
391 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ getParam() [2/2]

template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > MooseBase::getParam ( const std::string &  param1,
const std::string &  param2 
) const
inherited

Retrieve two parameters and provide pair of parameters for the object.

Parameters
param1The name of first parameter
param2The name of second parameter
Returns
Vector of pairs of first and second parameters

Definition at line 425 of file MooseBase.h.

426 {
427  return _pars.get<T1, T2>(param1, param2);
428 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.

◆ getPetscOptions()

Moose::PetscSupport::PetscOptions& FEProblemBase::getPetscOptions ( )
inlineinherited

◆ getPositionsObject()

const Positions & FEProblemBase::getPositionsObject ( const std::string &  name) const
inherited

Get the Positions object by its name.

Parameters
nameThe name of the Positions object being retrieved
Returns
Const reference to the Positions object

Definition at line 4576 of file FEProblemBase.C.

Referenced by DistributedPositions::DistributedPositions(), MultiApp::fillPositions(), ParsedDownSelectionPositions::initialize(), Positions::initialized(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), and TransformedPositions::TransformedPositions().

4577 {
4578  std::vector<Positions *> objs;
4579  theWarehouse()
4580  .query()
4581  .condition<AttribSystem>("UserObject")
4582  .condition<AttribName>(name)
4583  .queryInto(objs);
4584  if (objs.empty())
4585  mooseError("Unable to find Positions object with name '" + name + "'");
4586  mooseAssert(objs.size() == 1, "Should only find one Positions");
4587  return *(objs[0]);
4588 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getPostprocessorValueByName()

const PostprocessorValue & FEProblemBase::getPostprocessorValueByName ( const PostprocessorName &  name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the value associated with a Postprocessor that exists.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for retrieving values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4610 of file FEProblemBase.C.

Referenced by MFEMProblem::addPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appPostprocessorValue(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), EigenProblem::formNorm(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializePostprocessorSymbol(), EigenExecutionerBase::inversePowerIteration(), Exodus::outputPostprocessors(), TableOutput::outputPostprocessorsRow(), EigenProblem::postScaleEigenVector(), and TableOutput::shouldOutputPostprocessorsRow().

4612 {
4614  t_index);
4615 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ getRegularMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getRegularMaterialsWarehouse ( ) const
inlineinherited

Definition at line 2073 of file FEProblemBase.h.

Referenced by Moose::Mortar::setupMortarMaterials().

2073 { return _materials; }
MaterialWarehouse _materials

◆ getRenamedParam()

template<typename T >
const T & MooseBase::getRenamedParam ( const std::string &  old_name,
const std::string &  new_name 
) const
inherited

Retrieve a renamed parameter for the object.

This helper makes sure we check both names before erroring, and that only one parameter is passed to avoid silent errors

Parameters
old_namethe old name for the parameter
new_namethe new name for the parameter

Definition at line 402 of file MooseBase.h.

403 {
404  // Most important: accept new parameter
405  if (isParamSetByUser(new_name) && !isParamValid(old_name))
406  return getParam<T>(new_name);
407  // Second most: accept old parameter
408  if (isParamValid(old_name) && !isParamSetByUser(new_name))
409  return getParam<T>(old_name);
410  // Third most: accept default for new parameter
411  if (isParamValid(new_name) && !isParamValid(old_name))
412  return getParam<T>(new_name);
413  // Refuse: no default, no value passed
414  if (!isParamValid(old_name) && !isParamValid(new_name))
415  mooseError("parameter '" + new_name +
416  "' is being retrieved without being set.\nDid you misspell it?");
417  // Refuse: both old and new parameters set by user
418  else
419  mooseError("Parameter '" + new_name + "' may not be provided alongside former parameter '" +
420  old_name + "'");
421 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:199
bool isParamSetByUser(const std::string &name) const
Test if the supplied parameter is set by a user, as opposed to not set or set to default.
Definition: MooseBase.h:205

◆ getReporterData() [1/2]

const ReporterData& FEProblemBase::getReporterData ( ) const
inlineinherited

Provides const access the ReporterData object.

NOTE: There is a private non-const version of this function that uses a key object only constructable by the correct interfaces. This was done by design to encourage the use of the Reporter and ReporterInterface classes.

Definition at line 1241 of file FEProblemBase.h.

Referenced by ReporterTransferInterface::addReporterTransferMode(), ReporterTransferInterface::checkHasReporterValue(), ReporterTransferInterface::clearVectorReporter(), ConstantPostprocessor::ConstantPostprocessor(), AccumulateReporter::declareAccumulateHelper(), ReporterTransferInterface::declareClone(), AccumulateReporter::declareLateValues(), VectorPostprocessor::declareVector(), ReporterTransferInterface::declareVectorClone(), FEProblemBase::execute(), PostprocessorInterface::getPostprocessorValueByNameInternal(), VectorPostprocessorInterface::getVectorPostprocessorByNameHelper(), VectorPostprocessorInterface::getVectorPostprocessorContextByNameHelper(), PostprocessorInterface::hasPostprocessorByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterPositions::initialize(), ReporterTimes::initialize(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializeSymbols(), JSONOutput::initialSetup(), PostprocessorInterface::isDefaultPostprocessorValueByName(), ReporterDebugOutput::output(), Receiver::Receiver(), ReporterTransferInterface::resizeReporter(), ReporterTransferInterface::sumVectorReporter(), ReporterTransferInterface::transferFromVectorReporter(), ReporterTransferInterface::transferReporter(), and ReporterTransferInterface::transferToVectorReporter().

1241 { return _reporter_data; }
ReporterData _reporter_data

◆ getReporterData() [2/2]

ReporterData& FEProblemBase::getReporterData ( ReporterData::WriteKey  )
inlineinherited

Provides non-const access the ReporterData object that is used to store reporter values.

see ReporterData.h

Definition at line 1248 of file FEProblemBase.h.

1248 { return _reporter_data; }
ReporterData _reporter_data

◆ getRestartableData()

template<typename T , typename... Args>
const T & Restartable::getRestartableData ( const std::string &  data_name) const
protectedinherited

Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object.

Forwarded arguments are not allowed in this case because we assume that the object is restarted and we won't need different constructors to initialize it.

NOTE: This returns a const reference! Make sure you store it in a const reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)

Definition at line 294 of file Restartable.h.

295 {
296  return declareRestartableDataHelper<T>(data_name, nullptr).get();
297 }

◆ getRestartableEquationSystems()

const RestartableEquationSystems & FEProblemBase::getRestartableEquationSystems ( ) const
inherited

Get the RestartableEquationSystems object.

Definition at line 5987 of file FEProblemBase.C.

5988 {
5989  return _req.get();
5990 }
const T & get() const
Get the restartable value.
Definition: Restartable.h:58
Restartable::ManagedValue< RestartableEquationSystems > _req
The EquationSystems object, wrapped for restart.

◆ getSampler()

Sampler & FEProblemBase::getSampler ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2753 of file FEProblemBase.C.

Referenced by SamplerInterface::getSampler(), and SamplerInterface::getSamplerByName().

2754 {
2755  std::vector<Sampler *> objs;
2756  theWarehouse()
2757  .query()
2758  .condition<AttribSystem>("Sampler")
2759  .condition<AttribThread>(tid)
2760  .condition<AttribName>(name)
2761  .queryInto(objs);
2762  if (objs.empty())
2763  mooseError(
2764  "Unable to find Sampler with name '" + name +
2765  "', if you are attempting to access this object in the constructor of another object then "
2766  "the object being retrieved must occur prior to the caller within the input file.");
2767  return *(objs[0]);
2768 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getScalarVariable()

MooseVariableScalar & FEProblemBase::getScalarVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the scalar variable reference from whichever system contains it.

Implements SubProblem.

Definition at line 5963 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppScalarToAuxScalarTransfer::execute(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), TableOutput::outputScalarVariables(), and Exodus::outputScalarVariables().

5964 {
5965  for (auto & sys : _solver_systems)
5966  if (sys->hasScalarVariable(var_name))
5967  return sys->getScalarVariable(tid, var_name);
5968  if (_aux->hasScalarVariable(var_name))
5969  return _aux->getScalarVariable(tid, var_name);
5970 
5971  mooseError("Unknown variable " + var_name);
5972 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSharedPtr() [1/2]

std::shared_ptr< MooseObject > MooseObject::getSharedPtr ( )
inherited

Get another shared pointer to this object that has the same ownership group.

Wrapper around shared_from_this().

Definition at line 68 of file MooseObject.C.

Referenced by MFEMProblem::addBoundaryCondition(), MFEMProblem::addKernel(), and MFEMProblem::addMFEMSolver().

69 {
70  try
71  {
72  return shared_from_this();
73  }
74  catch (std::bad_weak_ptr &)
75  {
76  mooseError(not_shared_error);
77  }
78 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSharedPtr() [2/2]

std::shared_ptr< const MooseObject > MooseObject::getSharedPtr ( ) const
inherited

Definition at line 81 of file MooseObject.C.

82 {
83  try
84  {
85  return shared_from_this();
86  }
87  catch (std::bad_weak_ptr &)
88  {
89  mooseError(not_shared_error);
90  }
91 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSolverSystem() [1/2]

SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3407 of file FEProblemBase.h.

Referenced by MooseApp::attachRelationshipManagers(), MooseMesh::cacheFaceInfoVariableOwnership(), MooseMesh::cacheFVElementalDoFs(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputSolverSystemInformation(), Moose::PetscSupport::petscSetDefaultKSPNormType(), and Moose::PetscSupport::petscSetDefaultPCSide().

3408 {
3409  mooseAssert(sys_num < _solver_systems.size(),
3410  "System number greater than the number of solver systems");
3411  return *_solver_systems[sys_num];
3412 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystem() [2/2]

const SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3415 of file FEProblemBase.h.

3416 {
3417  mooseAssert(sys_num < _solver_systems.size(),
3418  "System number greater than the number of solver systems");
3419  return *_solver_systems[sys_num];
3420 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystemNames()

const std::vector<SolverSystemName>& FEProblemBase::getSolverSystemNames ( ) const
inlineinherited
Returns
the solver system names in the problem

Definition at line 2679 of file FEProblemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

2679 { return _solver_sys_names; }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.

◆ getStandardVariable()

MooseVariable & FEProblemBase::getStandardVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5903 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), FEProblemBase::projectFunctionOnCustomRange(), LinearFVKernel::requestVariableCellGradient(), and ElementSubdomainModifierBase::storeOverriddenDofValues().

5904 {
5905  for (auto & sys : _solver_systems)
5906  if (sys->hasVariable(var_name))
5907  return sys->getFieldVariable<Real>(tid, var_name);
5908  if (_aux->hasVariable(var_name))
5909  return _aux->getFieldVariable<Real>(tid, var_name);
5910 
5911  mooseError("Unknown variable " + var_name);
5912 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSteadyStateConvergenceName()

const ConvergenceName & FEProblemBase::getSteadyStateConvergenceName ( ) const
inherited

Gets the steady-state detection convergence object name.

Definition at line 9409 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultSteadyStateConvergence(), TransientBase::convergedToSteadyState(), and TransientBase::init().

9410 {
9412  return _steady_state_convergence_name.value();
9413  else
9414  mooseError("The steady convergence name has not been set.");
9415 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSystem()

System & FEProblemBase::getSystem ( const std::string &  var_name)
overridevirtualinherited

Returns the equation system containing the variable provided.

Implements SubProblem.

Definition at line 5975 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), MultiApp::appTransferVector(), ElementSubdomainModifierBase::gatherPatchElements(), FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::storeOverriddenDofValues().

5976 {
5977  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
5978  if (var_in_sys)
5979  return _solver_systems[sys_num]->system();
5980  else if (_aux->hasVariable(var_name) || _aux->hasScalarVariable(var_name))
5981  return _aux->system();
5982  else
5983  mooseError("Unable to find a system containing the variable " + var_name);
5984 }
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getSystemBase() [1/3]

const SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num) const
virtualinherited

Get constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 9122 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), PhysicsBase::copyVariablesFromMesh(), FEProblemBase::getSystemBase(), FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::restoreOverriddenDofValues().

9123 {
9124  if (sys_num < _solver_systems.size())
9125  return *_solver_systems[sys_num];
9126 
9127  return *_aux;
9128 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [2/3]

SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num)
virtualinherited

Get non-constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 9143 of file FEProblemBase.C.

9144 {
9145  if (sys_num < _solver_systems.size())
9146  return *_solver_systems[sys_num];
9147 
9148  return *_aux;
9149 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [3/3]

SystemBase & FEProblemBase::getSystemBase ( const std::string &  sys_name)
inherited

Get non-constant reference to a system in this problem.

Parameters
sys_nameThe name of the system

Definition at line 9131 of file FEProblemBase.C.

9132 {
9133  if (std::find(_solver_sys_names.begin(), _solver_sys_names.end(), sys_name) !=
9134  _solver_sys_names.end())
9135  return getSystemBase(solverSysNum(sys_name));
9136  else if (sys_name == "aux0")
9137  return *_aux;
9138  else
9139  mooseError("System '" + sys_name + "' was requested from problem but does not exist.");
9140 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getTimeFromStateArg()

Real FEProblemBase::getTimeFromStateArg ( const Moose::StateArg state) const
inherited

Returns the time associated with the requested state.

Definition at line 6955 of file FEProblemBase.C.

Referenced by Function::evaluate(), Function::evaluateDotHelper(), Function::evaluateGradientHelper(), Function::evaluateHelper(), and ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl().

6956 {
6958  // If we are any iteration type other than time (e.g. nonlinear), then temporally we are still
6959  // in the present time
6960  return time();
6961 
6962  switch (state.state)
6963  {
6964  case 0:
6965  return time();
6966 
6967  case 1:
6968  return timeOld();
6969 
6970  default:
6971  mooseError("Unhandled state ", state.state, " in FEProblemBase::getTimeFromStateArg");
6972  }
6973 }
virtual Real & time() const
SolutionIterationType iteration_type
The solution iteration type, e.g. time or nonlinear.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual Real & timeOld() const
unsigned int state
The state.

◆ getTransfers() [1/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
) const
inherited

Get Transfers by ExecFlagType and direction.

Definition at line 5582 of file FEProblemBase.C.

5583 {
5584  if (direction == MultiAppTransfer::TO_MULTIAPP)
5586  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5588  else
5590 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getTransfers() [2/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( Transfer::DIRECTION  direction) const
inherited

Definition at line 5593 of file FEProblemBase.C.

5594 {
5595  if (direction == MultiAppTransfer::TO_MULTIAPP)
5597  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5599  else
5601 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getUseNonlinear()

virtual bool FEProblem::getUseNonlinear ( ) const
inlinevirtual

Definition at line 27 of file FEProblem.h.

27 { return _use_nonlinear; }
bool _use_nonlinear
Definition: FEProblem.h:38

◆ getUserObject()

template<class T >
T& FEProblemBase::getUserObject ( const std::string &  name,
unsigned int  tid = 0 
) const
inlineinherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
Returns
Const reference to the user object

Definition at line 1268 of file FEProblemBase.h.

Referenced by ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ReporterTransferInterface::hideVariableHelper(), EigenExecutionerBase::init(), Eigenvalue::init(), IntegralPreservingFunctionIC::initialSetup(), ElementSubdomainModifierBase::initialSetup(), and EigenExecutionerBase::inversePowerIteration().

1269  {
1270  std::vector<T *> objs;
1271  theWarehouse()
1272  .query()
1273  .condition<AttribSystem>("UserObject")
1274  .condition<AttribThread>(tid)
1275  .condition<AttribName>(name)
1276  .queryInto(objs);
1277  if (objs.empty())
1278  mooseError("Unable to find user object with name '" + name + "'");
1279  return *(objs[0]);
1280  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectBase()

const UserObject & FEProblemBase::getUserObjectBase ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
tidThe thread of the user object (defaults to 0)
Returns
Const reference to the user object

Definition at line 4560 of file FEProblemBase.C.

Referenced by MFEMProblem::addBoundaryCondition(), MFEMProblem::addKernel(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appUserObjectBase(), EigenProblem::checkProblemIntegrity(), FunctorAux::computeValue(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectFromFEProblem(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), MultiAppCloneReporterTransfer::initialSetup(), MultiAppConservativeTransfer::initialSetup(), Terminator::initialSetup(), and FunctorIC::value().

4561 {
4562  std::vector<UserObject *> objs;
4563  theWarehouse()
4564  .query()
4565  .condition<AttribSystem>("UserObject")
4566  .condition<AttribThread>(tid)
4567  .condition<AttribName>(name)
4568  .queryInto(objs);
4569  if (objs.empty())
4570  mooseError("Unable to find user object with name '" + name + "'");
4571  mooseAssert(objs.size() == 1, "Should only find one UO");
4572  return *(objs[0]);
4573 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectJacobianVariables()

const std::vector<const MooseVariableFEBase *>& FEProblemBase::getUserObjectJacobianVariables ( const THREAD_ID  tid) const
inlineinherited

Definition at line 324 of file FEProblemBase.h.

Referenced by ComputeUserObjectsThread::onBoundary(), and ComputeUserObjectsThread::onElement().

325  {
326  return _uo_jacobian_moose_vars[tid];
327  }
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars

◆ getUserObjects()

const ExecuteMooseObjectWarehouse<UserObject>& FEProblemBase::getUserObjects ( ) const
inlineinherited

Definition at line 1255 of file FEProblemBase.h.

1256  {
1258  "This function is deprecated, use theWarehouse().query() to construct a query instead");
1259  return _all_user_objects;
1260  }
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314

◆ getVariable() [1/4]

virtual const MooseVariableFieldBase& SubProblem::getVariable
inherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

◆ getVariable() [2/4]

virtual MooseVariableFieldBase& SubProblem::getVariable
inlineinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariable() [3/4]

const MooseVariableFieldBase & FEProblemBase::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
) const
overridevirtualinherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

Implements SubProblem.

Definition at line 5893 of file FEProblemBase.C.

Referenced by FEProblemBase::addFVInitialCondition(), FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppGeneralFieldShapeEvaluationTransfer::buildMeshFunctions(), CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), NodalNormalsPreprocessor::execute(), MultiAppGeometricInterpolationTransfer::execute(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppProjectionTransfer::initialSetup(), AdvancedOutput::initShowHideLists(), SolutionUserObjectBase::pointValueWrapper(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MultiAppProjectionTransfer::projectSolution(), MultiAppDofCopyTransfer::transfer(), and MultiAppShapeEvaluationTransfer::transferVariable().

5897 {
5898  return getVariableHelper(
5899  tid, var_name, expected_var_type, expected_var_field_type, _solver_systems, *_aux);
5900 }
MooseVariableFieldBase & getVariableHelper(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
Helper function called by getVariable that handles the logic for checking whether Variables of the re...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVariable() [4/4]

virtual MooseVariableFieldBase& SubProblem::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
)
inlinevirtualinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const =0
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariableHelper() [1/2]

template<typename T >
MooseVariableFEBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  systems,
const SystemBase aux 
) const
inherited

Definition at line 818 of file SubProblem.C.

824 {
825  // Eventual return value
826  MooseVariableFEBase * var = nullptr;
827 
828  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
829 
830  // First check that the variable is found on the expected system.
831  if (expected_var_type == Moose::VarKindType::VAR_ANY)
832  {
833  if (var_in_sys)
834  var = &(systems[sys_num]->getVariable(tid, var_name));
835  else if (aux.hasVariable(var_name))
836  var = &(aux.getVariable(tid, var_name));
837  else
838  mooseError("Unknown variable " + var_name);
839  }
840  else if (expected_var_type == Moose::VarKindType::VAR_SOLVER && var_in_sys &&
841  systems[sys_num]->hasVariable(var_name))
842  var = &(systems[sys_num]->getVariable(tid, var_name));
843  else if (expected_var_type == Moose::VarKindType::VAR_AUXILIARY && aux.hasVariable(var_name))
844  var = &(aux.getVariable(tid, var_name));
845  else
846  {
847  std::string expected_var_type_string =
848  (expected_var_type == Moose::VarKindType::VAR_SOLVER ? "nonlinear" : "auxiliary");
849  mooseError("No ",
850  expected_var_type_string,
851  " variable named ",
852  var_name,
853  " found. "
854  "Did you specify an auxiliary variable when you meant to specify a nonlinear "
855  "variable (or vice-versa)?");
856  }
857 
858  // Now make sure the var found has the expected field type.
859  if ((expected_var_field_type == Moose::VarFieldType::VAR_FIELD_ANY) ||
860  (expected_var_field_type == var->fieldType()))
861  return *var;
862  else
863  {
864  std::string expected_var_field_type_string =
865  MooseUtils::toLower(Moose::stringify(expected_var_field_type));
866  std::string var_field_type_string = MooseUtils::toLower(Moose::stringify(var->fieldType()));
867 
868  mooseError("No ",
869  expected_var_field_type_string,
870  " variable named ",
871  var_name,
872  " found. "
873  "Did you specify a ",
874  var_field_type_string,
875  " variable when you meant to specify a ",
876  expected_var_field_type_string,
877  " variable?");
878  }
879 }
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::string toLower(std::string name)
Convert supplied string to lower case.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const =0
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
virtual Moose::VarFieldType fieldType() const =0
Field type of this variable.
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getVariableHelper() [2/2]

template<typename T >
MooseVariableFieldBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  nls,
const SystemBase aux 
) const
protectedinherited

Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available.

Referenced by DisplacedProblem::getVariable(), and FEProblemBase::getVariable().

◆ getVariableNames()

std::vector< VariableName > FEProblemBase::getVariableNames ( )
virtualinherited

Returns a list of all the variables in the problem (both from the NL and Aux systems.

Definition at line 8874 of file FEProblemBase.C.

Referenced by EigenProblem::adjustEigenVector(), AdvancedOutput::initAvailableLists(), and ElementSubdomainModifierBase::initialSetup().

8875 {
8876  std::vector<VariableName> names;
8877 
8878  for (auto & sys : _solver_systems)
8879  {
8880  const std::vector<VariableName> & var_names = sys->getVariableNames();
8881  names.insert(names.end(), var_names.begin(), var_names.end());
8882  }
8883 
8884  const std::vector<VariableName> & aux_var_names = _aux->getVariableNames();
8885  names.insert(names.end(), aux_var_names.begin(), aux_var_names.end());
8886 
8887  return names;
8888 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVectorPostprocessorObjectByName()

const VectorPostprocessor & FEProblemBase::getVectorPostprocessorObjectByName ( const std::string &  object_name,
const THREAD_ID  tid = 0 
) const
inherited

Return the VPP object given the name.

Parameters
object_nameThe name of the VPP object
Returns
Desired VPP object

This is used by various output objects as well as the scatter value handling.

See also
CSV.C, XMLOutput.C, VectorPostprocessorInterface.C

Definition at line 4654 of file FEProblemBase.C.

Referenced by VectorPostprocessorInterface::isVectorPostprocessorDistributedByName(), CSV::output(), and XMLOutput::outputVectorPostprocessors().

4656 {
4657  return getUserObject<VectorPostprocessor>(object_name, tid);
4658 }

◆ getVectorPostprocessorValueByName()

const VectorPostprocessorValue & FEProblemBase::getVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the vector value associated with the VectorPostprocessor.

Parameters
object_nameThe name of the VPP object.
vector_nameThe namve of the decalred vector within the object.
Returns
Referent to the vector of data.

Note: This method is only for retrieving values that already exist, the VectorPostprocessor and VectorPostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4635 of file FEProblemBase.C.

Referenced by HistogramVectorPostprocessor::execute().

4638 {
4640  VectorPostprocessorReporterName(object_name, vector_name), t_index);
4641 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ getVectorTag()

const VectorTag & SubProblem::getVectorTag ( const TagID  tag_id) const
virtualinherited

Get a VectorTag from a TagID.

Reimplemented in DisplacedProblem.

Definition at line 161 of file SubProblem.C.

Referenced by FEProblemBase::addCachedResidualDirectly(), Assembly::cacheResidual(), Assembly::cacheResidualNodes(), DisplacedProblem::getVectorTag(), SubProblem::getVectorTags(), TaggingInterface::prepareVectorTagInternal(), TaggingInterface::prepareVectorTagLower(), TaggingInterface::prepareVectorTagNeighbor(), FEProblemBase::setResidual(), and FEProblemBase::setResidualNeighbor().

162 {
163  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
164 
165  if (!vectorTagExists(tag_id))
166  mooseError("Vector tag with ID ", tag_id, " does not exist");
167 
168  return _vector_tags[tag_id];
169 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getVectorTagID()

TagID SubProblem::getVectorTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 203 of file SubProblem.C.

Referenced by Coupleable::coupledVectorTagArrayGradient(), Coupleable::coupledVectorTagArrayGradients(), Coupleable::coupledVectorTagArrayValues(), Coupleable::coupledVectorTagDofValues(), Coupleable::coupledVectorTagGradient(), Coupleable::coupledVectorTagGradients(), Coupleable::coupledVectorTagValues(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), DisplacedProblem::getVectorTagID(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), ReferenceResidualConvergence::ReferenceResidualConvergence(), SolverSystem::setSolution(), TaggingInterface::TaggingInterface(), TagVectorAux::TagVectorAux(), MultiAppDofCopyTransfer::transfer(), TaggingInterface::useVectorTag(), Coupleable::vectorTagDofValueHelper(), and Coupleable::vectorTagValueHelper().

204 {
205  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
206 
207  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
208  const auto search = _vector_tags_name_map.find(tag_name_upper);
209  if (search != _vector_tags_name_map.end())
210  return search->second;
211 
212  std::string message =
213  tag_name_upper == "TIME"
214  ? ".\n\nThis may occur if "
215  "you have a TimeKernel in your problem but did not specify a transient executioner."
216  : "";
217  mooseError("Vector tag '", tag_name_upper, "' does not exist", message);
218 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
std::string toUpper(std::string name)
Convert supplied string to upper case.
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getVectorTags() [1/2]

std::vector< VectorTag > SubProblem::getVectorTags ( const std::set< TagID > &  tag_ids) const
inherited

Definition at line 172 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), EigenProblem::computeResidualAB(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), DisplacedProblem::getVectorTags(), SubProblem::numVectorTags(), ComputeMortarFunctor::operator()(), and FEProblemBase::setCurrentResidualVectorTags().

173 {
174  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
175 
176  std::vector<VectorTag> tags;
177  tags.reserve(tag_ids.size());
178  for (const auto & tag_id : tag_ids)
179  tags.push_back(getVectorTag(tag_id));
180  return tags;
181 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161

◆ getVectorTags() [2/2]

const std::vector< VectorTag > & SubProblem::getVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

Return all vector tags, where a tag is represented by a map from name to ID.

Can optionally be limited to a vector tag type.

Reimplemented in DisplacedProblem.

Definition at line 184 of file SubProblem.C.

185 {
186  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
187 
189  return _vector_tags;
190  else
191  return _typed_vector_tags[type];
192 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174

◆ getVectorVariable()

VectorMooseVariable & FEProblemBase::getVectorVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested VectorMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5927 of file FEProblemBase.C.

5928 {
5929  for (auto & sys : _solver_systems)
5930  if (sys->hasVariable(var_name))
5931  return sys->getFieldVariable<RealVectorValue>(tid, var_name);
5932  if (_aux->hasVariable(var_name))
5933  return _aux->getFieldVariable<RealVectorValue>(tid, var_name);
5934 
5935  mooseError("Unknown variable " + var_name);
5936 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ getXFEM()

std::shared_ptr<XFEMInterface> FEProblemBase::getXFEM ( )
inlineinherited

Get a pointer to the XFEM controller object.

Definition at line 1916 of file FEProblemBase.h.

1916 { return _xfem; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ ghostedElems()

virtual std::set<dof_id_type>& SubProblem::ghostedElems ( )
inlinevirtualinherited

Return the list of elements that should have their DoFs ghosted to this processor.

Returns
The list

Reimplemented in DisplacedProblem.

Definition at line 672 of file SubProblem.h.

Referenced by SystemBase::augmentSendList(), NearestNodeLocator::findNodes(), DisplacedProblem::ghostedElems(), and NearestNodeLocator::updatePatch().

672 { return _ghosted_elems; }
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093

◆ ghostGhostedBoundaries()

void FEProblemBase::ghostGhostedBoundaries ( )
overridevirtualinherited

Causes the boundaries added using addGhostedBoundary to actually be ghosted.

Implements SubProblem.

Definition at line 2133 of file FEProblemBase.C.

Referenced by DisplacedProblem::ghostGhostedBoundaries(), FEProblemBase::init(), and FEProblemBase::meshChanged().

2134 {
2135  TIME_SECTION("ghostGhostedBoundaries", 3, "Ghosting Ghosted Boundaries");
2136 
2138 
2139  if (_displaced_problem)
2141 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void ghostGhostedBoundaries()
Actually do the ghosting of boundaries that need to be ghosted to this processor. ...
Definition: MooseMesh.C:3354
MooseMesh * _displaced_mesh

◆ hasActiveElementalMooseVariables()

bool SubProblem::hasActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Whether or not a list of active elemental moose variables has been set.

Returns
True if there has been a list of active elemental moose variables set, False otherwise

Definition at line 460 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), and SystemBase::reinitElem().

461 {
463 }
std::vector< unsigned int > _has_active_elemental_moose_variables
Whether or not there is currently a list of active elemental moose variables.
Definition: SubProblem.h:1079

◆ hasActiveMaterialProperties()

bool FEProblemBase::hasActiveMaterialProperties ( const THREAD_ID  tid) const
inherited

Method to check whether or not a list of active material roperties has been set.

This method is called by reinitMaterials to determine whether Material computeProperties methods need to be called. If the return is False, this check prevents unnecessary material property computation

Parameters
tidThe thread id
Returns
True if there has been a list of active material properties set, False otherwise

Definition at line 6101 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::onElement(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsInterface(), FEProblemBase::reinitMaterialsNeighbor(), and FEProblemBase::reinitMaterialsNeighborOnBoundary().

6102 {
6103  return _has_active_material_properties[tid];
6104 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ hasAuxiliaryVariable()

bool SubProblem::hasAuxiliaryVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this auxiliary variable.

Definition at line 811 of file SubProblem.C.

Referenced by SubProblem::getFunctor(), and NearestNodeValueAux::NearestNodeValueAux().

812 {
813  return systemBaseAuxiliary().hasVariable(var_name);
814 }
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851

◆ hasBase()

bool MooseBase::hasBase ( ) const
inlineinherited
Returns
Whether or not this object has a registered base (set via InputParameters::registerBase())

Definition at line 142 of file MooseBase.h.

142 { return _pars.hasBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
bool hasBase() const

◆ hasBlockMaterialProperty()

bool SubProblem::hasBlockMaterialProperty ( SubdomainID  block_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 511 of file SubProblem.C.

512 {
513  auto it = _map_block_material_props.find(bid);
514  if (it == _map_block_material_props.end())
515  return false;
516 
517  if (it->second.count(prop_name) > 0)
518  return true;
519  else
520  return false;
521 }
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ hasBoundaryMaterialProperty()

bool SubProblem::hasBoundaryMaterialProperty ( BoundaryID  boundary_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 570 of file SubProblem.C.

571 {
572  auto it = _map_boundary_material_props.find(bid);
573  if (it == _map_boundary_material_props.end())
574  return false;
575 
576  if (it->second.count(prop_name) > 0)
577  return true;
578  else
579  return false;
580 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ hasConvergence()

bool FEProblemBase::hasConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Returns true if the problem has a Convergence object of the given name.

Definition at line 2653 of file FEProblemBase.C.

Referenced by ParsedConvergence::initializeSymbols().

2654 {
2655  return _convergences.hasActiveObject(name, tid);
2656 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasDampers()

bool FEProblemBase::hasDampers ( )
inlineinherited

Whether or not this system has dampers.

Definition at line 1405 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::preInit(), and NonlinearSystem::solve().

1405 { return _has_dampers; }
bool _has_dampers
Whether or not this system has any Dampers associated with it.

◆ hasException()

virtual bool FEProblemBase::hasException ( )
inlinevirtualinherited

Whether or not an exception has occurred.

Definition at line 502 of file FEProblemBase.h.

Referenced by NonlinearSystem::converged(), ThreadedElementLoop< ConstElemPointerRange >::keepGoing(), and ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::keepGoing().

502 { return _has_exception; }
bool _has_exception
Whether or not an exception has occurred.

◆ hasFunction()

bool FEProblemBase::hasFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2602 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), FunctorIC::FunctorIC(), FEProblemBase::getFunction(), FunctionInterface::hasFunctionByName(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), ParsedConvergence::initializeSymbols(), and MooseParsedFunction::initialSetup().

2603 {
2604  return _functions.hasActiveObject(name, tid);
2605 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.
MooseObjectWarehouse< Function > _functions
functions

◆ hasFunctor()

bool SubProblem::hasFunctor ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor corresponding to name on the thread id tid

Definition at line 1270 of file SubProblem.C.

Referenced by FunctorInterface::isFunctor().

1271 {
1272  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1273  auto & functors = _functors[tid];
1274  return (functors.find("wraps_" + name) != functors.end());
1275 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasFunctorWithType()

template<typename T >
bool SubProblem::hasFunctorWithType ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor of type T corresponding to name on the thread id tid

Definition at line 1320 of file SubProblem.h.

1321 {
1322  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1323  auto & functors = _functors[tid];
1324 
1325  const auto & it = functors.find("wraps_" + name);
1326  constexpr bool requested_functor_is_ad =
1327  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1328 
1329  if (it == functors.end())
1330  return false;
1331  else
1332  return dynamic_cast<Moose::Functor<T> *>(
1333  requested_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get());
1334 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1133
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasInitialAdaptivity() [1/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1904 of file FEProblemBase.h.

1904 { return _adaptivity.getInitialSteps() > 0; }
Adaptivity _adaptivity
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98

◆ hasInitialAdaptivity() [2/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1909 of file FEProblemBase.h.

1909 { return false; }

◆ hasJacobian()

bool FEProblemBase::hasJacobian ( ) const
inherited

Returns _has_jacobian.

Definition at line 9037 of file FEProblemBase.C.

9038 {
9039  return _has_jacobian;
9040 }
bool _has_jacobian
Indicates if the Jacobian was computed.

◆ hasKokkosObjects()

bool FEProblemBase::hasKokkosObjects ( ) const
inlineinherited
Returns
whether any Kokkos object was added in the problem

Definition at line 2700 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::preInit(), and MooseMesh::update().

2700 { return _has_kokkos_objects; }
bool _has_kokkos_objects
Whether we have any Kokkos objects.

◆ hasLinearConvergenceObjects()

bool FEProblemBase::hasLinearConvergenceObjects ( ) const
inherited

Whether we have linear convergence objects.

Definition at line 9376 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscSetDefaults().

9377 {
9378  // If false,this means we have not set one, not that we are querying this too early
9379  // TODO: once there is a default linear CV object, error on the 'not set' case
9380  return _linear_convergence_names.has_value();
9381 }
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ hasLinearVariable()

bool SubProblem::hasLinearVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this linear variable.

Definition at line 802 of file SubProblem.C.

Referenced by SubProblem::getFunctor().

803 {
804  for (const auto i : make_range(numLinearSystems()))
805  if (systemBaseLinear(i).hasVariable(var_name))
806  return true;
807  return false;
808 }
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
IntRange< T > make_range(T beg, T end)
virtual const SystemBase & systemBaseLinear(const unsigned int sys_num) const =0
Return the linear system object as a base class reference given the system number.
virtual std::size_t numLinearSystems() const =0

◆ hasMortarCoupling()

virtual bool FEProblemBase::hasMortarCoupling ( ) const
inlinevirtualinherited

Whether the simulation has mortar coupling.

Definition at line 2401 of file FEProblemBase.h.

2401 { return _has_mortar; }
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ hasMultiApp()

bool FEProblemBase::hasMultiApp ( const std::string &  name) const
inherited

Definition at line 5503 of file FEProblemBase.C.

5504 {
5505  return _multi_apps.hasActiveObject(multi_app_name);
5506 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasMultiApps() [1/2]

bool FEProblemBase::hasMultiApps ( ) const
inlineinherited

Returns whether or not the current simulation has any multiapps.

Definition at line 1391 of file FEProblemBase.h.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), FEProblemBase::checkProblemIntegrity(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), and DefaultMultiAppFixedPointConvergence::preExecute().

1391 { return _multi_apps.hasActiveObjects(); }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasMultiApps() [2/2]

bool FEProblemBase::hasMultiApps ( ExecFlagType  type) const
inherited

Definition at line 5497 of file FEProblemBase.C.

5498 {
5499  return _multi_apps[type].hasActiveObjects();
5500 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasNeighborCoupling()

virtual bool FEProblemBase::hasNeighborCoupling ( ) const
inlinevirtualinherited

Whether the simulation has neighbor coupling.

Definition at line 2396 of file FEProblemBase.h.

bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ hasNonlocalCoupling()

virtual bool FEProblemBase::hasNonlocalCoupling ( ) const
inlineoverridevirtualinherited

Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian.

For this to return true, there must be at least one active nonlocal kernel or boundary condition

Implements SubProblem.

Definition at line 2658 of file FEProblemBase.h.

Referenced by DisplacedProblem::hasNonlocalCoupling().

2658 { return _has_nonlocal_coupling; }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.

◆ hasPostprocessor()

bool FEProblemBase::hasPostprocessor ( const std::string &  name) const
inherited

Deprecated.

Use hasPostprocessorValueByName

Definition at line 4627 of file FEProblemBase.C.

Referenced by GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl().

4628 {
4629  mooseDeprecated("FEProblemBase::hasPostprocssor is being removed; use "
4630  "hasPostprocessorValueByName instead.");
4632 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:314
bool hasPostprocessorValueByName(const PostprocessorName &name) const
Whether or not a Postprocessor value exists by a given name.

◆ hasPostprocessorValueByName()

bool FEProblemBase::hasPostprocessorValueByName ( const PostprocessorName &  name) const
inherited

Whether or not a Postprocessor value exists by a given name.

Parameters
nameThe name of the Postprocessor
Returns
True if a Postprocessor value exists

Note: You should prioritize the use of PostprocessorInterface::hasPostprocessor and PostprocessorInterface::hasPostprocessorByName over this method when possible.

Definition at line 4604 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), FunctorAux::computeValue(), FunctorExtremaPositions::FunctorExtremaPositions(), FEProblemBase::hasPostprocessor(), MooseParsedFunction::initialSetup(), and FunctorIC::value().

4605 {
4607 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143
bool hasReporterValue(const ReporterName &reporter_name) const
Return True if a Reporter value with the given type and name have been created.
Definition: ReporterData.h:445

◆ hasScalarVariable()

bool FEProblemBase::hasScalarVariable ( const std::string &  var_name) const
overridevirtualinherited

Returns a Boolean indicating whether any system contains a variable with the name provided.

Implements SubProblem.

Definition at line 5951 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), EigenProblem::adjustEigenVector(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), AdvancedOutput::initAvailableLists(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), AdvancedOutput::initShowHideLists(), and Split::setup().

5952 {
5953  for (auto & sys : _solver_systems)
5954  if (sys->hasScalarVariable(var_name))
5955  return true;
5956  if (_aux->hasScalarVariable(var_name))
5957  return true;
5958 
5959  return false;
5960 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ hasScalingVector()

void SubProblem::hasScalingVector ( const unsigned int  nl_sys_num)
inherited

Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector.

Definition at line 1170 of file SubProblem.C.

Referenced by SystemBase::addScalingVector().

1171 {
1172  for (const THREAD_ID tid : make_range(libMesh::n_threads()))
1173  assembly(tid, nl_sys_num).hasScalingVector();
1174 }
unsigned int n_threads()
void hasScalingVector()
signals this object that a vector containing variable scaling factors should be used when doing resid...
Definition: Assembly.C:4574
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ hasSetMultiAppFixedPointConvergenceName()

bool FEProblemBase::hasSetMultiAppFixedPointConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the fixed point convergence name.

Definition at line 694 of file FEProblemBase.h.

695  {
696  return _multiapp_fixed_point_convergence_name.has_value();
697  }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ hasSetSteadyStateConvergenceName()

bool FEProblemBase::hasSetSteadyStateConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the steady-state detection convergence name.

Definition at line 699 of file FEProblemBase.h.

700  {
701  return _steady_state_convergence_name.has_value();
702  }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ hasSolverVariable()

bool FEProblemBase::hasSolverVariable ( const std::string &  var_name) const
inherited

Definition at line 5883 of file FEProblemBase.C.

5884 {
5885  for (auto & sys : _solver_systems)
5886  if (sys->hasVariable(var_name))
5887  return true;
5888 
5889  return false;
5890 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ hasTimeIntegrator()

bool FEProblemBase::hasTimeIntegrator ( ) const
inlineinherited

Returns whether or not this Problem has a TimeIntegrator.

Definition at line 2187 of file FEProblemBase.h.

Referenced by TransientBase::setupTimeIntegrator().

2187 { return _has_time_integrator; }
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)

◆ hasUOAuxStateCheck()

bool FEProblemBase::hasUOAuxStateCheck ( ) const
inlineinherited

Whether or not MOOSE will perform a user object/auxiliary kernel state check.

Definition at line 201 of file FEProblemBase.h.

201 { return _uo_aux_state_check; }
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.

◆ hasUserObject()

bool FEProblemBase::hasUserObject ( const std::string &  name) const
inherited

Check if there if a user object of given name.

Parameters
nameThe name of the user object being checked for
Returns
true if the user object exists, false otherwise

Definition at line 4591 of file FEProblemBase.C.

Referenced by MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), FunctorAux::computeValue(), DistributedPositions::DistributedPositions(), UserObjectInterface::hasUserObjectByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterTransferInterface::hideVariableHelper(), ParsedDownSelectionPositions::initialize(), and TransformedPositions::TransformedPositions().

4592 {
4593  std::vector<UserObject *> objs;
4594  theWarehouse()
4595  .query()
4596  .condition<AttribSystem>("UserObject")
4597  .condition<AttribThread>(0)
4598  .condition<AttribName>(name)
4599  .queryInto(objs);
4600  return !objs.empty();
4601 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ hasVariable()

bool FEProblemBase::hasVariable ( const std::string &  var_name) const
overridevirtualinherited

Whether or not this problem has the variable.

Implements SubProblem.

Definition at line 5871 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), FEProblemBase::addFVInitialCondition(), DiffusionFV::addFVKernels(), FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), MultiAppTransfer::checkVariable(), FunctorIC::FunctorIC(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MooseParsedFunction::initialSetup(), AdvancedOutput::initShowHideLists(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), and Split::setup().

5872 {
5873  for (auto & sys : _solver_systems)
5874  if (sys->hasVariable(var_name))
5875  return true;
5876  if (_aux->hasVariable(var_name))
5877  return true;
5878 
5879  return false;
5880 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ haveADObjects() [1/4]

bool SubProblem::haveADObjects ( ) const
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::init().

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [2/4]

virtual void SubProblem::haveADObjects
inlineinherited

Method for setting whether we have any ad objects.

Definition at line 767 of file SubProblem.h.

767 { _have_ad_objects = have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [3/4]

bool SubProblem::haveADObjects
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [4/4]

void FEProblemBase::haveADObjects ( bool  have_ad_objects)
overridevirtualinherited

Method for setting whether we have any ad objects.

Reimplemented from SubProblem.

Definition at line 9114 of file FEProblemBase.C.

9115 {
9116  _have_ad_objects = have_ad_objects;
9117  if (_displaced_problem)
9118  _displaced_problem->SubProblem::haveADObjects(have_ad_objects);
9119 }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveDisplaced()

bool FEProblemBase::haveDisplaced ( ) const
inlinefinaloverridevirtualinherited

Whether we have a displaced problem in our simulation.

Implements SubProblem.

Definition at line 2492 of file FEProblemBase.h.

2492 { return _displaced_problem.get(); }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveFV()

virtual bool FEProblemBase::haveFV ( ) const
inlineoverridevirtualinherited

◆ havePRefinement()

bool SubProblem::havePRefinement ( ) const
inlineinherited

Query whether p-refinement has been requested at any point during the simulation.

Definition at line 1009 of file SubProblem.h.

Referenced by AdvancedOutput::initAvailableLists(), and FEProblemBase::meshChanged().

1009 { return _have_p_refinement; }
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202

◆ haveXFEM()

bool FEProblemBase::haveXFEM ( )
inlineinherited

Find out whether the current analysis is using XFEM.

Definition at line 1919 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), FixedPointSolve::solveStep(), TransientBase::takeStep(), and FEProblemBase::updateMeshXFEM().

1919 { return _xfem != nullptr; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ identifyVariableGroupsInNL()

bool FEProblemBase::identifyVariableGroupsInNL ( ) const
inlineinherited

Whether to identify variable groups in nonlinear systems.

This affects dof ordering

Definition at line 2663 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase().

const bool _identify_variable_groups_in_nl
Whether to identify variable groups in nonlinear systems. This affects dof ordering.

◆ ignoreZerosInJacobian()

bool FEProblemBase::ignoreZerosInJacobian ( ) const
inlineinherited

Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.

Note that this can make preserving the matrix sparsity pattern impossible.

Definition at line 2159 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

2159 { return _ignore_zeros_in_jacobian; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ immediatelyPrintInvalidSolution()

bool FEProblemBase::immediatelyPrintInvalidSolution ( ) const
inlineinherited

Whether or not the solution invalid warnings are printed out immediately.

Definition at line 2184 of file FEProblemBase.h.

Referenced by SolutionInvalidInterface::flagInvalidSolutionInternal().

const bool & _immediately_print_invalid_solution

◆ incrementMultiAppTStep()

void FEProblemBase::incrementMultiAppTStep ( ExecFlagType  type)
inherited

Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType.

Definition at line 5688 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject().

5689 {
5690  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5691 
5692  if (multi_apps.size())
5693  for (const auto & multi_app : multi_apps)
5694  multi_app->incrementTStep(_time);
5695 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ init()

void FEProblem::init ( )
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 86 of file FEProblem.C.

87 {
88  for (const auto & sys : _solver_systems)
89  if (sys->system().has_static_condensation() && libMesh::n_threads() != 1)
90  mooseError("Static condensation may not be used with multiple threads");
91 
93 }
unsigned int n_threads()
virtual void init() override
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ initElementStatefulProps()

void FEProblemBase::initElementStatefulProps ( const libMesh::ConstElemRange elem_range,
const bool  threaded 
)
inherited

Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 8468 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::finalize(), ElementSubdomainModifierBase::initElementStatefulProps(), and FEProblemBase::initialSetup().

8469 {
8472  if (threaded)
8473  Threads::parallel_reduce(elem_range, cmt);
8474  else
8475  cmt(elem_range, true);
8476 
8477 #ifdef MOOSE_KOKKOS_ENABLED
8478  if (_has_kokkos_objects)
8480 #endif
8481 }
MaterialPropertyStorage & _bnd_material_props
bool _has_kokkos_objects
Whether we have any Kokkos objects.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props
void initKokkosStatefulProps()

◆ initialAdaptMesh()

void FEProblemBase::initialAdaptMesh ( )
virtualinherited

Definition at line 8138 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

8139 {
8140  unsigned int n = adaptivity().getInitialSteps();
8141  _cycles_completed = 0;
8142  if (n)
8143  {
8144  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
8145  mooseError("HFEM does not support mesh adaptivity currently.");
8146 
8147  TIME_SECTION("initialAdaptMesh", 2, "Performing Initial Adaptivity");
8148 
8149  for (unsigned int i = 0; i < n; i++)
8150  {
8152  computeMarkers();
8153 
8155  {
8156  meshChanged(
8157  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
8158 
8159  // reproject the initial condition
8160  projectSolution();
8161 
8163  }
8164  else
8165  {
8166  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
8167  return;
8168  }
8169  }
8170  }
8171 }
bool initialAdaptMesh()
Used during initial adaptivity.
Definition: Adaptivity.C:268
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1429
unsigned int _cycles_completed
virtual void computeMarkers()
void projectSolution()
virtual void computeIndicators()
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1433
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
Adaptivity & adaptivity()

◆ initialSetup()

void FEProblemBase::initialSetup ( )
overridevirtualinherited

If this is a restart run, the user may want to override the start time, which we already set in the constructor. "_time" however will have been "restored" from the restart file. We need to honor the original request of the developer now that the restore has been completed.

If we are not recovering but we are doing restart (_app.getExodusFileRestart() == true) with additional uniform refinements. We have to delay the refinement until this point in time so that the equation systems are initialized and projections can be performed.

Reimplemented from SubProblem.

Definition at line 883 of file FEProblemBase.C.

Referenced by Steady::init(), EigenExecutionerBase::init(), TransientBase::init(), Eigenvalue::init(), and MFEMProblem::initialSetup().

884 {
885  TIME_SECTION("initialSetup", 2, "Performing Initial Setup");
886 
888 
890  mooseError("Checkpoint recovery and restart and exodus restart are all mutually exclusive.");
891 
893  mooseWarning("MOOSE may fail to catch an exception when the \"skip_exception_check\" parameter "
894  "is used. If you receive a terse MPI error during execution, remove this "
895  "parameter and rerun your simulation");
896 
897  // set state flag indicating that we are in or beyond initialSetup.
898  // This can be used to throw errors in methods that _must_ be called at construction time.
899  _started_initial_setup = true;
901 
902  // Setup the solution states (current, old, etc) in each system based on
903  // its default and the states requested of each of its variables
904  for (const auto i : index_range(_solver_systems))
905  {
906  _solver_systems[i]->initSolutionState();
907  if (getDisplacedProblem())
908  getDisplacedProblem()->solverSys(i).initSolutionState();
909  }
910  _aux->initSolutionState();
911  if (getDisplacedProblem())
912  getDisplacedProblem()->auxSys().initSolutionState();
913 
914  // always execute to get the max number of DoF per element and node needed to initialize phi_zero
915  // variables
916  dof_id_type global_max_var_n_dofs_per_elem = 0;
917  for (const auto i : index_range(_solver_systems))
918  {
919  auto & sys = *_solver_systems[i];
920  dof_id_type max_var_n_dofs_per_elem;
921  dof_id_type max_var_n_dofs_per_node;
922  {
923  TIME_SECTION("computingMaxDofs", 3, "Computing Max Dofs Per Element");
924 
925  MaxVarNDofsPerElem mvndpe(*this, sys);
927  max_var_n_dofs_per_elem = mvndpe.max();
928  _communicator.max(max_var_n_dofs_per_elem);
929 
930  MaxVarNDofsPerNode mvndpn(*this, sys);
932  max_var_n_dofs_per_node = mvndpn.max();
933  _communicator.max(max_var_n_dofs_per_node);
934  global_max_var_n_dofs_per_elem =
935  std::max(global_max_var_n_dofs_per_elem, max_var_n_dofs_per_elem);
936  }
937 
938  {
939  TIME_SECTION("assignMaxDofs", 5, "Assigning Maximum Dofs Per Elem");
940 
941  sys.assignMaxVarNDofsPerElem(max_var_n_dofs_per_elem);
943  if (displaced_problem)
944  displaced_problem->solverSys(i).assignMaxVarNDofsPerElem(max_var_n_dofs_per_elem);
945 
946  sys.assignMaxVarNDofsPerNode(max_var_n_dofs_per_node);
947  if (displaced_problem)
948  displaced_problem->solverSys(i).assignMaxVarNDofsPerNode(max_var_n_dofs_per_node);
949  }
950  }
951 
952  {
953  TIME_SECTION("resizingVarValues", 5, "Resizing Variable Values");
954 
955  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
956  {
957  _phi_zero[tid].resize(global_max_var_n_dofs_per_elem, std::vector<Real>(getMaxQps(), 0.));
958  _grad_phi_zero[tid].resize(global_max_var_n_dofs_per_elem,
959  std::vector<RealGradient>(getMaxQps(), RealGradient(0.)));
960  _second_phi_zero[tid].resize(global_max_var_n_dofs_per_elem,
961  std::vector<RealTensor>(getMaxQps(), RealTensor(0.)));
962  }
963  }
964 
965  // Set up stateful material property redistribution, if we suspect
966  // it may be necessary later.
968 
970  {
971  // Only load all of the vectors if we're recovering
973 
974  // This forces stateful material property loading to be an exact one-to-one match
975  if (_app.isRecovering())
976  {
978  props->setRecovering();
979 
980 #ifdef MOOSE_KOKKOS_ENABLED
981  for (auto props :
983  props->setRecovering();
984 #endif
985  }
986 
987  TIME_SECTION("restore", 3, "Restoring from backup");
988 
989  // We could have a cached backup when this app is a sub-app and has been given a Backup
990  if (!_app.hasInitialBackup())
992  else
994 
1000  if (_app.isRestarting())
1001  {
1002  if (_app.hasStartTime())
1004  else
1005  _time_old = _time;
1006  }
1007  }
1008  else
1009  {
1011 
1012  if (reader)
1013  {
1014  TIME_SECTION("copyingFromExodus", 3, "Copying Variables From Exodus");
1015 
1016  for (auto & sys : _solver_systems)
1017  sys->copyVars(*reader);
1018  _aux->copyVars(*reader);
1019  }
1020  else
1021  {
1022  if (_solver_systems[0]->hasVarCopy() || _aux->hasVarCopy())
1023  mooseError("Need Exodus reader to restart variables but the reader is not available\n"
1024  "Use either FileMesh with an Exodus mesh file or FileMeshGenerator with an "
1025  "Exodus mesh file and with use_for_exodus_restart equal to true");
1026  }
1027  }
1028 
1029  // Perform output related setups
1031 
1032  // Flush all output to _console that occur during construction and initialization of objects
1034 
1035  // Build Refinement and Coarsening maps for stateful material projections if necessary
1036  if ((_adaptivity.isOn() || _num_grid_steps) &&
1039  {
1041  mooseError("Stateful neighbor material properties do not work with mesh adaptivity");
1042 
1044  }
1045 
1046  if (!_app.isRecovering())
1047  {
1054  {
1055  if (!_app.isUltimateMaster())
1056  mooseError(
1057  "Doing extra refinements when restarting is NOT supported for sub-apps of a MultiApp");
1058 
1060  }
1061  }
1062 
1063  unsigned int n_threads = libMesh::n_threads();
1064 
1065  // Convergence initial setup
1066  {
1067  TIME_SECTION("convergenceInitialSetup", 5, "Initializing Convergence objects");
1068 
1069  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1071  }
1072 
1073  // UserObject initialSetup
1074  std::set<std::string> depend_objects_ic = _ics.getDependObjects();
1075  std::set<std::string> depend_objects_aux = _aux->getDependObjects();
1076 
1077  // This replaces all prior updateDependObjects calls on the old user object warehouses.
1078  TheWarehouse::Query uo_query = theWarehouse().query().condition<AttribSystem>("UserObject");
1079  std::vector<UserObject *> userobjs;
1080  uo_query.queryInto(userobjs);
1082  theWarehouse(), getAuxiliarySystem(), _app.getExecuteOnEnum(), userobjs, depend_objects_ic);
1083 
1084  std::map<int, std::vector<UserObject *>> group_userobjs;
1085  for (auto obj : userobjs)
1086  group_userobjs[obj->getParam<int>("execution_order_group")].push_back(obj);
1087 
1088  for (auto & [group, objs] : group_userobjs)
1089  for (auto obj : objs)
1090  obj->initialSetup();
1091 
1092  // check if jacobian calculation is done in userobject
1093  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
1095 
1096  // Check whether nonlocal couling is required or not
1100 
1101  {
1102  TIME_SECTION("initializingFunctions", 5, "Initializing Functions");
1103 
1104  // Call the initialSetup methods for functions
1105  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1106  {
1107  reinitScalars(tid); // initialize scalars so they are properly sized for use as input into
1108  // ParsedFunctions
1109  _functions.initialSetup(tid);
1110  }
1111  }
1112 
1113  {
1114  TIME_SECTION("initializingRandomObjects", 5, "Initializing Random Objects");
1115 
1116  // Random interface objects
1117  for (const auto & it : _random_data_objects)
1118  it.second->updateSeeds(EXEC_INITIAL);
1119  }
1120 
1121  if (!_app.isRecovering())
1122  {
1124 
1125  {
1126  TIME_SECTION("ICinitialSetup", 5, "Setting Up Initial Conditions");
1127 
1128  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1129  _ics.initialSetup(tid);
1130 
1132  }
1133 
1134  projectSolution();
1135  }
1136 
1137  // Materials
1139  {
1140  TIME_SECTION("materialInitialSetup", 3, "Setting Up Materials");
1141 
1142  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1143  {
1144  // Sort the Material objects, these will be actually computed by MOOSE in reinit methods.
1145  _materials.sort(tid);
1147 
1148  // Call initialSetup on all material objects
1150 
1151  // Discrete materials may insert additional dependencies on materials during the initial
1152  // setup. Therefore we resolve the dependencies once more, now with the additional
1153  // dependencies due to discrete materials.
1155  {
1156  _materials.sort(tid);
1158  }
1159  }
1160 
1161 #ifdef MOOSE_KOKKOS_ENABLED
1162  _kokkos_materials.sort(0, true);
1163 #endif
1164 
1165  {
1166  TIME_SECTION("computingInitialStatefulProps", 3, "Computing Initial Material Values");
1167 
1169 
1173 #ifdef MOOSE_KOKKOS_ENABLED
1178 #endif
1179  }
1180  }
1181 
1182  // setRestartInPlace() is set because the property maps have now been setup and we can
1183  // dataLoad() them directly in place
1184  // setRecovering() is set because from now on we require a one-to-one mapping of
1185  // stateful properties because we shouldn't be declaring any more
1187  {
1188  props->setRestartInPlace();
1189  props->setRecovering();
1190  }
1191 
1192  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1193  {
1196  _markers.sort(tid);
1197  _markers.initialSetup(tid);
1198  }
1199 
1200 #ifdef LIBMESH_ENABLE_AMR
1201 
1202  if (!_app.isRecovering())
1203  {
1204  unsigned int n = adaptivity().getInitialSteps();
1205  if (n && !_app.isUltimateMaster() && _app.isRestarting())
1206  mooseError("Cannot perform initial adaptivity during restart on sub-apps of a MultiApp!");
1207 
1208  initialAdaptMesh();
1209  }
1210 
1211 #endif // LIBMESH_ENABLE_AMR
1212 
1213  if (!_app.isRecovering() && !_app.isRestarting())
1214  {
1215  // During initial setup the solution is copied to the older solution states (old, older, etc)
1217 
1218  // Check if there are old state initial conditions
1219  auto ics = _ics.getActiveObjects();
1220  auto fv_ics = _fv_ics.getActiveObjects();
1221  auto scalar_ics = _scalar_ics.getActiveObjects();
1222  unsigned short ic_state_max = 0;
1223 
1224  auto findMax = [&ic_state_max](const auto & obj_list)
1225  {
1226  for (auto ic : obj_list.getActiveObjects())
1227  ic_state_max = std::max(ic_state_max, ic->getState());
1228  };
1229  findMax(_ics);
1230  findMax(_fv_ics);
1231  findMax(_scalar_ics);
1232 
1233  // if there are old state ICs, compute them and write to old states accordingly
1234  if (ic_state_max > 0)
1235  {
1236  // state 0 copy (we'll overwrite current state when evaluating ICs and need to restore it once
1237  // we're done with the old/older state ICs)
1238  std::vector<std::unique_ptr<NumericVector<Real>>> state0_sys_buffers(_solver_systems.size());
1239  std::unique_ptr<NumericVector<Real>> state0_aux_buffer;
1240 
1241  // save state 0
1242  for (const auto i : index_range(_solver_systems))
1243  state0_sys_buffers[i] = _solver_systems[i]->solutionState(0).clone();
1244 
1245  state0_aux_buffer = _aux->solutionState(0).clone();
1246 
1247  // compute old state ICs
1248  for (_current_ic_state = 1; _current_ic_state <= ic_state_max; _current_ic_state++)
1249  {
1250  projectSolution();
1251 
1252  for (auto & sys : _solver_systems)
1253  sys->solutionState(_current_ic_state) = sys->solutionState(0);
1254 
1255  _aux->solutionState(_current_ic_state) = _aux->solutionState(0);
1256  }
1257  _current_ic_state = 0;
1258 
1259  // recover state 0
1260  for (const auto i : index_range(_solver_systems))
1261  {
1262  _solver_systems[i]->solutionState(0) = *state0_sys_buffers[i];
1263  _solver_systems[i]->solutionState(0).close();
1264  _solver_systems[i]->update();
1265  }
1266  _aux->solutionState(0) = *state0_aux_buffer;
1267  _aux->solutionState(0).close();
1268  _aux->update();
1269  }
1270  }
1271 
1272  if (!_app.isRecovering())
1273  {
1274  if (haveXFEM())
1275  updateMeshXFEM();
1276  }
1277 
1278  // Call initialSetup on the solver systems
1279  for (auto & sys : _solver_systems)
1280  sys->initialSetup();
1281 
1282  // Auxilary variable initialSetup calls
1283  _aux->initialSetup();
1284 
1285  if (_displaced_problem)
1286  // initialSetup for displaced systems
1287  _displaced_problem->initialSetup();
1288 
1289  for (auto & sys : _solver_systems)
1290  sys->setSolution(*(sys->system().current_local_solution.get()));
1291 
1292  // Update the nearest node searches (has to be called after the problem is all set up)
1293  // We do this here because this sets up the Element's DoFs to ghost
1295 
1297  if (_displaced_mesh)
1299 
1300  // We need to move the mesh in order to build a map between mortar secondary and primary
1301  // interfaces. This map will then be used by the AgumentSparsityOnInterface ghosting functor to
1302  // know which dofs we need ghosted when we call EquationSystems::reinit
1304  {
1305  _displaced_problem->updateMesh();
1306  // if displacements were applied to the mesh, the mortar mesh should be updated too
1307  updateMortarMesh();
1308  }
1309 
1310  // Possibly reinit one more time to get ghosting correct
1312 
1313  if (_displaced_mesh)
1314  _displaced_problem->updateMesh();
1315 
1316  updateGeomSearch(); // Call all of the rest of the geometric searches
1317 
1318  for (auto & sys : _solver_systems)
1319  {
1320  const auto & tis = sys->getTimeIntegrators();
1321 
1322  {
1323  TIME_SECTION("timeIntegratorInitialSetup", 5, "Initializing Time Integrator");
1324  for (auto & ti : tis)
1325  ti->initialSetup();
1326  }
1327  }
1328 
1329  // HUGE NOTE: MultiApp initialSetup() MUST... I repeat MUST be _after_ main-app restartable data
1330  // has been restored
1331 
1332  // Call initialSetup on the MultiApps
1333  if (_multi_apps.hasObjects())
1334  {
1335  TIME_SECTION("initialSetupMultiApps", 2, "Initializing MultiApps", false);
1337  }
1338 
1339  // Call initialSetup on the transfers
1340  {
1341  TIME_SECTION("initialSetupTransfers", 2, "Initializing Transfers");
1342 
1344 
1345  // Call initialSetup on the MultiAppTransfers to be executed on TO_MULTIAPP
1346  const auto & to_multi_app_objects = _to_multi_app_transfers.getActiveObjects();
1347  for (const auto & transfer : to_multi_app_objects)
1348  {
1349  transfer->setCurrentDirection(Transfer::DIRECTION::TO_MULTIAPP);
1350  transfer->initialSetup();
1351  }
1352 
1353  // Call initialSetup on the MultiAppTransfers to be executed on FROM_MULTIAPP
1354  const auto & from_multi_app_objects = _from_multi_app_transfers.getActiveObjects();
1355  for (const auto & transfer : from_multi_app_objects)
1356  {
1357  transfer->setCurrentDirection(Transfer::DIRECTION::FROM_MULTIAPP);
1358  transfer->initialSetup();
1359  }
1360 
1361  // Call initialSetup on the MultiAppTransfers to be executed on BETWEEN_MULTIAPP
1362  const auto & between_multi_app_objects = _between_multi_app_transfers.getActiveObjects();
1363  for (const auto & transfer : between_multi_app_objects)
1364  {
1365  transfer->setCurrentDirection(Transfer::DIRECTION::BETWEEN_MULTIAPP);
1366  transfer->initialSetup();
1367  }
1368  }
1369 
1371  {
1372  TIME_SECTION("BoundaryRestrictedNodeIntegrityCheck", 5);
1373 
1374  // check that variables are defined along boundaries of boundary restricted nodal objects
1375  ConstBndNodeRange & bnd_nodes = *mesh().getBoundaryNodeRange();
1376  BoundaryNodeIntegrityCheckThread bnict(*this, uo_query);
1377  Threads::parallel_reduce(bnd_nodes, bnict);
1378 
1379  // Nodal bcs aren't threaded
1380  const auto & node_to_elem_map = _mesh.nodeToActiveSemilocalElemMap();
1381  for (const auto & bnode : bnd_nodes)
1382  {
1383  const auto boundary_id = bnode->_bnd_id;
1384  const Node * const node = bnode->_node;
1385 
1386  if (node->processor_id() != this->processor_id())
1387  continue;
1388 
1389  // Only check vertices. Variables may not be defined on non-vertex nodes (think first order
1390  // Lagrange on a second order mesh) and user-code can often handle that
1391  const Elem * const an_elem =
1392  _mesh.getMesh().elem_ptr(libmesh_map_find(node_to_elem_map, node->id()).front());
1393  if (!an_elem->is_vertex(an_elem->get_node_index(node)))
1394  continue;
1395 
1396  const auto & bnd_name = _mesh.getBoundaryName(boundary_id);
1397 
1398  for (auto & nl : _nl)
1399  {
1400  const auto & nodal_bcs = nl->getNodalBCWarehouse();
1401  if (!nodal_bcs.hasBoundaryObjects(boundary_id, 0))
1402  continue;
1403 
1404  const auto & bnd_objects = nodal_bcs.getBoundaryObjects(boundary_id, 0);
1405  for (const auto & bnd_object : bnd_objects)
1406  // Skip if this object uses geometric search because coupled variables may be defined on
1407  // paired boundaries instead of the boundary this node is on
1408  if (!bnd_object->requiresGeometricSearch() &&
1409  bnd_object->checkVariableBoundaryIntegrity())
1410  {
1411  std::set<MooseVariableFieldBase *> vars_to_omit = {
1412  &static_cast<MooseVariableFieldBase &>(
1413  const_cast<MooseVariableBase &>(bnd_object->variable()))};
1414 
1416  *bnd_object, bnd_object->checkAllVariables(*node, vars_to_omit), bnd_name);
1417  }
1418  }
1419  }
1420  }
1421 
1423  {
1424  TIME_SECTION("BoundaryRestrictedElemIntegrityCheck", 5);
1425 
1426  // check that variables are defined along boundaries of boundary restricted elemental objects
1427  ConstBndElemRange & bnd_elems = *mesh().getBoundaryElementRange();
1428  BoundaryElemIntegrityCheckThread beict(*this, uo_query);
1429  Threads::parallel_reduce(bnd_elems, beict);
1430  }
1431 
1432  if (!_app.isRecovering())
1433  {
1435 
1437  if (!converged)
1438  mooseError("failed to converge initial MultiApp");
1439 
1440  // We'll backup the Multiapp here
1442 
1443  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1444  reinitScalars(tid);
1445 
1447 
1448  // The FEProblemBase::execute method doesn't call all the systems on EXEC_INITIAL, but it does
1449  // set/unset the current flag. Therefore, this resets the current flag to EXEC_INITIAL so that
1450  // subsequent calls (e.g., executeControls) have the proper flag.
1452  }
1453 
1454  // Here we will initialize the stateful properties once more since they may have been updated
1455  // during initialSetup by calls to computeProperties.
1456  //
1457  // It's really bad that we don't allow this during restart. It means that we can't add new
1458  // stateful materials
1459  // during restart. This is only happening because this _has_ to be below initial userobject
1460  // execution.
1461  // Otherwise this could be done up above... _before_ restoring restartable data... which would
1462  // allow you to have
1463  // this happen during restart. I honestly have no idea why this has to happen after initial user
1464  // object computation.
1465  // THAT is something we should fix... so I've opened this ticket: #5804
1466  if (!_app.isRecovering() && !_app.isRestarting() &&
1469  {
1470  TIME_SECTION("computeMaterials", 2, "Computing Initial Material Properties");
1471 
1473  }
1474 
1475  // Control Logic
1477 
1478  // Scalar variables need to reinited for the initial conditions to be available for output
1479  for (unsigned int tid = 0; tid < n_threads; tid++)
1480  reinitScalars(tid);
1481 
1482  if (_displaced_mesh)
1483  _displaced_problem->syncSolutions();
1484 
1485  // Writes all calls to _console from initialSetup() methods
1487 
1489  {
1491  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
1492  for (auto & assembly : _assembly[tid])
1494  }
1495 
1496  {
1497  TIME_SECTION("lineSearchInitialSetup", 5, "Initializing Line Search");
1498 
1499  if (_line_search)
1500  _line_search->initialSetup();
1501  }
1502 
1503  // Perform Reporter get/declare check
1505 
1506  // We do this late to allow objects to get late restartable data
1509 
1511 }
void sort(THREAD_ID tid=0)
Sort the objects using the DependencyResolver.
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
MaterialPropertyStorage & _bnd_material_props
void setNonlocalCouplingMatrix()
Set custom coupling matrix for variables requiring nonlocal contribution.
void initialSetup()
Calls the initialSetup function for each of the output objects.
unsigned int n_threads()
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
std::shared_ptr< DisplacedProblem > displaced_problem
unsigned int get_node_index(const Node *node_ptr) const
bool hasObjects(THREAD_ID tid=0) const
Convenience functions for determining if objects exist.
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
const std::map< dof_id_type, std::vector< dof_id_type > > & nodeToActiveSemilocalElemMap()
If not already created, creates a map from every node to all active semilocal elements to which they ...
Definition: MooseMesh.C:1244
bool hasInitialBackup() const
Definition: MooseApp.h:1001
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
const ExecFlagEnum & getExecuteOnEnum() const
Return the app level ExecFlagEnum, this contains all the available flags for the app.
Definition: MooseApp.h:994
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
unsigned short _current_ic_state
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
const std::string & getBoundaryName(BoundaryID boundary_id)
Return the name of the boundary given the id.
Definition: MooseMesh.C:1830
std::filesystem::path restartFolderBase(const std::filesystem::path &folder_base) const
The file suffix for restartable data.
Definition: MooseApp.C:3127
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
MaterialWarehouse _kokkos_materials
unsigned int _num_grid_steps
Number of steps in a grid sequence.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
This class provides an interface for common operations on field variables of both FE and FV types wit...
const Parallel::Communicator & _communicator
MaterialWarehouse _interface_materials
Real getStartTime() const
Definition: MooseApp.h:300
void setCurrentExecuteOnFlag(const ExecFlagType &)
void initElementStatefulProps(const libMesh::ConstElemRange &elem_range, const bool threaded)
Initialize stateful properties for elements in a specific elem_range This is needed when elements/bou...
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
bool isRestarting() const
Whether or not this is a "restart" calculation.
Definition: MooseApp.C:1847
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1313
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
void projectSolution()
auto max(const L &left, const R &right)
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
ScalarInitialConditionWarehouse _scalar_ics
bool getExodusFileRestart() const
Whether or not we need to use a separate Exodus reader to read the mesh BEFORE we create the mesh...
Definition: MooseApp.h:430
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
virtual void copySolutionsBackwards()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
std::vector< VariablePhiGradient > _grad_phi_zero
void initialSetup(THREAD_ID tid)
Initial setup.
virtual void execute(const ExecFlagType &exec_type)
Convenience function for performing execution of MOOSE systems.
ReporterData _reporter_data
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
void sort(THREAD_ID tid=0, bool sort_all_objects=false)
By default, this method only sorts block and boundary-wise object storages that are used by the MOOSE...
dof_id_type id() const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
TheWarehouse & theWarehouse() const
void boundaryIntegrityCheckError(const MooseObject &object, const std::set< MooseVariableFieldBase *> &variables, const BoundaryName &boundary_name)
Compose boundary restricted error message for the provided object, variables, and boundary_name if th...
void checkNonlocalCoupling()
void groupUserObjects(TheWarehouse &w, AuxiliarySystem &aux, const ExecFlagEnum &execute_flags, const std::vector< T *> &objs, const std::set< std::string > &ic_deps)
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool converged(const unsigned int sys_num)
Eventually we want to convert this virtual over to taking a solver system number argument.
Definition: SubProblem.h:113
const bool _boundary_restricted_node_integrity_check
whether to perform checking of boundary restricted nodal object variable dependencies, e.g.
MooseMesh & _mesh
virtual bool updateMeshXFEM()
Update the mesh due to changing XFEM cuts.
void addAnyRedistributers()
void restoreFromInitialBackup(const bool for_restart)
Restores from a "initial" backup, that is, one set in _initial_backup.
Definition: MooseApp.C:1949
Adaptivity _adaptivity
void checkUserObjectJacobianRequirement(THREAD_ID tid)
const bool _force_restart
std::vector< VariablePhiSecond > _second_phi_zero
bool _started_initial_setup
At or beyond initialSteup stage.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
libMesh::ExodusII_IO * getExReaderForRestart() const
Get the Exodus reader to restart variables from an Exodus mesh file.
Definition: MooseApp.h:443
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
unsigned int uniformRefineLevel() const
Returns the level of uniform refinement requested (zero if AMR is disabled).
Definition: MooseMesh.C:3256
AuxiliarySystem & getAuxiliarySystem()
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods.
virtual void updateGeomSearch(GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
void buildRefinementAndCoarseningMaps(Assembly *assembly)
Create the refinement and coarsening maps necessary for projection of stateful material properties wh...
Definition: MooseMesh.C:2500
MooseObjectWarehouse< Indicator > _indicators
void backupMultiApps(ExecFlagType type)
Backup the MultiApps associated with the ExecFlagType.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void uniformRefineWithProjection()
Performs uniform refinement on the meshes in the current object.
Definition: Adaptivity.C:301
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods that handle the extra neighbor and face objects...
virtual const Elem * elem_ptr(const dof_id_type i) const=0
virtual void updateMortarMesh()
void restore(const std::filesystem::path &folder_base, const bool for_restart)
Restore an application from file.
Definition: MooseApp.C:1914
Moose::Kokkos::MaterialPropertyStorage & _kokkos_material_props
std::vector< VariablePhiValue > _phi_zero
InitialConditionWarehouse _ics
MaterialWarehouse _discrete_materials
virtual void initialSetup()
Definition: SubProblem.C:1217
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:966
bool hasActiveObjects(THREAD_ID tid=0) const
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void max(const T &r, T &o, Request &req) const
void setLoadAllVectors(const bool load_all_vectors)
Sets whether or not all vectors are to be loaded.
virtual bool is_vertex(const unsigned int i) const=0
void initNonlocalCoupling()
Create pair of variables requiring nonlocal jacobian contributions.
Definition: Assembly.C:2647
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
bool hasStartTime() const
Definition: MooseApp.h:295
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
virtual MooseMesh & mesh() override
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
void mooseConsole()
Send current output buffer to Console output objects.
std::set< std::string > getDependObjects() const
Get a list of dependent UserObjects for this exec type.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MaterialPropertyStorage & _neighbor_material_props
std::unique_ptr< Backup > finalizeRestore()
Finalizes (closes) the restoration process done in restore().
Definition: MooseApp.C:1956
libMesh::StoredRange< MooseMesh::const_bnd_elem_iterator, const BndElement * > * getBoundaryElementRange()
Definition: MooseMesh.C:1341
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
void check() const
Perform integrity check for get/declare calls.
Definition: ReporterData.C:162
const bool _boundary_restricted_elem_integrity_check
whether to perform checking of boundary restricted elemental object variable dependencies, e.g.
Moose::Kokkos::MaterialPropertyStorage & _kokkos_bnd_material_props
processor_id_type processor_id() const
MaterialPropertyStorage & _material_props
Adaptivity & adaptivity()
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1841
Restartable::ManagedValue< RestartableEquationSystems > _req
The EquationSystems object, wrapped for restart.
processor_id_type processor_id() const
std::string getRestartRecoverFileBase() const
The file_base for the recovery file.
Definition: MooseApp.h:494
MooseObjectWarehouse< Marker > _markers
FVInitialConditionWarehouse _fv_ics
virtual void initialAdaptMesh()
Moose::Kokkos::MaterialPropertyStorage & _kokkos_neighbor_material_props
MaterialWarehouse _all_materials
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1327
auto index_range(const T &sizable)
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
MooseMesh * _displaced_mesh
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
Base variable class.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials
uint8_t dof_id_type
std::shared_ptr< LineSearch > _line_search
unsigned int getMaxQps() const
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ initKokkos()

void FEProblemBase::initKokkos ( )
inherited

Construct Kokkos assembly and systems and allocate Kokkos material property storages.

Referenced by FEProblemBase::init().

◆ initKokkosStatefulProps()

void FEProblemBase::initKokkosStatefulProps ( )
inherited

◆ initNullSpaceVectors()

void FEProblemBase::initNullSpaceVectors ( const InputParameters parameters,
std::vector< std::shared_ptr< NonlinearSystemBase >> &  nl 
)
virtualinherited

Definition at line 758 of file FEProblemBase.C.

Referenced by EigenProblem::EigenProblem(), and FEProblem().

760 {
761  TIME_SECTION("initNullSpaceVectors", 5, "Initializing Null Space Vectors");
762 
763  unsigned int dimNullSpace = parameters.get<unsigned int>("null_space_dimension");
764  unsigned int dimTransposeNullSpace =
765  parameters.get<unsigned int>("transpose_null_space_dimension");
766  unsigned int dimNearNullSpace = parameters.get<unsigned int>("near_null_space_dimension");
767  for (unsigned int i = 0; i < dimNullSpace; ++i)
768  {
769  std::ostringstream oss;
770  oss << "_" << i;
771  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
772  // builder might march over all nodes
773  for (auto & nl : nls)
774  nl->addVector("NullSpace" + oss.str(), false, libMesh::GHOSTED);
775  }
776  _subspace_dim["NullSpace"] = dimNullSpace;
777  for (unsigned int i = 0; i < dimTransposeNullSpace; ++i)
778  {
779  std::ostringstream oss;
780  oss << "_" << i;
781  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
782  // builder might march over all nodes
783  for (auto & nl : nls)
784  nl->addVector("TransposeNullSpace" + oss.str(), false, libMesh::GHOSTED);
785  }
786  _subspace_dim["TransposeNullSpace"] = dimTransposeNullSpace;
787  for (unsigned int i = 0; i < dimNearNullSpace; ++i)
788  {
789  std::ostringstream oss;
790  oss << "_" << i;
791  // do not project, since this will be recomputed, but make it ghosted, since the near-nullspace
792  // builder might march over all semilocal nodes
793  for (auto & nl : nls)
794  nl->addVector("NearNullSpace" + oss.str(), false, libMesh::GHOSTED);
795  }
796  _subspace_dim["NearNullSpace"] = dimNearNullSpace;
797 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ initPetscOutputAndSomeSolverSettings()

void FEProblemBase::initPetscOutputAndSomeSolverSettings ( )
virtualinherited

Reinitialize PETSc output for proper linear/nonlinear iteration display.

This also may be used for some PETSc-related solver settings

Reimplemented in EigenProblem.

Definition at line 6934 of file FEProblemBase.C.

Referenced by FEProblemBase::possiblyRebuildGeomSearchPatches(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), and FEProblemBase::solve().

6935 {
6938 }
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:450
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void solveSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482

◆ initXFEM()

void FEProblemBase::initXFEM ( std::shared_ptr< XFEMInterface xfem)
inherited

Create XFEM controller object.

Definition at line 8236 of file FEProblemBase.C.

8237 {
8238  _xfem = xfem;
8239  _xfem->setMesh(&_mesh);
8240  if (_displaced_mesh)
8241  _xfem->setDisplacedMesh(_displaced_mesh);
8242 
8243  auto fill_data = [](auto & storage)
8244  {
8245  std::vector<MaterialData *> data(libMesh::n_threads());
8246  for (const auto tid : make_range(libMesh::n_threads()))
8247  data[tid] = &storage.getMaterialData(tid);
8248  return data;
8249  };
8250  _xfem->setMaterialData(fill_data(_material_props));
8251  _xfem->setBoundaryMaterialData(fill_data(_bnd_material_props));
8252 
8253  unsigned int n_threads = libMesh::n_threads();
8254  for (unsigned int i = 0; i < n_threads; ++i)
8255  for (const auto nl_sys_num : index_range(_nl))
8256  {
8257  _assembly[i][nl_sys_num]->setXFEM(_xfem);
8258  if (_displaced_problem)
8259  _displaced_problem->assembly(i, nl_sys_num).setXFEM(_xfem);
8260  }
8261 }
void fill_data(std::map< processor_id_type, std::vector< std::set< unsigned int >>> &data, int M)
MaterialPropertyStorage & _bnd_material_props
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ isKokkosObject()

bool MooseObject::isKokkosObject ( IsKokkosObjectKey &&  ) const
inlineinherited

Get whether this object is a Kokkos functor The parameter is set by the Kokkos base classes:

Definition at line 72 of file MooseObject.h.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and BoundaryRestrictable::initializeBoundaryRestrictable().

73  {
75  }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
static const std::string kokkos_object_param
The name of the parameter that indicates an object is a Kokkos functor.
Definition: MooseBase.h:64
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isMatPropRequested()

bool SubProblem::isMatPropRequested ( const std::string &  prop_name) const
virtualinherited

Find out if a material property has been requested by any object.

Definition at line 730 of file SubProblem.C.

731 {
732  return _material_property_requested.find(prop_name) != _material_property_requested.end();
733 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ isParamSetByUser()

bool MooseBase::isParamSetByUser ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is set by a user, as opposed to not set or set to default.

Parameters
nameThe name of the parameter to test

Definition at line 205 of file MooseBase.h.

Referenced by SetupDebugAction::act(), DiffusionCG::addFEBCs(), DiffusionPhysicsBase::addInitialConditions(), MFEMMesh::buildMesh(), MFEMDomainSubMesh::buildSubMesh(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), MooseApp::copyInputs(), DiffusionPhysicsBase::DiffusionPhysicsBase(), MooseApp::errorCheck(), MooseBase::getRenamedParam(), DefaultConvergenceBase::getSharedExecutionerParam(), AddVariableAction::init(), PhysicsBase::initializePhysics(), ElementSubdomainModifierBase::initialSetup(), MatrixSymmetryCheck::MatrixSymmetryCheck(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), SolutionInvalidityOutput::output(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), PetscExternalPartitioner::partition(), PiecewiseTabularBase::PiecewiseTabularBase(), MooseMesh::prepare(), SolutionUserObjectBase::readXda(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::runInputFile(), MooseApp::runInputs(), MFEMSolverBase::setPreconditioner(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), TagVectorAux::TagVectorAux(), TimedSubdomainModifier::TimedSubdomainModifier(), and XYDelaunayGenerator::XYDelaunayGenerator().

206  {
207  return _pars.isParamSetByUser(name);
208  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.

◆ isParamValid()

bool MooseBase::isParamValid ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is valid.

Parameters
nameThe name of the parameter to test

Definition at line 199 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), CopyNodalVarsAction::act(), SetupMeshAction::act(), SetupDebugAction::act(), ComposeTimeStepperAction::act(), AddVariableAction::act(), CreateDisplacedProblemAction::act(), SetAdaptivityOptionsAction::act(), CommonOutputAction::act(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), DiffusionPhysicsBase::addInitialConditions(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), DiffusionPhysicsBase::addPostprocessors(), AdvectiveFluxAux::AdvectiveFluxAux(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayVarReductionAux::ArrayVarReductionAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), ParsedChainControl::buildFunction(), GeneratedMesh::buildMesh(), MooseMesh::buildTypedMesh(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), LibmeshPartitioner::clone(), SampledOutput::cloneMesh(), CombinerGenerator::CombinerGenerator(), FunctorAux::computeValue(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), FEProblemSolve::convergenceSetup(), CopyMeshPartitioner::CopyMeshPartitioner(), CSVReaderVectorPostprocessor::CSVReaderVectorPostprocessor(), CutMeshByLevelSetGeneratorBase::CutMeshByLevelSetGeneratorBase(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), DGKernelBase::DGKernelBase(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), PIDTransientControl::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), Exodus::Exodus(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), FunctionDT::FunctionDT(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FVInterfaceKernel::FVInterfaceKernel(), FVMassMatrix::FVMassMatrix(), AddMetaDataGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), BlockDeletionGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), SideSetsFromNodeSetsGenerator::generate(), MeshExtruderGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYZDelaunayGenerator::generate(), XYMeshLineCutter::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), PropertyReadFile::getFileNames(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getRenamedParam(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), Terminator::handleMessage(), HFEMDirichletBC::HFEMDirichletBC(), EigenExecutionerBase::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AdvancedOutput::initExecutionTypes(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), MultiAppVariableValueSampleTransfer::initialSetup(), PiecewiseTabularBase::initialSetup(), SolutionScalarAux::initialSetup(), ParsedConvergence::initialSetup(), SolutionAux::initialSetup(), Console::initialSetup(), MooseParsedVectorFunction::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), MooseParsedGradFunction::initialSetup(), MooseParsedFunction::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::IterationAdaptiveDT(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MassMatrix::MassMatrix(), MatCoupledForce::MatCoupledForce(), MatDiffusionBase< Real >::MatDiffusionBase(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMProblemSolve::MFEMProblemSolve(), MooseMesh::MooseMesh(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableFV< Real >::MooseVariableFV(), MortarConstraintBase::MortarConstraintBase(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NodeSetsGeneratorBase::NodeSetsGeneratorBase(), EigenExecutionerBase::normalizeSolution(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), ParsedCurveGenerator::ParsedCurveGenerator(), PetscOutput::PetscOutput(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseTabularBase::PiecewiseTabularBase(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), MooseMesh::prepare(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), SolutionUserObjectBase::readExodusII(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), ReporterPointSource::ReporterPointSource(), PhysicsBase::reportPotentiallyMissedParameters(), ParsedSubdomainMeshGenerator::setBlockName(), MooseMesh::setCoordSystem(), FileOutput::setFileBase(), FileOutput::setFileBaseInternal(), Split::setup(), SideSetsGeneratorBase::setup(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), Output::setWallTimeIntervalFromCommandLineParam(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsGeneratorBase::SideSetsGeneratorBase(), SolutionUserObjectBase::SolutionUserObjectBase(), WebServerControl::startServer(), Terminator::Terminator(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriod::TimePeriod(), MultiAppDofCopyTransfer::transfer(), TransformGenerator::TransformGenerator(), TransientBase::TransientBase(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

199 { return _pars.isParamValid(name); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isSNESMFReuseBaseSetbyUser()

bool FEProblemBase::isSNESMFReuseBaseSetbyUser ( )
inlineinherited

Return a flag to indicate if _snesmf_reuse_base is set by users.

Definition at line 2322 of file FEProblemBase.h.

bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.

◆ isSolverSystemNonlinear()

bool FEProblemBase::isSolverSystemNonlinear ( const unsigned int  sys_num)
inlineinherited

◆ isSolveTerminationRequested()

virtual bool Problem::isSolveTerminationRequested ( ) const
inlinevirtualinherited

Check of termination has been requested.

This should be called by transient Executioners in the keepGoing() member.

Definition at line 43 of file Problem.h.

Referenced by WebServerControl::execute(), and TransientBase::keepGoing().

43 { return _termination_requested; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ isTransient()

virtual bool FEProblemBase::isTransient ( ) const
inlineoverridevirtualinherited

◆ jacobianSetup()

void FEProblemBase::jacobianSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9432 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::jacobianSetup().

9433 {
9435  // We need to setup all the nonlinear systems other than our current one which actually called
9436  // this method (so we have to make sure we don't go in a circle)
9437  for (const auto i : make_range(numNonlinearSystems()))
9438  if (i != currentNlSysNum())
9439  _nl[i]->jacobianSetup();
9440  // We don't setup the aux sys because that's been done elsewhere
9441  if (_displaced_problem)
9442  _displaced_problem->jacobianSetup();
9443 }
virtual std::size_t numNonlinearSystems() const override
virtual void jacobianSetup()
Definition: SubProblem.C:1209
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ kokkosAssembly() [1/2]

Moose::Kokkos::Assembly& FEProblemBase::kokkosAssembly ( )
inlineinherited

Definition at line 333 of file FEProblemBase.h.

333 { return _kokkos_assembly; }
Moose::Kokkos::Assembly _kokkos_assembly

◆ kokkosAssembly() [2/2]

const Moose::Kokkos::Assembly& FEProblemBase::kokkosAssembly ( ) const
inlineinherited

Definition at line 334 of file FEProblemBase.h.

334 { return _kokkos_assembly; }
Moose::Kokkos::Assembly _kokkos_assembly

◆ linearSysNum()

unsigned int FEProblemBase::linearSysNum ( const LinearSystemName &  linear_sys_name) const
overridevirtualinherited
Returns
the linear system number corresponding to the provided linear_sys_name

Implements SubProblem.

Definition at line 6528 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), LinearSystem::computeGradients(), FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and DisplacedProblem::linearSysNum().

6529 {
6530  std::istringstream ss(linear_sys_name);
6531  unsigned int linear_sys_num;
6532  if (!(ss >> linear_sys_num) || !ss.eof())
6533  linear_sys_num = libmesh_map_find(_linear_sys_name_to_num, linear_sys_name);
6534 
6535  return linear_sys_num;
6536 }
std::map< LinearSystemName, unsigned int > _linear_sys_name_to_num
Map from linear system name to number.

◆ lineSearch()

void FEProblemBase::lineSearch ( )
virtualinherited

execute MOOSE line search

Definition at line 2699 of file FEProblemBase.C.

Referenced by ComputeLineSearchObjectWrapper::linesearch().

2700 {
2701  _line_search->lineSearch();
2702 }
std::shared_ptr< LineSearch > _line_search

◆ logAdd()

void FEProblemBase::logAdd ( const std::string &  system,
const std::string &  name,
const std::string &  type,
const InputParameters params 
) const
inherited

Output information about the object just added to the problem.

Definition at line 4374 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addIndicator(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addOutput(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), and FEProblemBase::setResidualObjectParamsAndLog().

4378 {
4379  if (_verbose_setup != "false")
4380  _console << "[DBG] Adding " << system << " '" << name << "' of type " << type << std::endl;
4381  if (_verbose_setup == "extra")
4382  _console << params << std::endl;
4383 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.

◆ markFamilyPRefinement()

void SubProblem::markFamilyPRefinement ( const InputParameters params)
protectedinherited

Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable.

Definition at line 1367 of file SubProblem.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

1368 {
1369  auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
1370  bool flag = _default_families_without_p_refinement.count(family);
1371  if (params.isParamValid("disable_p_refinement"))
1372  flag = params.get<bool>("disable_p_refinement");
1373 
1374  auto [it, inserted] = _family_for_p_refinement.emplace(family, flag);
1375  if (!inserted && flag != it->second)
1376  mooseError("'disable_p_refinement' not set consistently for variables in ", family);
1377 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
static const std::unordered_set< FEFamily > _default_families_without_p_refinement
The set of variable families by default disable p-refinement.
Definition: SubProblem.h:1207
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ markMatPropRequested()

void SubProblem::markMatPropRequested ( const std::string &  prop_name)
virtualinherited

Helper method for adding a material property name to the _material_property_requested set.

Definition at line 724 of file SubProblem.C.

Referenced by MaterialBase::markMatPropRequested(), and MaterialPropertyInterface::markMatPropRequested().

725 {
726  _material_property_requested.insert(prop_name);
727 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ matrixTagExists() [1/2]

bool SubProblem::matrixTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 328 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), SystemBase::associateMatrixToTag(), Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), SystemBase::disassociateDefaultMatrixTags(), SystemBase::disassociateMatrixFromTag(), SystemBase::getMatrix(), SubProblem::getMatrixTagID(), SystemBase::matrixTagActive(), DisplacedProblem::matrixTagExists(), SystemBase::removeMatrix(), and TaggingInterface::useMatrixTag().

329 {
330  auto tag_name_upper = MooseUtils::toUpper(tag_name);
331 
332  return _matrix_tag_name_to_tag_id.find(tag_name_upper) != _matrix_tag_name_to_tag_id.end();
333 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(std::string name)
Convert supplied string to upper case.

◆ matrixTagExists() [2/2]

bool SubProblem::matrixTagExists ( TagID  tag_id) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 336 of file SubProblem.C.

337 {
338  return _matrix_tag_id_to_tag_name.find(tag_id) != _matrix_tag_id_to_tag_name.end();
339 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ matrixTagName()

TagName SubProblem::matrixTagName ( TagID  tag)
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 357 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), DisplacedProblem::matrixTagName(), and SystemBase::removeMatrix().

358 {
359  return _matrix_tag_id_to_tag_name[tag];
360 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ mesh() [1/3]

virtual MooseMesh& FEProblemBase::mesh ( )
inlineoverridevirtualinherited

Implements SubProblem.

Reimplemented in MFEMProblem.

Definition at line 163 of file FEProblemBase.h.

Referenced by Adaptivity::adaptMesh(), FEProblemBase::addAnyRedistributers(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), PhysicsBasedPreconditioner::apply(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), SampledOutput::cloneMesh(), LinearSystem::computeGradients(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), ComputeFullJacobianThread::computeOnInternalFace(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::coordTransform(), MultiApp::createApp(), DMMooseGetEmbedding_Private(), ElementsAlongLine::ElementsAlongLine(), ElementsAlongPlane::ElementsAlongPlane(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementsAlongLine::execute(), ElementsAlongPlane::execute(), IntersectionPointsAlongLine::execute(), WorkBalance::execute(), MultiAppUserObjectTransfer::execute(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), FunctionPeriodicBoundary::FunctionPeriodicBoundary(), MultiApp::getBoundingBox(), Exodus::handleExodusIOMeshRenumbering(), FunctorPositions::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppDofCopyTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), ImageFunction::initialSetup(), FEProblemBase::initialSetup(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), IntersectionPointsAlongLine::IntersectionPointsAlongLine(), Moose::Mortar::loopOverMortarSegments(), ReporterPointMarker::markerSetup(), MFEMProblem::mesh(), FEProblemBase::mesh(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), ComputeNodalUserObjectsThread::onNode(), BoundaryNodeIntegrityCheckThread::onNode(), ComputeInitialConditionThread::operator()(), BoundaryElemIntegrityCheckThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Output::Output(), Exodus::outputEmptyTimestep(), ConsoleUtils::outputMeshInformation(), Exodus::outputNodalVariables(), Exodus::outputSetup(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), MeshInfo::possiblyAddSidesetInfo(), MeshInfo::possiblyAddSubdomainInfo(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MaterialPropertyDebugOutput::printMaterialMap(), TopResidualDebugOutput::printTopResiduals(), SolutionUserObjectBase::SolutionUserObjectBase(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), Moose::PetscSupport::storePetscOptions(), MultiAppDofCopyTransfer::transfer(), Checkpoint::updateCheckpointFiles(), and SampledOutput::updateSample().

163 { return _mesh; }
MooseMesh & _mesh

◆ mesh() [2/3]

virtual const MooseMesh& FEProblemBase::mesh ( ) const
inlineoverridevirtualinherited

Implements SubProblem.

Reimplemented in MFEMProblem.

Definition at line 164 of file FEProblemBase.h.

164 { return _mesh; }
MooseMesh & _mesh

◆ mesh() [3/3]

const MooseMesh & FEProblemBase::mesh ( bool  use_displaced) const
overridevirtualinherited

Implements SubProblem.

Definition at line 663 of file FEProblemBase.C.

664 {
665  if (use_displaced && !_displaced_problem)
666  mooseWarning("Displaced mesh was requested but the displaced problem does not exist. "
667  "Regular mesh will be returned");
668  return ((use_displaced && _displaced_problem) ? _displaced_problem->mesh() : mesh());
669 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299
virtual MooseMesh & mesh() override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ meshChanged() [1/2]

void FEProblemBase::meshChanged ( bool  intermediate_change,
bool  contract_mesh,
bool  clean_refinement_flags 
)
virtualinherited

Update data after a mesh change.

Iff intermediate_change is true, only perform updates as necessary to prepare for another mesh change immediately-subsequent. An example of data that is not updated during an intermediate change is libMesh System matrix data. An example of data that is updated during an intermediate change is libMesh System vectors. These vectors are projected or restricted based off of adaptive mesh refinement or the changing of element subdomain IDs. The flags contract_mesh and clean_refinement_flags should generally only be set to true when the mesh has changed due to mesh refinement. contract_mesh deletes children of coarsened elements and renumbers nodes and elements. clean_refinement_flags resets refinement flags such that any subsequent calls to System::restrict_vectors or System::prolong_vectors before another AMR step do not mistakenly attempt to re-do the restriction/prolongation which occurred in this method

Definition at line 8294 of file FEProblemBase.C.

Referenced by SidesetAroundSubdomainUpdater::finalize(), ActivateElementsUserObjectBase::finalize(), Exodus::handleExodusIOMeshRenumbering(), ElementSubdomainModifierBase::modify(), and Adaptivity::uniformRefineWithProjection().

8297 {
8298  TIME_SECTION("meshChanged", 3, "Handling Mesh Changes");
8299 
8302  _mesh.cacheChangedLists(); // Currently only used with adaptivity and stateful material
8303  // properties
8304 
8305  // Clear these out because they corresponded to the old mesh
8306  _ghosted_elems.clear();
8308 
8309  // The mesh changed. We notify the MooseMesh first, because
8310  // callbacks (e.g. for sparsity calculations) triggered by the
8311  // EquationSystems reinit may require up-to-date MooseMesh caches.
8312  _mesh.meshChanged();
8313 
8314  // If we're just going to alter the mesh again, all we need to
8315  // handle here is AMR and projections, not full system reinit
8316  if (intermediate_change)
8317  es().reinit_solutions();
8318  else
8319  es().reinit();
8320 
8321  if (contract_mesh)
8322  // Once vectors are restricted, we can delete children of coarsened elements
8323  _mesh.getMesh().contract();
8324  if (clean_refinement_flags)
8325  {
8326  // Finally clear refinement flags so that if someone tries to project vectors again without
8327  // an intervening mesh refinement to clear flags they won't run into trouble
8328  MeshRefinement refinement(_mesh.getMesh());
8329  refinement.clean_refinement_flags();
8330  }
8331 
8332  if (!intermediate_change)
8333  {
8334  // Since the mesh has changed, we need to make sure that we update any of our
8335  // MOOSE-system specific data.
8336  for (auto & sys : _solver_systems)
8337  sys->reinit();
8338  _aux->reinit();
8339  }
8340 
8341  // Updating MooseMesh first breaks other adaptivity code, unless we
8342  // then *again* update the MooseMesh caches. E.g. the definition of
8343  // "active" and "local" may have been *changed* by refinement and
8344  // repartitioning done in EquationSystems::reinit().
8345  _mesh.meshChanged();
8346 
8347  // If we have finite volume variables, we will need to recompute additional elemental/face
8348  // quantities
8351 
8352  // Let the meshChangedInterface notify the mesh changed event before we update the active
8353  // semilocal nodes, because the set of ghosted elements may potentially be updated during a mesh
8354  // changed event.
8355  for (const auto & mci : _notify_when_mesh_changes)
8356  mci->meshChanged();
8357 
8358  // Since the Mesh changed, update the PointLocator object used by DiracKernels.
8360 
8361  // Need to redo ghosting
8363 
8364  if (_displaced_problem)
8365  {
8366  _displaced_problem->meshChanged(contract_mesh, clean_refinement_flags);
8368  }
8369 
8371 
8374 
8375  // Just like we reinitialized our geometric search objects, we also need to reinitialize our
8376  // mortar meshes. Note that this needs to happen after DisplacedProblem::meshChanged because the
8377  // mortar mesh discretization will depend necessarily on the displaced mesh being re-displaced
8378  updateMortarMesh();
8379 
8380  // Nonlinear systems hold the mortar mesh functors. The domains of definition of the mortar
8381  // functors might have changed when the mesh changed.
8382  for (auto & nl_sys : _nl)
8383  nl_sys->reinitMortarFunctors();
8384 
8385  reinitBecauseOfGhostingOrNewGeomObjects(/*mortar_changed=*/true);
8386 
8387  // We need to create new storage for newly active elements, and copy
8388  // stateful properties from the old elements.
8391  {
8392  if (havePRefinement())
8394 
8395  // Prolong properties onto newly refined elements' children
8396  {
8398  /* refine = */ true, *this, _material_props, _bnd_material_props, _assembly);
8399  const auto & range = *_mesh.refinedElementRange();
8400  Threads::parallel_reduce(range, pmp);
8401 
8402  // Concurrent erasure from the shared hash map is not safe while we are reading from it in
8403  // ProjectMaterialProperties, so we handle erasure here. Moreover, erasure based on key is
8404  // not thread safe in and of itself because it is a read-write operation. Note that we do not
8405  // do the erasure for p-refinement because the coarse level element is the same as our active
8406  // refined level element
8407  if (!doingPRefinement())
8408  for (const auto & elem : range)
8409  {
8413  }
8414  }
8415 
8416  // Restrict properties onto newly coarsened elements
8417  {
8419  /* refine = */ false, *this, _material_props, _bnd_material_props, _assembly);
8420  const auto & range = *_mesh.coarsenedElementRange();
8421  Threads::parallel_reduce(range, pmp);
8422  // Note that we do not do the erasure for p-refinement because the coarse level element is the
8423  // same as our active refined level element
8424  if (!doingPRefinement())
8425  for (const auto & elem : range)
8426  {
8427  auto && coarsened_children = _mesh.coarsenedElementChildren(elem);
8428  for (auto && child : coarsened_children)
8429  {
8433  }
8434  }
8435  }
8436  }
8437 
8440 
8441  _has_jacobian = false; // we have to recompute jacobian when mesh changed
8442 
8443  // Now for backwards compatibility with user code that overrode the old no-arg meshChanged we must
8444  // call it here
8445  meshChanged();
8446 }
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool isFiniteVolumeInfoDirty() const
Definition: MooseMesh.h:1330
virtual void meshChanged()
Deprecated.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
MaterialPropertyStorage & _bnd_material_props
bool _has_jacobian
Indicates if the Jacobian was computed.
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void eraseProperty(const Elem *elem)
Remove the property storage and element pointer from internal data structures Use this when elements ...
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void cacheChangedLists()
Cache information about what elements were refined and coarsened in the previous step.
Definition: MooseMesh.C:928
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
ConstElemPointerRange * refinedElementRange() const
Return a range that is suitable for threaded execution over elements that were just refined...
Definition: MooseMesh.C:946
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
bool havePRefinement() const
Query whether p-refinement has been requested at any point during the simulation. ...
Definition: SubProblem.h:1009
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void reinit()
Completely redo all geometric search objects.
bool doingPRefinement() const
Definition: SubProblem.C:1361
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
const std::vector< const Elem * > & coarsenedElementChildren(const Elem *elem) const
Get the newly removed children element ids for an element that was just coarsened.
Definition: MooseMesh.C:958
virtual bool contract()=0
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:966
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
MaterialPropertyStorage & _neighbor_material_props
ConstElemPointerRange * coarsenedElementRange() const
Return a range that is suitable for threaded execution over elements that were just coarsened...
Definition: MooseMesh.C:952
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
MaterialPropertyStorage & _material_props
void updatePointLocator(const MooseMesh &mesh)
Called during FEProblemBase::meshChanged() to update the PointLocator object used by the DiracKernels...
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:897
void buildPRefinementAndCoarseningMaps(Assembly *assembly)
Definition: MooseMesh.C:2406
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4112

◆ meshChanged() [2/2]

virtual void FEProblemBase::meshChanged ( )
inlineprotectedvirtualinherited

Deprecated.

Users should switch to overriding the meshChanged which takes arguments

Definition at line 2706 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::initialAdaptMesh(), FEProblemBase::meshChanged(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateMeshXFEM().

2706 {}

◆ meshDisplaced()

void FEProblemBase::meshDisplaced ( )
protectedvirtualinherited

Update data after a mesh displaced.

Definition at line 8461 of file FEProblemBase.C.

Referenced by DisplacedProblem::updateMesh().

8462 {
8463  for (const auto & mdi : _notify_when_mesh_displaces)
8464  mdi->meshDisplaced();
8465 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ messagePrefix()

std::string MooseBase::messagePrefix ( const bool  hit_prefix = true) const
inlineinherited
Returns
A prefix to be used in messages that contain the input file location associated with this object (if any) and the name and type of the object.

Definition at line 256 of file MooseBase.h.

Referenced by MooseBase::callMooseError(), MooseBase::errorPrefix(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), and MooseBase::mooseWarning().

257  {
258  return messagePrefix(_pars, hit_prefix);
259  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseDeprecated()

template<typename... Args>
void MooseBase::mooseDeprecated ( Args &&...  args) const
inlineinherited

Definition at line 314 of file MooseBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::advanceMultiApps(), MultiApp::appProblem(), MooseMesh::buildSideList(), ChangeOverTimestepPostprocessor::ChangeOverTimestepPostprocessor(), AddVariableAction::determineType(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), MooseMesh::elem(), UserForcingFunction::f(), FaceFaceConstraint::FaceFaceConstraint(), FunctionDT::FunctionDT(), RandomICBase::generateRandom(), MooseMesh::getBoundariesToElems(), DataFileInterface::getDataFileName(), DataFileInterface::getDataFileNameByName(), Control::getExecuteOptions(), FEProblemBase::getNonlinearSystem(), MooseApp::getRecoverFileBase(), FEProblemBase::getUserObjects(), FEProblemBase::hasPostprocessor(), MooseApp::hasRecoverFileBase(), MatDiffusionBase< Real >::MatDiffusionBase(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), NodalScalarKernel::NodalScalarKernel(), MooseMesh::node(), FixedPointSolve::numPicardIts(), RelationshipManager::operator>=(), PercentChangePostprocessor::PercentChangePostprocessor(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Residual::Residual(), MooseMesh::setBoundaryToNormalMap(), Exodus::setOutputDimension(), MooseApp::setupOptions(), TagVectorAux::TagVectorAux(), UserForcingFunction::UserForcingFunction(), and VariableResidual::VariableResidual().

315  {
317  _console, false, true, messagePrefix(true), std::forward<Args>(args)...);
318  }
void mooseDeprecatedStream(S &oss, const bool expired, const bool print_title, Args &&... args)
Definition: MooseError.h:265
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseDocumentedError()

template<typename... Args>
void MooseBase::mooseDocumentedError ( const std::string &  repo_name,
const unsigned int  issue_num,
Args &&...  args 
) const
inlineinherited

Definition at line 277 of file MooseBase.h.

Referenced by ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), DGLowerDKernel::DGLowerDKernel(), HFEMDirichletBC::HFEMDirichletBC(), and LowerDIntegratedBC::LowerDIntegratedBC().

280  {
282  repo_name, issue_num, argumentsToString(std::forward<Args>(args)...)),
283  /* with_prefix = */ true);
284  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105
std::string formatMooseDocumentedError(const std::string &repo_name, const unsigned int issue_num, const std::string &msg)
Formats a documented error.
Definition: MooseError.C:128

◆ mooseError()

template<typename... Args>
void MooseBase::mooseError ( Args &&...  args) const
inlineinherited

Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available.

Definition at line 271 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), PetscExternalPartitioner::_do_partition(), MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), InitProblemAction::act(), AddFVICAction::act(), AddBoundsVectorsAction::act(), SetupMeshCompleteAction::act(), AddVectorPostprocessorAction::act(), CheckFVBCAction::act(), AutoCheckpointAction::act(), CreateExecutionerAction::act(), AddICAction::act(), AddMeshGeneratorAction::act(), CheckIntegrityAction::act(), CreateProblemAction::act(), CreateProblemDefaultAction::act(), CombineComponentsMeshes::act(), SetupMeshAction::act(), SplitMeshAction::act(), AdaptivityAction::act(), ChainControlSetupAction::act(), AddTimeStepperAction::act(), DeprecatedBlockAction::act(), SetupPredictorAction::act(), SetupTimeStepperAction::act(), CreateDisplacedProblemAction::act(), MaterialDerivativeTestAction::act(), SetAdaptivityOptionsAction::act(), MaterialOutputAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::adaptMesh(), MooseVariableFV< Real >::adCurlSln(), MooseVariableFV< Real >::adCurlSlnNeighbor(), AddActionComponentAction::AddActionComponentAction(), MFEMProblem::addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), DiffusionCG::addBoundaryConditionsFromComponents(), PhysicsComponentInterface::addBoundaryConditionsFromComponents(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), DistributedRectilinearMeshGenerator::addElement(), MooseApp::addExecutor(), FEProblemBase::addFunction(), SubProblem::addFunctor(), FEProblemBase::addFVInitialCondition(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInitialCondition(), PhysicsComponentInterface::addInitialConditionsFromComponents(), FEProblemBase::addInterfaceKernel(), MFEMProblem::addKernel(), FEProblemBase::addKernel(), addLineSearch(), FEProblemBase::addLineSearch(), MFEMProblem::addMaterial(), MeshGenerator::addMeshSubgenerator(), MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), SubProblem::addPiecewiseByBlockLambdaFunctor(), DiracKernelBase::addPoint(), DistributedRectilinearMeshGenerator::addPoint(), DiracKernelBase::addPointWithValidId(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), MooseMesh::addQuadratureNode(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addScalarKernel(), AddVariableAction::addVariable(), FEProblemBase::addVectorPostprocessor(), SubProblem::addVectorTag(), MooseLinearVariableFV< Real >::adError(), ADInterfaceKernelTempl< T >::ADInterfaceKernelTempl(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), MooseVariableScalar::adUDot(), Output::advancedExecuteOn(), AdvectiveFluxAux::AdvectiveFluxAux(), MooseVariableBase::allDofIndices(), NEML2ModelExecutor::applyPredictor(), MooseApp::appNameToLibName(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayConstantIC::ArrayConstantIC(), ArrayDGKernel::ArrayDGKernel(), ArrayDiffusion::ArrayDiffusion(), ArrayFunctionIC::ArrayFunctionIC(), ArrayReaction::ArrayReaction(), ArrayTimeDerivative::ArrayTimeDerivative(), MooseApp::attachRelationshipManagers(), AddPeriodicBCAction::autoTranslationBoundaries(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), Axisymmetric2D3DSolutionFunction::Axisymmetric2D3DSolutionFunction(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), BoundingValueElementDamper::BoundingValueElementDamper(), BoundingValueNodalDamper::BoundingValueNodalDamper(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), MooseMesh::buildCoarseningMap(), MultiApp::buildComm(), DistributedRectilinearMeshGenerator::buildCube(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), TimedSubdomainModifier::buildFromParameters(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), MooseMesh::buildLowerDMesh(), TiledMesh::buildMesh(), GeneratedMesh::buildMesh(), SpiralAnnularMesh::buildMesh(), MeshGeneratorMesh::buildMesh(), ImageMeshGenerator::buildMesh3D(), ImageMesh::buildMesh3D(), MooseMesh::buildRefinementMap(), MaterialBase::buildRequiredMaterials(), MooseMesh::buildSideList(), MooseMesh::buildTypedMesh(), MooseMesh::cacheFaceInfoVariableOwnership(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), EigenExecutionerBase::chebyshev(), SubProblem::checkBlockMatProps(), PhysicsBase::checkBlockRestrictionIdentical(), ComponentBoundaryConditionInterface::checkBoundaryConditionsAllRequested(), SubProblem::checkBoundaryMatProps(), PhysicsBase::checkComponentType(), IterationCountConvergence::checkConvergence(), MooseMesh::checkCoordinateSystems(), DiffusionLHDGAssemblyHelper::checkCoupling(), FEProblemBase::checkDependMaterialsHelper(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), DefaultConvergenceBase::checkDuplicateSetSharedExecutionerParams(), MooseMesh::checkDuplicateSubdomainNames(), FEProblemBase::checkExceptionAndStopSolve(), NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), MeshGenerator::checkGetMesh(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Steady::checkIntegrity(), EigenExecutionerBase::checkIntegrity(), Eigenvalue::checkIntegrity(), DefaultSteadyStateConvergence::checkIterationType(), DefaultMultiAppFixedPointConvergence::checkIterationType(), DefaultNonlinearConvergence::checkIterationType(), ExplicitTimeIntegrator::checkLinearConvergence(), MooseApp::checkMetaDataIntegrity(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), Sampler::checkReinitStatus(), MooseApp::checkReservedCapability(), MultiAppGeneralFieldNearestLocationTransfer::checkRestrictionsForSource(), MultiAppPostprocessorToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppScalarToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppPostprocessorTransfer::checkSiblingsTransferSupported(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), MultiAppMFEMCopyTransfer::checkSiblingsTransferSupported(), MultiAppCopyTransfer::checkSiblingsTransferSupported(), MultiAppTransfer::checkSiblingsTransferSupported(), MaterialBase::checkStatefulSanity(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), FEProblemBase::checkUserObjects(), Moose::PetscSupport::checkUserProvidedPetscOption(), DomainUserObject::checkVariable(), MultiAppTransfer::checkVariable(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), LibmeshPartitioner::clone(), MooseMesh::clone(), CombinerGenerator::CombinerGenerator(), ComparisonPostprocessor::comparisonIsTrue(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), ElementH1ErrorFunctionAux::compute(), NodalPatchRecovery::compute(), FEProblemBase::computeBounds(), VariableCondensationPreconditioner::computeDInverseDiag(), CompositionDT::computeDT(), ArrayDGKernel::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighResidual(), InternalSideIntegralPostprocessor::computeFaceInfoIntegral(), SideIntegralPostprocessor::computeFaceInfoIntegral(), MooseVariableFieldBase::computeFaceValues(), TimeSequenceStepperBase::computeFailedDT(), IterationAdaptiveDT::computeFailedDT(), TimeStepper::computeFailedDT(), MooseMesh::computeFiniteVolumeCoords(), HistogramVectorPostprocessor::computeHistogram(), ArrayKernel::computeJacobian(), ArrayIntegratedBC::computeJacobian(), FVFluxKernel::computeJacobian(), NodalConstraint::computeJacobian(), FEProblemBase::computeJacobianTags(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), EigenProblem::computeMatricesTags(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), ArrayKernel::computeOffDiagJacobian(), ArrayIntegratedBC::computeOffDiagJacobian(), FVElementalKernel::computeOffDiagJacobian(), Moose::Kokkos::ResidualObject::computeOffDiagJacobian(), MortarScalarBase::computeOffDiagJacobianScalar(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), MaterialBase::computeProperties(), SideFVFluxBCIntegral::computeQpIntegral(), ScalarKernel::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), NodalEqualValueConstraint::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), NodeElemConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), ScalarKernel::computeQpResidual(), MassMatrix::computeQpResidual(), HDGKernel::computeQpResidual(), DiffusionLHDGDirichletBC::computeQpResidual(), NodalEqualValueConstraint::computeQpResidual(), DiffusionLHDGPrescribedGradientBC::computeQpResidual(), IPHDGBC::computeQpResidual(), KernelValue::computeQpResidual(), TorchScriptMaterial::computeQpValues(), InterfaceQpValueUserObject::computeRealValue(), ArrayKernel::computeResidual(), ArrayIntegratedBC::computeResidual(), FVFluxBC::computeResidual(), FVFluxKernel::computeResidual(), NodalConstraint::computeResidual(), FVFluxKernel::computeResidualAndJacobian(), ResidualObject::computeResidualAndJacobian(), FEProblemBase::computeResidualAndJacobian(), HDGKernel::computeResidualAndJacobianOnSide(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), KernelScalarBase::computeScalarOffDiagJacobian(), ADKernelScalarBase::computeScalarQpResidual(), ADMortarScalarBase::computeScalarQpResidual(), MortarScalarBase::computeScalarQpResidual(), KernelScalarBase::computeScalarQpResidual(), TimeStepper::computeStep(), ActuallyExplicitEuler::computeTimeDerivatives(), ExplicitEuler::computeTimeDerivatives(), ImplicitEuler::computeTimeDerivatives(), BDF2::computeTimeDerivatives(), NewmarkBeta::computeTimeDerivatives(), CentralDifference::computeTimeDerivatives(), CrankNicolson::computeTimeDerivatives(), LStableDirk2::computeTimeDerivatives(), LStableDirk3::computeTimeDerivatives(), ImplicitMidpoint::computeTimeDerivatives(), ExplicitTVDRK2::computeTimeDerivatives(), LStableDirk4::computeTimeDerivatives(), AStableDirk4::computeTimeDerivatives(), ExplicitRK2::computeTimeDerivatives(), MultiAppGeometricInterpolationTransfer::computeTransformation(), BuildArrayVariableAux::computeValue(), TagVectorArrayVariableAux::computeValue(), NearestNodeValueAux::computeValue(), ProjectionAux::computeValue(), PenetrationAux::computeValue(), ConcentricCircleMesh::ConcentricCircleMesh(), ConditionalEnableControl::ConditionalEnableControl(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), TimeStepper::constrainStep(), LibtorchNeuralNetControl::controlNeuralNet(), TransientBase::convergedToSteadyState(), ParsedConvergence::convertRealToBool(), MooseApp::copyInputs(), CopyMeshPartitioner::CopyMeshPartitioner(), CoupledForceNodalKernel::CoupledForceNodalKernel(), MultiApp::createApp(), MooseApp::createExecutors(), AddVariableAction::createInitialConditionAction(), MooseApp::createRMFromTemplateAndInit(), Function::curl(), MooseVariableFV< Real >::curlPhi(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), SidesetInfoVectorPostprocessor::dataHelper(), ReporterTransferInterface::declareClone(), Moose::Kokkos::MaterialBase::declareKokkosPropertyByName(), MeshGenerator::declareMeshProperty(), ReporterTransferInterface::declareVectorClone(), DefaultSteadyStateConvergence::DefaultSteadyStateConvergence(), FunctorRelationshipManager::delete_remote_elements(), MooseMesh::deleteRemoteElements(), BicubicSplineFunction::derivative(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), MooseMesh::detectPairedSidesets(), MooseApp::determineLibtorchDeviceType(), FEProblemBase::determineSolverSystem(), DGKernel::DGKernel(), MeshDiagnosticsGenerator::diagnosticsLog(), DistributedPositions::DistributedPositions(), Function::div(), FunctorBinnedValuesDivision::divisionIndex(), MooseVariableFV< Real >::divPhi(), FunctorRelationshipManager::dofmap_reinit(), EigenProblem::doFreeNonlinearPowerIterations(), FEProblemBase::duplicateVariableCheck(), MooseApp::dynamicAllRegistration(), MooseApp::dynamicAppRegistration(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), Eigenvalues::Eigenvalues(), ElementalVariableValue::ElementalVariableValue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementIntegerAux::ElementIntegerAux(), ElementMaterialSampler::ElementMaterialSampler(), ElementQualityAux::ElementQualityAux(), ElementUOAux::ElementUOAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), DistributedRectilinearMeshGenerator::elemId(), ProjectionAux::elemOnNodeVariableIsDefinedOn(), EigenKernel::enabled(), MooseApp::errorCheck(), MooseMesh::errorIfDistributedMesh(), MultiAppTransfer::errorIfObjectExecutesOnTransferInSourceApp(), SideIntegralPostprocessor::errorNoFaceInfo(), SideIntegralFunctorPostprocessorTempl< false >::errorNoFaceInfo(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), FixedPointSolve::examineFixedPointConvergence(), MultiAppGeneralFieldTransfer::examineReceivedValueConflicts(), RealToBoolChainControl::execute(), DiscreteElementUserObject::execute(), RestartableDataReporter::execute(), MultiAppScalarToAuxScalarTransfer::execute(), MultiAppPostprocessorToAuxScalarTransfer::execute(), PositionsFunctorValueSampler::execute(), NodalValueSampler::execute(), MultiAppPostprocessorInterpolationTransfer::execute(), MultiAppPostprocessorTransfer::execute(), ElementQualityChecker::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), FindValueOnLine::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppMFEMCopyTransfer::execute(), MultiAppCopyTransfer::execute(), MultiAppUserObjectTransfer::execute(), MultiAppGeometricInterpolationTransfer::execute(), InterfaceQpUserObjectBase::execute(), WebServerControl::execute(), TransientBase::execute(), LeastSquaresFit::execute(), VectorPostprocessorComparison::execute(), LeastSquaresFitHistory::execute(), Eigenvalue::execute(), TimeExtremeValue::execute(), DomainUserObject::execute(), FEProblemBase::execute(), FEProblemBase::executeControls(), MooseApp::executeExecutioner(), MultiAppVectorPostprocessorTransfer::executeFromMultiapp(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), Exodus::Exodus(), ExplicitSSPRungeKutta::ExplicitSSPRungeKutta(), MultiAppGeneralFieldTransfer::extractOutgoingPoints(), NEML2ModelExecutor::extractOutputs(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), NEML2ModelExecutor::fillInputs(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), VerifyNodalUniqueID::finalize(), VerifyElementUniqueID::finalize(), DiscreteElementUserObject::finalize(), ElementQualityChecker::finalize(), MemoryUsage::finalize(), PointSamplerBase::finalize(), DiscreteVariableResidualNorm::finalize(), NearestPointAverage::finalize(), NearestPointIntegralVariablePostprocessor::finalize(), MooseApp::finalizeRestore(), Transfer::find_sys(), BreakMeshByBlockGeneratorBase::findFreeBoundaryId(), FunctionDT::FunctionDT(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FunctionScalarAux::FunctionScalarAux(), FunctionScalarIC::FunctionScalarIC(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVMassMatrix::FVMassMatrix(), FVMatAdvection::FVMatAdvection(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), GapValueAux::GapValueAux(), WorkBalance::gather(), ElementSubdomainModifierBase::gatherPatchElements(), Boundary2DDelaunayGenerator::General2DDelaunay(), ElementOrderConversionGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), SideSetsFromNormalsGenerator::generate(), SmoothMeshGenerator::generate(), SubdomainPerElementGenerator::generate(), TiledMeshGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), MoveNodeGenerator::generate(), SideSetsFromPointsGenerator::generate(), StitchMeshGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), MeshDiagnosticsGenerator::generate(), MeshRepairGenerator::generate(), SideSetsFromBoundingBoxGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CombinerGenerator::generate(), AllSideSetsByNormalsGenerator::generate(), AdvancedExtruderGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedGenerateNodeset::generate(), SpiralAnnularMeshGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), CutMeshByLevelSetGeneratorBase::generate(), SubdomainBoundingBoxGenerator::generate(), PatternedMeshGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), BoundingBoxNodeSetGenerator::generate(), MeshGenerator::generateData(), GeneratedMesh::GeneratedMesh(), GeneratedMeshGenerator::GeneratedMeshGenerator(), MeshGenerator::generateInternal(), CircularBoundaryCorrectionGenerator::generateRadialCorrectionFactor(), RandomICBase::generateRandom(), GenericConstantMaterialTempl< is_ad >::GenericConstantMaterialTempl(), GenericConstantVectorMaterialTempl< is_ad >::GenericConstantVectorMaterialTempl(), GenericFunctionMaterialTempl< is_ad >::GenericFunctionMaterialTempl(), GenericFunctionVectorMaterialTempl< is_ad >::GenericFunctionVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), DisplacedProblem::getActualFieldVariable(), FEProblemBase::getActualFieldVariable(), DisplacedProblem::getArrayVariable(), FEProblemBase::getArrayVariable(), MooseMesh::getAxisymmetricRadialCoord(), MFEMFESpace::getBasis(), NEML2BatchIndexGenerator::getBatchIndex(), MooseMesh::getBlockConnectedBlocks(), VariableOldValueBounds::getBound(), MooseMesh::getBoundaryID(), MultiApp::getBoundingBox(), ChainControl::getChainControlDataByName(), MooseMesh::getCoarseningMap(), NodalPatchRecoveryBase::getCoefficients(), MultiApp::getCommandLineArgs(), MooseVariableBase::getContinuity(), Control::getControllableParameterByName(), FEProblemBase::getConvergence(), MooseMesh::getCoordSystem(), PhysicsBase::getCoupledPhysics(), PropertyReadFile::getData(), DataFileInterface::getDataFilePath(), TransfiniteMeshGenerator::getDiscreteEdge(), FEProblemBase::getDistribution(), MooseVariableBase::getDofIndices(), VariableCondensationPreconditioner::getDofToCondense(), TransfiniteMeshGenerator::getEdge(), GhostingUserObject::getElementalValue(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), PropertyReadFile::getElementData(), MooseMesh::getElementIDIndex(), Material::getElementIDNeighbor(), Material::getElementIDNeighborByName(), MooseMesh::getElemIDMapping(), MooseMesh::getElemIDsOnBlocks(), MultiAppFieldTransfer::getEquationSystem(), MultiApp::getExecutioner(), MooseApp::getExecutor(), MFEMVectorFESpace::getFECName(), MultiAppTransfer::getFromMultiApp(), MultiAppTransfer::getFromMultiAppInfo(), FEProblemBase::getFunction(), SubProblem::getFunctor(), FEProblemBase::getFVMatsAndDependencies(), MooseMesh::getGeneralAxisymmetricCoordAxis(), DistributedRectilinearMeshGenerator::getGhostNeighbors(), DistributedRectilinearMeshGenerator::getIndices(), FEProblemBase::getLinearConvergenceNames(), SolutionUserObjectBase::getLocalVarIndex(), Material::getMaterialByName(), FEProblemBase::getMaterialData(), FEProblemBase::getMaterialPropertyStorageConsumers(), SubProblem::getMatrixTagID(), AnnularMesh::getMaxInDimension(), GeneratedMesh::getMaxInDimension(), FEProblemBase::getMaxQps(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), AnnularMesh::getMinInDimension(), GeneratedMesh::getMinInDimension(), MultiAppTransfer::getMultiApp(), FEProblemBase::getMultiAppFixedPointConvergenceName(), DistributedRectilinearMeshGenerator::getNeighbors(), Times::getNextTime(), MooseMesh::getNodeBlockIds(), PropertyReadFile::getNodeData(), MooseMesh::getNodeList(), FEProblemBase::getNonlinearConvergenceNames(), EigenProblem::getNonlinearEigenSystem(), FEProblemBase::getNonlinearSystem(), NEML2ModelExecutor::getOutput(), NEML2ModelExecutor::getOutputDerivative(), NEML2ModelExecutor::getOutputParameterDerivative(), MooseMesh::getPairedBoundaryMapping(), MaterialOutputAction::getParams(), ImageMeshGenerator::GetPixelInfo(), ImageMesh::GetPixelInfo(), PlaneIDMeshGenerator::getPlaneID(), Positions::getPosition(), Positions::getPositions(), FEProblemBase::getPositionsObject(), Positions::getPositionsVector2D(), Positions::getPositionsVector3D(), Positions::getPositionsVector4D(), PostprocessorInterface::getPostprocessorValueByNameInternal(), Times::getPreviousTime(), ComponentMaterialPropertyInterface::getPropertyValue(), InterfaceQpUserObjectBase::getQpValue(), MooseMesh::getRefinementMap(), MooseBase::getRenamedParam(), ReporterInterface::getReporterContextBaseByName(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), MooseApp::getRMClone(), FEProblemBase::getSampler(), WebServerControl::getScalarJSONValue(), DisplacedProblem::getScalarVariable(), FEProblemBase::getScalarVariable(), MooseObject::getSharedPtr(), InterfaceQpUserObjectBase::getSideAverageValue(), PhysicsBase::getSolverSystem(), DisplacedProblem::getStandardVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSteadyStateConvergenceName(), MooseMesh::getSubdomainBoundaryIds(), TimedSubdomainModifier::getSubdomainIDAndCheck(), DisplacedProblem::getSystem(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), Times::getTimeAtIndex(), FEProblemBase::getTimeFromStateArg(), TransientBase::getTimeIntegratorNames(), Times::getTimes(), MultiAppTransfer::getToMultiApp(), MultiAppTransfer::getToMultiAppInfo(), MooseMesh::getUniqueCoordSystem(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectName(), NumRelationshipManagers::getValue(), VectorPostprocessorComponent::getValue(), Residual::getValue(), SideAverageValue::getValue(), JSONFileReader::getValue(), LineValueSampler::getValue(), FindValueOnLine::getValueAtPoint(), SubProblem::getVariableHelper(), JSONFileReader::getVector(), VectorPostprocessorInterface::getVectorPostprocessorName(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), DisplacedProblem::getVectorVariable(), FEProblemBase::getVectorVariable(), GhostingFromUOAux::GhostingFromUOAux(), MultiApp::globalAppToLocal(), MooseParsedVectorFunction::gradient(), Function::gradient(), FEProblemBase::handleException(), Terminator::handleMessage(), MooseVariableBase::hasDoFsOnNodes(), PostprocessorInterface::hasPostprocessor(), PostprocessorInterface::hasPostprocessorByName(), ReporterInterface::hasReporterValue(), ReporterInterface::hasReporterValueByName(), VectorPostprocessorInterface::hasVectorPostprocessor(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), HDGKernel::HDGKernel(), TransientBase::incrementStepOrReject(), FixedPointIterationAdaptiveDT::init(), CrankNicolson::init(), CSVTimeSequenceStepper::init(), EigenExecutionerBase::init(), ExplicitTimeIntegrator::init(), TransientBase::init(), init(), AddAuxVariableAction::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AddVariableAction::init(), MooseMesh::init(), Sampler::init(), FEProblemBase::init(), MultiApp::init(), FEProblemBase::initialAdaptMesh(), NestedDivision::initialize(), DistributedPositions::initialize(), ReporterPositions::initialize(), TransformedPositions::initialize(), ReporterTimes::initialize(), FunctorPositions::initialize(), ElementGroupCentroidPositions::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), ParsedConvergence::initializeConstantSymbol(), PhysicsBase::initializePhysics(), SteffensenSolve::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), PiecewiseLinearBase::initialSetup(), ChainControlDataPostprocessor::initialSetup(), IntegralPreservingFunctionIC::initialSetup(), MultiAppConservativeTransfer::initialSetup(), FullSolveMultiApp::initialSetup(), PiecewiseLinear::initialSetup(), CoarsenedPiecewiseLinear::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), LinearFVDiffusion::initialSetup(), LinearFVAdvection::initialSetup(), SolutionScalarAux::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), ExplicitTimeIntegrator::initialSetup(), SolutionAux::initialSetup(), ReferenceResidualConvergence::initialSetup(), NodalVariableValue::initialSetup(), Axisymmetric2D3DSolutionFunction::initialSetup(), ElementSubdomainModifierBase::initialSetup(), Exodus::initialSetup(), CSV::initialSetup(), MooseParsedFunction::initialSetup(), SolutionUserObjectBase::initialSetup(), FEProblemBase::initialSetup(), SubProblem::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initShowHideLists(), Function::integral(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), InterfaceTimeKernel::InterfaceTimeKernel(), InternalSideIndicatorBase::InternalSideIndicatorBase(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), EigenExecutionerBase::inversePowerIteration(), InversePowerMethod::InversePowerMethod(), Sampler::isAdaptiveSamplingCompleted(), MooseMesh::isBoundaryFullyExternalToSubdomains(), MooseVariableBase::isNodal(), IterationAdaptiveDT::IterationAdaptiveDT(), IterationCountConvergence::IterationCountConvergence(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), MooseApp::libNameToAppName(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationPostprocessor::LinearCombinationPostprocessor(), LinearNodalConstraint::LinearNodalConstraint(), LineMaterialSamplerBase< Real >::LineMaterialSamplerBase(), LineSearch::lineSearch(), LineValueSampler::LineValueSampler(), MooseApp::loadLibraryAndDependencies(), MultiAppGeneralFieldTransfer::locatePointReceivers(), LowerBoundNodalKernel::LowerBoundNodalKernel(), MooseLinearVariableFV< Real >::lowerDError(), PNGOutput::makePNG(), ReporterPointMarker::markerSetup(), SubProblem::markFamilyPRefinement(), MassMatrix::MassMatrix(), Material::Material(), MaterialRealTensorValueAuxTempl< is_ad >::MaterialRealTensorValueAuxTempl(), MaterialRealVectorValueAuxTempl< T, is_ad, is_functor >::MaterialRealVectorValueAuxTempl(), MaterialStdVectorRealGradientAux::MaterialStdVectorRealGradientAux(), Distribution::median(), FunctorRelationshipManager::mesh_reinit(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshExtruderGenerator::MeshExtruderGenerator(), MeshRepairGenerator::MeshRepairGenerator(), SetupMeshAction::modifyParamsForUseSplit(), MeshMetaDataInterface::mooseErrorInternal(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), MooseMesh::MooseMesh(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableConstMonomial::MooseVariableConstMonomial(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NearestNodeDistanceAux::NearestNodeDistanceAux(), FEProblemBase::needsPreviousNewtonIteration(), NewmarkBeta::NewmarkBeta(), NodalConstraint::NodalConstraint(), MooseVariableFV< Real >::nodalDofIndex(), MooseVariableFV< Real >::nodalDofIndexNeighbor(), MooseLinearVariableFV< Real >::nodalError(), MooseVariableFV< Real >::nodalMatrixTagValue(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalScalarKernel::NodalScalarKernel(), MooseVariableFV< Real >::nodalValueArray(), MooseVariableFV< Real >::nodalValueOldArray(), MooseVariableFV< Real >::nodalValueOlderArray(), NodalVariableValue::NodalVariableValue(), MooseVariableFV< Real >::nodalVectorTagValue(), DistributedRectilinearMeshGenerator::nodeId(), MooseVariableFV< Real >::numberOfDofsNeighbor(), NumDOFs::NumDOFs(), NumFailedTimeSteps::NumFailedTimeSteps(), DistributedRectilinearMeshGenerator::numNeighbors(), NumNonlinearIterations::NumNonlinearIterations(), NumVars::NumVars(), Output::onInterval(), FunctorRelationshipManager::operator()(), RelationshipManager::operator==(), ActionComponent::outerSurfaceArea(), ActionComponent::outerSurfaceBoundaries(), XDA::output(), SolutionHistory::output(), Exodus::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), AdvancedOutput::outputInput(), MooseApp::outputMachineReadableData(), AdvancedOutput::outputNodalVariables(), AdvancedOutput::outputPostprocessors(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), Exodus::outputSetup(), AdvancedOutput::outputSystemInformation(), Console::outputVectorPostprocessors(), AdvancedOutput::outputVectorPostprocessors(), DistributedRectilinearMeshGenerator::paritionSquarely(), PiecewiseBilinear::parse(), ParsedConvergence::ParsedConvergence(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), MultiAppConservativeTransfer::performAdjustment(), ExplicitTimeIntegrator::performExplicitSolve(), PetscExternalPartitioner::PetscExternalPartitioner(), MooseVariableFV< Real >::phiLowerSize(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseMulticonstant::PiecewiseMulticonstant(), PiecewiseMultiInterpolation::PiecewiseMultiInterpolation(), PiecewiseTabularBase::PiecewiseTabularBase(), CutMeshByLevelSetGeneratorBase::pointPairLevelSetInterception(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessorByName(), LStableDirk2::postResidual(), LStableDirk3::postResidual(), ImplicitMidpoint::postResidual(), ExplicitTVDRK2::postResidual(), LStableDirk4::postResidual(), AStableDirk4::postResidual(), ExplicitRK2::postResidual(), EigenProblem::postScaleEigenVector(), VariableCondensationPreconditioner::preallocateCondensedJacobian(), ADKernelValueTempl< T >::precomputeQpJacobian(), FunctorKernel::precomputeQpResidual(), Predictor::Predictor(), TransientBase::preExecute(), MooseMesh::prepare(), MooseMesh::prepared(), ElementSubdomainModifierBase::prepareVariableForReinitialization(), FixedPointSolve::printFixedPointConvergenceReason(), PseudoTimestep::PseudoTimestep(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readExodusII(), SolutionUserObjectBase::readXda(), CoarsenBlockGenerator::recursiveCoarsen(), MooseApp::recursivelyCreateExecutors(), FunctorRelationshipManager::redistribute(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseApp::registerRestartableData(), MooseApp::registerRestartableNameWithFilter(), Sampler::reinit(), RelativeSolutionDifferenceNorm::RelativeSolutionDifferenceNorm(), MFEMTransient::relativeSolutionDifferenceNorm(), MooseApp::removeRelationshipManager(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::restore(), RinglebMesh::RinglebMesh(), RinglebMeshGenerator::RinglebMeshGenerator(), MooseApp::run(), MooseApp::runInputs(), PiecewiseMultiInterpolation::sample(), ScalarComponentIC::ScalarComponentIC(), MortarScalarBase::scalarVariable(), DistributedRectilinearMeshGenerator::scaleNodalPositions(), BicubicSplineFunction::secondDerivative(), MooseVariableFV< Real >::secondPhi(), MooseVariableFV< Real >::secondPhiFace(), MooseVariableFV< Real >::secondPhiFaceNeighbor(), MooseVariableFV< Real >::secondPhiNeighbor(), FunctorRelationshipManager::set_mesh(), MooseVariableBase::setActiveTags(), DistributedRectilinearMeshGenerator::setBoundaryNames(), MooseMesh::setCoordSystem(), FEProblemBase::setCoupling(), PiecewiseBase::setData(), FileOutput::setFileBaseInternal(), MooseMesh::setGeneralAxisymmetricCoordAxes(), FEProblemSolve::setInnerSolve(), MeshGenerator::setMeshProperty(), MooseApp::setMFEMDevice(), FVPointValueConstraint::setMyElem(), FEProblemBase::setNonlocalCouplingMatrix(), Sampler::setNumberOfCols(), Sampler::setNumberOfRandomSeeds(), Sampler::setNumberOfRows(), Exodus::setOutputDimensionInExodusWriter(), AddPeriodicBCAction::setPeriodicVars(), MFEMSolverBase::setPreconditioner(), MultiAppGeneralFieldTransfer::setSolutionVectorValues(), Split::setup(), TransientMultiApp::setupApp(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), TimeSequenceStepperBase::setupSequence(), TransientBase::setupTimeIntegrator(), TimePeriodBase::setupTimes(), IntegratedBCBase::shouldApply(), PhysicsBase::shouldCreateIC(), PhysicsBase::shouldCreateTimeDerivative(), PhysicsBase::shouldCreateVariable(), SideAdvectiveFluxIntegralTempl< is_ad >::SideAdvectiveFluxIntegralTempl(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsFromNormalsGenerator::SideSetsFromNormalsGenerator(), SideSetsFromPointsGenerator::SideSetsFromPointsGenerator(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), MooseVariableBase::sizeMatrixTagData(), SolutionTimeAdaptiveDT::SolutionTimeAdaptiveDT(), SolutionUserObjectBase::SolutionUserObjectBase(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TimeIntegrator::solve(), FEProblemBase::solverSysNum(), FullSolveMultiApp::solveStep(), SpatialAverageBase::SpatialAverageBase(), UserObject::spatialPoints(), NearestPointIntegralVariablePostprocessor::spatialValue(), NearestPointAverage::spatialValue(), MeshDivisionFunctorReductionVectorPostprocessor::spatialValue(), UserObject::spatialValue(), SpiralAnnularMesh::SpiralAnnularMesh(), SpiralAnnularMeshGenerator::SpiralAnnularMeshGenerator(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), WebServerControl::stringifyJSONType(), MultiAppGeometricInterpolationTransfer::subdomainIDsNode(), Constraint::subdomainSetup(), NodalUserObject::subdomainSetup(), GeneralUserObject::subdomainSetup(), MaterialBase::subdomainSetup(), FEProblemBase::swapBackMaterialsNeighbor(), DisplacedProblem::systemBaseLinear(), Console::systemInfoFlags(), FEProblemBase::systemNumForVariable(), TerminateChainControl::terminate(), Terminator::Terminator(), CutMeshByLevelSetGeneratorBase::tet4ElemCutter(), ThreadedGeneralUserObject::threadJoin(), DiscreteElementUserObject::threadJoin(), GeneralUserObject::threadJoin(), Function::timeDerivative(), TimedSubdomainModifier::TimedSubdomainModifier(), TimeExtremeValue::TimeExtremeValue(), Function::timeIntegral(), MooseLinearVariableFV< Real >::timeIntegratorError(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriodBase::TimePeriodBase(), VectorPostprocessorVisualizationAux::timestepSetup(), WebServerControl::toMiniJson(), MultiAppDofCopyTransfer::transfer(), MultiAppMFEMCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransformedPositions::TransformedPositions(), FEProblemBase::trustUserCouplingMatrix(), MooseVariableScalar::uDot(), MooseVariableScalar::uDotDot(), MooseVariableScalar::uDotDotOld(), FEProblemBase::uDotDotOldRequested(), MooseVariableScalar::uDotOld(), FEProblemBase::uDotOldRequested(), MooseBase::uniqueName(), Positions::unrollMultiDPositions(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), Checkpoint::updateCheckpointFiles(), EqualValueBoundaryConstraint::updateConstrainedNodes(), SolutionUserObjectBase::updateExodusBracketingTimeIndices(), FEProblemBase::updateMaxQps(), MFEMHypreADS::updateSolver(), MFEMHypreAMS::updateSolver(), MFEMHyprePCG::updateSolver(), MFEMHypreFGMRES::updateSolver(), MFEMCGSolver::updateSolver(), MFEMOperatorJacobiSmoother::updateSolver(), MFEMHypreBoomerAMG::updateSolver(), MFEMGMRESSolver::updateSolver(), MFEMHypreGMRES::updateSolver(), MFEMSuperLU::updateSolver(), UpperBoundNodalKernel::UpperBoundNodalKernel(), NearestPointIntegralVariablePostprocessor::userObjectValue(), NearestPointAverage::userObjectValue(), BoundingBoxIC::value(), PiecewiseConstantFromCSV::value(), IntegralPreservingFunctionIC::value(), Axisymmetric2D3DSolutionFunction::value(), Function::value(), ValueRangeMarker::ValueRangeMarker(), ValueThresholdMarker::ValueThresholdMarker(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VariableTimeIntegrationAux::VariableTimeIntegrationAux(), AddVariableAction::variableType(), VariableValueVolumeHistogram::VariableValueVolumeHistogram(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), VectorNodalBC::VectorNodalBC(), SubProblem::vectorTagName(), SubProblem::vectorTagType(), MooseParsedGradFunction::vectorValue(), MooseParsedFunction::vectorValue(), Function::vectorValue(), SubProblem::verifyVectorTags(), ActionComponent::volume(), VTKOutput::VTKOutput(), WebServerControl::WebServerControl(), MooseApp::writeRestartableMetaData(), DOFMapOutput::writeStreamToFile(), and Console::writeStreamToFile().

272  {
273  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ true);
274  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105

◆ mooseErrorNonPrefixed()

template<typename... Args>
void MooseBase::mooseErrorNonPrefixed ( Args &&...  args) const
inlineinherited

Emits an error without the prefixing included in mooseError().

Definition at line 290 of file MooseBase.h.

291  {
292  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ false);
293  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:105

◆ mooseInfo()

template<typename... Args>
void MooseBase::mooseInfo ( Args &&...  args) const
inlineinherited

Definition at line 321 of file MooseBase.h.

Referenced by SetupRecoverFileBaseAction::act(), AStableDirk4::AStableDirk4(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MultiAppGeneralFieldNearestLocationTransfer::evaluateInterpValuesNearestNode(), PIDTransientControl::execute(), Executioner::Executioner(), ExplicitRK2::ExplicitRK2(), ExplicitTVDRK2::ExplicitTVDRK2(), DataFileInterface::getDataFilePath(), MFEMScalarFESpace::getFECName(), MultiAppTransfer::getPointInTargetAppFrame(), ImplicitMidpoint::ImplicitMidpoint(), ParsedDownSelectionPositions::initialize(), PropertyReadFile::initialize(), MultiAppGeneralFieldTransfer::initialSetup(), InversePowerMethod::InversePowerMethod(), LStableDirk2::LStableDirk2(), LStableDirk3::LStableDirk3(), LStableDirk4::LStableDirk4(), PNGOutput::makeMeshFunc(), NonlinearEigen::NonlinearEigen(), SolutionInvalidityOutput::output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramInfo(), ProjectionAux::ProjectionAux(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MFEMDataCollection::registerFields(), FEProblemBase::setRestartFile(), MooseApp::setupOptions(), SolutionUserObjectBase::SolutionUserObjectBase(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TransientBase::takeStep(), and TransientBase::TransientBase().

322  {
323  moose::internal::mooseInfoStream(_console, messagePrefix(true), std::forward<Args>(args)...);
324  }
void mooseInfoStream(S &oss, Args &&... args)
Definition: MooseError.h:258
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseWarning()

template<typename... Args>
void MooseBase::mooseWarning ( Args &&...  args) const
inlineinherited

Emits a warning prefixed with object name and type.

Definition at line 299 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), AddKernelAction::act(), MeshOnlyAction::act(), AddFunctionAction::act(), MaterialOutputAction::act(), CommonOutputAction::act(), MFEMProblem::addFunction(), MooseMesh::addPeriodicVariable(), DiracKernelBase::addPoint(), BoundaryMarker::BoundaryMarker(), DistributedRectilinearMeshGenerator::buildCube(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), CartesianMeshGenerator::CartesianMeshGenerator(), CheckOutputAction::checkConsoleOutput(), MultiAppTransfer::checkMultiAppExecuteOn(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), SampledOutput::cloneMesh(), MultiAppGeneralFieldTransfer::closestToPosition(), VariableValueElementSubdomainModifier::computeSubdomainID(), GapValueAux::computeValue(), MultiApp::createApp(), DebugResidualAux::DebugResidualAux(), MeshDiagnosticsGenerator::diagnosticsLog(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), ElementMaterialSampler::ElementMaterialSampler(), Postprocessor::evaluateDotWarning(), MeshDivisionFunctorReductionVectorPostprocessor::execute(), ElementQualityChecker::finalize(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), SubdomainPerElementGenerator::generate(), StitchMeshGenerator::generate(), ParsedGenerateSideset::generate(), MultiAppTransfer::getAppInfo(), FunctorBinnedValuesDivision::getBinIndex(), DataFileInterface::getDataFilePath(), PointSamplerBase::getLocalElemContainingPoint(), FEProblemBase::getMaterial(), LineValueSampler::getValue(), Terminator::handleMessage(), IndicatorMarker::IndicatorMarker(), CylindricalGridDivision::initialize(), CartesianGridDivision::initialize(), SphericalGridDivision::initialize(), ElementGroupCentroidPositions::initialize(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), BoundsBase::initialSetup(), ReferenceResidualConvergence::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), LeastSquaresFit::LeastSquaresFit(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseApp::loadLibraryAndDependencies(), FEProblemBase::mesh(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), NewmarkBeta::NewmarkBeta(), NodalPatchRecovery::NodalPatchRecovery(), NonlocalIntegratedBC::NonlocalIntegratedBC(), NonlocalKernel::NonlocalKernel(), Output::Output(), MaterialOutputAction::outputHelper(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramWarning(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), Executioner::problem(), PropertyReadFile::readData(), TestSourceStepper::rejectStep(), PhysicsBase::reportPotentiallyMissedParameters(), MaterialBase::resetQpProperties(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), MooseMesh::setCoordSystem(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), FEProblemBase::sizeZeroes(), TransientMultiApp::solveStep(), Tecplot::Tecplot(), TimeDerivativeAux::TimeDerivativeAux(), Checkpoint::updateCheckpointFiles(), SampledOutput::updateSample(), PiecewiseConstantFromCSV::value(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

300  {
301  moose::internal::mooseWarningStream(_console, messagePrefix(true), std::forward<Args>(args)...);
302  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:210
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:256

◆ mooseWarningNonPrefixed()

template<typename... Args>
void MooseBase::mooseWarningNonPrefixed ( Args &&...  args) const
inlineinherited

Emits a warning without the prefixing included in mooseWarning().

Definition at line 308 of file MooseBase.h.

309  {
310  moose::internal::mooseWarningStream(_console, std::forward<Args>(args)...);
311  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:210
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ mortarData() [1/2]

const MortarData& FEProblemBase::mortarData ( ) const
inlineinherited

Returns the mortar data object.

Definition at line 2390 of file FEProblemBase.h.

2390 { return _mortar_data; }
MortarData _mortar_data

◆ mortarData() [2/2]

MortarData& FEProblemBase::mortarData ( )
inlineinherited

Definition at line 2391 of file FEProblemBase.h.

2391 { return _mortar_data; }
MortarData _mortar_data

◆ name()

const std::string& MooseBase::name ( ) const
inlineinherited

Get the name of the class.

Returns
The name of the class

Definition at line 103 of file MooseBase.h.

Referenced by AddElementalFieldAction::act(), CopyNodalVarsAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), DeprecatedBlockAction::act(), SetupTimeIntegratorAction::act(), SetupResidualDebugAction::act(), AddActionComponentAction::act(), DisplayGhostingAction::act(), MaterialOutputAction::act(), AddPeriodicBCAction::act(), FEProblemBase::addAnyRedistributers(), Executioner::addAttributeReporter(), MFEMProblem::addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), DisplacedProblem::addAuxVariable(), MFEMProblem::addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), PhysicsComponentInterface::addComponent(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), Registry::addDataFilePath(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), MFEMProblem::addFESpace(), MFEMProblem::addFunction(), FEProblemBase::addFunction(), SubProblem::addFunctor(), MFEMProblem::addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FunctorMaterial::addFunctorProperty(), FunctorMaterial::addFunctorPropertyByBlocks(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), MFEMProblem::addInitialCondition(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), DiffusionLHDGKernel::additionalROVariables(), IPHDGAssemblyHelper::additionalROVariables(), MFEMProblem::addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), ComponentMaterialPropertyInterface::addMaterials(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), ComponentMeshTransformHelper::addMeshGenerators(), CylinderComponent::addMeshGenerators(), MeshGenerator::addMeshSubgenerator(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), InitialConditionWarehouse::addObject(), FEProblemBase::addObject(), ComponentPhysicsInterface::addPhysics(), SubProblem::addPiecewiseByBlockLambdaFunctor(), MFEMProblem::addPostprocessor(), FEProblemBase::addPostprocessor(), InitialConditionBase::addPostprocessorDependencyHelper(), UserObject::addPostprocessorDependencyHelper(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), MFEMProblem::addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), InitialConditionBase::addUserObjectDependencyHelper(), UserObject::addUserObjectDependencyHelper(), AuxKernelTempl< Real >::addUserObjectDependencyHelper(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), UserObject::addVectorPostprocessorDependencyHelper(), MooseLinearVariableFV< Real >::adError(), Output::advancedExecuteOn(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), MooseVariableBase::allDofIndices(), MooseApp::appBinaryName(), MooseApp::appendMeshGenerator(), Registry::appNameFromAppPath(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayDGKernel::ArrayDGKernel(), ArrayParsedAux::ArrayParsedAux(), PhysicsBase::assignBlocks(), AStableDirk4::AStableDirk4(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), MultiApp::backup(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), MFEMFESpace::buildFEC(), PiecewiseTabularBase::buildFromFile(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), MooseBase::callMooseError(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), PhysicsBase::checkBlockRestrictionIdentical(), PhysicsBase::checkComponentType(), ParsedConvergence::checkConvergence(), DefaultNonlinearConvergence::checkConvergence(), FEProblemBase::checkDependMaterialsHelper(), SamplerBase::checkForStandardFieldVariableType(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Moose::Kokkos::Material::checkMaterialProperty(), Material::checkMaterialProperty(), MooseApp::checkMetaDataIntegrity(), Damper::checkMinDamping(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), Checkpoint::checkpointInfo(), DomainUserObject::checkVariable(), BlockRestrictable::checkVariable(), Coupleable::checkWritableVar(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), MaterialBase::computeProperties(), FEProblemBase::computeUserObjectByName(), VectorPostprocessorVisualizationAux::computeValue(), MooseBase::connectControllableParams(), ConstantPostprocessor::ConstantPostprocessor(), Coupleable::coupledName(), CommonOutputAction::create(), MultiApp::createApp(), MooseApp::createExecutors(), MeshGeneratorSystem::createMeshGeneratorOrder(), MooseApp::createRecoverablePerfGraph(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), DebugResidualAux::DebugResidualAux(), MaterialBase::declareADProperty(), MeshGenerator::declareMeshesForSubByName(), MeshGenerator::declareNullMeshName(), MaterialBase::declareProperty(), DOFMapOutput::demangle(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), Registry::determineDataFilePath(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DomainUserObject::DomainUserObject(), DumpObjectsProblem::dumpObjectHelper(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementMaterialSampler::ElementMaterialSampler(), ElementValueSampler::ElementValueSampler(), EigenKernel::enabled(), MooseMesh::errorIfDistributedMesh(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), SideValueSampler::execute(), RestartableDataReporter::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), WebServerControl::execute(), MultiAppGeneralFieldTransfer::execute(), ActionWarehouse::executeActionsWithAction(), Exodus::Exodus(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), PointSamplerBase::finalize(), ChainControl::fullControlDataName(), FunctionArrayAux::FunctionArrayAux(), FunctionDT::FunctionDT(), FunctionIC::functionName(), FVFunctionIC::functionName(), FunctorPositions::FunctorPositions(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), GapValueAux::GapValueAux(), MooseServer::gatherDocumentSymbols(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BreakMeshByBlockGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), SideSetsFromNodeSetsGenerator::generate(), StitchBoundaryMeshGenerator::generate(), StitchMeshGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), MeshGenerator::generateInternal(), InterfaceMaterial::getADMaterialProperty(), Material::getADMaterialProperty(), MultiAppTransfer::getAppInfo(), MultiApp::getBoundingBox(), MooseBase::getCheckedPointerParam(), MooseApp::getCheckpointDirectories(), Control::getControllableParameterByName(), Control::getControllableValue(), Control::getControllableValueByName(), FEProblemBase::getConvergence(), Registry::getDataFilePath(), UserObject::getDependObjects(), DistributionInterface::getDistribution(), FEProblemBase::getDistribution(), DistributionInterface::getDistributionByName(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), MultiApp::getExecutioner(), MooseApp::getExecutor(), FEProblemBase::getExecutor(), OutputWarehouse::getFileNumbers(), FEProblemBase::getFunction(), SubProblem::getFunctor(), NodalPatchRecovery::getGenericMaterialProperty(), InterfaceMaterial::getGenericMaterialProperty(), Material::getGenericMaterialProperty(), AuxKernelTempl< Real >::getGenericMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialPropertyByName(), Material::getGenericOptionalMaterialProperty(), MaterialBase::getGenericZeroMaterialProperty(), MFEMProblem::getGridFunction(), Moose::Kokkos::Material::getKokkosMaterialProperty(), Moose::Kokkos::Material::getKokkosMaterialPropertyOld(), Moose::Kokkos::Material::getKokkosMaterialPropertyOlder(), SolutionUserObjectBase::getLocalVarIndex(), Marker::getMarkerValue(), Material::getMaterial(), FEProblemBase::getMaterial(), Material::getMaterialByName(), NodalPatchRecovery::getMaterialProperty(), InterfaceMaterial::getMaterialProperty(), Material::getMaterialProperty(), AuxKernelTempl< Real >::getMaterialProperty(), SubProblem::getMaterialPropertyBlockNames(), SubProblem::getMaterialPropertyBoundaryNames(), NodalPatchRecovery::getMaterialPropertyOld(), InterfaceMaterial::getMaterialPropertyOld(), Material::getMaterialPropertyOld(), AuxKernelTempl< Real >::getMaterialPropertyOld(), NodalPatchRecovery::getMaterialPropertyOlder(), InterfaceMaterial::getMaterialPropertyOlder(), Material::getMaterialPropertyOlder(), AuxKernelTempl< Real >::getMaterialPropertyOlder(), MFEMGeneralUserObject::getMatrixCoefficient(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MeshGenerator::getMesh(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshesByName(), MooseApp::getMeshGenerator(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), ActionWarehouse::getMooseAppName(), MultiAppTransfer::getMultiApp(), InterfaceMaterial::getNeighborADMaterialProperty(), InterfaceMaterial::getNeighborMaterialProperty(), InterfaceMaterial::getNeighborMaterialPropertyOld(), InterfaceMaterial::getNeighborMaterialPropertyOlder(), MooseServer::getObjectParameters(), Material::getOptionalADMaterialProperty(), Material::getOptionalMaterialProperty(), Material::getOptionalMaterialPropertyOld(), Material::getOptionalMaterialPropertyOlder(), OutputWarehouse::getOutput(), MooseBase::getParam(), FEProblemBase::getPositionsObject(), FEProblemBase::getPostprocessorValueByName(), ComponentMaterialPropertyInterface::getPropertyValue(), ReporterData::getReporterInfo(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), FEProblemBase::getSampler(), MFEMGeneralUserObject::getScalarCoefficient(), MFEMGeneralUserObject::getScalarCoefficientByName(), TimedSubdomainModifier::getSubdomainIDAndCheck(), TransientBase::getTimeStepperName(), ProjectedStatefulMaterialStorageAction::getTypeEnum(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), MFEMGeneralUserObject::getVectorCoefficient(), MFEMGeneralUserObject::getVectorCoefficientByName(), Terminator::handleMessage(), Control::hasControllableParameterByName(), FEProblemBase::hasConvergence(), FEProblemBase::hasFunction(), SubProblem::hasFunctor(), SubProblem::hasFunctorWithType(), MooseApp::hasMeshGenerator(), AdvancedOutput::hasOutputHelper(), FEProblemBase::hasPostprocessor(), FEProblemBase::hasPostprocessorValueByName(), MooseApp::hasRelationshipManager(), MooseApp::hasRestartableDataMap(), MooseApp::hasRestartableMetaData(), FEProblemBase::hasUserObject(), IterationAdaptiveDT::init(), AddVariableAction::init(), AdvancedOutput::init(), AdvancedOutput::initExecutionTypes(), AttribName::initFrom(), NestedDivision::initialize(), TransformedPositions::initialize(), BoundaryRestrictable::initializeBoundaryRestrictable(), JSONOutput::initialSetup(), SideFVFluxBCIntegral::initialSetup(), SolutionScalarAux::initialSetup(), MultiAppProjectionTransfer::initialSetup(), NodalVariableValue::initialSetup(), Console::initialSetup(), SolutionUserObjectBase::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), Function::integral(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), MeshGenerator::isChildMeshGenerator(), DerivativeMaterialInterface< MortarScalarBase >::isNotObjectVariable(), MeshGenerator::isNullMeshName(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MeshGenerator::isParentMeshGenerator(), LinearCombinationFunction::LinearCombinationFunction(), FEProblemBase::logAdd(), MooseLinearVariableFV< Real >::lowerDError(), Marker::Marker(), MaterialBase::markMatPropRequested(), MatDiffusionBase< Real >::MatDiffusionBase(), Material::Material(), MaterialDerivativeTestKernelBase< Real >::MaterialDerivativeTestKernelBase(), Distribution::median(), MemoryUsageReporter::MemoryUsageReporter(), MeshGenerator::meshPropertyPrefix(), MooseBase::messagePrefix(), OutputWarehouse::mooseConsole(), MooseVariableBase::MooseVariableBase(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MooseLinearVariableFV< Real >::nodalError(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalValueSampler::NodalValueSampler(), Registry::objData(), MeshGenerator::Comparator::operator()(), ProgressOutput::output(), DOFMapOutput::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), ConsoleUtils::outputExecutionInformation(), MaterialOutputAction::outputHelper(), AdvancedOutput::outputInput(), AdvancedOutput::outputNodalVariables(), Exodus::outputPostprocessors(), AdvancedOutput::outputPostprocessors(), TableOutput::outputReporter(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), AdvancedOutput::outputSystemInformation(), AdvancedOutput::outputVectorPostprocessors(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), ComponentPhysicsInterface::physicsExists(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), MooseApp::possiblyLoadRestartableMetaData(), PhysicsBase::prefix(), MooseMesh::prepare(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), PerfGraphLivePrint::printStats(), FEProblemBase::projectInitialConditionOnCustomRange(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), Receiver::Receiver(), Executor::Result::record(), AppFactory::reg(), Registry::registerObjectsTo(), FEProblemBase::registerRandomInterface(), MooseApp::registerRestartableDataMapName(), MooseApp::registerRestartableNameWithFilter(), MaterialBase::resetQpProperties(), MultiApp::restore(), ScalarComponentIC::ScalarComponentIC(), MultiApp::setAppOutputFileBase(), MooseMesh::setBoundaryName(), Control::setControllableValue(), Control::setControllableValueByName(), OutputWarehouse::setFileNumbers(), FEProblemBase::setPostprocessorValueByName(), FEProblemBase::setResidualObjectParamsAndLog(), MooseMesh::setSubdomainName(), NodeSetsGeneratorBase::setup(), Split::setup(), SideSetsGeneratorBase::setup(), TransientMultiApp::setupApp(), FullSolveMultiApp::showStatusMessage(), SideSetExtruderGenerator::SideSetExtruderGenerator(), TransientMultiApp::solveStep(), UserObject::spatialValue(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), SubProblem::storeBoundaryDelayedCheckMatProp(), SubProblem::storeBoundaryMatPropName(), MaterialBase::storeBoundaryZeroMatProp(), SubProblem::storeBoundaryZeroMatProp(), SubProblem::storeSubdomainDelayedCheckMatProp(), SubProblem::storeSubdomainMatPropName(), MaterialBase::storeSubdomainZeroMatProp(), SubProblem::storeSubdomainZeroMatProp(), ConstraintWarehouse::subdomainsCovered(), MaterialBase::subdomainSetup(), TaggingInterface::TaggingInterface(), MooseLinearVariableFV< Real >::timeIntegratorError(), VectorPostprocessorVisualizationAux::timestepSetup(), ElementSubdomainModifierBase::timestepSetup(), to_json(), MultiAppDofCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransientMultiApp::TransientMultiApp(), MooseServer::traverseParseTreeAndFillSymbols(), MooseBase::typeAndName(), MooseBase::uniqueParameterName(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), UserObject::UserObject(), UserObjectInterface::userObjectName(), ParsedAux::validateGenericVectorNames(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), Convergence::verboseOutput(), AdvancedOutput::wantOutput(), Coupleable::writableCoupledValue(), Coupleable::writableVariable(), Console::write(), and MooseApp::writeRestartableMetaData().

104  {
105  mooseAssert(_name.size(), "Empty name");
106  return _name;
107  }
const std::string & _name
The name of this class.
Definition: MooseBase.h:363

◆ needBoundaryMaterialOnSide()

bool FEProblemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

These methods are used to determine whether stateful material properties need to be stored on internal sides.

There are five situations where this may be the case: 1) DGKernels 2) IntegratedBCs 3)InternalSideUserObjects 4)ElementalAuxBCs 5)InterfaceUserObjects

Method 1:

Parameters
bnd_idthe boundary id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Method 2:

Parameters
subdomain_idthe subdomain id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Definition at line 8916 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onBoundary(), ProjectMaterialProperties::onBoundary(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFaceOnBoundary(), and FEProblemBase::reinitMaterialsNeighborOnBoundary().

8917 {
8918  if (_bnd_mat_side_cache[tid].find(bnd_id) == _bnd_mat_side_cache[tid].end())
8919  {
8920  auto & bnd_mat_side_cache = _bnd_mat_side_cache[tid][bnd_id];
8921  bnd_mat_side_cache = false;
8922 
8923  // Check systems
8924  if (_aux->needMaterialOnSide(bnd_id))
8925  {
8926  bnd_mat_side_cache = true;
8927  return true;
8928  }
8929  for (auto & nl : _nl)
8930  if (nl->needBoundaryMaterialOnSide(bnd_id, tid))
8931  {
8932  bnd_mat_side_cache = true;
8933  return true;
8934  }
8935 
8936  // TODO: these objects should be checked for whether they actually consume materials
8937  // NOTE: InterfaceUO can use use boundary properties too
8938  if (theWarehouse()
8939  .query()
8940  .condition<AttribThread>(tid)
8941  .condition<AttribInterfaces>(Interfaces::SideUserObject | Interfaces::DomainUserObject |
8943  .condition<AttribBoundaries>(bnd_id)
8944  .count() > 0)
8945  {
8946  bnd_mat_side_cache = true;
8947  return true;
8948  }
8949  }
8950 
8951  return _bnd_mat_side_cache[tid][bnd_id];
8952 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
Cache for calculating materials on side.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needFV()

virtual void FEProblemBase::needFV ( )
inlineoverridevirtualinherited

marks this problem as including/needing finite volume functionality.

Implements SubProblem.

Definition at line 2655 of file FEProblemBase.h.

Referenced by DiffusionFV::initializePhysicsAdditional(), and DisplacedProblem::needFV().

2655 { _have_fv = true; }
bool _have_fv
Whether we are performing some calculations with finite volume discretizations.

◆ needInterfaceMaterialOnSide()

bool FEProblemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8955 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsInterface(), and FEProblemBase::reinitMaterialsNeighborOnBoundary().

8956 {
8957  if (_interface_mat_side_cache[tid].find(bnd_id) == _interface_mat_side_cache[tid].end())
8958  {
8959  auto & interface_mat_side_cache = _interface_mat_side_cache[tid][bnd_id];
8960  interface_mat_side_cache = false;
8961 
8962  // Aux-system has not needed interface materials so far
8963  for (auto & nl : _nl)
8964  if (nl->needInterfaceMaterialOnSide(bnd_id, tid))
8965  {
8966  interface_mat_side_cache = true;
8967  return true;
8968  }
8969 
8970  // TODO: these objects should be checked for whether they actually consume materials
8971  if (theWarehouse()
8972  .query()
8973  .condition<AttribThread>(tid)
8974  .condition<AttribInterfaces>(Interfaces::InterfaceUserObject |
8976  .condition<AttribBoundaries>(bnd_id)
8977  .count() > 0)
8978  {
8979  interface_mat_side_cache = true;
8980  return true;
8981  }
8982  else if (_interface_materials.hasActiveBoundaryObjects(bnd_id, tid))
8983  {
8984  interface_mat_side_cache = true;
8985  return true;
8986  }
8987  }
8988  return _interface_mat_side_cache[tid][bnd_id];
8989 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
Cache for calculating materials on interface.

◆ needInternalNeighborSideMaterial()

bool FEProblemBase::needInternalNeighborSideMaterial ( SubdomainID  subdomain_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8992 of file FEProblemBase.C.

Referenced by FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsNeighborOnBoundary(), ComputeMaterialsObjectThread::subdomainChanged(), and ProjectMaterialProperties::subdomainChanged().

8993 {
8994  if (_block_mat_side_cache[tid].find(subdomain_id) == _block_mat_side_cache[tid].end())
8995  {
8996  _block_mat_side_cache[tid][subdomain_id] = false;
8997 
8998  for (auto & nl : _nl)
8999  if (nl->needInternalNeighborSideMaterial(subdomain_id, tid))
9000  {
9001  _block_mat_side_cache[tid][subdomain_id] = true;
9002  return true;
9003  }
9004 
9005  // TODO: these objects should be checked for whether they actually consume materials
9006  if (theWarehouse()
9007  .query()
9008  .condition<AttribThread>(tid)
9009  .condition<AttribInterfaces>(Interfaces::InternalSideUserObject |
9011  .condition<AttribSubdomains>(subdomain_id)
9012  .count() > 0)
9013  {
9014  _block_mat_side_cache[tid][subdomain_id] = true;
9015  return true;
9016  }
9017  }
9018 
9019  return _block_mat_side_cache[tid][subdomain_id];
9020 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
Cache for calculating materials on side.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needSolutionState()

void FEProblemBase::needSolutionState ( unsigned int  oldest_needed,
Moose::SolutionIterationType  iteration_type 
)
inherited

Declare that we need up to old (1) or older (2) solution states for a given type of iteration.

Parameters
oldest_neededoldest solution state needed
iteration_typethe type of iteration for which old/older states are needed

Definition at line 736 of file FEProblemBase.C.

Referenced by FEProblemBase::createTagSolutions().

737 {
738  for (auto & sys : _solver_systems)
739  sys->needSolutionState(state, iteration_type);
740  _aux->needSolutionState(state, iteration_type);
741 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ needsPreviousNewtonIteration() [1/2]

void FEProblemBase::needsPreviousNewtonIteration ( bool  state)
inherited

Set a flag that indicated that user required values for the previous Newton iterate.

Definition at line 9029 of file FEProblemBase.C.

Referenced by Coupleable::coupledGradientPreviousNL(), Coupleable::coupledNodalValuePreviousNL(), Coupleable::coupledSecondPreviousNL(), Coupleable::coupledValuePreviousNL(), and NonlinearSystem::solve().

9030 {
9032  mooseError("Previous nonlinear solution is required but not added through "
9033  "Problem/previous_nl_solution_required=true");
9034 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needsPreviousNewtonIteration() [2/2]

bool FEProblemBase::needsPreviousNewtonIteration ( ) const
inherited

Check to see whether we need to compute the variable values of the previous Newton iterate.

Returns
true if the user required values of the previous Newton iterate

Definition at line 9023 of file FEProblemBase.C.

9024 {
9026 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needToAddDefaultMultiAppFixedPointConvergence()

bool FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default fixed point convergence.

Definition at line 669 of file FEProblemBase.h.

670  {
672  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ needToAddDefaultNonlinearConvergence()

bool FEProblemBase::needToAddDefaultNonlinearConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default nonlinear convergence.

Definition at line 664 of file FEProblemBase.h.

665  {
667  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ needToAddDefaultSteadyStateConvergence()

bool FEProblemBase::needToAddDefaultSteadyStateConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default steady-state detection convergence.

Definition at line 674 of file FEProblemBase.h.

675  {
677  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ neighborSubdomainSetup()

void FEProblemBase::neighborSubdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2522 of file FEProblemBase.C.

Referenced by ThreadedFaceLoop< RangeType >::neighborSubdomainChanged().

2523 {
2524  _all_materials.neighborSubdomainSetup(subdomain, tid);
2525 }
virtual void neighborSubdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials

◆ newAssemblyArray()

void FEProblemBase::newAssemblyArray ( std::vector< std::shared_ptr< SolverSystem >> &  solver_systems)
virtualinherited

Definition at line 744 of file FEProblemBase.C.

Referenced by DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem().

745 {
746  unsigned int n_threads = libMesh::n_threads();
747 
748  _assembly.resize(n_threads);
749  for (const auto i : make_range(n_threads))
750  {
751  _assembly[i].resize(solver_systems.size());
752  for (const auto j : index_range(solver_systems))
753  _assembly[i][j] = std::make_unique<Assembly>(*solver_systems[j], i);
754  }
755 }
unsigned int n_threads()
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
auto index_range(const T &sizable)

◆ nlConverged()

bool SubProblem::nlConverged ( const unsigned int  nl_sys_num)
virtualinherited
Returns
whether the given nonlinear system nl_sys_num is converged.

Definition at line 716 of file SubProblem.C.

717 {
718  mooseAssert(nl_sys_num < numNonlinearSystems(),
719  "The nonlinear system number is higher than the number of systems we have!");
720  return solverSystemConverged(nl_sys_num);
721 }
virtual std::size_t numNonlinearSystems() const =0
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ nLinearIterations()

unsigned int FEProblemBase::nLinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6787 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6788 {
6789  return _nl[nl_sys_num]->nLinearIterations();
6790 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nlSysNum()

unsigned int FEProblemBase::nlSysNum ( const NonlinearSystemName &  nl_sys_name) const
overridevirtualinherited
Returns
the nonlinear system number corresponding to the provided nl_sys_name

Implements SubProblem.

Definition at line 6517 of file FEProblemBase.C.

Referenced by DisplacedProblem::nlSysNum().

6518 {
6519  std::istringstream ss(nl_sys_name);
6520  unsigned int nl_sys_num;
6521  if (!(ss >> nl_sys_num) || !ss.eof())
6522  nl_sys_num = libmesh_map_find(_nl_sys_name_to_num, nl_sys_name);
6523 
6524  return nl_sys_num;
6525 }
std::map< NonlinearSystemName, unsigned int > _nl_sys_name_to_num
Map from nonlinear system name to number.

◆ nNonlinearIterations()

unsigned int FEProblemBase::nNonlinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6781 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6782 {
6783  return _nl[nl_sys_num]->nNonlinearIterations();
6784 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nonlocalCouplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::nonlocalCouplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6369 of file FEProblemBase.C.

Referenced by ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

6370 {
6371  return _assembly[tid][nl_sys]->nonlocalCouplingEntries();
6372 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ nonlocalCouplingMatrix()

const libMesh::CouplingMatrix & FEProblemBase::nonlocalCouplingMatrix ( const unsigned  i) const
overridevirtualinherited
Returns
the nonlocal coupling matrix for the i'th nonlinear system

Implements SubProblem.

Definition at line 9668 of file FEProblemBase.C.

Referenced by DisplacedProblem::nonlocalCouplingMatrix().

9669 {
9670  return _nonlocal_cm[i];
9671 }
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix

◆ notifyWhenMeshChanges()

void FEProblemBase::notifyWhenMeshChanges ( MeshChangedInterface mci)
inherited

Register an object that derives from MeshChangedInterface to be notified when the mesh changes.

Definition at line 8449 of file FEProblemBase.C.

Referenced by MeshChangedInterface::MeshChangedInterface().

8450 {
8451  _notify_when_mesh_changes.push_back(mci);
8452 }
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.

◆ notifyWhenMeshDisplaces()

void FEProblemBase::notifyWhenMeshDisplaces ( MeshDisplacedInterface mdi)
inherited

Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated.

Definition at line 8455 of file FEProblemBase.C.

Referenced by MeshDisplacedInterface::MeshDisplacedInterface().

8456 {
8457  _notify_when_mesh_displaces.push_back(mdi);
8458 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ numGridSteps()

void FEProblemBase::numGridSteps ( unsigned int  num_grid_steps)
inlineinherited

Set the number of steps in a grid sequences.

Definition at line 2412 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2412 { _num_grid_steps = num_grid_steps; }
unsigned int _num_grid_steps
Number of steps in a grid sequence.

◆ numLinearSystems()

virtual std::size_t FEProblemBase::numLinearSystems ( ) const
inlineoverridevirtualinherited

◆ numMatrixTags()

virtual unsigned int SubProblem::numMatrixTags ( ) const
inlinevirtualinherited

◆ numNonlinearSystems()

virtual std::size_t FEProblemBase::numNonlinearSystems ( ) const
inlineoverridevirtualinherited

◆ numSolverSystems()

virtual std::size_t FEProblemBase::numSolverSystems ( ) const
inlineoverridevirtualinherited

◆ numVectorTags()

unsigned int SubProblem::numVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

The total number of tags, which can be limited to the tag type.

Reimplemented in DisplacedProblem.

Definition at line 195 of file SubProblem.C.

Referenced by NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeResidualInternal(), ComputeResidualThread::determineObjectWarehouses(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), MooseVariableScalar::MooseVariableScalar(), DisplacedProblem::numVectorTags(), ComputeNodalKernelBcsThread::pre(), and ComputeNodalKernelsThread::pre().

196 {
197  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
198 
199  return getVectorTags(type).size();
200 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ objectExecuteHelper()

template<typename T >
void FEProblemBase::objectExecuteHelper ( const std::vector< T *> &  objects)
staticinherited

Definition at line 3360 of file FEProblemBase.h.

3361 {
3362  for (T * obj_ptr : objects)
3363  obj_ptr->execute();
3364 }

◆ objectSetupHelper()

template<typename T >
void FEProblemBase::objectSetupHelper ( const std::vector< T *> &  objects,
const ExecFlagType exec_flag 
)
staticinherited

Helpers for calling the necessary setup/execute functions for the supplied objects.

Definition at line 3326 of file FEProblemBase.h.

3327 {
3328  if (exec_flag == EXEC_INITIAL)
3329  {
3330  for (T * obj_ptr : objects)
3331  obj_ptr->initialSetup();
3332  }
3333 
3334  else if (exec_flag == EXEC_TIMESTEP_BEGIN)
3335  {
3336  for (const auto obj_ptr : objects)
3337  obj_ptr->timestepSetup();
3338  }
3339  else if (exec_flag == EXEC_SUBDOMAIN)
3340  {
3341  for (const auto obj_ptr : objects)
3342  obj_ptr->subdomainSetup();
3343  }
3344 
3345  else if (exec_flag == EXEC_NONLINEAR)
3346  {
3347  for (const auto obj_ptr : objects)
3348  obj_ptr->jacobianSetup();
3349  }
3350 
3351  else if (exec_flag == EXEC_LINEAR)
3352  {
3353  for (const auto obj_ptr : objects)
3354  obj_ptr->residualSetup();
3355  }
3356 }
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ onlyAllowDefaultNonlinearConvergence()

virtual bool FEProblemBase::onlyAllowDefaultNonlinearConvergence ( ) const
inlinevirtualinherited

Returns true if an error will result if the user supplies 'nonlinear_convergence'.

Some problems are strongly tied to their convergence, and it does not make sense to use any convergence other than their default and additionally would be error-prone.

Reimplemented in ReferenceResidualProblem.

Definition at line 718 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

718 { return false; }

◆ onTimestepBegin()

void FEProblemBase::onTimestepBegin ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 6941 of file FEProblemBase.C.

Referenced by MFEMTransient::takeStep(), and TransientBase::takeStep().

6942 {
6943  TIME_SECTION("onTimestepBegin", 2);
6944 
6945  for (auto & nl : _nl)
6946  nl->onTimestepBegin();
6947 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ onTimestepEnd()

void FEProblemBase::onTimestepEnd ( )
overridevirtualinherited

◆ outputStep()

void FEProblemBase::outputStep ( ExecFlagType  type)
virtualinherited

Output the current step.

Will ensure that everything is in the proper state to be outputted. Then tell the OutputWarehouse to do its thing

Parameters
typeThe type execution flag (see Moose.h)

Reimplemented in DumpObjectsProblem.

Definition at line 6904 of file FEProblemBase.C.

Referenced by TransientBase::endStep(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), Eigenvalue::execute(), InversePowerMethod::init(), NonlinearEigen::init(), EigenExecutionerBase::postExecute(), TransientBase::preExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), and FixedPointSolve::solveStep().

6905 {
6906  TIME_SECTION("outputStep", 1, "Outputting");
6907 
6909 
6910  for (auto & sys : _solver_systems)
6911  sys->update();
6912  _aux->update();
6913 
6914  if (_displaced_problem)
6915  _displaced_problem->syncSolutions();
6917 
6919 }
void outputStep(ExecFlagType type)
Calls the outputStep method for each output object.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void setCurrentExecuteOnFlag(const ExecFlagType &)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
std::shared_ptr< DisplacedProblem > _displaced_problem
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482

◆ paramError()

template<typename... Args>
void MooseBase::paramError ( const std::string &  param,
Args...  args 
) const
inherited

Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseError - only printing a message using the given args.

Definition at line 439 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), AutoCheckpointAction::act(), SetupDebugAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), NEML2ModelExecutor::addGatheredParameter(), NEML2ModelExecutor::addGatheredVariable(), ADDGKernel::ADDGKernel(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), ReporterPointSource::addPoints(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ADNodalKernel::ADNodalKernel(), ADPenaltyPeriodicSegmentalConstraint::ADPenaltyPeriodicSegmentalConstraint(), ADPeriodicSegmentalConstraint::ADPeriodicSegmentalConstraint(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), AdvectiveFluxAux::AdvectiveFluxAux(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), ArrayBodyForce::ArrayBodyForce(), ArrayDGKernel::ArrayDGKernel(), ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayDirichletBC::ArrayDirichletBC(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), ArrayParsedAux::ArrayParsedAux(), ArrayPenaltyDirichletBC::ArrayPenaltyDirichletBC(), ArrayVacuumBC::ArrayVacuumBC(), ArrayVarReductionAux::ArrayVarReductionAux(), ParsedSubdomainIDsGenerator::assignElemSubdomainID(), AuxKernelTempl< Real >::AuxKernelTempl(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BlockDeletionGenerator::BlockDeletionGenerator(), BlockWeightedPartitioner::BlockWeightedPartitioner(), BoundsBase::BoundsBase(), BreakMeshByBlockGenerator::BreakMeshByBlockGenerator(), BuildArrayVariableAux::BuildArrayVariableAux(), PiecewiseTabularBase::buildFromFile(), MFEMMesh::buildMesh(), CartesianGridDivision::CartesianGridDivision(), checkComponent(), MeshGenerator::checkGetMesh(), ComponentInitialConditionInterface::checkInitialConditionsAllRequested(), BatchMeshGeneratorAction::checkInputParameterType(), PhysicsBase::checkIntegrityEarly(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), Coupleable::checkVar(), MultiAppTransfer::checkVariable(), CircularBoundaryCorrectionGenerator::CircularBoundaryCorrectionGenerator(), CircularBoundaryCorrectionGenerator::circularCenterCalculator(), MultiAppGeneralFieldTransfer::closestToPosition(), CoarsenBlockGenerator::CoarsenBlockGenerator(), CombinerGenerator::CombinerGenerator(), ComponentInitialConditionInterface::ComponentInitialConditionInterface(), ComponentMaterialPropertyInterface::ComponentMaterialPropertyInterface(), CompositionDT::CompositionDT(), FunctorAux::computeValue(), ConcentricCircleMeshGenerator::ConcentricCircleMeshGenerator(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionBCTempl< false >::ConservativeAdvectionBCTempl(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), ConstantVectorPostprocessor::ConstantVectorPostprocessor(), ContainsPointAux::ContainsPointAux(), CopyValueAux::CopyValueAux(), Coupleable::Coupleable(), CoupledForceTempl< is_ad >::CoupledForceTempl(), CoupledValueFunctionMaterialTempl< is_ad >::CoupledValueFunctionMaterialTempl(), MultiApp::createApp(), MeshGeneratorSystem::createMeshGenerator(), CylindricalGridDivision::CylindricalGridDivision(), DebugResidualAux::DebugResidualAux(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), AccumulateReporter::declareLateValues(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DGLowerDKernel::DGLowerDKernel(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementAdaptivityLevelAux::ElementAdaptivityLevelAux(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementLengthAux::ElementLengthAux(), ElementLpNormAux::ElementLpNormAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), ElementValueSampler::ElementValueSampler(), ElementVectorL2Error::ElementVectorL2Error(), EqualValueEmbeddedConstraintTempl< is_ad >::EqualValueEmbeddedConstraintTempl(), ReporterPointSource::errorCheck(), StitchMeshGeneratorBase::errorMissingBoundary(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), ExtraElementIDAux::ExtraElementIDAux(), ExtraElementIntegerDivision::ExtraElementIntegerDivision(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileMeshGenerator::FileMeshGenerator(), FillBetweenCurvesGenerator::FillBetweenCurvesGenerator(), FillBetweenSidesetsGenerator::FillBetweenSidesetsGenerator(), ReporterPointSource::fillPoint(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), InternalSideIndicatorBase::finalize(), ForcingFunctionAux::ForcingFunctionAux(), FullSolveMultiApp::FullSolveMultiApp(), FunctionArrayAux::FunctionArrayAux(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FunctorADConverterTempl< T >::FunctorADConverterTempl(), FunctorAux::FunctorAux(), FunctorBinnedValuesDivision::FunctorBinnedValuesDivision(), FunctorCoordinatesFunctionAux::FunctorCoordinatesFunctionAux(), FunctorElementalGradientAuxTempl< is_ad >::FunctorElementalGradientAuxTempl(), FunctorExtremaPositions::FunctorExtremaPositions(), FunctorIC::FunctorIC(), FunctorPositions::FunctorPositions(), FunctorVectorElementalAuxTempl< is_ad >::FunctorVectorElementalAuxTempl(), FVAdvection::FVAdvection(), FVFluxBC::FVFluxBC(), FVInterfaceKernel::FVInterfaceKernel(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), FVTwoVarContinuityConstraint::FVTwoVarContinuityConstraint(), Boundary2DDelaunayGenerator::General2DDelaunay(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), AddMetaDataGenerator::generate(), BlockToMeshConverterGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementsToTetrahedronsConverter::generate(), ExtraNodesetGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenSidesetsGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BlockDeletionGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BoundaryElementConversionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), SideSetsFromNodeSetsGenerator::generate(), CombinerGenerator::generate(), AdvancedExtruderGenerator::generate(), BreakMeshByElementGenerator::generate(), CircularBoundaryCorrectionGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedCurveGenerator::generate(), ParsedExtraElementIDGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CutMeshByLevelSetGeneratorBase::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), PatternedMeshGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), GeneratedMeshGenerator::GeneratedMeshGenerator(), GenericConstantStdVectorMaterialTempl< is_ad >::GenericConstantStdVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), PropertyReadFile::getBlockData(), ComponentBoundaryConditionInterface::getBoundaryCondition(), MultiApp::getCommandLineArgs(), PropertyReadFile::getData(), PropertyReadFile::getFileNames(), Sampler::getGlobalSamples(), ComponentInitialConditionInterface::getInitialCondition(), NEML2Action::getInputParameterMapping(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), Sampler::getLocalSamples(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), Sampler::getNextLocalRow(), FEProblemSolve::getParamFromNonlinearSystemVectorParam(), PostprocessorInterface::getPostprocessorNameInternal(), PostprocessorInterface::getPostprocessorValueInternal(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), UserObjectInterface::getUserObjectBase(), UserObjectInterface::getUserObjectName(), HFEMDirichletBC::HFEMDirichletBC(), AddVariableAction::init(), MultiApp::init(), DistributedPositions::initialize(), BlockWeightedPartitioner::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), PhysicsBase::initializePhysics(), JSONOutput::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), SideFVFluxBCIntegral::initialSetup(), MultiAppVariableValueSamplePostprocessorTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), HistogramVectorPostprocessor::initialSetup(), ReferenceResidualConvergence::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), LibtorchControlValuePostprocessor::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), ElementSubdomainModifierBase::initialSetup(), SampledOutput::initSample(), AddMetaDataGenerator::inputChecker(), IntegratedBC::IntegratedBC(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceValueUserObjectAux::InterfaceValueUserObjectAux(), InternalSideIndicatorBase::InternalSideIndicatorBase(), InterpolatedStatefulMaterialTempl< T >::InterpolatedStatefulMaterialTempl(), InversePowerMethod::InversePowerMethod(), IterationAdaptiveDT::IterationAdaptiveDT(), MultiApp::keepSolutionDuringRestore(), Kernel::Kernel(), KokkosBoundNodalKernel< KokkosUpperBoundNodalKernel >::KokkosBoundNodalKernel(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationFunction::LinearCombinationFunction(), LinearFVAdvectionDiffusionFunctorRobinBC::LinearFVAdvectionDiffusionFunctorRobinBC(), LowerDIntegratedBC::LowerDIntegratedBC(), PNGOutput::makeMeshFunc(), MatCoupledForce::MatCoupledForce(), MaterialADConverterTempl< T >::MaterialADConverterTempl(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MatrixSymmetryCheck::MatrixSymmetryCheck(), PatternedMeshGenerator::mergeSubdomainNameMaps(), MeshCollectionGenerator::MeshCollectionGenerator(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshDivisionAux::MeshDivisionAux(), MeshGenerator::MeshGenerator(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMGenericFunctorMaterial::MFEMGenericFunctorMaterial(), MFEMGenericFunctorVectorMaterial::MFEMGenericFunctorVectorMaterial(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), UserObjectInterface::mooseObjectError(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MortarConstraintBase::MortarConstraintBase(), MortarNodalAuxKernelTempl< ComputeValueType >::MortarNodalAuxKernelTempl(), MultiApp::moveApp(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorToAuxScalarTransfer::MultiAppPostprocessorToAuxScalarTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppProjectionTransfer::MultiAppProjectionTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppScalarToAuxScalarTransfer::MultiAppScalarToAuxScalarTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiAppVectorPostprocessorTransfer::MultiAppVectorPostprocessorTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NearestNodeValueAux::NearestNodeValueAux(), NEML2Action::NEML2Action(), NestedDivision::NestedDivision(), NodalBC::NodalBC(), NodalEqualValueConstraint::NodalEqualValueConstraint(), NodalKernel::NodalKernel(), NodalPatchRecoveryAux::NodalPatchRecoveryAux(), NodalValueSampler::NodalValueSampler(), Output::Output(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), ParsedPostprocessor::ParsedPostprocessor(), PatternedMeshGenerator::PatternedMeshGenerator(), PenaltyPeriodicSegmentalConstraint::PenaltyPeriodicSegmentalConstraint(), PeriodicSegmentalConstraint::PeriodicSegmentalConstraint(), PIDTransientControl::PIDTransientControl(), PlaneDeletionGenerator::PlaneDeletionGenerator(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), PolyLineMeshGenerator::PolyLineMeshGenerator(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessor(), LibmeshPartitioner::prepareBlocksForSubdomainPartitioner(), ProjectedMaterialPropertyNodalPatchRecoveryAux::ProjectedMaterialPropertyNodalPatchRecoveryAux(), ProjectionAux::ProjectionAux(), PropertyReadFile::PropertyReadFile(), RandomIC::RandomIC(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readXda(), ReferenceResidualConvergence::ReferenceResidualConvergence(), RefineBlockGenerator::RefineBlockGenerator(), RefineSidesetGenerator::RefineSidesetGenerator(), RenameBlockGenerator::RenameBlockGenerator(), RenameBoundaryGenerator::RenameBoundaryGenerator(), ReporterPointSource::ReporterPointSource(), FEProblemBase::restoreSolutions(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), FEProblemBase::setLinearConvergenceNames(), FEProblemBase::setNonlinearConvergenceNames(), MooseMesh::setPartitioner(), NodeSetsGeneratorBase::setup(), SideSetsGeneratorBase::setup(), NEML2Action::setupDerivativeMappings(), NEML2Action::setupParameterDerivativeMappings(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), SideValueSampler::SideValueSampler(), SingleRankPartitioner::SingleRankPartitioner(), SphericalGridDivision::SphericalGridDivision(), StitchBoundaryMeshGenerator::StitchBoundaryMeshGenerator(), StitchMeshGenerator::StitchMeshGenerator(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TagVectorAux::TagVectorAux(), Terminator::Terminator(), TimeDerivativeAux::TimeDerivativeAux(), Transfer::Transfer(), TransformGenerator::TransformGenerator(), TransientMultiApp::TransientMultiApp(), ParsedCurveGenerator::tSectionSpaceDefiner(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), TimeSequenceStepperBase::updateSequence(), UserObject::UserObject(), Checkpoint::validateExecuteOn(), ParsedAux::validateGenericVectorNames(), ParsedMaterialBase::validateVectorNames(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VolumeAux::VolumeAux(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), XYMeshLineCutter::XYMeshLineCutter(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

440 {
441  _pars.paramError(param, std::forward<Args>(args)...);
442 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...

◆ parameters()

const InputParameters& MooseBase::parameters ( ) const
inlineinherited

Get the parameters of the object.

Returns
The parameters of the object

Definition at line 131 of file MooseBase.h.

Referenced by MeshOnlyAction::act(), SplitMeshAction::act(), SetupDebugAction::act(), AddActionComponentAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::addAnyRedistributers(), MFEMProblem::addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), MFEMProblem::addAuxVariable(), DisplacedProblem::addAuxVariable(), MFEMProblem::addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::addDefaultSteadyStateConvergence(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), MFEMProblem::addFESpace(), MFEMProblem::addFunction(), FEProblemBase::addFunction(), MFEMProblem::addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), MFEMProblem::addGridFunction(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), MFEMProblem::addInitialCondition(), FEProblemBase::addInitialCondition(), DiffusionPhysicsBase::addInitialConditions(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), MFEMProblem::addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), addLineSearch(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMeshDivision(), MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), MFEMProblem::addPostprocessor(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), MFEMProblem::addSubMesh(), FEProblemBase::addTimeIntegrator(), MFEMProblem::addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), MFEMProblem::addVariable(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), AdvancedOutput::AdvancedOutput(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), Action::associateWithParameter(), AuxKernelTempl< Real >::AuxKernelTempl(), AuxScalarKernel::AuxScalarKernel(), BoundsBase::BoundsBase(), MooseMesh::buildTypedMesh(), PostprocessorInterface::checkParam(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), SampledOutput::cloneMesh(), LibtorchNeuralNetControl::conditionalParameterError(), Console::Console(), CommonOutputAction::create(), MultiApp::createApp(), Postprocessor::declareValue(), DumpObjectsProblem::deduceNecessaryParameters(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DumpObjectsProblem::dumpObjectHelper(), DumpObjectsProblem::DumpObjectsProblem(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementMaterialSampler::ElementMaterialSampler(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), Executor::Executor(), Exodus::Exodus(), ElementSubdomainModifierBase::extrapolatePolynomial(), FEProblem(), FixedPointSolve::FixedPointSolve(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), GapValueAux::GapValueAux(), ParsedSubdomainGeneratorBase::generate(), ActionWarehouse::getCurrentActionName(), ExecutorInterface::getExecutor(), Material::getMaterial(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorInterface::getVectorPostprocessorName(), GhostingUserObject::GhostingUserObject(), MeshGeneratorSystem::hasDataDrivenAllowed(), AttribSystem::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), FullSolveMultiApp::initialSetup(), FEProblemBase::initNullSpaceVectors(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MooseObject::isKokkosObject(), isValid(), IterationAdaptiveDT::IterationAdaptiveDT(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MFEMCGSolver::MFEMCGSolver(), MFEMGMRESSolver::MFEMGMRESSolver(), MFEMHypreADS::MFEMHypreADS(), MFEMHypreAMS::MFEMHypreAMS(), MFEMHypreBoomerAMG::MFEMHypreBoomerAMG(), MFEMHypreFGMRES::MFEMHypreFGMRES(), MFEMHypreGMRES::MFEMHypreGMRES(), MFEMHyprePCG::MFEMHyprePCG(), MFEMOperatorJacobiSmoother::MFEMOperatorJacobiSmoother(), MFEMSuperLU::MFEMSuperLU(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiApp::MultiApp(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NodeFaceConstraint::NodeFaceConstraint(), ConsoleUtils::outputLegacyInformation(), OverlayMeshGenerator::OverlayMeshGenerator(), MooseServer::parseDocumentForDiagnostics(), PenetrationAux::PenetrationAux(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), NEML2Action::printSummary(), ProjectedStatefulMaterialStorageAction::processProperty(), PropertyReadFile::PropertyReadFile(), PseudoTimestep::PseudoTimestep(), RandomIC::RandomIC(), ReferenceResidualConvergence::ReferenceResidualConvergence(), InputParameterWarehouse::removeInputParameters(), setInputParametersFEProblem(), FEProblemBase::setInputParametersFEProblem(), FEProblemBase::setResidualObjectParamsAndLog(), SideSetsGeneratorBase::setup(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), Moose::PetscSupport::storePetscOptions(), DumpObjectsProblem::stringifyParameters(), TaggingInterface::TaggingInterface(), Transfer::Transfer(), TransientBase::TransientBase(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), and MooseApp::~MooseApp().

131 { return _pars; }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366

◆ paramInfo()

template<typename... Args>
void MooseBase::paramInfo ( const std::string &  param,
Args...  args 
) const
inherited

Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseInfo - only printing a message using the given args.

Definition at line 453 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), ComboMarker::ComboMarker(), Control::Control(), FunctorIC::FunctorIC(), and TransientMultiApp::TransientMultiApp().

454 {
455  mooseInfo(_pars.paramMessage(param, std::forward<Args>(args)...));
456 }
std::string paramMessage(const std::string &param, Args... args) const
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:321
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366

◆ paramWarning()

template<typename... Args>
void MooseBase::paramWarning ( const std::string &  param,
Args...  args 
) const
inherited

Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseWarning - only printing a message using the given args.

Definition at line 446 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), EigenProblem::checkProblemIntegrity(), CombinerGenerator::copyIntoMesh(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), MultiAppNearestNodeTransfer::execute(), FEProblemSolve::FEProblemSolve(), UniqueExtraIDMeshGenerator::generate(), PlaneIDMeshGenerator::generate(), Terminator::initialSetup(), SampledOutput::initSample(), MooseMesh::MooseMesh(), FEProblemBase::setPreserveMatrixSparsityPattern(), and Terminator::Terminator().

447 {
448  mooseWarning(_pars.paramMessage(param, std::forward<Args>(args)...));
449 }
std::string paramMessage(const std::string &param, Args... args) const
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299

◆ parentOutputPositionChanged()

void FEProblemBase::parentOutputPositionChanged ( )
inherited

Calls parentOutputPositionChanged() on all sub apps.

Definition at line 4661 of file FEProblemBase.C.

Referenced by TransientBase::parentOutputPositionChanged().

4662 {
4663  for (const auto & it : _multi_apps)
4664  {
4665  const auto & objects = it.second.getActiveObjects();
4666  for (const auto & obj : objects)
4667  obj->parentOutputPositionChanged();
4668  }
4669 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:173

◆ petscOptionsDatabase()

PetscOptions& FEProblemBase::petscOptionsDatabase ( )
inlineinherited

Definition at line 2330 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2330 { return _petsc_option_data_base; }
PetscOptions _petsc_option_data_base

◆ petscOptionsInserted()

bool& FEProblemBase::petscOptionsInserted ( )
inlineinherited

If PETSc options are already inserted.

Definition at line 2327 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2327 { return _is_petsc_options_inserted; }
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.

◆ possiblyRebuildGeomSearchPatches()

void FEProblemBase::possiblyRebuildGeomSearchPatches ( )
virtualinherited

Definition at line 8076 of file FEProblemBase.C.

Referenced by FEProblemBase::solve().

8077 {
8078  if (_displaced_problem) // Only need to do this if things are moving...
8079  {
8080  TIME_SECTION("possiblyRebuildGeomSearchPatches", 5, "Rebuilding Geometric Search Patches");
8081 
8082  switch (_mesh.getPatchUpdateStrategy())
8083  {
8084  case Moose::Never:
8085  break;
8086  case Moose::Iteration:
8087  // Update the list of ghosted elements at the start of the time step
8090 
8091  _displaced_problem->geomSearchData().updateGhostedElems();
8093 
8094  // The commands below ensure that the sparsity of the Jacobian matrix is
8095  // augmented at the start of the time step using neighbor nodes from the end
8096  // of the previous time step.
8097 
8099 
8100  // This is needed to reinitialize PETSc output
8102 
8103  break;
8104 
8105  case Moose::Auto:
8106  {
8107  Real max = _displaced_problem->geomSearchData().maxPatchPercentage();
8109 
8110  // If we haven't moved very far through the patch
8111  if (max < 0.4)
8112  break;
8113  }
8114  libmesh_fallthrough();
8115 
8116  // Let this fall through if things do need to be updated...
8117  case Moose::Always:
8118  // Flush output here to see the message before the reinitialization, which could take a
8119  // while
8120  _console << "\n\nUpdating geometric search patches\n" << std::endl;
8121 
8124 
8125  _displaced_problem->geomSearchData().clearNearestNodeLocators();
8127 
8129 
8130  // This is needed to reinitialize PETSc output
8132  }
8133  }
8134 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
auto max(const L &left, const R &right)
void updateGhostedElems()
Updates the list of ghosted elements at the start of each time step for the nonlinear iteration patch...
MooseMesh & _mesh
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:966
void max(const T &r, T &o, Request &req) const
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
const Moose::PatchUpdateType & getPatchUpdateStrategy() const
Get the current patch update strategy.
Definition: MooseMesh.C:3453
void clearNearestNodeLocators()
Clear out the Penetration Locators so they will redo the search.
MooseMesh * _displaced_mesh

◆ postExecute()

void FEProblemBase::postExecute ( )
virtualinherited

Method called at the end of the simulation.

Definition at line 5679 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5680 {
5681  const auto & multi_apps = _multi_apps.getActiveObjects();
5682 
5683  for (const auto & multi_app : multi_apps)
5684  multi_app->postExecute();
5685 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ predictorCleanup()

void FEProblemBase::predictorCleanup ( NumericVector< libMesh::Number > &  ghosted_solution)
virtualinherited

Perform cleanup tasks after application of predictor to solution vector.

Parameters
ghosted_solutionGhosted solution vector

Definition at line 7983 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::setInitialSolution().

7984 {
7985 }

◆ prepare() [1/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ prepare() [2/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
unsigned int  ivar,
unsigned int  jvar,
const std::vector< dof_id_type > &  dof_indices,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ prepareAssembly()

void FEProblemBase::prepareAssembly ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1847 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), NonlinearSystemBase::reinitNodeFace(), and NonlinearSystemBase::setConstraintSecondaryValues().

1848 {
1849  _assembly[tid][_current_nl_sys->number()]->prepare();
1851  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
1852 
1854  {
1855  _displaced_problem->prepareAssembly(tid);
1857  _displaced_problem->prepareNonlocal(tid);
1858  }
1859 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ prepareFace()

void FEProblemBase::prepareFace ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1761 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onInterface(), and ComputeUserObjectsThread::onInternalSide().

1762 {
1763  for (auto & nl : _nl)
1764  nl->prepareFace(tid, true);
1765  _aux->prepareFace(tid, false);
1766 
1768  _displaced_problem->prepareFace(_displaced_mesh->elemPtr(elem->id()), tid);
1769 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ prepareFaceShapes()

void FEProblemBase::prepareFaceShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2106 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary().

2107 {
2108  _assembly[tid][_current_nl_sys->number()]->copyFaceShapes(var);
2109 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ prepareKokkosMaterials()

void FEProblemBase::prepareKokkosMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props)
inherited

◆ prepareMaterials()

void FEProblemBase::prepareMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props,
const SubdomainID  blk_id,
const THREAD_ID  tid 
)
inherited

Add the MooseVariables and the material properties that the current materials depend on to the dependency list.

Parameters
consumer_needed_mat_propsThe material properties needed by consumer objects (other than the materials themselves)
blk_idThe subdomain ID for which we are preparing our list of needed vars and props
tidThe thread ID we are preparing the requirements for

This MUST be done after the moose variable dependency list has been set for all the other objects using the setActiveElementalMooseVariables API!

Definition at line 4104 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

4107 {
4108  std::set<MooseVariableFEBase *> needed_moose_vars;
4109  std::unordered_set<unsigned int> needed_mat_props;
4110 
4111  if (_all_materials.hasActiveBlockObjects(blk_id, tid))
4112  {
4113  _all_materials.updateVariableDependency(needed_moose_vars, tid);
4114  _all_materials.updateBlockMatPropDependency(blk_id, needed_mat_props, tid);
4115  }
4116 
4117  const auto & ids = _mesh.getSubdomainBoundaryIds(blk_id);
4118  for (const auto id : ids)
4119  {
4120  _materials.updateBoundaryVariableDependency(id, needed_moose_vars, tid);
4121  _materials.updateBoundaryMatPropDependency(id, needed_mat_props, tid);
4122  }
4123 
4124  const auto & current_active_elemental_moose_variables = getActiveElementalMooseVariables(tid);
4125  needed_moose_vars.insert(current_active_elemental_moose_variables.begin(),
4126  current_active_elemental_moose_variables.end());
4127 
4128  needed_mat_props.insert(consumer_needed_mat_props.begin(), consumer_needed_mat_props.end());
4129 
4130  setActiveElementalMooseVariables(needed_moose_vars, tid);
4131  setActiveMaterialProperties(needed_mat_props, tid);
4132 }
void updateVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
Update variable dependency vector.
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::set< BoundaryID > & getSubdomainBoundaryIds(const SubdomainID subdomain_id) const
Get the list of boundary ids associated with the given subdomain id.
Definition: MooseMesh.C:3537
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
Set the MOOSE variables to be reinited on each element.
MooseMesh & _mesh
void updateBoundaryMatPropDependency(std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBlockMatPropDependency(SubdomainID id, std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBoundaryVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
MaterialWarehouse _all_materials
MaterialWarehouse _materials

◆ prepareNeighborShapes()

void FEProblemBase::prepareNeighborShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2112 of file FEProblemBase.C.

2113 {
2114  _assembly[tid][_current_nl_sys->number()]->copyNeighborShapes(var);
2115 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preparePRefinement()

void SubProblem::preparePRefinement ( )
inherited

Prepare DofMap and Assembly classes with our p-refinement information.

Definition at line 1332 of file SubProblem.C.

Referenced by FEProblemBase::init().

1333 {
1334  std::unordered_set<FEFamily> disable_families;
1335  for (const auto & [family, flag] : _family_for_p_refinement)
1336  if (flag)
1337  disable_families.insert(family);
1338 
1339  for (const auto tid : make_range(libMesh::n_threads()))
1340  for (const auto s : make_range(numNonlinearSystems()))
1341  assembly(tid, s).havePRefinement(disable_families);
1342 
1343  auto & eq = es();
1344  for (const auto family : disable_families)
1345  for (const auto i : make_range(eq.n_systems()))
1346  {
1347  auto & system = eq.get_system(i);
1348  auto & dof_map = system.get_dof_map();
1349  for (const auto vg : make_range(system.n_variable_groups()))
1350  {
1351  const auto & var_group = system.variable_group(vg);
1352  if (var_group.type().family == family)
1353  dof_map.should_p_refine(vg, false);
1354  }
1355  }
1356 
1357  _have_p_refinement = true;
1358 }
unsigned int n_threads()
virtual libMesh::EquationSystems & es()=0
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
void havePRefinement(const std::unordered_set< FEFamily > &disable_p_refinement_for_families)
Indicate that we have p-refinement.
Definition: Assembly.C:4859
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ prepareShapes()

void FEProblemBase::prepareShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2100 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onElement().

2101 {
2102  _assembly[tid][_current_nl_sys->number()]->copyShapes(var);
2103 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preserveMatrixSparsityPattern()

bool FEProblemBase::preserveMatrixSparsityPattern ( ) const
inlineinherited

Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve.

This is usually the Jacobian.

Definition at line 2148 of file FEProblemBase.h.

bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...

◆ projectFunctionOnCustomRange()

void FEProblemBase::projectFunctionOnCustomRange ( ConstElemRange elem_range,
Number(*)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &)  func,
Gradient(*)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &)  func_grad,
const libMesh::Parameters params,
const VariableName &  target_var 
)
inherited

Project a function onto a range of elements for a given variable.

Warning
The current implementation is not ideal. The projection takes place on all local active elements, ignoring the specified elem_range. After the projection, dof values on the specified elem_range are copied over to the current solution vector. This should be fixed once the project_vector or project_solution API is modified to take a custom element range.
Parameters
elem_rangeElement range to project on
funcFunction to project
func_gradGradient of the function
paramsParameters to pass to the function
target_varvariable name to project

Definition at line 3804 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::extrapolatePolynomial().

3815 {
3816  mooseAssert(!Threads::in_threads,
3817  "We're performing a projection based on data from just the thread 0 variable, so any "
3818  "modifications to the variable solution must have been thread joined already");
3819 
3820  const auto & var = getStandardVariable(0, target_var);
3821  const auto var_num = var.number();
3822  const auto sn = systemNumForVariable(target_var);
3823  auto & sys = getSystemBase(sn);
3824 
3825  // Let libmesh handle the projection
3826  System & libmesh_sys = getSystem(target_var);
3827  auto temp_vec = libmesh_sys.current_local_solution->zero_clone();
3828  libmesh_sys.project_vector(func, func_grad, params, *temp_vec);
3829  temp_vec->close();
3830 
3831  // Get the dof indices to copy
3832  DofMap & dof_map = sys.dofMap();
3833  std::set<dof_id_type> dof_indices;
3834  std::vector<dof_id_type> elem_dof_indices;
3835 
3836  for (const auto & elem : elem_range)
3837  {
3838  dof_map.dof_indices(elem, elem_dof_indices, var_num);
3839  dof_indices.insert(elem_dof_indices.begin(), elem_dof_indices.end());
3840  }
3841  std::vector<dof_id_type> dof_indices_v(dof_indices.begin(), dof_indices.end());
3842 
3843  // Copy the projected values into the solution vector
3844  std::vector<Real> dof_vals;
3845  temp_vec->get(dof_indices_v, dof_vals);
3846  mooseAssert(sys.solution().closed(),
3847  "The solution should be closed before mapping our projection");
3848  sys.solution().insert(dof_vals, dof_indices_v);
3849  sys.solution().close();
3850  sys.solution().localize(*libmesh_sys.current_local_solution, sys.dofMap().get_send_list());
3851 }
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
unsigned int systemNumForVariable(const VariableName &variable_name) const
virtual MooseVariable & getStandardVariable(const THREAD_ID tid, const std::string &var_name) override
Returns the variable reference for requested MooseVariable which may be in any system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::unique_ptr< NumericVector< Number > > current_local_solution
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const

◆ projectInitialConditionOnCustomRange()

void FEProblemBase::projectInitialConditionOnCustomRange ( libMesh::ConstElemRange elem_range,
ConstBndNodeRange bnd_node_range,
const std::optional< std::set< VariableName >> &  target_vars = std::nullopt 
)
inherited

Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Parameters
elem_rangeElement range to project on
bnd_node_rangeBoundary node range to project on
target_varsSet of variable names to project ICs

Definition at line 3729 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::applyIC(), and ActivateElementsUserObjectBase::initSolutions().

3733 {
3734  if (target_vars)
3735  {
3736  ComputeInitialConditionThread cic(*this, &(*target_vars));
3737  Threads::parallel_reduce(elem_range, cic);
3738  }
3739  else
3740  {
3741  ComputeInitialConditionThread cic(*this);
3742  Threads::parallel_reduce(elem_range, cic);
3743  }
3744 
3745  // Need to close the solution vector here so that boundary ICs take precendence
3746  for (auto & nl : _nl)
3747  nl->solution().close();
3748  _aux->solution().close();
3749 
3750  if (target_vars)
3751  {
3752  ComputeBoundaryInitialConditionThread cbic(*this, &(*target_vars));
3753  Threads::parallel_reduce(bnd_nodes, cbic);
3754  }
3755  else
3756  {
3758  Threads::parallel_reduce(bnd_nodes, cbic);
3759  }
3760 
3761  for (auto & nl : _nl)
3762  nl->solution().close();
3763  _aux->solution().close();
3764 
3765  // Also, load values into the SCALAR dofs
3766  // Note: We assume that all SCALAR dofs are on the
3767  // processor with highest ID
3768  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3769  {
3770  const auto & ics = _scalar_ics.getActiveObjects();
3771  for (const auto & ic : ics)
3772  {
3773  MooseVariableScalar & var = ic->variable();
3774 
3775  if (target_vars && !target_vars->count(var.name()))
3776  continue;
3777 
3778  var.reinit();
3779 
3780  DenseVector<Number> vals(var.order());
3781  ic->compute(vals);
3782 
3783  const unsigned int n_scalar_dofs = var.dofIndices().size();
3784  for (unsigned int i = 0; i < n_scalar_dofs; i++)
3785  {
3786  const auto global_index = var.dofIndices()[i];
3787  var.sys().solution().set(global_index, vals(i));
3788  var.setValue(i, vals(i));
3789  }
3790  }
3791  }
3792 
3793  for (auto & nl : _nl)
3794  {
3795  nl->solution().close();
3796  nl->solution().localize(*nl->system().current_local_solution, nl->dofMap().get_send_list());
3797  }
3798 
3799  _aux->solution().close();
3800  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3801 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
Class for scalar variables (they are different).
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.

◆ projectSolution()

void FEProblemBase::projectSolution ( )
inherited

Definition at line 3661 of file FEProblemBase.C.

Referenced by FEProblemBase::initialAdaptMesh(), and FEProblemBase::initialSetup().

3662 {
3663  TIME_SECTION("projectSolution", 2, "Projecting Initial Solutions")
3664 
3665  FloatingPointExceptionGuard fpe_guard(_app);
3666 
3667  ConstElemRange & elem_range = *_mesh.getActiveLocalElementRange();
3668  ComputeInitialConditionThread cic(*this);
3669  Threads::parallel_reduce(elem_range, cic);
3670 
3671  if (haveFV())
3672  {
3674  ElemInfoRange elem_info_range(_mesh.ownedElemInfoBegin(), _mesh.ownedElemInfoEnd());
3675 
3676  ComputeFVInitialConditionThread cfvic(*this);
3677  Threads::parallel_reduce(elem_info_range, cfvic);
3678  }
3679 
3680  // Need to close the solution vector here so that boundary ICs take precendence
3681  for (auto & nl : _nl)
3682  nl->solution().close();
3683  _aux->solution().close();
3684 
3685  // now run boundary-restricted initial conditions
3686  ConstBndNodeRange & bnd_nodes = *_mesh.getBoundaryNodeRange();
3688  Threads::parallel_reduce(bnd_nodes, cbic);
3689 
3690  for (auto & nl : _nl)
3691  nl->solution().close();
3692  _aux->solution().close();
3693 
3694  // Also, load values into the SCALAR dofs
3695  // Note: We assume that all SCALAR dofs are on the
3696  // processor with highest ID
3697  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3698  {
3699  const auto & ics = _scalar_ics.getActiveObjects();
3700  for (const auto & ic : ics)
3701  {
3702  MooseVariableScalar & var = ic->variable();
3703  var.reinit();
3704 
3705  DenseVector<Number> vals(var.order());
3706  ic->compute(vals);
3707 
3708  const unsigned int n_scalar_dofs = var.dofIndices().size();
3709  for (unsigned int i = 0; i < n_scalar_dofs; i++)
3710  {
3711  const auto global_index = var.dofIndices()[i];
3712  var.sys().solution().set(global_index, vals(i));
3713  var.setValue(i, vals(i));
3714  }
3715  }
3716  }
3717 
3718  for (auto & sys : _solver_systems)
3719  {
3720  sys->solution().close();
3721  sys->solution().localize(*sys->system().current_local_solution, sys->dofMap().get_send_list());
3722  }
3723 
3724  _aux->solution().close();
3725  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3726 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Scope guard for starting and stopping Floating Point Exception Trapping.
elem_info_iterator ownedElemInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1566
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
MooseMesh & _mesh
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
if(!dmm->_nl) SETERRQ(PETSC_COMM_WORLD
Class for scalar variables (they are different).
elem_info_iterator ownedElemInfoEnd()
Definition: MooseMesh.C:1574
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1327

◆ queryParam()

template<typename T >
const T * MooseBase::queryParam ( const std::string &  name) const
inherited

Query a parameter for the object.

If the parameter is not valid, nullptr will be returned

Parameters
nameThe name of the parameter
Returns
A pointer to the parameter value, if it exists

Definition at line 395 of file MooseBase.h.

396 {
397  return isParamValid(name) ? &getParam<T>(name) : nullptr;
398 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:199

◆ registerRandomInterface()

void FEProblemBase::registerRandomInterface ( RandomInterface random_interface,
const std::string &  name 
)
inherited

Definition at line 8906 of file FEProblemBase.C.

Referenced by RandomInterface::setRandomResetFrequency().

8907 {
8908  auto insert_pair = moose_try_emplace(
8909  _random_data_objects, name, std::make_unique<RandomData>(*this, random_interface));
8910 
8911  auto random_data_ptr = insert_pair.first->second.get();
8912  random_interface.setRandomDataPointer(random_data_ptr);
8913 }
std::pair< typename M::iterator, bool > moose_try_emplace(M &m, const typename M::key_type &k, Args &&... args)
Function to mirror the behavior of the C++17 std::map::try_emplace() method (no hint).
Definition: Moose.h:98
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
void setRandomDataPointer(RandomData *random_data)

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerUnfilledFunctorRequest()

template<typename T >
void SubProblem::registerUnfilledFunctorRequest ( T *  functor_interface,
const std::string &  functor_name,
const THREAD_ID  tid 
)
inherited

Register an unfulfilled functor request.

◆ reinitBecauseOfGhostingOrNewGeomObjects()

void FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects ( bool  mortar_changed = false)
protectedinherited

Call when it is possible that the needs for ghosted elements has changed.

Parameters
mortar_changedWhether an update of mortar data has been requested since the last EquationSystems (re)initialization

Definition at line 5315 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), and FEProblemBase::possiblyRebuildGeomSearchPatches().

5316 {
5317  TIME_SECTION("reinitBecauseOfGhostingOrNewGeomObjects",
5318  3,
5319  "Reinitializing Because of Geometric Search Objects");
5320 
5321  // Need to see if _any_ processor has ghosted elems or geometry objects.
5322  bool needs_reinit = !_ghosted_elems.empty();
5323  needs_reinit = needs_reinit || !_geometric_search_data._nearest_node_locators.empty() ||
5324  (_mortar_data.hasObjects() && mortar_changed);
5325  needs_reinit =
5326  needs_reinit || (_displaced_problem &&
5327  (!_displaced_problem->geomSearchData()._nearest_node_locators.empty() ||
5328  (_mortar_data.hasDisplacedObjects() && mortar_changed)));
5329  _communicator.max(needs_reinit);
5330 
5331  if (needs_reinit)
5332  {
5333  // Call reinit to get the ghosted vectors correct now that some geometric search has been done
5334  es().reinit();
5335 
5336  if (_displaced_mesh)
5337  _displaced_problem->es().reinit();
5338  }
5339 }
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
bool hasObjects() const
Returns whether we have any active AutomaticMortarGeneration objects.
Definition: MortarData.h:104
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
void max(const T &r, T &o, Request &req) const
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
MooseMesh * _displaced_mesh

◆ reinitDirac()

bool FEProblemBase::reinitDirac ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Returns true if the Problem has Dirac kernels it needs to compute on elem.

The maximum number of qps can rise if several Dirac points are added to a single element. In that case we need to resize the zeros to compensate.

Implements SubProblem.

Definition at line 2151 of file FEProblemBase.C.

Referenced by ComputeDiracThread::onElement().

2152 {
2153  std::vector<Point> & points = _dirac_kernel_info.getPoints()[elem].first;
2154 
2155  unsigned int n_points = points.size();
2156 
2157  if (n_points)
2158  {
2159  if (n_points > _max_qps)
2160  {
2161  _max_qps = n_points;
2162 
2167  unsigned int max_qpts = getMaxQps();
2168  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
2169  {
2170  // the highest available order in libMesh is 43
2171  _scalar_zero[tid].resize(FORTYTHIRD, 0);
2172  _zero[tid].resize(max_qpts, 0);
2173  _grad_zero[tid].resize(max_qpts, RealGradient(0.));
2174  _second_zero[tid].resize(max_qpts, RealTensor(0.));
2175  _vector_zero[tid].resize(max_qpts, RealGradient(0.));
2176  _vector_curl_zero[tid].resize(max_qpts, RealGradient(0.));
2177  }
2178  }
2179 
2180  for (const auto i : index_range(_nl))
2181  {
2182  _assembly[tid][i]->reinitAtPhysical(elem, points);
2183  _nl[i]->prepare(tid);
2184  }
2185  _aux->prepare(tid);
2186 
2187  reinitElem(elem, tid);
2188  }
2189 
2190  _assembly[tid][_current_nl_sys->number()]->prepare();
2192  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
2193 
2194  bool have_points = n_points > 0;
2196  {
2197  have_points |= _displaced_problem->reinitDirac(_displaced_mesh->elemPtr(elem->id()), tid);
2199  _displaced_problem->prepareNonlocal(tid);
2200  }
2201 
2202  return have_points;
2203 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
unsigned int n_threads()
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< VariableSecond > _second_zero
std::vector< VectorVariableCurl > _vector_curl_zero
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MultiPointMap & getPoints()
Returns a writeable reference to the _points container.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::vector< VariableGradient > _grad_zero
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< VectorVariableValue > _vector_zero
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh
unsigned int getMaxQps() const

◆ reinitElem()

void FEProblemBase::reinitElem ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2206 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeElemDampingThread::onElement(), ComputeIndicatorThread::onElement(), ComputeMaterialsObjectThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeInitialConditionThread::operator()(), FEProblemBase::reinitDirac(), and FEProblemBase::reinitElemPhys().

2207 {
2208  for (auto & sys : _solver_systems)
2209  sys->reinitElem(elem, tid);
2210  _aux->reinitElem(elem, tid);
2211 
2213  _displaced_problem->reinitElem(_displaced_mesh->elemPtr(elem->id()), tid);
2214 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemFace() [1/2]

void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
BoundaryID  ,
const THREAD_ID  tid 
)
inherited

◆ reinitElemFace() [2/2]

virtual void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitElemFaceRef()

void FEProblemBase::reinitElemFaceRef ( const Elem elem,
unsigned int  side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9253 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9259 {
9260  SubProblem::reinitElemFaceRef(elem, side, tolerance, pts, weights, tid);
9261 
9262  if (_displaced_problem)
9263  _displaced_problem->reinitElemFaceRef(
9264  _displaced_mesh->elemPtr(elem->id()), side, tolerance, pts, weights, tid);
9265 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
dof_id_type id() const
virtual void reinitElemFaceRef(const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given element on a given side at a given set of reference points and the...
Definition: SubProblem.C:882
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemNeighborAndLowerD()

void FEProblemBase::reinitElemNeighborAndLowerD ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2392 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInternalSide(), and NonlinearThread::onInternalSide().

2395 {
2396  reinitNeighbor(elem, side, tid);
2397 
2398  const Elem * lower_d_elem = _mesh.getLowerDElem(elem, side);
2399  if (lower_d_elem && _mesh.interiorLowerDBlocks().count(lower_d_elem->subdomain_id()) > 0)
2400  reinitLowerDElem(lower_d_elem, tid);
2401  else
2402  {
2403  // with mesh refinement, lower-dimensional element might be defined on neighbor side
2404  auto & neighbor = _assembly[tid][0]->neighbor();
2405  auto & neighbor_side = _assembly[tid][0]->neighborSide();
2406  const Elem * lower_d_elem_neighbor = _mesh.getLowerDElem(neighbor, neighbor_side);
2407  if (lower_d_elem_neighbor &&
2408  _mesh.interiorLowerDBlocks().count(lower_d_elem_neighbor->subdomain_id()) > 0)
2409  {
2410  auto qps = _assembly[tid][0]->qPointsFaceNeighbor().stdVector();
2411  std::vector<Point> reference_points;
2412  FEMap::inverse_map(
2413  lower_d_elem_neighbor->dim(), lower_d_elem_neighbor, qps, reference_points);
2414  reinitLowerDElem(lower_d_elem_neighbor, tid, &reference_points);
2415  }
2416  }
2417 
2419  _displaced_problem->reinitElemNeighborAndLowerD(
2420  _displaced_mesh->elemPtr(elem->id()), side, tid);
2421 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1429
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
const Elem * getLowerDElem(const Elem *, unsigned short int) const
Returns a const pointer to a lower dimensional element that corresponds to a side of a higher dimensi...
Definition: MooseMesh.C:1739
dof_id_type id() const
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
virtual unsigned short dim() const=0
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void reinitNeighbor(const Elem *elem, unsigned int side, const THREAD_ID tid) override
MooseMesh * _displaced_mesh

◆ reinitElemPhys()

void FEProblemBase::reinitElemPhys ( const Elem elem,
const std::vector< Point > &  phys_points_in_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2217 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

2220 {
2221  mooseAssert(_mesh.queryElemPtr(elem->id()) == elem,
2222  "Are you calling this method with a displaced mesh element?");
2223 
2224  for (const auto i : index_range(_solver_systems))
2225  {
2226  _assembly[tid][i]->reinitAtPhysical(elem, phys_points_in_elem);
2227  _solver_systems[i]->prepare(tid);
2228  _assembly[tid][i]->prepare();
2230  _assembly[tid][i]->prepareNonlocal();
2231  }
2232  _aux->prepare(tid);
2233 
2234  reinitElem(elem, tid);
2235 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual Elem * queryElemPtr(const dof_id_type i)
Definition: MooseMesh.C:3165
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
auto index_range(const T &sizable)

◆ reinitFVFace()

void SubProblem::reinitFVFace ( const THREAD_ID  tid,
const FaceInfo fi 
)
inherited

reinitialize the finite volume assembly data for the provided face and thread

Definition at line 1284 of file SubProblem.C.

1285 {
1286  for (const auto nl : make_range(numNonlinearSystems()))
1287  assembly(tid, nl).reinitFVFace(fi);
1288 }
void reinitFVFace(const FaceInfo &fi)
Definition: Assembly.C:1855
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitKokkosMaterials()

void FEProblemBase::reinitKokkosMaterials ( )
inherited

◆ reinitLowerDElem()

void FEProblemBase::reinitLowerDElem ( const Elem lower_d_elem,
const THREAD_ID  tid,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2265 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::prepareFace(), and FEProblemBase::reinitElemNeighborAndLowerD().

2269 {
2270  SubProblem::reinitLowerDElem(lower_d_elem, tid, pts, weights);
2271 
2273  _displaced_problem->reinitLowerDElem(
2274  _displaced_mesh->elemPtr(lower_d_elem->id()), tid, pts, weights);
2275 }
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr)
Definition: SubProblem.C:957
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitMaterials()

void FEProblemBase::reinitMaterials ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4135 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeDiracThread::onElement(), and ComputeUserObjectsThread::onElement().

4136 {
4137  if (hasActiveMaterialProperties(tid))
4138  {
4139  auto && elem = _assembly[tid][0]->elem();
4140  unsigned int n_points = _assembly[tid][0]->qRule()->n_points();
4141 
4142  auto & material_data = _material_props.getMaterialData(tid);
4143  material_data.resize(n_points);
4144 
4145  // Only swap if requested
4146  if (swap_stateful)
4147  material_data.swap(*elem);
4148 
4149  if (_discrete_materials.hasActiveBlockObjects(blk_id, tid))
4150  material_data.reset(_discrete_materials.getActiveBlockObjects(blk_id, tid));
4151 
4152  if (_materials.hasActiveBlockObjects(blk_id, tid))
4153  material_data.reinit(_materials.getActiveBlockObjects(blk_id, tid));
4154  }
4155 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsBoundary()

void FEProblemBase::reinitMaterialsBoundary ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on a boundary

Parameters
boundary_idThe boundary on which to reinit corresponding materials
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4280 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4284 {
4285  if (hasActiveMaterialProperties(tid) && needBoundaryMaterialOnSide(boundary_id, tid))
4286  {
4287  auto && elem = _assembly[tid][0]->elem();
4288  unsigned int side = _assembly[tid][0]->side();
4289  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4290 
4291  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4292  bnd_material_data.resize(n_points);
4293 
4294  if (swap_stateful && !bnd_material_data.isSwapped())
4295  bnd_material_data.swap(*elem, side);
4296 
4297  if (_discrete_materials.hasActiveBoundaryObjects(boundary_id, tid))
4298  bnd_material_data.reset(_discrete_materials.getActiveBoundaryObjects(boundary_id, tid));
4299 
4300  if (reinit_mats)
4301  bnd_material_data.reinit(*reinit_mats);
4302  else if (_materials.hasActiveBoundaryObjects(boundary_id, tid))
4303  bnd_material_data.reinit(_materials.getActiveBoundaryObjects(boundary_id, tid));
4304  }
4305 }
MaterialPropertyStorage & _bnd_material_props
bool needBoundaryMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
These methods are used to determine whether stateful material properties need to be stored on interna...
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFace()

void FEProblemBase::reinitMaterialsFace ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on element faces

Parameters
blk_idThe subdomain on which the element owning the face lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4158 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearThread::prepareFace().

4162 {
4163  // we reinit more often than needed here because we dont have a way to check whether
4164  // we need to compute the face materials on a particular (possibly external) face
4165  if (hasActiveMaterialProperties(tid))
4166  {
4167  auto && elem = _assembly[tid][0]->elem();
4168  unsigned int side = _assembly[tid][0]->side();
4169  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4170 
4171  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4172  bnd_material_data.resize(n_points);
4173 
4174  if (swap_stateful && !bnd_material_data.isSwapped())
4175  bnd_material_data.swap(*elem, side);
4176 
4177  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4178  bnd_material_data.reset(
4179  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4180 
4181  if (reinit_mats)
4182  bnd_material_data.reinit(*reinit_mats);
4183  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4184  bnd_material_data.reinit(
4185  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4186  }
4187 }
MaterialPropertyStorage & _bnd_material_props
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFaceOnBoundary()

void FEProblemBase::reinitMaterialsFaceOnBoundary ( const BoundaryID  boundary_id,
const SubdomainID  blk_id,
const THREAD_ID  tid,
const bool  swap_stateful = true,
const std::deque< MaterialBase *> *const  reinit_mats = nullptr 
)
inherited

reinit materials on element faces on a boundary (internal or external) This specific routine helps us not reinit when don't need to

Parameters
boundary_idThe boundary on which the face belongs
blk_idThe block id to which the element (who owns the face) belong
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4190 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4195 {
4196  if (hasActiveMaterialProperties(tid) && (needBoundaryMaterialOnSide(boundary_id, tid) ||
4197  needInterfaceMaterialOnSide(boundary_id, tid) ||
4198  needInternalNeighborSideMaterial(blk_id, tid)))
4199  {
4200  const auto * const elem = _assembly[tid][0]->elem();
4201  unsigned int side = _assembly[tid][0]->side();
4202  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4203 
4204  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4205  bnd_material_data.resize(n_points);
4206 
4207  if (swap_stateful && !bnd_material_data.isSwapped())
4208  bnd_material_data.swap(*elem, side);
4209 
4210  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4211  bnd_material_data.reset(
4212  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4213 
4214  if (reinit_mats)
4215  bnd_material_data.reinit(*reinit_mats);
4216  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4217  bnd_material_data.reinit(
4218  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4219  }
4220 }
MaterialPropertyStorage & _bnd_material_props
bool needBoundaryMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
These methods are used to determine whether stateful material properties need to be stored on interna...
bool needInternalNeighborSideMaterial(SubdomainID subdomain_id, const THREAD_ID tid)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
bool needInterfaceMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsInterface()

void FEProblemBase::reinitMaterialsInterface ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4308 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), and ComputeUserObjectsThread::onInterface().

4311 {
4312  if (hasActiveMaterialProperties(tid) && needInterfaceMaterialOnSide(boundary_id, tid))
4313  {
4314  const Elem * const & elem = _assembly[tid][0]->elem();
4315  unsigned int side = _assembly[tid][0]->side();
4316  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4317 
4318  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4319  bnd_material_data.resize(n_points);
4320 
4321  if (swap_stateful && !bnd_material_data.isSwapped())
4322  bnd_material_data.swap(*elem, side);
4323 
4324  if (_interface_materials.hasActiveBoundaryObjects(boundary_id, tid))
4325  bnd_material_data.reinit(_interface_materials.getActiveBoundaryObjects(boundary_id, tid));
4326  }
4327 }
MaterialPropertyStorage & _bnd_material_props
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool needInterfaceMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ reinitMaterialsNeighbor()

void FEProblemBase::reinitMaterialsNeighbor ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on the neighboring element face

Parameters
blk_idThe subdomain on which the neighbor element lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4240 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), FEProblemBase::reinitMaterialsNeighborOnBoundary(), and NonlinearSystemBase::reinitNodeFace().

4244 {
4245  if (hasActiveMaterialProperties(tid))
4246  {
4247  // NOTE: this will not work with h-adaptivity
4248  // lindsayad: why not?
4249 
4250  const Elem * neighbor = _assembly[tid][0]->neighbor();
4251  unsigned int neighbor_side = neighbor->which_neighbor_am_i(_assembly[tid][0]->elem());
4252 
4253  mooseAssert(neighbor, "neighbor should be non-null");
4254  mooseAssert(blk_id == neighbor->subdomain_id(),
4255  "The provided blk_id " << blk_id << " and neighbor subdomain ID "
4256  << neighbor->subdomain_id() << " do not match.");
4257 
4258  unsigned int n_points = _assembly[tid][0]->qRuleNeighbor()->n_points();
4259 
4260  auto & neighbor_material_data = _neighbor_material_props.getMaterialData(tid);
4261  neighbor_material_data.resize(n_points);
4262 
4263  // Only swap if requested
4264  if (swap_stateful)
4265  neighbor_material_data.swap(*neighbor, neighbor_side);
4266 
4267  if (_discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4268  neighbor_material_data.reset(
4269  _discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4270 
4271  if (reinit_mats)
4272  neighbor_material_data.reinit(*reinit_mats);
4273  else if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4274  neighbor_material_data.reinit(
4275  _materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4276  }
4277 }
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
subdomain_id_type subdomain_id() const
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsNeighborOnBoundary()

void FEProblemBase::reinitMaterialsNeighborOnBoundary ( const BoundaryID  boundary_id,
const SubdomainID  blk_id,
const THREAD_ID  tid,
const bool  swap_stateful = true,
const std::deque< MaterialBase *> *const  reinit_mats = nullptr 
)
inherited

reinit materials on neighbor element (usually faces) on a boundary (internal or external) This specific routine helps us not reinit when don't need to

Parameters
boundary_idThe boundary on which the face belongs
blk_idThe block id to which the element (who owns the face) belong
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
reinit_matsspecific list of materials to reinit. Used notably in the context of mortar with stateful elements

Definition at line 4223 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface().

4229 {
4230  // Since objects don't declare whether they need the face or neighbor (side) material properties,
4231  // we use the same criteria for skipping material property computations as for face material
4232  // properties This could be a future optimization.
4233  if (hasActiveMaterialProperties(tid) && (needBoundaryMaterialOnSide(boundary_id, tid) ||
4234  needInterfaceMaterialOnSide(boundary_id, tid) ||
4235  needInternalNeighborSideMaterial(blk_id, tid)))
4236  reinitMaterialsNeighbor(blk_id, tid, swap_stateful, reinit_mats);
4237 }
bool needBoundaryMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
These methods are used to determine whether stateful material properties need to be stored on interna...
void reinitMaterialsNeighbor(SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
reinit materials on the neighboring element face
bool needInternalNeighborSideMaterial(SubdomainID subdomain_id, const THREAD_ID tid)
bool needInterfaceMaterialOnSide(BoundaryID bnd_id, const THREAD_ID tid)
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.

◆ reinitMortarElem()

void SubProblem::reinitMortarElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

Reinit a mortar element to obtain a valid JxW.

Definition at line 994 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

995 {
996  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
997  assembly(tid, nl_sys_num).reinitMortarElem(elem);
998 }
void reinitMortarElem(const Elem *elem)
reinitialize a mortar segment mesh element in order to get a proper JxW
Definition: Assembly.C:2402
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitMortarUserObjects()

void FEProblemBase::reinitMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced 
)
inherited

Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics.

Definition at line 9518 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9521 {
9522  const auto mortar_uos =
9523  getMortarUserObjects(primary_boundary_id, secondary_boundary_id, displaced);
9524  for (auto * const mortar_uo : mortar_uos)
9525  {
9526  mortar_uo->setNormals();
9527  mortar_uo->reinit();
9528  }
9529 }
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...

◆ reinitNeighbor()

void FEProblemBase::reinitNeighbor ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2353 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and FEProblemBase::reinitElemNeighborAndLowerD().

2354 {
2355  setNeighborSubdomainID(elem, side, tid);
2356 
2357  const Elem * neighbor = elem->neighbor_ptr(side);
2358  unsigned int neighbor_side = neighbor->which_neighbor_am_i(elem);
2359 
2360  for (const auto i : index_range(_nl))
2361  {
2362  _assembly[tid][i]->reinitElemAndNeighbor(elem, side, neighbor, neighbor_side);
2363  _nl[i]->prepareNeighbor(tid);
2364  // Called during stateful material property evaluation outside of solve
2365  _assembly[tid][i]->prepareNeighbor();
2366  }
2367  _aux->prepareNeighbor(tid);
2368 
2369  for (auto & nl : _nl)
2370  {
2371  nl->reinitElemFace(elem, side, tid);
2372  nl->reinitNeighborFace(neighbor, neighbor_side, tid);
2373  }
2374  _aux->reinitElemFace(elem, side, tid);
2375  _aux->reinitNeighborFace(neighbor, neighbor_side, tid);
2376 
2378  {
2379  // There are cases like for cohesive zone modeling without significant sliding where we cannot
2380  // use FEInterface::inverse_map in Assembly::reinitElemAndNeighbor in the displaced problem
2381  // because the physical points coming from the element don't actually lie on the neighbor.
2382  // Moreover, what's the point of doing another physical point inversion in other cases? We only
2383  // care about the reference points which we can just take from the undisplaced computation
2384  const auto & displaced_ref_pts = _assembly[tid][0]->qRuleNeighbor()->get_points();
2385 
2386  _displaced_problem->reinitNeighbor(
2387  _displaced_mesh->elemPtr(elem->id()), side, tid, &displaced_ref_pts);
2388  }
2389 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
unsigned int which_neighbor_am_i(const Elem *e) const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const Elem * neighbor_ptr(unsigned int i) const
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNeighborFaceRef()

void FEProblemBase::reinitNeighborFaceRef ( const Elem neighbor_elem,
unsigned int  neighbor_side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9268 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9274 {
9275  SubProblem::reinitNeighborFaceRef(neighbor_elem, neighbor_side, tolerance, pts, weights, tid);
9276 
9277  if (_displaced_problem)
9278  _displaced_problem->reinitNeighborFaceRef(
9279  _displaced_mesh->elemPtr(neighbor_elem->id()), neighbor_side, tolerance, pts, weights, tid);
9280 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
virtual void reinitNeighborFaceRef(const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given neighbor element on a given side at a given set of reference point...
Definition: SubProblem.C:921
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitNeighborLowerDElem()

void SubProblem::reinitNeighborLowerDElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

reinitialize a neighboring lower dimensional element

Definition at line 987 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

988 {
989  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
990  assembly(tid, nl_sys_num).reinitNeighborLowerDElem(elem);
991 }
void reinitNeighborLowerDElem(const Elem *elem)
reinitialize a neighboring lower dimensional element
Definition: Assembly.C:2381
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitNeighborPhys() [1/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
unsigned int  neighbor_side,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ reinitNeighborPhys() [2/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitNode()

void FEProblemBase::reinitNode ( const Node node,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2278 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), NonlinearSystemBase::computeResidualInternal(), ComputeNodalUserObjectsThread::onNode(), ComputeNodalDampingThread::onNode(), ComputeNodalKernelsThread::onNode(), and ComputeNodalKernelJacobiansThread::onNode().

2279 {
2281  _displaced_problem->reinitNode(&_displaced_mesh->nodeRef(node->id()), tid);
2282 
2283  for (const auto i : index_range(_nl))
2284  {
2285  _assembly[tid][i]->reinit(node);
2286  _nl[i]->reinitNode(node, tid);
2287  }
2288  _aux->reinitNode(node, tid);
2289 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodeFace()

void FEProblemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2292 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), ComputeNodalKernelBcsThread::onNode(), ComputeNodalKernelBCJacobiansThread::onNode(), NonlinearSystemBase::reinitNodeFace(), NonlinearSystemBase::setConstraintSecondaryValues(), and NonlinearSystemBase::setInitialSolution().

2293 {
2295  _displaced_problem->reinitNodeFace(&_displaced_mesh->nodeRef(node->id()), bnd_id, tid);
2296 
2297  for (const auto i : index_range(_nl))
2298  {
2299  _assembly[tid][i]->reinit(node);
2300  _nl[i]->reinitNodeFace(node, bnd_id, tid);
2301  }
2302  _aux->reinitNodeFace(node, bnd_id, tid);
2303 }
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodes()

void FEProblemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2306 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2307 {
2309  _displaced_problem->reinitNodes(nodes, tid);
2310 
2311  for (auto & nl : _nl)
2312  nl->reinitNodes(nodes, tid);
2313  _aux->reinitNodes(nodes, tid);
2314 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitNodesNeighbor()

void FEProblemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2317 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2318 {
2320  _displaced_problem->reinitNodesNeighbor(nodes, tid);
2321 
2322  for (auto & nl : _nl)
2323  nl->reinitNodesNeighbor(nodes, tid);
2324  _aux->reinitNodesNeighbor(nodes, tid);
2325 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitOffDiagScalars()

void FEProblemBase::reinitOffDiagScalars ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 2345 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians(), NonlinearSystemBase::constraintJacobians(), and NonlinearThread::onElement().

2346 {
2347  _assembly[tid][_current_nl_sys->number()]->prepareOffDiagScalar();
2348  if (_displaced_problem)
2349  _displaced_problem->reinitOffDiagScalars(tid);
2350 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitScalars()

void FEProblemBase::reinitScalars ( const THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
overridevirtualinherited

fills the VariableValue arrays for scalar variables from the solution vector

Parameters
tidThe thread id
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Implements SubProblem.

Definition at line 2328 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeResidualTags(), NonlinearSystemBase::computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), and FEProblemBase::initialSetup().

2329 {
2330  TIME_SECTION("reinitScalars", 3, "Reinitializing Scalar Variables");
2331 
2333  _displaced_problem->reinitScalars(tid, reinit_for_derivative_reordering);
2334 
2335  for (auto & nl : _nl)
2336  nl->reinitScalars(tid, reinit_for_derivative_reordering);
2337  _aux->reinitScalars(tid, reinit_for_derivative_reordering);
2338 
2339  // This is called outside of residual/Jacobian call-backs
2340  for (auto & assembly : _assembly[tid])
2342 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void prepareScalar()
Definition: Assembly.C:2945
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ removeAlgebraicGhostingFunctor()

void SubProblem::removeAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf)
inherited

Remove an algebraic ghosting functor from this problem's DofMaps.

Definition at line 1067 of file SubProblem.C.

1068 {
1069  EquationSystems & eq = es();
1070  const auto n_sys = eq.n_systems();
1071  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1072 
1073  const bool found_in_root_sys =
1075  nl_dof_map.algebraic_ghosting_functors_end(),
1076  &algebraic_gf) != nl_dof_map.algebraic_ghosting_functors_end();
1077 
1078 #ifndef NDEBUG
1079  const bool found_in_our_map =
1080  _root_alg_gf_to_sys_clones.find(&algebraic_gf) != _root_alg_gf_to_sys_clones.end();
1081  mooseAssert(found_in_root_sys == found_in_our_map,
1082  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1083  "it in our gf to clones map");
1084 #endif
1085 
1086  if (found_in_root_sys) // libMesh yells if we try to remove
1087  // something that's not there
1088  nl_dof_map.remove_algebraic_ghosting_functor(algebraic_gf);
1089 
1090  auto it = _root_alg_gf_to_sys_clones.find(&algebraic_gf);
1091  if (it == _root_alg_gf_to_sys_clones.end())
1092  return;
1093 
1094  auto & clones_vec = it->second;
1095  mooseAssert((n_sys - 1) == clones_vec.size(),
1096  "The size of the gf clones vector doesn't match the number of systems minus one");
1097  if (clones_vec.empty())
1098  {
1099  mooseAssert(n_sys == 1, "The clones vector should only be empty if there is only one system");
1100  return;
1101  }
1102 
1103  for (const auto i : make_range(n_sys))
1104  eq.get_system(i + 1).get_dof_map().remove_algebraic_ghosting_functor(*clones_vec[i]);
1105 
1106  _root_alg_gf_to_sys_clones.erase(it->first);
1107 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
unsigned int n_systems() const
GhostingFunctorIterator algebraic_ghosting_functors_begin() const
GhostingFunctorIterator algebraic_ghosting_functors_end() const
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_alg_gf_to_sys_clones
A map from a root algebraic ghosting functor, e.g.
Definition: SubProblem.h:1192
IntRange< T > make_range(T beg, T end)
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)

◆ removeCouplingGhostingFunctor()

void SubProblem::removeCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf)
inherited

Remove a coupling ghosting functor from this problem's DofMaps.

Definition at line 1110 of file SubProblem.C.

1111 {
1112  EquationSystems & eq = es();
1113  const auto num_nl_sys = numNonlinearSystems();
1114  if (!num_nl_sys)
1115  return;
1116 
1117  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1118  const bool found_in_root_sys = std::find(nl_dof_map.coupling_functors_begin(),
1119  nl_dof_map.coupling_functors_end(),
1120  &coupling_gf) != nl_dof_map.coupling_functors_end();
1121 
1122 #ifndef NDEBUG
1123  const bool found_in_our_map =
1125  mooseAssert(found_in_root_sys == found_in_our_map,
1126  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1127  "it in our gf to clones map");
1128 #endif
1129 
1130  if (found_in_root_sys) // libMesh yells if we try to remove
1131  // something that's not there
1132  nl_dof_map.remove_coupling_functor(coupling_gf);
1133 
1134  auto it = _root_coupling_gf_to_sys_clones.find(&coupling_gf);
1135  if (it == _root_coupling_gf_to_sys_clones.end())
1136  return;
1137 
1138  auto & clones_vec = it->second;
1139  mooseAssert((num_nl_sys - 1) == clones_vec.size(),
1140  "The size of the gf clones vector doesn't match the number of systems minus one");
1141  if (clones_vec.empty())
1142  {
1143  mooseAssert(num_nl_sys == 1,
1144  "The clones vector should only be empty if there is only one nonlinear system");
1145  return;
1146  }
1147 
1148  for (const auto i : make_range(num_nl_sys))
1149  eq.get_system(i + 1).get_dof_map().remove_coupling_functor(*clones_vec[i]);
1150 
1151  _root_coupling_gf_to_sys_clones.erase(it->first);
1152 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_coupling_gf_to_sys_clones
A map from a root coupling ghosting functor, e.g.
Definition: SubProblem.h:1199
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
GhostingFunctorIterator coupling_functors_end() const
void remove_coupling_functor(GhostingFunctor &coupling_functor)
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
GhostingFunctorIterator coupling_functors_begin() const

◆ reportMooseObjectDependency()

void FEProblemBase::reportMooseObjectDependency ( MooseObject a,
MooseObject b 
)
inherited

Register a MOOSE object dependency so we can either order operations properly or report when we cannot.

a -> b (a depends on b)

Definition at line 5309 of file FEProblemBase.C.

5310 {
5311  //<< "Object " << a->name() << " -> " << b->name() << std::endl;
5312 }

◆ resetFailNextNonlinearConvergenceCheck()

void FEProblemBase::resetFailNextNonlinearConvergenceCheck ( )
inlineinherited

Tell the problem that the nonlinear convergence check(s) may proceed as normal.

Definition at line 2604 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscNonlinearConverged().

void resetFailNextSystemConvergenceCheck()
Tell the problem that the system convergence check(s) may proceed as normal.

◆ resetFailNextSystemConvergenceCheck()

void FEProblemBase::resetFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system convergence check(s) may proceed as normal.

Definition at line 2606 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscLinearConverged(), and FEProblemBase::resetFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ residualSetup()

void FEProblemBase::residualSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9418 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::residualSetup().

9419 {
9421  // We need to setup all the nonlinear systems other than our current one which actually called
9422  // this method (so we have to make sure we don't go in a circle)
9423  for (const auto i : make_range(numNonlinearSystems()))
9424  if (i != currentNlSysNum())
9425  _nl[i]->residualSetup();
9426  // We don't setup the aux sys because that's been done elsewhere
9427  if (_displaced_problem)
9428  _displaced_problem->residualSetup();
9429 }
virtual std::size_t numNonlinearSystems() const override
virtual void residualSetup()
Definition: SubProblem.C:1201
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ resizeMaterialData()

void FEProblemBase::resizeMaterialData ( Moose::MaterialDataType  data_type,
unsigned int  nqp,
const THREAD_ID  tid 
)
inherited

Resize material data.

Parameters
data_typeThe type of material data to resize
nqpThe number of quadrature points to resize for
tidThe thread ID

Definition at line 9339 of file FEProblemBase.C.

9342 {
9343  getMaterialData(data_type, tid).resize(nqp);
9344 }
MPI_Datatype data_type
MaterialData & getMaterialData(Moose::MaterialDataType type, const THREAD_ID tid=0, const MooseObject *object=nullptr) const
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ restartableName()

std::string Restartable::restartableName ( const std::string &  data_name) const
protectedinherited

Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix.

This should only be used in this interface and in testing.

Definition at line 78 of file Restartable.C.

Referenced by Restartable::declareRecoverableData(), and Restartable::declareRestartableDataHelper().

79 {
80  return _restartable_system_name + "/" + _restartable_name + "/" + data_name;
81 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:250
const std::string _restartable_system_name
The system name this object is in.
Definition: Restartable.h:237

◆ restoreMultiApps()

void FEProblemBase::restoreMultiApps ( ExecFlagType  type,
bool  force = false 
)
inherited

Restore the MultiApps associated with the ExecFlagType.

Parameters
forceForce restoration because something went wrong with the solve

Definition at line 5744 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject(), and FixedPointSolve::solve().

5745 {
5746  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5747 
5748  if (multi_apps.size())
5749  {
5750  if (_verbose_multiapps)
5751  {
5752  if (force)
5753  _console << COLOR_CYAN << "\nRestoring Multiapps on " << type.name()
5754  << " because of solve failure!" << COLOR_DEFAULT << std::endl;
5755  else
5756  _console << COLOR_CYAN << "\nRestoring MultiApps on " << type.name() << COLOR_DEFAULT
5757  << std::endl;
5758  }
5759 
5760  for (const auto & multi_app : multi_apps)
5761  multi_app->restore(force);
5762 
5764 
5765  if (_verbose_multiapps)
5766  _console << COLOR_CYAN << "Finished Restoring MultiApps on " << type.name() << "\n"
5767  << COLOR_DEFAULT << std::endl;
5768  }
5769 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ restoreOldSolutions()

void FEProblemBase::restoreOldSolutions ( )
virtualinherited

Restore old solutions from the backup vectors and deallocate them.

Definition at line 6894 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6895 {
6896  TIME_SECTION("restoreOldSolutions", 5, "Restoring Old Solutions");
6897 
6898  for (auto & sys : _solver_systems)
6899  sys->restoreOldSolutions();
6900  _aux->restoreOldSolutions();
6901 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ restoreOriginalNonzeroPattern()

bool FEProblemBase::restoreOriginalNonzeroPattern ( ) const
inlineinherited
Returns
Whether the original matrix nonzero pattern is restored before each Jacobian assembly

Definition at line 2128 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal().

const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.

◆ restoreSolutions()

void FEProblemBase::restoreSolutions ( )
virtualinherited

Definition at line 6856 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::initSolutions(), TimeStepper::rejectStep(), and FEProblemBase::updateMeshXFEM().

6857 {
6858  TIME_SECTION("restoreSolutions", 5, "Restoring Solutions");
6859 
6860  if (!_not_zeroed_tagged_vectors.empty())
6861  paramError("not_zeroed_tag_vectors",
6862  "There is currently no way to restore not-zeroed vectors.");
6863 
6864  for (auto & sys : _solver_systems)
6865  {
6866  if (_verbose_restore)
6867  _console << "Restoring solutions on system " << sys->name() << "..." << std::endl;
6868  sys->restoreSolutions();
6869  }
6870 
6871  if (_verbose_restore)
6872  _console << "Restoring solutions on Auxiliary system..." << std::endl;
6873  _aux->restoreSolutions();
6874 
6875  if (_verbose_restore)
6876  _console << "Restoring postprocessor, vector-postprocessor, and reporter data..." << std::endl;
6878 
6879  if (_displaced_problem)
6880  _displaced_problem->updateMesh();
6881 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
void restoreState(bool verbose=false)
When a time step fails, this method is called to revert the current reporter values to their old stat...
Definition: ReporterData.C:24

◆ safeAccessTaggedMatrices()

virtual bool SubProblem::safeAccessTaggedMatrices ( ) const
inlinevirtualinherited

Is it safe to access the tagged matrices.

Reimplemented in DisplacedProblem.

Definition at line 731 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedMatrices().

bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108

◆ safeAccessTaggedVectors()

virtual bool SubProblem::safeAccessTaggedVectors ( ) const
inlinevirtualinherited

Is it safe to access the tagged vectors.

Reimplemented in DisplacedProblem.

Definition at line 734 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedVectors().

734 { return _safe_access_tagged_vectors; }
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111

◆ saveOldSolutions()

void FEProblemBase::saveOldSolutions ( )
virtualinherited

Allocate vectors and save old solutions into them.

Definition at line 6884 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6885 {
6886  TIME_SECTION("saveOldSolutions", 5, "Saving Old Solutions");
6887 
6888  for (auto & sys : _solver_systems)
6889  sys->saveOldSolutions();
6890  _aux->saveOldSolutions();
6891 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ selectMatrixTagsFromSystem()

void SubProblem::selectMatrixTagsFromSystem ( const SystemBase system,
const std::map< TagName, TagID > &  input_matrix_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the matrix tags which belong to a specific system.

Parameters
systemReference to the system
input_matrix_tagsA map of matrix tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 300 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys().

303 {
304  selected_tags.clear();
305  for (const auto & matrix_tag_pair : input_matrix_tags)
306  if (system.hasMatrix(matrix_tag_pair.second))
307  selected_tags.insert(matrix_tag_pair.second);
308 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360

◆ selectVectorTagsFromSystem()

void SubProblem::selectVectorTagsFromSystem ( const SystemBase system,
const std::vector< VectorTag > &  input_vector_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the vector tags which belong to a specific system.

Parameters
systemReference to the system
input_vector_tagsA vector of vector tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 289 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), and ComputeResidualAndJacobianThread::determineObjectWarehouses().

292 {
293  selected_tags.clear();
294  for (const auto & vector_tag : input_vector_tags)
295  if (system.hasVector(vector_tag._id))
296  selected_tags.insert(vector_tag._id);
297 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924

◆ setActiveElementalMooseVariables()

void FEProblemBase::setActiveElementalMooseVariables ( const std::set< MooseVariableFEBase *> &  moose_vars,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the MOOSE variables to be reinited on each element.

Parameters
moose_varsA set of variables that need to be reinited each time reinit() is called.
tidThe thread id

Reimplemented from SubProblem.

Definition at line 6031 of file FEProblemBase.C.

Referenced by FEProblemBase::prepareMaterials(), ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

6033 {
6035 
6036  if (_displaced_problem)
6037  _displaced_problem->setActiveElementalMooseVariables(moose_vars, tid);
6038 }
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFieldBase *> &moose_vars, const THREAD_ID tid)
Set the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:443
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::setActiveFEVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5993 of file FEProblemBase.C.

5994 {
5996 
5997  if (_displaced_problem)
5998  _displaced_problem->setActiveFEVariableCoupleableMatrixTags(mtags, tid);
5999 }
virtual void setActiveFEVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:363
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableVectorTags()

void FEProblemBase::setActiveFEVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setActiveMaterialProperties()

void FEProblemBase::setActiveMaterialProperties ( const std::unordered_set< unsigned int > &  mat_prop_ids,
const THREAD_ID  tid 
)
inherited

Record and set the material properties required by the current computing thread.

Parameters
mat_prop_idsThe set of material properties required by the current computing thread.
tidThe thread id

Definition at line 6086 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), FEProblemBase::prepareMaterials(), NodalPatchRecovery::reinitPatch(), NonlinearSystemBase::setConstraintSecondaryValues(), and ComputeDiracThread::subdomainChanged().

6088 {
6089  // mark active properties in every material
6090  for (auto & mat : _all_materials.getObjects(tid))
6091  mat->setActiveProperties(mat_prop_ids);
6092  for (auto & mat : _all_materials[Moose::FACE_MATERIAL_DATA].getObjects(tid))
6093  mat->setActiveProperties(mat_prop_ids);
6094  for (auto & mat : _all_materials[Moose::NEIGHBOR_MATERIAL_DATA].getObjects(tid))
6095  mat->setActiveProperties(mat_prop_ids);
6096 
6097  _has_active_material_properties[tid] = !mat_prop_ids.empty();
6098 }
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.
MaterialWarehouse _all_materials

◆ setActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::setActiveScalarVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6011 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

6013 {
6015 
6016  if (_displaced_problem)
6017  _displaced_problem->setActiveScalarVariableCoupleableMatrixTags(mtags, tid);
6018 }
virtual void setActiveScalarVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:402
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::setActiveScalarVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6021 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

6023 {
6025 
6026  if (_displaced_problem)
6027  _displaced_problem->setActiveScalarVariableCoupleableVectorTags(vtags, tid);
6028 }
virtual void setActiveScalarVariableCoupleableVectorTags(std::set< TagID > &vtags, const THREAD_ID tid)
Definition: SubProblem.C:409
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setAxisymmetricCoordAxis()

void FEProblemBase::setAxisymmetricCoordAxis ( const MooseEnum rz_coord_axis)
inherited

Definition at line 843 of file FEProblemBase.C.

844 {
845  _mesh.setAxisymmetricCoordAxis(rz_coord_axis);
846 }
MooseMesh & _mesh
void setAxisymmetricCoordAxis(const MooseEnum &rz_coord_axis)
For axisymmetric simulations, set the symmetry coordinate axis.
Definition: MooseMesh.C:4253

◆ setConstJacobian()

void FEProblemBase::setConstJacobian ( bool  state)
inlineinherited

Set flag that Jacobian is constant (for optimization purposes)

Parameters
stateTrue if the Jacobian is constant, false otherwise

Definition at line 1976 of file FEProblemBase.h.

Referenced by ExplicitEuler::preSolve(), ExplicitTVDRK2::preSolve(), and ExplicitRK2::preSolve().

1976 { _const_jacobian = state; }
bool _const_jacobian
true if the Jacobian is constant

◆ setCoordSystem()

void FEProblemBase::setCoordSystem ( const std::vector< SubdomainName > &  blocks,
const MultiMooseEnum coord_sys 
)
inherited

Definition at line 835 of file FEProblemBase.C.

837 {
838  TIME_SECTION("setCoordSystem", 5, "Setting Coordinate System");
839  _mesh.setCoordSystem(blocks, coord_sys);
840 }
char ** blocks
MooseMesh & _mesh
void setCoordSystem(const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
Set the coordinate system for the provided blocks to coord_sys.
Definition: MooseMesh.C:4121

◆ setCoupling()

void FEProblemBase::setCoupling ( Moose::CouplingType  type)
inherited

Set the coupling between variables TODO: allow user-defined coupling.

Parameters
typeType of coupling

Definition at line 6262 of file FEProblemBase.C.

Referenced by FEProblemBase::init(), FEProblemBase::setCouplingMatrix(), and Moose::SlepcSupport::setEigenProblemSolverParams().

6263 {
6265  {
6267  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6268  "haven't been provided a coupling matrix!");
6269 
6270  // We've been told to trust the user coupling matrix, so we're going to leave things alone
6271  return;
6272  }
6273 
6274  _coupling = type;
6275 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ setCouplingMatrix() [1/2]

void FEProblemBase::setCouplingMatrix ( std::unique_ptr< libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Set custom coupling matrix.

Parameters
cmcoupling matrix to be set
nl_sys_numwhich nonlinear system we are setting the coupling matrix for

Definition at line 6286 of file FEProblemBase.C.

Referenced by MoosePreconditioner::setCouplingMatrix().

6287 {
6289  _cm[i] = std::move(cm);
6290 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCouplingMatrix() [2/2]

void FEProblemBase::setCouplingMatrix ( libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6278 of file FEProblemBase.C.

6279 {
6280  // TODO: Deprecate method
6282  _cm[i].reset(cm);
6283 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCurrentAlgebraicBndNodeRange()

void FEProblemBase::setCurrentAlgebraicBndNodeRange ( ConstBndNodeRange range)
inherited

Definition at line 9635 of file FEProblemBase.C.

9636 {
9637  if (!range)
9638  {
9640  return;
9641  }
9642 
9643  _current_algebraic_bnd_node_range = std::make_unique<ConstBndNodeRange>(*range);
9644 }
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range

◆ setCurrentAlgebraicElementRange()

void FEProblemBase::setCurrentAlgebraicElementRange ( libMesh::ConstElemRange range)
inherited

These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor.

setCurrentAlgebraicElementRange() sets the element range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicNodeRange() sets the node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicBndNodeRange() sets the boundary node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

Parameters
rangeA pointer to the const range object representing the algebraic elements, nodes, or boundary nodes.

Definition at line 9613 of file FEProblemBase.C.

9614 {
9615  if (!range)
9616  {
9618  return;
9619  }
9620 
9621  _current_algebraic_elem_range = std::make_unique<ConstElemRange>(*range);
9622 }
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range

◆ setCurrentAlgebraicNodeRange()

void FEProblemBase::setCurrentAlgebraicNodeRange ( libMesh::ConstNodeRange range)
inherited

Definition at line 9624 of file FEProblemBase.C.

9625 {
9626  if (!range)
9627  {
9629  return;
9630  }
9631 
9632  _current_algebraic_node_range = std::make_unique<ConstNodeRange>(*range);
9633 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range

◆ setCurrentBoundaryID()

void FEProblemBase::setCurrentBoundaryID ( BoundaryID  bid,
const THREAD_ID  tid 
)
overridevirtualinherited

sets the current boundary ID in assembly

Reimplemented from SubProblem.

Definition at line 9549 of file FEProblemBase.C.

9550 {
9552  if (_displaced_problem)
9553  _displaced_problem->setCurrentBoundaryID(bid, tid);
9554 }
virtual void setCurrentBoundaryID(BoundaryID bid, const THREAD_ID tid)
sets the current boundary ID in assembly
Definition: SubProblem.C:789
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setCurrentExecuteOnFlag()

void FEProblemBase::setCurrentExecuteOnFlag ( const ExecFlagType flag)
inherited

Definition at line 4760 of file FEProblemBase.C.

Referenced by FEProblemBase::execute(), FEProblemBase::initialSetup(), and FEProblemBase::outputStep().

4761 {
4762  _current_execute_on_flag = flag;
4763 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ setCurrentLinearSystem()

void FEProblemBase::setCurrentLinearSystem ( unsigned int  sys_num)
inherited

Set the current linear system pointer.

Parameters
sys_numThe number of linear system

Definition at line 9566 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and FEProblemBase::solveLinearSystem().

9567 {
9568  mooseAssert(sys_num < _linear_systems.size(),
9569  "System number greater than the number of linear systems");
9570  _current_linear_sys = _linear_systems[sys_num].get();
9572 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ setCurrentLowerDElem()

void FEProblemBase::setCurrentLowerDElem ( const Elem *const  lower_d_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the current lower dimensional element.

This can be null

Reimplemented from SubProblem.

Definition at line 9540 of file FEProblemBase.C.

9541 {
9542  SubProblem::setCurrentLowerDElem(lower_d_elem, tid);
9543  if (_displaced_problem)
9544  _displaced_problem->setCurrentLowerDElem(
9545  lower_d_elem ? _displaced_mesh->elemPtr(lower_d_elem->id()) : nullptr, tid);
9546 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
virtual void setCurrentLowerDElem(const Elem *const lower_d_elem, const THREAD_ID tid)
Set the current lower dimensional element.
Definition: SubProblem.C:1380
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ setCurrentlyComputingJacobian()

void SubProblem::setCurrentlyComputingJacobian ( const bool  currently_computing_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 689 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

690  {
691  _currently_computing_jacobian = currently_computing_jacobian;
692  }
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ setCurrentlyComputingResidual()

void FEProblemBase::setCurrentlyComputingResidual ( bool  currently_computing_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the residual.

Reimplemented from SubProblem.

Definition at line 9220 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualTags(), and FEProblemBase::resetState().

9221 {
9222  if (_displaced_problem)
9223  _displaced_problem->setCurrentlyComputingResidual(currently_computing_residual);
9224  _currently_computing_residual = currently_computing_residual;
9225 }
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ setCurrentlyComputingResidualAndJacobian()

void SubProblem::setCurrentlyComputingResidualAndJacobian ( bool  currently_computing_residual_and_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 1493 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

1495 {
1496  _currently_computing_residual_and_jacobian = currently_computing_residual_and_jacobian;
1497 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ setCurrentNonlinearSystem()

void FEProblemBase::setCurrentNonlinearSystem ( const unsigned int  nl_sys_num)
inherited

Definition at line 9557 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), EigenProblem::computeMatricesTags(), EigenProblem::computeResidualTag(), NonlinearSystemBase::computeResidualTags(), FEProblem(), EigenProblem::solve(), and FEProblemBase::solve().

9558 {
9559  mooseAssert(nl_sys_num < _nl.size(),
9560  "System number greater than the number of nonlinear systems");
9561  _current_nl_sys = _nl[nl_sys_num].get();
9563 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.

◆ setCurrentResidualVectorTags()

void FEProblemBase::setCurrentResidualVectorTags ( const std::set< TagID > &  vector_tags)
inlineinherited

Set the current residual vector tag data structure based on the passed in tag IDs.

Definition at line 3507 of file FEProblemBase.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and CrankNicolson::init().

3508 {
3510 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ setCurrentSubdomainID()

void FEProblemBase::setCurrentSubdomainID ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1808 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementalVariableValue::execute(), and ComputeInitialConditionThread::operator()().

1809 {
1810  SubdomainID did = elem->subdomain_id();
1811  for (const auto i : index_range(_solver_systems))
1812  {
1813  _assembly[tid][i]->setCurrentSubdomainID(did);
1814  if (_displaced_problem &&
1816  _displaced_problem->assembly(tid, i).setCurrentSubdomainID(did);
1817  }
1818 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ setErrorOnJacobianNonzeroReallocation()

void FEProblemBase::setErrorOnJacobianNonzeroReallocation ( bool  state)
inlineinherited

Definition at line 2139 of file FEProblemBase.h.

2140  {
2142  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ setException()

void FEProblemBase::setException ( const std::string &  message)
virtualinherited

Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve().

Parameters
messageThe error message describing the exception, which will get printed when checkExceptionAndStopSolve() is called

Definition at line 6636 of file FEProblemBase.C.

Referenced by ComputeThreadedGeneralUserObjectsThread::caughtMooseException(), ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::caughtMooseException(), ThreadedFaceLoop< RangeType >::caughtMooseException(), NonlinearSystemBase::computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), AuxiliarySystem::computeMortarNodalVars(), FEProblemBase::handleException(), ComputeMortarFunctor::operator()(), and DisplacedProblem::updateMesh().

6637 {
6638  _has_exception = true;
6639  _exception_message = message;
6640 }
bool _has_exception
Whether or not an exception has occurred.
std::string _exception_message
The error message to go with an exception.

◆ setExecutionPrinting()

void FEProblemBase::setExecutionPrinting ( const ExecFlagEnum print_exec)
inlineinherited

Definition at line 2612 of file FEProblemBase.h.

2612 { _print_execution_on = print_exec; }
ExecFlagEnum _print_execution_on
When to print the execution of loops.

◆ setFailNextNonlinearConvergenceCheck()

void FEProblemBase::setFailNextNonlinearConvergenceCheck ( )
inlineinherited

Skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2599 of file FEProblemBase.h.

Referenced by Terminator::execute().

void setFailNextSystemConvergenceCheck()
Tell the problem that the system(s) cannot be considered converged next time convergence is checked...

◆ setFailNextSystemConvergenceCheck()

void FEProblemBase::setFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system(s) cannot be considered converged next time convergence is checked.

Definition at line 2601 of file FEProblemBase.h.

Referenced by FEProblemBase::setFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ setFunctorOutput()

void SubProblem::setFunctorOutput ( bool  set_output)
inlineinherited

Setter for debug functor output.

Definition at line 924 of file SubProblem.h.

924 { _output_functors = set_output; }
bool _output_functors
Whether to output a list of the functors used and requested (currently only at initialSetup) ...
Definition: SubProblem.h:1164

◆ setIgnoreZerosInJacobian()

void FEProblemBase::setIgnoreZerosInJacobian ( bool  state)
inlineinherited

Set whether the zeros in the Jacobian should be dropped from the sparsity pattern.

Definition at line 2162 of file FEProblemBase.h.

2162 { _ignore_zeros_in_jacobian = state; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ setInputParametersFEProblem()

void FEProblem::setInputParametersFEProblem ( InputParameters parameters)
overridevirtual

Reimplemented from FEProblemBase.

Definition at line 96 of file FEProblem.C.

97 {
98  // set _fe_problem
100  // set _fe_problem
101  parameters.set<FEProblem *>("_fe_problem") = this;
102 }
virtual void setInputParametersFEProblem(InputParameters &parameters)
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Definition: FEProblem.h:20
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.

◆ setKernelCoverageCheck() [1/2]

void FEProblemBase::setKernelCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1982 of file FEProblemBase.h.

1982 { _kernel_coverage_check = mode; }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setKernelCoverageCheck() [2/2]

void FEProblemBase::setKernelCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1988 of file FEProblemBase.h.

1989  {
1991  }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setLinearConvergenceNames()

void FEProblemBase::setLinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the linear convergence object name(s) if there is one.

Definition at line 9384 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9385 {
9386  if (convergence_names.size() != numLinearSystems())
9387  paramError("linear_convergence", "There must be one convergence object per linear system");
9388  _linear_convergence_names = convergence_names;
9389 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)
virtual std::size_t numLinearSystems() const override

◆ setMaterialCoverageCheck() [1/2]

void FEProblemBase::setMaterialCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1999 of file FEProblemBase.h.

1999 { _material_coverage_check = mode; }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMaterialCoverageCheck() [2/2]

void FEProblemBase::setMaterialCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 2007 of file FEProblemBase.h.

2008  {
2010  }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMultiAppFixedPointConvergenceName()

void FEProblemBase::setMultiAppFixedPointConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the MultiApp fixed point convergence object name if there is one.

Definition at line 9356 of file FEProblemBase.C.

Referenced by FixedPointSolve::FixedPointSolve().

9357 {
9358  _multiapp_fixed_point_convergence_name = convergence_name;
9359 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ setNeedToAddDefaultMultiAppFixedPointConvergence()

void FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence ( )
inlineinherited

Sets _need_to_add_default_multiapp_fixed_point_convergence to true.

Definition at line 684 of file FEProblemBase.h.

Referenced by FixedPointSolve::FixedPointSolve().

685  {
687  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ setNeedToAddDefaultNonlinearConvergence()

void FEProblemBase::setNeedToAddDefaultNonlinearConvergence ( )
inlineinherited

Sets _need_to_add_default_nonlinear_convergence to true.

Definition at line 679 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

680  {
682  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ setNeedToAddDefaultSteadyStateConvergence()

void FEProblemBase::setNeedToAddDefaultSteadyStateConvergence ( )
inlineinherited

Sets _need_to_add_default_steady_state_convergence to true.

Definition at line 689 of file FEProblemBase.h.

Referenced by TransientBase::TransientBase().

690  {
692  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ setNeighborSubdomainID() [1/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setNeighborSubdomainID() [2/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
const THREAD_ID  tid 
)
virtualinherited

◆ setNonlinearConvergenceNames()

void FEProblemBase::setNonlinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the nonlinear convergence object name(s) if there is one.

Definition at line 9347 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9348 {
9349  if (convergence_names.size() != numNonlinearSystems())
9350  paramError("nonlinear_convergence",
9351  "There must be one convergence object per nonlinear system");
9352  _nonlinear_convergence_names = convergence_names;
9353 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:439
virtual std::size_t numNonlinearSystems() const override
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)

◆ setNonlocalCouplingMatrix()

void FEProblemBase::setNonlocalCouplingMatrix ( )
inherited

Set custom coupling matrix for variables requiring nonlocal contribution.

Definition at line 6303 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6304 {
6305  TIME_SECTION("setNonlocalCouplingMatrix", 5, "Setting Nonlocal Coupling Matrix");
6306 
6307  if (_nl.size() > 1)
6308  mooseError("Nonlocal kernels are weirdly stored on the FEProblem so we don't currently support "
6309  "multiple nonlinear systems with nonlocal kernels.");
6310 
6311  for (const auto nl_sys_num : index_range(_nl))
6312  {
6313  auto & nl = _nl[nl_sys_num];
6314  auto & nonlocal_cm = _nonlocal_cm[nl_sys_num];
6315  unsigned int n_vars = nl->nVariables();
6316  nonlocal_cm.resize(n_vars);
6317  const auto & vars = nl->getVariables(0);
6318  const auto & nonlocal_kernel = _nonlocal_kernels.getObjects();
6319  const auto & nonlocal_integrated_bc = _nonlocal_integrated_bcs.getObjects();
6320  for (const auto & ivar : vars)
6321  {
6322  for (const auto & kernel : nonlocal_kernel)
6323  {
6324  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6325  if (i == kernel->variable().number())
6326  for (const auto & jvar : vars)
6327  {
6328  const auto it = _var_dof_map.find(jvar->name());
6329  if (it != _var_dof_map.end())
6330  {
6331  unsigned int j = jvar->number();
6332  nonlocal_cm(i, j) = 1;
6333  }
6334  }
6335  }
6336  for (const auto & integrated_bc : nonlocal_integrated_bc)
6337  {
6338  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6339  if (i == integrated_bc->variable().number())
6340  for (const auto & jvar : vars)
6341  {
6342  const auto it = _var_dof_map.find(jvar->name());
6343  if (it != _var_dof_map.end())
6344  {
6345  unsigned int j = jvar->number();
6346  nonlocal_cm(i, j) = 1;
6347  }
6348  }
6349  }
6350  }
6351  }
6352 }
char ** vars
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
unsigned int n_vars
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
auto index_range(const T &sizable)
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ setParallelBarrierMessaging()

void FEProblemBase::setParallelBarrierMessaging ( bool  flag)
inlineinherited

Toggle parallel barrier messaging (defaults to on).

Definition at line 2015 of file FEProblemBase.h.

2015 { _parallel_barrier_messaging = flag; }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.

◆ setPostprocessorValueByName()

void FEProblemBase::setPostprocessorValueByName ( const PostprocessorName &  name,
const PostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a PostprocessorValue.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for setting values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

WARNING! This method should be used with caution. It exists to allow Transfers and other similar objects to modify Postprocessor values. It is not intended for general use.

Definition at line 4618 of file FEProblemBase.C.

Referenced by MultiAppPostprocessorTransfer::execute(), PIDTransientControl::execute(), FEProblemBase::joinAndFinalize(), SecantSolve::transformPostprocessors(), SteffensenSolve::transformPostprocessors(), and PicardSolve::transformPostprocessors().

4621 {
4623  PostprocessorReporterName(name), value, t_index);
4624 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ setPreserveMatrixSparsityPattern()

void FEProblemBase::setPreserveMatrixSparsityPattern ( bool  preserve)
inherited

Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved.

This global setting can be retrieved by kernels, notably those using AD, to decide whether to take additional care to preserve the sparsity pattern

Definition at line 3928 of file FEProblemBase.C.

3929 {
3930  if (_ignore_zeros_in_jacobian && preserve)
3931  paramWarning(
3932  "ignore_zeros_in_jacobian",
3933  "We likely cannot preserve the sparsity pattern if ignoring zeros in the Jacobian, which "
3934  "leads to removing those entries from the Jacobian sparsity pattern");
3936 }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.
bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...
void paramWarning(const std::string &param, Args... args) const
Emits a warning prefixed with the file and line number of the given param (from the input file) along...
Definition: MooseBase.h:446

◆ setResidual() [1/2]

virtual void SubProblem::setResidual ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidual() [2/2]

void FEProblemBase::setResidual ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1942 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1943 {
1944  _assembly[tid][_current_nl_sys->number()]->setResidual(
1945  residual,
1947  getVectorTag(_nl[_current_nl_sys->number()]->residualVectorTag()));
1948  if (_displaced_problem)
1949  _displaced_problem->setResidual(residual, tid);
1950 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ setResidualNeighbor() [1/2]

virtual void SubProblem::setResidualNeighbor ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidualNeighbor() [2/2]

void FEProblemBase::setResidualNeighbor ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1953 of file FEProblemBase.C.

1954 {
1955  _assembly[tid][_current_nl_sys->number()]->setResidualNeighbor(
1957  if (_displaced_problem)
1958  _displaced_problem->setResidualNeighbor(residual, tid);
1959 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
TagID residualVectorTag() const override
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ setRestartFile()

void FEProblemBase::setRestartFile ( const std::string &  file_name)
inherited

Communicate to the Resurector the name of the restart filer.

Parameters
file_nameThe file name for restarting from

Definition at line 8859 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and FEProblemBase::FEProblemBase().

8860 {
8861  if (_app.isRecovering())
8862  {
8863  mooseInfo("Restart file ", file_name, " is NOT being used since we are performing recovery.");
8864  }
8865  else
8866  {
8867  _app.setRestart(true);
8868  _app.setRestartRecoverFileBase(file_name);
8869  mooseInfo("Using ", file_name, " for restart.");
8870  }
8871 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:321
void setRestartRecoverFileBase(const std::string &file_base)
mutator for recover_base (set by RecoverBaseAction)
Definition: MooseApp.h:506
void setRestart(bool value)
Sets the restart/recover flags.
Definition: MooseApp.C:2952
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1841

◆ setSNESMFReuseBase()

void FEProblemBase::setSNESMFReuseBase ( bool  reuse,
bool  set_by_user 
)
inlineinherited

If or not to reuse the base vector for matrix-free calculation.

Definition at line 2301 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2302  {
2303  _snesmf_reuse_base = reuse, _snesmf_reuse_base_set_by_user = set_by_user;
2304  }
bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ setSteadyStateConvergenceName()

void FEProblemBase::setSteadyStateConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the steady-state detection convergence object name if there is one.

Definition at line 9362 of file FEProblemBase.C.

Referenced by TransientBase::TransientBase().

9363 {
9364  _steady_state_convergence_name = convergence_name;
9365 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ setUDotDotOldRequested()

virtual void FEProblemBase::setUDotDotOldRequested ( const bool  u_dotdot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution second time derivative.

Definition at line 2349 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2350  {
2351  _u_dotdot_old_requested = u_dotdot_old_requested;
2352  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.

◆ setUDotDotRequested()

virtual void FEProblemBase::setUDotDotRequested ( const bool  u_dotdot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution second time derivative.

Definition at line 2337 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2338  {
2339  _u_dotdot_requested = u_dotdot_requested;
2340  }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ setUDotOldRequested()

virtual void FEProblemBase::setUDotOldRequested ( const bool  u_dot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution time derivative.

Definition at line 2343 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2344  {
2345  _u_dot_old_requested = u_dot_old_requested;
2346  }
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ setUDotRequested()

virtual void FEProblemBase::setUDotRequested ( const bool  u_dot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution time derivative.

Definition at line 2334 of file FEProblemBase.h.

Referenced by TimeIntegrator::TimeIntegrator().

2334 { _u_dot_requested = u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ setupDampers()

void FEProblemBase::setupDampers ( )
inherited

Definition at line 5366 of file FEProblemBase.C.

5367 {
5368  for (auto & nl : _nl)
5369  nl->setupDampers();
5370 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ setUseNonlinear()

virtual void FEProblem::setUseNonlinear ( bool  use_nonlinear)
inlinevirtual

Definition at line 28 of file FEProblem.h.

28 { _use_nonlinear = use_nonlinear; }
bool _use_nonlinear
Definition: FEProblem.h:38

◆ setVariableAllDoFMap()

void FEProblemBase::setVariableAllDoFMap ( const std::vector< const MooseVariableFEBase *> &  moose_vars)
inherited

Definition at line 1716 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

1717 {
1718  for (unsigned int i = 0; i < moose_vars.size(); ++i)
1719  {
1720  VariableName var_name = moose_vars[i]->name();
1721  auto & sys = _solver_systems[moose_vars[i]->sys().number()];
1722  sys->setVariableGlobalDoFs(var_name);
1723  _var_dof_map[var_name] = sys->getVariableGlobalDoFs();
1724  }
1725 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674

◆ setVectorPostprocessorValueByName()

void FEProblemBase::setVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
const VectorPostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a VectorPostprocessor vector.

Parameters
object_nameThe name of the VPP object
vector_nameThe name of the declared vector
valueThe data to apply to the vector
t_indexFlag for getting current (0), old (1), or older (2) values

Definition at line 4644 of file FEProblemBase.C.

4648 {
4650  VectorPostprocessorReporterName(object_name, vector_name), value, t_index);
4651 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ setVerboseProblem()

void FEProblemBase::setVerboseProblem ( bool  verbose)
inherited

Make the problem be verbose.

Definition at line 9532 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and PhysicsBase::initializePhysics().

9533 {
9534  _verbose_setup = verbose ? "true" : "false";
9535  _verbose_multiapps = verbose;
9536  _verbose_restore = verbose;
9537 }
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ shouldPrintExecution()

bool FEProblemBase::shouldPrintExecution ( const THREAD_ID  tid) const
inherited

Check whether the problem should output execution orders at this time.

Definition at line 9474 of file FEProblemBase.C.

Referenced by FEProblemBase::joinAndFinalize(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

9475 {
9476  // For now, only support printing from thread 0
9477  if (tid != 0)
9478  return false;
9479 
9482  return true;
9483  else
9484  return false;
9485 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_ALWAYS
Definition: Moose.C:51
ExecFlagEnum _print_execution_on
When to print the execution of loops.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.

◆ shouldSolve()

bool FEProblemBase::shouldSolve ( ) const
inlineinherited

Definition at line 2385 of file FEProblemBase.h.

Referenced by FEProblemSolve::solve(), MFEMProblemSolve::solve(), and TransientBase::TransientBase().

2385 { return _solve; }
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ shouldUpdateSolution()

bool FEProblemBase::shouldUpdateSolution ( )
virtualinherited

Check to see whether the problem should update the solution.

Returns
true if the problem should update the solution, false otherwise

Definition at line 7970 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck(), and NonlinearSystem::solve().

7971 {
7972  return false;
7973 }

◆ showInvalidSolutionConsole()

bool FEProblemBase::showInvalidSolutionConsole ( ) const
inlineinherited

Whether or not to print out the invalid solutions summary table in console.

Definition at line 2179 of file FEProblemBase.h.

Referenced by SolverSystem::checkInvalidSolution().

const bool _show_invalid_solution_console

◆ sizeZeroes()

void FEProblemBase::sizeZeroes ( unsigned int  size,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2144 of file FEProblemBase.C.

2145 {
2146  mooseDoOnce(mooseWarning(
2147  "This function is deprecated and no longer performs any function. Please do not call it."));
2148 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:299

◆ skipExceptionCheck()

void FEProblemBase::skipExceptionCheck ( bool  skip_exception_check)
inlineinherited

Set a flag that indicates if we want to skip exception and stop solve.

Definition at line 2314 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2315  {
2316  _skip_exception_check = skip_exception_check;
2317  }
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.

◆ solve()

void FEProblemBase::solve ( const unsigned int  nl_sys_num)
virtualinherited

Reimplemented in DumpObjectsProblem, EigenProblem, and ExternalProblem.

Definition at line 6574 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), and AB2PredictorCorrector::step().

6575 {
6576  TIME_SECTION("solve", 1, "Solving", false);
6577 
6578  setCurrentNonlinearSystem(nl_sys_num);
6579 
6580  // This prevents stale dof indices from lingering around and possibly leading to invalid reads
6581  // and writes. Dof indices may be made stale through operations like mesh adaptivity
6583  if (_displaced_problem)
6584  _displaced_problem->clearAllDofIndices();
6585 
6586  // Setup the output system for printing linear/nonlinear iteration information and some solver
6587  // settings, including setting matrix prefixes. This must occur before petscSetOptions
6589 
6590 #if PETSC_RELEASE_LESS_THAN(3, 12, 0)
6592  _petsc_options, _solver_params); // Make sure the PETSc options are setup for this app
6593 #else
6594  // Now this database will be the default
6595  // Each app should have only one database
6596  if (!_app.isUltimateMaster())
6597  LibmeshPetscCall(PetscOptionsPush(_petsc_option_data_base));
6598  // We did not add PETSc options to database yet
6600  {
6601  // Insert options for all systems all at once
6604  }
6605 #endif
6606 
6607  // set up DM which is required if use a field split preconditioner
6608  // We need to setup DM every "solve()" because libMesh destroy SNES after solve()
6609  // Do not worry, DM setup is very cheap
6611 
6613 
6614  // reset flag so that residual evaluation does not get skipped
6615  // and the next non-linear iteration does not automatically fail with
6616  // "DIVERGED_NANORINF", when we throw an exception and stop solve
6618 
6619  if (_solve)
6620  {
6623  }
6624 
6625  // sync solutions in displaced problem
6626  if (_displaced_problem)
6627  _displaced_problem->syncSolutions();
6628 
6629 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
6630  if (!_app.isUltimateMaster())
6631  LibmeshPetscCall(PetscOptionsPop());
6632 #endif
6633 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
std::vector< SolverParams > _solver_params
void setupDM()
Setup the PETSc DM object (when appropriate)
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
PetscOptions _petsc_option_data_base
void clearAllDofIndices()
Clear dof indices from variables in nl and aux systems.
Definition: SubProblem.C:1177
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
const bool & _solve
Whether or not to actually solve the nonlinear system.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
A function for setting the PETSc options in PETSc from the options supplied to MOOSE.
Definition: PetscSupport.C:230
virtual void solve() override=0
Solve the system (using libMesh magic)
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _fail_next_system_convergence_check
virtual void possiblyRebuildGeomSearchPatches()
Moose::PetscSupport::PetscOptions _petsc_options
PETSc option storage.

◆ solveLinearSystem()

void FEProblemBase::solveLinearSystem ( const unsigned int  linear_sys_num,
const Moose::PetscSupport::PetscOptions po = nullptr 
)
virtualinherited

Build and solve a linear system.

Parameters
linear_sys_numThe number of the linear system (1,..,num. of lin. systems)
poThe petsc options for the solve, if not supplied, the defaults are used

Reimplemented in DumpObjectsProblem.

Definition at line 6732 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

6734 {
6735  TIME_SECTION("solve", 1, "Solving", false);
6736 
6737  setCurrentLinearSystem(linear_sys_num);
6738 
6739  const Moose::PetscSupport::PetscOptions & options = po ? *po : _petsc_options;
6740  auto & solver_params = _solver_params[numNonlinearSystems() + linear_sys_num];
6741 
6742  // Set custom convergence criteria
6744 
6745 #if PETSC_RELEASE_LESS_THAN(3, 12, 0)
6746  LibmeshPetscCall(Moose::PetscSupport::petscSetOptions(
6747  options, solver_params)); // Make sure the PETSc options are setup for this app
6748 #else
6749  // Now this database will be the default
6750  // Each app should have only one database
6751  if (!_app.isUltimateMaster())
6752  LibmeshPetscCall(PetscOptionsPush(_petsc_option_data_base));
6753 
6754  // We did not add PETSc options to database yet
6756  {
6757  Moose::PetscSupport::petscSetOptions(options, solver_params, this);
6759  }
6760 #endif
6761 
6762  if (_solve)
6764 
6765 #if !PETSC_RELEASE_LESS_THAN(3, 12, 0)
6766  if (!_app.isUltimateMaster())
6767  LibmeshPetscCall(PetscOptionsPop());
6768 #endif
6769 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:820
virtual std::size_t numNonlinearSystems() const override
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:450
std::vector< SolverParams > _solver_params
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.
A struct for storing the various types of petsc options and values.
Definition: PetscSupport.h:44
PetscOptions _petsc_option_data_base
const bool & _solve
Whether or not to actually solve the nonlinear system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
virtual void solve() override
Solve the system (using libMesh magic)
Definition: LinearSystem.C:299
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
A function for setting the PETSc options in PETSc from the options supplied to MOOSE.
Definition: PetscSupport.C:230
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
Moose::PetscSupport::PetscOptions _petsc_options
PETSc option storage.

◆ solverParams() [1/2]

SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0)
inherited

Get the solver parameters.

Definition at line 8891 of file FEProblemBase.C.

Referenced by NonlinearEigenSystem::attachPreconditioner(), SolverSystem::compute(), SlepcEigenSolverConfiguration::configure_solver(), Eigenvalue::Eigenvalue(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), FEProblemSolve::FEProblemSolve(), ExplicitTimeIntegrator::init(), EigenProblem::init(), FEProblemBase::init(), EigenProblem::isNonlinearEigenvalueSolver(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), ConsoleUtils::outputExecutionInformation(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), Eigenvalue::prepareSolverOptions(), NonlinearSystem::residualAndJacobianTogether(), Moose::SlepcSupport::setEigenProblemSolverParams(), Moose::PetscSupport::setLineSearchFromParams(), Moose::PetscSupport::setMFFDTypeFromParams(), Moose::PetscSupport::setSinglePetscOption(), Moose::PetscSupport::setSolveTypeFromParams(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), EigenProblem::solve(), FEProblemBase::solverParams(), EigenProblem::solverTypeString(), FEProblemBase::solverTypeString(), and Moose::SlepcSupport::storeSolveType().

8892 {
8893  mooseAssert(solver_sys_num < numSolverSystems(),
8894  "Solver system number '" << solver_sys_num << "' is out of bounds. We have '"
8895  << numSolverSystems() << "' solver systems");
8896  return _solver_params[solver_sys_num];
8897 }
std::vector< SolverParams > _solver_params
virtual std::size_t numSolverSystems() const override

◆ solverParams() [2/2]

const SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0) const
inherited

const version

Definition at line 8900 of file FEProblemBase.C.

8901 {
8902  return const_cast<FEProblemBase *>(this)->solverParams(solver_sys_num);
8903 }
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ solverSysNum()

unsigned int FEProblemBase::solverSysNum ( const SolverSystemName &  solver_sys_name) const
overridevirtualinherited
Returns
the solver system number corresponding to the provided solver_sys_name

Implements SubProblem.

Definition at line 6539 of file FEProblemBase.C.

Referenced by FEProblemBase::addVariable(), FEProblemBase::getSystemBase(), MultiSystemSolveObject::MultiSystemSolveObject(), and DisplacedProblem::solverSysNum().

6540 {
6541  std::istringstream ss(solver_sys_name);
6542  unsigned int solver_sys_num;
6543  if (!(ss >> solver_sys_num) || !ss.eof())
6544  {
6545  const auto & search = _solver_sys_name_to_num.find(solver_sys_name);
6546  if (search == _solver_sys_name_to_num.end())
6547  mooseError("The solver system number was requested for system '" + solver_sys_name,
6548  "' but this system does not exist in the Problem. Systems can be added to the "
6549  "problem using the 'nl_sys_names'/'linear_sys_names' parameter.\nSystems in the "
6550  "Problem: " +
6552  solver_sys_num = search->second;
6553  }
6554 
6555  return solver_sys_num;
6556 }
std::map< SolverSystemName, unsigned int > _solver_sys_name_to_num
Map connecting solver system names with their respective systems.
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ solverSystemConverged()

bool FEProblemBase::solverSystemConverged ( const unsigned int  sys_num)
overridevirtualinherited
Returns
whether the given solver system sys_num is converged

Reimplemented from SubProblem.

Reimplemented in EigenProblem.

Definition at line 6772 of file FEProblemBase.C.

6773 {
6774  if (_solve)
6775  return _solver_systems[sys_num]->converged();
6776  else
6777  return true;
6778 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ solverTypeString()

std::string FEProblemBase::solverTypeString ( unsigned int  solver_sys_num = 0)
virtualinherited

Return solver type as a human readable string.

Reimplemented in MFEMProblem, and EigenProblem.

Definition at line 9653 of file FEProblemBase.C.

Referenced by ConsoleUtils::outputExecutionInformation().

9654 {
9655  return Moose::stringify(solverParams(solver_sys_num)._type);
9656 }
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
const std::string & _type
The type of this class.
Definition: MooseBase.h:360

◆ startedInitialSetup()

virtual bool FEProblemBase::startedInitialSetup ( )
inlinevirtualinherited

Returns true if we are in or beyond the initialSetup stage.

Definition at line 536 of file FEProblemBase.h.

Referenced by NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), and MaterialPropertyInterface::checkExecutionStage().

536 { return _started_initial_setup; }
bool _started_initial_setup
At or beyond initialSteup stage.

◆ storeBoundaryDelayedCheckMatProp()

void SubProblem::storeBoundaryDelayedCheckMatProp ( const std::string &  requestor,
BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties to validate.

Parameters
requestorThe MOOSE object name requesting the material property
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 615 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

618 {
619  _map_boundary_material_props_check[boundary_id].insert(std::make_pair(requestor, name));
620 }
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ storeBoundaryMatPropName()

void SubProblem::storeBoundaryMatPropName ( BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on boundary ids.

This is method is called from within the Material class when the property is first registered.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 589 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

590 {
591  _map_boundary_material_props[boundary_id].insert(name);
592 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ storeBoundaryZeroMatProp()

void SubProblem::storeBoundaryZeroMatProp ( BoundaryID  boundary_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 601 of file SubProblem.C.

Referenced by MaterialBase::storeBoundaryZeroMatProp().

602 {
603  _zero_boundary_material_props[boundary_id].insert(name);
604 }
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103

◆ storeSubdomainDelayedCheckMatProp()

void SubProblem::storeSubdomainDelayedCheckMatProp ( const std::string &  requestor,
SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on block ids of material properties to validate.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 607 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

610 {
611  _map_block_material_props_check[block_id].insert(std::make_pair(requestor, name));
612 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070

◆ storeSubdomainMatPropName()

void SubProblem::storeSubdomainMatPropName ( SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on block ids.

This is method is called from within the Material class when the property is first registered.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 583 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

584 {
585  _map_block_material_props[block_id].insert(name);
586 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ storeSubdomainZeroMatProp()

void SubProblem::storeSubdomainZeroMatProp ( SubdomainID  block_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on block ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 595 of file SubProblem.C.

Referenced by MaterialBase::storeSubdomainZeroMatProp().

596 {
597  _zero_block_material_props[block_id].insert(name);
598 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058

◆ subdomainSetup()

void FEProblemBase::subdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2507 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), ComputeUserObjectsThread::subdomainChanged(), and ThreadedFaceLoop< RangeType >::subdomainChanged().

2508 {
2509  _all_materials.subdomainSetup(subdomain, tid);
2510  // Call the subdomain methods of the output system, these are not threaded so only call it once
2511  if (tid == 0)
2513 
2514  for (auto & nl : _nl)
2515  nl->subdomainSetup(subdomain, tid);
2516 
2517  // FIXME: call displaced_problem->subdomainSetup() ?
2518  // When adding possibility with materials being evaluated on displaced mesh
2519 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void subdomainSetup()
Calls the subdomainSetup function for each of the output objects.
virtual void subdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482

◆ subspaceDim()

unsigned int FEProblemBase::subspaceDim ( const std::string &  prefix) const
inlineinherited

Dimension of the subspace spanned by vectors with a given prefix.

Parameters
prefixPrefix of the vectors spanning the subspace.

Definition at line 2057 of file FEProblemBase.h.

Referenced by FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), and FEProblemBase::computeTransposeNullSpace().

2058  {
2059  if (_subspace_dim.count(prefix))
2060  return _subspace_dim.find(prefix)->second;
2061  else
2062  return 0;
2063  }
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ swapBackMaterials()

void FEProblemBase::swapBackMaterials ( const THREAD_ID  tid)
virtualinherited

Definition at line 4330 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), LineMaterialSamplerBase< Real >::execute(), ComputeMarkerThread::onElement(), ComputeElemAuxVarsThread< AuxKernelType >::onElement(), ComputeIndicatorThread::onElement(), NonlinearThread::onElement(), and ComputeUserObjectsThread::onElement().

4331 {
4332  auto && elem = _assembly[tid][0]->elem();
4334 }
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ swapBackMaterialsFace()

void FEProblemBase::swapBackMaterialsFace ( const THREAD_ID  tid)
virtualinherited

Definition at line 4337 of file FEProblemBase.C.

Referenced by NonlinearThread::onBoundary(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4338 {
4339  auto && elem = _assembly[tid][0]->elem();
4340  unsigned int side = _assembly[tid][0]->side();
4341  _bnd_material_props.getMaterialData(tid).swapBack(*elem, side);
4342 }
MaterialPropertyStorage & _bnd_material_props
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ swapBackMaterialsNeighbor()

void FEProblemBase::swapBackMaterialsNeighbor ( const THREAD_ID  tid)
virtualinherited

Definition at line 4345 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4346 {
4347  // NOTE: this will not work with h-adaptivity
4348  const Elem * neighbor = _assembly[tid][0]->neighbor();
4349  unsigned int neighbor_side =
4350  neighbor ? neighbor->which_neighbor_am_i(_assembly[tid][0]->elem()) : libMesh::invalid_uint;
4351 
4352  if (!neighbor)
4353  {
4354  if (haveFV())
4355  {
4356  // If neighbor is null, then we're on the neighbor side of a mesh boundary, e.g. we're off
4357  // the mesh in ghost-land. If we're using the finite volume method, then variable values and
4358  // consequently material properties have well-defined values in this ghost region outside of
4359  // the mesh and we really do want to reinit our neighbor materials in this case. Since we're
4360  // off in ghost land it's safe to do swaps with `MaterialPropertyStorage` using the elem and
4361  // elem_side keys
4362  neighbor = _assembly[tid][0]->elem();
4363  neighbor_side = _assembly[tid][0]->side();
4364  mooseAssert(neighbor, "We should have an appropriate value for elem coming from Assembly");
4365  }
4366  else
4367  mooseError("neighbor is null in Assembly!");
4368  }
4369 
4370  _neighbor_material_props.getMaterialData(tid).swapBack(*neighbor, neighbor_side);
4371 }
const unsigned int invalid_uint
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ systemBaseAuxiliary() [1/2]

const SystemBase & FEProblemBase::systemBaseAuxiliary ( ) const
overridevirtualinherited

Return the auxiliary system object as a base class reference.

Implements SubProblem.

Definition at line 9198 of file FEProblemBase.C.

Referenced by PhysicsBase::copyVariablesFromMesh(), and MFEMProblem::getAuxVariableNames().

9199 {
9200  return *_aux;
9201 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseAuxiliary() [2/2]

SystemBase & FEProblemBase::systemBaseAuxiliary ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 9204 of file FEProblemBase.C.

9205 {
9206  return *_aux;
9207 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseLinear() [1/2]

const SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num) const
overridevirtualinherited

Get a constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 9166 of file FEProblemBase.C.

9167 {
9168  mooseAssert(sys_num < _linear_systems.size(),
9169  "System number greater than the number of linear systems");
9170  return *_linear_systems[sys_num];
9171 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseLinear() [2/2]

SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num)
overridevirtualinherited

Get a non-constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 9174 of file FEProblemBase.C.

9175 {
9176  mooseAssert(sys_num < _linear_systems.size(),
9177  "System number greater than the number of linear systems");
9178  return *_linear_systems[sys_num];
9179 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseNonlinear() [1/2]

const SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num) const
overridevirtualinherited

Return the nonlinear system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 9152 of file FEProblemBase.C.

9153 {
9154  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
9155  return *_nl[sys_num];
9156 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseNonlinear() [2/2]

SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 9159 of file FEProblemBase.C.

9160 {
9161  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
9162  return *_nl[sys_num];
9163 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseSolver() [1/2]

const SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num) const
overridevirtualinherited

Return the solver system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 9182 of file FEProblemBase.C.

9183 {
9184  mooseAssert(sys_num < _solver_systems.size(),
9185  "System number greater than the number of solver systems");
9186  return *_solver_systems[sys_num];
9187 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemBaseSolver() [2/2]

SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 9190 of file FEProblemBase.C.

9191 {
9192  mooseAssert(sys_num < _solver_systems.size(),
9193  "System number greater than the number of solver systems");
9194  return *_solver_systems[sys_num];
9195 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemNumForVariable()

unsigned int FEProblemBase::systemNumForVariable ( const VariableName &  variable_name) const
inherited
Returns
the system number for the provided variable_name Can be nonlinear or auxiliary

Definition at line 6559 of file FEProblemBase.C.

Referenced by FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::restoreOverriddenDofValues().

6560 {
6561  for (const auto & solver_sys : _solver_systems)
6562  if (solver_sys->hasVariable(variable_name))
6563  return solver_sys->number();
6564  mooseAssert(_aux, "Should have an auxiliary system");
6565  if (_aux->hasVariable(variable_name))
6566  return _aux->number();
6567 
6568  mooseError("Variable '",
6569  variable_name,
6570  "' was not found in any solver (nonlinear/linear) or auxiliary system");
6571 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ terminateSolve()

virtual void Problem::terminateSolve ( )
inlinevirtualinherited

Allow objects to request clean termination of the solve.

Definition at line 37 of file Problem.h.

Referenced by WebServerControl::execute(), Terminator::execute(), and TerminateChainControl::terminate().

37 { _termination_requested = true; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ theWarehouse()

TheWarehouse& FEProblemBase::theWarehouse ( ) const
inlineinherited

Definition at line 2296 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), NonlinearSystemBase::addKernel(), NonlinearSystemBase::addNodalKernel(), FEProblemBase::addObject(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), FEProblemBase::addUserObject(), NonlinearSystemBase::checkKernelCoverage(), FEProblemBase::checkUserObjectJacobianRequirement(), FEProblemBase::checkUserObjects(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), LinearSystem::containsTimeKernel(), NonlinearSystemBase::customSetup(), FEProblemBase::customSetup(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), FEProblemBase::executeSamplers(), ComputeLinearFVElementalThread::fetchBlockSystemContributionObjects(), ComputeLinearFVFaceThread::fetchBlockSystemContributionObjects(), FEProblemBase::getDistribution(), FEProblemBase::getMortarUserObjects(), FEProblemBase::getPositionsObject(), FEProblemBase::getSampler(), CompositionDT::getTimeSteppers(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), FEProblemBase::hasUserObject(), SideFVFluxBCIntegral::initialSetup(), ExplicitTimeIntegrator::initialSetup(), LinearSystem::initialSetup(), NonlinearSystemBase::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needInternalNeighborSideMaterial(), JSONOutput::outputReporters(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), ComputeLinearFVElementalThread::setupSystemContributionObjects(), ComputeLinearFVFaceThread::setupSystemContributionObjects(), NonlinearThread::subdomainChanged(), NonlinearSystemBase::timestepSetup(), and FEProblemBase::timestepSetup().

2296 { return _app.theWarehouse(); }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
TheWarehouse & theWarehouse()
Definition: MooseApp.h:137

◆ time()

virtual Real& FEProblemBase::time ( ) const
inlinevirtualinherited

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeOld()

virtual Real& FEProblemBase::timeOld ( ) const
inlinevirtualinherited

◆ timeStep()

virtual int& FEProblemBase::timeStep ( ) const
inlinevirtualinherited

◆ timestepSetup()

void FEProblemBase::timestepSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1523 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), Eigenvalue::execute(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), and TransientBase::takeStep().

1524 {
1526 
1527  if (_t_step > 1 && _num_grid_steps)
1528  {
1529  libMesh::MeshRefinement mesh_refinement(_mesh);
1530  std::unique_ptr<libMesh::MeshRefinement> displaced_mesh_refinement(nullptr);
1531  if (_displaced_mesh)
1532  displaced_mesh_refinement = std::make_unique<libMesh::MeshRefinement>(*_displaced_mesh);
1533 
1534  for (MooseIndex(_num_grid_steps) i = 0; i < _num_grid_steps; ++i)
1535  {
1536  if (_displaced_problem)
1537  // If the DisplacedProblem is active, undisplace the DisplacedMesh in preparation for
1538  // refinement. We can't safely refine the DisplacedMesh directly, since the Hilbert keys
1539  // computed on the inconsistenly-displaced Mesh are different on different processors,
1540  // leading to inconsistent Hilbert keys. We must do this before the undisplaced Mesh is
1541  // coarsensed, so that the element and node numbering is still consistent. We also have to
1542  // make sure this is done during every step of coarsening otherwise different partitions
1543  // will be generated for the reference and displaced meshes (even for replicated)
1544  _displaced_problem->undisplaceMesh();
1545 
1546  mesh_refinement.uniformly_coarsen();
1547  if (_displaced_mesh)
1548  displaced_mesh_refinement->uniformly_coarsen();
1549 
1550  // Mark this as an intermediate change because we do not yet want to reinit_systems. E.g. we
1551  // need things to happen in the following order for the undisplaced problem:
1552  // u1) EquationSystems::reinit_solutions. This will restrict the solution vectors and then
1553  // contract the mesh
1554  // u2) MooseMesh::meshChanged. This will update the node/side lists and other
1555  // things which needs to happen after the contraction
1556  // u3) GeometricSearchData::reinit. Once the node/side lists are updated we can perform our
1557  // geometric searches which will aid in determining sparsity patterns
1558  //
1559  // We do these things for the displaced problem (if it exists)
1560  // d1) EquationSystems::reinit. Restrict the displaced problem vector copies and then contract
1561  // the mesh. It's safe to do a full reinit with the displaced because there are no
1562  // matrices that sparsity pattern calculations will be conducted for
1563  // d2) MooseMesh::meshChanged. This will update the node/side lists and other
1564  // things which needs to happen after the contraction
1565  // d3) UpdateDisplacedMeshThread::operator(). Re-displace the mesh using the *displaced*
1566  // solution vector copy because we don't know the state of the reference solution vector.
1567  // It's safe to use the displaced copy because we are outside of a non-linear solve,
1568  // and there is no concern about differences between solution and current_local_solution
1569  // d4) GeometricSearchData::reinit. With the node/side lists updated and the mesh
1570  // re-displaced, we can perform our geometric searches, which will aid in determining the
1571  // sparsity pattern of the matrix held by the libMesh::ImplicitSystem held by the
1572  // NonlinearSystem held by this
1573  meshChanged(
1574  /*intermediate_change=*/true, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
1575  }
1576 
1577  // u4) Now that all the geometric searches have been done (both undisplaced and displaced),
1578  // we're ready to update the sparsity pattern
1579  es().reinit_systems();
1580  }
1581 
1582  if (_line_search)
1583  _line_search->timestepSetup();
1584 
1585  // Random interface objects
1586  for (const auto & it : _random_data_objects)
1587  it.second->updateSeeds(EXEC_TIMESTEP_BEGIN);
1588 
1589  unsigned int n_threads = libMesh::n_threads();
1590  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1591  {
1594  }
1595 
1596  _aux->timestepSetup();
1597  for (auto & sys : _solver_systems)
1598  sys->timestepSetup();
1599 
1600  if (_displaced_problem)
1601  // timestepSetup for displaced systems
1602  _displaced_problem->timestepSetup();
1603 
1604  for (THREAD_ID tid = 0; tid < n_threads; tid++)
1605  {
1608  _markers.timestepSetup(tid);
1609  }
1610 
1611  std::vector<UserObject *> userobjs;
1612  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
1613  for (auto obj : userobjs)
1614  obj->timestepSetup();
1615 
1616  // Timestep setup of output objects
1618 
1621  _has_nonlocal_coupling = true;
1622 }
virtual void meshChanged()
Deprecated.
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
virtual void timestepSetup(THREAD_ID tid=0) const
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
unsigned int _num_grid_steps
Number of steps in a grid sequence.
virtual void reinit_systems()
TheWarehouse & theWarehouse() const
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
virtual void timestepSetup(THREAD_ID tid=0) const
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
MooseObjectWarehouse< Indicator > _indicators
virtual void timestepSetup()
Definition: SubProblem.C:1185
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
void timestepSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2482
MooseMesh * _displaced_mesh
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
std::shared_ptr< LineSearch > _line_search
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ transient()

virtual void FEProblemBase::transient ( bool  trans)
inlinevirtualinherited

Definition at line 551 of file FEProblemBase.h.

Referenced by EigenExecutionerBase::EigenExecutionerBase(), and TransientBase::TransientBase().

551 { _transient = trans; }

◆ trustUserCouplingMatrix()

void FEProblemBase::trustUserCouplingMatrix ( )
inherited

Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix.

See https://github.com/idaholab/moose/issues/16395 for detailed background

Definition at line 6293 of file FEProblemBase.C.

Referenced by SingleMatrixPreconditioner::SingleMatrixPreconditioner().

6294 {
6296  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6297  "haven't been provided a coupling matrix!");
6298 
6300 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ type()

const std::string& MooseBase::type ( ) const
inlineinherited

Get the type of this class.

Returns
the name of the type of this class

Definition at line 93 of file MooseBase.h.

Referenced by CreateProblemDefaultAction::act(), SetupDebugAction::act(), MaterialDerivativeTestAction::act(), MaterialOutputAction::act(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConvergence(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), MFEMProblem::addFunction(), FEProblemBase::addFunction(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), MeshGenerator::addMeshSubgenerator(), FEProblemBase::addObject(), MFEMProblem::addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addTimeIntegrator(), MooseServer::addValuesToList(), DisplacedProblem::addVectorTag(), SubProblem::addVectorTag(), FEProblemBase::advanceMultiApps(), MooseApp::appendMeshGenerator(), AuxKernelTempl< Real >::AuxKernelTempl(), FEProblemBase::backupMultiApps(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BoundaryPreservedMarker::BoundaryPreservedMarker(), DistributedRectilinearMeshGenerator::buildCube(), MooseMesh::buildHRefinementAndCoarseningMaps(), MooseMesh::buildLowerDMesh(), MooseMesh::buildPRefinementAndCoarseningMaps(), PhysicsBase::checkComponentType(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), ADDGKernel::computeElemNeighJacobian(), DGKernel::computeElemNeighJacobian(), ElemElemConstraint::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighJacobian(), ADDGKernel::computeElemNeighResidual(), DGKernel::computeElemNeighResidual(), ElemElemConstraint::computeElemNeighResidual(), ArrayDGKernel::computeElemNeighResidual(), LowerDIntegratedBC::computeLowerDJacobian(), ArrayLowerDIntegratedBC::computeLowerDJacobian(), DGLowerDKernel::computeLowerDJacobian(), ArrayDGLowerDKernel::computeLowerDJacobian(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayHFEMDirichletBC::computeLowerDQpJacobian(), ArrayHFEMDiffusion::computeLowerDQpJacobian(), HFEMDirichletBC::computeLowerDQpJacobian(), HFEMDiffusion::computeLowerDQpJacobian(), ArrayHFEMDirichletBC::computeLowerDQpOffDiagJacobian(), HFEMDirichletBC::computeLowerDQpOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDQpOffDiagJacobian(), ArrayDGLowerDKernel::computeLowerDQpOffDiagJacobian(), FEProblemBase::computeMultiAppsDT(), ADDGKernel::computeOffDiagElemNeighJacobian(), DGKernel::computeOffDiagElemNeighJacobian(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), DGConvection::computeQpJacobian(), ScalarKernel::computeQpJacobian(), InterfaceDiffusion::computeQpJacobian(), InterfaceReaction::computeQpJacobian(), ArrayDGDiffusion::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), DGDiffusion::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), HFEMTestJump::computeQpOffDiagJacobian(), HFEMTrialJump::computeQpOffDiagJacobian(), ArrayDGKernel::computeQpOffDiagJacobian(), ArrayHFEMDiffusion::computeQpResidual(), DGConvection::computeQpResidual(), HFEMDiffusion::computeQpResidual(), ScalarKernel::computeQpResidual(), InterfaceDiffusion::computeQpResidual(), ADMatInterfaceReaction::computeQpResidual(), InterfaceReaction::computeQpResidual(), ADDGAdvection::computeQpResidual(), ArrayDGDiffusion::computeQpResidual(), CoupledTiedValueConstraint::computeQpResidual(), TiedValueConstraint::computeQpResidual(), LinearNodalConstraint::computeQpResidual(), DGDiffusion::computeQpResidual(), ADDGDiffusion::computeQpResidual(), HFEMTrialJump::computeQpResidual(), EqualValueBoundaryConstraint::computeQpResidual(), HFEMTestJump::computeQpResidual(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), FEProblemBase::computeUserObjectsInternal(), DisplacedProblem::createQRules(), FEProblemBase::createQRules(), MooseApp::createRecoverablePerfGraph(), DumpObjectsProblem::deduceNecessaryParameters(), DumpObjectsProblem::dumpObjectHelper(), FEProblemBase::duplicateVariableCheck(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), FEProblemBase::execTransfers(), WebServerControl::execute(), SteadyBase::execute(), ActionWarehouse::executeActionsWithAction(), FEProblemBase::finishMultiAppStep(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), MooseServer::gatherDocumentReferencesLocations(), Boundary2DDelaunayGenerator::General2DDelaunay(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), Boundary2DDelaunayGenerator::generate(), PatternedMeshGenerator::generate(), MeshGenerator::generateInternal(), MultiAppTransfer::getAppInfo(), TransfiniteMeshGenerator::getEdge(), ElementGenerator::getElemType(), MooseServer::getInputLookupDefinitionNodes(), FEProblemBase::getMaterial(), FEProblemBase::getMaterialData(), FEProblemBase::getMaterialPropertyStorageConsumers(), MaterialOutputAction::getParams(), ReporterData::getReporterInfo(), FEProblemBase::getTransfers(), DisplacedProblem::getVectorTags(), SubProblem::getVectorTags(), CommonOutputAction::hasConsole(), FEProblemBase::hasMultiApps(), AdvancedOutput::hasOutput(), FEProblemBase::incrementMultiAppTStep(), AdvancedOutput::initAvailableLists(), FunctorPositions::initialize(), FunctorTimes::initialize(), MultiAppConservativeTransfer::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), LinearFVDiffusion::initialSetup(), LinearFVAdvection::initialSetup(), ArrayDGDiffusion::initQpResidual(), AdvancedOutput::initShowHideLists(), RelationshipManager::isType(), FEProblemBase::logAdd(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MFEMProblem::mesh(), MooseObject::MooseObject(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), DisplacedProblem::numVectorTags(), SubProblem::numVectorTags(), Console::output(), AdvancedOutput::output(), ConsoleUtils::outputExecutionInformation(), SampledOutput::outputStep(), Output::outputStep(), FEProblemBase::outputStep(), MooseServer::parseDocumentForDiagnostics(), MooseMesh::prepare(), ProjectedStatefulMaterialStorageAction::processProperty(), MooseApp::recursivelyCreateExecutors(), SolutionInvalidInterface::registerInvalidSolutionInternal(), FEProblemBase::restoreMultiApps(), MeshRepairGenerator::separateSubdomainsByElementType(), FEProblemBase::setCoupling(), MooseApp::setupOptions(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), WebServerControl::startServer(), Reporter::store(), MooseBase::typeAndName(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), DisplacedProblem::updateGeomSearch(), FEProblemBase::updateGeomSearch(), UserObjectInterface::userObjectType(), and AdvancedOutput::wantOutput().

94  {
95  mooseAssert(_type.size(), "Empty type");
96  return _type;
97  }
const std::string & _type
The type of this class.
Definition: MooseBase.h:360

◆ typeAndName()

std::string MooseBase::typeAndName ( ) const
inherited

Get the class's combined type and name; useful in error handling.

Returns
The type and name of this class in the form '<type()> "<name()>"'.

Definition at line 57 of file MooseBase.C.

Referenced by FEProblemBase::addPostprocessor(), MaterialPropertyStorage::addProperty(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MeshGeneratorSystem::dataDrivenError(), ReporterContext< std::vector< T > >::finalize(), and ReporterData::getReporterInfo().

58 {
59  return type() + std::string(" \"") + name() + std::string("\"");
60 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93

◆ uDotDotOldRequested()

virtual bool FEProblemBase::uDotDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution second time derivative needs to be stored.

Definition at line 2372 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2373  {
2375  mooseError("FEProblemBase: When requesting old second time derivative of solution, current "
2376  "second time derivation of solution should also be stored. Please set "
2377  "`u_dotdot_requested` to true using setUDotDotRequested.");
2378  return _u_dotdot_old_requested;
2379  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotDotRequested()

virtual bool FEProblemBase::uDotDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution second time derivative needs to be stored.

Definition at line 2358 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors(), and FEProblemBase::addTimeIntegrator().

2358 { return _u_dotdot_requested; }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotOldRequested()

virtual bool FEProblemBase::uDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution time derivative needs to be stored.

Definition at line 2361 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2362  {
2364  mooseError("FEProblemBase: When requesting old time derivative of solution, current time "
2365  "derivative of solution should also be stored. Please set `u_dot_requested` to "
2366  "true using setUDotRequested.");
2367 
2368  return _u_dot_old_requested;
2369  }
bool _u_dot_requested
Whether solution time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ uDotRequested()

virtual bool FEProblemBase::uDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution time derivative needs to be stored.

Definition at line 2355 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2355 { return _u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ uniformRefine()

void FEProblemBase::uniformRefine ( )
inherited

uniformly refine the problem mesh(es).

This will also prolong the the solution, and in order for that to be safe, we can only perform one refinement at a time

Definition at line 9228 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

9229 {
9230  // ResetDisplacedMeshThread::onNode looks up the reference mesh by ID, so we need to make sure
9231  // we undisplace before adapting the reference mesh
9232  if (_displaced_problem)
9233  _displaced_problem->undisplaceMesh();
9234 
9236  if (_displaced_problem)
9238 
9239  meshChanged(
9240  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
9241 }
virtual void meshChanged()
Deprecated.
static void uniformRefine(MooseMesh *mesh, unsigned int level=libMesh::invalid_uint)
Performs uniform refinement of the passed Mesh object.
Definition: Adaptivity.C:274
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ uniqueName()

MooseObjectName MooseBase::uniqueName ( ) const
inherited
Returns
The unique name for accessing input parameters of this object in the InputParameterWarehouse

Definition at line 69 of file MooseBase.C.

Referenced by MooseBase::connectControllableParams(), and Action::uniqueActionName().

70 {
71  if (!_pars.have_parameter<std::string>(unique_name_param))
72  mooseError("uniqueName(): Object does not have a unique name");
73  return MooseObjectName(_pars.get<std::string>(unique_name_param));
74 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:366
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
static const std::string unique_name_param
The name of the parameter that contains the unique object name.
Definition: MooseBase.h:57
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271
A class for storing the names of MooseObject by tag and object name.

◆ uniqueParameterName()

MooseObjectParameterName MooseBase::uniqueParameterName ( const std::string &  parameter_name) const
inherited
Returns
The unique parameter name of a valid parameter of this object for accessing parameter controls

Definition at line 63 of file MooseBase.C.

64 {
65  return MooseObjectParameterName(getBase(), name(), parameter_name);
66 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:103
A class for storing an input parameter name.
const std::string & getBase() const
Definition: MooseBase.h:147

◆ updateActiveObjects()

void FEProblemBase::updateActiveObjects ( )
virtualinherited

Update the active objects in the warehouses.

Reimplemented in DumpObjectsProblem.

Definition at line 5278 of file FEProblemBase.C.

Referenced by MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5279 {
5280  TIME_SECTION("updateActiveObjects", 5, "Updating Active Objects");
5281 
5282  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5283  {
5284  for (auto & nl : _nl)
5285  nl->updateActive(tid);
5286  _aux->updateActive(tid);
5289  _markers.updateActive(tid);
5291  _materials.updateActive(tid);
5293  }
5294 
5302 
5303 #ifdef MOOSE_KOKKOS_ENABLED
5305 #endif
5306 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
void updateActive(THREAD_ID tid=0) override
Updates the active objects storage.
MaterialWarehouse _kokkos_materials
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void updateActive(THREAD_ID tid=0)
Update the active status of Kernels.
MooseObjectWarehouse< Indicator > _indicators
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
MaterialWarehouse _discrete_materials
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ updateGeomSearch()

void FEProblemBase::updateGeomSearch ( GeometricSearchData::GeometricSearchType  type = GeometricSearchData::ALL)
overridevirtualinherited

Implements SubProblem.

Definition at line 7997 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::augmentSparsity(), and FEProblemBase::initialSetup().

7998 {
7999  TIME_SECTION("updateGeometricSearch", 3, "Updating Geometric Search");
8000 
8002 
8003  if (_displaced_problem)
8004  _displaced_problem->updateGeomSearch(type);
8005 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:93
void update(GeometricSearchType type=ALL)
Update all of the search objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data

◆ updateMeshXFEM()

bool FEProblemBase::updateMeshXFEM ( )
virtualinherited

Update the mesh due to changing XFEM cuts.

Definition at line 8264 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FixedPointSolve::solveStep().

8265 {
8266  TIME_SECTION("updateMeshXFEM", 5, "Updating XFEM");
8267 
8268  bool updated = false;
8269  if (haveXFEM())
8270  {
8271  if (_xfem->updateHeal())
8272  // XFEM exodiff tests rely on a given numbering because they cannot use map = true due to
8273  // having coincident elements. While conceptually speaking we do not need to contract the
8274  // mesh, we need its call to renumber_nodes_and_elements in order to preserve these tests
8275  meshChanged(
8276  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8277 
8278  updated = _xfem->update(_time, _nl, *_aux);
8279  if (updated)
8280  {
8281  meshChanged(
8282  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8283  _xfem->initSolution(_nl, *_aux);
8284  restoreSolutions();
8285  _console << "\nXFEM update complete: Mesh modified" << std::endl;
8286  }
8287  else
8288  _console << "\nXFEM update complete: Mesh not modified" << std::endl;
8289  }
8290  return updated;
8291 }
virtual void meshChanged()
Deprecated.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void restoreSolutions()
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ updateMortarMesh()

void FEProblemBase::updateMortarMesh ( )
virtualinherited

Definition at line 8008 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::init(), FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

8009 {
8010  TIME_SECTION("updateMortarMesh", 5, "Updating Mortar Mesh");
8011 
8012  FloatingPointExceptionGuard fpe_guard(_app);
8013 
8014  _mortar_data.update();
8015 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MortarData _mortar_data
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:357
void update()
Builds mortar segment meshes for each mortar interface.
Definition: MortarData.C:149

◆ updateSolution()

bool FEProblemBase::updateSolution ( NumericVector< libMesh::Number > &  vec_solution,
NumericVector< libMesh::Number > &  ghosted_solution 
)
virtualinherited

Update the solution.

Parameters
vec_solutionLocal solution vector that gets modified by this method
ghosted_solutionGhosted solution vector
Returns
true if the solution was modified, false otherwise

Definition at line 7976 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7978 {
7979  return false;
7980 }

◆ useSNESMFReuseBase()

bool FEProblemBase::useSNESMFReuseBase ( )
inlineinherited

Return a flag that indicates if we are reusing the vector base.

Definition at line 2309 of file FEProblemBase.h.

Referenced by NonlinearSystem::potentiallySetupFiniteDifferencing().

2309 { return _snesmf_reuse_base; }
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ validParams()

InputParameters FEProblem::validParams ( )
static

Definition at line 26 of file FEProblem.C.

Referenced by ReferenceResidualProblem::validParams().

27 {
29  params.addClassDescription("A normal (default) Problem object that contains a single "
30  "NonlinearSystem and a single AuxiliarySystem object.");
31 
32  return params;
33 }
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void addClassDescription(const std::string &doc_string)
This method adds a description of the class that will be displayed in the input file syntax dump...
static InputParameters validParams()

◆ vectorTagExists() [1/2]

virtual bool SubProblem::vectorTagExists ( const TagID  tag_id) const
inlinevirtualinherited

◆ vectorTagExists() [2/2]

bool SubProblem::vectorTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists by using Tag name.

Reimplemented in DisplacedProblem.

Definition at line 136 of file SubProblem.C.

137 {
138  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
139 
140  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
141  for (const auto & vector_tag : _vector_tags)
142  if (vector_tag._name == tag_name_upper)
143  return true;
144 
145  return false;
146 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
std::string toUpper(std::string name)
Convert supplied string to upper case.

◆ vectorTagName()

TagName SubProblem::vectorTagName ( const TagID  tag) const
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 221 of file SubProblem.C.

Referenced by SystemBase::closeTaggedVector(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), SystemBase::removeVector(), NonlinearSystemBase::residualGhosted(), DisplacedProblem::vectorTagName(), and SystemBase::zeroTaggedVector().

222 {
223  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
224  if (!vectorTagExists(tag_id))
225  mooseError("Vector tag with ID ", tag_id, " does not exist");
226 
227  return _vector_tags[tag_id]._name;
228 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ vectorTagNotZeroed()

bool SubProblem::vectorTagNotZeroed ( const TagID  tag) const
inherited

Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that is currently being checked
Returns
false if the tag is not within the set of vectors that are intended to not be zero or if the set is empty. returns true otherwise

Definition at line 155 of file SubProblem.C.

Referenced by SystemBase::zeroTaggedVector().

156 {
157  return _not_zeroed_tagged_vectors.count(tag);
158 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ vectorTagType()

Moose::VectorTagType SubProblem::vectorTagType ( const TagID  tag_id) const
virtualinherited

Reimplemented in DisplacedProblem.

Definition at line 231 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit(), TaggingInterface::TaggingInterface(), TagVectorAux::TagVectorAux(), and DisplacedProblem::vectorTagType().

232 {
233  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
234  if (!vectorTagExists(tag_id))
235  mooseError("Vector tag with ID ", tag_id, " does not exist");
236 
237  return _vector_tags[tag_id]._type;
238 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

◆ verboseMultiApps()

bool FEProblemBase::verboseMultiApps ( ) const
inlineinherited

Whether or not to use verbose printing for MultiApps.

Definition at line 2023 of file FEProblemBase.h.

Referenced by MultiApp::backup(), MultiApp::createApp(), MultiApp::restore(), FullSolveMultiApp::showStatusMessage(), and TransientMultiApp::solveStep().

2023 { return _verbose_multiapps; }
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ verifyVectorTags()

bool SubProblem::verifyVectorTags ( ) const
protectedinherited

Verify the integrity of _vector_tags and _typed_vector_tags.

Definition at line 241 of file SubProblem.C.

Referenced by SubProblem::addVectorTag(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), SubProblem::getVectorTags(), SubProblem::numVectorTags(), SubProblem::vectorTagExists(), SubProblem::vectorTagName(), and SubProblem::vectorTagType().

242 {
243  for (TagID tag_id = 0; tag_id < _vector_tags.size(); ++tag_id)
244  {
245  const auto & vector_tag = _vector_tags[tag_id];
246 
247  if (vector_tag._id != tag_id)
248  mooseError("Vector tag ", vector_tag._id, " id mismatch in _vector_tags");
249  if (vector_tag._type == Moose::VECTOR_TAG_ANY)
250  mooseError("Vector tag '", vector_tag._name, "' has type VECTOR_TAG_ANY");
251 
252  const auto search = _vector_tags_name_map.find(vector_tag._name);
253  if (search == _vector_tags_name_map.end())
254  mooseError("Vector tag ", vector_tag._id, " is not in _vector_tags_name_map");
255  else if (search->second != tag_id)
256  mooseError("Vector tag ", vector_tag._id, " has incorrect id in _vector_tags_name_map");
257 
258  unsigned int found_in_type = 0;
259  for (TagTypeID tag_type_id = 0; tag_type_id < _typed_vector_tags[vector_tag._type].size();
260  ++tag_type_id)
261  {
262  const auto & vector_tag_type = _typed_vector_tags[vector_tag._type][tag_type_id];
263  if (vector_tag_type == vector_tag)
264  {
265  ++found_in_type;
266  if (vector_tag_type._type_id != tag_type_id)
267  mooseError("Type ID for Vector tag ", tag_id, " is incorrect");
268  }
269  }
270 
271  if (found_in_type == 0)
272  mooseError("Vector tag ", tag_id, " not found in _typed_vector_tags");
273  if (found_in_type > 1)
274  mooseError("Vector tag ", tag_id, " found multiple times in _typed_vector_tags");
275  }
276 
277  unsigned int num_typed_vector_tags = 0;
278  for (const auto & typed_vector_tags : _typed_vector_tags)
279  num_typed_vector_tags += typed_vector_tags.size();
280  if (num_typed_vector_tags != _vector_tags.size())
281  mooseError("Size mismatch between _vector_tags and _typed_vector_tags");
282  if (_vector_tags_name_map.size() != _vector_tags.size())
283  mooseError("Size mismatch between _vector_tags and _vector_tags_name_map");
284 
285  return true;
286 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:271

Member Data Documentation

◆ _action_factory

ActionFactory& ParallelParamObject::_action_factory
protectedinherited

◆ _active_elemental_moose_variables

std::vector<std::set<MooseVariableFieldBase *> > SubProblem::_active_elemental_moose_variables
protectedinherited

This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem)

Definition at line 1075 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::getActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _active_fe_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_matrix_tags
protectedinherited

◆ _active_fe_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_vector_tags
protectedinherited

◆ _active_sc_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_matrix_tags
protectedinherited

◆ _active_sc_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_vector_tags
protectedinherited

◆ _ad_grad_zero

std::vector<MooseArray<ADRealVectorValue> > FEProblemBase::_ad_grad_zero
inherited

◆ _ad_second_zero

std::vector<MooseArray<ADRealTensorValue> > FEProblemBase::_ad_second_zero
inherited

◆ _ad_zero

std::vector<MooseArray<ADReal> > FEProblemBase::_ad_zero
inherited

◆ _adaptivity

Adaptivity FEProblemBase::_adaptivity
protectedinherited

◆ _all_materials

MaterialWarehouse FEProblemBase::_all_materials
protectedinherited

◆ _all_user_objects

ExecuteMooseObjectWarehouse<UserObject> FEProblemBase::_all_user_objects
protectedinherited

◆ _app

MooseApp& MooseBase::_app
protectedinherited

The MOOSE application this is associated with.

Definition at line 357 of file MooseBase.h.

◆ _assembly

std::vector<std::vector<std::unique_ptr<Assembly> > > FEProblemBase::_assembly
protectedinherited

The Assembly objects.

The first index corresponds to the thread ID and the second index corresponds to the nonlinear system number

Definition at line 2855 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::assembly(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::couplingEntries(), FEProblemBase::createQRules(), FEProblemBase::init(), FEProblemBase::initElementStatefulProps(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::meshChanged(), FEProblemBase::newAssemblyArray(), FEProblemBase::nonlocalCouplingEntries(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsFaceOnBoundary(), FEProblemBase::reinitMaterialsInterface(), FEProblemBase::reinitMaterialsNeighbor(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::swapBackMaterials(), FEProblemBase::swapBackMaterialsFace(), and FEProblemBase::swapBackMaterialsNeighbor().

◆ _aux

std::shared_ptr<AuxiliarySystem> FEProblemBase::_aux
protectedinherited

The auxiliary system.

Definition at line 2841 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addIndicator(), FEProblemBase::addMarker(), FEProblemBase::addMultiApp(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::advanceState(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeIndicators(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeMarkers(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::customSetup(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), FEProblemBase::execute(), ExternalProblem::ExternalProblem(), FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getAuxiliarySystem(), FEProblemBase::getScalarVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasVariable(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::systemBaseAuxiliary(), FEProblemBase::systemNumForVariable(), FEProblemBase::timestepSetup(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _aux_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_aux_evaluable_local_elem_range
protectedinherited

Definition at line 3138 of file FEProblemBase.h.

◆ _between_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_between_multi_app_transfers
protectedinherited

◆ _block_mat_side_cache

std::vector<std::unordered_map<SubdomainID, bool> > FEProblemBase::_block_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2945 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needInternalNeighborSideMaterial().

◆ _bnd_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_bnd_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2948 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needBoundaryMaterialOnSide().

◆ _bnd_material_props

MaterialPropertyStorage& FEProblemBase::_bnd_material_props
protectedinherited

◆ _boundary_restricted_elem_integrity_check

const bool FEProblemBase::_boundary_restricted_elem_integrity_check
protectedinherited

whether to perform checking of boundary restricted elemental object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 3077 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _boundary_restricted_node_integrity_check

const bool FEProblemBase::_boundary_restricted_node_integrity_check
protectedinherited

whether to perform checking of boundary restricted nodal object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 3073 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _calculate_jacobian_in_uo

bool FEProblemBase::_calculate_jacobian_in_uo
protectedinherited

◆ _cli_option_found

bool Problem::_cli_option_found
protectedinherited

True if the CLI option is found.

Definition at line 52 of file Problem.h.

Referenced by Problem::_setCLIOption().

◆ _cm

std::vector<std::unique_ptr<libMesh::CouplingMatrix> > FEProblemBase::_cm
protectedinherited

◆ _color_output

bool Problem::_color_output
protectedinherited

True if we're going to attempt to write color output.

Definition at line 55 of file Problem.h.

◆ _computing_nonlinear_residual

bool SubProblem::_computing_nonlinear_residual
protectedinherited

Whether the non-linear residual is being evaluated.

Definition at line 1102 of file SubProblem.h.

Referenced by SubProblem::computingNonlinearResid(), and FEProblemBase::computingNonlinearResid().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), NonlinearSystemBase::computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), NonlinearSystemBase::computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), NonlinearEigen::init(), InversePowerMethod::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), NonlinearSystemBase::setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), FixedPointSolve::solve(), NonlinearSystem::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), FEProblemBase::updateMeshXFEM(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _const_jacobian

bool FEProblemBase::_const_jacobian
protectedinherited

true if the Jacobian is constant

Definition at line 3045 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::constJacobian(), and FEProblemBase::setConstJacobian().

◆ _control_warehouse

ExecuteMooseObjectWarehouse<Control> FEProblemBase::_control_warehouse
protectedinherited

The control logic warehouse.

Definition at line 3123 of file FEProblemBase.h.

Referenced by FEProblemBase::executeControls(), FEProblemBase::getControlWarehouse(), and FEProblemBase::updateActiveObjects().

◆ _convergences

MooseObjectWarehouse<Convergence> FEProblemBase::_convergences
protectedinherited

◆ _coupling

Moose::CouplingType FEProblemBase::_coupling
protectedinherited

◆ _current_algebraic_bnd_node_range

std::unique_ptr<ConstBndNodeRange> FEProblemBase::_current_algebraic_bnd_node_range
protectedinherited

◆ _current_algebraic_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_current_algebraic_elem_range
protectedinherited

◆ _current_algebraic_node_range

std::unique_ptr<libMesh::ConstNodeRange> FEProblemBase::_current_algebraic_node_range
protectedinherited

◆ _current_execute_on_flag

ExecFlagType FEProblemBase::_current_execute_on_flag
protectedinherited

◆ _current_ic_state

unsigned short FEProblemBase::_current_ic_state
protectedinherited

◆ _current_linear_sys

LinearSystem* FEProblemBase::_current_linear_sys
protectedinherited

◆ _current_nl_sys

NonlinearSystemBase* FEProblemBase::_current_nl_sys
protectedinherited

The current nonlinear system that we are solving.

Definition at line 2823 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeDamping(), FEProblemBase::computeJacobianBlock(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), FEProblemBase::computeTransposeNullSpace(), FEProblemBase::currentNonlinearSystem(), EigenProblem::doFreeNonlinearPowerIterations(), EigenProblem::EigenProblem(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), EigenProblem::solve(), and FEProblemBase::solve().

◆ _current_solver_sys

SolverSystem* FEProblemBase::_current_solver_sys
protectedinherited

The current solver system.

Definition at line 2826 of file FEProblemBase.h.

Referenced by FEProblemBase::setCurrentLinearSystem(), and FEProblemBase::setCurrentNonlinearSystem().

◆ _currently_computing_jacobian

bool SubProblem::_currently_computing_jacobian
protectedinherited

◆ _currently_computing_residual

bool SubProblem::_currently_computing_residual
protectedinherited

◆ _currently_computing_residual_and_jacobian

bool SubProblem::_currently_computing_residual_and_jacobian
protectedinherited

Flag to determine whether the problem is currently computing the residual and Jacobian.

Definition at line 1099 of file SubProblem.h.

Referenced by SubProblem::currentlyComputingResidualAndJacobian(), and SubProblem::setCurrentlyComputingResidualAndJacobian().

◆ _cycles_completed

unsigned int FEProblemBase::_cycles_completed
protectedinherited

◆ _default_ghosting

bool SubProblem::_default_ghosting
protectedinherited

Whether or not to use default libMesh coupling.

Definition at line 1090 of file SubProblem.h.

Referenced by SubProblem::defaultGhosting().

◆ _dirac_kernel_info

DiracKernelInfo SubProblem::_dirac_kernel_info
protectedinherited

◆ _discrete_materials

MaterialWarehouse FEProblemBase::_discrete_materials
protectedinherited

◆ _displaced_mesh

MooseMesh* FEProblemBase::_displaced_mesh
protectedinherited

◆ _displaced_problem

std::shared_ptr<DisplacedProblem> FEProblemBase::_displaced_problem
protectedinherited

Definition at line 3012 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::addAnyRedistributers(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addCachedJacobian(), FEProblemBase::addCachedResidual(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addConstraint(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDisplacedProblem(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVKernel(), FEProblemBase::addGhostedBoundary(), FEProblemBase::addIndicator(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::automaticScaling(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::cacheJacobian(), FEProblemBase::cacheJacobianNeighbor(), FEProblemBase::cacheResidual(), FEProblemBase::cacheResidualNeighbor(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::clearActiveElementalMooseVariables(), FEProblemBase::clearActiveFEVariableCoupleableMatrixTags(), FEProblemBase::clearActiveFEVariableCoupleableVectorTags(), FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::clearActiveScalarVariableCoupleableVectorTags(), FEProblemBase::clearDiracInfo(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::computingNonlinearResid(), FEProblemBase::createMortarInterface(), FEProblemBase::createQRules(), FEProblemBase::customSetup(), FEProblemBase::execute(), FEProblemBase::getDiracElements(), FEProblemBase::getDisplacedProblem(), FEProblemBase::getMortarUserObjects(), FEProblemBase::ghostGhostedBoundaries(), FEProblemBase::haveADObjects(), FEProblemBase::haveDisplaced(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::mesh(), FEProblemBase::meshChanged(), FEProblemBase::outputStep(), FEProblemBase::possiblyRebuildGeomSearchPatches(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFace(), FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemFaceRef(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitLowerDElem(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNeighborFaceRef(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::resetState(), FEProblemBase::residualSetup(), FEProblemBase::restoreSolutions(), FEProblemBase::setActiveElementalMooseVariables(), FEProblemBase::setActiveFEVariableCoupleableMatrixTags(), FEProblemBase::setActiveFEVariableCoupleableVectorTags(), FEProblemBase::setActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::setActiveScalarVariableCoupleableVectorTags(), FEProblemBase::setCurrentBoundaryID(), FEProblemBase::setCurrentLowerDElem(), FEProblemBase::setCurrentlyComputingResidual(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::setResidualObjectParamsAndLog(), EigenProblem::solve(), FEProblemBase::solve(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateGeomSearch().

◆ _dt

Real& FEProblemBase::_dt
protectedinherited

◆ _dt_old

Real& FEProblemBase::_dt_old
protectedinherited

Definition at line 2783 of file FEProblemBase.h.

Referenced by FEProblemBase::dtOld(), and FEProblemBase::FEProblemBase().

◆ _enabled

const bool& MooseObject::_enabled
protectedinherited

Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.

Definition at line 80 of file MooseObject.h.

Referenced by MooseObject::enabled().

◆ _evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_evaluable_local_elem_range
protectedinherited

◆ _exception_message

std::string FEProblemBase::_exception_message
protectedinherited

The error message to go with an exception.

Definition at line 3117 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), and FEProblemBase::setException().

◆ _factory

Factory& SubProblem::_factory
protectedinherited

◆ _fe_matrix_tags

std::set<TagID> FEProblemBase::_fe_matrix_tags
protectedinherited

◆ _fe_vector_tags

std::set<TagID> FEProblemBase::_fe_vector_tags
protectedinherited

◆ _from_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_from_multi_app_transfers
protectedinherited

◆ _functions

MooseObjectWarehouse<Function> FEProblemBase::_functions
protectedinherited

◆ _fv_bcs_integrity_check

bool FEProblemBase::_fv_bcs_integrity_check
protectedinherited

Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset.

Definition at line 3084 of file FEProblemBase.h.

Referenced by FEProblemBase::fvBCsIntegrityCheck().

◆ _fv_ics

FVInitialConditionWarehouse FEProblemBase::_fv_ics
protectedinherited

◆ _geometric_search_data

GeometricSearchData FEProblemBase::_geometric_search_data
protectedinherited

◆ _ghosted_elems

std::set<dof_id_type> SubProblem::_ghosted_elems
protectedinherited

◆ _grad_phi_zero

std::vector<VariablePhiGradient> FEProblemBase::_grad_phi_zero
inherited

◆ _grad_zero

std::vector<VariableGradient> FEProblemBase::_grad_zero
inherited

◆ _has_active_elemental_moose_variables

std::vector<unsigned int> SubProblem::_has_active_elemental_moose_variables
protectedinherited

Whether or not there is currently a list of active elemental moose variables.

Definition at line 1079 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::hasActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _has_active_material_properties

std::vector<unsigned char> FEProblemBase::_has_active_material_properties
protectedinherited

◆ _has_constraints

bool FEProblemBase::_has_constraints
protectedinherited

Whether or not this system has any Constraints.

Definition at line 3030 of file FEProblemBase.h.

Referenced by FEProblemBase::addConstraint(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

◆ _has_dampers

bool FEProblemBase::_has_dampers
protectedinherited

Whether or not this system has any Dampers associated with it.

Definition at line 3027 of file FEProblemBase.h.

Referenced by FEProblemBase::addDamper(), FEProblemBase::computeDamping(), FEProblemBase::computePostCheck(), and FEProblemBase::hasDampers().

◆ _has_exception

bool FEProblemBase::_has_exception
protectedinherited

Whether or not an exception has occurred.

Definition at line 3102 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::hasException(), and FEProblemBase::setException().

◆ _has_initialized_stateful

bool FEProblemBase::_has_initialized_stateful
protectedinherited

Whether nor not stateful materials have been initialized.

Definition at line 3042 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

◆ _has_jacobian

bool FEProblemBase::_has_jacobian
protectedinherited

Indicates if the Jacobian was computed.

Definition at line 3048 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::hasJacobian(), and FEProblemBase::meshChanged().

◆ _has_nonlocal_coupling

bool FEProblemBase::_has_nonlocal_coupling
protectedinherited

◆ _has_time_integrator

bool FEProblemBase::_has_time_integrator
protectedinherited

Indicates whether or not this executioner has a time integrator (during setup)

Definition at line 3099 of file FEProblemBase.h.

Referenced by FEProblemBase::addTimeIntegrator(), and FEProblemBase::hasTimeIntegrator().

◆ _have_ad_objects

bool SubProblem::_have_ad_objects
protectedinherited

AD flag indicating whether any AD objects have been added.

Definition at line 1114 of file SubProblem.h.

Referenced by DisplacedProblem::haveADObjects(), SubProblem::haveADObjects(), and FEProblemBase::haveADObjects().

◆ _ics

InitialConditionWarehouse FEProblemBase::_ics
protectedinherited

◆ _indicators

MooseObjectWarehouse<Indicator> FEProblemBase::_indicators
protectedinherited

◆ _initialized

bool FEProblemBase::_initialized
protectedinherited

Definition at line 2754 of file FEProblemBase.h.

Referenced by FEProblemBase::init().

◆ _input_file_saved

bool FEProblemBase::_input_file_saved
protectedinherited

whether input file has been written

Definition at line 3024 of file FEProblemBase.h.

◆ _interface_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_interface_mat_side_cache
protectedinherited

Cache for calculating materials on interface.

Definition at line 2951 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needInterfaceMaterialOnSide().

◆ _interface_materials

MaterialWarehouse FEProblemBase::_interface_materials
protectedinherited

◆ _internal_side_indicators

MooseObjectWarehouse<InternalSideIndicatorBase> FEProblemBase::_internal_side_indicators
protectedinherited

◆ _is_petsc_options_inserted

bool FEProblemBase::_is_petsc_options_inserted
protectedinherited

If or not PETSc options have been added to database.

Definition at line 3132 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), FEProblemBase::petscOptionsInserted(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _kernel_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_kernel_coverage_blocks
protectedinherited

◆ _kernel_coverage_check

CoverageCheckMode FEProblemBase::_kernel_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active kernel.

Definition at line 3068 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setKernelCoverageCheck().

◆ _kokkos_assembly

Moose::Kokkos::Assembly FEProblemBase::_kokkos_assembly
protectedinherited

Definition at line 2858 of file FEProblemBase.h.

Referenced by FEProblemBase::kokkosAssembly().

◆ _kokkos_bnd_material_props

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::_kokkos_bnd_material_props
protectedinherited

◆ _kokkos_material_props

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::_kokkos_material_props
protectedinherited

◆ _kokkos_materials

MaterialWarehouse FEProblemBase::_kokkos_materials
protectedinherited

◆ _kokkos_neighbor_material_props

Moose::Kokkos::MaterialPropertyStorage& FEProblemBase::_kokkos_neighbor_material_props
protectedinherited

◆ _kokkos_systems

Moose::Kokkos::Array<Moose::Kokkos::System> FEProblemBase::_kokkos_systems
protectedinherited

Definition at line 2847 of file FEProblemBase.h.

Referenced by FEProblemBase::getKokkosSystems().

◆ _line_search

std::shared_ptr<LineSearch> FEProblemBase::_line_search
protectedinherited

◆ _linear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_linear_convergence_names
protectedinherited

Linear system(s) convergence name(s) (if any)

Definition at line 2759 of file FEProblemBase.h.

Referenced by FEProblemBase::getLinearConvergenceNames(), FEProblemBase::hasLinearConvergenceObjects(), and FEProblemBase::setLinearConvergenceNames().

◆ _linear_matrix_tags

std::set<TagID> FEProblemBase::_linear_matrix_tags
protectedinherited

Temporary storage for filtered matrix tags for linear systems.

Definition at line 2773 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _linear_sys_name_to_num

std::map<LinearSystemName, unsigned int> FEProblemBase::_linear_sys_name_to_num
protectedinherited

Map from linear system name to number.

Definition at line 2802 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::linearSysNum().

◆ _linear_sys_names

const std::vector<LinearSystemName> FEProblemBase::_linear_sys_names
protectedinherited

◆ _linear_systems

std::vector<std::shared_ptr<LinearSystem> > FEProblemBase::_linear_systems
protectedinherited

◆ _linear_vector_tags

std::set<TagID> FEProblemBase::_linear_vector_tags
protectedinherited

Temporary storage for filtered vector tags for linear systems.

Definition at line 2770 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _map_block_material_props

std::map<SubdomainID, std::set<std::string> > SubProblem::_map_block_material_props
protectedinherited

Map of material properties (block_id -> list of properties)

Definition at line 1052 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), SubProblem::getMaterialPropertyBlocks(), SubProblem::hasBlockMaterialProperty(), and SubProblem::storeSubdomainMatPropName().

◆ _map_block_material_props_check

std::map<SubdomainID, std::multimap<std::string, std::string> > SubProblem::_map_block_material_props_check
protectedinherited

Data structures of the requested material properties.

We store them in a map from boundary/block id to multimap. Each of the multimaps is a list of requestor object names to material property names.

Definition at line 1070 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), and SubProblem::storeSubdomainDelayedCheckMatProp().

◆ _map_boundary_material_props

std::map<BoundaryID, std::set<std::string> > SubProblem::_map_boundary_material_props
protectedinherited

Map for boundary material properties (boundary_id -> list of properties)

Definition at line 1055 of file SubProblem.h.

Referenced by SubProblem::checkBoundaryMatProps(), SubProblem::getMaterialPropertyBoundaryIDs(), SubProblem::hasBoundaryMaterialProperty(), and SubProblem::storeBoundaryMatPropName().

◆ _map_boundary_material_props_check

std::map<BoundaryID, std::multimap<std::string, std::string> > SubProblem::_map_boundary_material_props_check
protectedinherited

◆ _markers

MooseObjectWarehouse<Marker> FEProblemBase::_markers
protectedinherited

◆ _material_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_material_coverage_blocks
protectedinherited

◆ _material_coverage_check

CoverageCheckMode FEProblemBase::_material_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active material.

Definition at line 3080 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setMaterialCoverageCheck().

◆ _material_dependency_check

const bool FEProblemBase::_material_dependency_check
protectedinherited

Determines whether a check to verify material dependencies on every subdomain.

Definition at line 3087 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity().

◆ _material_prop_registry

MaterialPropertyRegistry FEProblemBase::_material_prop_registry
protectedinherited

◆ _material_property_requested

std::set<std::string> SubProblem::_material_property_requested
protectedinherited

set containing all material property names that have been requested by getMaterialProperty*

Definition at line 1062 of file SubProblem.h.

Referenced by SubProblem::isMatPropRequested(), and SubProblem::markMatPropRequested().

◆ _material_props

MaterialPropertyStorage& FEProblemBase::_material_props
protectedinherited

◆ _materials

MaterialWarehouse FEProblemBase::_materials
protectedinherited

◆ _matrix_tag_id_to_tag_name

std::map<TagID, TagName> SubProblem::_matrix_tag_id_to_tag_name
protectedinherited

Reverse map.

Definition at line 1044 of file SubProblem.h.

Referenced by SubProblem::addMatrixTag(), SubProblem::matrixTagExists(), and SubProblem::matrixTagName().

◆ _matrix_tag_name_to_tag_id

std::map<TagName, TagID> SubProblem::_matrix_tag_name_to_tag_id
protectedinherited

◆ _max_qps

unsigned int FEProblemBase::_max_qps
protectedinherited

Maximum number of quadrature points used in the problem.

Definition at line 3093 of file FEProblemBase.h.

Referenced by FEProblemBase::getMaxQps(), FEProblemBase::reinitDirac(), and FEProblemBase::updateMaxQps().

◆ _max_scalar_order

libMesh::Order FEProblemBase::_max_scalar_order
protectedinherited

Maximum scalar variable order.

Definition at line 3096 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxScalarVariable(), and FEProblemBase::getMaxScalarOrder().

◆ _mesh

MooseMesh& FEProblemBase::_mesh
protectedinherited

Definition at line 2724 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::addAnyRedistributers(), FEProblemBase::addAuxVariable(), FEProblemBase::addGhostedBoundary(), FEProblemBase::addGhostedElem(), FEProblemBase::addVariable(), FEProblemBase::checkCoordinateSystems(), FEProblemBase::checkDependMaterialsHelper(), FEProblemBase::checkProblemIntegrity(), FEProblemBase::checkUserObjects(), FEProblemBase::computeIndicators(), FEProblemBase::computeMarkers(), FEProblemBase::computeUserObjectsInternal(), DumpObjectsProblem::dumpVariableHelper(), FEProblemBase::duplicateVariableCheck(), FEProblemBase::getCurrentAlgebraicBndNodeRange(), FEProblemBase::getCurrentAlgebraicElementRange(), FEProblemBase::getCurrentAlgebraicNodeRange(), FEProblemBase::getDiracElements(), FEProblemBase::getEvaluableElementRange(), FEProblemBase::getNonlinearEvaluableElementRange(), FEProblemBase::ghostGhostedBoundaries(), FEProblemBase::init(), FEProblemBase::initialAdaptMesh(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), MFEMProblem::mesh(), FEProblemBase::mesh(), FEProblemBase::meshChanged(), FEProblemBase::possiblyRebuildGeomSearchPatches(), FEProblemBase::prepareMaterials(), FEProblemBase::projectSolution(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitElemPhys(), FEProblemBase::setAxisymmetricCoordAxis(), FEProblemBase::setCoordSystem(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateMaxQps().

◆ _mesh_divisions

MooseObjectWarehouse<MeshDivision> FEProblemBase::_mesh_divisions
protectedinherited

Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best.

Definition at line 2864 of file FEProblemBase.h.

Referenced by FEProblemBase::addMeshDivision(), and FEProblemBase::getMeshDivision().

◆ _mortar_data

MortarData FEProblemBase::_mortar_data
protectedinherited

◆ _multi_apps

ExecuteMooseObjectWarehouse<MultiApp> FEProblemBase::_multi_apps
protectedinherited

◆ _multiapp_fixed_point_convergence_name

std::optional<ConvergenceName> FEProblemBase::_multiapp_fixed_point_convergence_name
protectedinherited

◆ _name

const std::string& MooseBase::_name
protectedinherited

The name of this class.

Definition at line 363 of file MooseBase.h.

Referenced by AddBCAction::act(), AddConstraintAction::act(), AddFVInitialConditionAction::act(), AddPostprocessorAction::act(), AddVectorPostprocessorAction::act(), AddKernelAction::act(), AddInitialConditionAction::act(), PartitionerAction::act(), AddFunctorMaterialAction::act(), AddNodalKernelAction::act(), AddDiracKernelAction::act(), AddInterfaceKernelAction::act(), AddMarkerAction::act(), AddIndicatorAction::act(), AddScalarKernelAction::act(), AddMeshGeneratorAction::act(), AddDamperAction::act(), AddFVInterfaceKernelAction::act(), AddMultiAppAction::act(), AddMaterialAction::act(), AddTransferAction::act(), ReadExecutorParamsAction::act(), AddUserObjectAction::act(), AddDGKernelAction::act(), AddPositionsAction::act(), AddReporterAction::act(), AddTimesAction::act(), AddFieldSplitAction::act(), AddFVKernelAction::act(), AddFVBCAction::act(), SetupPreconditionerAction::act(), SetupTimeIntegratorAction::act(), AddFunctionAction::act(), AddConvergenceAction::act(), AddMeshDivisionAction::act(), AddHDGKernelAction::act(), AddTimeStepperAction::act(), AddDistributionAction::act(), AddOutputAction::act(), AddLinearFVBCAction::act(), AddLinearFVKernelAction::act(), AddMeshModifiersAction::act(), AddCorrectorAction::act(), AddSamplerAction::act(), AddControlAction::act(), AddMFEMFESpaceAction::act(), AddMFEMSolverAction::act(), AddMFEMSubMeshAction::act(), AddMFEMPreconditionerAction::act(), AddPeriodicBCAction::act(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), CombinerGenerator::CombinerGenerator(), Executor::Executor(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), FunctionDT::FunctionDT(), FillBetweenCurvesGenerator::generate(), FillBetweenPointVectorsGenerator::generate(), FillBetweenSidesetsGenerator::generate(), MooseBase::MooseBase(), NearestPointBase< LayeredSideDiffusiveFluxAverage, SideIntegralVariableUserObject >::name(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseBase::setData(), and AddVariableAction::varName().

◆ _need_to_add_default_multiapp_fixed_point_convergence

bool FEProblemBase::_need_to_add_default_multiapp_fixed_point_convergence
protectedinherited

Flag that the problem needs to add the default fixed point convergence.

Definition at line 2788 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence(), and FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence().

◆ _need_to_add_default_nonlinear_convergence

bool FEProblemBase::_need_to_add_default_nonlinear_convergence
protectedinherited

Flag that the problem needs to add the default nonlinear convergence.

Definition at line 2786 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultNonlinearConvergence(), and FEProblemBase::setNeedToAddDefaultNonlinearConvergence().

◆ _need_to_add_default_steady_state_convergence

bool FEProblemBase::_need_to_add_default_steady_state_convergence
protectedinherited

Flag that the problem needs to add the default steady convergence.

Definition at line 2790 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultSteadyStateConvergence(), and FEProblemBase::setNeedToAddDefaultSteadyStateConvergence().

◆ _needs_old_newton_iter

bool FEProblemBase::_needs_old_newton_iter
protectedinherited

Indicates that we need to compute variable values for previous Newton iteration.

Definition at line 3051 of file FEProblemBase.h.

◆ _neighbor_material_props

MaterialPropertyStorage& FEProblemBase::_neighbor_material_props
protectedinherited

◆ _nl

std::vector<std::shared_ptr<NonlinearSystemBase> > FEProblemBase::_nl
private

The nonlinear systems.

Definition at line 2817 of file FEProblemBase.h.

◆ _nl_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_nl_evaluable_local_elem_range
protectedinherited

◆ _nl_sys

std::vector<std::shared_ptr<NonlinearSystem> > FEProblem::_nl_sys
protected

Definition at line 39 of file FEProblem.h.

Referenced by FEProblem(), and getNonlinearSystem().

◆ _nl_sys_name_to_num

std::map<NonlinearSystemName, unsigned int> FEProblemBase::_nl_sys_name_to_num
protectedinherited

Map from nonlinear system name to number.

Definition at line 2820 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::nlSysNum().

◆ _nl_sys_names

const std::vector<NonlinearSystemName> FEProblemBase::_nl_sys_names
protectedinherited

◆ _nonlinear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_nonlinear_convergence_names
protectedinherited

Nonlinear system(s) convergence name(s)

Definition at line 2757 of file FEProblemBase.h.

Referenced by FEProblemBase::getNonlinearConvergenceNames(), and FEProblemBase::setNonlinearConvergenceNames().

◆ _nonlocal_integrated_bcs

MooseObjectWarehouse<IntegratedBCBase> FEProblemBase::_nonlocal_integrated_bcs
protectedinherited

◆ _nonlocal_kernels

MooseObjectWarehouse<KernelBase> FEProblemBase::_nonlocal_kernels
protectedinherited

◆ _not_zeroed_tagged_vectors

std::unordered_set<TagID> SubProblem::_not_zeroed_tagged_vectors
protectedinherited

the list of vector tags that will not be zeroed when all other tags are

Definition at line 1117 of file SubProblem.h.

Referenced by SubProblem::addNotZeroedVectorTag(), FEProblemBase::restoreSolutions(), and SubProblem::vectorTagNotZeroed().

◆ _notify_when_mesh_changes

std::vector<MeshChangedInterface *> FEProblemBase::_notify_when_mesh_changes
protectedinherited

Objects to be notified when the mesh changes.

Definition at line 2954 of file FEProblemBase.h.

Referenced by FEProblemBase::meshChanged(), and FEProblemBase::notifyWhenMeshChanges().

◆ _notify_when_mesh_displaces

std::vector<MeshDisplacedInterface *> FEProblemBase::_notify_when_mesh_displaces
protectedinherited

Objects to be notified when the mesh displaces.

Definition at line 2957 of file FEProblemBase.h.

Referenced by FEProblemBase::meshDisplaced(), and FEProblemBase::notifyWhenMeshDisplaces().

◆ _num_linear_sys

const std::size_t FEProblemBase::_num_linear_sys
protectedinherited

The number of linear systems.

Definition at line 2796 of file FEProblemBase.h.

Referenced by FEProblem(), FEProblemBase::FEProblemBase(), FEProblemBase::numLinearSystems(), and FEProblemBase::numSolverSystems().

◆ _num_nl_sys

const std::size_t FEProblemBase::_num_nl_sys
protectedinherited

◆ _parallel_barrier_messaging

bool FEProblemBase::_parallel_barrier_messaging
protectedinherited

◆ _pars

const InputParameters& MooseBase::_pars
protectedinherited

The object's parameters.

Definition at line 366 of file MooseBase.h.

Referenced by AddFVICAction::act(), AddICAction::act(), CreateProblemDefaultAction::act(), CreateProblemAction::act(), SetupMeshAction::act(), ComposeTimeStepperAction::act(), SetupDebugAction::act(), AddAuxKernelAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FunctorMaterial::addFunctorPropertyByBlocks(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), PiecewiseTabularBase::buildFromFile(), PNGOutput::calculateRescalingValues(), MooseBase::callMooseError(), MooseBase::connectControllableParams(), Console::Console(), MooseApp::copyInputs(), MaterialBase::declareADProperty(), MaterialBase::declareProperty(), FEProblemSolve::FEProblemSolve(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FileMeshGenerator::generate(), MooseBase::getBase(), MooseBase::getCheckedPointerParam(), MaterialBase::getGenericZeroMaterialProperty(), MooseBase::getHitNode(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getParam(), MooseBase::hasBase(), MeshGenerator::hasGenerateData(), AddVariableAction::init(), AdvancedOutput::initExecutionTypes(), Console::initialSetup(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MultiApp::keepSolutionDuringRestore(), MooseBase::messagePrefix(), MooseBase::MooseBase(), MooseApp::outputMachineReadableData(), MooseBase::paramError(), MooseBase::parameters(), MooseBase::paramInfo(), MooseBase::paramWarning(), MooseMesh::prepare(), Eigenvalue::prepareSolverOptions(), MooseMesh::setCoordSystem(), MooseMesh::setPartitionerHelper(), SetupMeshAction::setupMesh(), TransientBase::setupTimeIntegrator(), MooseApp::showInputs(), and MooseBase::uniqueName().

◆ _petsc_option_data_base

PetscOptions FEProblemBase::_petsc_option_data_base
protectedinherited

◆ _petsc_options

Moose::PetscSupport::PetscOptions FEProblemBase::_petsc_options
protectedinherited

PETSc option storage.

Definition at line 3126 of file FEProblemBase.h.

Referenced by FEProblemBase::getPetscOptions(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _phi_zero

std::vector<VariablePhiValue> FEProblemBase::_phi_zero
inherited

◆ _point_zero

std::vector<Point> FEProblemBase::_point_zero
inherited

Definition at line 2246 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _previous_nl_solution_required

bool FEProblemBase::_previous_nl_solution_required
protectedinherited

Indicates we need to save the previous NL iteration variable values.

Definition at line 3054 of file FEProblemBase.h.

Referenced by FEProblemBase::createTagSolutions().

◆ _random_data_objects

std::map<std::string, std::unique_ptr<RandomData> > FEProblemBase::_random_data_objects
protectedinherited

◆ _real_zero

std::vector<Real> FEProblemBase::_real_zero
inherited

Convenience zeros.

Definition at line 2235 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _reinit_displaced_elem

bool FEProblemBase::_reinit_displaced_elem
protectedinherited

◆ _reinit_displaced_face

bool FEProblemBase::_reinit_displaced_face
protectedinherited

◆ _reinit_displaced_neighbor

bool FEProblemBase::_reinit_displaced_neighbor
protectedinherited

◆ _reporter_data

ReporterData FEProblemBase::_reporter_data
protectedinherited

◆ _restartable_app

MooseApp& Restartable::_restartable_app
protectedinherited

Reference to the application.

Definition at line 234 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp(), and Restartable::registerRestartableNameWithFilterOnApp().

◆ _restartable_read_only

const bool Restartable::_restartable_read_only
protectedinherited

Flag for toggling read only status (see ReporterData)

Definition at line 243 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp().

◆ _restartable_system_name

const std::string Restartable::_restartable_system_name
protectedinherited

The system name this object is in.

Definition at line 237 of file Restartable.h.

Referenced by Restartable::restartableName().

◆ _restartable_tid

const THREAD_ID Restartable::_restartable_tid
protectedinherited

The thread ID for this object.

Definition at line 240 of file Restartable.h.

Referenced by Restartable::declareRestartableDataHelper().

◆ _safe_access_tagged_matrices

bool SubProblem::_safe_access_tagged_matrices
protectedinherited

◆ _safe_access_tagged_vectors

bool SubProblem::_safe_access_tagged_vectors
protectedinherited

◆ _scalar_ics

ScalarInitialConditionWarehouse FEProblemBase::_scalar_ics
protectedinherited

◆ _scalar_zero

std::vector<VariableValue> FEProblemBase::_scalar_zero
inherited

◆ _second_phi_zero

std::vector<VariablePhiSecond> FEProblemBase::_second_phi_zero
inherited

◆ _second_zero

std::vector<VariableSecond> FEProblemBase::_second_zero
inherited

◆ _skip_exception_check

bool FEProblemBase::_skip_exception_check
protectedinherited

If or not skip 'exception and stop solve'.

Definition at line 3036 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::initialSetup(), and FEProblemBase::skipExceptionCheck().

◆ _snesmf_reuse_base

bool FEProblemBase::_snesmf_reuse_base
protectedinherited

If or not to resuse the base vector for matrix-free calculation.

Definition at line 3033 of file FEProblemBase.h.

Referenced by FEProblemBase::setSNESMFReuseBase(), and FEProblemBase::useSNESMFReuseBase().

◆ _snesmf_reuse_base_set_by_user

bool FEProblemBase::_snesmf_reuse_base_set_by_user
protectedinherited

If or not _snesmf_reuse_base is set by user.

Definition at line 3039 of file FEProblemBase.h.

Referenced by FEProblemBase::isSNESMFReuseBaseSetbyUser(), and FEProblemBase::setSNESMFReuseBase().

◆ _solve

const bool& FEProblemBase::_solve
protectedinherited

◆ _solver_params

std::vector<SolverParams> FEProblemBase::_solver_params
protectedinherited

◆ _solver_sys_name_to_num

std::map<SolverSystemName, unsigned int> FEProblemBase::_solver_sys_name_to_num
protectedinherited

Map connecting solver system names with their respective systems.

Definition at line 2835 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::solverSysNum().

◆ _solver_sys_names

std::vector<SolverSystemName> FEProblemBase::_solver_sys_names
protectedinherited

◆ _solver_systems

std::vector<std::shared_ptr<SolverSystem> > FEProblemBase::_solver_systems
protectedinherited

Combined container to base pointer of every solver system.

Definition at line 2829 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::computeSystems(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem::DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getScalarVariable(), FEProblemBase::getSolverSystem(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasSolverVariable(), FEProblemBase::hasVariable(), init(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::projectSolution(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::setCurrentSubdomainID(), Moose::PetscSupport::setSinglePetscOption(), FEProblemBase::setVariableAllDoFMap(), FEProblemBase::solverSystemConverged(), FEProblemBase::systemBaseSolver(), FEProblemBase::systemNumForVariable(), and FEProblemBase::timestepSetup().

◆ _solver_var_to_sys_num

std::map<SolverVariableName, unsigned int> FEProblemBase::_solver_var_to_sys_num
protectedinherited

Map connecting variable names with their respective solver systems.

Definition at line 2832 of file FEProblemBase.h.

Referenced by FEProblemBase::addVariable(), and FEProblemBase::determineSolverSystem().

◆ _steady_state_convergence_name

std::optional<ConvergenceName> FEProblemBase::_steady_state_convergence_name
protectedinherited

◆ _subspace_dim

std::map<std::string, unsigned int> FEProblemBase::_subspace_dim
protectedinherited

Dimension of the subspace spanned by the vectors with a given prefix.

Definition at line 2851 of file FEProblemBase.h.

Referenced by FEProblemBase::initNullSpaceVectors(), and FEProblemBase::subspaceDim().

◆ _t_step

int& FEProblemBase::_t_step
protectedinherited

◆ _termination_requested

bool Problem::_termination_requested
protectedinherited

True if termination of the solve has been requested.

Definition at line 58 of file Problem.h.

Referenced by Problem::isSolveTerminationRequested(), and Problem::terminateSolve().

◆ _time

Real& FEProblemBase::_time
protectedinherited

◆ _time_old

Real& FEProblemBase::_time_old
protectedinherited

◆ _to_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_to_multi_app_transfers
protectedinherited

◆ _transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_transfers
protectedinherited

◆ _transient

bool FEProblemBase::_transient
protectedinherited

Definition at line 2778 of file FEProblemBase.h.

Referenced by FEProblemBase::isTransient(), and FEProblemBase::transient().

◆ _transient_multi_apps

ExecuteMooseObjectWarehouse<TransientMultiApp> FEProblemBase::_transient_multi_apps
protectedinherited

Storage for TransientMultiApps (only needed for calling 'computeDT')

Definition at line 2927 of file FEProblemBase.h.

Referenced by FEProblemBase::addMultiApp(), FEProblemBase::computeMultiAppsDT(), and FEProblemBase::updateActiveObjects().

◆ _type

const std::string& MooseBase::_type
protectedinherited

◆ _uo_aux_state_check

const bool FEProblemBase::_uo_aux_state_check
protectedinherited

Whether or not checking the state of uo/aux evaluation.

Definition at line 3090 of file FEProblemBase.h.

Referenced by FEProblemBase::execute(), and FEProblemBase::hasUOAuxStateCheck().

◆ _uo_jacobian_moose_vars

std::vector<std::vector<const MooseVariableFEBase *> > FEProblemBase::_uo_jacobian_moose_vars
protectedinherited

◆ _use_hash_table_matrix_assembly

const bool FEProblemBase::_use_hash_table_matrix_assembly
protectedinherited

Whether to assemble matrices using hash tables instead of preallocating matrix memory.

This can be a good option if the sparsity pattern changes throughout the course of the simulation

Definition at line 3153 of file FEProblemBase.h.

Referenced by EigenProblem::EigenProblem(), and FEProblem().

◆ _use_nonlinear

bool FEProblem::_use_nonlinear
protected

Definition at line 38 of file FEProblem.h.

Referenced by FEProblem(), getUseNonlinear(), and setUseNonlinear().

◆ _using_ad_mat_props

bool FEProblemBase::_using_ad_mat_props
protectedinherited

Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property.

Definition at line 3146 of file FEProblemBase.h.

◆ _using_default_nl

const bool FEProblemBase::_using_default_nl
protectedinherited

Boolean to check if we have the default nonlinear system.

Definition at line 2808 of file FEProblemBase.h.

◆ _var_dof_map

std::map<std::string, std::vector<dof_id_type> > SubProblem::_var_dof_map
inherited

◆ _vector_curl_zero

std::vector<VectorVariableCurl> FEProblemBase::_vector_curl_zero
inherited

◆ _vector_zero

std::vector<VectorVariableValue> FEProblemBase::_vector_zero
inherited

◆ _verbose_multiapps

bool FEProblemBase::_verbose_multiapps
protectedinherited

◆ _verbose_restore

bool FEProblemBase::_verbose_restore
protectedinherited

Whether or not to be verbose on solution restoration post a failed time step.

Definition at line 3114 of file FEProblemBase.h.

Referenced by FEProblemBase::restoreSolutions(), and FEProblemBase::setVerboseProblem().

◆ _verbose_setup

MooseEnum FEProblemBase::_verbose_setup
protectedinherited

Whether or not to be verbose during setup.

Definition at line 3108 of file FEProblemBase.h.

Referenced by FEProblemBase::logAdd(), and FEProblemBase::setVerboseProblem().

◆ _xfem

std::shared_ptr<XFEMInterface> FEProblemBase::_xfem
protectedinherited

Pointer to XFEM controller.

Definition at line 3008 of file FEProblemBase.h.

Referenced by FEProblemBase::getXFEM(), FEProblemBase::haveXFEM(), FEProblemBase::initXFEM(), and FEProblemBase::updateMeshXFEM().

◆ _zero

std::vector<VariableValue> FEProblemBase::_zero
inherited

◆ _zero_block_material_props

std::map<SubdomainID, std::set<MaterialPropertyName> > SubProblem::_zero_block_material_props
protectedinherited

Set of properties returned as zero properties.

Definition at line 1058 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), FEProblemBase::checkDependMaterialsHelper(), and SubProblem::storeSubdomainZeroMatProp().

◆ _zero_boundary_material_props

std::map<BoundaryID, std::set<MaterialPropertyName> > SubProblem::_zero_boundary_material_props
protectedinherited

◆ app_param

const std::string MooseBase::app_param = "_moose_app"
staticinherited

◆ kokkos_object_param

const std::string MooseBase::kokkos_object_param = "_kokkos_object"
staticinherited

The name of the parameter that indicates an object is a Kokkos functor.

Definition at line 64 of file MooseBase.h.

Referenced by MooseObject::isKokkosObject().

◆ moose_base_param

const std::string MooseBase::moose_base_param = "_moose_base"
staticinherited

The name of the parameter that contains the moose system base.

Definition at line 61 of file MooseBase.h.

Referenced by InputParameters::getBase(), InputParameters::hasBase(), and InputParameters::registerBase().

◆ name_param

const std::string MooseBase::name_param = "_object_name"
staticinherited

◆ type_param

const std::string MooseBase::type_param = "_type"
staticinherited

◆ unique_name_param

const std::string MooseBase::unique_name_param = "_unique_name"
staticinherited

The name of the parameter that contains the unique object name.

Definition at line 57 of file MooseBase.h.

Referenced by InputParameterWarehouse::addInputParameters(), AppFactory::create(), InputParameterWarehouse::removeInputParameters(), MooseBase::uniqueName(), and MooseBase::validParams().


The documentation for this class was generated from the following files: