https://mooseframework.inl.gov
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
NonlinearSystemBase Class Referenceabstract

Nonlinear system to be solved. More...

#include <NonlinearSystemBase.h>

Inheritance diagram for NonlinearSystemBase:
[legend]

Public Member Functions

 NonlinearSystemBase (FEProblemBase &problem, libMesh::System &sys, const std::string &name)
 
virtual ~NonlinearSystemBase ()
 
virtual void preInit () override
 This is called prior to the libMesh system has been init'd. More...
 
void reinitMortarFunctors ()
 Update the mortar functors if the mesh has changed. More...
 
bool computedScalingJacobian () const
 
virtual void turnOffJacobian ()
 Turn off the Jacobian (must be called before equation system initialization) More...
 
virtual void solve () override=0
 Solve the system (using libMesh magic) More...
 
virtual libMesh::NonlinearSolver< Number > * nonlinearSolver ()=0
 
virtual SNES getSNES ()=0
 
virtual unsigned int getCurrentNonlinearIterationNumber ()=0
 
bool computingPreSMOResidual ()
 Returns true if this system is currently computing the pre-SMO residual for a solve. More...
 
virtual void initialSetup () override
 Setup Functions. More...
 
virtual void timestepSetup () override
 
virtual void customSetup (const ExecFlagType &exec_type) override
 
virtual void residualSetup () override
 
virtual void jacobianSetup () override
 
virtual void setupFiniteDifferencedPreconditioner ()=0
 
bool haveFiniteDifferencedPreconditioner () const
 
bool haveFieldSplitPreconditioner () const
 
virtual void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a kernel. More...
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a hybridized discontinuous Galerkin (HDG) kernel. More...
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a NodalKernel. More...
 
void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a scalar kernel. More...
 
void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 Adds a boundary condition. More...
 
virtual void addKokkosKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos kernel. More...
 
virtual void addKokkosNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos nodal kernel. More...
 
void addKokkosBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos boundary condition. More...
 
void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 Adds a Constraint. More...
 
void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Dirac kernel. More...
 
void addDGKernel (std::string dg_kernel_name, const std::string &name, InputParameters &parameters)
 Adds a DG kernel. More...
 
void addInterfaceKernel (std::string interface_kernel_name, const std::string &name, InputParameters &parameters)
 Adds an interface kernel. More...
 
void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 Adds a damper. More...
 
void addSplit (const std::string &split_name, const std::string &name, InputParameters &parameters)
 Adds a split. More...
 
std::shared_ptr< SplitgetSplit (const std::string &name)
 Retrieves a split by name. More...
 
MooseObjectWarehouseBase< Split > & getSplits ()
 Retrieves all splits. More...
 
bool shouldEvaluatePreSMOResidual () const
 We offer the option to check convergence against the pre-SMO residual. More...
 
void setPreSMOResidual (bool use)
 Set whether to evaluate the pre-SMO residual and use it in the subsequent relative convergence checks. More...
 
const bool & usePreSMOResidual () const
 Whether we are using pre-SMO residual in relative convergence checks. More...
 
Real referenceResidual () const
 The reference residual used in relative convergence check. More...
 
Real preSMOResidual () const
 The pre-SMO residual. More...
 
Real initialResidual () const
 The initial residual. More...
 
void setInitialResidual (Real r)
 Record the initial residual (for later relative convergence check) More...
 
void zeroVectorForResidual (const std::string &vector_name)
 
void setInitialSolution ()
 
void setKokkosInitialSolution ()
 
void setConstraintSecondaryValues (NumericVector< Number > &solution, bool displaced)
 Sets the value of constrained variables in the solution vector. More...
 
void constraintResiduals (NumericVector< Number > &residual, bool displaced)
 Add residual contributions from Constraints. More...
 
void computeResidualTag (NumericVector< Number > &residual, TagID tag_id)
 Computes residual for a given tag. More...
 
void computeResidualTags (const std::set< TagID > &tags)
 Form multiple tag-associated residual vectors for all the given tags. More...
 
void computeResidualAndJacobianTags (const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Form possibly multiple tag-associated vectors and matrices. More...
 
void computeResidualAndJacobianInternal (const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary conditions. More...
 
void computeResidual (NumericVector< Number > &residual, TagID tag_id)
 Form a residual vector for a given tag. More...
 
void addImplicitGeometricCouplingEntries (GeometricSearchData &geom_search_data)
 Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled that are related geometrically (i.e. More...
 
void constraintJacobians (const SparseMatrix< Number > &jacobian_to_view, bool displaced)
 Add jacobian contributions from Constraints. More...
 
void computeJacobianTags (const std::set< TagID > &tags)
 Computes multiple (tag associated) Jacobian matricese. More...
 
bool computeScaling ()
 Method used to obtain scaling factors for variables. More...
 
void computeJacobian (libMesh::SparseMatrix< Number > &jacobian, const std::set< TagID > &tags)
 Associate jacobian to systemMatrixTag, and then form a matrix for all the tags. More...
 
void computeJacobian (libMesh::SparseMatrix< Number > &jacobian)
 Take all tags in the system, and form a matrix for all tags in the system. More...
 
void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const std::set< TagID > &tags)
 
Real computeDamping (const NumericVector< Number > &solution, const NumericVector< Number > &update)
 Compute damping. More...
 
void onTimestepBegin ()
 Called at the beginning of the time step. More...
 
virtual void subdomainSetup (SubdomainID subdomain, THREAD_ID tid)
 Called from assembling when we hit a new subdomain. More...
 
void overwriteNodeFace (NumericVector< Number > &soln)
 Called from explicit time stepping to overwrite boundary positions (explicit dynamics). More...
 
void updateActive (THREAD_ID tid)
 Update active objects of Warehouses owned by NonlinearSystemBase. More...
 
virtual void setSolutionUDot (const NumericVector< Number > &udot)
 Set transient term used by residual and Jacobian evaluation. More...
 
virtual void setSolutionUDotDot (const NumericVector< Number > &udotdot)
 Set transient term used by residual and Jacobian evaluation. More...
 
NumericVector< Number > & getResidualTimeVector ()
 Return a numeric vector that is associated with the time tag. More...
 
NumericVector< Number > & getResidualNonTimeVector ()
 Return a numeric vector that is associated with the nontime tag. More...
 
NumericVector< Number > & residualVector (TagID tag)
 Return a residual vector that is associated with the residual tag. More...
 
virtual NumericVector< Number > & residualCopy () override
 
virtual NumericVector< Number > & residualGhosted () override
 
virtual NumericVector< Number > & RHS ()=0
 
virtual void augmentSparsity (libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz) override
 Will modify the sparsity pattern to add logical geometric connections. More...
 
void setPreconditioner (std::shared_ptr< MoosePreconditioner > pc)
 Sets a preconditioner. More...
 
MoosePreconditioner const * getPreconditioner () const
 
void useFiniteDifferencedPreconditioner (bool use=true)
 If called with true this system will use a finite differenced form of the Jacobian as the preconditioner. More...
 
void useFieldSplitPreconditioner (FieldSplitPreconditionerBase *fsp)
 If called with a non-null object true this system will use a field split preconditioner matrix. More...
 
FieldSplitPreconditionerBasegetFieldSplitPreconditioner ()
 
void addImplicitGeometricCouplingEntriesToJacobian (bool add=true)
 If called with true this will add entries into the jacobian to link together degrees of freedom that are found to be related through the geometric search system. More...
 
void assembleConstraintsSeparately (bool separately=true)
 Indicates whether to assemble residual and Jacobian after each constraint application. More...
 
virtual void attachPreconditioner (libMesh::Preconditioner< Number > *preconditioner)=0
 Attach a customized preconditioner that requires physics knowledge. More...
 
void setupDampers ()
 Setup damping stuff (called before we actually start) More...
 
void reinitIncrementAtQpsForDampers (THREAD_ID tid, const std::set< MooseVariable *> &damped_vars)
 Compute the incremental change in variables at QPs for dampers. More...
 
void reinitIncrementAtNodeForDampers (THREAD_ID tid, const std::set< MooseVariable *> &damped_vars)
 Compute the incremental change in variables at nodes for dampers. More...
 
unsigned int nNonlinearIterations () const
 Return the number of non-linear iterations. More...
 
unsigned int nLinearIterations () const
 Return the number of linear iterations. More...
 
unsigned int nResidualEvaluations () const
 Return the total number of residual evaluations done so far in this calculation. More...
 
Real finalNonlinearResidual () const
 Return the final nonlinear residual. More...
 
Real nonlinearNorm () const
 Return the last nonlinear norm. More...
 
void printAllVariableNorms (bool state)
 Force the printing of all variable norms after each solve. More...
 
void debuggingResiduals (bool state)
 
void setPredictor (std::shared_ptr< Predictor > predictor)
 
PredictorgetPredictor ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, THREAD_ID tid) const
 Indicated whether this system needs material properties on boundaries. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, THREAD_ID tid) const
 Indicated whether this system needs material properties on interfaces. More...
 
bool needInternalNeighborSideMaterial (SubdomainID subdomain_id, THREAD_ID tid) const
 Indicates whether this system needs material properties on internal sides. More...
 
bool doingDG () const
 Getter for _doing_dg. More...
 
bool hasSaveIn () const
 Weather or not the nonlinear system has save-ins. More...
 
bool hasDiagSaveIn () const
 Weather or not the nonlinear system has diagonal Jacobian save-ins. More...
 
virtual libMesh::Systemsystem () override
 Get the reference to the libMesh system. More...
 
virtual const libMesh::Systemsystem () const override
 
virtual void setSolutionUDotOld (const NumericVector< Number > &u_dot_old)
 
virtual void setSolutionUDotDotOld (const NumericVector< Number > &u_dotdot_old)
 
virtual void setPreviousNewtonSolution (const NumericVector< Number > &soln)
 
TagID timeVectorTag () const override
 Ideally, we should not need this API. More...
 
TagID nonTimeVectorTag () const override
 
TagID residualVectorTag () const override
 
TagID systemMatrixTag () const override
 Return the Matrix Tag ID for System. More...
 
virtual void residualAndJacobianTogether ()=0
 Call this method if you want the residual and Jacobian to be computed simultaneously. More...
 
bool computeScalingOnce () const
 
void computeScalingOnce (bool compute_scaling_once)
 
void autoScalingParam (Real resid_vs_jac_scaling_param)
 Sets the param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters. More...
 
void scalingGroupVariables (const std::vector< std::vector< std::string >> &scaling_group_variables)
 
void ignoreVariablesForAutoscaling (const std::vector< std::string > &ignore_variables_for_autoscaling)
 
bool offDiagonalsInAutoScaling () const
 
void offDiagonalsInAutoScaling (bool off_diagonals_in_auto_scaling)
 
void setupDM ()
 Setup the PETSc DM object (when appropriate) More...
 
virtual void potentiallySetupFiniteDifferencing ()
 Create finite differencing contexts for assembly of the Jacobian and/or approximating the action of the Jacobian on vectors (e.g. More...
 
void destroyColoring ()
 Destroy the coloring object if it exists. More...
 
virtual void subdomainSetup ()
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, THREAD_ID tid)
 Reinit nodal assembly info on a face. More...
 
virtual void restoreSolutions () override final
 Restore current solutions (call after your solve failed) More...
 
void serializeSolution ()
 
virtual void stopSolve (const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
 Quit the current solve as soon as possible. More...
 
virtual bool converged ()=0
 Returns the convergence state. More...
 
void setSolution (const NumericVector< Number > &soln)
 Set the solution to a given vector. More...
 
void setPCSide (MooseEnum pcs)
 Set the side on which the preconditioner is applied to. More...
 
Moose::PCSideType getPCSide ()
 Get the current preconditioner side. More...
 
void setMooseKSPNormType (MooseEnum kspnorm)
 Set the norm in which the linear convergence will be measured. More...
 
Moose::MooseKSPNormType getMooseKSPNormType ()
 Get the norm in which the linear convergence is measured. More...
 
virtual const NumericVector< Number > *const & currentSolution () const override final
 The solution vector that is currently being operated on. More...
 
virtual void compute (ExecFlagType type) override
 Compute time derivatives, auxiliary variables, etc. More...
 
unsigned int number () const
 Gets the number of this system. More...
 
MooseMeshmesh ()
 
const MooseMeshmesh () const
 
SubProblemsubproblem ()
 
const SubProblemsubproblem () const
 
FEProblemBasefeProblem ()
 
const FEProblemBasefeProblem () const
 
void applyScalingFactors (const std::vector< Real > &inverse_scaling_factors)
 Applies scaling factors to the system's variables. More...
 
bool computingScalingJacobian () const
 Whether we are computing an initial Jacobian for automatic variable scaling. More...
 
bool automaticScaling () const
 Getter for whether we are performing automatic scaling. More...
 
void automaticScaling (bool automatic_scaling)
 Setter for whether we are performing automatic scaling. More...
 
void setVerboseFlag (const bool &verbose)
 Sets the verbose flag. More...
 
virtual libMesh::DofMapdofMap ()
 Gets writeable reference to the dof map. More...
 
virtual const libMesh::DofMapdofMap () const
 Gets const reference to the dof map. More...
 
virtual void postInit ()
 
virtual void reinit ()
 Reinitialize the system when the degrees of freedom in this system have changed. More...
 
virtual void initializeObjects ()
 Called only once, just before the solve begins so objects can do some precalculations. More...
 
void update ()
 Update the system (doing libMesh magic) More...
 
virtual void copyOldSolutions ()
 Shifts the solutions backwards in time. More...
 
virtual void copyPreviousNonlinearSolutions ()
 Shifts the solutions backwards in nonlinear iteration history. More...
 
virtual void copyPreviousFixedPointSolutions ()
 
NumericVector< Number > & solution ()
 
const NumericVector< Number > & solution () const
 
NumericVector< Number > & solutionOld ()
 
const NumericVector< Number > & solutionOld () const
 
NumericVector< Number > & solutionOlder ()
 
const NumericVector< Number > & solutionOlder () const
 
virtual const NumericVector< Number > * solutionPreviousNewton () const
 
virtual NumericVector< Number > * solutionPreviousNewton ()
 
virtual void initSolutionState ()
 Initializes the solution state. More...
 
virtual NumericVector< Number > & solutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
 Get a state of the solution (0 = current, 1 = old, 2 = older, etc). More...
 
virtual const NumericVector< Number > & solutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
 Get a state of the solution (0 = current, 1 = old, 2 = older, etc). More...
 
libMesh::ParallelType solutionStateParallelType (const unsigned int state, const Moose::SolutionIterationType iteration_type) const
 Returns the parallel type of the given solution state. More...
 
virtual void needSolutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
 Registers that the solution state state is needed. More...
 
virtual bool hasSolutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
 Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc). More...
 
virtual void addDotVectors ()
 Add u_dot, u_dotdot, u_dot_old and u_dotdot_old vectors if requested by the time integrator. More...
 
virtual std::vector< Number > & duDotDus ()
 
virtual NumberduDotDotDu ()
 
virtual const NumberduDotDotDu () const
 
virtual const NumberduDotDu (unsigned int var_num=0) const
 
virtual NumericVector< Number > * solutionUDot ()
 
virtual const NumericVector< Number > * solutionUDot () const
 
virtual NumericVector< Number > * solutionUDotDot ()
 
virtual const NumericVector< Number > * solutionUDotDot () const
 
virtual NumericVector< Number > * solutionUDotOld ()
 
virtual const NumericVector< Number > * solutionUDotOld () const
 
virtual NumericVector< Number > * solutionUDotDotOld ()
 
virtual const NumericVector< Number > * solutionUDotDotOld () const
 
virtual void saveOldSolutions ()
 Save the old and older solutions. More...
 
virtual void restoreOldSolutions ()
 Restore the old and older solutions when the saved solutions present. More...
 
bool hasVector (const std::string &tag_name) const
 Check if the named vector exists in the system. More...
 
virtual bool hasVector (TagID tag_id) const
 Check if the tagged vector exists in the system. More...
 
virtual std::set< TagIDdefaultVectorTags () const
 Get the default vector tags associated with this system. More...
 
virtual std::set< TagIDdefaultMatrixTags () const
 Get the default matrix tags associted with this system. More...
 
virtual void associateVectorToTag (NumericVector< Number > &vec, TagID tag)
 Associate a vector for a given tag. More...
 
virtual void disassociateVectorFromTag (NumericVector< Number > &vec, TagID tag)
 Disassociate a given vector from a given tag. More...
 
virtual void disassociateVectorFromTag (TagID tag)
 Disassociate any vector that is associated with a given tag. More...
 
virtual void disassociateDefaultVectorTags ()
 Disassociate the vectors associated with the default vector tags of this system. More...
 
virtual bool hasMatrix (TagID tag) const
 Check if the tagged matrix exists in the system. More...
 
virtual libMesh::SparseMatrix< Number > & getMatrix (TagID tag)
 Get a raw SparseMatrix. More...
 
virtual const libMesh::SparseMatrix< Number > & getMatrix (TagID tag) const
 Get a raw SparseMatrix. More...
 
virtual void activateAllMatrixTags ()
 Make all existing matrices active. More...
 
virtual bool matrixTagActive (TagID tag) const
 If or not a matrix tag is active. More...
 
virtual void deactivateAllMatrixTags ()
 Make matrices inactive. More...
 
void closeTaggedMatrices (const std::set< TagID > &tags)
 Close all matrices associated the tags. More...
 
void flushTaggedMatrices (const std::set< TagID > &tags)
 flushes all matrices associated to tags. More...
 
virtual void associateMatrixToTag (libMesh::SparseMatrix< Number > &matrix, TagID tag)
 Associate a matrix to a tag. More...
 
virtual void disassociateMatrixFromTag (libMesh::SparseMatrix< Number > &matrix, TagID tag)
 Disassociate a matrix from a tag. More...
 
virtual void disassociateMatrixFromTag (TagID tag)
 Disassociate any matrix that is associated with a given tag. More...
 
virtual void disassociateDefaultMatrixTags ()
 Disassociate the matrices associated with the default matrix tags of this system. More...
 
virtual NumericVector< Number > & serializedSolution ()
 Returns a reference to a serialized version of the solution vector for this subproblem. More...
 
virtual void augmentSendList (std::vector< dof_id_type > &send_list)
 Will modify the send_list to add all of the extra ghosted dofs for this system. More...
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters)
 Canonical method for adding a variable. More...
 
virtual bool isArrayVariable (const std::string &var_name) const
 If a variable is an array variable. More...
 
virtual bool isScalarVariable (unsigned int var_name) const
 
MooseVariableFieldBasegetVariable (THREAD_ID tid, const std::string &var_name) const
 Gets a reference to a variable of with specified name. More...
 
MooseVariableFieldBasegetVariable (THREAD_ID tid, unsigned int var_number) const
 Gets a reference to a variable with specified number. More...
 
template<typename T >
MooseVariableFE< T > & getFieldVariable (THREAD_ID tid, const std::string &var_name)
 Gets a reference to a variable of with specified name. More...
 
template<typename T >
MooseVariableFE< T > & getFieldVariable (THREAD_ID tid, unsigned int var_number)
 Gets a reference to a variable with specified number. More...
 
template<typename T >
MooseVariableField< T > & getActualFieldVariable (THREAD_ID tid, const std::string &var_name)
 Returns a field variable pointer - this includes finite volume variables. More...
 
template<typename T >
MooseVariableField< T > & getActualFieldVariable (THREAD_ID tid, unsigned int var_number)
 Returns a field variable pointer - this includes finite volume variables. More...
 
template<typename T >
MooseVariableFV< T > & getFVVariable (THREAD_ID tid, const std::string &var_name)
 Return a finite volume variable. More...
 
virtual MooseVariableScalargetScalarVariable (THREAD_ID tid, const std::string &var_name) const
 Gets a reference to a scalar variable with specified number. More...
 
virtual MooseVariableScalargetScalarVariable (THREAD_ID tid, unsigned int var_number) const
 Gets a reference to a variable with specified number. More...
 
virtual const std::set< SubdomainID > * getVariableBlocks (unsigned int var_number)
 Get the block where a variable of this system is defined. More...
 
virtual unsigned int nVariables () const
 Get the number of variables in this system. More...
 
unsigned int nFieldVariables () const
 Get the number of field variables in this system. More...
 
unsigned int nFVVariables () const
 Get the number of finite volume variables in this system. More...
 
std::size_t getMaxVarNDofsPerElem () const
 Gets the maximum number of dofs used by any one variable on any one element. More...
 
std::size_t getMaxVarNDofsPerNode () const
 Gets the maximum number of dofs used by any one variable on any one node. More...
 
void assignMaxVarNDofsPerElem (std::size_t max_dofs)
 assign the maximum element dofs More...
 
void assignMaxVarNDofsPerNode (std::size_t max_dofs)
 assign the maximum node dofs More...
 
virtual void addVariableToZeroOnResidual (std::string var_name)
 Adds this variable to the list of variables to be zeroed during each residual evaluation. More...
 
virtual void addVariableToZeroOnJacobian (std::string var_name)
 Adds this variable to the list of variables to be zeroed during each Jacobian evaluation. More...
 
virtual void zeroVariables (std::vector< std::string > &vars_to_be_zeroed)
 Zero out the solution for the list of variables passed in. More...
 
virtual void zeroVariablesForResidual ()
 Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on residual evaluation by a call to addVariableToZeroOnResidual() More...
 
virtual void zeroVariablesForJacobian ()
 Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on Jacobian evaluation by a call to addVariableToZeroOnResidual() More...
 
virtual libMesh::Order getMinQuadratureOrder ()
 Get minimal quadrature order needed for integrating variables in this system. More...
 
virtual void prepare (THREAD_ID tid)
 Prepare the system for use. More...
 
virtual void prepareFace (THREAD_ID tid, bool resize_data)
 Prepare the system for use on sides. More...
 
virtual void prepareNeighbor (THREAD_ID tid)
 Prepare the system for use. More...
 
virtual void prepareLowerD (THREAD_ID tid)
 Prepare the system for use for lower dimensional elements. More...
 
virtual void reinitElem (const Elem *elem, THREAD_ID tid)
 Reinit an element assembly info. More...
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, THREAD_ID tid)
 Reinit assembly info for a side of an element. More...
 
virtual void reinitNeighborFace (const Elem *elem, unsigned int side, THREAD_ID tid)
 Compute the values of the variables at all the current points. More...
 
virtual void reinitNeighbor (const Elem *elem, THREAD_ID tid)
 Compute the values of the variables at all the current points. More...
 
virtual void reinitLowerD (THREAD_ID tid)
 Compute the values of the variables on the lower dimensional element. More...
 
virtual void reinitNode (const Node *node, THREAD_ID tid)
 Reinit nodal assembly info. More...
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, THREAD_ID tid)
 Reinit nodal assembly info on a face. More...
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, THREAD_ID tid)
 Reinit variables at a set of nodes. More...
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, THREAD_ID tid)
 Reinit variables at a set of neighbor nodes. More...
 
virtual void reinitScalars (THREAD_ID tid, bool reinit_for_derivative_reordering=false)
 Reinit scalar varaibles. More...
 
virtual void addVariableToCopy (const std::string &dest_name, const std::string &source_name, const std::string &timestep)
 Add info about variable that will be copied. More...
 
const std::vector< MooseVariableFieldBase * > & getVariables (THREAD_ID tid)
 
const std::vector< MooseVariableScalar * > & getScalarVariables (THREAD_ID tid)
 
const std::set< SubdomainID > & getSubdomainsForVar (unsigned int var_number) const
 
const std::set< SubdomainID > & getSubdomainsForVar (const std::string &var_name) const
 Get the block where a variable of this system is defined. More...
 
void removeVector (const std::string &name)
 Remove a vector from the system with the given name. More...
 
void removeVector (TagID tag_id)
 Remove a solution length vector from the system with the specified TagID. More...
 
NumericVector< Number > & addVector (const std::string &vector_name, const bool project, const libMesh::ParallelType type)
 Adds a solution length vector to the system. More...
 
NumericVector< Number > & addVector (TagID tag, const bool project, const libMesh::ParallelType type)
 Adds a solution length vector to the system with the specified TagID. More...
 
void closeTaggedVector (const TagID tag)
 Close vector with the given tag. More...
 
void closeTaggedVectors (const std::set< TagID > &tags)
 Close all vectors for given tags. More...
 
void zeroTaggedVector (const TagID tag)
 Zero vector with the given tag. More...
 
void zeroTaggedVectors (const std::set< TagID > &tags)
 Zero all vectors for given tags. More...
 
void setVariableGlobalDoFs (const std::string &var_name)
 set all the global dof indices for a variable More...
 
const std::vector< dof_id_type > & getVariableGlobalDoFs ()
 Get the global dof indices of a variable, this needs to be called after the indices have been set by setVariableGlobalDoFs More...
 
libMesh::SparseMatrix< Number > & addMatrix (TagID tag)
 Adds a matrix with a given tag. More...
 
void removeMatrix (TagID tag)
 Removes a matrix with a given tag. More...
 
virtual const std::string & name () const
 
const std::vector< VariableName > & getVariableNames () const
 
void getStandardFieldVariableNames (std::vector< VariableName > &std_field_variables) const
 
unsigned int getMaxVariableNumber () const
 Returns the maximum number of all variables on the system. More...
 
virtual void computeVariables (const NumericVector< Number > &)
 
void copyVars (libMesh::ExodusII_IO &io)
 
virtual void copySolutionsBackwards ()
 Copy current solution into old and older. More...
 
void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
bool hasVarCopy () const
 Whether or not there are variables to be restarted from an Exodus mesh file. More...
 
void addScalingVector ()
 Add the scaling factor vector to the system. More...
 
bool solutionStatesInitialized () const
 Whether or not the solution states have been initialized via initSolutionState() More...
 
virtual void subdomainSetup ()
 
void clearAllDofIndices ()
 Clear all dof indices from moose variables. More...
 
void setActiveVariableCoupleableVectorTags (const std::set< TagID > &vtags, THREAD_ID tid)
 Set the active vector tags for the variables. More...
 
void setActiveScalarVariableCoupleableVectorTags (const std::set< TagID > &vtags, THREAD_ID tid)
 Set the active vector tags for the scalar variables. More...
 
Moose::VarKindType varKind () const
 
const std::vector< std::unique_ptr< NumericVector< Number > > > & gradientContainer () const
 Reference to the container vector which hold gradients at dofs (if it can be interpreted). More...
 
void copyTimeIntegrators (const SystemBase &other_sys)
 Copy time integrators from another system. More...
 
const TimeIntegratorgetTimeIntegrator (const unsigned int var_num) const
 Retrieve the time integrator that integrates the given variable's equation. More...
 
const TimeIntegratorqueryTimeIntegrator (const unsigned int var_num) const
 Retrieve the time integrator that integrates the given variable's equation. More...
 
const std::vector< std::shared_ptr< TimeIntegrator > > & getTimeIntegrators ()
 
std::string prefix () const
 
void sizeVariableMatrixData ()
 size the matrix data for each variable for the number of matrix tags we have More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
void checkKernelCoverage (const std::set< SubdomainID > &mesh_subdomains) const
 
virtual bool containsTimeKernel () override
 If the system has a kernel that corresponds to a time derivative. More...
 
virtual std::vector< std::string > timeKernelVariableNames () override
 Returns the names of the variables that have time derivative kernels in the system. More...
 
MooseObjectTagWarehouse< KernelBase > & getKernelWarehouse ()
 Access functions to Warehouses from outside NonlinearSystemBase. More...
 
const MooseObjectTagWarehouse< KernelBase > & getKernelWarehouse () const
 
MooseObjectTagWarehouse< DGKernelBase > & getDGKernelWarehouse ()
 
MooseObjectTagWarehouse< InterfaceKernelBase > & getInterfaceKernelWarehouse ()
 
MooseObjectTagWarehouse< DiracKernelBase > & getDiracKernelWarehouse ()
 
MooseObjectTagWarehouse< IntegratedBCBase > & getIntegratedBCWarehouse ()
 
const MooseObjectTagWarehouse< ScalarKernelBase > & getScalarKernelWarehouse () const
 
const MooseObjectTagWarehouse< NodalKernelBase > & getNodalKernelWarehouse () const
 
MooseObjectTagWarehouse< HDGKernel > & getHDGKernelWarehouse ()
 
const MooseObjectWarehouse< ElementDamper > & getElementDamperWarehouse () const
 
const MooseObjectWarehouse< NodalDamper > & getNodalDamperWarehouse () const
 
const ConstraintWarehousegetConstraintWarehouse () const
 
const MooseObjectTagWarehouse< NodalBCBase > & getNodalBCWarehouse () const
 Return the NodalBCBase warehouse. More...
 
const MooseObjectTagWarehouse< IntegratedBCBase > & getIntegratedBCWarehouse () const
 Return the IntegratedBCBase warehouse. More...
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosKernelWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosNodalKernelWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosNodalBCWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosIntegratedBCWarehouse ()
 
virtual NumericVector< Number > & getVector (const std::string &name)
 Get a raw NumericVector by name. More...
 
virtual const NumericVector< Number > & getVector (const std::string &name) const
 
virtual NumericVector< Number > & getVector (TagID tag)
 Get a raw NumericVector by tag. More...
 
virtual const NumericVector< Number > & getVector (TagID tag) const
 
virtual bool hasVariable (const std::string &var_name) const
 Query a system for a variable. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

unsigned int _num_residual_evaluations
 
libMesh::System_sys
 
Real _last_nl_rnorm
 
std::vector< unsigned int_current_l_its
 
unsigned int _current_nl_its
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 

Protected Member Functions

void computeResidualInternal (const std::set< TagID > &tags)
 Compute the residual for a given tag. More...
 
void computeKokkosResidual (const std::set< TagID > &tags)
 Compute residual with Kokkos objects. More...
 
void computeNodalBCs (NumericVector< Number > &residual)
 Enforces nodal boundary conditions. More...
 
void computeNodalBCs (NumericVector< Number > &residual, const std::set< TagID > &tags)
 Form a residual for BCs that at least has one of the given tags. More...
 
void computeNodalBCs (const std::set< TagID > &tags)
 Form multiple tag-associated residual vectors for the given tags. More...
 
void computeNodalBCsResidualAndJacobian ()
 compute the residual and Jacobian for nodal boundary conditions More...
 
void computeJacobianInternal (const std::set< TagID > &tags)
 Form multiple matrices for all the tags. More...
 
void computeKokkosJacobian (const std::set< TagID > &tags)
 Compute Jacobian with Kokkos objects. More...
 
void computeDiracContributions (const std::set< TagID > &tags, bool is_jacobian)
 
void computeScalarKernelsJacobians (const std::set< TagID > &tags)
 
void enforceNodalConstraintsResidual (NumericVector< Number > &residual)
 Enforce nodal constraints. More...
 
void enforceNodalConstraintsJacobian ()
 
void mortarConstraints (Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Do mortar constraint residual/jacobian computations. More...
 
virtual void computeScalingJacobian ()=0
 Compute a "Jacobian" for automatic scaling purposes. More...
 
virtual void computeScalingResidual ()=0
 Compute a "residual" for automatic scaling purposes. More...
 
void assembleScalingVector ()
 Assemble the numeric vector of scaling factors such that it can be used during assembly of the system matrix. More...
 
virtual void postAddResidualObject (ResidualObject &)
 Called after any ResidualObject-derived objects are added to the system. More...
 
void reinitNodeFace (const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
 Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints. More...
 
bool preSolve ()
 Perform some steps to get ready for the solver. More...
 
void getNodeDofs (dof_id_type node_id, std::vector< dof_id_type > &dofs)
 
void checkInvalidSolution ()
 
virtual NumericVector< Number > & solutionInternal () const override final
 Internal getter for solution owned by libMesh. More...
 
virtual bool matrixFromColoring () const
 Whether a system matrix is formed from coloring. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 

Protected Attributes

NumericVector< Number > * _residual_ghosted
 ghosted form of the residual More...
 
std::unique_ptr< NumericVector< Number > > _residual_copy
 Copy of the residual vector, or nullptr if a copy is not needed. More...
 
Number _du_dot_du
 \( {du^dot}\over{du} \) More...
 
Number _du_dotdot_du
 \( {du^dotdot}\over{du} \) More...
 
TagID _Re_time_tag
 Tag for time contribution residual. More...
 
std::set< TagID_nl_vector_tags
 Vector tags to temporarily store all tags associated with the current system. More...
 
std::set< TagID_nl_matrix_tags
 Matrix tags to temporarily store all tags associated with the current system. More...
 
NumericVector< Number > * _Re_time
 residual vector for time contributions More...
 
TagID _Re_non_time_tag
 Tag for non-time contribution residual. More...
 
NumericVector< Number > * _Re_non_time
 residual vector for non-time contributions More...
 
TagID _Re_tag
 Used for the residual vector from PETSc. More...
 
TagID _Ke_non_time_tag
 Tag for non-time contribution Jacobian. More...
 
TagID _Ke_system_tag
 Tag for system contribution Jacobian. More...
 
MooseObjectTagWarehouse< DiracKernelBase_dirac_kernels
 Dirac Kernel storage for each thread. More...
 
MooseObjectWarehouse< ElementDamper_element_dampers
 Element Dampers for each thread. More...
 
MooseObjectWarehouse< NodalDamper_nodal_dampers
 Nodal Dampers for each thread. More...
 
MooseObjectWarehouse< GeneralDamper_general_dampers
 General Dampers. More...
 
MooseObjectTagWarehouse< NodalKernelBase_nodal_kernels
 NodalKernels for each thread. More...
 
MooseObjectWarehouseBase< Split_splits
 Decomposition splits. More...
 
ConstraintWarehouse _constraints
 Constraints storage object. More...
 
NumericVector< Number > * _increment_vec
 increment vector More...
 
std::shared_ptr< MoosePreconditioner_preconditioner
 Preconditioner. More...
 
bool _use_finite_differenced_preconditioner
 Whether or not to use a finite differenced preconditioner. More...
 
MatFDColoring _fdcoloring
 
FieldSplitPreconditionerBase_fsp
 The field split preconditioner if this sytem is using one. More...
 
bool _add_implicit_geometric_coupling_entries_to_jacobian
 Whether or not to add implicit geometric couplings to the Jacobian for FDP. More...
 
bool _assemble_constraints_separately
 Whether or not to assemble the residual and Jacobian after the application of each constraint. More...
 
bool _need_residual_ghosted
 Whether or not a ghosted copy of the residual needs to be made. More...
 
bool _debugging_residuals
 true if debugging residuals More...
 
bool _doing_dg
 true if DG is active (optimization reasons) More...
 
std::vector< std::string > _vecs_to_zero_for_residual
 vectors that will be zeroed before a residual computation More...
 
unsigned int _n_iters
 
unsigned int _n_linear_iters
 
unsigned int _n_residual_evaluations
 Total number of residual evaluations that have been performed. More...
 
Real _final_residual
 
std::shared_ptr< Predictor_predictor
 If predictor is active, this is non-NULL. More...
 
bool _computing_pre_smo_residual
 
Real _pre_smo_residual
 The pre-SMO residual, see setPreSMOResidual for a detailed explanation. More...
 
Real _initial_residual
 The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanation. More...
 
bool _use_pre_smo_residual
 Whether to use the pre-SMO initial residual in the relative convergence check. More...
 
bool _print_all_var_norms
 
bool _has_save_in
 If there is any Kernel or IntegratedBC having save_in. More...
 
bool _has_diag_save_in
 If there is any Kernel or IntegratedBC having diag_save_in. More...
 
bool _has_nodalbc_save_in
 If there is a nodal BC having save_in. More...
 
bool _has_nodalbc_diag_save_in
 If there is a nodal BC having diag_save_in. More...
 
bool _computed_scaling
 Flag used to indicate whether we have already computed the scaling Jacobian. More...
 
bool _compute_scaling_once
 Whether the scaling factors should only be computed once at the beginning of the simulation through an extra Jacobian evaluation. More...
 
Real _resid_vs_jac_scaling_param
 The param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters. More...
 
std::vector< std::vector< std::string > > _scaling_group_variables
 A container of variable groupings that can be used in scaling calculations. More...
 
std::vector< bool > _variable_autoscaled
 Container to hold flag if variable is to participate in autoscaling. More...
 
std::vector< std::string > _ignore_variables_for_autoscaling
 A container for variables that do not partipate in autoscaling. More...
 
bool _off_diagonals_in_auto_scaling
 Whether to include off diagonals when determining automatic scaling factors. More...
 
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
 A diagonal matrix used for computing scaling. More...
 
const NumericVector< Number > * _current_solution
 solution vector from solver More...
 
Moose::PCSideType _pc_side
 Preconditioning side. More...
 
Moose::MooseKSPNormType _ksp_norm
 KSP norm type. More...
 
bool _solution_is_invalid
 Boolean to see if solution is invalid. More...
 
SubProblem_subproblem
 The subproblem for whom this class holds variable data, etc; this can either be the governing finite element/volume problem or a subjugate displaced problem. More...
 
FEProblemBase_fe_problem
 the governing finite element/volume problem More...
 
MooseApp_app
 
Factory_factory
 
MooseMesh_mesh
 
std::string _name
 The name of this system. More...
 
std::vector< VariableWarehouse_vars
 Variable warehouses (one for each thread) More...
 
std::map< unsigned int, std::set< SubdomainID > > _var_map
 Map of variables (variable id -> array of subdomains where it lives) More...
 
unsigned int _max_var_number
 Maximum variable number. More...
 
std::vector< std::string > _vars_to_be_zeroed_on_residual
 
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
 
NumericVector< Number > * _u_dot
 solution vector for u^dot More...
 
NumericVector< Number > * _u_dotdot
 solution vector for u^dotdot More...
 
NumericVector< Number > * _u_dot_old
 old solution vector for u^dot More...
 
NumericVector< Number > * _u_dotdot_old
 old solution vector for u^dotdot More...
 
std::vector< NumericVector< Number > * > _tagged_vectors
 Tagged vectors (pointer) More...
 
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
 Tagged matrices (pointer) More...
 
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
 Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map. We use a map instead of a vector so that users can easily add and remove to this container with calls to (de)activateMatrixTag. More...
 
std::vector< bool > _matrix_tag_active_flags
 Active flags for tagged matrices. More...
 
NumericVector< Real > * _saved_old
 
NumericVector< Real > * _saved_older
 
NumericVector< Real > * _saved_dot_old
 
NumericVector< Real > * _saved_dotdot_old
 
Moose::VarKindType _var_kind
 default kind of variables in this system More...
 
std::vector< VarCopyInfo_var_to_copy
 
size_t _max_var_n_dofs_per_elem
 Maximum number of dofs for any one variable on any one element. More...
 
size_t _max_var_n_dofs_per_node
 Maximum number of dofs for any one variable on any one node. More...
 
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
 Time integrator. More...
 
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
 Map variable number to its pointer. More...
 
bool _automatic_scaling
 Whether to automatically scale the variables. More...
 
bool _verbose
 True if printing out additional information. More...
 
bool _solution_states_initialized
 Whether or not the solution states have been initialized. More...
 
std::vector< dof_id_type_var_all_dof_indices
 Container for the dof indices of a given variable. More...
 
std::unique_ptr< NumericVector< Number > > _serialized_solution
 Serialized version of the solution vector, or nullptr if a serialized solution is not needed. More...
 
std::vector< std::unique_ptr< NumericVector< Number > > > _raw_grad_container
 A cache for storing gradients at dof locations. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseObjectTagWarehouse< KernelBase_kernels
 
MooseObjectTagWarehouse< HDGKernel_hybridized_kernels
 
MooseObjectTagWarehouse< ScalarKernelBase_scalar_kernels
 
MooseObjectTagWarehouse< DGKernelBase_dg_kernels
 
MooseObjectTagWarehouse< InterfaceKernelBase_interface_kernels
 
MooseObjectTagWarehouse< IntegratedBCBase_integrated_bcs
 
MooseObjectTagWarehouse< NodalBCBase_nodal_bcs
 
MooseObjectWarehouse< DirichletBCBase_preset_nodal_bcs
 
MooseObjectWarehouse< ADDirichletBCBase_ad_preset_nodal_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_kernels
 
MooseObjectTagWarehouse< ResidualObject_kokkos_integrated_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_nodal_bcs
 
MooseObjectWarehouse< ResidualObject_kokkos_preset_nodal_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_nodal_kernels
 

Private Member Functions

void findImplicitGeometricCouplingEntries (GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
 Finds the implicit sparsity graph between geometrically related dofs. More...
 
void setupScalingData ()
 Setup group scaling containers. More...
 

Private Attributes

std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor_undisplaced_mortar_functors
 Functors for computing undisplaced mortar constraints. More...
 
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor_displaced_mortar_functors
 Functors for computing displaced mortar constraints. More...
 
std::vector< NumericVector< Number > * > _solution_state
 The current states of the solution (0 = current, 1 = old, etc) More...
 
bool _auto_scaling_initd
 Whether we've initialized the automatic scaling data structures. More...
 
std::unordered_map< unsigned int, unsigned int_var_to_group_var
 A map from variable index to group variable index and it's associated (inverse) scaling factor. More...
 
std::size_t _num_scaling_groups
 The number of scaling groups. More...
 

Detailed Description

Nonlinear system to be solved.

It is a part of FEProblemBase ;-)

Definition at line 68 of file NonlinearSystemBase.h.

Constructor & Destructor Documentation

◆ NonlinearSystemBase()

NonlinearSystemBase::NonlinearSystemBase ( FEProblemBase problem,
libMesh::System sys,
const std::string &  name 
)

Definition at line 114 of file NonlinearSystemBase.C.

117  : SolverSystem(fe_problem, fe_problem, name, Moose::VAR_SOLVER),
118  PerfGraphInterface(fe_problem.getMooseApp().perfGraph(), "NonlinearSystemBase"),
119  _sys(sys),
120  _last_nl_rnorm(0.),
121  _current_nl_its(0),
122  _residual_ghosted(NULL),
123  _Re_time_tag(-1),
124  _Re_time(NULL),
125  _Re_non_time_tag(-1),
126  _Re_non_time(NULL),
127  _scalar_kernels(/*threaded=*/false),
128  _nodal_bcs(/*threaded=*/false),
129  _preset_nodal_bcs(/*threaded=*/false),
130  _ad_preset_nodal_bcs(/*threaded=*/false),
131 #ifdef MOOSE_KOKKOS_ENABLED
132  _kokkos_kernels(/*threaded=*/false),
133  _kokkos_integrated_bcs(/*threaded=*/false),
134  _kokkos_nodal_bcs(/*threaded=*/false),
135  _kokkos_preset_nodal_bcs(/*threaded=*/false),
136  _kokkos_nodal_kernels(/*threaded=*/false),
137 #endif
138  _general_dampers(/*threaded=*/false),
139  _splits(/*threaded=*/false),
140  _increment_vec(NULL),
142  _fdcoloring(nullptr),
143  _fsp(nullptr),
146  _need_residual_ghosted(false),
147  _debugging_residuals(false),
148  _doing_dg(false),
149  _n_iters(0),
150  _n_linear_iters(0),
152  _final_residual(0.),
156  _use_pre_smo_residual(false),
157  _print_all_var_norms(false),
158  _has_save_in(false),
159  _has_diag_save_in(false),
160  _has_nodalbc_save_in(false),
162  _computed_scaling(false),
163  _compute_scaling_once(true),
166  _auto_scaling_initd(false)
167 {
169  // Don't need to add the matrix - it already exists (for now)
171 
172  // The time matrix tag is not normally used - but must be added to the system
173  // in case it is so that objects can have 'time' in their matrix tags by default
174  _fe_problem.addMatrixTag("TIME");
175 
176  _Re_tag = _fe_problem.addVectorTag("RESIDUAL");
177 
179 
181  {
182  auto & dof_map = _sys.get_dof_map();
183  dof_map.remove_algebraic_ghosting_functor(dof_map.default_algebraic_ghosting());
184  dof_map.set_implicit_neighbor_dofs(false);
185  }
186 }
NumericVector< Number > * _Re_time
residual vector for time contributions
SolverSystem(SubProblem &subproblem, FEProblemBase &fe_problem, const std::string &name, Moose::VarKindType var_kind)
Definition: SolverSystem.C:17
TagID _Re_time_tag
Tag for time contribution residual.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...
bool identifyVariableGroupsInNL() const
Whether to identify variable groups in nonlinear systems.
bool _debugging_residuals
true if debugging residuals
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
Real _pre_smo_residual
The pre-SMO residual, see setPreSMOResidual for a detailed explanation.
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
TagID _Ke_system_tag
Tag for system contribution Jacobian.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
virtual const std::string & name() const
Definition: SystemBase.C:1340
TagID _Re_non_time_tag
Tag for non-time contribution residual.
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:312
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.
bool identify_variable_groups() const
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
TagID _Re_tag
Used for the residual vector from PETSc.
libMesh::System & _sys
NumericVector< Number > * _increment_vec
increment vector
PerfGraphInterface(const MooseObject *moose_object)
For objects that are MooseObjects with a default prefix of type()
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)
NumericVector< Number > & getResidualNonTimeVector()
Return a numeric vector that is associated with the nontime tag.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
bool defaultGhosting()
Whether or not the user has requested default ghosting ot be on.
Definition: SubProblem.h:144
const DofMap & get_dof_map() const
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ ~NonlinearSystemBase()

NonlinearSystemBase::~NonlinearSystemBase ( )
virtualdefault

Member Function Documentation

◆ activateAllMatrixTags()

void SystemBase::activateAllMatrixTags ( )
virtualinherited

Make all existing matrices active.

Definition at line 1131 of file SystemBase.C.

Referenced by computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), computeResidualAndJacobianInternal(), and computeResidualTags().

1132 {
1133  auto num_matrix_tags = _subproblem.numMatrixTags();
1134 
1135  _matrix_tag_active_flags.resize(num_matrix_tags);
1136  _active_tagged_matrices.clear();
1137 
1138  for (const auto tag : make_range(num_matrix_tags))
1139  if (hasMatrix(tag))
1140  {
1141  _matrix_tag_active_flags[tag] = true;
1142  _active_tagged_matrices.emplace(tag, &getMatrix(tag));
1143  }
1144  else
1145  _matrix_tag_active_flags[tag] = false;
1146 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
IntRange< T > make_range(T beg, T end)

◆ addBoundaryCondition()

void NonlinearSystemBase::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)

Adds a boundary condition.

Parameters
bc_nameThe type of the boundary condition
nameThe name of the boundary condition
parametersBoundary condition parameters

Definition at line 544 of file NonlinearSystemBase.C.

547 {
548  // ThreadID
549  THREAD_ID tid = 0;
550 
551  // Create the object
552  std::shared_ptr<BoundaryCondition> bc =
553  _factory.create<BoundaryCondition>(bc_name, name, parameters, tid);
555 
556  // Active BoundaryIDs for the object
557  const std::set<BoundaryID> & boundary_ids = bc->boundaryIDs();
558  auto bc_var = dynamic_cast<const MooseVariableFieldBase *>(&bc->variable());
559  _vars[tid].addBoundaryVar(boundary_ids, bc_var);
560 
561  // Cast to the various types of BCs
562  std::shared_ptr<NodalBCBase> nbc = std::dynamic_pointer_cast<NodalBCBase>(bc);
563  std::shared_ptr<IntegratedBCBase> ibc = std::dynamic_pointer_cast<IntegratedBCBase>(bc);
564 
565  // NodalBCBase
566  if (nbc)
567  {
568  if (nbc->checkNodalVar() && !nbc->variable().isNodal())
569  mooseError("Trying to use nodal boundary condition '",
570  nbc->name(),
571  "' on a non-nodal variable '",
572  nbc->variable().name(),
573  "'.");
574 
575  _nodal_bcs.addObject(nbc);
576  // Add to theWarehouse, a centralized storage for all moose objects
578  _vars[tid].addBoundaryVars(boundary_ids, nbc->getCoupledVars());
579 
580  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
581  _has_nodalbc_save_in = true;
582  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
584 
585  // DirichletBCs that are preset
586  std::shared_ptr<DirichletBCBase> dbc = std::dynamic_pointer_cast<DirichletBCBase>(bc);
587  if (dbc && dbc->preset())
589 
590  std::shared_ptr<ADDirichletBCBase> addbc = std::dynamic_pointer_cast<ADDirichletBCBase>(bc);
591  if (addbc && addbc->preset())
593  }
594 
595  // IntegratedBCBase
596  else if (ibc)
597  {
598  _integrated_bcs.addObject(ibc, tid);
599  // Add to theWarehouse, a centralized storage for all moose objects
601  _vars[tid].addBoundaryVars(boundary_ids, ibc->getCoupledVars());
602 
603  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
604  _has_save_in = true;
605  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
606  _has_diag_save_in = true;
607 
608  for (tid = 1; tid < libMesh::n_threads(); tid++)
609  {
610  // Create the object
611  bc = _factory.create<BoundaryCondition>(bc_name, name, parameters, tid);
612 
613  // Give users opportunity to set some parameters
615 
616  // Active BoundaryIDs for the object
617  const std::set<BoundaryID> & boundary_ids = bc->boundaryIDs();
618  _vars[tid].addBoundaryVar(boundary_ids, bc_var);
619 
620  ibc = std::static_pointer_cast<IntegratedBCBase>(bc);
621 
622  _integrated_bcs.addObject(ibc, tid);
623  _vars[tid].addBoundaryVars(boundary_ids, ibc->getCoupledVars());
624  }
625  }
626 
627  else
628  mooseError("Unknown BoundaryCondition type for object named ", bc->name());
629 }
unsigned int n_threads()
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
Base class for automatic differentiation Dirichlet BCs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Base boundary condition of a Dirichlet type.
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
Factory & _factory
Definition: SystemBase.h:989
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
This class provides an interface for common operations on field variables of both FE and FV types wit...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for deriving any boundary condition that works at nodes.
Definition: NodalBCBase.h:26
Base class for creating new types of boundary conditions.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
Base class for deriving any boundary condition of a integrated type.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ addConstraint()

void NonlinearSystemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)

Adds a Constraint.

Parameters
c_nameThe type of the constraint
nameThe name of the constraint
parametersConstraint parameters

Definition at line 632 of file NonlinearSystemBase.C.

635 {
636  std::shared_ptr<Constraint> constraint = _factory.create<Constraint>(c_name, name, parameters);
637  _constraints.addObject(constraint);
638  postAddResidualObject(*constraint);
639 
640  if (constraint && constraint->addCouplingEntriesToJacobian())
642 }
void addImplicitGeometricCouplingEntriesToJacobian(bool add=true)
If called with true this will add entries into the jacobian to link together degrees of freedom that ...
Base class for all Constraint types.
Definition: Constraint.h:19
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
ConstraintWarehouse _constraints
Constraints storage object.
void addObject(std::shared_ptr< Constraint > object, THREAD_ID tid=0, bool recurse=true) override
Add Constraint object to the warehouse.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.

◆ addDamper()

void NonlinearSystemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)

Adds a damper.

Parameters
damper_nameThe type of the damper
nameThe name of the damper
parametersDamper parameters

Definition at line 705 of file NonlinearSystemBase.C.

708 {
709  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
710  {
711  std::shared_ptr<Damper> damper = _factory.create<Damper>(damper_name, name, parameters, tid);
712 
713  // Attempt to cast to the damper types
714  std::shared_ptr<ElementDamper> ed = std::dynamic_pointer_cast<ElementDamper>(damper);
715  std::shared_ptr<NodalDamper> nd = std::dynamic_pointer_cast<NodalDamper>(damper);
716  std::shared_ptr<GeneralDamper> gd = std::dynamic_pointer_cast<GeneralDamper>(damper);
717 
718  if (gd)
719  {
721  break; // not threaded
722  }
723  else if (ed)
724  _element_dampers.addObject(ed, tid);
725  else if (nd)
726  _nodal_dampers.addObject(nd, tid);
727  else
728  mooseError("Invalid damper type");
729  }
730 }
Base class for deriving general dampers.
Definition: GeneralDamper.h:21
unsigned int n_threads()
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Factory & _factory
Definition: SystemBase.h:989
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
Base class for deriving nodal dampers.
Definition: NodalDamper.h:27
Base class for deriving element dampers.
Definition: ElementDamper.h:33
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Base class for deriving dampers.
Definition: Damper.h:24
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addDGKernel()

void NonlinearSystemBase::addDGKernel ( std::string  dg_kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds a DG kernel.

Parameters
dg_kernel_nameThe type of the DG kernel
nameThe name of the DG kernel
parametersDG kernel parameters

Definition at line 661 of file NonlinearSystemBase.C.

664 {
665  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
666  {
667  auto dg_kernel = _factory.create<DGKernelBase>(dg_kernel_name, name, parameters, tid);
668  _dg_kernels.addObject(dg_kernel, tid);
669  // Add to theWarehouse, a centralized storage for all moose objects
670  _fe_problem.theWarehouse().add(dg_kernel);
671  postAddResidualObject(*dg_kernel);
672  }
673 
674  _doing_dg = true;
675 
676  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
677  _has_save_in = true;
678  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
679  _has_diag_save_in = true;
680 }
unsigned int n_threads()
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
Serves as a base class for DGKernel and ADDGKernel.
Definition: DGKernelBase.h:32
virtual const std::string & name() const
Definition: SystemBase.C:1340
bool _doing_dg
true if DG is active (optimization reasons)
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addDiracKernel()

void NonlinearSystemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds a Dirac kernel.

Parameters
kernel_nameThe type of the dirac kernel
nameThe name of the Dirac kernel
parametersDirac kernel parameters

Definition at line 645 of file NonlinearSystemBase.C.

648 {
649  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
650  {
651  std::shared_ptr<DiracKernelBase> kernel =
652  _factory.create<DiracKernelBase>(kernel_name, name, parameters, tid);
653  postAddResidualObject(*kernel);
654  _dirac_kernels.addObject(kernel, tid);
655  // Add to theWarehouse, a centralized storage for all moose objects
656  _fe_problem.theWarehouse().add(kernel);
657  }
658 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
DiracKernelBase is the base class for all DiracKernel type classes.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addDotVectors()

void SystemBase::addDotVectors ( )
virtualinherited

Add u_dot, u_dotdot, u_dot_old and u_dotdot_old vectors if requested by the time integrator.

Reimplemented in DisplacedSystem.

Definition at line 1633 of file SystemBase.C.

Referenced by DisplacedSystem::addDotVectors().

1634 {
1635  if (_fe_problem.uDotRequested())
1636  _u_dot = &addVector("u_dot", true, GHOSTED);
1638  _u_dot_old = &addVector("u_dot_old", true, GHOSTED);
1640  _u_dotdot = &addVector("u_dotdot", true, GHOSTED);
1642  _u_dotdot_old = &addVector("u_dotdot_old", true, GHOSTED);
1643 }
virtual bool uDotDotOldRequested()
Get boolean flag to check whether old solution second time derivative needs to be stored...
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011
virtual bool uDotRequested()
Get boolean flag to check whether solution time derivative needs to be stored.
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
virtual bool uDotOldRequested()
Get boolean flag to check whether old solution time derivative needs to be stored.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ addHDGKernel()

void NonlinearSystemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a hybridized discontinuous Galerkin (HDG) kernel.

Parameters
kernel_nameThe type of the hybridized kernel
nameThe name of the hybridized kernel
parametersHDG kernel parameters

Definition at line 492 of file NonlinearSystemBase.C.

495 {
496  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
497  {
498  // Create the kernel object via the factory and add to warehouse
499  auto kernel = _factory.create<HDGKernel>(kernel_name, name, parameters, tid);
500  _kernels.addObject(kernel, tid);
501  _hybridized_kernels.addObject(kernel, tid);
502  // Add to theWarehouse, a centralized storage for all moose objects
503  _fe_problem.theWarehouse().add(kernel);
504  postAddResidualObject(*kernel);
505  }
506 }
A kernel for hybridized finite element formulations.
Definition: HDGKernel.h:17
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
MooseObjectTagWarehouse< HDGKernel > _hybridized_kernels
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addImplicitGeometricCouplingEntries()

void NonlinearSystemBase::addImplicitGeometricCouplingEntries ( GeometricSearchData geom_search_data)

Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled that are related geometrically (i.e.

near each other across a gap).

Definition at line 2324 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2325 {
2326  if (!hasMatrix(systemMatrixTag()))
2327  mooseError("Need a system matrix ");
2328 
2329  // At this point, have no idea how to make
2330  // this work with tag system
2331  auto & jacobian = getMatrix(systemMatrixTag());
2332 
2333  std::unordered_map<dof_id_type, std::vector<dof_id_type>> graph;
2334 
2335  findImplicitGeometricCouplingEntries(geom_search_data, graph);
2336 
2337  for (const auto & it : graph)
2338  {
2339  dof_id_type dof = it.first;
2340  const auto & row = it.second;
2341 
2342  for (const auto & coupled_dof : row)
2343  jacobian.add(dof, coupled_dof, 0);
2344  }
2345 }
void findImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
Finds the implicit sparsity graph between geometrically related dofs.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
uint8_t dof_id_type

◆ addImplicitGeometricCouplingEntriesToJacobian()

void NonlinearSystemBase::addImplicitGeometricCouplingEntriesToJacobian ( bool  add = true)
inline

If called with true this will add entries into the jacobian to link together degrees of freedom that are found to be related through the geometric search system.

These entries are really only used by the Finite Difference Preconditioner and the constraint system right now.

Definition at line 510 of file NonlinearSystemBase.h.

Referenced by addConstraint(), and FiniteDifferencePreconditioner::FiniteDifferencePreconditioner().

511  {
513  }
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.

◆ addInterfaceKernel()

void NonlinearSystemBase::addInterfaceKernel ( std::string  interface_kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds an interface kernel.

Parameters
interface_kernel_nameThe type of the interface kernel
nameThe name of the interface kernel
parametersinterface kernel parameters

Definition at line 683 of file NonlinearSystemBase.C.

686 {
687  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
688  {
689  std::shared_ptr<InterfaceKernelBase> interface_kernel =
690  _factory.create<InterfaceKernelBase>(interface_kernel_name, name, parameters, tid);
691  postAddResidualObject(*interface_kernel);
692 
693  const std::set<BoundaryID> & boundary_ids = interface_kernel->boundaryIDs();
694  auto ik_var = dynamic_cast<const MooseVariableFieldBase *>(&interface_kernel->variable());
695  _vars[tid].addBoundaryVar(boundary_ids, ik_var);
696 
697  _interface_kernels.addObject(interface_kernel, tid);
698  // Add to theWarehouse, a centralized storage for all moose objects
699  _fe_problem.theWarehouse().add(interface_kernel);
700  _vars[tid].addBoundaryVars(boundary_ids, interface_kernel->getCoupledVars());
701  }
702 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
InterfaceKernelBase is the base class for all InterfaceKernel type classes.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addKernel()

void NonlinearSystemBase::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

Reimplemented in MooseEigenSystem.

Definition at line 470 of file NonlinearSystemBase.C.

473 {
474  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
475  {
476  // Create the kernel object via the factory and add to warehouse
477  std::shared_ptr<KernelBase> kernel =
478  _factory.create<KernelBase>(kernel_name, name, parameters, tid);
479  _kernels.addObject(kernel, tid);
480  postAddResidualObject(*kernel);
481  // Add to theWarehouse, a centralized storage for all moose objects
482  _fe_problem.theWarehouse().add(kernel);
483  }
484 
485  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
486  _has_save_in = true;
487  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
488  _has_diag_save_in = true;
489 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
This is the common base class for the three main kernel types implemented in MOOSE, Kernel, VectorKernel and ArrayKernel.
Definition: KernelBase.h:23
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addKokkosBoundaryCondition()

void NonlinearSystemBase::addKokkosBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)

Adds a Kokkos boundary condition.

Parameters
bc_nameThe type of the boundary condition
nameThe name of the boundary condition
parametersBoundary condition parameters

◆ addKokkosKernel()

virtual void NonlinearSystemBase::addKokkosKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a Kokkos kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

◆ addKokkosNodalKernel()

virtual void NonlinearSystemBase::addKokkosNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a Kokkos nodal kernel.

Parameters
kernel_nameThe type of the nodal kernel
nameThe name of the kernel
parametersKernel parameters

◆ addMatrix()

SparseMatrix< Number > & SystemBase::addMatrix ( TagID  tag)
inherited

Adds a matrix with a given tag.

Parameters
tag_nameThe name of the tag

Definition at line 570 of file SystemBase.C.

571 {
572  if (!_subproblem.matrixTagExists(tag))
573  mooseError("Cannot add tagged matrix with TagID ",
574  tag,
575  " in system '",
576  name(),
577  "' because the tag does not exist in the problem");
578 
579  if (hasMatrix(tag))
580  return getMatrix(tag);
581 
582  const auto matrix_name = _subproblem.matrixTagName(tag);
583  SparseMatrix<Number> & mat = system().add_matrix(matrix_name);
584  associateMatrixToTag(mat, tag);
585 
586  return mat;
587 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329
virtual TagName matrixTagName(TagID tag)
Retrieve the name associated with a TagID.
Definition: SubProblem.C:358

◆ addNodalKernel()

void NonlinearSystemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a NodalKernel.

Parameters
kernel_nameThe type of the nodal kernel
nameThe name of the kernel
parametersKernel parameters

Definition at line 509 of file NonlinearSystemBase.C.

512 {
513  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
514  {
515  // Create the kernel object via the factory and add to the warehouse
516  std::shared_ptr<NodalKernelBase> kernel =
517  _factory.create<NodalKernelBase>(kernel_name, name, parameters, tid);
518  _nodal_kernels.addObject(kernel, tid);
519  // Add to theWarehouse, a centralized storage for all moose objects
520  _fe_problem.theWarehouse().add(kernel);
521  postAddResidualObject(*kernel);
522  }
523 
524  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
525  _has_save_in = true;
526  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
527  _has_diag_save_in = true;
528 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
Base class for creating new types of nodal kernels.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addScalarKernel()

void NonlinearSystemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds a scalar kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

Definition at line 531 of file NonlinearSystemBase.C.

534 {
535  std::shared_ptr<ScalarKernelBase> kernel =
536  _factory.create<ScalarKernelBase>(kernel_name, name, parameters);
537  postAddResidualObject(*kernel);
538  // Add to theWarehouse, a centralized storage for all moose objects
539  _fe_problem.theWarehouse().add(kernel);
540  _scalar_kernels.addObject(kernel);
541 }
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Base class shared by AD and non-AD scalar kernels.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ addScalingVector()

void SystemBase::addScalingVector ( )
inherited

Add the scaling factor vector to the system.

Definition at line 1545 of file SystemBase.C.

Referenced by MooseVariableBase::initialSetup().

1546 {
1547  addVector("scaling_factors", /*project=*/false, libMesh::ParallelType::GHOSTED);
1549 }
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
void hasScalingVector(const unsigned int nl_sys_num)
Tells this problem that the assembly associated with the given nonlinear system number involves a sca...
Definition: SubProblem.C:1171
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ addSplit()

void NonlinearSystemBase::addSplit ( const std::string &  split_name,
const std::string &  name,
InputParameters parameters 
)

Adds a split.

Parameters
split_nameThe type of the split
nameThe name of the split
parametersSplit parameters

Definition at line 733 of file NonlinearSystemBase.C.

736 {
737  std::shared_ptr<Split> split = _factory.create<Split>(split_name, name, parameters);
739  // Add to theWarehouse, a centralized storage for all moose objects
741 }
Base class for split-based preconditioners.
Definition: Split.h:25
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
tbb::split split
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true)
Adds an object to the storage structure.

◆ addTimeIntegrator()

void SystemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
inherited

Definition at line 1658 of file SystemBase.C.

1661 {
1662  parameters.set<SystemBase *>("_sys") = this;
1663  _time_integrators.push_back(_factory.create<TimeIntegrator>(type, name, parameters));
1664 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Factory & _factory
Definition: SystemBase.h:989
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
Base class for time integrators.

◆ addVariable()

void SystemBase::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
virtualinherited

Canonical method for adding a variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in AuxiliarySystem.

Definition at line 718 of file SystemBase.C.

Referenced by AuxiliarySystem::addVariable().

721 {
723 
724  const auto components = parameters.get<unsigned int>("components");
725 
726  // Convert the std::vector parameter provided by the user into a std::set for use by libMesh's
727  // System::add_variable method
728  std::set<SubdomainID> blocks;
729  const auto & block_param = parameters.get<std::vector<SubdomainName>>("block");
730  for (const auto & subdomain_name : block_param)
731  {
732  SubdomainID blk_id = _mesh.getSubdomainID(subdomain_name);
733  blocks.insert(blk_id);
734  }
735 
736  const auto fe_type =
737  FEType(Utility::string_to_enum<Order>(parameters.get<MooseEnum>("order")),
738  Utility::string_to_enum<FEFamily>(parameters.get<MooseEnum>("family")));
739  const auto fe_field_type = FEInterface::field_type(fe_type);
740 
741  unsigned int var_num;
742 
743  if (var_type == "ArrayMooseVariable")
744  {
745  if (fe_field_type == TYPE_VECTOR)
746  mooseError("Vector family type cannot be used in an array variable");
747 
748  std::vector<std::string> array_var_component_names;
749  const bool has_array_names = parameters.isParamValid("array_var_component_names");
750  if (has_array_names)
751  {
752  array_var_component_names =
753  parameters.get<std::vector<std::string>>("array_var_component_names");
754  if (array_var_component_names.size() != components)
755  parameters.paramError("array_var_component_names",
756  "Must be the same size as 'components' (size ",
757  components,
758  ") for array variable '",
759  name,
760  "'");
761  }
762 
763  // Build up the variable names
764  std::vector<std::string> var_names;
765  for (unsigned int i = 0; i < components; i++)
766  {
767  if (!has_array_names)
768  array_var_component_names.push_back(std::to_string(i));
769  var_names.push_back(name + "_" + array_var_component_names[i]);
770  }
771 
772  // makes sure there is always a name, either the provided one or '1 2 3 ...'
773  parameters.set<std::vector<std::string>>("array_var_component_names") =
774  array_var_component_names;
775 
776  // The number returned by libMesh is the _last_ variable number... we want to hold onto the
777  // _first_
778  var_num = system().add_variables(var_names, fe_type, &blocks) - (components - 1);
779 
780  // Set as array variable
781  if (parameters.isParamSetByUser("array") && !parameters.get<bool>("array"))
782  parameters.paramError("array",
783  "Must be set to true for variable '",
784  name,
785  "' because 'components' > 1 (is an array variable)");
786  parameters.set<bool>("array") = true;
787  }
788  else
789  {
790  if (parameters.isParamSetByUser("array_var_component_names"))
791  parameters.paramError("array_var_component_names",
792  "Should not be set because this variable (",
793  name,
794  ") is a non-array variable");
795  var_num = system().add_variable(name, fe_type, &blocks);
796  }
797 
798  parameters.set<unsigned int>("_var_num") = var_num;
799  parameters.set<SystemBase *>("_system_base") = this;
800 
801  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
802  {
803  parameters.set<THREAD_ID>("tid") = tid;
804  std::shared_ptr<MooseVariableBase> var =
805  _factory.create<MooseVariableBase>(var_type, name, parameters, tid);
806 
807  _vars[tid].add(name, var);
808 
809  if (auto fe_var = dynamic_cast<MooseVariableFieldBase *>(var.get()))
810  {
811  auto required_size = var_num + components;
812  if (required_size > _numbered_vars[tid].size())
813  _numbered_vars[tid].resize(required_size);
814  for (MooseIndex(components) component = 0; component < components; ++component)
815  _numbered_vars[tid][var_num + component] = fe_var;
816 
817  if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADReal> *>(fe_var))
818  _subproblem.addFunctor(name, *functor, tid);
819  else if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADRealVectorValue> *>(fe_var))
820  _subproblem.addFunctor(name, *functor, tid);
821  else if (auto * const functor = dynamic_cast<Moose::FunctorBase<RealEigenVector> *>(fe_var))
822  _subproblem.addFunctor(name, *functor, tid);
823  else
824  mooseError("This should be a functor");
825  }
826 
827  if (auto scalar_var = dynamic_cast<MooseVariableScalar *>(var.get()))
828  {
829  if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADReal> *>(scalar_var))
830  _subproblem.addFunctor(name, *functor, tid);
831  else
832  mooseError("Scalar variables should be functors");
833  }
834 
835  if (var->blockRestricted())
836  for (const SubdomainID & id : var->blockIDs())
837  for (MooseIndex(components) component = 0; component < components; ++component)
838  _var_map[var_num + component].insert(id);
839  else
840  for (MooseIndex(components) component = 0; component < components; ++component)
841  _var_map[var_num + component] = std::set<SubdomainID>();
842  }
843 
844  // getMaxVariableNumber is an API method used in Rattlesnake
845  if (var_num > _max_var_number)
846  _max_var_number = var_num;
847  _du_dot_du.resize(var_num + 1);
848 }
unsigned int add_variables(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
Map variable number to its pointer.
Definition: SystemBase.h:1052
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017
unsigned int n_threads()
char ** blocks
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1380
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
Factory & _factory
Definition: SystemBase.h:989
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const std::string & name() const
Definition: SystemBase.C:1340
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...
virtual std::unique_ptr< Base > create()=0
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
MooseMesh & _mesh
Definition: SystemBase.h:991
unsigned int _max_var_number
Maximum variable number.
Definition: SystemBase.h:1000
Base variable class.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1769
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addVariableToCopy()

void SystemBase::addVariableToCopy ( const std::string &  dest_name,
const std::string &  source_name,
const std::string &  timestep 
)
virtualinherited

Add info about variable that will be copied.

Parameters
dest_nameName of the nodal variable being used for copying into (name is from the exodusII file)
source_nameName of the nodal variable being used for copying from (name is from the exodusII file)
timestepTimestep in the file being used

Definition at line 1175 of file SystemBase.C.

Referenced by CopyNodalVarsAction::act(), and PhysicsBase::copyVariablesFromMesh().

1178 {
1179  _var_to_copy.push_back(VarCopyInfo(dest_name, source_name, timestep));
1180 }
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040
Information about variables that will be copied.
Definition: SystemBase.h:66

◆ addVariableToZeroOnJacobian()

void SystemBase::addVariableToZeroOnJacobian ( std::string  var_name)
virtualinherited

Adds this variable to the list of variables to be zeroed during each Jacobian evaluation.

Parameters
var_nameThe name of the variable to be zeroed.

Reimplemented in DisplacedSystem.

Definition at line 180 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), DisplacedSystem::addVariableToZeroOnJacobian(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ArrayDGKernel::ArrayDGKernel(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), DGKernel::DGKernel(), IntegratedBC::IntegratedBC(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), Kernel::Kernel(), NodalBC::NodalBC(), and NodalKernel::NodalKernel().

181 {
182  _vars_to_be_zeroed_on_jacobian.push_back(var_name);
183 }
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
Definition: SystemBase.h:1003

◆ addVariableToZeroOnResidual()

void SystemBase::addVariableToZeroOnResidual ( std::string  var_name)
virtualinherited

Adds this variable to the list of variables to be zeroed during each residual evaluation.

Parameters
var_nameThe name of the variable to be zeroed.

Reimplemented in DisplacedSystem.

Definition at line 174 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), DisplacedSystem::addVariableToZeroOnResidual(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ArrayDGKernel::ArrayDGKernel(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), DGKernel::DGKernel(), IntegratedBC::IntegratedBC(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), Kernel::Kernel(), NodalBC::NodalBC(), and NodalKernel::NodalKernel().

175 {
176  _vars_to_be_zeroed_on_residual.push_back(var_name);
177 }
std::vector< std::string > _vars_to_be_zeroed_on_residual
Definition: SystemBase.h:1002

◆ addVector() [1/2]

NumericVector<Number>& SystemBase::addVector ( const std::string &  vector_name,
const bool  project,
const libMesh::ParallelType  type 
)
inherited

Adds a solution length vector to the system.

Parameters
vector_nameThe name of the vector.
projectWhether or not to project this vector when doing mesh refinement. If the vector is just going to be recomputed then there is no need to project it.
typeWhat type of parallel vector. This is usually either PARALLEL or GHOSTED. GHOSTED is needed if you are going to be accessing off-processor entries. The ghosting pattern is the same as the solution vector.

Referenced by SystemBase::addDotVectors(), SystemBase::addScalingVector(), NonlinearTimeIntegratorInterface::addVector(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), getResidualNonTimeVector(), getResidualTimeVector(), CentralDifference::initialSetup(), SystemBase::needSolutionState(), residualGhosted(), and SystemBase::saveOldSolutions().

◆ addVector() [2/2]

NumericVector<Number>& SystemBase::addVector ( TagID  tag,
const bool  project,
const libMesh::ParallelType  type 
)
inherited

Adds a solution length vector to the system with the specified TagID.

Parameters
tag_nameThe name of the tag
projectWhether or not to project this vector when doing mesh refinement. If the vector is just going to be recomputed then there is no need to project it.
typeWhat type of parallel vector. This is usually either PARALLEL or GHOSTED. GHOSTED is needed if you are going to be accessing off-processor entries. The ghosting pattern is the same as the solution vector.

◆ applyScalingFactors()

void SystemBase::applyScalingFactors ( const std::vector< Real > &  inverse_scaling_factors)
inherited

Applies scaling factors to the system's variables.

Parameters
inverse_scaling_factorsA vector containing the inverse of each variable's scaling factor, e.g. 1 / scaling_factor

Definition at line 1495 of file SystemBase.C.

Referenced by computeScaling().

1496 {
1497  for (MooseIndex(_vars) thread = 0; thread < _vars.size(); ++thread)
1498  {
1499  auto & field_variables = _vars[thread].fieldVariables();
1500  for (MooseIndex(field_variables) i = 0, p = 0; i < field_variables.size(); ++i)
1501  {
1502  auto factors = field_variables[i]->arrayScalingFactor();
1503  for (unsigned int j = 0; j < field_variables[i]->count(); ++j, ++p)
1504  factors[j] /= inverse_scaling_factors[p];
1505 
1506  field_variables[i]->scalingFactor(factors);
1507  }
1508 
1509  auto offset = field_variables.size();
1510 
1511  auto & scalar_variables = _vars[thread].scalars();
1512  for (MooseIndex(scalar_variables) i = 0; i < scalar_variables.size(); ++i)
1513  scalar_variables[i]->scalingFactor(
1514  {1. / inverse_scaling_factors[offset + i] * scalar_variables[i]->scalingFactor()});
1515 
1516  if (thread == 0 && _verbose)
1517  {
1518  _console << "Automatic scaling factors:\n";
1519  auto original_flags = _console.flags();
1520  auto original_precision = _console.precision();
1521  _console.unsetf(std::ios_base::floatfield);
1522  _console.precision(6);
1523 
1524  for (const auto & field_variable : field_variables)
1525  {
1526  const auto & factors = field_variable->arrayScalingFactor();
1527  _console << " " << field_variable->name() << ":";
1528  for (const auto i : make_range(field_variable->count()))
1529  _console << " " << factors[i];
1530  _console << "\n";
1531  }
1532  for (const auto & scalar_variable : scalar_variables)
1533  _console << " " << scalar_variable->name() << ": " << scalar_variable->scalingFactor()
1534  << "\n";
1535  _console << "\n" << std::endl;
1536 
1537  // restore state
1538  _console.flags(original_flags);
1539  _console.precision(original_precision);
1540  }
1541  }
1542 }
std::ios_base::fmtflags flags() const
Return the current flags.
Definition: ConsoleStream.C:56
void unsetf(std::ios_base::fmtflags mask) const
Unset format flags.
Definition: ConsoleStream.C:38
std::streamsize precision() const
Return the current precision.
Definition: ConsoleStream.C:44
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
bool _verbose
True if printing out additional information.
Definition: SystemBase.h:1058
IntRange< T > make_range(T beg, T end)
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ assembleConstraintsSeparately()

void NonlinearSystemBase::assembleConstraintsSeparately ( bool  separately = true)
inline

Indicates whether to assemble residual and Jacobian after each constraint application.

When true, enables "transitive" constraint application: subsequent constraints can use prior constraints' results.

Definition at line 520 of file NonlinearSystemBase.h.

521  {
523  }
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...

◆ assembleScalingVector()

void NonlinearSystemBase::assembleScalingVector ( )
protected

Assemble the numeric vector of scaling factors such that it can be used during assembly of the system matrix.

Definition at line 4168 of file NonlinearSystemBase.C.

Referenced by computeScaling(), and preSolve().

4169 {
4170  if (!hasVector("scaling_factors"))
4171  // No variables have indicated they need scaling
4172  return;
4173 
4174  auto & scaling_vector = getVector("scaling_factors");
4175 
4176  const auto & lm_mesh = _mesh.getMesh();
4177  const auto & dof_map = dofMap();
4178 
4179  const auto & field_variables = _vars[0].fieldVariables();
4180  const auto & scalar_variables = _vars[0].scalars();
4181 
4182  std::vector<dof_id_type> dof_indices;
4183 
4184  for (const Elem * const elem :
4185  as_range(lm_mesh.active_local_elements_begin(), lm_mesh.active_local_elements_end()))
4186  for (const auto * const field_var : field_variables)
4187  {
4188  const auto & factors = field_var->arrayScalingFactor();
4189  for (const auto i : make_range(field_var->count()))
4190  {
4191  dof_map.dof_indices(elem, dof_indices, field_var->number() + i);
4192  for (const auto dof : dof_indices)
4193  scaling_vector.set(dof, factors[i]);
4194  }
4195  }
4196 
4197  for (const auto * const scalar_var : scalar_variables)
4198  {
4199  mooseAssert(scalar_var->count() == 1,
4200  "Scalar variables should always have only one component.");
4201  dof_map.SCALAR_dof_indices(dof_indices, scalar_var->number());
4202  for (const auto dof : dof_indices)
4203  scaling_vector.set(dof, scalar_var->scalingFactor());
4204  }
4205 
4206  // Parallel assemble
4207  scaling_vector.close();
4208 
4209  if (auto * displaced_problem = _fe_problem.getDisplacedProblem().get())
4210  // copy into the corresponding displaced system vector because they should be the exact same
4211  displaced_problem->systemBaseNonlinear(number()).getVector("scaling_factors") = scaling_vector;
4212 }
std::shared_ptr< DisplacedProblem > displaced_problem
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
MooseMesh & _mesh
Definition: SystemBase.h:991
IntRange< T > make_range(T beg, T end)
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ assignMaxVarNDofsPerElem()

void SystemBase::assignMaxVarNDofsPerElem ( std::size_t  max_dofs)
inlineinherited

assign the maximum element dofs

Definition at line 597 of file SystemBase.h.

597 { _max_var_n_dofs_per_elem = max_dofs; }
size_t _max_var_n_dofs_per_elem
Maximum number of dofs for any one variable on any one element.
Definition: SystemBase.h:1043

◆ assignMaxVarNDofsPerNode()

void SystemBase::assignMaxVarNDofsPerNode ( std::size_t  max_dofs)
inlineinherited

assign the maximum node dofs

Definition at line 602 of file SystemBase.h.

602 { _max_var_n_dofs_per_node = max_dofs; }
size_t _max_var_n_dofs_per_node
Maximum number of dofs for any one variable on any one node.
Definition: SystemBase.h:1046

◆ associateMatrixToTag()

void SystemBase::associateMatrixToTag ( libMesh::SparseMatrix< Number > &  matrix,
TagID  tag 
)
virtualinherited

Associate a matrix to a tag.

Reimplemented in DisplacedSystem.

Definition at line 1076 of file SystemBase.C.

Referenced by SystemBase::addMatrix(), DisplacedSystem::associateMatrixToTag(), computeJacobian(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

1077 {
1078  if (!_subproblem.matrixTagExists(tag))
1079  mooseError("Cannot associate matrix to tag ", tag, " because that tag does not exist");
1080 
1081  if (_tagged_matrices.size() < tag + 1)
1082  _tagged_matrices.resize(tag + 1);
1083 
1084  _tagged_matrices[tag] = &matrix;
1085 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ associateVectorToTag()

void SystemBase::associateVectorToTag ( NumericVector< Number > &  vec,
TagID  tag 
)
virtualinherited

Associate a vector for a given tag.

Reimplemented in DisplacedSystem.

Definition at line 981 of file SystemBase.C.

Referenced by DisplacedSystem::associateVectorToTag(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), computeResidualTag(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualType(), LinearSystem::LinearSystem(), and SolverSystem::setSolution().

982 {
983  if (!_subproblem.vectorTagExists(tag))
984  mooseError("Cannot associate vector to tag ", tag, " because that tag does not exist");
985 
986  if (_tagged_vectors.size() < tag + 1)
987  _tagged_vectors.resize(tag + 1);
988 
989  _tagged_vectors[tag] = &vec;
990 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ attachPreconditioner()

virtual void NonlinearSystemBase::attachPreconditioner ( libMesh::Preconditioner< Number > *  preconditioner)
pure virtual

Attach a customized preconditioner that requires physics knowledge.

Generic preconditioners should be implemented in PETSc, instead.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

Referenced by PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

◆ augmentSendList()

void SystemBase::augmentSendList ( std::vector< dof_id_type > &  send_list)
virtualinherited

Will modify the send_list to add all of the extra ghosted dofs for this system.

Reimplemented in DisplacedSystem.

Definition at line 452 of file SystemBase.C.

Referenced by DisplacedSystem::augmentSendList(), and extraSendList().

453 {
454  std::set<dof_id_type> & ghosted_elems = _subproblem.ghostedElems();
455 
456  DofMap & dof_map = dofMap();
457 
458  std::vector<dof_id_type> dof_indices;
459 
460  System & sys = system();
461 
462  unsigned int sys_num = sys.number();
463 
464  unsigned int n_vars = sys.n_vars();
465 
466  for (const auto & elem_id : ghosted_elems)
467  {
468  Elem * elem = _mesh.elemPtr(elem_id);
469 
470  if (elem->active())
471  {
472  dof_map.dof_indices(elem, dof_indices);
473 
474  // Only need to ghost it if it's actually not on this processor
475  for (const auto & dof : dof_indices)
476  if (dof < dof_map.first_dof() || dof >= dof_map.end_dof())
477  send_list.push_back(dof);
478 
479  // Now add the DoFs from all of the nodes. This is necessary because of block
480  // restricted variables. A variable might not live _on_ this element but it
481  // might live on nodes connected to this element.
482  for (unsigned int n = 0; n < elem->n_nodes(); n++)
483  {
484  Node * node = elem->node_ptr(n);
485 
486  // Have to get each variable's dofs
487  for (unsigned int v = 0; v < n_vars; v++)
488  {
489  const Variable & var = sys.variable(v);
490  unsigned int var_num = var.number();
491  unsigned int n_comp = var.n_components();
492 
493  // See if this variable has any dofs at this node
494  if (node->n_dofs(sys_num, var_num) > 0)
495  {
496  // Loop over components of the variable
497  for (unsigned int c = 0; c < n_comp; c++)
498  send_list.push_back(node->dof_number(sys_num, var_num, c));
499  }
500  }
501  }
502  }
503  }
504 }
dof_id_type end_dof(const processor_id_type proc) const
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
const Variable & variable(unsigned int var) const
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
unsigned int n_dofs(const unsigned int s, const unsigned int var=libMesh::invalid_uint) const
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
unsigned int number() const
unsigned int n_vars
virtual unsigned int n_nodes() const=0
unsigned int n_components() const
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual std::set< dof_id_type > & ghostedElems()
Return the list of elements that should have their DoFs ghosted to this processor.
Definition: SubProblem.h:672
MooseMesh & _mesh
Definition: SystemBase.h:991
const Node * node_ptr(const unsigned int i) const
dof_id_type first_dof(const processor_id_type proc) const
unsigned int number() const
unsigned int n_vars() const
bool active() const

◆ augmentSparsity()

void NonlinearSystemBase::augmentSparsity ( libMesh::SparsityPattern::Graph sparsity,
std::vector< dof_id_type > &  n_nz,
std::vector< dof_id_type > &  n_oz 
)
overridevirtual

Will modify the sparsity pattern to add logical geometric connections.

Implements SystemBase.

Definition at line 3548 of file NonlinearSystemBase.C.

3551 {
3553  {
3555 
3556  std::unordered_map<dof_id_type, std::vector<dof_id_type>> graph;
3557 
3559 
3562  graph);
3563 
3564  const dof_id_type first_dof_on_proc = dofMap().first_dof(processor_id());
3565  const dof_id_type end_dof_on_proc = dofMap().end_dof(processor_id());
3566 
3567  // The total number of dofs on and off processor
3568  const dof_id_type n_dofs_on_proc = dofMap().n_local_dofs();
3569  const dof_id_type n_dofs_not_on_proc = dofMap().n_dofs() - dofMap().n_local_dofs();
3570 
3571  for (const auto & git : graph)
3572  {
3573  dof_id_type dof = git.first;
3574  dof_id_type local_dof = dof - first_dof_on_proc;
3575 
3576  if (dof < first_dof_on_proc || dof >= end_dof_on_proc)
3577  continue;
3578 
3579  const auto & row = git.second;
3580 
3581  SparsityPattern::Row & sparsity_row = sparsity[local_dof];
3582 
3583  unsigned int original_row_length = sparsity_row.size();
3584 
3585  sparsity_row.insert(sparsity_row.end(), row.begin(), row.end());
3586 
3588  sparsity_row.begin(), sparsity_row.begin() + original_row_length, sparsity_row.end());
3589 
3590  // Fix up nonzero arrays
3591  for (const auto & coupled_dof : row)
3592  {
3593  if (coupled_dof < first_dof_on_proc || coupled_dof >= end_dof_on_proc)
3594  {
3595  if (n_oz[local_dof] < n_dofs_not_on_proc)
3596  n_oz[local_dof]++;
3597  }
3598  else
3599  {
3600  if (n_nz[local_dof] < n_dofs_on_proc)
3601  n_nz[local_dof]++;
3602  }
3603  }
3604  }
3605  }
3606 }
dof_id_type end_dof(const processor_id_type proc) const
void findImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
Finds the implicit sparsity graph between geometrically related dofs.
dof_id_type n_dofs(const unsigned int vn) const
dof_id_type n_local_dofs(const unsigned int vn) const
virtual GeometricSearchData & geomSearchData() override
std::vector< dof_id_type, Threads::scalable_allocator< dof_id_type > > Row
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
virtual void updateGeomSearch(GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
dof_id_type first_dof(const processor_id_type proc) const
processor_id_type processor_id() const
uint8_t dof_id_type
static void sort_row(const BidirectionalIterator begin, BidirectionalIterator middle, const BidirectionalIterator end)

◆ automaticScaling() [1/2]

bool SystemBase::automaticScaling ( ) const
inlineinherited

Getter for whether we are performing automatic scaling.

Returns
whether we are performing automatic scaling

Definition at line 122 of file SystemBase.h.

Referenced by SubProblem::automaticScaling().

122 { return _automatic_scaling; }
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055

◆ automaticScaling() [2/2]

void SystemBase::automaticScaling ( bool  automatic_scaling)
inlineinherited

Setter for whether we are performing automatic scaling.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 128 of file SystemBase.h.

128 { _automatic_scaling = automatic_scaling; }
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055

◆ autoScalingParam()

void NonlinearSystemBase::autoScalingParam ( Real  resid_vs_jac_scaling_param)
inline

Sets the param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters.

A value of 1 indicates pure residual-based scaling. A value of 0 indicates pure Jacobian-based scaling

Definition at line 725 of file NonlinearSystemBase.h.

726  {
727  _resid_vs_jac_scaling_param = resid_vs_jac_scaling_param;
728  }
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...

◆ checkInvalidSolution()

void SolverSystem::checkInvalidSolution ( )
protectedinherited

Definition at line 111 of file SolverSystem.C.

Referenced by NonlinearSystem::solve(), and LinearSystem::solve().

112 {
113  auto & solution_invalidity = _app.solutionInvalidity();
114 
115  // sync all solution invalid counts to rank 0 process
116  solution_invalidity.syncIteration();
117 
118  if (solution_invalidity.hasInvalidSolution())
119  {
122  solution_invalidity.print(_console);
123  else
124  mooseWarning("The Solution Invalidity warnings are detected but silenced! "
125  "Use Problem/show_invalid_solution_console=true to show solution counts");
126  else
127  // output the occurrence of solution invalid in a summary table
129  solution_invalidity.print(_console);
130  }
131 }
void mooseWarning(Args &&... args)
Emit a warning message with the given stringified, concatenated args.
Definition: MooseError.h:357
void syncIteration()
Sync iteration counts to main processor.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
bool showInvalidSolutionConsole() const
Whether or not to print out the invalid solutions summary table in console.
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool acceptInvalidSolution() const
Whether or not to accept the solution based on its invalidity.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ checkKernelCoverage()

void NonlinearSystemBase::checkKernelCoverage ( const std::set< SubdomainID > &  mesh_subdomains) const

System Integrity Checks

Definition at line 3670 of file NonlinearSystemBase.C.

3671 {
3672  // Obtain all blocks and variables covered by all kernels
3673  std::set<SubdomainID> input_subdomains;
3674  std::set<std::string> kernel_variables;
3675 
3676  bool global_kernels_exist = false;
3677  global_kernels_exist |= _scalar_kernels.hasActiveObjects();
3678  global_kernels_exist |= _nodal_kernels.hasActiveObjects();
3679 
3680  _kernels.subdomainsCovered(input_subdomains, kernel_variables);
3681  _dg_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3682  _nodal_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3683  _scalar_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3684  _constraints.subdomainsCovered(input_subdomains, kernel_variables);
3685 
3686 #ifdef MOOSE_KOKKOS_ENABLED
3687  _kokkos_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3688  _kokkos_nodal_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3689 #endif
3690 
3691  if (_fe_problem.haveFV())
3692  {
3693  std::vector<FVElementalKernel *> fv_elemental_kernels;
3695  .query()
3696  .template condition<AttribSystem>("FVElementalKernel")
3697  .queryInto(fv_elemental_kernels);
3698 
3699  for (auto fv_kernel : fv_elemental_kernels)
3700  {
3701  if (fv_kernel->blockRestricted())
3702  for (auto block_id : fv_kernel->blockIDs())
3703  input_subdomains.insert(block_id);
3704  else
3705  global_kernels_exist = true;
3706  kernel_variables.insert(fv_kernel->variable().name());
3707 
3708  // Check for lagrange multiplier
3709  if (dynamic_cast<FVScalarLagrangeMultiplierConstraint *>(fv_kernel))
3710  kernel_variables.insert(dynamic_cast<FVScalarLagrangeMultiplierConstraint *>(fv_kernel)
3711  ->lambdaVariable()
3712  .name());
3713  }
3714 
3715  std::vector<FVFluxKernel *> fv_flux_kernels;
3717  .query()
3718  .template condition<AttribSystem>("FVFluxKernel")
3719  .queryInto(fv_flux_kernels);
3720 
3721  for (auto fv_kernel : fv_flux_kernels)
3722  {
3723  if (fv_kernel->blockRestricted())
3724  for (auto block_id : fv_kernel->blockIDs())
3725  input_subdomains.insert(block_id);
3726  else
3727  global_kernels_exist = true;
3728  kernel_variables.insert(fv_kernel->variable().name());
3729  }
3730 
3731  std::vector<FVInterfaceKernel *> fv_interface_kernels;
3733  .query()
3734  .template condition<AttribSystem>("FVInterfaceKernel")
3735  .queryInto(fv_interface_kernels);
3736 
3737  for (auto fvik : fv_interface_kernels)
3738  if (auto scalar_fvik = dynamic_cast<FVScalarLagrangeMultiplierInterface *>(fvik))
3739  kernel_variables.insert(scalar_fvik->lambdaVariable().name());
3740 
3741  std::vector<FVFluxBC *> fv_flux_bcs;
3743  .query()
3744  .template condition<AttribSystem>("FVFluxBC")
3745  .queryInto(fv_flux_bcs);
3746 
3747  for (auto fvbc : fv_flux_bcs)
3748  if (auto scalar_fvbc = dynamic_cast<FVBoundaryScalarLagrangeMultiplierConstraint *>(fvbc))
3749  kernel_variables.insert(scalar_fvbc->lambdaVariable().name());
3750  }
3751 
3752  // Check kernel coverage of subdomains (blocks) in your mesh
3753  if (!global_kernels_exist)
3754  {
3755  std::set<SubdomainID> difference;
3756  std::set_difference(mesh_subdomains.begin(),
3757  mesh_subdomains.end(),
3758  input_subdomains.begin(),
3759  input_subdomains.end(),
3760  std::inserter(difference, difference.end()));
3761 
3762  // there supposed to be no kernels on this lower-dimensional subdomain
3763  for (const auto & id : _mesh.interiorLowerDBlocks())
3764  difference.erase(id);
3765  for (const auto & id : _mesh.boundaryLowerDBlocks())
3766  difference.erase(id);
3767 
3768  if (!difference.empty())
3769  {
3770  std::vector<SubdomainID> difference_vec =
3771  std::vector<SubdomainID>(difference.begin(), difference.end());
3772  std::vector<SubdomainName> difference_names = _mesh.getSubdomainNames(difference_vec);
3773  std::stringstream missing_block_names;
3774  std::copy(difference_names.begin(),
3775  difference_names.end(),
3776  std::ostream_iterator<std::string>(missing_block_names, " "));
3777  std::stringstream missing_block_ids;
3778  std::copy(difference.begin(),
3779  difference.end(),
3780  std::ostream_iterator<unsigned int>(missing_block_ids, " "));
3781 
3782  mooseError("Each subdomain must contain at least one Kernel.\nThe following block(s) lack an "
3783  "active kernel: " +
3784  missing_block_names.str(),
3785  " (ids: ",
3786  missing_block_ids.str(),
3787  ")");
3788  }
3789  }
3790 
3791  // Check kernel use of variables
3792  std::set<VariableName> variables(getVariableNames().begin(), getVariableNames().end());
3793 
3794  std::set<VariableName> difference;
3795  std::set_difference(variables.begin(),
3796  variables.end(),
3797  kernel_variables.begin(),
3798  kernel_variables.end(),
3799  std::inserter(difference, difference.end()));
3800 
3801  // skip checks for varaibles defined on lower-dimensional subdomain
3802  std::set<VariableName> vars(difference);
3803  for (auto & var_name : vars)
3804  {
3805  auto blks = getSubdomainsForVar(var_name);
3806  for (const auto & id : blks)
3807  if (_mesh.interiorLowerDBlocks().count(id) > 0 || _mesh.boundaryLowerDBlocks().count(id) > 0)
3808  difference.erase(var_name);
3809  }
3810 
3811  if (!difference.empty())
3812  {
3813  std::stringstream missing_kernel_vars;
3814  std::copy(difference.begin(),
3815  difference.end(),
3816  std::ostream_iterator<std::string>(missing_kernel_vars, " "));
3817  mooseError("Each variable must be referenced by at least one active Kernel.\nThe following "
3818  "variable(s) lack an active kernel: " +
3819  missing_kernel_vars.str());
3820  }
3821 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1421
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
char ** vars
TheWarehouse & theWarehouse() const
void subdomainsCovered(std::set< SubdomainID > &subdomains_covered, std::set< std::string > &unique_variables, THREAD_ID tid=0) const
Populates a set of covered subdomains and the associated variable names.
MooseObjectTagWarehouse< KernelBase > _kernels
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1425
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1807
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseMesh & _mesh
Definition: SystemBase.h:991
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860
const std::set< SubdomainID > & getSubdomainsForVar(unsigned int var_number) const
Definition: SystemBase.h:761
void subdomainsCovered(std::set< SubdomainID > &subdomains_covered, std::set< std::string > &unique_variables, THREAD_ID tid=0) const
Update supplied subdomain and variable coverate containters.
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ clearAllDofIndices()

void SystemBase::clearAllDofIndices ( )
inherited

Clear all dof indices from moose variables.

Definition at line 1613 of file SystemBase.C.

Referenced by SubProblem::clearAllDofIndices().

1614 {
1615  for (auto & var_warehouse : _vars)
1616  var_warehouse.clearAllDofIndices();
1617 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ closeTaggedMatrices()

void SystemBase::closeTaggedMatrices ( const std::set< TagID > &  tags)
inherited

Close all matrices associated the tags.

Definition at line 1060 of file SystemBase.C.

Referenced by computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), and computeResidualAndJacobianTags().

1061 {
1062  for (auto tag : tags)
1063  if (hasMatrix(tag))
1064  getMatrix(tag).close();
1065 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void close()=0
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024

◆ closeTaggedVector()

void SystemBase::closeTaggedVector ( const TagID  tag)
inherited

Close vector with the given tag.

Definition at line 649 of file SystemBase.C.

Referenced by SystemBase::closeTaggedVectors().

650 {
651  if (!_subproblem.vectorTagExists(tag))
652  mooseError("Cannot close vector with TagID ",
653  tag,
654  " in system '",
655  name(),
656  "' because that tag does not exist in the problem");
657  else if (!hasVector(tag))
658  mooseError("Cannot close vector tag with name '",
660  "' in system '",
661  name(),
662  "' because there is no vector associated with that tag");
663  getVector(tag).close();
664 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual void close()=0
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ closeTaggedVectors()

void SystemBase::closeTaggedVectors ( const std::set< TagID > &  tags)
inherited

Close all vectors for given tags.

Definition at line 667 of file SystemBase.C.

Referenced by computeResidualAndJacobianTags(), computeResidualTags(), NonlinearSystem::stopSolve(), and LinearSystem::stopSolve().

668 {
669  for (const auto tag : tags)
670  closeTaggedVector(tag);
671 }
void closeTaggedVector(const TagID tag)
Close vector with the given tag.
Definition: SystemBase.C:649

◆ compute()

void SolverSystem::compute ( ExecFlagType  type)
overridevirtualinherited

Compute time derivatives, auxiliary variables, etc.

Parameters
typeOur current execution stage

Implements SystemBase.

Reimplemented in LinearSystem.

Definition at line 134 of file SolverSystem.C.

135 {
136  // Let's try not to overcompute
137  bool compute_tds = false;
138  if (type == EXEC_LINEAR)
139  compute_tds = true;
140  else if (type == EXEC_NONLINEAR)
141  {
143  compute_tds = true;
144  }
145  else if ((type == EXEC_TIMESTEP_END) || (type == EXEC_FINAL))
146  {
148  // We likely don't have a final residual evaluation upon which we compute the time derivatives
149  // so we need to do so now
150  compute_tds = true;
151  }
152 
153  if (compute_tds && _fe_problem.dt() > 0.)
154  for (auto & ti : _time_integrators)
155  {
156  // avoid division by dt which might be zero.
157  ti->preStep();
158  ti->computeTimeDerivatives();
159  }
160 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
Solving a linear problem.
Definition: MooseTypes.h:849
const ExecFlagType EXEC_TIMESTEP_END
Definition: Moose.C:36
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
virtual bool matrixFromColoring() const
Whether a system matrix is formed from coloring.
Definition: SolverSystem.h:102
Moose::SolveType _type
Definition: SolverParams.h:19
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
virtual Real & dt() const
const ExecFlagType EXEC_FINAL
Definition: Moose.C:46

◆ computeDamping()

Real NonlinearSystemBase::computeDamping ( const NumericVector< Number > &  solution,
const NumericVector< Number > &  update 
)

Compute damping.

Parameters
solutionThe trail solution vector
updateThe incremental update to the solution vector
Returns
returns The damping factor

Definition at line 3389 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computeDamping().

3391 {
3392  // Default to no damping
3393  Real damping = 1.0;
3394  bool has_active_dampers = false;
3395 
3396  try
3397  {
3399  {
3400  PARALLEL_TRY
3401  {
3402  TIME_SECTION("computeDampers", 3, "Computing Dampers");
3403  has_active_dampers = true;
3407  damping = std::min(cid.damping(), damping);
3408  }
3409  PARALLEL_CATCH;
3410  }
3411 
3413  {
3414  PARALLEL_TRY
3415  {
3416  TIME_SECTION("computeDamping::element", 3, "Computing Element Damping");
3417 
3418  has_active_dampers = true;
3422  damping = std::min(cndt.damping(), damping);
3423  }
3424  PARALLEL_CATCH;
3425  }
3426 
3428  {
3429  PARALLEL_TRY
3430  {
3431  TIME_SECTION("computeDamping::general", 3, "Computing General Damping");
3432 
3433  has_active_dampers = true;
3434  const auto & gdampers = _general_dampers.getActiveObjects();
3435  for (const auto & damper : gdampers)
3436  {
3437  Real gd_damping = damper->computeDamping(solution, update);
3438  try
3439  {
3440  damper->checkMinDamping(gd_damping);
3441  }
3442  catch (MooseException & e)
3443  {
3445  }
3446  damping = std::min(gd_damping, damping);
3447  }
3448  }
3449  PARALLEL_CATCH;
3450  }
3451  }
3452  catch (MooseException & e)
3453  {
3454  // The buck stops here, we have already handled the exception by
3455  // calling stopSolve(), it is now up to PETSc to return a
3456  // "diverged" reason during the next solve.
3457  }
3458  catch (std::exception & e)
3459  {
3460  // Allow the libmesh error/exception on negative jacobian
3461  const std::string & message = e.what();
3462  if (message.find("Jacobian") == std::string::npos)
3463  throw e;
3464  }
3465 
3466  _communicator.min(damping);
3467 
3468  if (has_active_dampers && damping < 1.0)
3469  _console << " Damping factor: " << damping << std::endl;
3470 
3471  return damping;
3472 }
virtual const char * what() const
Get out the error message.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual void setException(const std::string &message)
Set an exception, which is stored at this point by toggling a member variable in this class...
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
const Parallel::Communicator & _communicator
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Provides a way for users to bail out of the current solve.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
NumericVector< Number > * _increment_vec
increment vector
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
auto min(const L &left, const R &right)

◆ computeDiracContributions()

void NonlinearSystemBase::computeDiracContributions ( const std::set< TagID > &  tags,
bool  is_jacobian 
)
protected

Definition at line 3475 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal(), and computeResidualInternal().

3476 {
3478 
3479  std::set<const Elem *> dirac_elements;
3480 
3482  {
3483  TIME_SECTION("computeDirac", 3, "Computing DiracKernels");
3484 
3485  // TODO: Need a threading fix... but it's complicated!
3486  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3487  {
3488  const auto & dkernels = _dirac_kernels.getActiveObjects(tid);
3489  for (const auto & dkernel : dkernels)
3490  {
3491  dkernel->clearPoints();
3492  dkernel->addPoints();
3493  }
3494  }
3495 
3496  ComputeDiracThread cd(_fe_problem, tags, is_jacobian);
3497 
3498  _fe_problem.getDiracElements(dirac_elements);
3499 
3500  DistElemRange range(dirac_elements.begin(), dirac_elements.end(), 1);
3501  // TODO: Make Dirac work thread!
3502  // Threads::parallel_reduce(range, cd);
3503 
3504  cd(range);
3505  }
3506 }
unsigned int n_threads()
virtual void getDiracElements(std::set< const Elem *> &elems) override
Fills "elems" with the elements that should be looped over for Dirac Kernels.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
virtual void clearDiracInfo() override
Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in...
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool hasActiveObjects(THREAD_ID tid=0) const
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computedScalingJacobian()

bool NonlinearSystemBase::computedScalingJacobian ( ) const
inline

Definition at line 78 of file NonlinearSystemBase.h.

78 { return _computed_scaling; }
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.

◆ computeJacobian() [1/2]

void NonlinearSystemBase::computeJacobian ( libMesh::SparseMatrix< Number > &  jacobian,
const std::set< TagID > &  tags 
)

Associate jacobian to systemMatrixTag, and then form a matrix for all the tags.

Definition at line 3229 of file NonlinearSystemBase.C.

Referenced by computeJacobian().

3230 {
3232 
3233  computeJacobianTags(tags);
3234 
3236 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.

◆ computeJacobian() [2/2]

void NonlinearSystemBase::computeJacobian ( libMesh::SparseMatrix< Number > &  jacobian)

Take all tags in the system, and form a matrix for all tags in the system.

Definition at line 3216 of file NonlinearSystemBase.C.

3217 {
3218  _nl_matrix_tags.clear();
3219 
3220  auto & tags = _fe_problem.getMatrixTags();
3221 
3222  for (auto & tag : tags)
3223  _nl_matrix_tags.insert(tag.second);
3224 
3225  computeJacobian(jacobian, _nl_matrix_tags);
3226 }
void computeJacobian(libMesh::SparseMatrix< Number > &jacobian, const std::set< TagID > &tags)
Associate jacobian to systemMatrixTag, and then form a matrix for all the tags.
std::set< TagID > _nl_matrix_tags
Matrix tags to temporarily store all tags associated with the current system.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ computeJacobianBlocks() [1/2]

void NonlinearSystemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks)

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Definition at line 3258 of file NonlinearSystemBase.C.

Referenced by EigenProblem::computeJacobianBlocks(), and FEProblemBase::computeJacobianBlocks().

3259 {
3260  _nl_matrix_tags.clear();
3261 
3262  auto & tags = _fe_problem.getMatrixTags();
3263  for (auto & tag : tags)
3264  _nl_matrix_tags.insert(tag.second);
3265 
3267 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
std::set< TagID > _nl_matrix_tags
Matrix tags to temporarily store all tags associated with the current system.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ computeJacobianBlocks() [2/2]

void NonlinearSystemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const std::set< TagID > &  tags 
)

Definition at line 3270 of file NonlinearSystemBase.C.

3272 {
3273  TIME_SECTION("computeJacobianBlocks", 3);
3274  FloatingPointExceptionGuard fpe_guard(_app);
3275 
3276  for (unsigned int i = 0; i < blocks.size(); i++)
3277  {
3278  SparseMatrix<Number> & jacobian = blocks[i]->_jacobian;
3279 
3280  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
3281  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
3282  PETSC_TRUE));
3284  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
3285  MAT_NEW_NONZERO_ALLOCATION_ERR,
3286  PETSC_TRUE));
3287 
3288  jacobian.zero();
3289  }
3290 
3291  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
3293 
3294  PARALLEL_TRY
3295  {
3298  Threads::parallel_reduce(elem_range, cjb);
3299  }
3300  PARALLEL_CATCH;
3301 
3302  for (unsigned int i = 0; i < blocks.size(); i++)
3303  blocks[i]->_jacobian.close();
3304 
3305  for (unsigned int i = 0; i < blocks.size(); i++)
3306  {
3307  libMesh::System & precond_system = blocks[i]->_precond_system;
3308  SparseMatrix<Number> & jacobian = blocks[i]->_jacobian;
3309 
3310  unsigned int ivar = blocks[i]->_ivar;
3311  unsigned int jvar = blocks[i]->_jvar;
3312 
3313  // Dirichlet BCs
3314  std::vector<numeric_index_type> zero_rows;
3315  PARALLEL_TRY
3316  {
3318  for (const auto & bnode : bnd_nodes)
3319  {
3320  BoundaryID boundary_id = bnode->_bnd_id;
3321  Node * node = bnode->_node;
3322 
3323  if (_nodal_bcs.hasActiveBoundaryObjects(boundary_id))
3324  {
3325  const auto & bcs = _nodal_bcs.getActiveBoundaryObjects(boundary_id);
3326 
3327  if (node->processor_id() == processor_id())
3328  {
3329  _fe_problem.reinitNodeFace(node, boundary_id, 0);
3330 
3331  for (const auto & bc : bcs)
3332  if (bc->variable().number() == ivar && bc->shouldApply())
3333  {
3334  // The first zero is for the variable number... there is only one variable in
3335  // each mini-system The second zero only works with Lagrange elements!
3336  zero_rows.push_back(node->dof_number(precond_system.number(), 0, 0));
3337  }
3338  }
3339  }
3340  }
3341  }
3342  PARALLEL_CATCH;
3343 
3344  jacobian.close();
3345 
3346  // This zeroes the rows corresponding to Dirichlet BCs and puts a 1.0 on the diagonal
3347  if (ivar == jvar)
3348  jacobian.zero_rows(zero_rows, 1.0);
3349  else
3350  jacobian.zero_rows(zero_rows, 0.0);
3351 
3352  jacobian.close();
3353  }
3354 }
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
unsigned int n_threads()
char ** blocks
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
Scope guard for starting and stopping Floating Point Exception Trapping.
Specialization for filling multiple "small" preconditioning matrices simulatenously.
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
unsigned int number() const
virtual void zero()=0
boundary_id_type BoundaryID
virtual void zero_rows(std::vector< numeric_index_type > &rows, T diag_value=0.0)
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void close()=0
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const

◆ computeJacobianInternal()

void NonlinearSystemBase::computeJacobianInternal ( const std::set< TagID > &  tags)
protected

Form multiple matrices for all the tags.

Users should not call this func directly.

Definition at line 2845 of file NonlinearSystemBase.C.

Referenced by computeJacobianTags().

2846 {
2847  TIME_SECTION("computeJacobianInternal", 3);
2848 
2850 
2851  // Make matrix ready to use
2853 
2854  for (auto tag : tags)
2855  {
2856  if (!hasMatrix(tag))
2857  continue;
2858 
2859  auto & jacobian = getMatrix(tag);
2860  // Necessary for speed
2861  if (auto petsc_matrix = dynamic_cast<PetscMatrix<Number> *>(&jacobian))
2862  {
2863  LibmeshPetscCall(MatSetOption(petsc_matrix->mat(),
2864  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2865  PETSC_TRUE));
2867  LibmeshPetscCall(
2868  MatSetOption(petsc_matrix->mat(), MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));
2870  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2871  MAT_IGNORE_ZERO_ENTRIES,
2872  PETSC_TRUE));
2873  }
2874  }
2875 
2876  jacobianSetup();
2877 
2878 #ifdef MOOSE_KOKKOS_ENABLED
2880  computeKokkosJacobian(tags);
2881 #endif
2882 
2883  // Jacobian contributions from UOs - for now this is used for ray tracing
2884  // and ray kernels that contribute to the Jacobian (think line sources)
2885  std::vector<UserObject *> uos;
2887  .query()
2888  .condition<AttribSystem>("UserObject")
2889  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
2890  .queryInto(uos);
2891  for (auto & uo : uos)
2892  uo->jacobianSetup();
2893  for (auto & uo : uos)
2894  {
2895  uo->initialize();
2896  uo->execute();
2897  uo->finalize();
2898  }
2899 
2900  // reinit scalar variables
2901  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
2903 
2904  PARALLEL_TRY
2905  {
2906  // We would like to compute ScalarKernels, block NodalKernels, FVFluxKernels, and mortar objects
2907  // up front because we want these included whether we are computing an ordinary Jacobian or a
2908  // Jacobian for determining variable scaling factors
2910 
2911  // Block restricted Nodal Kernels
2913  {
2916  Threads::parallel_reduce(range, cnkjt);
2917 
2918  unsigned int n_threads = libMesh::n_threads();
2919  for (unsigned int i = 0; i < n_threads;
2920  i++) // Add any cached jacobians that might be hanging around
2922  }
2923 
2925  if (_fe_problem.haveFV())
2926  {
2927  // the same loop works for both residual and jacobians because it keys
2928  // off of FEProblem's _currently_computing_jacobian parameter
2930  _fe_problem, this->number(), tags, /*on_displaced=*/false);
2932  Threads::parallel_reduce(faces, fvj);
2933  }
2935  displaced_problem && displaced_problem->haveFV())
2936  {
2938  _fe_problem, this->number(), tags, /*on_displaced=*/true);
2939  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
2940  displaced_problem->mesh().ownedFaceInfoEnd());
2941  Threads::parallel_reduce(faces, fvr);
2942  }
2943 
2945 
2946  // Get our element range for looping over
2948 
2950  {
2951  // Only compute Jacobians corresponding to the diagonals of volumetric compute objects
2952  // because this typically gives us a good representation of the physics. NodalBCs and
2953  // Constraints can introduce dramatically different scales (often order unity).
2954  // IntegratedBCs and/or InterfaceKernels may use penalty factors. DGKernels may be ok, but
2955  // they are almost always used in conjunction with Kernels
2957  Threads::parallel_reduce(elem_range, cj);
2958  unsigned int n_threads = libMesh::n_threads();
2959  for (unsigned int i = 0; i < n_threads;
2960  i++) // Add any Jacobian contributions still hanging around
2962 
2963  // Check whether any exceptions were thrown and propagate this information for parallel
2964  // consistency before
2965  // 1) we do parallel communication when closing tagged matrices
2966  // 2) early returning before reaching our PARALLEL_CATCH below
2968 
2969  closeTaggedMatrices(tags);
2970 
2971  return;
2972  }
2973 
2974  switch (_fe_problem.coupling())
2975  {
2976  case Moose::COUPLING_DIAG:
2977  {
2979  Threads::parallel_reduce(elem_range, cj);
2980 
2981  unsigned int n_threads = libMesh::n_threads();
2982  for (unsigned int i = 0; i < n_threads;
2983  i++) // Add any Jacobian contributions still hanging around
2985 
2986  // Boundary restricted Nodal Kernels
2988  {
2991 
2992  Threads::parallel_reduce(bnd_range, cnkjt);
2993  unsigned int n_threads = libMesh::n_threads();
2994  for (unsigned int i = 0; i < n_threads;
2995  i++) // Add any cached jacobians that might be hanging around
2997  }
2998  }
2999  break;
3000 
3001  default:
3003  {
3005  Threads::parallel_reduce(elem_range, cj);
3006  unsigned int n_threads = libMesh::n_threads();
3007 
3008  for (unsigned int i = 0; i < n_threads; i++)
3010 
3011  // Boundary restricted Nodal Kernels
3013  {
3016 
3017  Threads::parallel_reduce(bnd_range, cnkjt);
3018  unsigned int n_threads = libMesh::n_threads();
3019  for (unsigned int i = 0; i < n_threads;
3020  i++) // Add any cached jacobians that might be hanging around
3022  }
3023  }
3024  break;
3025  }
3026 
3027  computeDiracContributions(tags, true);
3028 
3029  static bool first = true;
3030 
3031  // This adds zeroes into geometric coupling entries to ensure they stay in the matrix
3032  if ((_fe_problem.restoreOriginalNonzeroPattern() || first) &&
3034  {
3035  first = false;
3037 
3040  }
3041  }
3042  PARALLEL_CATCH;
3043 
3044  // Have no idea how to have constraints work
3045  // with the tag system
3046  PARALLEL_TRY
3047  {
3048  // Add in Jacobian contributions from other Constraints
3049  if (_fe_problem._has_constraints && tags.count(systemMatrixTag()))
3050  {
3051  // Some constraints need to be able to read values from the Jacobian, which requires that it
3052  // be closed/assembled
3053  auto & system_matrix = getMatrix(systemMatrixTag());
3054 #if PETSC_RELEASE_GREATER_EQUALS(3, 23, 0)
3055  SparseMatrix<Number> * view_jac_ptr;
3056  std::unique_ptr<SparseMatrix<Number>> hash_copy;
3057  if (system_matrix.use_hash_table())
3058  {
3059  hash_copy = libMesh::cast_ref<PetscMatrix<Number> &>(system_matrix).copy_from_hash();
3060  view_jac_ptr = hash_copy.get();
3061  }
3062  else
3063  view_jac_ptr = &system_matrix;
3064  auto & jacobian_to_view = *view_jac_ptr;
3065 #else
3066  auto & jacobian_to_view = system_matrix;
3067 #endif
3068  if (&jacobian_to_view == &system_matrix)
3069  system_matrix.close();
3070 
3071  // Nodal Constraints
3073 
3074  // Undisplaced Constraints
3075  constraintJacobians(jacobian_to_view, false);
3076 
3077  // Displaced Constraints
3079  constraintJacobians(jacobian_to_view, true);
3080  }
3081  }
3082  PARALLEL_CATCH;
3083 
3084  // We need to close the save_in variables on the aux system before NodalBCBases clear the dofs
3085  // on boundary nodes
3086  if (_has_diag_save_in)
3088 
3089  PARALLEL_TRY
3090  {
3091  MooseObjectWarehouse<NodalBCBase> * nbc_warehouse;
3092  // Select nodal kernels
3093  if (tags.size() == _fe_problem.numMatrixTags() || !tags.size())
3094  nbc_warehouse = &_nodal_bcs;
3095  else if (tags.size() == 1)
3096  nbc_warehouse = &(_nodal_bcs.getMatrixTagObjectWarehouse(*(tags.begin()), 0));
3097  else
3098  nbc_warehouse = &(_nodal_bcs.getMatrixTagsObjectWarehouse(tags, 0));
3099 
3100  if (nbc_warehouse->hasActiveObjects())
3101  {
3102  // We may be switching from add to set. Moreover, we rely on a call to MatZeroRows to enforce
3103  // the nodal boundary condition constraints which requires that the matrix be truly assembled
3104  // as opposed to just flushed. Consequently we can't do the following despite any desire to
3105  // keep our initial sparsity pattern honored (see https://gitlab.com/petsc/petsc/-/issues/852)
3106  //
3107  // flushTaggedMatrices(tags);
3108  closeTaggedMatrices(tags);
3109 
3110  // Cache the information about which BCs are coupled to which
3111  // variables, so we don't have to figure it out for each node.
3112  std::map<std::string, std::set<unsigned int>> bc_involved_vars;
3113  const std::set<BoundaryID> & all_boundary_ids = _mesh.getBoundaryIDs();
3114  for (const auto & bid : all_boundary_ids)
3115  {
3116  // Get reference to all the NodalBCs for this ID. This is only
3117  // safe if there are NodalBCBases there to be gotten...
3118  if (nbc_warehouse->hasActiveBoundaryObjects(bid))
3119  {
3120  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(bid);
3121  for (const auto & bc : bcs)
3122  {
3123  const std::vector<MooseVariableFEBase *> & coupled_moose_vars =
3124  bc->getCoupledMooseVars();
3125 
3126  // Create the set of "involved" MOOSE nonlinear vars, which includes all coupled vars
3127  // and the BC's own variable
3128  std::set<unsigned int> & var_set = bc_involved_vars[bc->name()];
3129  for (const auto & coupled_var : coupled_moose_vars)
3130  if (coupled_var->kind() == Moose::VAR_SOLVER)
3131  var_set.insert(coupled_var->number());
3132 
3133  var_set.insert(bc->variable().number());
3134  }
3135  }
3136  }
3137 
3138  // reinit scalar variables again. This reinit does not re-fill any of the scalar variable
3139  // solution arrays because that was done above. It only will reorder the derivative
3140  // information for AD calculations to be suitable for NodalBC calculations
3141  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
3142  _fe_problem.reinitScalars(tid, true);
3143 
3144  // Get variable coupling list. We do all the NodalBCBase stuff on
3145  // thread 0... The couplingEntries() data structure determines
3146  // which variables are "coupled" as far as the preconditioner is
3147  // concerned, not what variables a boundary condition specifically
3148  // depends on.
3149  auto & coupling_entries = _fe_problem.couplingEntries(/*_tid=*/0, this->number());
3150 
3151  // Compute Jacobians for NodalBCBases
3153  for (const auto & bnode : bnd_nodes)
3154  {
3155  BoundaryID boundary_id = bnode->_bnd_id;
3156  Node * node = bnode->_node;
3157 
3158  if (nbc_warehouse->hasActiveBoundaryObjects(boundary_id) &&
3159  node->processor_id() == processor_id())
3160  {
3161  _fe_problem.reinitNodeFace(node, boundary_id, 0);
3162 
3163  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(boundary_id);
3164  for (const auto & bc : bcs)
3165  {
3166  // Get the set of involved MOOSE vars for this BC
3167  std::set<unsigned int> & var_set = bc_involved_vars[bc->name()];
3168 
3169  // Loop over all the variables whose Jacobian blocks are
3170  // actually being computed, call computeOffDiagJacobian()
3171  // for each one which is actually coupled (otherwise the
3172  // value is zero.)
3173  for (const auto & it : coupling_entries)
3174  {
3175  unsigned int ivar = it.first->number(), jvar = it.second->number();
3176 
3177  // We are only going to call computeOffDiagJacobian() if:
3178  // 1.) the BC's variable is ivar
3179  // 2.) jvar is "involved" with the BC (including jvar==ivar), and
3180  // 3.) the BC should apply.
3181  if ((bc->variable().number() == ivar) && var_set.count(jvar) && bc->shouldApply())
3182  bc->computeOffDiagJacobian(jvar);
3183  }
3184 
3185  const auto & coupled_scalar_vars = bc->getCoupledMooseScalarVars();
3186  for (const auto & jvariable : coupled_scalar_vars)
3187  if (hasScalarVariable(jvariable->name()))
3188  bc->computeOffDiagJacobianScalar(jvariable->number());
3189  }
3190  }
3191  } // end loop over boundary nodes
3192 
3193  // Set the cached NodalBCBase values in the Jacobian matrix
3195  }
3196  }
3197  PARALLEL_CATCH;
3198 
3199  closeTaggedMatrices(tags);
3200 
3201  // We need to close the save_in variables on the aux system before NodalBCBases clear the dofs
3202  // on boundary nodes
3205 
3206  if (hasDiagSaveIn())
3208 
3209  // Accumulate the occurrence of solution invalid warnings for the current iteration cumulative
3210  // counters
3213 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries(const THREAD_ID tid, const unsigned int nl_sys_num)
unsigned int n_threads()
bool hasActiveBlockObjects(THREAD_ID tid=0) const
std::shared_ptr< DisplacedProblem > displaced_problem
virtual void checkExceptionAndStopSolve(bool print_message=true)
Check to see if an exception has occurred on any processor and, if possible, force the solve to fail...
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1548
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool hasDiagSaveIn() const
Weather or not the nonlinear system has diagonal Jacobian save-ins.
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
virtual GeometricSearchData & geomSearchData() override
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
void closeTaggedMatrices(const std::set< TagID > &tags)
Close all matrices associated the tags.
Definition: SystemBase.C:1060
void solutionInvalidAccumulation()
Pass the number of solution invalid occurrences from current iteration to cumulative counters...
void syncIteration()
Sync iteration counts to main processor.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void computeDiracContributions(const std::set< TagID > &tags, bool is_jacobian)
TheWarehouse & theWarehouse() const
boundary_id_type BoundaryID
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
void addImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data)
Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled th...
MooseObjectWarehouse< T > & getMatrixTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given matrix tag...
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
Moose::CouplingType coupling() const
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
AuxiliarySystem & getAuxiliarySystem()
virtual void close()=0
void computeKokkosJacobian(const std::set< TagID > &tags)
Compute Jacobian with Kokkos objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void close()=0
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
MooseMesh & _mesh
Definition: SystemBase.h:991
bool hasActiveObjects(THREAD_ID tid=0) const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
bool hasKokkosResidualObjects() const
MooseObjectWarehouse< T > & getMatrixTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has one of the given matrix tags...
void computeScalarKernelsJacobians(const std::set< TagID > &tags)
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual MooseMesh & mesh() override
void setCachedJacobian(GlobalDataKey)
Sets previously-cached Jacobian values via SparseMatrix::set() calls.
Definition: Assembly.C:4492
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
bool restoreOriginalNonzeroPattern() const
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1557
void constraintJacobians(const SparseMatrix< Number > &jacobian_to_view, bool displaced)
Add jacobian contributions from Constraints.
std::vector< BoundaryID > getBoundaryIDs(const Elem *const elem, const unsigned short int side) const
Returns a vector of boundary IDs for the requested element on the requested side. ...
bool _has_constraints
Whether or not this system has any Constraints.
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876
processor_id_type processor_id() const
void addCachedJacobian(GlobalDataKey)
Adds the values that have been cached by calling cacheJacobian() and or cacheJacobianNeighbor() to th...
Definition: Assembly.C:3815
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void jacobianSetup() override
virtual void addCachedJacobian(const THREAD_ID tid) override
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ computeJacobianTags()

void NonlinearSystemBase::computeJacobianTags ( const std::set< TagID > &  tags)

Computes multiple (tag associated) Jacobian matricese.

Definition at line 3239 of file NonlinearSystemBase.C.

Referenced by computeJacobian(), and FEProblemBase::computeJacobianTags().

3240 {
3241  TIME_SECTION("computeJacobianTags", 5);
3242 
3243  FloatingPointExceptionGuard fpe_guard(_app);
3244 
3245  try
3246  {
3248  }
3249  catch (MooseException & e)
3250  {
3251  // The buck stops here, we have already handled the exception by
3252  // calling stopSolve(), it is now up to PETSc to return a
3253  // "diverged" reason during the next solve.
3254  }
3255 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MooseApp & _app
Definition: SystemBase.h:988
Provides a way for users to bail out of the current solve.
void computeJacobianInternal(const std::set< TagID > &tags)
Form multiple matrices for all the tags.

◆ computeKokkosJacobian()

void NonlinearSystemBase::computeKokkosJacobian ( const std::set< TagID > &  tags)
protected

Compute Jacobian with Kokkos objects.

Referenced by computeJacobianInternal().

◆ computeKokkosResidual()

void NonlinearSystemBase::computeKokkosResidual ( const std::set< TagID > &  tags)
protected

Compute residual with Kokkos objects.

Referenced by computeResidualInternal().

◆ computeNodalBCs() [1/3]

void NonlinearSystemBase::computeNodalBCs ( NumericVector< Number > &  residual)
protected

Enforces nodal boundary conditions.

The boundary condition will be implemented in the residual using all the tags in the system.

Referenced by computeResidualTags().

◆ computeNodalBCs() [2/3]

void NonlinearSystemBase::computeNodalBCs ( NumericVector< Number > &  residual,
const std::set< TagID > &  tags 
)
protected

Form a residual for BCs that at least has one of the given tags.

◆ computeNodalBCs() [3/3]

void NonlinearSystemBase::computeNodalBCs ( const std::set< TagID > &  tags)
protected

Form multiple tag-associated residual vectors for the given tags.

Definition at line 2109 of file NonlinearSystemBase.C.

2110 {
2111  // We need to close the diag_save_in variables on the aux system before NodalBCBases clear the
2112  // dofs on boundary nodes
2113  if (_has_save_in)
2115 
2116  // Select nodal kernels
2117  MooseObjectWarehouse<NodalBCBase> * nbc_warehouse;
2118 
2119  if (tags.size() == _fe_problem.numVectorTags(Moose::VECTOR_TAG_RESIDUAL) || !tags.size())
2120  nbc_warehouse = &_nodal_bcs;
2121  else if (tags.size() == 1)
2122  nbc_warehouse = &(_nodal_bcs.getVectorTagObjectWarehouse(*(tags.begin()), 0));
2123  else
2124  nbc_warehouse = &(_nodal_bcs.getVectorTagsObjectWarehouse(tags, 0));
2125 
2126  // Return early if there is no nodal kernel
2127  if (!nbc_warehouse->size())
2128  return;
2129 
2130  PARALLEL_TRY
2131  {
2133 
2134  if (!bnd_nodes.empty())
2135  {
2136  TIME_SECTION("NodalBCs", 3 /*, "Computing NodalBCs"*/);
2137 
2138  for (const auto & bnode : bnd_nodes)
2139  {
2140  BoundaryID boundary_id = bnode->_bnd_id;
2141  Node * node = bnode->_node;
2142 
2143  if (node->processor_id() == processor_id() &&
2144  nbc_warehouse->hasActiveBoundaryObjects(boundary_id))
2145  {
2146  // reinit variables in nodes
2147  _fe_problem.reinitNodeFace(node, boundary_id, 0);
2148 
2149  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(boundary_id);
2150  for (const auto & nbc : bcs)
2151  if (nbc->shouldApply())
2152  nbc->computeResidual();
2153  }
2154  }
2155  }
2156  }
2157  PARALLEL_CATCH;
2158 
2159  if (_Re_time)
2160  _Re_time->close();
2161  _Re_non_time->close();
2162 }
NumericVector< Number > * _Re_time
residual vector for time contributions
unsigned int size(THREAD_ID tid=0) const
Return how many kernels we store in the current warehouse.
bool empty() const
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & solution()
Definition: SystemBase.h:196
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< T > & getVectorTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object at least has one of the given vector ta...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
boundary_id_type BoundaryID
AuxiliarySystem & getAuxiliarySystem()
virtual void close()=0
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual unsigned int numVectorTags(const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
The total number of tags, which can be limited to the tag type.
Definition: SubProblem.C:196
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const

◆ computeNodalBCsResidualAndJacobian()

void NonlinearSystemBase::computeNodalBCsResidualAndJacobian ( )
protected

compute the residual and Jacobian for nodal boundary conditions

Definition at line 2165 of file NonlinearSystemBase.C.

Referenced by computeResidualAndJacobianTags().

2166 {
2167  PARALLEL_TRY
2168  {
2170 
2171  if (!bnd_nodes.empty())
2172  {
2173  TIME_SECTION("NodalBCs", 3 /*, "Computing NodalBCs"*/);
2174 
2175  for (const auto & bnode : bnd_nodes)
2176  {
2177  BoundaryID boundary_id = bnode->_bnd_id;
2178  Node * node = bnode->_node;
2179 
2180  if (node->processor_id() == processor_id())
2181  {
2182  // reinit variables in nodes
2183  _fe_problem.reinitNodeFace(node, boundary_id, 0);
2184  if (_nodal_bcs.hasActiveBoundaryObjects(boundary_id))
2185  {
2186  const auto & bcs = _nodal_bcs.getActiveBoundaryObjects(boundary_id);
2187  for (const auto & nbc : bcs)
2188  if (nbc->shouldApply())
2189  nbc->computeResidualAndJacobian();
2190  }
2191  }
2192  }
2193  }
2194  }
2195  PARALLEL_CATCH;
2196 
2197  // Set the cached NodalBCBase values in the Jacobian matrix
2199 }
bool empty() const
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
boundary_id_type BoundaryID
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
void setCachedJacobian(GlobalDataKey)
Sets previously-cached Jacobian values via SparseMatrix::set() calls.
Definition: Assembly.C:4492
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ computeResidual()

void NonlinearSystemBase::computeResidual ( NumericVector< Number > &  residual,
TagID  tag_id 
)

Form a residual vector for a given tag.

Definition at line 819 of file NonlinearSystemBase.C.

820 {
821  mooseDeprecated(" Please use computeResidualTag");
822 
823  computeResidualTag(residual, tag_id);
824 }
void mooseDeprecated(Args &&... args)
Emit a deprecated code/feature message with the given stringified, concatenated args.
Definition: MooseError.h:374
void computeResidualTag(NumericVector< Number > &residual, TagID tag_id)
Computes residual for a given tag.

◆ computeResidualAndJacobianInternal()

void NonlinearSystemBase::computeResidualAndJacobianInternal ( const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)

Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary conditions.

Definition at line 1990 of file NonlinearSystemBase.C.

Referenced by computeResidualAndJacobianTags().

1992 {
1993  TIME_SECTION("computeResidualAndJacobianInternal", 3);
1994 
1995  // Make matrix ready to use
1997 
1998  for (auto tag : matrix_tags)
1999  {
2000  if (!hasMatrix(tag))
2001  continue;
2002 
2003  auto & jacobian = getMatrix(tag);
2004  // Necessary for speed
2005  if (auto petsc_matrix = dynamic_cast<PetscMatrix<Number> *>(&jacobian))
2006  {
2007  LibmeshPetscCall(MatSetOption(petsc_matrix->mat(),
2008  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2009  PETSC_TRUE));
2011  LibmeshPetscCall(
2012  MatSetOption(petsc_matrix->mat(), MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));
2014  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2015  MAT_IGNORE_ZERO_ENTRIES,
2016  PETSC_TRUE));
2017  }
2018  }
2019 
2020  residualSetup();
2021 
2022  // Residual contributions from UOs - for now this is used for ray tracing
2023  // and ray kernels that contribute to the residual (think line sources)
2024  std::vector<UserObject *> uos;
2026  .query()
2027  .condition<AttribSystem>("UserObject")
2028  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
2029  .queryInto(uos);
2030  for (auto & uo : uos)
2031  uo->residualSetup();
2032  for (auto & uo : uos)
2033  {
2034  uo->initialize();
2035  uo->execute();
2036  uo->finalize();
2037  }
2038 
2039  // reinit scalar variables
2040  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
2042 
2043  // residual contributions from the domain
2044  PARALLEL_TRY
2045  {
2046  TIME_SECTION("Kernels", 3 /*, "Computing Kernels"*/);
2047 
2049 
2050  ComputeResidualAndJacobianThread crj(_fe_problem, vector_tags, matrix_tags);
2051  Threads::parallel_reduce(elem_range, crj);
2052 
2054  if (_fe_problem.haveFV())
2055  {
2057  _fe_problem, this->number(), vector_tags, matrix_tags, /*on_displaced=*/false);
2059  Threads::parallel_reduce(faces, fvrj);
2060  }
2062  displaced_problem && displaced_problem->haveFV())
2063  {
2065  _fe_problem, this->number(), vector_tags, matrix_tags, /*on_displaced=*/true);
2066  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
2067  displaced_problem->mesh().ownedFaceInfoEnd());
2068  Threads::parallel_reduce(faces, fvr);
2069  }
2070 
2072 
2073  unsigned int n_threads = libMesh::n_threads();
2074  for (unsigned int i = 0; i < n_threads;
2075  i++) // Add any cached residuals that might be hanging around
2076  {
2079  }
2080  }
2081  PARALLEL_CATCH;
2082 }
unsigned int n_threads()
std::shared_ptr< DisplacedProblem > displaced_problem
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1548
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
TheWarehouse & theWarehouse() const
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual MooseMesh & mesh() override
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1557
virtual void addCachedResidual(const THREAD_ID tid) override
virtual void addCachedJacobian(const THREAD_ID tid) override
virtual void residualSetup() override

◆ computeResidualAndJacobianTags()

void NonlinearSystemBase::computeResidualAndJacobianTags ( const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)

Form possibly multiple tag-associated vectors and matrices.

Definition at line 907 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian().

909 {
910  const bool required_residual =
911  vector_tags.find(residualVectorTag()) == vector_tags.end() ? false : true;
912 
913  try
914  {
915  zeroTaggedVectors(vector_tags);
916  computeResidualAndJacobianInternal(vector_tags, matrix_tags);
917  closeTaggedVectors(vector_tags);
918  closeTaggedMatrices(matrix_tags);
919 
920  if (required_residual)
921  {
922  auto & residual = getVector(residualVectorTag());
923  if (!_time_integrators.empty())
924  {
925  for (auto & ti : _time_integrators)
926  ti->postResidual(residual);
927  }
928  else
929  residual += *_Re_non_time;
930  residual.close();
931  }
932 
934  closeTaggedVectors(vector_tags);
935  closeTaggedMatrices(matrix_tags);
936  }
937  catch (MooseException & e)
938  {
939  // The buck stops here, we have already handled the exception by
940  // calling stopSolve(), it is now up to PETSc to return a
941  // "diverged" reason during the next solve.
942  }
943 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
void zeroTaggedVectors(const std::set< TagID > &tags)
Zero all vectors for given tags.
Definition: SystemBase.C:693
void computeNodalBCsResidualAndJacobian()
compute the residual and Jacobian for nodal boundary conditions
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
void computeResidualAndJacobianInternal(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary c...
void closeTaggedMatrices(const std::set< TagID > &tags)
Close all matrices associated the tags.
Definition: SystemBase.C:1060
void closeTaggedVectors(const std::set< TagID > &tags)
Close all vectors for given tags.
Definition: SystemBase.C:667
virtual void close()=0
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeResidualInternal()

void NonlinearSystemBase::computeResidualInternal ( const std::set< TagID > &  tags)
protected

Compute the residual for a given tag.

Parameters
tagsThe tags of kernels for which the residual is to be computed.

Definition at line 1765 of file NonlinearSystemBase.C.

Referenced by computeResidualTags().

1766 {
1767  parallel_object_only();
1768 
1769  TIME_SECTION("computeResidualInternal", 3);
1770 
1771  residualSetup();
1772 
1773 #ifdef MOOSE_KOKKOS_ENABLED
1775  computeKokkosResidual(tags);
1776 #endif
1777 
1778  const auto vector_tag_data = _fe_problem.getVectorTags(tags);
1779 
1780  // Residual contributions from UOs - for now this is used for ray tracing
1781  // and ray kernels that contribute to the residual (think line sources)
1782  std::vector<UserObject *> uos;
1784  .query()
1785  .condition<AttribSystem>("UserObject")
1786  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
1787  .queryInto(uos);
1788  for (auto & uo : uos)
1789  uo->residualSetup();
1790  for (auto & uo : uos)
1791  {
1792  uo->initialize();
1793  uo->execute();
1794  uo->finalize();
1795  }
1796 
1797  // reinit scalar variables
1798  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
1800 
1801  // residual contributions from the domain
1802  PARALLEL_TRY
1803  {
1804  TIME_SECTION("Kernels", 3 /*, "Computing Kernels"*/);
1805 
1807 
1809  Threads::parallel_reduce(elem_range, cr);
1810 
1811  // We pass face information directly to FV residual objects for their evaluation. Consequently
1812  // we must make sure to do separate threaded loops for 1) undisplaced face information objects
1813  // and undisplaced residual objects and 2) displaced face information objects and displaced
1814  // residual objects
1816  if (_fe_problem.haveFV())
1817  {
1819  _fe_problem, this->number(), tags, /*on_displaced=*/false);
1821  Threads::parallel_reduce(faces, fvr);
1822  }
1824  displaced_problem && displaced_problem->haveFV())
1825  {
1827  _fe_problem, this->number(), tags, /*on_displaced=*/true);
1828  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
1829  displaced_problem->mesh().ownedFaceInfoEnd());
1830  Threads::parallel_reduce(faces, fvr);
1831  }
1832 
1833  unsigned int n_threads = libMesh::n_threads();
1834  for (unsigned int i = 0; i < n_threads;
1835  i++) // Add any cached residuals that might be hanging around
1837  }
1838  PARALLEL_CATCH;
1839 
1840  // residual contributions from the scalar kernels
1841  PARALLEL_TRY
1842  {
1843  // do scalar kernels (not sure how to thread this)
1845  {
1846  TIME_SECTION("ScalarKernels", 3 /*, "Computing ScalarKernels"*/);
1847 
1848  MooseObjectWarehouse<ScalarKernelBase> * scalar_kernel_warehouse;
1849  // This code should be refactored once we can do tags for scalar
1850  // kernels
1851  // Should redo this based on Warehouse
1852  if (!tags.size() || tags.size() == _fe_problem.numVectorTags(Moose::VECTOR_TAG_RESIDUAL))
1853  scalar_kernel_warehouse = &_scalar_kernels;
1854  else if (tags.size() == 1)
1855  scalar_kernel_warehouse =
1856  &(_scalar_kernels.getVectorTagObjectWarehouse(*(tags.begin()), 0));
1857  else
1858  // scalar_kernels is not threading
1859  scalar_kernel_warehouse = &(_scalar_kernels.getVectorTagsObjectWarehouse(tags, 0));
1860 
1861  bool have_scalar_contributions = false;
1862  const auto & scalars = scalar_kernel_warehouse->getActiveObjects();
1863  for (const auto & scalar_kernel : scalars)
1864  {
1865  scalar_kernel->reinit();
1866  const std::vector<dof_id_type> & dof_indices = scalar_kernel->variable().dofIndices();
1867  const DofMap & dof_map = scalar_kernel->variable().dofMap();
1868  const dof_id_type first_dof = dof_map.first_dof();
1869  const dof_id_type end_dof = dof_map.end_dof();
1870  for (dof_id_type dof : dof_indices)
1871  {
1872  if (dof >= first_dof && dof < end_dof)
1873  {
1874  scalar_kernel->computeResidual();
1875  have_scalar_contributions = true;
1876  break;
1877  }
1878  }
1879  }
1880  if (have_scalar_contributions)
1882  }
1883  }
1884  PARALLEL_CATCH;
1885 
1886  // residual contributions from Block NodalKernels
1887  PARALLEL_TRY
1888  {
1890  {
1891  TIME_SECTION("NodalKernels", 3 /*, "Computing NodalKernels"*/);
1892 
1894 
1896 
1897  if (range.begin() != range.end())
1898  {
1899  _fe_problem.reinitNode(*range.begin(), 0);
1900 
1901  Threads::parallel_reduce(range, cnk);
1902 
1903  unsigned int n_threads = libMesh::n_threads();
1904  for (unsigned int i = 0; i < n_threads;
1905  i++) // Add any cached residuals that might be hanging around
1907  }
1908  }
1909  }
1910  PARALLEL_CATCH;
1911 
1913  // We computed the volumetric objects. We can return now before we get into
1914  // any strongly enforced constraint conditions or penalty-type objects
1915  // (DGKernels, IntegratedBCs, InterfaceKernels, Constraints)
1916  return;
1917 
1918  // residual contributions from boundary NodalKernels
1919  PARALLEL_TRY
1920  {
1922  {
1923  TIME_SECTION("NodalKernelBCs", 3 /*, "Computing NodalKernelBCs"*/);
1924 
1926 
1928 
1929  Threads::parallel_reduce(bnd_node_range, cnk);
1930 
1931  unsigned int n_threads = libMesh::n_threads();
1932  for (unsigned int i = 0; i < n_threads;
1933  i++) // Add any cached residuals that might be hanging around
1935  }
1936  }
1937  PARALLEL_CATCH;
1938 
1940 
1941  if (_residual_copy.get())
1942  {
1943  _Re_non_time->close();
1945  }
1946 
1948  {
1949  _Re_non_time->close();
1952  }
1953 
1954  PARALLEL_TRY { computeDiracContributions(tags, false); }
1955  PARALLEL_CATCH;
1956 
1958  {
1959  PARALLEL_TRY { enforceNodalConstraintsResidual(*_Re_non_time); }
1960  PARALLEL_CATCH;
1961  _Re_non_time->close();
1962  }
1963 
1964  // Add in Residual contributions from other Constraints
1966  {
1967  PARALLEL_TRY
1968  {
1969  // Undisplaced Constraints
1971 
1972  // Displaced Constraints
1975 
1978  }
1979  PARALLEL_CATCH;
1980  _Re_non_time->close();
1981  }
1982 
1983  // Accumulate the occurrence of solution invalid warnings for the current iteration cumulative
1984  // counters
1987 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
dof_id_type end_dof(const processor_id_type proc) const
unsigned int n_threads()
bool hasActiveBlockObjects(THREAD_ID tid=0) const
std::shared_ptr< DisplacedProblem > displaced_problem
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
virtual void reinitNode(const Node *node, const THREAD_ID tid) override
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1548
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectWarehouse< T > & getVectorTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object at least has one of the given vector ta...
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void constraintResiduals(NumericVector< Number > &residual, bool displaced)
Add residual contributions from Constraints.
const Variable & variable(const unsigned int c) const override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
void solutionInvalidAccumulation()
Pass the number of solution invalid occurrences from current iteration to cumulative counters...
void syncIteration()
Sync iteration counts to main processor.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void computeDiracContributions(const std::set< TagID > &tags, bool is_jacobian)
TheWarehouse & theWarehouse() const
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:173
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
void computingNonlinearResid(bool computing_nonlinear_residual) final
Set whether or not the problem is in the process of computing the nonlinear residual.
const_iterator end() const
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.
bool hasActiveObjects(THREAD_ID tid=0) const
bool hasKokkosResidualObjects() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
const_iterator begin() const
void computeKokkosResidual(const std::set< TagID > &tags)
Compute residual with Kokkos objects.
virtual MooseMesh & mesh() override
virtual unsigned int numVectorTags(const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
The total number of tags, which can be limited to the tag type.
Definition: SubProblem.C:196
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1557
bool _has_constraints
Whether or not this system has any Constraints.
dof_id_type first_dof(const processor_id_type proc) const
void enforceNodalConstraintsResidual(NumericVector< Number > &residual)
Enforce nodal constraints.
virtual void addResidualScalar(const THREAD_ID tid=0)
virtual void addCachedResidual(const THREAD_ID tid) override
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
virtual void residualEnd(THREAD_ID tid=0) const
uint8_t dof_id_type
virtual void residualSetup() override
virtual void localize(std::vector< T > &v_local) const=0

◆ computeResidualTag()

void NonlinearSystemBase::computeResidualTag ( NumericVector< Number > &  residual,
TagID  tag_id 
)

Computes residual for a given tag.

Parameters
residualResidual is formed in here
thetag of kernels for which the residual is to be computed.

Definition at line 805 of file NonlinearSystemBase.C.

Referenced by computeResidual(), and CrankNicolson::init().

806 {
807  _nl_vector_tags.clear();
808  _nl_vector_tags.insert(tag_id);
810 
812 
814 
816 }
std::set< TagID > _nl_vector_tags
Vector tags to temporarily store all tags associated with the current system.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override

◆ computeResidualTags()

void NonlinearSystemBase::computeResidualTags ( const std::set< TagID > &  tags)

Form multiple tag-associated residual vectors for all the given tags.

Definition at line 827 of file NonlinearSystemBase.C.

Referenced by computeResidualTag(), and FEProblemBase::computeResidualTags().

828 {
829  parallel_object_only();
830 
831  TIME_SECTION("nl::computeResidualTags", 5);
832 
835 
836  bool required_residual = tags.find(residualVectorTag()) == tags.end() ? false : true;
837 
839 
840  // not suppose to do anythin on matrix
842 
844 
845  for (const auto & numeric_vec : _vecs_to_zero_for_residual)
846  if (hasVector(numeric_vec))
847  {
848  NumericVector<Number> & vec = getVector(numeric_vec);
849  vec.close();
850  vec.zero();
851  }
852 
853  try
854  {
855  zeroTaggedVectors(tags);
857  closeTaggedVectors(tags);
858 
859  if (required_residual)
860  {
861  auto & residual = getVector(residualVectorTag());
862  if (!_time_integrators.empty())
863  {
864  for (auto & ti : _time_integrators)
865  ti->postResidual(residual);
866  }
867  else
868  residual += *_Re_non_time;
869  residual.close();
870  }
872  // We don't want to do nodal bcs or anything else
873  return;
874 
875  computeNodalBCs(tags);
876  closeTaggedVectors(tags);
877 
878  // If we are debugging residuals we need one more assignment to have the ghosted copy up to
879  // date
880  if (_need_residual_ghosted && _debugging_residuals && required_residual)
881  {
882  auto & residual = getVector(residualVectorTag());
883 
884  *_residual_ghosted = residual;
886  }
887  // Need to close and update the aux system in case residuals were saved to it.
890  if (hasSaveIn())
892  }
893  catch (MooseException & e)
894  {
895  // The buck stops here, we have already handled the exception by
896  // calling stopSolve(), it is now up to PETSc to return a
897  // "diverged" reason during the next solve.
898  }
899 
900  // not supposed to do anything on matrix
902 
904 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
void zeroTaggedVectors(const std::set< TagID > &tags)
Zero all vectors for given tags.
Definition: SystemBase.C:693
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
bool _debugging_residuals
true if debugging residuals
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
Scope guard for starting and stopping Floating Point Exception Trapping.
virtual void zero()=0
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
virtual void deactivateAllMatrixTags()
Make matrices inactive.
Definition: SystemBase.C:1119
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
std::vector< std::string > _vecs_to_zero_for_residual
vectors that will be zeroed before a residual computation
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
AuxiliarySystem & getAuxiliarySystem()
void closeTaggedVectors(const std::set< TagID > &tags)
Close all vectors for given tags.
Definition: SystemBase.C:667
void computeResidualInternal(const std::set< TagID > &tags)
Compute the residual for a given tag.
virtual void close()=0
TagID residualVectorTag() const override
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Provides a way for users to bail out of the current solve.
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.
bool hasSaveIn() const
Weather or not the nonlinear system has save-ins.
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
void computeNodalBCs(NumericVector< Number > &residual)
Enforces nodal boundary conditions.
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeScalarKernelsJacobians()

void NonlinearSystemBase::computeScalarKernelsJacobians ( const std::set< TagID > &  tags)
protected

Definition at line 2759 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2760 {
2761  MooseObjectWarehouse<ScalarKernelBase> * scalar_kernel_warehouse;
2762 
2763  if (!tags.size() || tags.size() == _fe_problem.numMatrixTags())
2764  scalar_kernel_warehouse = &_scalar_kernels;
2765  else if (tags.size() == 1)
2766  scalar_kernel_warehouse = &(_scalar_kernels.getMatrixTagObjectWarehouse(*(tags.begin()), 0));
2767  else
2768  scalar_kernel_warehouse = &(_scalar_kernels.getMatrixTagsObjectWarehouse(tags, 0));
2769 
2770  // Compute the diagonal block for scalar variables
2771  if (scalar_kernel_warehouse->hasActiveObjects())
2772  {
2773  const auto & scalars = scalar_kernel_warehouse->getActiveObjects();
2774 
2775  _fe_problem.reinitScalars(/*tid=*/0);
2776 
2777  _fe_problem.reinitOffDiagScalars(/*_tid*/ 0);
2778 
2779  bool have_scalar_contributions = false;
2780  for (const auto & kernel : scalars)
2781  {
2782  if (!kernel->computesJacobian())
2783  continue;
2784 
2785  kernel->reinit();
2786  const std::vector<dof_id_type> & dof_indices = kernel->variable().dofIndices();
2787  const DofMap & dof_map = kernel->variable().dofMap();
2788  const dof_id_type first_dof = dof_map.first_dof();
2789  const dof_id_type end_dof = dof_map.end_dof();
2790  for (dof_id_type dof : dof_indices)
2791  {
2792  if (dof >= first_dof && dof < end_dof)
2793  {
2794  kernel->computeJacobian();
2795  _fe_problem.addJacobianOffDiagScalar(kernel->variable().number());
2796  have_scalar_contributions = true;
2797  break;
2798  }
2799  }
2800  }
2801 
2802  if (have_scalar_contributions)
2804  }
2805 }
dof_id_type end_dof(const processor_id_type proc) const
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
virtual void addJacobianOffDiagScalar(unsigned int ivar, const THREAD_ID tid=0)
const Variable & variable(const unsigned int c) const override
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< T > & getMatrixTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given matrix tag...
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< T > & getMatrixTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has one of the given matrix tags...
dof_id_type first_dof(const processor_id_type proc) const
virtual void reinitOffDiagScalars(const THREAD_ID tid) override
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
uint8_t dof_id_type
virtual void addJacobianScalar(const THREAD_ID tid=0)

◆ computeScaling()

bool NonlinearSystemBase::computeScaling ( )

Method used to obtain scaling factors for variables.

Returns
whether this method ran without exceptions

Definition at line 4007 of file NonlinearSystemBase.C.

Referenced by preSolve().

4008 {
4010  return true;
4011 
4012  _console << "\nPerforming automatic scaling calculation\n" << std::endl;
4013 
4014  TIME_SECTION("computeScaling", 3, "Computing Automatic Scaling");
4015 
4016  // It's funny but we need to assemble our vector of scaling factors here otherwise we will be
4017  // applying scaling factors of 0 during Assembly of our scaling Jacobian
4019 
4020  // container for repeated access of element global dof indices
4021  std::vector<dof_id_type> dof_indices;
4022 
4023  if (!_auto_scaling_initd)
4024  setupScalingData();
4025 
4026  std::vector<Real> inverse_scaling_factors(_num_scaling_groups, 0);
4027  std::vector<Real> resid_inverse_scaling_factors(_num_scaling_groups, 0);
4028  std::vector<Real> jac_inverse_scaling_factors(_num_scaling_groups, 0);
4029  auto & dof_map = dofMap();
4030 
4031  // what types of scaling do we want?
4032  bool jac_scaling = _resid_vs_jac_scaling_param < 1. - TOLERANCE;
4033  bool resid_scaling = _resid_vs_jac_scaling_param > TOLERANCE;
4034 
4035  const NumericVector<Number> & scaling_residual = RHS();
4036 
4037  if (jac_scaling)
4038  {
4039  // if (!_auto_scaling_initd)
4040  // We need to reinit this when the number of dofs changes
4041  // but there is no good way to track that
4042  // In theory, it is the job of libmesh system to track this,
4043  // but this special matrix is not owned by libMesh system
4044  // Let us reinit eveytime since it is not expensive
4045  {
4046  auto init_vector = NumericVector<Number>::build(this->comm());
4047  init_vector->init(system().n_dofs(), system().n_local_dofs(), /*fast=*/false, PARALLEL);
4048 
4049  _scaling_matrix->clear();
4050  _scaling_matrix->init(*init_vector);
4051  }
4052 
4054  // Dispatch to derived classes to ensure that we use the correct matrix tag
4057  }
4058 
4059  if (resid_scaling)
4060  {
4063  // Dispatch to derived classes to ensure that we use the correct vector tag
4067  }
4068 
4069  // Did something bad happen during residual/Jacobian scaling computation?
4071  return false;
4072 
4073  auto examine_dof_indices = [this,
4074  jac_scaling,
4075  resid_scaling,
4076  &dof_map,
4077  &jac_inverse_scaling_factors,
4078  &resid_inverse_scaling_factors,
4079  &scaling_residual](const auto & dof_indices, const auto var_number)
4080  {
4081  for (auto dof_index : dof_indices)
4082  if (dof_map.local_index(dof_index))
4083  {
4084  if (jac_scaling)
4085  {
4086  // For now we will use the diagonal for determining scaling
4087  auto mat_value = (*_scaling_matrix)(dof_index, dof_index);
4088  auto & factor = jac_inverse_scaling_factors[_var_to_group_var[var_number]];
4089  factor = std::max(factor, std::abs(mat_value));
4090  }
4091  if (resid_scaling)
4092  {
4093  auto vec_value = scaling_residual(dof_index);
4094  auto & factor = resid_inverse_scaling_factors[_var_to_group_var[var_number]];
4095  factor = std::max(factor, std::abs(vec_value));
4096  }
4097  }
4098  };
4099 
4100  // Compute our scaling factors for the spatial field variables
4101  for (const auto & elem : _fe_problem.getCurrentAlgebraicElementRange())
4102  for (const auto i : make_range(system().n_vars()))
4104  {
4105  dof_map.dof_indices(elem, dof_indices, i);
4106  examine_dof_indices(dof_indices, i);
4107  }
4108 
4109  for (const auto i : make_range(system().n_vars()))
4110  if (_variable_autoscaled[i] && system().variable_type(i).family == SCALAR)
4111  {
4112  dof_map.SCALAR_dof_indices(dof_indices, i);
4113  examine_dof_indices(dof_indices, i);
4114  }
4115 
4116  if (resid_scaling)
4117  _communicator.max(resid_inverse_scaling_factors);
4118  if (jac_scaling)
4119  _communicator.max(jac_inverse_scaling_factors);
4120 
4121  if (jac_scaling && resid_scaling)
4122  for (MooseIndex(inverse_scaling_factors) i = 0; i < inverse_scaling_factors.size(); ++i)
4123  {
4124  // Be careful not to take log(0)
4125  if (!resid_inverse_scaling_factors[i])
4126  {
4127  if (!jac_inverse_scaling_factors[i])
4128  inverse_scaling_factors[i] = 1;
4129  else
4130  inverse_scaling_factors[i] = jac_inverse_scaling_factors[i];
4131  }
4132  else if (!jac_inverse_scaling_factors[i])
4133  // We know the resid is not zero
4134  inverse_scaling_factors[i] = resid_inverse_scaling_factors[i];
4135  else
4136  inverse_scaling_factors[i] =
4137  std::exp(_resid_vs_jac_scaling_param * std::log(resid_inverse_scaling_factors[i]) +
4138  (1 - _resid_vs_jac_scaling_param) * std::log(jac_inverse_scaling_factors[i]));
4139  }
4140  else if (jac_scaling)
4141  inverse_scaling_factors = jac_inverse_scaling_factors;
4142  else if (resid_scaling)
4143  inverse_scaling_factors = resid_inverse_scaling_factors;
4144  else
4145  mooseError("We shouldn't be calling this routine if we're not performing any scaling");
4146 
4147  // We have to make sure that our scaling values are not zero
4148  for (auto & scaling_factor : inverse_scaling_factors)
4149  if (scaling_factor == 0)
4150  scaling_factor = 1;
4151 
4152  // Now flatten the group scaling factors to the individual variable scaling factors
4153  std::vector<Real> flattened_inverse_scaling_factors(system().n_vars());
4154  for (const auto i : index_range(flattened_inverse_scaling_factors))
4155  flattened_inverse_scaling_factors[i] = inverse_scaling_factors[_var_to_group_var[i]];
4156 
4157  // Now set the scaling factors for the variables
4158  applyScalingFactors(flattened_inverse_scaling_factors);
4160  displaced_problem->systemBaseNonlinear(number()).applyScalingFactors(
4161  flattened_inverse_scaling_factors);
4162 
4163  _computed_scaling = true;
4164  return true;
4165 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:42
std::vector< bool > _variable_autoscaled
Container to hold flag if variable is to participate in autoscaling.
std::shared_ptr< DisplacedProblem > displaced_problem
void applyScalingFactors(const std::vector< Real > &inverse_scaling_factors)
Applies scaling factors to the system&#39;s variables.
Definition: SystemBase.C:1495
SCALAR
auto exp(const T &)
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const Parallel::Communicator & comm() const
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
A diagonal matrix used for computing scaling.
const Parallel::Communicator & _communicator
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
std::size_t _num_scaling_groups
The number of scaling groups.
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...
auto max(const L &left, const R &right)
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
virtual void computeScalingResidual()=0
Compute a "residual" for automatic scaling purposes.
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
std::unordered_map< unsigned int, unsigned int > _var_to_group_var
A map from variable index to group variable index and it&#39;s associated (inverse) scaling factor...
unsigned int n_vars
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
virtual void computeScalingJacobian()=0
Compute a "Jacobian" for automatic scaling purposes.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
void setupScalingData()
Setup group scaling containers.
auto log(const T &)
void computingNonlinearResid(bool computing_nonlinear_residual) final
Set whether or not the problem is in the process of computing the nonlinear residual.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual NumericVector< Number > & RHS()=0
const FEType & variable_type(const unsigned int i) const
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
void max(const T &r, T &o, Request &req) const
bool getFailNextNonlinearConvergenceCheck() const
Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) ...
IntRange< T > make_range(T beg, T end)
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.
auto index_range(const T &sizable)
void assembleScalingVector()
Assemble the numeric vector of scaling factors such that it can be used during assembly of the system...
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeScalingJacobian()

virtual void NonlinearSystemBase::computeScalingJacobian ( )
protectedpure virtual

Compute a "Jacobian" for automatic scaling purposes.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

Referenced by computeScaling().

◆ computeScalingOnce() [1/2]

bool NonlinearSystemBase::computeScalingOnce ( ) const
inline

Definition at line 714 of file NonlinearSystemBase.h.

714 { return _compute_scaling_once; }
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...

◆ computeScalingOnce() [2/2]

void NonlinearSystemBase::computeScalingOnce ( bool  compute_scaling_once)
inline

Definition at line 715 of file NonlinearSystemBase.h.

716  {
717  _compute_scaling_once = compute_scaling_once;
718  }
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...

◆ computeScalingResidual()

virtual void NonlinearSystemBase::computeScalingResidual ( )
protectedpure virtual

Compute a "residual" for automatic scaling purposes.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

Referenced by computeScaling().

◆ computeVariables()

virtual void SystemBase::computeVariables ( const NumericVector< Number > &  )
inlinevirtualinherited

Definition at line 869 of file SystemBase.h.

869 {}

◆ computingPreSMOResidual()

bool NonlinearSystemBase::computingPreSMOResidual ( )
inline

Returns true if this system is currently computing the pre-SMO residual for a solve.

Returns
Whether or not we are currently computing the pre-SMO residual.

Definition at line 97 of file NonlinearSystemBase.h.

◆ computingScalingJacobian()

bool SystemBase::computingScalingJacobian ( ) const
inherited

Whether we are computing an initial Jacobian for automatic variable scaling.

Definition at line 1552 of file SystemBase.C.

Referenced by Assembly::addJacobianBlock(), Assembly::addJacobianBlockNonlocal(), VectorKernel::computeJacobian(), Kernel::computeJacobian(), EigenKernel::computeJacobian(), and FEProblemBase::computeJacobianTags().

1553 {
1555 }
virtual bool computingScalingJacobian() const =0
Getter for whether we&#39;re computing the scaling jacobian.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983

◆ constraintJacobians()

void NonlinearSystemBase::constraintJacobians ( const SparseMatrix< Number > &  jacobian_to_view,
bool  displaced 
)

Add jacobian contributions from Constraints.

Parameters
jacobianreference to a read-only view of the Jacobian matrix
displacedControls whether to do the displaced Constraints or non-displaced

Definition at line 2348 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2350 {
2351  if (!hasMatrix(systemMatrixTag()))
2352  mooseError("A system matrix is required");
2353 
2354  auto & jacobian = getMatrix(systemMatrixTag());
2355 
2357  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2358  MAT_NEW_NONZERO_ALLOCATION_ERR,
2359  PETSC_FALSE));
2361  LibmeshPetscCall(MatSetOption(
2362  static_cast<PetscMatrix<Number> &>(jacobian).mat(), MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2363 
2364  std::vector<numeric_index_type> zero_rows;
2365 
2366  if (displaced)
2367  mooseAssert(_fe_problem.getDisplacedProblem(),
2368  "If we're calling this method with displaced = true, then we better well have a "
2369  "displaced problem");
2370  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
2371  : static_cast<SubProblem &>(_fe_problem);
2372  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
2373 
2374  bool constraints_applied;
2376  constraints_applied = false;
2377  for (const auto & it : penetration_locators)
2378  {
2380  {
2381  // Reset the constraint_applied flag before each new constraint, as they need to be
2382  // assembled separately
2383  constraints_applied = false;
2384  }
2385  PenetrationLocator & pen_loc = *(it.second);
2386 
2387  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
2388 
2389  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
2390  BoundaryID primary_boundary = pen_loc._primary_boundary;
2391 
2392  zero_rows.clear();
2393  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
2394  {
2395  const auto & constraints =
2396  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
2397 
2398  for (const auto & secondary_node_num : secondary_nodes)
2399  {
2400  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
2401 
2402  if (secondary_node.processor_id() == processor_id())
2403  {
2404  if (pen_loc._penetration_info[secondary_node_num])
2405  {
2406  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
2407 
2408  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
2410 
2411  for (const auto & nfc : constraints)
2412  {
2413  if (nfc->isExplicitConstraint())
2414  continue;
2415  // Return if this constraint does not correspond to the primary-secondary pair
2416  // prepared by the outer loops.
2417  // This continue statement is required when, e.g. one secondary surface constrains
2418  // more than one primary surface.
2419  if (nfc->secondaryBoundary() != secondary_boundary ||
2420  nfc->primaryBoundary() != primary_boundary)
2421  continue;
2422 
2423  nfc->_jacobian = &jacobian_to_view;
2424 
2425  if (nfc->shouldApply())
2426  {
2427  constraints_applied = true;
2428 
2429  nfc->prepareShapes(nfc->variable().number());
2430  nfc->prepareNeighborShapes(nfc->variable().number());
2431 
2432  nfc->computeJacobian();
2433 
2434  if (nfc->overwriteSecondaryJacobian())
2435  {
2436  // Add this variable's dof's row to be zeroed
2437  zero_rows.push_back(nfc->variable().nodalDofIndex());
2438  }
2439 
2440  std::vector<dof_id_type> secondary_dofs(1, nfc->variable().nodalDofIndex());
2441 
2442  // Assume that if the user is overwriting the secondary Jacobian, then they are
2443  // supplying Jacobians that do not correspond to their other physics
2444  // (e.g. Kernels), hence we should not apply a scalingFactor that is normally
2445  // based on the order of their other physics (e.g. Kernels)
2446  Real scaling_factor =
2447  nfc->overwriteSecondaryJacobian() ? 1. : nfc->variable().scalingFactor();
2448 
2449  // Cache the jacobian block for the secondary side
2450  nfc->addJacobian(_fe_problem.assembly(0, number()),
2451  nfc->_Kee,
2452  secondary_dofs,
2453  nfc->_connected_dof_indices,
2454  scaling_factor);
2455 
2456  // Cache Ken, Kne, Knn
2457  if (nfc->addCouplingEntriesToJacobian())
2458  {
2459  // Make sure we use a proper scaling factor (e.g. don't use an interior scaling
2460  // factor when we're overwriting secondary stuff)
2461  nfc->addJacobian(_fe_problem.assembly(0, number()),
2462  nfc->_Ken,
2463  secondary_dofs,
2464  nfc->primaryVariable().dofIndicesNeighbor(),
2465  scaling_factor);
2466 
2467  // Use _connected_dof_indices to get all the correct columns
2468  nfc->addJacobian(_fe_problem.assembly(0, number()),
2469  nfc->_Kne,
2470  nfc->primaryVariable().dofIndicesNeighbor(),
2471  nfc->_connected_dof_indices,
2472  nfc->primaryVariable().scalingFactor());
2473 
2474  // We've handled Ken and Kne, finally handle Knn
2476  }
2477 
2478  // Do the off-diagonals next
2479  const std::vector<MooseVariableFEBase *> coupled_vars = nfc->getCoupledMooseVars();
2480  for (const auto & jvar : coupled_vars)
2481  {
2482  // Only compute jacobians for nonlinear variables
2483  if (jvar->kind() != Moose::VAR_SOLVER)
2484  continue;
2485 
2486  // Only compute Jacobian entries if this coupling is being used by the
2487  // preconditioner
2488  if (nfc->variable().number() == jvar->number() ||
2490  nfc->variable().number(), jvar->number(), this->number()))
2491  continue;
2492 
2493  // Need to zero out the matrices first
2495 
2496  nfc->prepareShapes(nfc->variable().number());
2497  nfc->prepareNeighborShapes(jvar->number());
2498 
2499  nfc->computeOffDiagJacobian(jvar->number());
2500 
2501  // Cache the jacobian block for the secondary side
2502  nfc->addJacobian(_fe_problem.assembly(0, number()),
2503  nfc->_Kee,
2504  secondary_dofs,
2505  nfc->_connected_dof_indices,
2506  scaling_factor);
2507 
2508  // Cache Ken, Kne, Knn
2509  if (nfc->addCouplingEntriesToJacobian())
2510  {
2511  // Make sure we use a proper scaling factor (e.g. don't use an interior scaling
2512  // factor when we're overwriting secondary stuff)
2513  nfc->addJacobian(_fe_problem.assembly(0, number()),
2514  nfc->_Ken,
2515  secondary_dofs,
2516  jvar->dofIndicesNeighbor(),
2517  scaling_factor);
2518 
2519  // Use _connected_dof_indices to get all the correct columns
2520  nfc->addJacobian(_fe_problem.assembly(0, number()),
2521  nfc->_Kne,
2522  nfc->variable().dofIndicesNeighbor(),
2523  nfc->_connected_dof_indices,
2524  nfc->variable().scalingFactor());
2525 
2526  // We've handled Ken and Kne, finally handle Knn
2528  }
2529  }
2530  }
2531  }
2532  }
2533  }
2534  }
2535  }
2537  {
2538  // See if constraints were applied anywhere
2539  _communicator.max(constraints_applied);
2540 
2541  if (constraints_applied)
2542  {
2543  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2544  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2545  PETSC_TRUE));
2546 
2547  jacobian.close();
2548  jacobian.zero_rows(zero_rows, 0.0);
2549  jacobian.close();
2551  jacobian.close();
2552  }
2553  }
2554  }
2556  {
2557  // See if constraints were applied anywhere
2558  _communicator.max(constraints_applied);
2559 
2560  if (constraints_applied)
2561  {
2562  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2563  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2564  PETSC_TRUE));
2565 
2566  jacobian.close();
2567  jacobian.zero_rows(zero_rows, 0.0);
2568  jacobian.close();
2570  jacobian.close();
2571  }
2572  }
2573 
2574  THREAD_ID tid = 0;
2575  // go over element-element constraint interface
2576  const auto & element_pair_locators = subproblem.geomSearchData()._element_pair_locators;
2577  for (const auto & it : element_pair_locators)
2578  {
2579  ElementPairLocator & elem_pair_loc = *(it.second);
2580 
2581  if (_constraints.hasActiveElemElemConstraints(it.first, displaced))
2582  {
2583  // ElemElemConstraint objects
2584  const auto & element_constraints =
2585  _constraints.getActiveElemElemConstraints(it.first, displaced);
2586 
2587  // go over pair elements
2588  const std::list<std::pair<const Elem *, const Elem *>> & elem_pairs =
2589  elem_pair_loc.getElemPairs();
2590  for (const auto & pr : elem_pairs)
2591  {
2592  const Elem * elem1 = pr.first;
2593  const Elem * elem2 = pr.second;
2594 
2595  if (elem1->processor_id() != processor_id())
2596  continue;
2597 
2598  const ElementPairInfo & info = elem_pair_loc.getElemPairInfo(pr);
2599 
2600  // for each element process constraints on the
2601  for (const auto & ec : element_constraints)
2602  {
2603  _fe_problem.setCurrentSubdomainID(elem1, tid);
2604  subproblem.reinitElemPhys(elem1, info._elem1_constraint_q_point, tid);
2605  _fe_problem.setNeighborSubdomainID(elem2, tid);
2606  subproblem.reinitNeighborPhys(elem2, info._elem2_constraint_q_point, tid);
2607 
2608  ec->prepareShapes(ec->variable().number());
2609  ec->prepareNeighborShapes(ec->variable().number());
2610 
2611  ec->reinit(info);
2612  ec->computeJacobian();
2615  }
2617  }
2618  }
2619  }
2620 
2621  // go over NodeElemConstraints
2622  std::set<dof_id_type> unique_secondary_node_ids;
2623  constraints_applied = false;
2624  for (const auto & secondary_id : _mesh.meshSubdomains())
2625  {
2626  for (const auto & primary_id : _mesh.meshSubdomains())
2627  {
2628  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
2629  {
2630  const auto & constraints =
2631  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
2632 
2633  // get unique set of ids of all nodes on current block
2634  unique_secondary_node_ids.clear();
2635  const MeshBase & meshhelper = _mesh.getMesh();
2636  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
2637  meshhelper.active_subdomain_elements_end(secondary_id)))
2638  {
2639  for (auto & n : elem->node_ref_range())
2640  unique_secondary_node_ids.insert(n.id());
2641  }
2642 
2643  for (auto secondary_node_id : unique_secondary_node_ids)
2644  {
2645  const Node & secondary_node = _mesh.nodeRef(secondary_node_id);
2646  // check if secondary node is on current processor
2647  if (secondary_node.processor_id() == processor_id())
2648  {
2649  // This reinits the variables that exist on the secondary node
2650  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
2651 
2652  // This will set aside residual and jacobian space for the variables that have dofs
2653  // on the secondary node
2656 
2657  for (const auto & nec : constraints)
2658  {
2659  if (nec->shouldApply())
2660  {
2661  constraints_applied = true;
2662 
2663  nec->_jacobian = &jacobian_to_view;
2664  nec->prepareShapes(nec->variable().number());
2665  nec->prepareNeighborShapes(nec->variable().number());
2666 
2667  nec->computeJacobian();
2668 
2669  if (nec->overwriteSecondaryJacobian())
2670  {
2671  // Add this variable's dof's row to be zeroed
2672  zero_rows.push_back(nec->variable().nodalDofIndex());
2673  }
2674 
2675  std::vector<dof_id_type> secondary_dofs(1, nec->variable().nodalDofIndex());
2676 
2677  // Cache the jacobian block for the secondary side
2678  nec->addJacobian(_fe_problem.assembly(0, number()),
2679  nec->_Kee,
2680  secondary_dofs,
2681  nec->_connected_dof_indices,
2682  nec->variable().scalingFactor());
2683 
2684  // Cache the jacobian block for the primary side
2685  nec->addJacobian(_fe_problem.assembly(0, number()),
2686  nec->_Kne,
2687  nec->primaryVariable().dofIndicesNeighbor(),
2688  nec->_connected_dof_indices,
2689  nec->primaryVariable().scalingFactor());
2690 
2693 
2694  // Do the off-diagonals next
2695  const std::vector<MooseVariableFEBase *> coupled_vars = nec->getCoupledMooseVars();
2696  for (const auto & jvar : coupled_vars)
2697  {
2698  // Only compute jacobians for nonlinear variables
2699  if (jvar->kind() != Moose::VAR_SOLVER)
2700  continue;
2701 
2702  // Only compute Jacobian entries if this coupling is being used by the
2703  // preconditioner
2704  if (nec->variable().number() == jvar->number() ||
2706  nec->variable().number(), jvar->number(), this->number()))
2707  continue;
2708 
2709  // Need to zero out the matrices first
2711 
2712  nec->prepareShapes(nec->variable().number());
2713  nec->prepareNeighborShapes(jvar->number());
2714 
2715  nec->computeOffDiagJacobian(jvar->number());
2716 
2717  // Cache the jacobian block for the secondary side
2718  nec->addJacobian(_fe_problem.assembly(0, number()),
2719  nec->_Kee,
2720  secondary_dofs,
2721  nec->_connected_dof_indices,
2722  nec->variable().scalingFactor());
2723 
2724  // Cache the jacobian block for the primary side
2725  nec->addJacobian(_fe_problem.assembly(0, number()),
2726  nec->_Kne,
2727  nec->variable().dofIndicesNeighbor(),
2728  nec->_connected_dof_indices,
2729  nec->variable().scalingFactor());
2730 
2733  }
2734  }
2735  }
2736  }
2737  }
2738  }
2739  }
2740  }
2741  // See if constraints were applied anywhere
2742  _communicator.max(constraints_applied);
2743 
2744  if (constraints_applied)
2745  {
2746  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2747  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2748  PETSC_TRUE));
2749 
2750  jacobian.close();
2751  jacobian.zero_rows(zero_rows, 0.0);
2752  jacobian.close();
2754  jacobian.close();
2755  }
2756 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
MPI_Info info
bool areCoupled(const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const ElementPairInfo & getElemPairInfo(std::pair< const Elem *, const Elem *> elem_pair) const
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual void cacheJacobianNeighbor(const THREAD_ID tid) override
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
const ElementPairList & getElemPairs() const
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
This is the ElementPairLocator class.
This is the ElementPairInfo class.
std::map< BoundaryID, std::shared_ptr< ElementPairLocator > > _element_pair_locators
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual GeometricSearchData & geomSearchData()=0
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void setCurrentSubdomainID(const Elem *elem, const THREAD_ID tid) override
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void reinitElemPhys(const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid)=0
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
bool hasActiveElemElemConstraints(const InterfaceID interface_id, bool displaced) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
processor_id_type processor_id() const
const std::vector< std::shared_ptr< ElemElemConstraint > > & getActiveElemElemConstraints(InterfaceID interface_id, bool displaced) const
virtual void cacheJacobian(const THREAD_ID tid) override
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
virtual void reinitOffDiagScalars(const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
BoundaryID _primary_boundary
unsigned int THREAD_ID
Definition: MooseTypes.h:209
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3192
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ constraintResiduals()

void NonlinearSystemBase::constraintResiduals ( NumericVector< Number > &  residual,
bool  displaced 
)

Add residual contributions from Constraints.

Parameters
residual- reference to the residual vector where constraint contributions will be computed
displacedControls whether to do the displaced Constraints or non-displaced

Definition at line 1361 of file NonlinearSystemBase.C.

Referenced by computeResidualInternal().

1362 {
1363  // Make sure the residual is in a good state
1364  residual.close();
1365 
1366  if (displaced)
1367  mooseAssert(_fe_problem.getDisplacedProblem(),
1368  "If we're calling this method with displaced = true, then we better well have a "
1369  "displaced problem");
1370  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1371  : static_cast<SubProblem &>(_fe_problem);
1372  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1373 
1374  bool constraints_applied;
1375  bool residual_has_inserted_values = false;
1377  constraints_applied = false;
1378  for (const auto & it : penetration_locators)
1379  {
1381  {
1382  // Reset the constraint_applied flag before each new constraint, as they need to be
1383  // assembled separately
1384  constraints_applied = false;
1385  }
1386  PenetrationLocator & pen_loc = *(it.second);
1387 
1388  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1389 
1390  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1391  BoundaryID primary_boundary = pen_loc._primary_boundary;
1392 
1393  bool has_writable_variables(false);
1394 
1395  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
1396  {
1397  const auto & constraints =
1398  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
1399 
1400  for (unsigned int i = 0; i < secondary_nodes.size(); i++)
1401  {
1402  dof_id_type secondary_node_num = secondary_nodes[i];
1403  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1404 
1405  if (secondary_node.processor_id() == processor_id())
1406  {
1407  if (pen_loc._penetration_info[secondary_node_num])
1408  {
1409  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
1410 
1411  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
1412 
1413  for (const auto & nfc : constraints)
1414  {
1415  // Return if this constraint does not correspond to the primary-secondary pair
1416  // prepared by the outer loops.
1417  // This continue statement is required when, e.g. one secondary surface constrains
1418  // more than one primary surface.
1419  if (nfc->secondaryBoundary() != secondary_boundary ||
1420  nfc->primaryBoundary() != primary_boundary)
1421  continue;
1422 
1423  if (nfc->shouldApply())
1424  {
1425  constraints_applied = true;
1426  nfc->computeResidual();
1427 
1428  if (nfc->overwriteSecondaryResidual())
1429  {
1430  // The below will actually overwrite the residual for every single dof that
1431  // lives on the node. We definitely don't want to do that!
1432  // _fe_problem.setResidual(residual, 0);
1433 
1434  const auto & secondary_var = nfc->variable();
1435  const auto & secondary_dofs = secondary_var.dofIndices();
1436  mooseAssert(secondary_dofs.size() == secondary_var.count(),
1437  "We are on a node so there should only be one dof per variable (for "
1438  "an ArrayVariable we should have a number of dofs equal to the "
1439  "number of components");
1440 
1441  // Assume that if the user is overwriting the secondary residual, then they are
1442  // supplying residuals that do not correspond to their other physics
1443  // (e.g. Kernels), hence we should not apply a scalingFactor that is normally
1444  // based on the order of their other physics (e.g. Kernels)
1445  std::vector<Number> values = {nfc->secondaryResidual()};
1446  residual.insert(values, secondary_dofs);
1447  residual_has_inserted_values = true;
1448  }
1449  else
1452  }
1453  if (nfc->hasWritableCoupledVariables())
1454  {
1455  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1456  has_writable_variables = true;
1457  for (auto * var : nfc->getWritableCoupledVariables())
1458  {
1459  if (var->isNodalDefined())
1460  var->insert(_fe_problem.getAuxiliarySystem().solution());
1461  }
1462  }
1463  }
1464  }
1465  }
1466  }
1467  }
1468  _communicator.max(has_writable_variables);
1469 
1470  if (has_writable_variables)
1471  {
1472  // Explicit contact dynamic constraints write to auxiliary variables and update the old
1473  // displacement solution on the constraint boundaries. Close solutions and update system
1474  // accordingly.
1477  solutionOld().close();
1478  }
1479 
1481  {
1482  // Make sure that secondary contribution to primary are assembled, and ghosts have been
1483  // exchanged, as current primaries might become secondaries on next iteration and will need to
1484  // contribute their former secondaries' contributions to the future primaries. See if
1485  // constraints were applied anywhere
1486  _communicator.max(constraints_applied);
1487 
1488  if (constraints_applied)
1489  {
1490  // If any of the above constraints inserted values in the residual, it needs to be
1491  // assembled before adding the cached residuals below.
1492  _communicator.max(residual_has_inserted_values);
1493  if (residual_has_inserted_values)
1494  {
1495  residual.close();
1496  residual_has_inserted_values = false;
1497  }
1499  residual.close();
1500 
1502  *_residual_ghosted = residual;
1503  }
1504  }
1505  }
1507  {
1508  _communicator.max(constraints_applied);
1509 
1510  if (constraints_applied)
1511  {
1512  // If any of the above constraints inserted values in the residual, it needs to be assembled
1513  // before adding the cached residuals below.
1514  _communicator.max(residual_has_inserted_values);
1515  if (residual_has_inserted_values)
1516  residual.close();
1517 
1519  residual.close();
1520 
1522  *_residual_ghosted = residual;
1523  }
1524  }
1525 
1526  // go over element-element constraint interface
1527  THREAD_ID tid = 0;
1528  const auto & element_pair_locators = subproblem.geomSearchData()._element_pair_locators;
1529  for (const auto & it : element_pair_locators)
1530  {
1531  ElementPairLocator & elem_pair_loc = *(it.second);
1532 
1533  if (_constraints.hasActiveElemElemConstraints(it.first, displaced))
1534  {
1535  // ElemElemConstraint objects
1536  const auto & element_constraints =
1537  _constraints.getActiveElemElemConstraints(it.first, displaced);
1538 
1539  // go over pair elements
1540  const std::list<std::pair<const Elem *, const Elem *>> & elem_pairs =
1541  elem_pair_loc.getElemPairs();
1542  for (const auto & pr : elem_pairs)
1543  {
1544  const Elem * elem1 = pr.first;
1545  const Elem * elem2 = pr.second;
1546 
1547  if (elem1->processor_id() != processor_id())
1548  continue;
1549 
1550  const ElementPairInfo & info = elem_pair_loc.getElemPairInfo(pr);
1551 
1552  // for each element process constraints on the
1553  for (const auto & ec : element_constraints)
1554  {
1555  _fe_problem.setCurrentSubdomainID(elem1, tid);
1556  subproblem.reinitElemPhys(elem1, info._elem1_constraint_q_point, tid);
1557  _fe_problem.setNeighborSubdomainID(elem2, tid);
1558  subproblem.reinitNeighborPhys(elem2, info._elem2_constraint_q_point, tid);
1559 
1560  ec->prepareShapes(ec->variable().number());
1561  ec->prepareNeighborShapes(ec->variable().number());
1562 
1563  ec->reinit(info);
1564  ec->computeResidual();
1567  }
1569  }
1570  }
1571  }
1572 
1573  // go over NodeElemConstraints
1574  std::set<dof_id_type> unique_secondary_node_ids;
1575 
1576  constraints_applied = false;
1577  residual_has_inserted_values = false;
1578  bool has_writable_variables = false;
1579  for (const auto & secondary_id : _mesh.meshSubdomains())
1580  {
1581  for (const auto & primary_id : _mesh.meshSubdomains())
1582  {
1583  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
1584  {
1585  const auto & constraints =
1586  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
1587 
1588  // get unique set of ids of all nodes on current block
1589  unique_secondary_node_ids.clear();
1590  const MeshBase & meshhelper = _mesh.getMesh();
1591  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
1592  meshhelper.active_subdomain_elements_end(secondary_id)))
1593  {
1594  for (auto & n : elem->node_ref_range())
1595  unique_secondary_node_ids.insert(n.id());
1596  }
1597 
1598  for (auto secondary_node_id : unique_secondary_node_ids)
1599  {
1600  Node & secondary_node = _mesh.nodeRef(secondary_node_id);
1601  // check if secondary node is on current processor
1602  if (secondary_node.processor_id() == processor_id())
1603  {
1604  // This reinits the variables that exist on the secondary node
1605  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
1606 
1607  // This will set aside residual and jacobian space for the variables that have dofs
1608  // on the secondary node
1610 
1611  for (const auto & nec : constraints)
1612  {
1613  if (nec->shouldApply())
1614  {
1615  constraints_applied = true;
1616  nec->computeResidual();
1617 
1618  if (nec->overwriteSecondaryResidual())
1619  {
1620  _fe_problem.setResidual(residual, 0);
1621  residual_has_inserted_values = true;
1622  }
1623  else
1626  }
1627  if (nec->hasWritableCoupledVariables())
1628  {
1629  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1630  has_writable_variables = true;
1631  for (auto * var : nec->getWritableCoupledVariables())
1632  {
1633  if (var->isNodalDefined())
1634  var->insert(_fe_problem.getAuxiliarySystem().solution());
1635  }
1636  }
1637  }
1639  }
1640  }
1641  }
1642  }
1643  }
1644  _communicator.max(constraints_applied);
1645 
1646  if (constraints_applied)
1647  {
1648  // If any of the above constraints inserted values in the residual, it needs to be assembled
1649  // before adding the cached residuals below.
1650  _communicator.max(residual_has_inserted_values);
1651  if (residual_has_inserted_values)
1652  residual.close();
1653 
1655  residual.close();
1656 
1658  *_residual_ghosted = residual;
1659  }
1660  _communicator.max(has_writable_variables);
1661 
1662  if (has_writable_variables)
1663  {
1664  // Explicit contact dynamic constraints write to auxiliary variables and update the old
1665  // displacement solution on the constraint boundaries. Close solutions and update system
1666  // accordingly.
1669  solutionOld().close();
1670  }
1671 
1672  // We may have additional tagged vectors that also need to be accumulated
1674 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
virtual void insert(const T *v, const std::vector< numeric_index_type > &dof_indices)
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
virtual void cacheResidualNeighbor(const THREAD_ID tid) override
BoundaryID _secondary_boundary
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
MPI_Info info
NumericVector< Number > & solution()
Definition: SystemBase.h:196
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const ElementPairInfo & getElemPairInfo(std::pair< const Elem *, const Elem *> elem_pair) const
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
virtual void setResidual(NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
virtual void addCachedResidualDirectly(NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
Allows for all the residual contributions that are currently cached to be added directly into the vec...
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
const ElementPairList & getElemPairs() const
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual void cacheResidual(const THREAD_ID tid) override
This is the ElementPairLocator class.
This is the ElementPairInfo class.
std::map< BoundaryID, std::shared_ptr< ElementPairLocator > > _element_pair_locators
virtual GeometricSearchData & geomSearchData()=0
AuxiliarySystem & getAuxiliarySystem()
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void setCurrentSubdomainID(const Elem *elem, const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void reinitElemPhys(const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid)=0
virtual void update()
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
bool hasActiveElemElemConstraints(const InterfaceID interface_id, bool displaced) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
virtual libMesh::System & system() override
Get the reference to the libMesh system.
NumericVector< Number > & solutionOld()
Definition: SystemBase.h:197
processor_id_type processor_id() const
const std::vector< std::shared_ptr< ElemElemConstraint > > & getActiveElemElemConstraints(InterfaceID interface_id, bool displaced) const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
virtual void addCachedResidual(const THREAD_ID tid) override
BoundaryID _primary_boundary
unsigned int THREAD_ID
Definition: MooseTypes.h:209
uint8_t dof_id_type
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3192

◆ containsTimeKernel()

bool NonlinearSystemBase::containsTimeKernel ( )
overridevirtual

If the system has a kernel that corresponds to a time derivative.

Implements SolverSystem.

Definition at line 3824 of file NonlinearSystemBase.C.

Referenced by EigenExecutionerBase::checkIntegrity(), and Eigenvalue::checkIntegrity().

3825 {
3826  auto & time_kernels = _kernels.getVectorTagObjectWarehouse(timeVectorTag(), 0);
3827 
3828  return time_kernels.hasActiveObjects();
3829 }
MooseObjectTagWarehouse< KernelBase > _kernels
TagID timeVectorTag() const override
Ideally, we should not need this API.
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...

◆ converged()

virtual bool SolverSystem::converged ( )
pure virtualinherited

Returns the convergence state.

Returns
true if converged, otherwise false

Implemented in NonlinearEigenSystem, NonlinearEigenSystem, NonlinearSystem, LinearSystem, DumpObjectsLinearSystem, and DumpObjectsNonlinearSystem.

◆ copyOldSolutions()

void SystemBase::copyOldSolutions ( )
virtualinherited

Shifts the solutions backwards in time.

Definition at line 1286 of file SystemBase.C.

Referenced by SystemBase::copySolutionsBackwards(), and EigenExecutionerBase::inversePowerIteration().

1287 {
1288  // copy the solutions backward: current->old, old->older
1289  const auto states =
1290  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
1291  if (states > 1)
1292  for (unsigned int i = states - 1; i > 0; --i)
1293  solutionState(i) = solutionState(i - 1);
1294 
1295  if (solutionUDotOld())
1296  *solutionUDotOld() = *solutionUDot();
1297  if (solutionUDotDotOld())
1299 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
virtual NumericVector< Number > * solutionUDot()
Definition: SystemBase.h:261
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > * solutionUDotDot()
Definition: SystemBase.h:262

◆ copyPreviousFixedPointSolutions()

void SystemBase::copyPreviousFixedPointSolutions ( )
virtualinherited

Definition at line 1302 of file SystemBase.C.

Referenced by FixedPointSolve::solveStep().

1303 {
1304  const auto n_states =
1305  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::FixedPoint)]
1306  .size();
1307  if (n_states > 1)
1308  for (unsigned int i = n_states - 1; i > 0; --i)
1311 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ copyPreviousNonlinearSolutions()

void SystemBase::copyPreviousNonlinearSolutions ( )
virtualinherited

Shifts the solutions backwards in nonlinear iteration history.

Definition at line 1269 of file SystemBase.C.

Referenced by SystemBase::copySolutionsBackwards().

1270 {
1271  const auto states =
1272  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Nonlinear)].size();
1273  if (states > 1)
1274  for (unsigned int i = states - 1; i > 0; --i)
1277 
1278  if (solutionPreviousNewton())
1280 }
virtual const NumericVector< Number > *const & currentSolution() const =0
The solution vector that is currently being operated on.
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual const NumericVector< Number > * solutionPreviousNewton() const
Definition: SystemBase.C:1355

◆ copySolutionsBackwards()

void SystemBase::copySolutionsBackwards ( )
virtualinherited

Copy current solution into old and older.

Definition at line 1258 of file SystemBase.C.

1259 {
1260  system().update();
1261  copyOldSolutions();
1263 }
virtual void copyOldSolutions()
Shifts the solutions backwards in time.
Definition: SystemBase.C:1286
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual void copyPreviousNonlinearSolutions()
Shifts the solutions backwards in nonlinear iteration history.
Definition: SystemBase.C:1269
virtual void update()

◆ copyTimeIntegrators()

void SystemBase::copyTimeIntegrators ( const SystemBase other_sys)
inherited

Copy time integrators from another system.

Definition at line 1667 of file SystemBase.C.

1668 {
1670 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ copyVars()

void SystemBase::copyVars ( libMesh::ExodusII_IO io)
inherited

Definition at line 1183 of file SystemBase.C.

1184 {
1185  int n_steps = io.get_num_time_steps();
1186 
1187  bool did_copy = false;
1188  for (const auto & vci : _var_to_copy)
1189  {
1190  int timestep = -1;
1191 
1192  if (vci._timestep == "LATEST")
1193  // Use the last time step in the file from which to retrieve the solution
1194  timestep = n_steps;
1195  else
1196  {
1197  timestep = MooseUtils::convert<int>(vci._timestep);
1198  if (timestep > n_steps)
1199  mooseError("Invalid value passed as \"initial_from_file_timestep\". Expected \"LATEST\" or "
1200  "a valid integer between 1 and ",
1201  n_steps,
1202  " inclusive, received ",
1203  vci._timestep);
1204  }
1205 
1206  did_copy = true;
1207 
1208  if (hasVariable(vci._dest_name))
1209  {
1210  const auto & var = getVariable(0, vci._dest_name);
1211  if (var.isArray())
1212  {
1213  const auto & array_var = getFieldVariable<RealEigenVector>(0, vci._dest_name);
1214  for (MooseIndex(var.count()) i = 0; i < var.count(); ++i)
1215  {
1216  const auto & exodus_var = var.arrayVariableComponent(i);
1217  const auto & system_var = array_var.componentName(i);
1218  if (var.isNodal())
1219  io.copy_nodal_solution(system(), exodus_var, system_var, timestep);
1220  else
1221  io.copy_elemental_solution(system(), exodus_var, system_var, timestep);
1222  }
1223  }
1224  else
1225  {
1226  if (var.isNodal())
1227  io.copy_nodal_solution(system(), vci._dest_name, vci._source_name, timestep);
1228  else
1229  io.copy_elemental_solution(system(), vci._dest_name, vci._source_name, timestep);
1230  }
1231  }
1232  else if (hasScalarVariable(vci._dest_name))
1233  io.copy_scalar_solution(system(), {vci._dest_name}, {vci._source_name}, timestep);
1234  else
1235  mooseError("Unrecognized variable ", vci._dest_name, " in variables to copy.");
1236  }
1237 
1238  if (did_copy)
1239  solution().close();
1240 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040
void copy_nodal_solution(System &system, std::string system_var_name, std::string exodus_var_name, unsigned int timestep=1)
void copy_elemental_solution(System &system, std::string system_var_name, std::string exodus_var_name, unsigned int timestep=1)
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual void close()=0
void copy_scalar_solution(System &system, std::vector< std::string > system_var_names, std::vector< std::string > exodus_var_names, unsigned int timestep=1)
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876

◆ currentSolution()

const NumericVector< Number > *const & SolverSystem::currentSolution ( ) const
inlinefinaloverridevirtualinherited

The solution vector that is currently being operated on.

This is typically a ghosted vector that comes in from the Nonlinear solver.

Implements SystemBase.

Definition at line 117 of file SolverSystem.h.

Referenced by FEProblemBase::computeDamping(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualL2Norm(), and AB2PredictorCorrector::step().

118 {
119  return _current_solution;
120 }
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105

◆ customSetup()

void NonlinearSystemBase::customSetup ( const ExecFlagType exec_type)
overridevirtual

Reimplemented from SystemBase.

Definition at line 400 of file NonlinearSystemBase.C.

401 {
402  SolverSystem::customSetup(exec_type);
403 
404  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
405  {
406  _kernels.customSetup(exec_type, tid);
407  _nodal_kernels.customSetup(exec_type, tid);
408  _dirac_kernels.customSetup(exec_type, tid);
409  if (_doing_dg)
410  _dg_kernels.customSetup(exec_type, tid);
411  _interface_kernels.customSetup(exec_type, tid);
412  _element_dampers.customSetup(exec_type, tid);
413  _nodal_dampers.customSetup(exec_type, tid);
414  _integrated_bcs.customSetup(exec_type, tid);
415 
416  if (_fe_problem.haveFV())
417  {
418  std::vector<FVFluxBC *> bcs;
420  .query()
421  .template condition<AttribSystem>("FVFluxBC")
422  .template condition<AttribThread>(tid)
423  .queryInto(bcs);
424 
425  std::vector<FVInterfaceKernel *> iks;
427  .query()
428  .template condition<AttribSystem>("FVInterfaceKernel")
429  .template condition<AttribThread>(tid)
430  .queryInto(iks);
431 
432  std::vector<FVFluxKernel *> kernels;
434  .query()
435  .template condition<AttribSystem>("FVFluxKernel")
436  .template condition<AttribThread>(tid)
437  .queryInto(kernels);
438 
439  for (auto * bc : bcs)
440  bc->customSetup(exec_type);
441  for (auto * ik : iks)
442  ik->customSetup(exec_type);
443  for (auto * kernel : kernels)
444  kernel->customSetup(exec_type);
445  }
446  }
447  _scalar_kernels.customSetup(exec_type);
448  _constraints.customSetup(exec_type);
449  _general_dampers.customSetup(exec_type);
450  _nodal_bcs.customSetup(exec_type);
451  _preset_nodal_bcs.customSetup(exec_type);
453 
454 #ifdef MOOSE_KOKKOS_ENABLED
455  _kokkos_kernels.customSetup(exec_type);
458  _kokkos_nodal_bcs.customSetup(exec_type);
459 #endif
460 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SystemBase.C:1585
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ deactivateAllMatrixTags()

void SystemBase::deactivateAllMatrixTags ( )
virtualinherited

Make matrices inactive.

Definition at line 1119 of file SystemBase.C.

Referenced by computeResidualTags(), and setInitialSolution().

1120 {
1121  auto num_matrix_tags = _subproblem.numMatrixTags();
1122 
1123  _matrix_tag_active_flags.resize(num_matrix_tags);
1124 
1125  for (decltype(num_matrix_tags) tag = 0; tag < num_matrix_tags; tag++)
1126  _matrix_tag_active_flags[tag] = false;
1127  _active_tagged_matrices.clear();
1128 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248

◆ debuggingResiduals()

void NonlinearSystemBase::debuggingResiduals ( bool  state)
inline

Definition at line 589 of file NonlinearSystemBase.h.

589 { _debugging_residuals = state; }
bool _debugging_residuals
true if debugging residuals

◆ defaultMatrixTags()

virtual std::set<TagID> SystemBase::defaultMatrixTags ( ) const
inlinevirtualinherited

Get the default matrix tags associted with this system.

Reimplemented in NonlinearEigenSystem, and DisplacedSystem.

Definition at line 319 of file SystemBase.h.

Referenced by DisplacedSystem::defaultMatrixTags(), NonlinearEigenSystem::defaultMatrixTags(), and SystemBase::disassociateDefaultMatrixTags().

319 { return {systemMatrixTag()}; }
virtual TagID systemMatrixTag() const
Return the Matrix Tag ID for System.
Definition: SystemBase.h:297

◆ defaultVectorTags()

virtual std::set<TagID> SystemBase::defaultVectorTags ( ) const
inlinevirtualinherited

Get the default vector tags associated with this system.

Reimplemented in NonlinearEigenSystem, and DisplacedSystem.

Definition at line 312 of file SystemBase.h.

Referenced by DisplacedSystem::defaultVectorTags(), NonlinearEigenSystem::defaultVectorTags(), and SystemBase::disassociateDefaultVectorTags().

313  {
315  }
virtual TagID timeVectorTag() const
Ideally, we should not need this API.
Definition: SystemBase.h:292
virtual TagID nonTimeVectorTag() const
Definition: SystemBase.h:302
virtual TagID residualVectorTag() const
Definition: SystemBase.h:307

◆ destroyColoring()

void NonlinearSystemBase::destroyColoring ( )

Destroy the coloring object if it exists.

Definition at line 4241 of file NonlinearSystemBase.C.

Referenced by LStableDirk2::solve(), LStableDirk3::solve(), and LStableDirk4::solve().

4242 {
4243  if (matrixFromColoring())
4244  LibmeshPetscCall(MatFDColoringDestroy(&_fdcoloring));
4245 }
virtual bool matrixFromColoring() const
Whether a system matrix is formed from coloring.
Definition: SolverSystem.h:102

◆ disassociateDefaultMatrixTags()

void SystemBase::disassociateDefaultMatrixTags ( )
virtualinherited

Disassociate the matrices associated with the default matrix tags of this system.

Reimplemented in DisplacedSystem.

Definition at line 1110 of file SystemBase.C.

Referenced by DisplacedSystem::disassociateDefaultMatrixTags().

1111 {
1112  const auto tags = defaultMatrixTags();
1113  for (const auto tag : tags)
1114  if (_subproblem.matrixTagExists(tag))
1116 }
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual std::set< TagID > defaultMatrixTags() const
Get the default matrix tags associted with this system.
Definition: SystemBase.h:319
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ disassociateDefaultVectorTags()

void SystemBase::disassociateDefaultVectorTags ( )
virtualinherited

Disassociate the vectors associated with the default vector tags of this system.

Reimplemented in DisplacedSystem.

Definition at line 1015 of file SystemBase.C.

Referenced by DisplacedSystem::disassociateDefaultVectorTags().

1016 {
1017  const auto tags = defaultVectorTags();
1018  for (const auto tag : tags)
1019  if (_subproblem.vectorTagExists(tag))
1021 }
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual std::set< TagID > defaultVectorTags() const
Get the default vector tags associated with this system.
Definition: SystemBase.h:312

◆ disassociateMatrixFromTag() [1/2]

void SystemBase::disassociateMatrixFromTag ( libMesh::SparseMatrix< Number > &  matrix,
TagID  tag 
)
virtualinherited

Disassociate a matrix from a tag.

Reimplemented in DisplacedSystem.

Definition at line 1088 of file SystemBase.C.

Referenced by computeJacobian(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), SystemBase::disassociateDefaultMatrixTags(), and DisplacedSystem::disassociateMatrixFromTag().

1089 {
1090  if (!_subproblem.matrixTagExists(tag))
1091  mooseError("Cannot disassociate matrix from tag ", tag, " because that tag does not exist");
1092  if (hasMatrix(tag) && &getMatrix(tag) != &matrix)
1093  mooseError("You can not disassociate a matrix from a tag which it was not associated to");
1094 
1096 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ disassociateMatrixFromTag() [2/2]

void SystemBase::disassociateMatrixFromTag ( TagID  tag)
virtualinherited

Disassociate any matrix that is associated with a given tag.

Reimplemented in DisplacedSystem.

Definition at line 1099 of file SystemBase.C.

1100 {
1101  if (!_subproblem.matrixTagExists(tag))
1102  mooseError("Cannot disassociate matrix from tag ", tag, " because that tag does not exist");
1103 
1104  if (_tagged_matrices.size() < tag + 1)
1105  _tagged_matrices.resize(tag + 1);
1106  _tagged_matrices[tag] = nullptr;
1107 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ disassociateVectorFromTag() [1/2]

virtual void SystemBase::disassociateVectorFromTag ( NumericVector< Number > &  vec,
TagID  tag 
)
virtualinherited

◆ disassociateVectorFromTag() [2/2]

void SystemBase::disassociateVectorFromTag ( TagID  tag)
virtualinherited

Disassociate any vector that is associated with a given tag.

Reimplemented in DisplacedSystem.

Definition at line 1004 of file SystemBase.C.

1005 {
1006  if (!_subproblem.vectorTagExists(tag))
1007  mooseError("Cannot disassociate vector from tag ", tag, " because that tag does not exist");
1008 
1009  if (_tagged_vectors.size() < tag + 1)
1010  _tagged_vectors.resize(tag + 1);
1011  _tagged_vectors[tag] = nullptr;
1012 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ dofMap() [1/2]

DofMap & SystemBase::dofMap ( )
virtualinherited

◆ dofMap() [2/2]

const DofMap & SystemBase::dofMap ( ) const
virtualinherited

Gets const reference to the dof map.

Definition at line 1169 of file SystemBase.C.

1170 {
1171  return system().get_dof_map();
1172 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const DofMap & get_dof_map() const

◆ doingDG()

bool NonlinearSystemBase::doingDG ( ) const

Getter for _doing_dg.

Definition at line 3899 of file NonlinearSystemBase.C.

3900 {
3901  return _doing_dg;
3902 }
bool _doing_dg
true if DG is active (optimization reasons)

◆ duDotDotDu() [1/2]

virtual Number& SystemBase::duDotDotDu ( )
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 257 of file SystemBase.h.

Referenced by DisplacedSystem::duDotDotDu(), and MooseVariableScalar::reinit().

257 { return _du_dotdot_du; }
Real _du_dotdot_du
Definition: SystemBase.h:1018

◆ duDotDotDu() [2/2]

virtual const Number& SystemBase::duDotDotDu ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 259 of file SystemBase.h.

259 { return _du_dotdot_du; }
Real _du_dotdot_du
Definition: SystemBase.h:1018

◆ duDotDu()

const Number & SystemBase::duDotDu ( unsigned int  var_num = 0) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1701 of file SystemBase.C.

Referenced by DisplacedSystem::duDotDu(), and MooseVariableScalar::reinit().

1702 {
1703  return _du_dot_du[var_num];
1704 }
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017

◆ duDotDus()

virtual std::vector<Number>& SystemBase::duDotDus ( )
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 256 of file SystemBase.h.

Referenced by DisplacedSystem::duDotDus().

256 { return _du_dot_du; }
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017

◆ enforceNodalConstraintsJacobian()

void NonlinearSystemBase::enforceNodalConstraintsJacobian ( )
protected

Definition at line 1129 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

1130 {
1131  if (!hasMatrix(systemMatrixTag()))
1132  mooseError(" A system matrix is required");
1133 
1134  auto & jacobian = getMatrix(systemMatrixTag());
1135  THREAD_ID tid = 0; // constraints are going to be done single-threaded
1136 
1138  {
1139  const auto & ncs = _constraints.getActiveNodalConstraints();
1140  for (const auto & nc : ncs)
1141  {
1142  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
1143  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
1144 
1145  if ((secondary_node_ids.size() > 0) && (primary_node_ids.size() > 0))
1146  {
1147  _fe_problem.reinitNodes(primary_node_ids, tid);
1148  _fe_problem.reinitNodesNeighbor(secondary_node_ids, tid);
1149  nc->computeJacobian(jacobian);
1150  }
1151  }
1153  }
1154 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
virtual void reinitNodes(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
bool hasActiveNodalConstraints() const
Deterimine if active objects exist.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void reinitNodesNeighbor(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ enforceNodalConstraintsResidual()

void NonlinearSystemBase::enforceNodalConstraintsResidual ( NumericVector< Number > &  residual)
protected

Enforce nodal constraints.

Definition at line 1104 of file NonlinearSystemBase.C.

Referenced by computeResidualInternal().

1105 {
1106  THREAD_ID tid = 0; // constraints are going to be done single-threaded
1107  residual.close();
1109  {
1110  const auto & ncs = _constraints.getActiveNodalConstraints();
1111  for (const auto & nc : ncs)
1112  {
1113  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
1114  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
1115 
1116  if ((secondary_node_ids.size() > 0) && (primary_node_ids.size() > 0))
1117  {
1118  _fe_problem.reinitNodes(primary_node_ids, tid);
1119  _fe_problem.reinitNodesNeighbor(secondary_node_ids, tid);
1120  nc->computeResidual(residual);
1121  }
1122  }
1123  _fe_problem.addCachedResidualDirectly(residual, tid);
1124  residual.close();
1125  }
1126 }
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
virtual void reinitNodes(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
bool hasActiveNodalConstraints() const
Deterimine if active objects exist.
virtual void addCachedResidualDirectly(NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
Allows for all the residual contributions that are currently cached to be added directly into the vec...
virtual void reinitNodesNeighbor(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ feProblem() [1/2]

FEProblemBase& SystemBase::feProblem ( )
inlineinherited

Definition at line 103 of file SystemBase.h.

Referenced by DMMooseGetEmbedding_Private(), and DMSetUp_Moose_Pre().

103 { return _fe_problem; }
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ feProblem() [2/2]

const FEProblemBase& SystemBase::feProblem ( ) const
inlineinherited

Definition at line 104 of file SystemBase.h.

104 { return _fe_problem; }
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ finalNonlinearResidual()

Real NonlinearSystemBase::finalNonlinearResidual ( ) const
inline

Return the final nonlinear residual.

Definition at line 575 of file NonlinearSystemBase.h.

575 { return _final_residual; }

◆ findImplicitGeometricCouplingEntries()

void NonlinearSystemBase::findImplicitGeometricCouplingEntries ( GeometricSearchData geom_search_data,
std::unordered_map< dof_id_type, std::vector< dof_id_type >> &  graph 
)
private

Finds the implicit sparsity graph between geometrically related dofs.

Definition at line 2215 of file NonlinearSystemBase.C.

Referenced by addImplicitGeometricCouplingEntries(), and augmentSparsity().

2218 {
2219  const auto & node_to_elem_map = _mesh.nodeToElemMap();
2220  const auto & nearest_node_locators = geom_search_data._nearest_node_locators;
2221  for (const auto & it : nearest_node_locators)
2222  {
2223  std::vector<dof_id_type> & secondary_nodes = it.second->_secondary_nodes;
2224 
2225  for (const auto & secondary_node : secondary_nodes)
2226  {
2227  std::set<dof_id_type> unique_secondary_indices;
2228  std::set<dof_id_type> unique_primary_indices;
2229 
2230  auto node_to_elem_pair = node_to_elem_map.find(secondary_node);
2231  if (node_to_elem_pair != node_to_elem_map.end())
2232  {
2233  const std::vector<dof_id_type> & elems = node_to_elem_pair->second;
2234 
2235  // Get the dof indices from each elem connected to the node
2236  for (const auto & cur_elem : elems)
2237  {
2238  std::vector<dof_id_type> dof_indices;
2239  dofMap().dof_indices(_mesh.elemPtr(cur_elem), dof_indices);
2240 
2241  for (const auto & dof : dof_indices)
2242  unique_secondary_indices.insert(dof);
2243  }
2244  }
2245 
2246  std::vector<dof_id_type> primary_nodes = it.second->_neighbor_nodes[secondary_node];
2247 
2248  for (const auto & primary_node : primary_nodes)
2249  {
2250  auto primary_node_to_elem_pair = node_to_elem_map.find(primary_node);
2251  mooseAssert(primary_node_to_elem_pair != node_to_elem_map.end(),
2252  "Missing entry in node to elem map");
2253  const std::vector<dof_id_type> & primary_node_elems = primary_node_to_elem_pair->second;
2254 
2255  // Get the dof indices from each elem connected to the node
2256  for (const auto & cur_elem : primary_node_elems)
2257  {
2258  std::vector<dof_id_type> dof_indices;
2259  dofMap().dof_indices(_mesh.elemPtr(cur_elem), dof_indices);
2260 
2261  for (const auto & dof : dof_indices)
2262  unique_primary_indices.insert(dof);
2263  }
2264  }
2265 
2266  for (const auto & secondary_id : unique_secondary_indices)
2267  for (const auto & primary_id : unique_primary_indices)
2268  {
2269  graph[secondary_id].push_back(primary_id);
2270  graph[primary_id].push_back(secondary_id);
2271  }
2272  }
2273  }
2274 
2275  // handle node-to-node constraints
2276  const auto & ncs = _constraints.getActiveNodalConstraints();
2277  for (const auto & nc : ncs)
2278  {
2279  std::vector<dof_id_type> primary_dofs;
2280  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
2281  for (const auto & node_id : primary_node_ids)
2282  {
2283  Node * node = _mesh.queryNodePtr(node_id);
2284  if (node && node->processor_id() == this->processor_id())
2285  {
2286  getNodeDofs(node_id, primary_dofs);
2287  }
2288  }
2289 
2290  _communicator.allgather(primary_dofs);
2291 
2292  std::vector<dof_id_type> secondary_dofs;
2293  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
2294  for (const auto & node_id : secondary_node_ids)
2295  {
2296  Node * node = _mesh.queryNodePtr(node_id);
2297  if (node && node->processor_id() == this->processor_id())
2298  {
2299  getNodeDofs(node_id, secondary_dofs);
2300  }
2301  }
2302 
2303  _communicator.allgather(secondary_dofs);
2304 
2305  for (const auto & primary_id : primary_dofs)
2306  for (const auto & secondary_id : secondary_dofs)
2307  {
2308  graph[primary_id].push_back(secondary_id);
2309  graph[secondary_id].push_back(primary_id);
2310  }
2311  }
2312 
2313  // Make every entry sorted and unique
2314  for (auto & it : graph)
2315  {
2316  std::vector<dof_id_type> & row = it.second;
2317  std::sort(row.begin(), row.end());
2318  std::vector<dof_id_type>::iterator uit = std::unique(row.begin(), row.end());
2319  row.resize(uit - row.begin());
2320  }
2321 }
void allgather(const T &send_data, std::vector< T, A > &recv_data) const
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
void getNodeDofs(dof_id_type node_id, std::vector< dof_id_type > &dofs)
virtual const Node * queryNodePtr(const dof_id_type i) const
Definition: MooseMesh.C:875
const Parallel::Communicator & _communicator
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
ConstraintWarehouse _constraints
Constraints storage object.
MooseMesh & _mesh
Definition: SystemBase.h:991
processor_id_type processor_id() const
processor_id_type processor_id() const
const std::map< dof_id_type, std::vector< dof_id_type > > & nodeToElemMap()
If not already created, creates a map from every node to all elements to which they are connected...
Definition: MooseMesh.C:1216

◆ flushTaggedMatrices()

void SystemBase::flushTaggedMatrices ( const std::set< TagID > &  tags)
inherited

flushes all matrices associated to tags.

Flush assembles the matrix but doesn't shrink memory allocation

Definition at line 1068 of file SystemBase.C.

1069 {
1070  for (auto tag : tags)
1071  if (hasMatrix(tag))
1072  getMatrix(tag).flush();
1073 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void flush()
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024

◆ getActualFieldVariable() [1/2]

template<typename T >
MooseVariableField< T > & SystemBase::getActualFieldVariable ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Returns a field variable pointer - this includes finite volume variables.

Definition at line 118 of file SystemBase.C.

Referenced by BoundsBase::BoundsBase(), Assembly::copyFaceShapes(), Assembly::copyNeighborShapes(), and Assembly::copyShapes().

119 {
120  return *_vars[tid].getActualFieldVariable<T>(var_name);
121 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getActualFieldVariable() [2/2]

template<typename T >
MooseVariableField< T > & SystemBase::getActualFieldVariable ( THREAD_ID  tid,
unsigned int  var_number 
)
inherited

Returns a field variable pointer - this includes finite volume variables.

Definition at line 139 of file SystemBase.C.

140 {
141  return *_vars[tid].getActualFieldVariable<T>(var_number);
142 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getConstraintWarehouse()

const ConstraintWarehouse& NonlinearSystemBase::getConstraintWarehouse ( ) const
inline

Definition at line 649 of file NonlinearSystemBase.h.

649 { return _constraints; }
ConstraintWarehouse _constraints
Constraints storage object.

◆ getCurrentNonlinearIterationNumber()

virtual unsigned int NonlinearSystemBase::getCurrentNonlinearIterationNumber ( )
pure virtual

◆ getDGKernelWarehouse()

MooseObjectTagWarehouse<DGKernelBase>& NonlinearSystemBase::getDGKernelWarehouse ( )
inline

Definition at line 625 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

625 { return _dg_kernels; }
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels

◆ getDiracKernelWarehouse()

MooseObjectTagWarehouse<DiracKernelBase>& NonlinearSystemBase::getDiracKernelWarehouse ( )
inline

Definition at line 630 of file NonlinearSystemBase.h.

630 { return _dirac_kernels; }
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.

◆ getElementDamperWarehouse()

const MooseObjectWarehouse<ElementDamper>& NonlinearSystemBase::getElementDamperWarehouse ( ) const
inline

Definition at line 641 of file NonlinearSystemBase.h.

Referenced by ComputeElemDampingThread::onElement(), and ComputeElemDampingThread::printGeneralExecutionInformation().

642  {
643  return _element_dampers;
644  }
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.

◆ getFieldSplitPreconditioner()

FieldSplitPreconditionerBase & NonlinearSystemBase::getFieldSplitPreconditioner ( )
Returns
A field split preconditioner. This will error if there is no field split preconditioner

Definition at line 4248 of file NonlinearSystemBase.C.

4249 {
4250  if (!_fsp)
4251  mooseError("No field split preconditioner is present for this system");
4252 
4253  return *_fsp;
4254 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ getFieldVariable() [1/2]

template<typename T >
MooseVariableFE< T > & SystemBase::getFieldVariable ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Gets a reference to a variable of with specified name.

This excludes and cannot return finite volume variables.

Parameters
tidThread id
var_namevariable name
Returns
reference the variable (class)

Definition at line 111 of file SystemBase.C.

Referenced by Marker::getMarkerValue().

112 {
113  return *_vars[tid].getFieldVariable<T>(var_name);
114 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getFieldVariable() [2/2]

template<typename T >
MooseVariableFE< T > & SystemBase::getFieldVariable ( THREAD_ID  tid,
unsigned int  var_number 
)
inherited

Gets a reference to a variable with specified number.

This excludes and cannot return finite volume variables.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 132 of file SystemBase.C.

133 {
134  return *_vars[tid].getFieldVariable<T>(var_number);
135 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getFVVariable()

template<typename T >
template MooseVariableFV< Real > & SystemBase::getFVVariable< Real > ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Return a finite volume variable.

Definition at line 125 of file SystemBase.C.

126 {
127  return *_vars[tid].getFVVariable<T>(var_name);
128 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getHDGKernelWarehouse()

MooseObjectTagWarehouse<HDGKernel>& NonlinearSystemBase::getHDGKernelWarehouse ( )
inline

Definition at line 640 of file NonlinearSystemBase.h.

640 { return _hybridized_kernels; }
MooseObjectTagWarehouse< HDGKernel > _hybridized_kernels

◆ getIntegratedBCWarehouse() [1/2]

MooseObjectTagWarehouse<IntegratedBCBase>& NonlinearSystemBase::getIntegratedBCWarehouse ( )
inline

Definition at line 631 of file NonlinearSystemBase.h.

Referenced by BoundaryElemIntegrityCheckThread::operator()().

631 { return _integrated_bcs; }
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ getIntegratedBCWarehouse() [2/2]

const MooseObjectTagWarehouse<IntegratedBCBase>& NonlinearSystemBase::getIntegratedBCWarehouse ( ) const
inline

Return the IntegratedBCBase warehouse.

Definition at line 659 of file NonlinearSystemBase.h.

660  {
661  return _integrated_bcs;
662  }
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ getInterfaceKernelWarehouse()

MooseObjectTagWarehouse<InterfaceKernelBase>& NonlinearSystemBase::getInterfaceKernelWarehouse ( )
inline

Definition at line 626 of file NonlinearSystemBase.h.

627  {
628  return _interface_kernels;
629  }
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels

◆ getKernelWarehouse() [1/2]

MooseObjectTagWarehouse<KernelBase>& NonlinearSystemBase::getKernelWarehouse ( )
inline

Access functions to Warehouses from outside NonlinearSystemBase.

Definition at line 623 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup(), DOFMapOutput::output(), and BlockRestrictionDebugOutput::printBlockRestrictionMap().

623 { return _kernels; }
MooseObjectTagWarehouse< KernelBase > _kernels

◆ getKernelWarehouse() [2/2]

const MooseObjectTagWarehouse<KernelBase>& NonlinearSystemBase::getKernelWarehouse ( ) const
inline

Definition at line 624 of file NonlinearSystemBase.h.

624 { return _kernels; }
MooseObjectTagWarehouse< KernelBase > _kernels

◆ getKokkosIntegratedBCWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosIntegratedBCWarehouse ( )
inline

Definition at line 676 of file NonlinearSystemBase.h.

677  {
678  return _kokkos_integrated_bcs;
679  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs

◆ getKokkosKernelWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosKernelWarehouse ( )
inline

Return the Kokkos residual object warehouses

Definition at line 667 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

667 { return _kokkos_kernels; }
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels

◆ getKokkosNodalBCWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosNodalBCWarehouse ( )
inline

Definition at line 672 of file NonlinearSystemBase.h.

673  {
674  return _kokkos_nodal_bcs;
675  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs

◆ getKokkosNodalKernelWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosNodalKernelWarehouse ( )
inline

Definition at line 668 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

669  {
670  return _kokkos_nodal_kernels;
671  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels

◆ getMatrix() [1/2]

SparseMatrix< Number > & SystemBase::getMatrix ( TagID  tag)
virtualinherited

Get a raw SparseMatrix.

Reimplemented in DisplacedSystem.

Definition at line 1024 of file SystemBase.C.

Referenced by SystemBase::activateAllMatrixTags(), Assembly::addCachedJacobian(), addImplicitGeometricCouplingEntries(), Assembly::addJacobianCoupledVarPair(), Assembly::addJacobianLowerD(), Assembly::addJacobianNeighbor(), Assembly::addJacobianNeighborLowerD(), Assembly::addJacobianNonlocal(), SystemBase::addMatrix(), SystemBase::closeTaggedMatrices(), computeJacobianInternal(), FEProblemBase::computeJacobianTags(), LinearSystem::computeLinearSystemInternal(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), computeResidualAndJacobianInternal(), constraintJacobians(), SystemBase::disassociateMatrixFromTag(), enforceNodalConstraintsJacobian(), SystemBase::flushTaggedMatrices(), DisplacedSystem::getMatrix(), LinearSystemContributionObject::linkTaggedVectorsAndMatrices(), MooseVariableScalar::reinit(), Assembly::setCachedJacobian(), and Assembly::zeroCachedJacobian().

1025 {
1026  if (!hasMatrix(tag))
1027  {
1028  if (!_subproblem.matrixTagExists(tag))
1029  mooseError("Cannot retreive matrix with tag ", tag, " because that tag does not exist");
1030  else
1031  mooseError("Cannot retreive matrix with tag ",
1032  tag,
1033  " in system '",
1034  name(),
1035  "'\nbecause a matrix has not been associated with that tag.");
1036  }
1037 
1038  return *_tagged_matrices[tag];
1039 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ getMatrix() [2/2]

const SparseMatrix< Number > & SystemBase::getMatrix ( TagID  tag) const
virtualinherited

Get a raw SparseMatrix.

Reimplemented in DisplacedSystem.

Definition at line 1042 of file SystemBase.C.

1043 {
1044  if (!hasMatrix(tag))
1045  {
1046  if (!_subproblem.matrixTagExists(tag))
1047  mooseError("Cannot retreive matrix with tag ", tag, " because that tag does not exist");
1048  else
1049  mooseError("Cannot retreive matrix with tag ",
1050  tag,
1051  " in system '",
1052  name(),
1053  "'\nbecause a matrix has not been associated with that tag.");
1054  }
1055 
1056  return *_tagged_matrices[tag];
1057 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ getMaxVariableNumber()

unsigned int SystemBase::getMaxVariableNumber ( ) const
inlineinherited

Returns the maximum number of all variables on the system.

Definition at line 867 of file SystemBase.h.

867 { return _max_var_number; }
unsigned int _max_var_number
Maximum variable number.
Definition: SystemBase.h:1000

◆ getMaxVarNDofsPerElem()

std::size_t SystemBase::getMaxVarNDofsPerElem ( ) const
inlineinherited

Gets the maximum number of dofs used by any one variable on any one element.

Returns
The max

Definition at line 585 of file SystemBase.h.

Referenced by Moose::globalDofIndexToDerivative().

585 { return _max_var_n_dofs_per_elem; }
size_t _max_var_n_dofs_per_elem
Maximum number of dofs for any one variable on any one element.
Definition: SystemBase.h:1043

◆ getMaxVarNDofsPerNode()

std::size_t SystemBase::getMaxVarNDofsPerNode ( ) const
inlineinherited

Gets the maximum number of dofs used by any one variable on any one node.

Returns
The max

Definition at line 592 of file SystemBase.h.

592 { return _max_var_n_dofs_per_node; }
size_t _max_var_n_dofs_per_node
Maximum number of dofs for any one variable on any one node.
Definition: SystemBase.h:1046

◆ getMinQuadratureOrder()

Order SystemBase::getMinQuadratureOrder ( )
virtualinherited

Get minimal quadrature order needed for integrating variables in this system.

Returns
The minimal order of quadrature

Reimplemented in AuxiliarySystem.

Definition at line 241 of file SystemBase.C.

242 {
243  Order order = CONSTANT;
244  const std::vector<MooseVariableFieldBase *> & vars = _vars[0].fieldVariables();
245  for (const auto & var : vars)
246  {
247  FEType fe_type = var->feType();
248  if (fe_type.default_quadrature_order() > order)
249  order = fe_type.default_quadrature_order();
250  }
251 
252  return order;
253 }
Order
char ** vars
Order default_quadrature_order() const
CONSTANT
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getMooseKSPNormType()

Moose::MooseKSPNormType SolverSystem::getMooseKSPNormType ( )
inlineinherited

Get the norm in which the linear convergence is measured.

Definition at line 87 of file SolverSystem.h.

Referenced by Moose::PetscSupport::petscSetDefaultKSPNormType().

87 { return _ksp_norm; }
Moose::MooseKSPNormType _ksp_norm
KSP norm type.
Definition: SolverSystem.h:110

◆ getNodalBCWarehouse()

const MooseObjectTagWarehouse<NodalBCBase>& NonlinearSystemBase::getNodalBCWarehouse ( ) const
inline

Return the NodalBCBase warehouse.

Definition at line 654 of file NonlinearSystemBase.h.

654 { return _nodal_bcs; }
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs

◆ getNodalDamperWarehouse()

const MooseObjectWarehouse<NodalDamper>& NonlinearSystemBase::getNodalDamperWarehouse ( ) const
inline

Definition at line 645 of file NonlinearSystemBase.h.

Referenced by ComputeNodalDampingThread::onNode(), and ComputeNodalDampingThread::printGeneralExecutionInformation().

646  {
647  return _nodal_dampers;
648  }
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.

◆ getNodalKernelWarehouse()

const MooseObjectTagWarehouse<NodalKernelBase>& NonlinearSystemBase::getNodalKernelWarehouse ( ) const
inline

Definition at line 636 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

637  {
638  return _nodal_kernels;
639  }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.

◆ getNodeDofs()

void NonlinearSystemBase::getNodeDofs ( dof_id_type  node_id,
std::vector< dof_id_type > &  dofs 
)
protected

Definition at line 2202 of file NonlinearSystemBase.C.

Referenced by findImplicitGeometricCouplingEntries().

2203 {
2204  const Node & node = _mesh.nodeRef(node_id);
2205  unsigned int s = number();
2206  if (node.has_dofs(s))
2207  {
2208  for (unsigned int v = 0; v < nVariables(); v++)
2209  for (unsigned int c = 0; c < node.n_comp(s, v); c++)
2210  dofs.push_back(node.dof_number(s, v, c));
2211  }
2212 }
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
unsigned int n_comp(const unsigned int s, const unsigned int var) const
bool has_dofs(const unsigned int s=libMesh::invalid_uint) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
virtual unsigned int nVariables() const
Get the number of variables in this system.
Definition: SystemBase.C:891
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ getPCSide()

Moose::PCSideType SolverSystem::getPCSide ( )
inlineinherited

Get the current preconditioner side.

Definition at line 76 of file SolverSystem.h.

Referenced by Moose::PetscSupport::petscSetDefaultPCSide().

76 { return _pc_side; }
Moose::PCSideType _pc_side
Preconditioning side.
Definition: SolverSystem.h:108

◆ getPreconditioner()

MoosePreconditioner const * NonlinearSystemBase::getPreconditioner ( ) const

Definition at line 3642 of file NonlinearSystemBase.C.

Referenced by ConsoleUtils::outputExecutionInformation().

3643 {
3644  return _preconditioner.get();
3645 }
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.

◆ getPredictor()

Predictor* NonlinearSystemBase::getPredictor ( )
inline

Definition at line 594 of file NonlinearSystemBase.h.

Referenced by AB2PredictorCorrector::estimateTimeError().

594 { return _predictor.get(); }
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ getResidualNonTimeVector()

NumericVector< Number > & NonlinearSystemBase::getResidualNonTimeVector ( )

Return a numeric vector that is associated with the nontime tag.

Definition at line 1064 of file NonlinearSystemBase.C.

Referenced by PseudoTimestep::currentResidualNorm(), NonlinearSystemBase(), and residualVector().

1065 {
1066  if (!_Re_non_time)
1067  {
1069 
1070  // Most applications don't need the expense of ghosting
1072  _Re_non_time = &addVector(_Re_non_time_tag, false, ptype);
1073  }
1075  {
1076  const auto vector_name = _subproblem.vectorTagName(_Re_non_time_tag);
1077 
1078  // If an application changes its mind, the libMesh API lets us
1079  // change the vector.
1080  _Re_non_time = &system().add_vector(vector_name, false, GHOSTED);
1081  }
1082 
1083  return *_Re_non_time;
1084 }
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
PARALLEL
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
TagID _Re_non_time_tag
Tag for non-time contribution residual.
GHOSTED
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
ParallelType type() const
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
ParallelType
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ getResidualTimeVector()

NumericVector< Number > & NonlinearSystemBase::getResidualTimeVector ( )

Return a numeric vector that is associated with the time tag.

Definition at line 1041 of file NonlinearSystemBase.C.

Referenced by residualVector().

1042 {
1043  if (!_Re_time)
1044  {
1046 
1047  // Most applications don't need the expense of ghosting
1049  _Re_time = &addVector(_Re_time_tag, false, ptype);
1050  }
1051  else if (_need_residual_ghosted && _Re_time->type() == PARALLEL)
1052  {
1053  const auto vector_name = _subproblem.vectorTagName(_Re_time_tag);
1054 
1055  // If an application changes its mind, the libMesh API lets us
1056  // change the vector.
1057  _Re_time = &system().add_vector(vector_name, false, GHOSTED);
1058  }
1059 
1060  return *_Re_time;
1061 }
NumericVector< Number > * _Re_time
residual vector for time contributions
TagID _Re_time_tag
Tag for time contribution residual.
PARALLEL
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
GHOSTED
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
ParallelType type() const
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
ParallelType
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ getScalarKernelWarehouse()

const MooseObjectTagWarehouse<ScalarKernelBase>& NonlinearSystemBase::getScalarKernelWarehouse ( ) const
inline

Definition at line 632 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

633  {
634  return _scalar_kernels;
635  }
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ getScalarVariable() [1/2]

MooseVariableScalar & SystemBase::getScalarVariable ( THREAD_ID  tid,
const std::string &  var_name 
) const
virtualinherited

Gets a reference to a scalar variable with specified number.

Parameters
tidThread id
var_nameA string which is the name of the variable to get.
Returns
reference the variable (class)

Definition at line 145 of file SystemBase.C.

Referenced by Assembly::addJacobianOffDiagScalar(), ODEKernel::computeOffDiagJacobianScalar(), VectorKernel::computeOffDiagJacobianScalar(), ArrayKernel::computeOffDiagJacobianScalar(), IntegratedBC::computeOffDiagJacobianScalar(), VectorIntegratedBC::computeOffDiagJacobianScalar(), Kernel::computeOffDiagJacobianScalar(), ArrayIntegratedBC::computeOffDiagJacobianScalar(), ScalarLagrangeMultiplier::computeOffDiagJacobianScalar(), MortarScalarBase::computeOffDiagJacobianScalar(), KernelScalarBase::computeOffDiagJacobianScalarLocal(), KernelScalarBase::computeScalarOffDiagJacobianScalar(), MortarScalarBase::computeScalarOffDiagJacobianScalar(), DMMooseSetVariables(), Assembly::init(), ReferenceResidualConvergence::initialSetup(), and setupScalingData().

146 {
147  MooseVariableScalar * var = dynamic_cast<MooseVariableScalar *>(_vars[tid].getVariable(var_name));
148  if (!var)
149  mooseError("Scalar variable '" + var_name + "' does not exist in this system");
150  return *var;
151 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
Class for scalar variables (they are different).

◆ getScalarVariable() [2/2]

MooseVariableScalar & SystemBase::getScalarVariable ( THREAD_ID  tid,
unsigned int  var_number 
) const
virtualinherited

Gets a reference to a variable with specified number.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 154 of file SystemBase.C.

155 {
156  MooseVariableScalar * var =
157  dynamic_cast<MooseVariableScalar *>(_vars[tid].getVariable(var_number));
158  if (!var)
159  mooseError("variable #" + Moose::stringify(var_number) + " does not exist in this system");
160  return *var;
161 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
Class for scalar variables (they are different).

◆ getScalarVariables()

const std::vector<MooseVariableScalar *>& SystemBase::getScalarVariables ( THREAD_ID  tid)
inlineinherited

◆ getSNES()

virtual SNES NonlinearSystemBase::getSNES ( )
pure virtual

◆ getSplit()

std::shared_ptr< Split > NonlinearSystemBase::getSplit ( const std::string &  name)

Retrieves a split by name.

Parameters
nameThe name of the split

Definition at line 744 of file NonlinearSystemBase.C.

Referenced by FieldSplitPreconditioner::FieldSplitPreconditioner(), Split::setup(), and StaticCondensationFieldSplitPreconditioner::StaticCondensationFieldSplitPreconditioner().

745 {
746  return _splits.getActiveObject(name);
747 }
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
virtual const std::string & name() const
Definition: SystemBase.C:1340
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const

◆ getSplits()

MooseObjectWarehouseBase<Split>& NonlinearSystemBase::getSplits ( )
inline

Retrieves all splits.

Definition at line 262 of file NonlinearSystemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

262 { return _splits; }
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.

◆ getStandardFieldVariableNames()

void SystemBase::getStandardFieldVariableNames ( std::vector< VariableName > &  std_field_variables) const
inherited

◆ getSubdomainsForVar() [1/2]

const std::set<SubdomainID>& SystemBase::getSubdomainsForVar ( unsigned int  var_number) const
inlineinherited

Definition at line 761 of file SystemBase.h.

Referenced by checkKernelCoverage(), and SystemBase::getSubdomainsForVar().

762  {
763  return _var_map.at(var_number);
764  }
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998

◆ getSubdomainsForVar() [2/2]

const std::set< SubdomainID > & SystemBase::getSubdomainsForVar ( const std::string &  var_name) const
inherited

Get the block where a variable of this system is defined.

Parameters
var_nameThe name of the variable
Returns
the set of subdomain ids where the variable is active (defined)

Definition at line 1707 of file SystemBase.C.

1708 {
1709  return getSubdomainsForVar(getVariable(0, var_name).number());
1710 }
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const std::set< SubdomainID > & getSubdomainsForVar(unsigned int var_number) const
Definition: SystemBase.h:761
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getTimeIntegrator()

const TimeIntegrator & SystemBase::getTimeIntegrator ( const unsigned int  var_num) const
inherited

Retrieve the time integrator that integrates the given variable's equation.

Definition at line 1683 of file SystemBase.C.

Referenced by AB2PredictorCorrector::estimateTimeError().

1684 {
1685  const auto * const ti = queryTimeIntegrator(var_num);
1686 
1687  if (ti)
1688  return *ti;
1689  else
1690  mooseError("No time integrator found that integrates variable number ",
1691  std::to_string(var_num));
1692 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const TimeIntegrator * queryTimeIntegrator(const unsigned int var_num) const
Retrieve the time integrator that integrates the given variable&#39;s equation.
Definition: SystemBase.C:1673

◆ getTimeIntegrators()

const std::vector< std::shared_ptr< TimeIntegrator > > & SystemBase::getTimeIntegrators ( )
inherited
Returns
All the time integrators owned by this system

Definition at line 1695 of file SystemBase.C.

1696 {
1697  return _time_integrators;
1698 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ getVariable() [1/2]

MooseVariableFieldBase & SystemBase::getVariable ( THREAD_ID  tid,
const std::string &  var_name 
) const
inherited

Gets a reference to a variable of with specified name.

Parameters
tidThread id
var_namevariable name
Returns
reference the variable (class)

Definition at line 90 of file SystemBase.C.

Referenced by AdaptivityAction::act(), Assembly::addJacobianBlockNonlocal(), FEProblemBase::addJacobianBlockTags(), NonlocalKernel::computeNonlocalOffDiagJacobian(), NonlocalIntegratedBC::computeNonlocalOffDiagJacobian(), Assembly::copyFaceShapes(), Assembly::copyNeighborShapes(), Assembly::copyShapes(), SystemBase::copyVars(), DMMooseSetVariables(), FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NodeElemConstraint::getConnectedDofIndices(), NodeFaceConstraint::getConnectedDofIndices(), SystemBase::getSubdomainsForVar(), ResidualObject::getVariable(), SubProblem::getVariableHelper(), Assembly::init(), NodalNormalsPreprocessor::initialize(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), LinearSystem::initialSetup(), Assembly::initNonlocalCoupling(), PNGOutput::makeMeshFunc(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), UpdateErrorVectorsThread::onElement(), Assembly::prepareBlock(), Assembly::prepareBlockNonlocal(), AddPeriodicBCAction::setPeriodicVars(), setupScalingData(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

91 {
93  dynamic_cast<MooseVariableFieldBase *>(_vars[tid].getVariable(var_name));
94  if (!var)
95  mooseError("Variable '", var_name, "' does not exist in this system");
96  return *var;
97 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getVariable() [2/2]

MooseVariableFieldBase & SystemBase::getVariable ( THREAD_ID  tid,
unsigned int  var_number 
) const
inherited

Gets a reference to a variable with specified number.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 100 of file SystemBase.C.

101 {
102  if (var_number < _numbered_vars[tid].size())
103  if (_numbered_vars[tid][var_number])
104  return *_numbered_vars[tid][var_number];
105 
106  mooseError("Variable #", Moose::stringify(var_number), " does not exist in this system");
107 }
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
Map variable number to its pointer.
Definition: SystemBase.h:1052
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64

◆ getVariableBlocks()

const std::set< SubdomainID > * SystemBase::getVariableBlocks ( unsigned int  var_number)
virtualinherited

Get the block where a variable of this system is defined.

Parameters
var_numberThe number of the variable
Returns
the set of subdomain ids where the variable is active (defined)

Definition at line 164 of file SystemBase.C.

Referenced by PhysicsBasedPreconditioner::addSystem().

165 {
166  mooseAssert(_var_map.find(var_number) != _var_map.end(), "Variable does not exist.");
167  if (_var_map[var_number].empty())
168  return nullptr;
169  else
170  return &_var_map[var_number];
171 }
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998

◆ getVariableGlobalDoFs()

const std::vector<dof_id_type>& SystemBase::getVariableGlobalDoFs ( )
inlineinherited

Get the global dof indices of a variable, this needs to be called after the indices have been set by setVariableGlobalDoFs

Definition at line 842 of file SystemBase.h.

842 { return _var_all_dof_indices; }
std::vector< dof_id_type > _var_all_dof_indices
Container for the dof indices of a given variable.
Definition: SystemBase.h:1064

◆ getVariableNames()

const std::vector<VariableName>& SystemBase::getVariableNames ( ) const
inlineinherited

◆ getVariables()

const std::vector<MooseVariableFieldBase *>& SystemBase::getVariables ( THREAD_ID  tid)
inlineinherited

◆ getVector() [1/4]

NumericVector< Number > & SystemBase::getVector ( const std::string &  name)
virtualinherited

Get a raw NumericVector by name.

Get a raw NumericVector with the given name.

Reimplemented in DisplacedSystem.

Definition at line 933 of file SystemBase.C.

Referenced by Assembly::addCachedResiduals(), Assembly::addResidual(), Assembly::addResidualLower(), Assembly::addResidualNeighbor(), Assembly::addResidualScalar(), assembleScalingVector(), SystemBase::closeTaggedVector(), FEProblemBase::computeBounds(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), computeResidualAndJacobianTags(), computeResidualTags(), CentralDifference::computeTimeDerivatives(), FEProblemBase::computeTransposeNullSpace(), DisplacedSystem::getVector(), Assembly::hasScalingVector(), LinearSystemContributionObject::linkTaggedVectorsAndMatrices(), SystemBase::needSolutionState(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseVariableScalar::reinit(), SecantSolve::saveVariableValues(), SteffensenSolve::saveVariableValues(), PicardSolve::saveVariableValues(), setPreviousNewtonSolution(), TaggingInterface::setResidual(), SystemBase::solutionPreviousNewton(), SystemBase::solutionState(), MultiAppDofCopyTransfer::transfer(), SecantSolve::transformVariables(), SteffensenSolve::transformVariables(), PicardSolve::transformVariables(), and SystemBase::zeroTaggedVector().

934 {
935  return system().get_vector(name);
936 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
const NumericVector< Number > & get_vector(std::string_view vec_name) const

◆ getVector() [2/4]

const NumericVector< Number > & SystemBase::getVector ( const std::string &  name) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 939 of file SystemBase.C.

940 {
941  return system().get_vector(name);
942 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
const NumericVector< Number > & get_vector(std::string_view vec_name) const

◆ getVector() [3/4]

NumericVector< Number > & SystemBase::getVector ( TagID  tag)
virtualinherited

Get a raw NumericVector by tag.

Reimplemented in DisplacedSystem.

Definition at line 945 of file SystemBase.C.

946 {
947  if (!hasVector(tag))
948  {
949  if (!_subproblem.vectorTagExists(tag))
950  mooseError("Cannot retreive vector with tag ", tag, " because that tag does not exist");
951  else
952  mooseError("Cannot retreive vector with tag ",
953  tag,
954  " in system '",
955  name(),
956  "'\nbecause a vector has not been associated with that tag.");
957  }
958 
959  return *_tagged_vectors[tag];
960 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ getVector() [4/4]

const NumericVector< Number > & SystemBase::getVector ( TagID  tag) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 963 of file SystemBase.C.

964 {
965  if (!hasVector(tag))
966  {
967  if (!_subproblem.vectorTagExists(tag))
968  mooseError("Cannot retreive vector with tag ", tag, " because that tag does not exist");
969  else
970  mooseError("Cannot retreive vector with tag ",
971  tag,
972  " in system '",
973  name(),
974  "'\nbecause a vector has not been associated with that tag.");
975  }
976 
977  return *_tagged_vectors[tag];
978 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ gradientContainer()

const std::vector<std::unique_ptr<NumericVector<Number> > >& SystemBase::gradientContainer ( ) const
inlineinherited

Reference to the container vector which hold gradients at dofs (if it can be interpreted).

Mainly used for finite volume systems.

Definition at line 930 of file SystemBase.h.

931  {
932  return _raw_grad_container;
933  }
std::vector< std::unique_ptr< NumericVector< Number > > > _raw_grad_container
A cache for storing gradients at dof locations.
Definition: SystemBase.h:1073

◆ hasDiagSaveIn()

bool NonlinearSystemBase::hasDiagSaveIn ( ) const
inline

Weather or not the nonlinear system has diagonal Jacobian save-ins.

Definition at line 693 of file NonlinearSystemBase.h.

Referenced by computeJacobianInternal().

bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.

◆ hasMatrix()

virtual bool SystemBase::hasMatrix ( TagID  tag) const
inlinevirtualinherited

◆ hasSaveIn()

bool NonlinearSystemBase::hasSaveIn ( ) const
inline

Weather or not the nonlinear system has save-ins.

Definition at line 688 of file NonlinearSystemBase.h.

Referenced by computeResidualTags().

688 { return _has_save_in || _has_nodalbc_save_in; }
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.

◆ hasScalarVariable()

bool SystemBase::hasScalarVariable ( const std::string &  var_name) const
virtualinherited

Definition at line 876 of file SystemBase.C.

Referenced by MortarScalarBase::computeJacobian(), computeJacobianInternal(), ComputeFullJacobianThread::computeOnBoundary(), ComputeFullJacobianThread::computeOnElement(), SystemBase::copyVars(), ExplicitTimeIntegrator::initialSetup(), NonlinearEigenSystem::postAddResidualObject(), AddPeriodicBCAction::setPeriodicVars(), and setupScalingData().

877 {
878  if (system().has_variable(var_name))
879  return system().variable_type(var_name).family == SCALAR;
880  else
881  return false;
882 }
SCALAR
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const FEType & variable_type(const unsigned int i) const

◆ hasSolutionState()

bool SystemBase::hasSolutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
) const
inlinevirtualinherited

Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).

Reimplemented in DisplacedSystem.

Definition at line 1090 of file SystemBase.h.

Referenced by PointwiseRenormalizeVector::execute(), PointwiseRenormalizeVector::finalize(), DisplacedSystem::hasSolutionState(), SystemBase::needSolutionState(), SystemBase::restoreSolutions(), ElementSubdomainModifierBase::setOldAndOlderSolutions(), SystemBase::solutionState(), and SystemBase::solutionStateParallelType().

1092 {
1093  return _solution_states[static_cast<unsigned short>(iteration_type)].size() > state;
1094 }
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ hasVarCopy()

bool SystemBase::hasVarCopy ( ) const
inlineinherited

Whether or not there are variables to be restarted from an Exodus mesh file.

Definition at line 883 of file SystemBase.h.

883 { return _var_to_copy.size() > 0; }
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040

◆ hasVariable()

bool SystemBase::hasVariable ( const std::string &  var_name) const
virtualinherited

Query a system for a variable.

Parameters
var_namename of the variable
Returns
true if the variable exists

Definition at line 851 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), ArrayDGKernel::ArrayDGKernel(), SystemBase::copyVars(), DGKernel::DGKernel(), DMMooseSetVariables(), FEProblemBase::duplicateVariableCheck(), SubProblem::getVariableHelper(), SubProblem::hasAuxiliaryVariable(), ExplicitTimeIntegrator::initialSetup(), ElementSubdomainModifierBase::initialSetup(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), PNGOutput::makeMeshFunc(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), setupScalingData(), and Coupleable::writableCoupledValue().

852 {
853  auto & names = getVariableNames();
854  if (system().has_variable(var_name))
855  return system().variable_type(var_name).family != SCALAR;
856  if (std::find(names.begin(), names.end(), var_name) != names.end())
857  // array variable
858  return true;
859  else
860  return false;
861 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
SCALAR
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const FEType & variable_type(const unsigned int i) const
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ hasVector() [1/2]

bool SystemBase::hasVector ( const std::string &  tag_name) const
inherited

◆ hasVector() [2/2]

virtual bool SystemBase::hasVector ( TagID  tag_id) const
inlinevirtualinherited

Check if the tagged vector exists in the system.

Reimplemented in DisplacedSystem.

Definition at line 281 of file SystemBase.h.

282  {
283  return tag_id < _tagged_vectors.size() && _tagged_vectors[tag_id];
284  }
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ haveFieldSplitPreconditioner()

bool NonlinearSystemBase::haveFieldSplitPreconditioner ( ) const
inline

Definition at line 112 of file NonlinearSystemBase.h.

112 { return _fsp; }
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ haveFiniteDifferencedPreconditioner()

bool NonlinearSystemBase::haveFiniteDifferencedPreconditioner ( ) const
inline

Definition at line 108 of file NonlinearSystemBase.h.

109  {
111  }
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.

◆ ignoreVariablesForAutoscaling()

void NonlinearSystemBase::ignoreVariablesForAutoscaling ( const std::vector< std::string > &  ignore_variables_for_autoscaling)
inline

Definition at line 736 of file NonlinearSystemBase.h.

737  {
738  _ignore_variables_for_autoscaling = ignore_variables_for_autoscaling;
739  }
std::vector< std::string > _ignore_variables_for_autoscaling
A container for variables that do not partipate in autoscaling.

◆ initializeObjects()

virtual void SystemBase::initializeObjects ( )
inlinevirtualinherited

Called only once, just before the solve begins so objects can do some precalculations.

Definition at line 173 of file SystemBase.h.

173 {}

◆ initialResidual()

Real NonlinearSystemBase::initialResidual ( ) const

The initial residual.

Definition at line 783 of file NonlinearSystemBase.C.

Referenced by referenceResidual().

784 {
785  return _initial_residual;
786 }
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...

◆ initialSetup()

void NonlinearSystemBase::initialSetup ( )
overridevirtual

Setup Functions.

Reimplemented from SystemBase.

Definition at line 226 of file NonlinearSystemBase.C.

227 {
228  TIME_SECTION("nlInitialSetup", 2, "Setting Up Nonlinear System");
229 
231 
232  {
233  TIME_SECTION("kernelsInitialSetup", 2, "Setting Up Kernels/BCs/Constraints");
234 
235  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
236  {
237  _kernels.initialSetup(tid);
240  if (_doing_dg)
243 
247 
248  if (_fe_problem.haveFV())
249  {
250  std::vector<FVElementalKernel *> fv_elemental_kernels;
252  .query()
253  .template condition<AttribSystem>("FVElementalKernel")
254  .template condition<AttribThread>(tid)
255  .queryInto(fv_elemental_kernels);
256 
257  for (auto * fv_kernel : fv_elemental_kernels)
258  fv_kernel->initialSetup();
259 
260  std::vector<FVFluxKernel *> fv_flux_kernels;
262  .query()
263  .template condition<AttribSystem>("FVFluxKernel")
264  .template condition<AttribThread>(tid)
265  .queryInto(fv_flux_kernels);
266 
267  for (auto * fv_kernel : fv_flux_kernels)
268  fv_kernel->initialSetup();
269  }
270  }
271 
278 
279 #ifdef MOOSE_KOKKOS_ENABLED
284 #endif
285  }
286 
287  {
288  TIME_SECTION("mortarSetup", 2, "Initializing Mortar Interfaces");
289 
290  auto create_mortar_functors = [this](const bool displaced)
291  {
292  // go over mortar interfaces and construct functors
293  const auto & mortar_interfaces = _fe_problem.getMortarInterfaces(displaced);
294  for (const auto & [primary_secondary_boundary_pair, mortar_generation_ptr] :
295  mortar_interfaces)
296  {
297  if (!_constraints.hasActiveMortarConstraints(primary_secondary_boundary_pair, displaced))
298  continue;
299 
300  auto & mortar_constraints =
301  _constraints.getActiveMortarConstraints(primary_secondary_boundary_pair, displaced);
302 
303  auto & subproblem = displaced
304  ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
305  : static_cast<SubProblem &>(_fe_problem);
306 
307  auto & mortar_functors =
309 
310  mortar_functors.emplace(primary_secondary_boundary_pair,
311  ComputeMortarFunctor(mortar_constraints,
312  *mortar_generation_ptr,
313  subproblem,
314  _fe_problem,
315  displaced,
316  subproblem.assembly(0, number())));
317  }
318  };
319 
320  create_mortar_functors(false);
321  create_mortar_functors(true);
322  }
323 
324  if (_automatic_scaling)
325  {
327  _scaling_matrix = std::make_unique<OffDiagonalScalingMatrix<Number>>(_communicator);
328  else
329  _scaling_matrix = std::make_unique<DiagonalMatrix<Number>>(_communicator);
330  }
331 
332  if (_preconditioner)
333  _preconditioner->initialSetup();
334 }
virtual void residualSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
bool hasActiveMortarConstraints(const std::pair< BoundaryID, BoundaryID > &mortar_interface_key, bool displaced) const
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
A diagonal matrix used for computing scaling.
const Parallel::Communicator & _communicator
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
TheWarehouse & theWarehouse() const
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, std::unique_ptr< AutomaticMortarGeneration > > & getMortarInterfaces(bool on_displaced) const
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.
SubProblem & subproblem()
Definition: SystemBase.h:101
MooseObjectTagWarehouse< KernelBase > _kernels
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods.
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
const std::vector< std::shared_ptr< MortarConstraintBase > > & getActiveMortarConstraints(const std::pair< BoundaryID, BoundaryID > &mortar_interface_key, bool displaced) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
virtual void initialSetup()
Setup Functions.
Definition: SystemBase.C:1558
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ initSolutionState()

void SystemBase::initSolutionState ( )
virtualinherited

Initializes the solution state.

Reimplemented in DisplacedSystem.

Definition at line 1364 of file SystemBase.C.

Referenced by DisplacedSystem::initSolutionState().

1365 {
1366  // Default is the current solution
1367  unsigned int state = 0;
1368 
1369  // Add additional states as required by the variable states requested
1370  for (const auto & var : getVariables(/* tid = */ 0))
1371  state = std::max(state, var->oldestSolutionStateRequested());
1372  for (const auto & var : getScalarVariables(/* tid = */ 0))
1373  state = std::max(state, var->oldestSolutionStateRequested());
1374 
1376 
1378 }
const std::vector< MooseVariableFieldBase * > & getVariables(THREAD_ID tid)
Definition: SystemBase.h:751
const std::vector< MooseVariableScalar * > & getScalarVariables(THREAD_ID tid)
Definition: SystemBase.h:756
bool _solution_states_initialized
Whether or not the solution states have been initialized.
Definition: SystemBase.h:1061
auto max(const L &left, const R &right)
virtual void needSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
Registers that the solution state state is needed.
Definition: SystemBase.C:1450

◆ isArrayVariable()

bool SystemBase::isArrayVariable ( const std::string &  var_name) const
virtualinherited

If a variable is an array variable.

Definition at line 864 of file SystemBase.C.

865 {
866  auto & names = getVariableNames();
867  if (!system().has_variable(var_name) &&
868  std::find(names.begin(), names.end(), var_name) != names.end())
869  // array variable
870  return true;
871  else
872  return false;
873 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ isScalarVariable()

bool SystemBase::isScalarVariable ( unsigned int  var_name) const
virtualinherited

Definition at line 885 of file SystemBase.C.

Referenced by Assembly::init(), ReferenceResidualConvergence::initialSetup(), and Assembly::initNonlocalCoupling().

886 {
887  return (system().variable(var_num).type().family == SCALAR);
888 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.

◆ jacobianSetup()

void NonlinearSystemBase::jacobianSetup ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 2808 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2809 {
2811 
2812  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2813  {
2814  _kernels.jacobianSetup(tid);
2817  if (_doing_dg)
2823  }
2830 
2831 #ifdef MOOSE_KOKKOS_ENABLED
2836 #endif
2837 
2838  // Avoid recursion
2839  if (this == &_fe_problem.currentNonlinearSystem())
2842 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
virtual void jacobianSetup()
Definition: SystemBase.C:1606
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
NonlinearSystemBase & currentNonlinearSystem()
MooseObjectTagWarehouse< KernelBase > _kernels
virtual void jacobianSetup(THREAD_ID tid=0) const
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
void resetSolutionInvalidCurrentIteration()
Reset the number of solution invalid occurrences back to zero.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
void jacobianSetup() override
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ matrixFromColoring()

virtual bool SolverSystem::matrixFromColoring ( ) const
inlineprotectedvirtualinherited

Whether a system matrix is formed from coloring.

This influences things like when to compute time derivatives

Reimplemented in NonlinearSystem.

Definition at line 102 of file SolverSystem.h.

Referenced by SolverSystem::compute(), and destroyColoring().

102 { return false; }

◆ matrixTagActive()

bool SystemBase::matrixTagActive ( TagID  tag) const
virtualinherited

If or not a matrix tag is active.

Definition at line 1149 of file SystemBase.C.

1150 {
1151  mooseAssert(_subproblem.matrixTagExists(tag), "Matrix tag " << tag << " does not exist");
1152 
1153  return tag < _matrix_tag_active_flags.size() && _matrix_tag_active_flags[tag];
1154 }
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ mesh() [1/2]

MooseMesh& SystemBase::mesh ( )
inlineinherited

◆ mesh() [2/2]

const MooseMesh& SystemBase::mesh ( ) const
inlineinherited

Definition at line 100 of file SystemBase.h.

100 { return _mesh; }
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ mortarConstraints()

void NonlinearSystemBase::mortarConstraints ( Moose::ComputeType  compute_type,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)
protected

Do mortar constraint residual/jacobian computations.

Definition at line 3912 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal(), computeResidualAndJacobianInternal(), and computeResidualInternal().

3915 {
3916  parallel_object_only();
3917 
3918  try
3919  {
3920  for (auto & map_pr : _undisplaced_mortar_functors)
3921  map_pr.second(compute_type, vector_tags, matrix_tags);
3922 
3923  for (auto & map_pr : _displaced_mortar_functors)
3924  map_pr.second(compute_type, vector_tags, matrix_tags);
3925  }
3926  catch (MetaPhysicL::LogicError &)
3927  {
3928  mooseError(
3929  "We caught a MetaPhysicL error in NonlinearSystemBase::mortarConstraints. This is very "
3930  "likely due to AD not having a sufficiently large derivative container size. Please run "
3931  "MOOSE configure with the '--with-derivative-size=<n>' option");
3932  }
3933 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.

◆ name()

const std::string & SystemBase::name ( ) const
virtualinherited

◆ needBoundaryMaterialOnSide()

bool NonlinearSystemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
THREAD_ID  tid 
) const

Indicated whether this system needs material properties on boundaries.

Returns
Boolean if IntegratedBCs are active

Definition at line 3844 of file NonlinearSystemBase.C.

3845 {
3846  // IntegratedBCs are for now the only objects we consider to be consuming
3847  // matprops on boundaries.
3848  if (_integrated_bcs.hasActiveBoundaryObjects(bnd_id, tid))
3849  for (const auto & bc : _integrated_bcs.getActiveBoundaryObjects(bnd_id, tid))
3850  if (std::static_pointer_cast<MaterialPropertyInterface>(bc)->getMaterialPropertyCalled())
3851  return true;
3852 
3853  // Thin layer heat transfer in the heat_transfer module is being used on a boundary even though
3854  // it's an interface kernel. That boundary is external, on both sides of a gap in a mesh
3856  for (const auto & ik : _interface_kernels.getActiveBoundaryObjects(bnd_id, tid))
3857  if (std::static_pointer_cast<MaterialPropertyInterface>(ik)->getMaterialPropertyCalled())
3858  return true;
3859 
3860  // Because MortarConstraints do not inherit from BoundaryRestrictable, they are not sorted
3861  // by boundary in the MooseObjectWarehouse. So for now, we return true for all boundaries
3862  // Note: constraints are not threaded at this time
3863  if (_constraints.hasActiveObjects(/*tid*/ 0))
3864  for (const auto & ct : _constraints.getActiveObjects(/*tid*/ 0))
3865  if (auto mpi = std::dynamic_pointer_cast<MaterialPropertyInterface>(ct);
3866  mpi && mpi->getMaterialPropertyCalled())
3867  return true;
3868  return false;
3869 }
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ConstraintWarehouse _constraints
Constraints storage object.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ needInterfaceMaterialOnSide()

bool NonlinearSystemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
THREAD_ID  tid 
) const

Indicated whether this system needs material properties on interfaces.

Returns
Boolean if IntegratedBCs are active

Definition at line 3872 of file NonlinearSystemBase.C.

3873 {
3874  // InterfaceKernels are for now the only objects we consider to be consuming matprops on internal
3875  // boundaries.
3877  for (const auto & ik : _interface_kernels.getActiveBoundaryObjects(bnd_id, tid))
3878  if (std::static_pointer_cast<MaterialPropertyInterface>(ik)->getMaterialPropertyCalled())
3879  return true;
3880  return false;
3881 }
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels

◆ needInternalNeighborSideMaterial()

bool NonlinearSystemBase::needInternalNeighborSideMaterial ( SubdomainID  subdomain_id,
THREAD_ID  tid 
) const

Indicates whether this system needs material properties on internal sides.

Returns
Boolean if DGKernels are active

Definition at line 3884 of file NonlinearSystemBase.C.

3885 {
3886  // DGKernels are for now the only objects we consider to be consuming matprops on
3887  // internal sides.
3888  if (_dg_kernels.hasActiveBlockObjects(subdomain_id, tid))
3889  for (const auto & dg : _dg_kernels.getActiveBlockObjects(subdomain_id, tid))
3890  if (std::static_pointer_cast<MaterialPropertyInterface>(dg)->getMaterialPropertyCalled())
3891  return true;
3892  // NOTE:
3893  // HDG kernels do not require face material properties on internal sides at this time.
3894  // The idea is to have element locality of HDG for hybridization
3895  return false;
3896 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels

◆ needSolutionState()

void SystemBase::needSolutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time,
libMesh::ParallelType  parallel_type = GHOSTED 
)
virtualinherited

Registers that the solution state state is needed.

Reimplemented in DisplacedSystem.

Definition at line 1450 of file SystemBase.C.

Referenced by SecantSolve::allocateStorage(), PicardSolve::allocateStorage(), EigenExecutionerBase::EigenExecutionerBase(), SystemBase::initSolutionState(), DisplacedSystem::needSolutionState(), and SystemBase::solutionState().

1453 {
1454  libmesh_parallel_only(this->comm());
1455  mooseAssert(!Threads::in_threads,
1456  "This routine is not thread-safe. Request the solution state before using it in "
1457  "a threaded region.");
1458 
1459  if (hasSolutionState(state, iteration_type))
1460  return;
1461 
1462  auto & solution_states = _solution_states[static_cast<unsigned short>(iteration_type)];
1463  solution_states.resize(state + 1);
1464 
1465  // The 0-th (current) solution state is owned by libMesh
1466  if (!solution_states[0])
1467  solution_states[0] = &solutionInternal();
1468  else
1469  mooseAssert(solution_states[0] == &solutionInternal(), "Inconsistent current solution");
1470 
1471  // We will manually add all states past current
1472  for (unsigned int i = 1; i <= state; ++i)
1473  if (!solution_states[i])
1474  {
1475  auto tag = _subproblem.addVectorTag(oldSolutionStateVectorName(i, iteration_type),
1477  solution_states[i] = &addVector(tag, true, parallel_type);
1478  }
1479  else
1480  {
1481  // If the existing parallel type is PARALLEL and GHOSTED is now requested,
1482  // this would require an upgrade, which is risky if anybody has already
1483  // stored a pointer to the existing vector, since the upgrade would create
1484  // a new vector and make that pointer null. If the existing parallel type
1485  // is GHOSTED and PARALLEL is now requested, we don't need to do anything.
1486  if (parallel_type == GHOSTED && solutionStateParallelType(i, iteration_type) == PARALLEL)
1487  mooseError("The solution state has already been declared as PARALLEL");
1488 
1489  mooseAssert(solution_states[i] == &getVector(oldSolutionStateVectorName(i, iteration_type)),
1490  "Inconsistent solution state");
1491  }
1492 }
virtual NumericVector< Number > & solutionInternal() const =0
Internal getter for solution owned by libMesh.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
const Parallel::Communicator & comm() const
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
TagName oldSolutionStateVectorName(const unsigned int, Moose::SolutionIterationType iteration_type) const
Gets the vector name used for an old (not current) solution state.
Definition: SystemBase.C:1381
libMesh::ParallelType solutionStateParallelType(const unsigned int state, const Moose::SolutionIterationType iteration_type) const
Returns the parallel type of the given solution state.
Definition: SystemBase.C:1440
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ nFieldVariables()

unsigned int SystemBase::nFieldVariables ( ) const
inherited

Get the number of field variables in this system.

Returns
the number of field variables

Definition at line 900 of file SystemBase.C.

Referenced by SystemBase::nVariables().

901 {
902  unsigned int n = 0;
903  for (auto & var : _vars[0].fieldVariables())
904  n += var->count();
905 
906  return n;
907 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ nFVVariables()

unsigned int SystemBase::nFVVariables ( ) const
inherited

Get the number of finite volume variables in this system.

Returns
the number of finite volume variables

Definition at line 910 of file SystemBase.C.

911 {
912  unsigned int n = 0;
913  for (auto & var : _vars[0].fieldVariables())
914  if (var->isFV())
915  n += var->count();
916 
917  return n;
918 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ nLinearIterations()

unsigned int NonlinearSystemBase::nLinearIterations ( ) const
inline

Return the number of linear iterations.

Definition at line 565 of file NonlinearSystemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

565 { return _n_linear_iters; }

◆ nNonlinearIterations()

unsigned int NonlinearSystemBase::nNonlinearIterations ( ) const
inline

Return the number of non-linear iterations.

Definition at line 560 of file NonlinearSystemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

560 { return _n_iters; }

◆ nonlinearNorm()

Real NonlinearSystemBase::nonlinearNorm ( ) const
inline

Return the last nonlinear norm.

Returns
A Real containing the last computed residual norm

Definition at line 581 of file NonlinearSystemBase.h.

Referenced by Console::writeVariableNorms().

581 { return _last_nl_rnorm; }

◆ nonlinearSolver()

virtual libMesh::NonlinearSolver<Number>* NonlinearSystemBase::nonlinearSolver ( )
pure virtual

◆ nonTimeVectorTag()

TagID NonlinearSystemBase::nonTimeVectorTag ( ) const
inlineoverridevirtual

Reimplemented from SystemBase.

Definition at line 705 of file NonlinearSystemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), and CrankNicolson::init().

705 { return _Re_non_time_tag; }
TagID _Re_non_time_tag
Tag for non-time contribution residual.

◆ nResidualEvaluations()

unsigned int NonlinearSystemBase::nResidualEvaluations ( ) const
inline

Return the total number of residual evaluations done so far in this calculation.

Definition at line 570 of file NonlinearSystemBase.h.

570 { return _n_residual_evaluations; }
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.

◆ number()

unsigned int SystemBase::number ( ) const
inherited

Gets the number of this system.

Returns
The number of this system

Definition at line 1157 of file SystemBase.C.

Referenced by SetupResidualDebugAction::act(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), SystemBase::addScalingVector(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), assembleScalingVector(), NonlinearEigenSystem::attachPreconditioner(), DiffusionLHDGAssemblyHelper::checkCoupling(), SolverSystem::compute(), MooseVariableScalar::computeAD(), FEProblemBase::computeBounds(), Assembly::computeFaceMap(), InternalSideIndicatorBase::computeIndicator(), VectorNodalBC::computeJacobian(), ArrayNodalBC::computeJacobian(), NodalBC::computeJacobian(), FVBoundaryScalarLagrangeMultiplierConstraint::computeJacobian(), FVFluxBC::computeJacobian(), FVFluxKernel::computeJacobian(), FVInterfaceKernel::computeJacobian(), FEProblemBase::computeJacobianBlock(), computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), FEProblemBase::computeNearNullSpace(), computeNodalBCsResidualAndJacobian(), FEProblemBase::computeNullSpace(), ArrayNodalBC::computeOffDiagJacobian(), VectorNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NodalKernel::computeOffDiagJacobian(), ComputeFullJacobianThread::computeOnBoundary(), ComputeFullJacobianThread::computeOnElement(), ComputeFullJacobianThread::computeOnInterface(), ComputeFullJacobianThread::computeOnInternalFace(), FEProblemBase::computePostCheck(), FVBoundaryScalarLagrangeMultiplierConstraint::computeResidual(), FVFluxKernel::computeResidual(), FVInterfaceKernel::computeResidual(), Kernel::computeResidualAndJacobian(), NodalBC::computeResidualAndJacobian(), IntegratedBC::computeResidualAndJacobian(), computeResidualAndJacobianInternal(), computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), computeResidualTags(), computeScaling(), Assembly::computeSinglePointMapAD(), FEProblemBase::computeTransposeNullSpace(), DebugResidualAux::computeValue(), NearestNodeValueAux::computeValue(), SlepcEigenSolverConfiguration::configure_solver(), constraintJacobians(), LinearSystem::containsTimeKernel(), Coupleable::coupled(), FEProblemBase::currentLinearSysNum(), FEProblemBase::currentNlSysNum(), PseudoTimestep::currentResidualNorm(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), Moose::doDerivatives(), VariableResidual::execute(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), GreaterThanLessThanPostprocessor::execute(), NodalNormalsPreprocessor::execute(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), InternalSideIndicatorBase::finalize(), NumNonlinearIterations::finalize(), BoundsBase::getDoFIndex(), getNodeDofs(), NonlinearEigenSystem::getSNES(), SystemBase::getSubdomainsForVar(), NumLinearIterations::getValue(), Residual::getValue(), NumResidualEvaluations::getValue(), Moose::globalDofIndexToDerivative(), FVBoundaryCondition::hasFaceSide(), ExplicitTimeIntegrator::init(), ExplicitTimeIntegrator::initialSetup(), initialSetup(), ActivateElementsUserObjectBase::initSolutions(), EigenExecutionerBase::inversePowerIteration(), Kernel::Kernel(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableInterface< Real >::MooseVariableInterface(), EigenExecutionerBase::nonlinearSolve(), ComputeDiracThread::onElement(), ComputeNodalKernelBCJacobiansThread::onNode(), ComputeNodalKernelJacobiansThread::onNode(), VariableResidualNormsDebugOutput::output(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), FEProblemBase::prepareAssembly(), SystemBase::prepareFace(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), NonlinearSystem::residualAndJacobianTogether(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), PhysicsBasedPreconditioner::setup(), FVInterfaceKernel::setupData(), shouldEvaluatePreSMOResidual(), ActuallyExplicitEuler::solve(), NonlinearEigenSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), ExplicitSSPRungeKutta::solveStage(), NonlinearThread::subdomainChanged(), UserObject::systemNumber(), MultiAppDofCopyTransfer::transferDofObject(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), FVFluxBC::updateCurrentFace(), and MortarConstraintBase::zeroInactiveLMDofs().

1158 {
1159  return system().number();
1160 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
unsigned int number() const

◆ nVariables()

unsigned int SystemBase::nVariables ( ) const
virtualinherited

Get the number of variables in this system.

Returns
the number of variables

Definition at line 891 of file SystemBase.C.

Referenced by AdaptivityAction::act(), FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), getNodeDofs(), Assembly::init(), ExplicitTimeIntegrator::initialSetup(), MaxVarNDofsPerElem::onElement(), MaxVarNDofsPerNode::onNode(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), and AuxiliarySystem::variableWiseRelativeSolutionDifferenceNorm().

892 {
893  unsigned int n = nFieldVariables();
894  n += _vars[0].scalars().size();
895 
896  return n;
897 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
unsigned int nFieldVariables() const
Get the number of field variables in this system.
Definition: SystemBase.C:900

◆ offDiagonalsInAutoScaling() [1/2]

bool NonlinearSystemBase::offDiagonalsInAutoScaling ( ) const
inline

Definition at line 741 of file NonlinearSystemBase.h.

Referenced by ComputeJacobianForScalingThread::computeOnElement().

bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.

◆ offDiagonalsInAutoScaling() [2/2]

void NonlinearSystemBase::offDiagonalsInAutoScaling ( bool  off_diagonals_in_auto_scaling)
inline

Definition at line 742 of file NonlinearSystemBase.h.

743  {
744  _off_diagonals_in_auto_scaling = off_diagonals_in_auto_scaling;
745  }
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.

◆ onTimestepBegin()

void NonlinearSystemBase::onTimestepBegin ( )

Called at the beginning of the time step.

Definition at line 946 of file NonlinearSystemBase.C.

947 {
948  for (auto & ti : _time_integrators)
949  ti->preSolve();
950  if (_predictor.get())
951  _predictor->timestepSetup();
952 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ overwriteNodeFace()

void NonlinearSystemBase::overwriteNodeFace ( NumericVector< Number > &  soln)

Called from explicit time stepping to overwrite boundary positions (explicit dynamics).

This will close/assemble the passed-in soln after overwrite

Definition at line 1677 of file NonlinearSystemBase.C.

Referenced by ActuallyExplicitEuler::solve().

1678 {
1679  // Overwrite results from integrator in case we have explicit dynamics contact constraints
1681  ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1682  : static_cast<SubProblem &>(_fe_problem);
1683  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1684 
1685  for (const auto & it : penetration_locators)
1686  {
1687  PenetrationLocator & pen_loc = *(it.second);
1688 
1689  const auto & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1690  const BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1691  const BoundaryID primary_boundary = pen_loc._primary_boundary;
1692 
1693  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, true))
1694  {
1695  const auto & constraints =
1696  _constraints.getActiveNodeFaceConstraints(secondary_boundary, true);
1697  for (const auto i : index_range(secondary_nodes))
1698  {
1699  const auto secondary_node_num = secondary_nodes[i];
1700  const Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1701 
1702  if (secondary_node.processor_id() == processor_id())
1703  if (pen_loc._penetration_info[secondary_node_num])
1704  for (const auto & nfc : constraints)
1705  {
1706  if (!nfc->isExplicitConstraint())
1707  continue;
1708 
1709  // Return if this constraint does not correspond to the primary-secondary pair
1710  // prepared by the outer loops.
1711  // This continue statement is required when, e.g. one secondary surface constrains
1712  // more than one primary surface.
1713  if (nfc->secondaryBoundary() != secondary_boundary ||
1714  nfc->primaryBoundary() != primary_boundary)
1715  continue;
1716 
1717  nfc->overwriteBoundaryVariables(soln, secondary_node);
1718  }
1719  }
1720  }
1721  }
1722  soln.close();
1723 }
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
boundary_id_type BoundaryID
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual GeometricSearchData & geomSearchData()=0
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
processor_id_type processor_id() const
processor_id_type processor_id() const
auto index_range(const T &sizable)
BoundaryID _primary_boundary
NearestNodeLocator & _nearest_node

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:173

◆ postAddResidualObject()

virtual void NonlinearSystemBase::postAddResidualObject ( ResidualObject )
inlineprotectedvirtual

Called after any ResidualObject-derived objects are added to the system.

Reimplemented in NonlinearEigenSystem.

Definition at line 855 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), addConstraint(), addDGKernel(), addDiracKernel(), addHDGKernel(), addInterfaceKernel(), addKernel(), addNodalKernel(), and addScalarKernel().

855 {}

◆ postInit()

virtual void SystemBase::postInit ( )
inlinevirtualinherited

Reimplemented in NonlinearEigenSystem.

Definition at line 162 of file SystemBase.h.

Referenced by NonlinearEigenSystem::postInit().

162 {}

◆ potentiallySetupFiniteDifferencing()

virtual void NonlinearSystemBase::potentiallySetupFiniteDifferencing ( )
inlinevirtual

Create finite differencing contexts for assembly of the Jacobian and/or approximating the action of the Jacobian on vectors (e.g.

FD and/or MFFD respectively)

Reimplemented in NonlinearSystem.

Definition at line 764 of file NonlinearSystemBase.h.

Referenced by LStableDirk2::solve(), LStableDirk3::solve(), and LStableDirk4::solve().

764 {}

◆ prefix()

std::string SystemBase::prefix ( ) const
inherited
Returns
The prefix used for this system for solver settings for PETSc. This prefix is used to prevent collision of solver settings for different systems. Note that this prefix does not have a leading dash so it's appropriate for passage straight to PETSc APIs

Definition at line 1713 of file SystemBase.C.

Referenced by FieldSplitPreconditioner::FieldSplitPreconditioner(), MoosePreconditioner::initialSetup(), and FieldSplitPreconditioner::prefix().

1714 {
1715  return system().prefix_with_name() ? system().prefix() : "";
1716 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::string prefix() const
void prefix_with_name(bool value)

◆ preInit()

void NonlinearSystemBase::preInit ( )
overridevirtual

This is called prior to the libMesh system has been init'd.

MOOSE system wrappers can use this method to add vectors and matrices to the libMesh system

Reimplemented from SolverSystem.

Definition at line 191 of file NonlinearSystemBase.C.

192 {
194 
195  if (_fe_problem.hasDampers())
196  setupDampers();
197 
198  if (_residual_copy.get())
199  _residual_copy->init(_sys.n_dofs(), false, SERIAL);
200 
201 #ifdef MOOSE_KOKKOS_ENABLED
204 #endif
205 }
void setupDampers()
Setup damping stuff (called before we actually start)
bool hasDampers()
Whether or not this system has dampers.
dof_id_type n_dofs() const
SERIAL
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.
virtual void preInit() override
This is called prior to the libMesh system has been init&#39;d.
Definition: SolverSystem.C:32
libMesh::System & _sys
bool hasKokkosObjects() const
void full_sparsity_pattern_needed()
const DofMap & get_dof_map() const

◆ prepare()

void SystemBase::prepare ( THREAD_ID  tid)
virtualinherited

Prepare the system for use.

Parameters
tidID of the thread

Definition at line 256 of file SystemBase.C.

Referenced by SubProblem::reinitElemFaceRef().

257 {
259  {
260  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
262  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
263  for (const auto & var : vars)
264  var->clearDofIndices();
265 
266  for (const auto & var : active_elemental_moose_variables)
267  if (&(var->sys()) == this)
268  var->prepare();
269  }
270  else
271  {
272  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
273  for (const auto & var : vars)
274  var->prepare();
275  }
276 }
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:461

◆ prepareFace()

void SystemBase::prepareFace ( THREAD_ID  tid,
bool  resize_data 
)
virtualinherited

Prepare the system for use on sides.

This will try to reuse the preparation done on the element.

Parameters
tidID of the thread
resize_dataPass True if this system needs to resize residual and jacobian datastructures based on preparing this face

Definition at line 279 of file SystemBase.C.

280 {
281  // We only need to do something if the element prepare was restricted
283  {
284  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
286 
287  std::vector<MooseVariableFieldBase *> newly_prepared_vars;
288 
289  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
290  for (const auto & var : vars)
291  {
292  mooseAssert(&var->sys() == this,
293  "I will cry if we store variables in our warehouse that don't belong to us");
294 
295  // If it wasn't in the active list, we need to prepare it. This has the potential to duplicate
296  // prepare if we have these conditions:
297  //
298  // 1. We have a displaced problem
299  // 2. We are using AD
300  // 3. We are not using global AD indexing
301  //
302  // But I think I would rather risk duplicate prepare than introduce an additional member set
303  // variable for tracking prepared variables. Set insertion is slow and some simulations have a
304  // ton of variables
305  if (!active_elemental_moose_variables.count(var))
306  {
307  var->prepare();
308  newly_prepared_vars.push_back(var);
309  }
310  }
311 
312  // Make sure to resize the residual and jacobian datastructures for all the new variables
313  if (resize_data)
314  for (const auto var_ptr : newly_prepared_vars)
315  {
316  _subproblem.assembly(tid, number()).prepareVariable(var_ptr);
319  }
320  }
321 }
virtual bool checkNonlocalCouplingRequirement() const =0
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
void prepareVariableNonlocal(MooseVariableFieldBase *var)
Definition: Assembly.C:2772
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
void prepareVariable(MooseVariableFieldBase *var)
Used for preparing the dense residual and jacobian blocks for one particular variable.
Definition: Assembly.C:2744
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:461

◆ prepareLowerD()

void SystemBase::prepareLowerD ( THREAD_ID  tid)
virtualinherited

Prepare the system for use for lower dimensional elements.

Parameters
tidID of the thread

Definition at line 332 of file SystemBase.C.

Referenced by SubProblem::reinitLowerDElem().

333 {
334  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
335  for (const auto & var : vars)
336  var->prepareLowerD();
337 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ prepareNeighbor()

void SystemBase::prepareNeighbor ( THREAD_ID  tid)
virtualinherited

Prepare the system for use.

Parameters
tidID of the thread

Definition at line 324 of file SystemBase.C.

Referenced by SubProblem::reinitNeighborFaceRef().

325 {
326  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
327  for (const auto & var : vars)
328  var->prepareNeighbor();
329 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ preSMOResidual()

Real NonlinearSystemBase::preSMOResidual ( ) const

The pre-SMO residual.

Definition at line 774 of file NonlinearSystemBase.C.

Referenced by Residual::getValue(), and referenceResidual().

775 {
777  mooseError("pre-SMO residual is requested but not evaluated.");
778 
779  return _pre_smo_residual;
780 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Real _pre_smo_residual
The pre-SMO residual, see setPreSMOResidual for a detailed explanation.
bool shouldEvaluatePreSMOResidual() const
We offer the option to check convergence against the pre-SMO residual.

◆ preSolve()

bool NonlinearSystemBase::preSolve ( )
protected

Perform some steps to get ready for the solver.

These include

  • zeroing iteration counters
  • setting initial solutions
  • possibly performing automatic scaling
  • forming a scaling vector which, at least at some point, was required when AD objects were used with non-unity scaling factors for nonlinear variables
    Returns
    Whether any exceptions were raised while running this method

Definition at line 4215 of file NonlinearSystemBase.C.

Referenced by NonlinearSystem::solve(), and NonlinearEigenSystem::solve().

4216 {
4217  // Clear the iteration counters
4218  _current_l_its.clear();
4219  _current_nl_its = 0;
4220 
4221  // Initialize the solution vector using a predictor and known values from nodal bcs
4223 
4224  // Now that the initial solution has ben set, potentially perform a residual/Jacobian evaluation
4225  // to determine variable scaling factors
4226  if (_automatic_scaling)
4227  {
4228  const bool scaling_succeeded = computeScaling();
4229  if (!scaling_succeeded)
4230  return false;
4231  }
4232 
4233  // We do not know a priori what variable a global degree of freedom corresponds to, so we need a
4234  // map from global dof to scaling factor. We just use a ghosted NumericVector for that mapping
4236 
4237  return true;
4238 }
std::vector< unsigned int > _current_l_its
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055
bool computeScaling()
Method used to obtain scaling factors for variables.
void assembleScalingVector()
Assemble the numeric vector of scaling factors such that it can be used during assembly of the system...

◆ printAllVariableNorms()

void NonlinearSystemBase::printAllVariableNorms ( bool  state)
inline

Force the printing of all variable norms after each solve.

Todo:
{Remove after output update

Definition at line 587 of file NonlinearSystemBase.h.

◆ queryTimeIntegrator()

const TimeIntegrator * SystemBase::queryTimeIntegrator ( const unsigned int  var_num) const
inherited

Retrieve the time integrator that integrates the given variable's equation.

If no suitable time integrator is found (this could happen for instance if we're solving a non-transient problem), then a nullptr will be returned

Definition at line 1673 of file SystemBase.C.

Referenced by SystemBase::getTimeIntegrator(), HDGKernel::HDGKernel(), and MooseVariableData< OutputType >::MooseVariableData().

1674 {
1675  for (auto & ti : _time_integrators)
1676  if (ti->integratesVar(var_num))
1677  return ti.get();
1678 
1679  return nullptr;
1680 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ referenceResidual()

Real NonlinearSystemBase::referenceResidual ( ) const

The reference residual used in relative convergence check.

Definition at line 768 of file NonlinearSystemBase.C.

Referenced by DefaultNonlinearConvergence::checkConvergence(), and EigenExecutionerBase::inversePowerIteration().

769 {
771 }
Real preSMOResidual() const
The pre-SMO residual.
Real initialResidual() const
The initial residual.
const bool & usePreSMOResidual() const
Whether we are using pre-SMO residual in relative convergence checks.

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ reinit()

virtual void SystemBase::reinit ( )
inlinevirtualinherited

Reinitialize the system when the degrees of freedom in this system have changed.

This is called after the libMesh system has been reinit'd

Reimplemented in NonlinearEigenSystem.

Definition at line 168 of file SystemBase.h.

Referenced by NonlinearEigenSystem::reinit().

168 {}

◆ reinitElem()

void SystemBase::reinitElem ( const Elem elem,
THREAD_ID  tid 
)
virtualinherited

Reinit an element assembly info.

Parameters
elemWhich element we are reinitializing for
tidID of the thread

Reimplemented in AuxiliarySystem.

Definition at line 340 of file SystemBase.C.

341 {
343  {
344  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
346  for (const auto & var : active_elemental_moose_variables)
347  if (&(var->sys()) == this)
348  var->computeElemValues();
349  }
350  else
351  {
352  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
353  for (const auto & var : vars)
354  var->computeElemValues();
355  }
356 
357  if (system().has_static_condensation())
358  for (auto & [tag, matrix] : _active_tagged_matrices)
359  {
360  libmesh_ignore(tag);
361  cast_ptr<StaticCondensation *>(matrix)->set_current_elem(*elem);
362  }
363 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void libmesh_ignore(const Args &...)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:461

◆ reinitElemFace()

void SystemBase::reinitElemFace ( const Elem elem,
unsigned int  side,
THREAD_ID  tid 
)
virtualinherited

Reinit assembly info for a side of an element.

Parameters
elemThe element
sideSide of of the element
tidThread ID

Reimplemented in AuxiliarySystem.

Definition at line 366 of file SystemBase.C.

Referenced by SubProblem::reinitElemFaceRef().

367 {
368  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
369  for (const auto & var : vars)
370  var->computeElemValuesFace();
371 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitIncrementAtNodeForDampers()

void NonlinearSystemBase::reinitIncrementAtNodeForDampers ( THREAD_ID  tid,
const std::set< MooseVariable *> &  damped_vars 
)

Compute the incremental change in variables at nodes for dampers.

Called before we use damping

Parameters
tidThread ID
damped_varsSet of variables for which increment is to be computed

Definition at line 3662 of file NonlinearSystemBase.C.

Referenced by ComputeNodalDampingThread::onNode().

3664 {
3665  for (const auto & var : damped_vars)
3666  var->computeIncrementAtNode(*_increment_vec);
3667 }
NumericVector< Number > * _increment_vec
increment vector

◆ reinitIncrementAtQpsForDampers()

void NonlinearSystemBase::reinitIncrementAtQpsForDampers ( THREAD_ID  tid,
const std::set< MooseVariable *> &  damped_vars 
)

Compute the incremental change in variables at QPs for dampers.

Called before we use damping

Parameters
tidThread ID
damped_varsSet of variables for which increment is to be computed

Definition at line 3654 of file NonlinearSystemBase.C.

Referenced by ComputeElemDampingThread::onElement().

3656 {
3657  for (const auto & var : damped_vars)
3658  var->computeIncrementAtQps(*_increment_vec);
3659 }
NumericVector< Number > * _increment_vec
increment vector

◆ reinitLowerD()

void SystemBase::reinitLowerD ( THREAD_ID  tid)
virtualinherited

Compute the values of the variables on the lower dimensional element.

Definition at line 390 of file SystemBase.C.

Referenced by SubProblem::reinitLowerDElem().

391 {
392  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
393  for (const auto & var : vars)
394  var->computeLowerDValues();
395 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitMortarFunctors()

void NonlinearSystemBase::reinitMortarFunctors ( )

Update the mortar functors if the mesh has changed.

Definition at line 208 of file NonlinearSystemBase.C.

209 {
210  // reinit is called on meshChanged() in FEProblemBase. We could implement meshChanged() instead.
211  // Subdomains might have changed
212  for (auto & functor : _displaced_mortar_functors)
213  functor.second.setupMortarMaterials();
214  for (auto & functor : _undisplaced_mortar_functors)
215  functor.second.setupMortarMaterials();
216 }
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.

◆ reinitNeighbor()

void SystemBase::reinitNeighbor ( const Elem elem,
THREAD_ID  tid 
)
virtualinherited

Compute the values of the variables at all the current points.

Definition at line 382 of file SystemBase.C.

383 {
384  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
385  for (const auto & var : vars)
386  var->computeNeighborValues();
387 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNeighborFace()

void SystemBase::reinitNeighborFace ( const Elem elem,
unsigned int  side,
THREAD_ID  tid 
)
virtualinherited

Compute the values of the variables at all the current points.

Definition at line 374 of file SystemBase.C.

Referenced by SubProblem::reinitNeighborFaceRef().

375 {
376  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
377  for (const auto & var : vars)
378  var->computeNeighborValuesFace();
379 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNode()

void SystemBase::reinitNode ( const Node node,
THREAD_ID  tid 
)
virtualinherited

Reinit nodal assembly info.

Parameters
nodeNode to reinit for
tidThread ID

Definition at line 398 of file SystemBase.C.

399 {
400  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
401  for (const auto & var : vars)
402  {
403  var->reinitNode();
404  if (var->isNodalDefined())
405  var->computeNodalValues();
406  }
407 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [1/3]

void SystemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
THREAD_ID  tid 
)
virtualinherited

Reinit nodal assembly info on a face.

Parameters
nodeNode to reinit
bnd_idBoundary ID
tidThread ID

Definition at line 410 of file SystemBase.C.

411 {
412  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
413  for (const auto & var : vars)
414  {
415  var->reinitNode();
416  if (var->isNodalDefined())
417  var->computeNodalValues();
418  }
419 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [2/3]

void SystemBase::reinitNodeFace

Reinit nodal assembly info on a face.

Parameters
nodeNode to reinit
bnd_idBoundary ID
tidThread ID

Definition at line 410 of file SystemBase.C.

411 {
412  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
413  for (const auto & var : vars)
414  {
415  var->reinitNode();
416  if (var->isNodalDefined())
417  var->computeNodalValues();
418  }
419 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [3/3]

void NonlinearSystemBase::reinitNodeFace ( const Node secondary_node,
const BoundaryID  secondary_boundary,
const PenetrationInfo info,
const bool  displaced 
)
protected

Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints.

Definition at line 1157 of file NonlinearSystemBase.C.

Referenced by constraintJacobians(), constraintResiduals(), and setConstraintSecondaryValues().

1161 {
1162  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1163  : static_cast<SubProblem &>(_fe_problem);
1164 
1165  const Elem * primary_elem = info._elem;
1166  unsigned int primary_side = info._side_num;
1167  std::vector<Point> points;
1168  points.push_back(info._closest_point);
1169 
1170  // *These next steps MUST be done in this order!*
1171  // ADL: This is a Chesterton's fence situation. I don't know which calls exactly the above comment
1172  // is referring to. If I had to guess I would guess just the reinitNodeFace and prepareAssembly
1173  // calls since the former will size the variable's dof indices and then the latter will resize the
1174  // residual/Jacobian based off the variable's cached dof indices size
1175 
1176  // This reinits the variables that exist on the secondary node
1177  _fe_problem.reinitNodeFace(&secondary_node, secondary_boundary, 0);
1178 
1179  // This will set aside residual and jacobian space for the variables that have dofs on
1180  // the secondary node
1182 
1183  _fe_problem.setNeighborSubdomainID(primary_elem, 0);
1184 
1185  //
1186  // Reinit material on undisplaced mesh
1187  //
1188 
1189  const Elem * const undisplaced_primary_elem =
1190  displaced ? _mesh.elemPtr(primary_elem->id()) : primary_elem;
1191  const Point undisplaced_primary_physical_point =
1192  [&points, displaced, primary_elem, undisplaced_primary_elem]()
1193  {
1194  if (displaced)
1195  {
1196  const Point reference_point =
1197  FEMap::inverse_map(primary_elem->dim(), primary_elem, points[0]);
1198  return FEMap::map(primary_elem->dim(), undisplaced_primary_elem, reference_point);
1199  }
1200  else
1201  // If our penetration locator is on the reference mesh, then our undisplaced
1202  // physical point is simply the point coming from the penetration locator
1203  return points[0];
1204  }();
1205 
1207  undisplaced_primary_elem, primary_side, {undisplaced_primary_physical_point}, 0);
1208  // Stateful material properties are only initialized for neighbor material data for internal faces
1209  // for discontinuous Galerkin methods or for conforming interfaces for interface kernels. We don't
1210  // have either of those use cases here where we likely have disconnected meshes
1211  _fe_problem.reinitMaterialsNeighbor(primary_elem->subdomain_id(), 0, /*swap_stateful=*/false);
1212 
1213  // Reinit points for constraint enforcement
1214  if (displaced)
1215  subproblem.reinitNeighborPhys(primary_elem, primary_side, points, 0);
1216 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3134
MPI_Info info
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
dof_id_type id() const
void reinitMaterialsNeighbor(SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
reinit materials on the neighboring element face
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual void prepareAssembly(const THREAD_ID tid) override
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override

◆ reinitNodes()

void SystemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
THREAD_ID  tid 
)
virtualinherited

Reinit variables at a set of nodes.

Parameters
nodesList of node ids to reinit
tidThread ID

Definition at line 422 of file SystemBase.C.

423 {
424  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
425  for (const auto & var : vars)
426  {
427  var->reinitNodes(nodes);
428  var->computeNodalValues();
429  }
430 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodesNeighbor()

void SystemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
THREAD_ID  tid 
)
virtualinherited

Reinit variables at a set of neighbor nodes.

Parameters
nodesList of node ids to reinit
tidThread ID

Definition at line 433 of file SystemBase.C.

434 {
435  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
436  for (const auto & var : vars)
437  {
438  var->reinitNodesNeighbor(nodes);
439  var->computeNodalNeighborValues();
440  }
441 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitScalars()

void SystemBase::reinitScalars ( THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
virtualinherited

Reinit scalar varaibles.

Parameters
tidThread ID
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Definition at line 444 of file SystemBase.C.

445 {
446  const std::vector<MooseVariableScalar *> & vars = _vars[tid].scalars();
447  for (const auto & var : vars)
448  var->reinit(reinit_for_derivative_reordering);
449 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ removeMatrix()

void SystemBase::removeMatrix ( TagID  tag)
inherited

Removes a matrix with a given tag.

Parameters
tag_nameThe name of the tag

Definition at line 590 of file SystemBase.C.

591 {
592  if (!_subproblem.matrixTagExists(tag_id))
593  mooseError("Cannot remove the matrix with TagID ",
594  tag_id,
595  "\nin system '",
596  name(),
597  "', because that tag does not exist in the problem");
598 
599  if (hasMatrix(tag_id))
600  {
601  const auto matrix_name = _subproblem.matrixTagName(tag_id);
602  system().remove_matrix(matrix_name);
603  _tagged_matrices[tag_id] = nullptr;
604  }
605 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_matrix(std::string_view mat_name)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329
virtual TagName matrixTagName(TagID tag)
Retrieve the name associated with a TagID.
Definition: SubProblem.C:358

◆ removeVector() [1/2]

void SystemBase::removeVector ( const std::string &  name)
inherited

Remove a vector from the system with the given name.

Definition at line 1334 of file SystemBase.C.

Referenced by SystemBase::restoreOldSolutions().

1335 {
1337 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_vector(std::string_view vec_name)

◆ removeVector() [2/2]

void SystemBase::removeVector ( TagID  tag_id)
inherited

Remove a solution length vector from the system with the specified TagID.

Parameters
tag_idTag ID

Definition at line 700 of file SystemBase.C.

701 {
702  if (!_subproblem.vectorTagExists(tag_id))
703  mooseError("Cannot remove the vector with TagID ",
704  tag_id,
705  "\nin system '",
706  name(),
707  "', because that tag does not exist in the problem");
708 
709  if (hasVector(tag_id))
710  {
711  auto vector_name = _subproblem.vectorTagName(tag_id);
712  system().remove_vector(vector_name);
713  _tagged_vectors[tag_id] = nullptr;
714  }
715 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_vector(std::string_view vec_name)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ residualAndJacobianTogether()

virtual void NonlinearSystemBase::residualAndJacobianTogether ( )
pure virtual

Call this method if you want the residual and Jacobian to be computed simultaneously.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

◆ residualCopy()

NumericVector< Number > & NonlinearSystemBase::residualCopy ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 3509 of file NonlinearSystemBase.C.

3510 {
3511  if (!_residual_copy.get())
3513 
3514  return *_residual_copy;
3515 }
const Parallel::Communicator & _communicator
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.

◆ residualGhosted()

NumericVector< Number > & NonlinearSystemBase::residualGhosted ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 3518 of file NonlinearSystemBase.C.

3519 {
3520  _need_residual_ghosted = true;
3521  if (!_residual_ghosted)
3522  {
3523  // The first time we realize we need a ghosted residual vector,
3524  // we add it.
3525  _residual_ghosted = &addVector("residual_ghosted", false, GHOSTED);
3526 
3527  // If we've already realized we need time and/or non-time
3528  // residual vectors, but we haven't yet realized they need to be
3529  // ghosted, fix that now.
3530  //
3531  // If an application changes its mind, the libMesh API lets us
3532  // change the vector.
3533  if (_Re_time)
3534  {
3535  const auto vector_name = _subproblem.vectorTagName(_Re_time_tag);
3536  _Re_time = &system().add_vector(vector_name, false, GHOSTED);
3537  }
3538  if (_Re_non_time)
3539  {
3540  const auto vector_name = _subproblem.vectorTagName(_Re_non_time_tag);
3541  _Re_non_time = &system().add_vector(vector_name, false, GHOSTED);
3542  }
3543  }
3544  return *_residual_ghosted;
3545 }
NumericVector< Number > * _Re_time
residual vector for time contributions
TagID _Re_time_tag
Tag for time contribution residual.
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
TagID _Re_non_time_tag
Tag for non-time contribution residual.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ residualSetup()

void NonlinearSystemBase::residualSetup ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 1726 of file NonlinearSystemBase.C.

Referenced by computeResidualAndJacobianInternal(), and computeResidualInternal().

1727 {
1728  TIME_SECTION("residualSetup", 3);
1729 
1731 
1732  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1733  {
1734  _kernels.residualSetup(tid);
1737  if (_doing_dg)
1743  }
1750 
1751 #ifdef MOOSE_KOKKOS_ENABLED
1756 #endif
1757 
1758  // Avoid recursion
1759  if (this == &_fe_problem.currentNonlinearSystem())
1762 }
virtual void residualSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
void residualSetup() override
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
NonlinearSystemBase & currentNonlinearSystem()
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
void resetSolutionInvalidCurrentIteration()
Reset the number of solution invalid occurrences back to zero.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void residualSetup()
Definition: SystemBase.C:1599
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ residualVector()

NumericVector< Number > & NonlinearSystemBase::residualVector ( TagID  tag)

Return a residual vector that is associated with the residual tag.

Definition at line 1087 of file NonlinearSystemBase.C.

1088 {
1089  mooseDeprecated("Please use getVector()");
1090  switch (tag)
1091  {
1092  case 0:
1093  return getResidualNonTimeVector();
1094 
1095  case 1:
1096  return getResidualTimeVector();
1097 
1098  default:
1099  mooseError("The required residual vector is not available");
1100  }
1101 }
NumericVector< Number > & getResidualTimeVector()
Return a numeric vector that is associated with the time tag.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
void mooseDeprecated(Args &&... args)
Emit a deprecated code/feature message with the given stringified, concatenated args.
Definition: MooseError.h:374
NumericVector< Number > & getResidualNonTimeVector()
Return a numeric vector that is associated with the nontime tag.

◆ residualVectorTag()

TagID NonlinearSystemBase::residualVectorTag ( ) const
inlineoverridevirtual

◆ restoreOldSolutions()

void SystemBase::restoreOldSolutions ( )
virtualinherited

Restore the old and older solutions when the saved solutions present.

Definition at line 542 of file SystemBase.C.

543 {
544  const auto states =
545  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
546  if (states > 1)
547  for (unsigned int i = 1; i <= states - 1; ++i)
548  if (_saved_solution_states[i])
549  {
551  removeVector("save_solution_state_" + std::to_string(i));
552  _saved_solution_states[i] = nullptr;
553  }
554 
556  {
558  removeVector("save_solution_dot_old");
559  _saved_dot_old = nullptr;
560  }
562  {
564  removeVector("save_solution_dotdot_old");
565  _saved_dotdot_old = nullptr;
566  }
567 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
NumericVector< Real > * _saved_dot_old
Definition: SystemBase.h:1034
void removeVector(const std::string &name)
Remove a vector from the system with the given name.
Definition: SystemBase.C:1334
NumericVector< Real > * _saved_dotdot_old
Definition: SystemBase.h:1035
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
std::vector< NumericVector< Number > * > _saved_solution_states
The saved solution states (0 = current, 1 = old, 2 = older, etc)
Definition: SystemBase.h:1086

◆ restoreSolutions()

void SolverSystem::restoreSolutions ( )
finaloverridevirtualinherited

Restore current solutions (call after your solve failed)

Reimplemented from SystemBase.

Definition at line 43 of file SolverSystem.C.

44 {
45  // call parent
47  // and update _current_solution
49 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual void restoreSolutions()
Restore current solutions (call after your solve failed)
Definition: SystemBase.C:1317

◆ RHS()

virtual NumericVector<Number>& NonlinearSystemBase::RHS ( )
pure virtual

◆ saveOldSolutions()

void SystemBase::saveOldSolutions ( )
virtualinherited

Save the old and older solutions.

Definition at line 510 of file SystemBase.C.

511 {
512  const auto states =
513  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
514  if (states > 1)
515  {
516  _saved_solution_states.resize(states);
517  for (unsigned int i = 1; i <= states - 1; ++i)
518  if (!_saved_solution_states[i])
520  &addVector("save_solution_state_" + std::to_string(i), false, PARALLEL);
521 
522  for (unsigned int i = 1; i <= states - 1; ++i)
524  }
525 
527  _saved_dot_old = &addVector("save_solution_dot_old", false, PARALLEL);
529  _saved_dotdot_old = &addVector("save_solution_dotdot_old", false, PARALLEL);
530 
531  if (solutionUDotOld())
533 
534  if (solutionUDotDotOld())
536 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
NumericVector< Real > * _saved_dot_old
Definition: SystemBase.h:1034
NumericVector< Real > * _saved_dotdot_old
Definition: SystemBase.h:1035
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
std::vector< NumericVector< Number > * > _saved_solution_states
The saved solution states (0 = current, 1 = old, 2 = older, etc)
Definition: SystemBase.h:1086

◆ scalingGroupVariables()

void NonlinearSystemBase::scalingGroupVariables ( const std::vector< std::vector< std::string >> &  scaling_group_variables)
inline

Definition at line 730 of file NonlinearSystemBase.h.

731  {
732  _scaling_group_variables = scaling_group_variables;
733  }
std::vector< std::vector< std::string > > _scaling_group_variables
A container of variable groupings that can be used in scaling calculations.

◆ serializedSolution()

NumericVector< Number > & SystemBase::serializedSolution ( )
virtualinherited

Returns a reference to a serialized version of the solution vector for this subproblem.

Reimplemented in DisplacedSystem.

Definition at line 1646 of file SystemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), PNGOutput::makeMeshFunc(), and DisplacedSystem::serializedSolution().

1647 {
1648  if (!_serialized_solution.get())
1649  {
1651  _serialized_solution->init(system().n_dofs(), false, SERIAL);
1652  }
1653 
1654  return *_serialized_solution;
1655 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const Parallel::Communicator & _communicator
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068

◆ serializeSolution()

void SolverSystem::serializeSolution ( )
inherited

Definition at line 52 of file SolverSystem.C.

Referenced by SolverSystem::setSolution().

53 {
54  if (_serialized_solution.get())
55  {
56  if (!_serialized_solution->initialized() || _serialized_solution->size() != system().n_dofs())
57  {
58  _serialized_solution->clear();
59  _serialized_solution->init(system().n_dofs(), false, SERIAL);
60  }
61 
63  }
64 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068
dof_id_type n_dofs() const
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
virtual void localize(std::vector< T > &v_local) const=0

◆ setActiveScalarVariableCoupleableVectorTags()

void SystemBase::setActiveScalarVariableCoupleableVectorTags ( const std::set< TagID > &  vtags,
THREAD_ID  tid 
)
inherited

Set the active vector tags for the scalar variables.

Definition at line 1626 of file SystemBase.C.

Referenced by SubProblem::setActiveScalarVariableCoupleableVectorTags().

1628 {
1629  _vars[tid].setActiveScalarVariableCoupleableVectorTags(vtags);
1630 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ setActiveVariableCoupleableVectorTags()

void SystemBase::setActiveVariableCoupleableVectorTags ( const std::set< TagID > &  vtags,
THREAD_ID  tid 
)
inherited

Set the active vector tags for the variables.

Definition at line 1620 of file SystemBase.C.

Referenced by SubProblem::setActiveFEVariableCoupleableVectorTags().

1621 {
1622  _vars[tid].setActiveVariableCoupleableVectorTags(vtags);
1623 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ setConstraintSecondaryValues()

void NonlinearSystemBase::setConstraintSecondaryValues ( NumericVector< Number > &  solution,
bool  displaced 
)

Sets the value of constrained variables in the solution vector.

Definition at line 1219 of file NonlinearSystemBase.C.

Referenced by setInitialSolution().

1220 {
1221 
1222  if (displaced)
1223  mooseAssert(_fe_problem.getDisplacedProblem(),
1224  "If we're calling this method with displaced = true, then we better well have a "
1225  "displaced problem");
1226  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1227  : static_cast<SubProblem &>(_fe_problem);
1228  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1229 
1230  bool constraints_applied = false;
1231 
1232  for (const auto & it : penetration_locators)
1233  {
1234  PenetrationLocator & pen_loc = *(it.second);
1235 
1236  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1237 
1238  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1239  BoundaryID primary_boundary = pen_loc._primary_boundary;
1240 
1241  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
1242  {
1243  const auto & constraints =
1244  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
1245  std::unordered_set<unsigned int> needed_mat_props;
1246  for (const auto & constraint : constraints)
1247  {
1248  const auto & mp_deps = constraint->getMatPropDependencies();
1249  needed_mat_props.insert(mp_deps.begin(), mp_deps.end());
1250  }
1251  _fe_problem.setActiveMaterialProperties(needed_mat_props, /*tid=*/0);
1252 
1253  for (unsigned int i = 0; i < secondary_nodes.size(); i++)
1254  {
1255  dof_id_type secondary_node_num = secondary_nodes[i];
1256  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1257 
1258  if (secondary_node.processor_id() == processor_id())
1259  {
1260  if (pen_loc._penetration_info[secondary_node_num])
1261  {
1262  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
1263 
1264  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
1265 
1266  for (const auto & nfc : constraints)
1267  {
1268  if (nfc->isExplicitConstraint())
1269  continue;
1270  // Return if this constraint does not correspond to the primary-secondary pair
1271  // prepared by the outer loops.
1272  // This continue statement is required when, e.g. one secondary surface constrains
1273  // more than one primary surface.
1274  if (nfc->secondaryBoundary() != secondary_boundary ||
1275  nfc->primaryBoundary() != primary_boundary)
1276  continue;
1277 
1278  if (nfc->shouldApply())
1279  {
1280  constraints_applied = true;
1281  nfc->computeSecondaryValue(solution);
1282  }
1283 
1284  if (nfc->hasWritableCoupledVariables())
1285  {
1286  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1287  for (auto * var : nfc->getWritableCoupledVariables())
1288  {
1289  if (var->isNodalDefined())
1290  var->insert(_fe_problem.getAuxiliarySystem().solution());
1291  }
1292  }
1293  }
1294  }
1295  }
1296  }
1297  }
1298  }
1299 
1300  // go over NodeELemConstraints
1301  std::set<dof_id_type> unique_secondary_node_ids;
1302 
1303  for (const auto & secondary_id : _mesh.meshSubdomains())
1304  {
1305  for (const auto & primary_id : _mesh.meshSubdomains())
1306  {
1307  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
1308  {
1309  const auto & constraints =
1310  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
1311 
1312  // get unique set of ids of all nodes on current block
1313  unique_secondary_node_ids.clear();
1314  const MeshBase & meshhelper = _mesh.getMesh();
1315  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
1316  meshhelper.active_subdomain_elements_end(secondary_id)))
1317  {
1318  for (auto & n : elem->node_ref_range())
1319  unique_secondary_node_ids.insert(n.id());
1320  }
1321 
1322  for (auto secondary_node_id : unique_secondary_node_ids)
1323  {
1324  Node & secondary_node = _mesh.nodeRef(secondary_node_id);
1325 
1326  // check if secondary node is on current processor
1327  if (secondary_node.processor_id() == processor_id())
1328  {
1329  // This reinits the variables that exist on the secondary node
1330  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
1331 
1332  // This will set aside residual and jacobian space for the variables that have dofs
1333  // on the secondary node
1335 
1336  for (const auto & nec : constraints)
1337  {
1338  if (nec->shouldApply())
1339  {
1340  constraints_applied = true;
1341  nec->computeSecondaryValue(solution);
1342  }
1343  }
1344  }
1345  }
1346  }
1347  }
1348  }
1349 
1350  // See if constraints were applied anywhere
1351  _communicator.max(constraints_applied);
1352 
1353  if (constraints_applied)
1354  {
1355  solution.close();
1356  update();
1357  }
1358 }
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
MPI_Info info
NumericVector< Number > & solution()
Definition: SystemBase.h:196
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3469
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual GeometricSearchData & geomSearchData()=0
AuxiliarySystem & getAuxiliarySystem()
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
BoundaryID _primary_boundary
uint8_t dof_id_type
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3192

◆ setInitialResidual()

void NonlinearSystemBase::setInitialResidual ( Real  r)

Record the initial residual (for later relative convergence check)

Definition at line 789 of file NonlinearSystemBase.C.

Referenced by DefaultNonlinearConvergence::checkConvergence().

790 {
791  _initial_residual = r;
792 }
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...

◆ setInitialSolution()

void NonlinearSystemBase::setInitialSolution ( )

Definition at line 955 of file NonlinearSystemBase.C.

Referenced by preSolve().

956 {
958 
959  NumericVector<Number> & initial_solution(solution());
960  if (_predictor.get())
961  {
962  if (_predictor->shouldApply())
963  {
964  TIME_SECTION("applyPredictor", 2, "Applying Predictor");
965 
966  _predictor->apply(initial_solution);
967  _fe_problem.predictorCleanup(initial_solution);
968  }
969  else
970  _console << " Skipping predictor this step" << std::endl;
971  }
972 
973  // do nodal BC
974  {
975  TIME_SECTION("initialBCs", 2, "Applying BCs To Initial Condition");
976 
978  for (const auto & bnode : bnd_nodes)
979  {
980  BoundaryID boundary_id = bnode->_bnd_id;
981  Node * node = bnode->_node;
982 
983  if (node->processor_id() == processor_id())
984  {
985  bool has_preset_nodal_bcs = _preset_nodal_bcs.hasActiveBoundaryObjects(boundary_id);
986  bool has_ad_preset_nodal_bcs = _ad_preset_nodal_bcs.hasActiveBoundaryObjects(boundary_id);
987 
988  // reinit variables in nodes
989  if (has_preset_nodal_bcs || has_ad_preset_nodal_bcs)
990  _fe_problem.reinitNodeFace(node, boundary_id, 0);
991 
992  if (has_preset_nodal_bcs)
993  {
994  const auto & preset_bcs = _preset_nodal_bcs.getActiveBoundaryObjects(boundary_id);
995  for (const auto & preset_bc : preset_bcs)
996  preset_bc->computeValue(initial_solution);
997  }
998  if (has_ad_preset_nodal_bcs)
999  {
1000  const auto & preset_bcs_res = _ad_preset_nodal_bcs.getActiveBoundaryObjects(boundary_id);
1001  for (const auto & preset_bc : preset_bcs_res)
1002  preset_bc->computeValue(initial_solution);
1003  }
1004  }
1005  }
1006  }
1007 
1008 #ifdef MOOSE_KOKKOS_ENABLED
1011 #endif
1012 
1013  _sys.solution->close();
1014  update();
1015 
1016  // Set constraint secondary values
1017  setConstraintSecondaryValues(initial_solution, false);
1018 
1020  setConstraintSecondaryValues(initial_solution, true);
1021 }
virtual void predictorCleanup(NumericVector< libMesh::Number > &ghosted_solution)
Perform cleanup tasks after application of predictor to solution vector.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
bool hasObjects(THREAD_ID tid=0) const
Convenience functions for determining if objects exist.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
virtual void deactivateAllMatrixTags()
Make matrices inactive.
Definition: SystemBase.C:1119
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
boundary_id_type BoundaryID
std::unique_ptr< NumericVector< Number > > solution
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
libMesh::System & _sys
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
processor_id_type processor_id() const
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.
void setKokkosInitialSolution()
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
void setConstraintSecondaryValues(NumericVector< Number > &solution, bool displaced)
Sets the value of constrained variables in the solution vector.
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ setKokkosInitialSolution()

void NonlinearSystemBase::setKokkosInitialSolution ( )

Referenced by setInitialSolution().

◆ setMooseKSPNormType()

void SolverSystem::setMooseKSPNormType ( MooseEnum  kspnorm)
inherited

Set the norm in which the linear convergence will be measured.

Parameters
kspnormThe required norm

Definition at line 94 of file SolverSystem.C.

Referenced by MoosePreconditioner::MoosePreconditioner().

95 {
96  if (kspnorm == "none")
98  else if (kspnorm == "preconditioned")
100  else if (kspnorm == "unpreconditioned")
102  else if (kspnorm == "natural")
104  else if (kspnorm == "default")
106  else
107  mooseError("Unknown ksp norm type specified.");
108 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Use whatever we have in PETSc.
Definition: MooseTypes.h:837
Moose::MooseKSPNormType _ksp_norm
KSP norm type.
Definition: SolverSystem.h:110

◆ setPCSide()

void SolverSystem::setPCSide ( MooseEnum  pcs)
inherited

Set the side on which the preconditioner is applied to.

Parameters
pcsThe required preconditioning side

Definition at line 79 of file SolverSystem.C.

Referenced by MoosePreconditioner::MoosePreconditioner().

80 {
81  if (pcs == "left")
83  else if (pcs == "right")
85  else if (pcs == "symmetric")
87  else if (pcs == "default")
89  else
90  mooseError("Unknown PC side specified.");
91 }
Moose::PCSideType _pc_side
Preconditioning side.
Definition: SolverSystem.h:108
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Use whatever we have in PETSc.
Definition: MooseTypes.h:825

◆ setPreconditioner()

void NonlinearSystemBase::setPreconditioner ( std::shared_ptr< MoosePreconditioner pc)

Sets a preconditioner.

Parameters
pcThe preconditioner to be set

Definition at line 3633 of file NonlinearSystemBase.C.

Referenced by SetupPreconditionerAction::act().

3634 {
3635  if (_preconditioner.get() != nullptr)
3636  mooseError("More than one active Preconditioner detected");
3637 
3638  _preconditioner = pc;
3639 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.

◆ setPredictor()

void NonlinearSystemBase::setPredictor ( std::shared_ptr< Predictor predictor)

Definition at line 1024 of file NonlinearSystemBase.C.

Referenced by SetupPredictorAction::act().

1025 {
1026  _predictor = predictor;
1027 }
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ setPreSMOResidual()

void NonlinearSystemBase::setPreSMOResidual ( bool  use)
inline

Set whether to evaluate the pre-SMO residual and use it in the subsequent relative convergence checks.

If set to true, an additional residual evaluation is performed before any solution-modifying object is executed, and before the initial (0-th nonlinear iteration) residual evaluation. Such residual is referred to as the pre-SMO residual. If the pre-SMO residual is evaluated, it is used in the subsequent relative convergence checks.

If set to false, no residual evaluation takes place before the initial residual evaluation, and the initial residual is used in the subsequent relative convergence checks. This mode is recommended for performance-critical code as it avoids the additional pre-SMO residual evaluation.

Definition at line 286 of file NonlinearSystemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

286 { _use_pre_smo_residual = use; }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.

◆ setPreviousNewtonSolution()

void NonlinearSystemBase::setPreviousNewtonSolution ( const NumericVector< Number > &  soln)
virtual

Definition at line 3905 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computePostCheck().

3906 {
3909 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ setSolution()

void SolverSystem::setSolution ( const NumericVector< Number > &  soln)
inherited

Set the solution to a given vector.

Parameters
solnThe vector which should be treated as the solution.

Definition at line 67 of file SolverSystem.C.

Referenced by FEProblemBase::computeDamping(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualType(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

68 {
69  _current_solution = &soln;
70 
72  associateVectorToTag(const_cast<NumericVector<Number> &>(soln), tag);
73 
74  if (_serialized_solution.get())
76 }
virtual TagID getVectorTagID(const TagName &tag_name) const
Get a TagID from a TagName.
Definition: SubProblem.C:204
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void serializeSolution()
Definition: SolverSystem.C:52
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ setSolutionUDot()

void NonlinearSystemBase::setSolutionUDot ( const NumericVector< Number > &  udot)
virtual

Set transient term used by residual and Jacobian evaluation.

Parameters
udottransient term
Note
If the calling sequence for residual evaluation was changed, this could become an explicit argument.

Definition at line 3609 of file NonlinearSystemBase.C.

3610 {
3611  *_u_dot = u_dot;
3612 }
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006

◆ setSolutionUDotDot()

void NonlinearSystemBase::setSolutionUDotDot ( const NumericVector< Number > &  udotdot)
virtual

Set transient term used by residual and Jacobian evaluation.

Parameters
udotdottransient term
Note
If the calling sequence for residual evaluation was changed, this could become an explicit argument.

Definition at line 3615 of file NonlinearSystemBase.C.

3616 {
3617  *_u_dotdot = u_dotdot;
3618 }
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008

◆ setSolutionUDotDotOld()

void NonlinearSystemBase::setSolutionUDotDotOld ( const NumericVector< Number > &  u_dotdot_old)
virtual

Definition at line 3627 of file NonlinearSystemBase.C.

3628 {
3629  *_u_dotdot_old = u_dotdot_old;
3630 }
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ setSolutionUDotOld()

void NonlinearSystemBase::setSolutionUDotOld ( const NumericVector< Number > &  u_dot_old)
virtual

Definition at line 3621 of file NonlinearSystemBase.C.

3622 {
3623  *_u_dot_old = u_dot_old;
3624 }
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011

◆ setupDampers()

void NonlinearSystemBase::setupDampers ( )

Setup damping stuff (called before we actually start)

Definition at line 3648 of file NonlinearSystemBase.C.

Referenced by preInit().

3649 {
3650  _increment_vec = &_sys.add_vector("u_increment", true, GHOSTED);
3651 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
libMesh::System & _sys
NumericVector< Number > * _increment_vec
increment vector

◆ setupDM()

void NonlinearSystemBase::setupDM ( )

Setup the PETSc DM object (when appropriate)

Definition at line 463 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::solve().

464 {
465  if (_fsp)
466  _fsp->setupDM();
467 }
virtual void setupDM()=0
setup the data management data structure that manages the field split
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ setupFiniteDifferencedPreconditioner()

virtual void NonlinearSystemBase::setupFiniteDifferencedPreconditioner ( )
pure virtual

◆ setupScalingData()

void NonlinearSystemBase::setupScalingData ( )
private

Setup group scaling containers.

Definition at line 3936 of file NonlinearSystemBase.C.

Referenced by computeScaling().

3937 {
3938  if (_auto_scaling_initd)
3939  return;
3940 
3941  // Want the libMesh count of variables, not MOOSE, e.g. I don't care about array variable counts
3942  const auto n_vars = system().n_vars();
3943 
3944  if (_scaling_group_variables.empty())
3945  {
3946  _var_to_group_var.reserve(n_vars);
3948 
3949  for (const auto var_number : make_range(n_vars))
3950  _var_to_group_var.emplace(var_number, var_number);
3951  }
3952  else
3953  {
3954  std::set<unsigned int> var_numbers, var_numbers_covered, var_numbers_not_covered;
3955  for (const auto var_number : make_range(n_vars))
3956  var_numbers.insert(var_number);
3957 
3959 
3960  for (const auto group_index : index_range(_scaling_group_variables))
3961  for (const auto & var_name : _scaling_group_variables[group_index])
3962  {
3963  if (!hasVariable(var_name) && !hasScalarVariable(var_name))
3964  mooseError("'",
3965  var_name,
3966  "', provided to the 'scaling_group_variables' parameter, does not exist in "
3967  "the nonlinear system.");
3968 
3969  const MooseVariableBase & var =
3970  hasVariable(var_name)
3971  ? static_cast<MooseVariableBase &>(getVariable(0, var_name))
3972  : static_cast<MooseVariableBase &>(getScalarVariable(0, var_name));
3973  auto map_pair = _var_to_group_var.emplace(var.number(), group_index);
3974  if (!map_pair.second)
3975  mooseError("Variable ", var_name, " is contained in multiple scaling grouplings");
3976  var_numbers_covered.insert(var.number());
3977  }
3978 
3979  std::set_difference(var_numbers.begin(),
3980  var_numbers.end(),
3981  var_numbers_covered.begin(),
3982  var_numbers_covered.end(),
3983  std::inserter(var_numbers_not_covered, var_numbers_not_covered.begin()));
3984 
3985  _num_scaling_groups = _scaling_group_variables.size() + var_numbers_not_covered.size();
3986 
3987  auto index = static_cast<unsigned int>(_scaling_group_variables.size());
3988  for (auto var_number : var_numbers_not_covered)
3989  _var_to_group_var.emplace(var_number, index++);
3990  }
3991 
3992  _variable_autoscaled.resize(n_vars, true);
3993  const auto & number_to_var_map = _vars[0].numberToVariableMap();
3994 
3996  for (const auto i : index_range(_variable_autoscaled))
3999  libmesh_map_find(number_to_var_map, i)->name()) !=
4001  _variable_autoscaled[i] = false;
4002 
4003  _auto_scaling_initd = true;
4004 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< bool > _variable_autoscaled
Container to hold flag if variable is to participate in autoscaling.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
unsigned int number() const
Get variable number coming from libMesh.
std::vector< std::string > _ignore_variables_for_autoscaling
A container for variables that do not partipate in autoscaling.
std::size_t _num_scaling_groups
The number of scaling groups.
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
std::unordered_map< unsigned int, unsigned int > _var_to_group_var
A map from variable index to group variable index and it&#39;s associated (inverse) scaling factor...
unsigned int n_vars
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual MooseVariableScalar & getScalarVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a scalar variable with specified number.
Definition: SystemBase.C:145
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
IntRange< T > make_range(T beg, T end)
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
unsigned int n_vars() const
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876
std::vector< std::vector< std::string > > _scaling_group_variables
A container of variable groupings that can be used in scaling calculations.
auto index_range(const T &sizable)
Base variable class.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ setVariableGlobalDoFs()

void SystemBase::setVariableGlobalDoFs ( const std::string &  var_name)
inherited

set all the global dof indices for a variable

Parameters
var_nameThe name of the variable

Definition at line 186 of file SystemBase.C.

187 {
188  AllLocalDofIndicesThread aldit(_subproblem, {var_name});
190  Threads::parallel_reduce(elem_range, aldit);
191 
192  // Gather the dof indices across procs to get all the dof indices for var_name
193  aldit.dofIndicesSetUnion();
194 
195  const auto & all_dof_indices = aldit.getDofIndices();
196  _var_all_dof_indices.assign(all_dof_indices.begin(), all_dof_indices.end());
197 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
std::vector< dof_id_type > _var_all_dof_indices
Container for the dof indices of a given variable.
Definition: SystemBase.h:1064
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
Grab all the (possibly semi)local dof indices for the variables passed in, in the system passed in...
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ setVerboseFlag()

void SystemBase::setVerboseFlag ( const bool &  verbose)
inlineinherited

Sets the verbose flag.

Parameters
[in]verboseVerbose flag

Definition at line 134 of file SystemBase.h.

Referenced by Executioner::Executioner().

134 { _verbose = verbose; }
bool _verbose
True if printing out additional information.
Definition: SystemBase.h:1058

◆ shouldEvaluatePreSMOResidual()

bool NonlinearSystemBase::shouldEvaluatePreSMOResidual ( ) const

We offer the option to check convergence against the pre-SMO residual.

This method handles the logic as to whether we should perform such residual evaluation.

Returns
A boolean indicating whether we should evaluate the pre-SMO residual.

Definition at line 750 of file NonlinearSystemBase.C.

Referenced by preSMOResidual(), and NonlinearSystem::solve().

751 {
753  return false;
754 
755  // The legacy behavior (#10464) _always_ performs the pre-SMO residual evaluation
756  // regardless of whether it is needed.
757  //
758  // This is not ideal and has been fixed by #23472. This legacy option ensures a smooth transition
759  // to the new behavior. Modules and Apps that want to migrate to the new behavior should set this
760  // parameter to false.
761  if (_app.parameters().get<bool>("use_legacy_initial_residual_evaluation_behavior"))
762  return true;
763 
764  return _use_pre_smo_residual;
765 }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
Solving a linear problem.
Definition: MooseTypes.h:849
Moose::SolveType _type
Definition: SolverParams.h:19
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ sizeVariableMatrixData()

void SystemBase::sizeVariableMatrixData ( )
inherited

size the matrix data for each variable for the number of matrix tags we have

Definition at line 1719 of file SystemBase.C.

1720 {
1721  for (const auto & warehouse : _vars)
1722  for (const auto & [var_num, var_ptr] : warehouse.numberToVariableMap())
1723  var_ptr->sizeMatrixTagData();
1724 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ solution() [1/2]

NumericVector<Number>& SystemBase::solution ( )
inlineinherited

Definition at line 196 of file SystemBase.h.

Referenced by Adaptivity::adaptMesh(), TransientMultiApp::appTransferVector(), MooseEigenSystem::combineSystemSolution(), computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), computeJacobianInternal(), AuxiliarySystem::computeMortarNodalVars(), computeNodalBCs(), AuxiliarySystem::computeNodalVarsHelper(), computeResidualTags(), AuxiliarySystem::computeScalarVars(), constraintResiduals(), SystemBase::copyVars(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppScalarToAuxScalarTransfer::execute(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), NodalNormalsPreprocessor::execute(), NodalNormalsCorner::finalize(), NodalNormalsEvaluator::finalize(), NodalNormalsPreprocessor::finalize(), NodalNormalsCorner::initialize(), NodalNormalsEvaluator::initialize(), NodalNormalsPreprocessor::initialize(), MooseEigenSystem::initSystemSolution(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeNodalUserObjectsThread::onNode(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), Transient::relativeSolutionDifferenceNorm(), MultiApp::restore(), ElementSubdomainModifierBase::restoreOverriddenDofValues(), SystemBase::restoreSolutions(), SecantSolve::saveVariableValues(), SteffensenSolve::saveVariableValues(), PicardSolve::saveVariableValues(), MooseEigenSystem::scaleSystemSolution(), AuxiliarySystem::serializeSolution(), setConstraintSecondaryValues(), setInitialSolution(), DisplacedSystem::solutionInternal(), NonlinearEigenSystem::solve(), MultiAppDofCopyTransfer::transfer(), SecantSolve::transformVariables(), SteffensenSolve::transformVariables(), PicardSolve::transformVariables(), AuxiliarySystem::variableWiseRelativeSolutionDifferenceNorm(), and SystemBase::zeroVariables().

196 { return solutionState(0); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solution() [2/2]

const NumericVector<Number>& SystemBase::solution ( ) const
inlineinherited

Definition at line 199 of file SystemBase.h.

199 { return solutionState(0); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionInternal()

NumericVector< Number > & SolverSystem::solutionInternal ( ) const
inlinefinaloverrideprotectedvirtualinherited

Internal getter for solution owned by libMesh.

Implements SystemBase.

Definition at line 123 of file SolverSystem.h.

124 {
125  return *system().solution;
126 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::unique_ptr< NumericVector< Number > > solution

◆ solutionOld() [1/2]

NumericVector<Number>& SystemBase::solutionOld ( )
inlineinherited

◆ solutionOld() [2/2]

const NumericVector<Number>& SystemBase::solutionOld ( ) const
inlineinherited

Definition at line 200 of file SystemBase.h.

200 { return solutionState(1); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionOlder() [1/2]

NumericVector<Number>& SystemBase::solutionOlder ( )
inlineinherited

Definition at line 198 of file SystemBase.h.

Referenced by MooseEigenSystem::combineSystemSolution(), CentralDifference::computeTimeDerivatives(), ActivateElementsUserObjectBase::initSolutions(), MooseVariableScalar::reinit(), and ElementSubdomainModifierBase::setOldAndOlderSolutions().

198 { return solutionState(2); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionOlder() [2/2]

const NumericVector<Number>& SystemBase::solutionOlder ( ) const
inlineinherited

Definition at line 201 of file SystemBase.h.

201 { return solutionState(2); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionPreviousNewton() [1/2]

const NumericVector< Number > * SystemBase::solutionPreviousNewton ( ) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1355 of file SystemBase.C.

Referenced by AuxiliarySystem::copyCurrentIntoPreviousNL(), SystemBase::copyPreviousNonlinearSolutions(), and SystemBase::restoreSolutions().

1356 {
1359  else
1360  return nullptr;
1361 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionPreviousNewton() [2/2]

NumericVector< Number > * SystemBase::solutionPreviousNewton ( )
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1346 of file SystemBase.C.

1347 {
1350  else
1351  return nullptr;
1352 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionState() [1/2]

NumericVector< Number > & SystemBase::solutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
)
virtualinherited

Get a state of the solution (0 = current, 1 = old, 2 = older, etc).

If the state does not exist, it will be initialized in addition to any newer states before it that have not been initialized.

Reimplemented in DisplacedSystem.

Definition at line 1431 of file SystemBase.C.

Referenced by SystemBase::copyOldSolutions(), SystemBase::copyPreviousFixedPointSolutions(), SystemBase::copyPreviousNonlinearSolutions(), PointwiseRenormalizeVector::execute(), PointwiseRenormalizeVector::finalize(), MooseVariableBase::getSolution(), SystemBase::restoreOldSolutions(), SystemBase::saveOldSolutions(), SystemBase::solution(), SystemBase::solutionOld(), SystemBase::solutionOlder(), and DisplacedSystem::solutionState().

1433 {
1434  if (!hasSolutionState(state, iteration_type))
1435  needSolutionState(state, iteration_type);
1436  return *_solution_states[static_cast<unsigned short>(iteration_type)][state];
1437 }
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
virtual void needSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
Registers that the solution state state is needed.
Definition: SystemBase.C:1450
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ solutionState() [2/2]

const NumericVector< Number > & SystemBase::solutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
) const
virtualinherited

Get a state of the solution (0 = current, 1 = old, 2 = older, etc).

Reimplemented in DisplacedSystem.

Definition at line 1402 of file SystemBase.C.

1404 {
1405  if (!hasSolutionState(state, iteration_type))
1406  mooseError("For iteration type '",
1407  Moose::stringify(iteration_type),
1408  "': solution state ",
1409  state,
1410  " was requested in ",
1411  name(),
1412  " but only up to state ",
1413  (_solution_states[static_cast<unsigned short>(iteration_type)].size() == 0)
1414  ? 0
1415  : _solution_states[static_cast<unsigned short>(iteration_type)].size() - 1,
1416  " is available.");
1417 
1418  const auto & solution_states = _solution_states[static_cast<unsigned short>(iteration_type)];
1419 
1420  if (state == 0)
1421  mooseAssert(solution_states[0] == &solutionInternal(), "Inconsistent current solution");
1422  else
1423  mooseAssert(solution_states[state] ==
1424  &getVector(oldSolutionStateVectorName(state, iteration_type)),
1425  "Inconsistent solution state");
1426 
1427  return *solution_states[state];
1428 }
virtual NumericVector< Number > & solutionInternal() const =0
Internal getter for solution owned by libMesh.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
TagName oldSolutionStateVectorName(const unsigned int, Moose::SolutionIterationType iteration_type) const
Gets the vector name used for an old (not current) solution state.
Definition: SystemBase.C:1381
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionStateParallelType()

libMesh::ParallelType SystemBase::solutionStateParallelType ( const unsigned int  state,
const Moose::SolutionIterationType  iteration_type 
) const
inherited

Returns the parallel type of the given solution state.

Definition at line 1440 of file SystemBase.C.

Referenced by SystemBase::needSolutionState().

1442 {
1443  if (!hasSolutionState(state, iteration_type))
1444  mooseError("solutionStateParallelType() may only be called if the solution state exists.");
1445 
1446  return _solution_states[static_cast<unsigned short>(iteration_type)][state]->type();
1447 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ solutionStatesInitialized()

bool SystemBase::solutionStatesInitialized ( ) const
inlineinherited

Whether or not the solution states have been initialized via initSolutionState()

After the solution states have been initialized, additional solution states cannot be added.

Definition at line 896 of file SystemBase.h.

Referenced by ScalarKernelBase::uOld(), and AuxScalarKernel::uOld().

bool _solution_states_initialized
Whether or not the solution states have been initialized.
Definition: SystemBase.h:1061

◆ solutionUDot() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDot ( )
inlinevirtualinherited

◆ solutionUDot() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDot ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 265 of file SystemBase.h.

265 { return _u_dot; }
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006

◆ solutionUDotDot() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotDot ( )
inlinevirtualinherited

◆ solutionUDotDot() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotDot ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 266 of file SystemBase.h.

266 { return _u_dotdot; }
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008

◆ solutionUDotDotOld() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotDotOld ( )
inlinevirtualinherited

◆ solutionUDotDotOld() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotDotOld ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 268 of file SystemBase.h.

268 { return _u_dotdot_old; }
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ solutionUDotOld() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotOld ( )
inlinevirtualinherited

◆ solutionUDotOld() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotOld ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 267 of file SystemBase.h.

267 { return _u_dot_old; }
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011

◆ solve()

virtual void NonlinearSystemBase::solve ( )
overridepure virtual

◆ stopSolve()

virtual void SolverSystem::stopSolve ( const ExecFlagType exec_flag,
const std::set< TagID > &  vector_tags_to_close 
)
pure virtualinherited

◆ subdomainSetup() [1/3]

void SystemBase::subdomainSetup

Definition at line 1592 of file SystemBase.C.

1593 {
1594  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1595  _vars[tid].subdomainSetup();
1596 }
unsigned int n_threads()
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void subdomainSetup()
Definition: SystemBase.C:1592
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ subdomainSetup() [2/3]

void NonlinearSystemBase::subdomainSetup ( SubdomainID  subdomain,
THREAD_ID  tid 
)
virtual

Called from assembling when we hit a new subdomain.

Parameters
subdomainID of the new subdomain
tidThread ID

Definition at line 1030 of file NonlinearSystemBase.C.

1031 {
1033 
1034  _kernels.subdomainSetup(subdomain, tid);
1035  _nodal_kernels.subdomainSetup(subdomain, tid);
1036  _element_dampers.subdomainSetup(subdomain, tid);
1037  _nodal_dampers.subdomainSetup(subdomain, tid);
1038 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< KernelBase > _kernels
virtual void subdomainSetup()
Definition: SystemBase.C:1592
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
virtual void subdomainSetup(THREAD_ID tid=0) const

◆ subdomainSetup() [3/3]

void SystemBase::subdomainSetup ( )
virtualinherited

Reimplemented in AuxiliarySystem.

Definition at line 1592 of file SystemBase.C.

Referenced by AuxiliarySystem::subdomainSetup(), and subdomainSetup().

1593 {
1594  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1595  _vars[tid].subdomainSetup();
1596 }
unsigned int n_threads()
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void subdomainSetup()
Definition: SystemBase.C:1592
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ subproblem() [1/2]

SubProblem& SystemBase::subproblem ( )
inlineinherited

◆ subproblem() [2/2]

const SubProblem& SystemBase::subproblem ( ) const
inlineinherited

Definition at line 102 of file SystemBase.h.

102 { return _subproblem; }
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983

◆ system() [1/2]

virtual libMesh::System& NonlinearSystemBase::system ( )
inlineoverridevirtual

Get the reference to the libMesh system.

Implements SystemBase.

Definition at line 695 of file NonlinearSystemBase.h.

Referenced by Adaptivity::adaptMesh(), PhysicsBasedPreconditioner::addSystem(), PhysicsBasedPreconditioner::apply(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), computeScaling(), PseudoTimestep::currentResidualNorm(), DMMooseFunction(), DMMooseJacobian(), VariableResidual::execute(), getResidualNonTimeVector(), getResidualTimeVector(), NonlinearSystem::getSNES(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), ComputeJacobianThread::postElement(), residualGhosted(), Moose::PetscSupport::setLineSearchFromParams(), PhysicsBasedPreconditioner::setup(), setupScalingData(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), NonlinearSystem::solve(), NonlinearEigenSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), FieldSplitPreconditioner::system(), turnOffJacobian(), ReferenceResidualConvergence::updateReferenceResidual(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and Console::writeVariableNorms().

695 { return _sys; }
libMesh::System & _sys

◆ system() [2/2]

virtual const libMesh::System& NonlinearSystemBase::system ( ) const
inlineoverridevirtual

Implements SystemBase.

Definition at line 696 of file NonlinearSystemBase.h.

696 { return _sys; }
libMesh::System & _sys

◆ systemMatrixTag()

TagID NonlinearSystemBase::systemMatrixTag ( ) const
inlineoverridevirtual

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeKernelVariableNames()

std::vector< std::string > NonlinearSystemBase::timeKernelVariableNames ( )
overridevirtual

Returns the names of the variables that have time derivative kernels in the system.

Implements SolverSystem.

Definition at line 3832 of file NonlinearSystemBase.C.

3833 {
3834  std::vector<std::string> variable_names;
3835  const auto & time_kernels = _kernels.getVectorTagObjectWarehouse(timeVectorTag(), 0);
3836  if (time_kernels.hasActiveObjects())
3837  for (const auto & kernel : time_kernels.getObjects())
3838  variable_names.push_back(kernel->variable().name());
3839 
3840  return variable_names;
3841 }
MooseObjectTagWarehouse< KernelBase > _kernels
TagID timeVectorTag() const override
Ideally, we should not need this API.
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...

◆ timestepSetup()

void NonlinearSystemBase::timestepSetup ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 337 of file NonlinearSystemBase.C.

338 {
340 
341  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
342  {
343  _kernels.timestepSetup(tid);
346  if (_doing_dg)
352 
353  if (_fe_problem.haveFV())
354  {
355  std::vector<FVFluxBC *> bcs;
357  .query()
358  .template condition<AttribSystem>("FVFluxBC")
359  .template condition<AttribThread>(tid)
360  .queryInto(bcs);
361 
362  std::vector<FVInterfaceKernel *> iks;
364  .query()
365  .template condition<AttribSystem>("FVInterfaceKernel")
366  .template condition<AttribThread>(tid)
367  .queryInto(iks);
368 
369  std::vector<FVFluxKernel *> kernels;
371  .query()
372  .template condition<AttribSystem>("FVFluxKernel")
373  .template condition<AttribThread>(tid)
374  .queryInto(kernels);
375 
376  for (auto * bc : bcs)
377  bc->timestepSetup();
378  for (auto * ik : iks)
379  ik->timestepSetup();
380  for (auto * kernel : kernels)
381  kernel->timestepSetup();
382  }
383  }
390 
391 #ifdef MOOSE_KOKKOS_ENABLED
396 #endif
397 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
TheWarehouse & theWarehouse() const
virtual void timestepSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void timestepSetup()
Definition: SystemBase.C:1578
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ timeVectorTag()

TagID NonlinearSystemBase::timeVectorTag ( ) const
inlineoverridevirtual

Ideally, we should not need this API.

There exists a really bad API "addCachedResidualDirectly " in FEProblem and DisplacedProblem This API should go away once addCachedResidualDirectly is removed in the future Return Tag ID for Time

Reimplemented from SystemBase.

Definition at line 704 of file NonlinearSystemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), containsTimeKernel(), and timeKernelVariableNames().

704 { return _Re_time_tag; }
TagID _Re_time_tag
Tag for time contribution residual.

◆ turnOffJacobian()

void NonlinearSystemBase::turnOffJacobian ( )
virtual

Turn off the Jacobian (must be called before equation system initialization)

Reimplemented in NonlinearEigenSystem.

Definition at line 219 of file NonlinearSystemBase.C.

220 {
222  nonlinearSolver()->jacobian = NULL;
223 }
virtual libMesh::NonlinearSolver< Number > * nonlinearSolver()=0
void set_basic_system_only()
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ update()

void SystemBase::update ( )
inherited

◆ updateActive()

void NonlinearSystemBase::updateActive ( THREAD_ID  tid)

Update active objects of Warehouses owned by NonlinearSystemBase.

Definition at line 3357 of file NonlinearSystemBase.C.

3358 {
3365  _kernels.updateActive(tid);
3367 
3368  if (tid == 0)
3369  {
3377 
3378 #ifdef MOOSE_KOKKOS_ENABLED
3384 #endif
3385  }
3386 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
void updateActive(THREAD_ID tid=0) override
Update the various active lists.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void updateActive(THREAD_ID tid=0)
Updates the active objects storage.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ useFieldSplitPreconditioner()

void NonlinearSystemBase::useFieldSplitPreconditioner ( FieldSplitPreconditionerBase fsp)
inline

If called with a non-null object true this system will use a field split preconditioner matrix.

Definition at line 494 of file NonlinearSystemBase.h.

Referenced by FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl().

494 { _fsp = fsp; }
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ useFiniteDifferencedPreconditioner()

void NonlinearSystemBase::useFiniteDifferencedPreconditioner ( bool  use = true)
inline

If called with true this system will use a finite differenced form of the Jacobian as the preconditioner.

Definition at line 486 of file NonlinearSystemBase.h.

Referenced by FiniteDifferencePreconditioner::FiniteDifferencePreconditioner().

487  {
489  }
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.

◆ usePreSMOResidual()

const bool& NonlinearSystemBase::usePreSMOResidual ( ) const
inline

Whether we are using pre-SMO residual in relative convergence checks.

Definition at line 289 of file NonlinearSystemBase.h.

Referenced by Console::outputSystemInformation(), and referenceResidual().

289 { return _use_pre_smo_residual; }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.

◆ validParams()

InputParameters PerfGraphInterface::validParams ( )
staticinherited

Definition at line 16 of file PerfGraphInterface.C.

Referenced by Convergence::validParams().

17 {
19  return params;
20 }
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
InputParameters emptyInputParameters()

◆ varKind()

Moose::VarKindType SystemBase::varKind ( ) const
inlineinherited
Returns
the type of variables this system holds, e.g. nonlinear or auxiliary

Definition at line 924 of file SystemBase.h.

Referenced by Coupleable::coupled().

924 { return _var_kind; }
Moose::VarKindType _var_kind
default kind of variables in this system
Definition: SystemBase.h:1038

◆ zeroTaggedVector()

void SystemBase::zeroTaggedVector ( const TagID  tag)
inherited

Zero vector with the given tag.

Definition at line 674 of file SystemBase.C.

Referenced by SystemBase::zeroTaggedVectors().

675 {
676  if (!_subproblem.vectorTagExists(tag))
677  mooseError("Cannot zero vector with TagID ",
678  tag,
679  " in system '",
680  name(),
681  "' because that tag does not exist in the problem");
682  else if (!hasVector(tag))
683  mooseError("Cannot zero vector tag with name '",
685  "' in system '",
686  name(),
687  "' because there is no vector associated with that tag");
689  getVector(tag).zero();
690 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
bool vectorTagNotZeroed(const TagID tag) const
Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors ar...
Definition: SubProblem.C:156
virtual void zero()=0
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ zeroTaggedVectors()

void SystemBase::zeroTaggedVectors ( const std::set< TagID > &  tags)
inherited

Zero all vectors for given tags.

Definition at line 693 of file SystemBase.C.

Referenced by computeResidualAndJacobianTags(), and computeResidualTags().

694 {
695  for (const auto tag : tags)
696  zeroTaggedVector(tag);
697 }
void zeroTaggedVector(const TagID tag)
Zero vector with the given tag.
Definition: SystemBase.C:674

◆ zeroVariables()

void SystemBase::zeroVariables ( std::vector< std::string > &  vars_to_be_zeroed)
virtualinherited

Zero out the solution for the list of variables passed in.

@ param vars_to_be_zeroed The variable names in this vector will have their solutions set to zero after this call

Reimplemented in DisplacedSystem.

Definition at line 200 of file SystemBase.C.

Referenced by DisplacedSystem::zeroVariables(), SystemBase::zeroVariablesForJacobian(), and SystemBase::zeroVariablesForResidual().

201 {
202  if (vars_to_be_zeroed.size() > 0)
203  {
205 
206  auto problem = dynamic_cast<FEProblemBase *>(&_subproblem);
207  if (!problem)
208  mooseError("System needs to be registered in FEProblemBase for using zeroVariables.");
209 
210  AllLocalDofIndicesThread aldit(*problem, vars_to_be_zeroed, true);
212  Threads::parallel_reduce(elem_range, aldit);
213 
214  const auto & dof_indices_to_zero = aldit.getDofIndices();
215 
216  solution.close();
217 
218  for (const auto & dof : dof_indices_to_zero)
219  solution.set(dof, 0);
220 
221  solution.close();
222 
223  // Call update to update the current_local_solution for this system
224  system().update();
225  }
226 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Grab all the (possibly semi)local dof indices for the variables passed in, in the system passed in...
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual void close()=0
virtual void update()
MooseMesh & _mesh
Definition: SystemBase.h:991
virtual void set(const numeric_index_type i, const T value)=0

◆ zeroVariablesForJacobian()

void SystemBase::zeroVariablesForJacobian ( )
virtualinherited

Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on Jacobian evaluation by a call to addVariableToZeroOnResidual()

Definition at line 235 of file SystemBase.C.

236 {
238 }
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
Definition: SystemBase.h:1003
virtual void zeroVariables(std::vector< std::string > &vars_to_be_zeroed)
Zero out the solution for the list of variables passed in.
Definition: SystemBase.C:200

◆ zeroVariablesForResidual()

void SystemBase::zeroVariablesForResidual ( )
virtualinherited

Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on residual evaluation by a call to addVariableToZeroOnResidual()

Definition at line 229 of file SystemBase.C.

230 {
232 }
std::vector< std::string > _vars_to_be_zeroed_on_residual
Definition: SystemBase.h:1002
virtual void zeroVariables(std::vector< std::string > &vars_to_be_zeroed)
Zero out the solution for the list of variables passed in.
Definition: SystemBase.C:200

◆ zeroVectorForResidual()

void NonlinearSystemBase::zeroVectorForResidual ( const std::string &  vector_name)

Definition at line 795 of file NonlinearSystemBase.C.

796 {
797  for (unsigned int i = 0; i < _vecs_to_zero_for_residual.size(); ++i)
798  if (vector_name == _vecs_to_zero_for_residual[i])
799  return;
800 
801  _vecs_to_zero_for_residual.push_back(vector_name);
802 }
std::vector< std::string > _vecs_to_zero_for_residual
vectors that will be zeroed before a residual computation

Member Data Documentation

◆ _active_tagged_matrices

std::unordered_map<TagID, libMesh::SparseMatrix<Number> *> SystemBase::_active_tagged_matrices
protectedinherited

Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map. We use a map instead of a vector so that users can easily add and remove to this container with calls to (de)activateMatrixTag.

Definition at line 1025 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), SystemBase::deactivateAllMatrixTags(), and SystemBase::reinitElem().

◆ _ad_preset_nodal_bcs

MooseObjectWarehouse<ADDirichletBCBase> NonlinearSystemBase::_ad_preset_nodal_bcs
protected

◆ _add_implicit_geometric_coupling_entries_to_jacobian

bool NonlinearSystemBase::_add_implicit_geometric_coupling_entries_to_jacobian
protected

Whether or not to add implicit geometric couplings to the Jacobian for FDP.

Definition at line 977 of file NonlinearSystemBase.h.

Referenced by addImplicitGeometricCouplingEntriesToJacobian(), augmentSparsity(), and computeJacobianInternal().

◆ _app

MooseApp& SystemBase::_app
protectedinherited

◆ _assemble_constraints_separately

bool NonlinearSystemBase::_assemble_constraints_separately
protected

Whether or not to assemble the residual and Jacobian after the application of each constraint.

Definition at line 980 of file NonlinearSystemBase.h.

Referenced by assembleConstraintsSeparately(), constraintJacobians(), and constraintResiduals().

◆ _auto_scaling_initd

bool NonlinearSystemBase::_auto_scaling_initd
private

Whether we've initialized the automatic scaling data structures.

Definition at line 1084 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _automatic_scaling

bool SystemBase::_automatic_scaling
protectedinherited

Whether to automatically scale the variables.

Definition at line 1055 of file SystemBase.h.

Referenced by SystemBase::automaticScaling(), initialSetup(), and preSolve().

◆ _compute_scaling_once

bool NonlinearSystemBase::_compute_scaling_once
protected

Whether the scaling factors should only be computed once at the beginning of the simulation through an extra Jacobian evaluation.

If this is set to false, then the scaling factors will be computed during an extra Jacobian evaluation at the beginning of every time step.

Definition at line 1035 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and computeScalingOnce().

◆ _computed_scaling

bool NonlinearSystemBase::_computed_scaling
protected

Flag used to indicate whether we have already computed the scaling Jacobian.

Definition at line 1030 of file NonlinearSystemBase.h.

Referenced by computedScalingJacobian(), and computeScaling().

◆ _computing_pre_smo_residual

bool NonlinearSystemBase::_computing_pre_smo_residual
protected

Definition at line 1004 of file NonlinearSystemBase.h.

Referenced by computingPreSMOResidual(), and NonlinearSystem::solve().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), NonlinearEigen::init(), InversePowerMethod::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), SubProblem::initialSetup(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), FixedPointSolve::solve(), NonlinearSystem::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), SubProblem::timestepSetup(), FEProblemBase::updateMeshXFEM(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _constraints

ConstraintWarehouse NonlinearSystemBase::_constraints
protected

◆ _current_l_its

std::vector<unsigned int> NonlinearSystemBase::_current_l_its

Definition at line 750 of file NonlinearSystemBase.h.

Referenced by SolutionHistory::output(), and preSolve().

◆ _current_nl_its

unsigned int NonlinearSystemBase::_current_nl_its

◆ _current_solution

const NumericVector<Number>* SolverSystem::_current_solution
protectedinherited

◆ _debugging_residuals

bool NonlinearSystemBase::_debugging_residuals
protected

true if debugging residuals

Definition at line 985 of file NonlinearSystemBase.h.

Referenced by computeResidualTags(), and debuggingResiduals().

◆ _dg_kernels

MooseObjectTagWarehouse<DGKernelBase> NonlinearSystemBase::_dg_kernels
protected

◆ _dirac_kernels

MooseObjectTagWarehouse<DiracKernelBase> NonlinearSystemBase::_dirac_kernels
protected

◆ _displaced_mortar_functors

std::unordered_map<std::pair<BoundaryID, BoundaryID>, ComputeMortarFunctor> NonlinearSystemBase::_displaced_mortar_functors
private

Functors for computing displaced mortar constraints.

Definition at line 1078 of file NonlinearSystemBase.h.

Referenced by initialSetup(), mortarConstraints(), and reinitMortarFunctors().

◆ _doing_dg

bool NonlinearSystemBase::_doing_dg
protected

true if DG is active (optimization reasons)

Definition at line 988 of file NonlinearSystemBase.h.

Referenced by addDGKernel(), customSetup(), doingDG(), initialSetup(), jacobianSetup(), residualSetup(), and timestepSetup().

◆ _du_dot_du

Number NonlinearSystemBase::_du_dot_du
protected

\( {du^dot}\over{du} \)

Definition at line 884 of file NonlinearSystemBase.h.

◆ _du_dotdot_du

Number NonlinearSystemBase::_du_dotdot_du
protected

\( {du^dotdot}\over{du} \)

Definition at line 886 of file NonlinearSystemBase.h.

◆ _element_dampers

MooseObjectWarehouse<ElementDamper> NonlinearSystemBase::_element_dampers
protected

◆ _factory

Factory& SystemBase::_factory
protectedinherited

◆ _fdcoloring

MatFDColoring NonlinearSystemBase::_fdcoloring
protected

◆ _fe_problem

FEProblemBase& SystemBase::_fe_problem
protectedinherited

the governing finite element/volume problem

Definition at line 986 of file SystemBase.h.

Referenced by addBoundaryCondition(), addDGKernel(), addDiracKernel(), SystemBase::addDotVectors(), addHDGKernel(), addInterfaceKernel(), addKernel(), addNodalKernel(), addScalarKernel(), addSplit(), assembleScalingVector(), augmentSparsity(), SolverSystem::checkInvalidSolution(), checkKernelCoverage(), AuxiliarySystem::clearScalarVariableCoupleableTags(), SolverSystem::compute(), AuxiliarySystem::compute(), computeDamping(), computeDiracContributions(), AuxiliarySystem::computeElementalVarsHelper(), LinearSystem::computeGradients(), computeJacobian(), computeJacobianBlocks(), computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), LinearSystem::computeLinearSystemTags(), AuxiliarySystem::computeMortarNodalVars(), computeNodalBCs(), computeNodalBCsResidualAndJacobian(), AuxiliarySystem::computeNodalVarsHelper(), computeResidualAndJacobianInternal(), computeResidualInternal(), computeResidualTags(), computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), computeScaling(), NonlinearSystem::computeScalingJacobian(), NonlinearSystem::computeScalingResidual(), constraintJacobians(), constraintResiduals(), LinearSystem::containsTimeKernel(), NonlinearSystem::converged(), customSetup(), MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), enforceNodalConstraintsJacobian(), enforceNodalConstraintsResidual(), SystemBase::feProblem(), getResidualNonTimeVector(), getResidualTimeVector(), LinearSystem::initialSetup(), initialSetup(), jacobianSetup(), LinearSystem::LinearSystem(), NonlinearSystemBase(), overwriteNodeFace(), NonlinearSystem::potentiallySetupFiniteDifferencing(), preInit(), reinitNodeFace(), NonlinearSystem::residualAndJacobianTogether(), residualSetup(), setConstraintSecondaryValues(), setInitialSolution(), AuxiliarySystem::setScalarVariableCoupleableTags(), shouldEvaluatePreSMOResidual(), NonlinearSystem::solve(), and timestepSetup().

◆ _final_residual

Real NonlinearSystemBase::_final_residual
protected

Definition at line 999 of file NonlinearSystemBase.h.

Referenced by finalNonlinearResidual(), and NonlinearSystem::solve().

◆ _fsp

FieldSplitPreconditionerBase* NonlinearSystemBase::_fsp
protected

The field split preconditioner if this sytem is using one.

Definition at line 974 of file NonlinearSystemBase.h.

Referenced by getFieldSplitPreconditioner(), haveFieldSplitPreconditioner(), setupDM(), and useFieldSplitPreconditioner().

◆ _general_dampers

MooseObjectWarehouse<GeneralDamper> NonlinearSystemBase::_general_dampers
protected

◆ _has_diag_save_in

bool NonlinearSystemBase::_has_diag_save_in
protected

◆ _has_nodalbc_diag_save_in

bool NonlinearSystemBase::_has_nodalbc_diag_save_in
protected

If there is a nodal BC having diag_save_in.

Definition at line 1025 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), computeJacobianInternal(), and hasDiagSaveIn().

◆ _has_nodalbc_save_in

bool NonlinearSystemBase::_has_nodalbc_save_in
protected

If there is a nodal BC having save_in.

Definition at line 1022 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), computeResidualTags(), and hasSaveIn().

◆ _has_save_in

bool NonlinearSystemBase::_has_save_in
protected

◆ _hybridized_kernels

MooseObjectTagWarehouse<HDGKernel> NonlinearSystemBase::_hybridized_kernels
protected

Definition at line 917 of file NonlinearSystemBase.h.

Referenced by addHDGKernel(), and getHDGKernelWarehouse().

◆ _ignore_variables_for_autoscaling

std::vector<std::string> NonlinearSystemBase::_ignore_variables_for_autoscaling
protected

A container for variables that do not partipate in autoscaling.

Definition at line 1051 of file NonlinearSystemBase.h.

Referenced by ignoreVariablesForAutoscaling(), and setupScalingData().

◆ _increment_vec

NumericVector<Number>* NonlinearSystemBase::_increment_vec
protected

◆ _initial_residual

Real NonlinearSystemBase::_initial_residual
protected

The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanation.

Definition at line 1009 of file NonlinearSystemBase.h.

Referenced by initialResidual(), and setInitialResidual().

◆ _integrated_bcs

MooseObjectTagWarehouse<IntegratedBCBase> NonlinearSystemBase::_integrated_bcs
protected

◆ _interface_kernels

MooseObjectTagWarehouse<InterfaceKernelBase> NonlinearSystemBase::_interface_kernels
protected

◆ _Ke_non_time_tag

TagID NonlinearSystemBase::_Ke_non_time_tag
protected

Tag for non-time contribution Jacobian.

Definition at line 909 of file NonlinearSystemBase.h.

◆ _Ke_system_tag

TagID NonlinearSystemBase::_Ke_system_tag
protected

Tag for system contribution Jacobian.

Definition at line 912 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase(), and systemMatrixTag().

◆ _kernels

MooseObjectTagWarehouse<KernelBase> NonlinearSystemBase::_kernels
protected

◆ _kokkos_integrated_bcs

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_integrated_bcs
protected

◆ _kokkos_kernels

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_kernels
protected

Kokkos residual object warhouses

Definition at line 934 of file NonlinearSystemBase.h.

Referenced by checkKernelCoverage(), customSetup(), initialSetup(), jacobianSetup(), residualSetup(), timestepSetup(), and updateActive().

◆ _kokkos_nodal_bcs

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_nodal_bcs
protected

◆ _kokkos_nodal_kernels

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_nodal_kernels
protected

◆ _kokkos_preset_nodal_bcs

MooseObjectWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_preset_nodal_bcs
protected

Definition at line 937 of file NonlinearSystemBase.h.

Referenced by setInitialSolution(), and updateActive().

◆ _ksp_norm

Moose::MooseKSPNormType SolverSystem::_ksp_norm
protectedinherited

KSP norm type.

Definition at line 110 of file SolverSystem.h.

Referenced by SolverSystem::getMooseKSPNormType(), and SolverSystem::setMooseKSPNormType().

◆ _last_nl_rnorm

Real NonlinearSystemBase::_last_nl_rnorm

◆ _matrix_tag_active_flags

std::vector<bool> SystemBase::_matrix_tag_active_flags
protectedinherited

Active flags for tagged matrices.

Definition at line 1027 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), SystemBase::deactivateAllMatrixTags(), and SystemBase::matrixTagActive().

◆ _max_var_n_dofs_per_elem

size_t SystemBase::_max_var_n_dofs_per_elem
protectedinherited

Maximum number of dofs for any one variable on any one element.

Definition at line 1043 of file SystemBase.h.

Referenced by SystemBase::assignMaxVarNDofsPerElem(), and SystemBase::getMaxVarNDofsPerElem().

◆ _max_var_n_dofs_per_node

size_t SystemBase::_max_var_n_dofs_per_node
protectedinherited

Maximum number of dofs for any one variable on any one node.

Definition at line 1046 of file SystemBase.h.

Referenced by SystemBase::assignMaxVarNDofsPerNode(), and SystemBase::getMaxVarNDofsPerNode().

◆ _max_var_number

unsigned int SystemBase::_max_var_number
protectedinherited

Maximum variable number.

Definition at line 1000 of file SystemBase.h.

Referenced by SystemBase::addVariable(), and SystemBase::getMaxVariableNumber().

◆ _mesh

MooseMesh& SystemBase::_mesh
protectedinherited

◆ _n_iters

unsigned int NonlinearSystemBase::_n_iters
protected

Definition at line 993 of file NonlinearSystemBase.h.

Referenced by nNonlinearIterations(), and NonlinearSystem::solve().

◆ _n_linear_iters

unsigned int NonlinearSystemBase::_n_linear_iters
protected

Definition at line 994 of file NonlinearSystemBase.h.

Referenced by nLinearIterations(), and NonlinearSystem::solve().

◆ _n_residual_evaluations

unsigned int NonlinearSystemBase::_n_residual_evaluations
protected

Total number of residual evaluations that have been performed.

Definition at line 997 of file NonlinearSystemBase.h.

Referenced by computeResidualTags(), and nResidualEvaluations().

◆ _name

std::string SystemBase::_name
protectedinherited

The name of this system.

Definition at line 993 of file SystemBase.h.

◆ _need_residual_ghosted

bool NonlinearSystemBase::_need_residual_ghosted
protected

Whether or not a ghosted copy of the residual needs to be made.

Definition at line 983 of file NonlinearSystemBase.h.

Referenced by computeResidualInternal(), computeResidualTags(), constraintResiduals(), getResidualNonTimeVector(), getResidualTimeVector(), and residualGhosted().

◆ _nl_matrix_tags

std::set<TagID> NonlinearSystemBase::_nl_matrix_tags
protected

Matrix tags to temporarily store all tags associated with the current system.

Definition at line 895 of file NonlinearSystemBase.h.

Referenced by computeJacobian(), and computeJacobianBlocks().

◆ _nl_vector_tags

std::set<TagID> NonlinearSystemBase::_nl_vector_tags
protected

Vector tags to temporarily store all tags associated with the current system.

Definition at line 892 of file NonlinearSystemBase.h.

Referenced by computeResidualTag().

◆ _nodal_bcs

MooseObjectTagWarehouse<NodalBCBase> NonlinearSystemBase::_nodal_bcs
protected

◆ _nodal_dampers

MooseObjectWarehouse<NodalDamper> NonlinearSystemBase::_nodal_dampers
protected

◆ _nodal_kernels

MooseObjectTagWarehouse<NodalKernelBase> NonlinearSystemBase::_nodal_kernels
protected

◆ _num_residual_evaluations

unsigned int NonlinearSystemBase::_num_residual_evaluations

Definition at line 591 of file NonlinearSystemBase.h.

◆ _num_scaling_groups

std::size_t NonlinearSystemBase::_num_scaling_groups
private

The number of scaling groups.

Definition at line 1090 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _numbered_vars

std::vector<std::vector<MooseVariableFieldBase *> > SystemBase::_numbered_vars
protectedinherited

Map variable number to its pointer.

Definition at line 1052 of file SystemBase.h.

Referenced by SystemBase::addVariable(), and SystemBase::getVariable().

◆ _off_diagonals_in_auto_scaling

bool NonlinearSystemBase::_off_diagonals_in_auto_scaling
protected

Whether to include off diagonals when determining automatic scaling factors.

Definition at line 1054 of file NonlinearSystemBase.h.

Referenced by initialSetup(), and offDiagonalsInAutoScaling().

◆ _pc_side

Moose::PCSideType SolverSystem::_pc_side
protectedinherited

Preconditioning side.

Definition at line 108 of file SolverSystem.h.

Referenced by SolverSystem::getPCSide(), and SolverSystem::setPCSide().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _pre_smo_residual

Real NonlinearSystemBase::_pre_smo_residual
protected

The pre-SMO residual, see setPreSMOResidual for a detailed explanation.

Definition at line 1007 of file NonlinearSystemBase.h.

Referenced by preSMOResidual(), and NonlinearSystem::solve().

◆ _preconditioner

std::shared_ptr<MoosePreconditioner> NonlinearSystemBase::_preconditioner
protected

◆ _predictor

std::shared_ptr<Predictor> NonlinearSystemBase::_predictor
protected

If predictor is active, this is non-NULL.

Definition at line 1002 of file NonlinearSystemBase.h.

Referenced by getPredictor(), onTimestepBegin(), setInitialSolution(), and setPredictor().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _preset_nodal_bcs

MooseObjectWarehouse<DirichletBCBase> NonlinearSystemBase::_preset_nodal_bcs
protected

◆ _print_all_var_norms

bool NonlinearSystemBase::_print_all_var_norms
protected

Definition at line 1013 of file NonlinearSystemBase.h.

Referenced by printAllVariableNorms().

◆ _raw_grad_container

std::vector<std::unique_ptr<NumericVector<Number> > > SystemBase::_raw_grad_container
protectedinherited

A cache for storing gradients at dof locations.

We store it on the system because we create copies of variables on each thread and that would lead to increased data duplication when using threading-based parallelism.

Definition at line 1073 of file SystemBase.h.

Referenced by LinearSystem::computeGradients(), SystemBase::gradientContainer(), and SystemBase::initialSetup().

◆ _Re_non_time

NumericVector<Number>* NonlinearSystemBase::_Re_non_time
protected

◆ _Re_non_time_tag

TagID NonlinearSystemBase::_Re_non_time_tag
protected

Tag for non-time contribution residual.

Definition at line 901 of file NonlinearSystemBase.h.

Referenced by getResidualNonTimeVector(), nonTimeVectorTag(), and residualGhosted().

◆ _Re_tag

TagID NonlinearSystemBase::_Re_tag
protected

Used for the residual vector from PETSc.

Definition at line 906 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase(), and residualVectorTag().

◆ _Re_time

NumericVector<Number>* NonlinearSystemBase::_Re_time
protected

residual vector for time contributions

Definition at line 898 of file NonlinearSystemBase.h.

Referenced by computeNodalBCs(), getResidualTimeVector(), and residualGhosted().

◆ _Re_time_tag

TagID NonlinearSystemBase::_Re_time_tag
protected

Tag for time contribution residual.

Definition at line 889 of file NonlinearSystemBase.h.

Referenced by getResidualTimeVector(), residualGhosted(), and timeVectorTag().

◆ _resid_vs_jac_scaling_param

Real NonlinearSystemBase::_resid_vs_jac_scaling_param
protected

The param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters.

A value of 1 indicates pure residual-based scaling. A value of 0 indicates pure Jacobian-based scaling

Definition at line 1040 of file NonlinearSystemBase.h.

Referenced by autoScalingParam(), and computeScaling().

◆ _residual_copy

std::unique_ptr<NumericVector<Number> > NonlinearSystemBase::_residual_copy
protected

Copy of the residual vector, or nullptr if a copy is not needed.

Definition at line 881 of file NonlinearSystemBase.h.

Referenced by computeResidualInternal(), preInit(), and residualCopy().

◆ _residual_ghosted

NumericVector<Number>* NonlinearSystemBase::_residual_ghosted
protected

ghosted form of the residual

Definition at line 878 of file NonlinearSystemBase.h.

Referenced by computeResidualInternal(), computeResidualTags(), constraintResiduals(), and residualGhosted().

◆ _saved_dot_old

NumericVector<Real>* SystemBase::_saved_dot_old
protectedinherited

Definition at line 1034 of file SystemBase.h.

Referenced by SystemBase::restoreOldSolutions(), and SystemBase::saveOldSolutions().

◆ _saved_dotdot_old

NumericVector<Real>* SystemBase::_saved_dotdot_old
protectedinherited

Definition at line 1035 of file SystemBase.h.

Referenced by SystemBase::restoreOldSolutions(), and SystemBase::saveOldSolutions().

◆ _saved_old

NumericVector<Real>* SystemBase::_saved_old
protectedinherited

Definition at line 1030 of file SystemBase.h.

◆ _saved_older

NumericVector<Real>* SystemBase::_saved_older
protectedinherited

Definition at line 1031 of file SystemBase.h.

◆ _scalar_kernels

MooseObjectTagWarehouse<ScalarKernelBase> NonlinearSystemBase::_scalar_kernels
protected

◆ _scaling_group_variables

std::vector<std::vector<std::string> > NonlinearSystemBase::_scaling_group_variables
protected

A container of variable groupings that can be used in scaling calculations.

This can be useful for simulations in which vector-like variables are split into invidual scalar-field components like for solid/fluid mechanics

Definition at line 1045 of file NonlinearSystemBase.h.

Referenced by scalingGroupVariables(), and setupScalingData().

◆ _scaling_matrix

std::unique_ptr<libMesh::DiagonalMatrix<Number> > NonlinearSystemBase::_scaling_matrix
protected

A diagonal matrix used for computing scaling.

Definition at line 1057 of file NonlinearSystemBase.h.

Referenced by computeScaling(), NonlinearSystem::computeScalingJacobian(), NonlinearEigenSystem::computeScalingJacobian(), and initialSetup().

◆ _serialized_solution

std::unique_ptr<NumericVector<Number> > SystemBase::_serialized_solution
protectedinherited

Serialized version of the solution vector, or nullptr if a serialized solution is not needed.

Definition at line 1068 of file SystemBase.h.

Referenced by AuxiliarySystem::compute(), SolverSystem::preInit(), SystemBase::serializedSolution(), SolverSystem::serializeSolution(), AuxiliarySystem::serializeSolution(), and SolverSystem::setSolution().

◆ _solution_is_invalid

bool SolverSystem::_solution_is_invalid
protectedinherited

Boolean to see if solution is invalid.

Definition at line 113 of file SolverSystem.h.

◆ _solution_state

std::vector<NumericVector<Number> *> NonlinearSystemBase::_solution_state
private

The current states of the solution (0 = current, 1 = old, etc)

Definition at line 1081 of file NonlinearSystemBase.h.

◆ _solution_states_initialized

bool SystemBase::_solution_states_initialized
protectedinherited

Whether or not the solution states have been initialized.

Definition at line 1061 of file SystemBase.h.

Referenced by SystemBase::initSolutionState(), and SystemBase::solutionStatesInitialized().

◆ _splits

MooseObjectWarehouseBase<Split> NonlinearSystemBase::_splits
protected

Decomposition splits.

Definition at line 958 of file NonlinearSystemBase.h.

Referenced by addSplit(), getSplit(), getSplits(), and updateActive().

◆ _subproblem

SubProblem& SystemBase::_subproblem
protectedinherited

◆ _sys

libMesh::System& NonlinearSystemBase::_sys

◆ _tagged_matrices

std::vector<libMesh::SparseMatrix<Number> *> SystemBase::_tagged_matrices
protectedinherited

◆ _tagged_vectors

std::vector<NumericVector<Number> *> SystemBase::_tagged_vectors
protectedinherited

◆ _time_integrators

std::vector<std::shared_ptr<TimeIntegrator> > SystemBase::_time_integrators
protectedinherited

◆ _u_dot

NumericVector<Number>* SystemBase::_u_dot
protectedinherited

solution vector for u^dot

Definition at line 1006 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDot(), and SystemBase::solutionUDot().

◆ _u_dot_old

NumericVector<Number>* SystemBase::_u_dot_old
protectedinherited

old solution vector for u^dot

Definition at line 1011 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDotOld(), and SystemBase::solutionUDotOld().

◆ _u_dotdot

NumericVector<Number>* SystemBase::_u_dotdot
protectedinherited

solution vector for u^dotdot

Definition at line 1008 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDotDot(), and SystemBase::solutionUDotDot().

◆ _u_dotdot_old

NumericVector<Number>* SystemBase::_u_dotdot_old
protectedinherited

old solution vector for u^dotdot

Definition at line 1013 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDotDotOld(), and SystemBase::solutionUDotDotOld().

◆ _undisplaced_mortar_functors

std::unordered_map<std::pair<BoundaryID, BoundaryID>, ComputeMortarFunctor> NonlinearSystemBase::_undisplaced_mortar_functors
private

Functors for computing undisplaced mortar constraints.

Definition at line 1074 of file NonlinearSystemBase.h.

Referenced by initialSetup(), mortarConstraints(), and reinitMortarFunctors().

◆ _use_finite_differenced_preconditioner

bool NonlinearSystemBase::_use_finite_differenced_preconditioner
protected

Whether or not to use a finite differenced preconditioner.

Definition at line 969 of file NonlinearSystemBase.h.

Referenced by haveFiniteDifferencedPreconditioner(), NonlinearSystem::potentiallySetupFiniteDifferencing(), and useFiniteDifferencedPreconditioner().

◆ _use_pre_smo_residual

bool NonlinearSystemBase::_use_pre_smo_residual
protected

Whether to use the pre-SMO initial residual in the relative convergence check.

Definition at line 1011 of file NonlinearSystemBase.h.

Referenced by setPreSMOResidual(), shouldEvaluatePreSMOResidual(), and usePreSMOResidual().

◆ _var_all_dof_indices

std::vector<dof_id_type> SystemBase::_var_all_dof_indices
protectedinherited

Container for the dof indices of a given variable.

Definition at line 1064 of file SystemBase.h.

Referenced by SystemBase::getVariableGlobalDoFs(), and SystemBase::setVariableGlobalDoFs().

◆ _var_kind

Moose::VarKindType SystemBase::_var_kind
protectedinherited

default kind of variables in this system

Definition at line 1038 of file SystemBase.h.

Referenced by SystemBase::varKind().

◆ _var_map

std::map<unsigned int, std::set<SubdomainID> > SystemBase::_var_map
protectedinherited

Map of variables (variable id -> array of subdomains where it lives)

Definition at line 998 of file SystemBase.h.

Referenced by SystemBase::addVariable(), SystemBase::getSubdomainsForVar(), and SystemBase::getVariableBlocks().

◆ _var_to_copy

std::vector<VarCopyInfo> SystemBase::_var_to_copy
protectedinherited

◆ _var_to_group_var

std::unordered_map<unsigned int, unsigned int> NonlinearSystemBase::_var_to_group_var
private

A map from variable index to group variable index and it's associated (inverse) scaling factor.

Definition at line 1087 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _variable_autoscaled

std::vector<bool> NonlinearSystemBase::_variable_autoscaled
protected

Container to hold flag if variable is to participate in autoscaling.

Definition at line 1048 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _vars

std::vector<VariableWarehouse> SystemBase::_vars
protectedinherited

Variable warehouses (one for each thread)

Definition at line 996 of file SystemBase.h.

Referenced by addBoundaryCondition(), addInterfaceKernel(), AuxiliarySystem::addVariable(), SystemBase::addVariable(), SystemBase::applyScalingFactors(), assembleScalingVector(), SystemBase::clearAllDofIndices(), AuxiliarySystem::compute(), SystemBase::customSetup(), SystemBase::getActualFieldVariable(), SystemBase::getFieldVariable(), SystemBase::getFVVariable(), AuxiliarySystem::getMinQuadratureOrder(), SystemBase::getMinQuadratureOrder(), SystemBase::getScalarVariable(), SystemBase::getScalarVariables(), SystemBase::getVariable(), SystemBase::getVariableNames(), SystemBase::getVariables(), LinearSystem::initialSetup(), SystemBase::initialSetup(), SystemBase::jacobianSetup(), SystemBase::nFieldVariables(), SystemBase::nFVVariables(), SystemBase::nVariables(), SystemBase::prepare(), SystemBase::prepareFace(), SystemBase::prepareLowerD(), SystemBase::prepareNeighbor(), SystemBase::reinitElem(), SystemBase::reinitElemFace(), SystemBase::reinitLowerD(), SystemBase::reinitNeighbor(), SystemBase::reinitNeighborFace(), SystemBase::reinitNode(), SystemBase::reinitNodeFace(), SystemBase::reinitNodes(), SystemBase::reinitNodesNeighbor(), SystemBase::reinitScalars(), SystemBase::residualSetup(), SystemBase::setActiveScalarVariableCoupleableVectorTags(), SystemBase::setActiveVariableCoupleableVectorTags(), setupScalingData(), SystemBase::sizeVariableMatrixData(), SystemBase::subdomainSetup(), and SystemBase::timestepSetup().

◆ _vars_to_be_zeroed_on_jacobian

std::vector<std::string> SystemBase::_vars_to_be_zeroed_on_jacobian
protectedinherited

◆ _vars_to_be_zeroed_on_residual

std::vector<std::string> SystemBase::_vars_to_be_zeroed_on_residual
protectedinherited

◆ _vecs_to_zero_for_residual

std::vector<std::string> NonlinearSystemBase::_vecs_to_zero_for_residual
protected

vectors that will be zeroed before a residual computation

Definition at line 991 of file NonlinearSystemBase.h.

Referenced by computeResidualTags(), and zeroVectorForResidual().

◆ _verbose

bool SystemBase::_verbose
protectedinherited

True if printing out additional information.

Definition at line 1058 of file SystemBase.h.

Referenced by SystemBase::applyScalingFactors(), and SystemBase::setVerboseFlag().


The documentation for this class was generated from the following files: