https://mooseframework.inl.gov
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
NonlinearSystemBase Class Referenceabstract

Nonlinear system to be solved. More...

#include <NonlinearSystemBase.h>

Inheritance diagram for NonlinearSystemBase:
[legend]

Public Member Functions

 NonlinearSystemBase (FEProblemBase &problem, libMesh::System &sys, const std::string &name)
 
virtual ~NonlinearSystemBase ()
 
virtual void preInit () override
 This is called prior to the libMesh system has been init'd. More...
 
void reinitMortarFunctors ()
 Update the mortar functors if the mesh has changed. More...
 
bool computedScalingJacobian () const
 
virtual void turnOffJacobian ()
 Turn off the Jacobian (must be called before equation system initialization) More...
 
virtual void solve () override=0
 Solve the system (using libMesh magic) More...
 
virtual libMesh::NonlinearSolver< Number > * nonlinearSolver ()=0
 
virtual SNES getSNES ()=0
 
virtual unsigned int getCurrentNonlinearIterationNumber ()=0
 
bool computingPreSMOResidual ()
 Returns true if this system is currently computing the pre-SMO residual for a solve. More...
 
virtual void initialSetup () override
 Setup Functions. More...
 
virtual void timestepSetup () override
 
virtual void customSetup (const ExecFlagType &exec_type) override
 
virtual void residualSetup () override
 
virtual void jacobianSetup () override
 
virtual void setupFiniteDifferencedPreconditioner ()=0
 
bool haveFiniteDifferencedPreconditioner () const
 
bool haveFieldSplitPreconditioner () const
 
virtual void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a kernel. More...
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a hybridized discontinuous Galerkin (HDG) kernel. More...
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a NodalKernel. More...
 
void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a scalar kernel. More...
 
void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 Adds a boundary condition. More...
 
virtual void addKokkosKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos kernel. More...
 
virtual void addKokkosNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos nodal kernel. More...
 
void addKokkosBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos boundary condition. More...
 
void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 Adds a Constraint. More...
 
void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Dirac kernel. More...
 
void addDGKernel (std::string dg_kernel_name, const std::string &name, InputParameters &parameters)
 Adds a DG kernel. More...
 
void addInterfaceKernel (std::string interface_kernel_name, const std::string &name, InputParameters &parameters)
 Adds an interface kernel. More...
 
void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 Adds a damper. More...
 
void addSplit (const std::string &split_name, const std::string &name, InputParameters &parameters)
 Adds a split. More...
 
std::shared_ptr< SplitgetSplit (const std::string &name)
 Retrieves a split by name. More...
 
MooseObjectWarehouseBase< Split > & getSplits ()
 Retrieves all splits. More...
 
bool shouldEvaluatePreSMOResidual () const
 We offer the option to check convergence against the pre-SMO residual. More...
 
void setPreSMOResidual (bool use)
 Set whether to evaluate the pre-SMO residual and use it in the subsequent relative convergence checks. More...
 
const bool & usePreSMOResidual () const
 Whether we are using pre-SMO residual in relative convergence checks. More...
 
Real referenceResidual () const
 The reference residual used in relative convergence check. More...
 
Real preSMOResidual () const
 The pre-SMO residual. More...
 
Real initialResidual () const
 The initial residual. More...
 
void setInitialResidual (Real r)
 Record the initial residual (for later relative convergence check) More...
 
void zeroVectorForResidual (const std::string &vector_name)
 
void setInitialSolution ()
 
void setKokkosInitialSolution ()
 
void setConstraintSecondaryValues (NumericVector< Number > &solution, bool displaced)
 Sets the value of constrained variables in the solution vector. More...
 
void constraintResiduals (NumericVector< Number > &residual, bool displaced)
 Add residual contributions from Constraints. More...
 
void computeResidualTag (NumericVector< Number > &residual, TagID tag_id)
 Computes residual for a given tag. More...
 
void computeResidualTags (const std::set< TagID > &tags)
 Form multiple tag-associated residual vectors for all the given tags. More...
 
void computeResidualAndJacobianTags (const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Form possibly multiple tag-associated vectors and matrices. More...
 
void computeResidualAndJacobianInternal (const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary conditions. More...
 
void computeResidual (NumericVector< Number > &residual, TagID tag_id)
 Form a residual vector for a given tag. More...
 
void addImplicitGeometricCouplingEntries (GeometricSearchData &geom_search_data)
 Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled that are related geometrically (i.e. More...
 
void constraintJacobians (const SparseMatrix< Number > &jacobian_to_view, bool displaced)
 Add jacobian contributions from Constraints. More...
 
void computeJacobianTags (const std::set< TagID > &tags)
 Computes multiple (tag associated) Jacobian matricese. More...
 
bool computeScaling ()
 Method used to obtain scaling factors for variables. More...
 
void computeJacobian (libMesh::SparseMatrix< Number > &jacobian, const std::set< TagID > &tags)
 Associate jacobian to systemMatrixTag, and then form a matrix for all the tags. More...
 
void computeJacobian (libMesh::SparseMatrix< Number > &jacobian)
 Take all tags in the system, and form a matrix for all tags in the system. More...
 
void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const std::set< TagID > &tags)
 
Real computeDamping (const NumericVector< Number > &solution, const NumericVector< Number > &update)
 Compute damping. More...
 
void onTimestepBegin ()
 Called at the beginning of the time step. More...
 
virtual void subdomainSetup (SubdomainID subdomain, THREAD_ID tid)
 Called from assembling when we hit a new subdomain. More...
 
void overwriteNodeFace (NumericVector< Number > &soln)
 Called from explicit time stepping to overwrite boundary positions (explicit dynamics). More...
 
void updateActive (THREAD_ID tid)
 Update active objects of Warehouses owned by NonlinearSystemBase. More...
 
virtual void setSolutionUDot (const NumericVector< Number > &udot)
 Set transient term used by residual and Jacobian evaluation. More...
 
virtual void setSolutionUDotDot (const NumericVector< Number > &udotdot)
 Set transient term used by residual and Jacobian evaluation. More...
 
NumericVector< Number > & getResidualTimeVector ()
 Return a numeric vector that is associated with the time tag. More...
 
NumericVector< Number > & getResidualNonTimeVector ()
 Return a numeric vector that is associated with the nontime tag. More...
 
NumericVector< Number > & residualVector (TagID tag)
 Return a residual vector that is associated with the residual tag. More...
 
virtual NumericVector< Number > & residualCopy () override
 
virtual NumericVector< Number > & residualGhosted () override
 
virtual NumericVector< Number > & RHS ()=0
 
virtual void augmentSparsity (libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz) override
 Will modify the sparsity pattern to add logical geometric connections. More...
 
void setPreconditioner (std::shared_ptr< MoosePreconditioner > pc)
 Sets a preconditioner. More...
 
MoosePreconditioner const * getPreconditioner () const
 
void useFiniteDifferencedPreconditioner (bool use=true)
 If called with true this system will use a finite differenced form of the Jacobian as the preconditioner. More...
 
void useFieldSplitPreconditioner (FieldSplitPreconditionerBase *fsp)
 If called with a non-null object true this system will use a field split preconditioner matrix. More...
 
FieldSplitPreconditionerBasegetFieldSplitPreconditioner ()
 
void addImplicitGeometricCouplingEntriesToJacobian (bool add=true)
 If called with true this will add entries into the jacobian to link together degrees of freedom that are found to be related through the geometric search system. More...
 
void assembleConstraintsSeparately (bool separately=true)
 Indicates whether to assemble residual and Jacobian after each constraint application. More...
 
virtual void attachPreconditioner (libMesh::Preconditioner< Number > *preconditioner)=0
 Attach a customized preconditioner that requires physics knowledge. More...
 
void setupDampers ()
 Setup damping stuff (called before we actually start) More...
 
void reinitIncrementAtQpsForDampers (THREAD_ID tid, const std::set< MooseVariable *> &damped_vars)
 Compute the incremental change in variables at QPs for dampers. More...
 
void reinitIncrementAtNodeForDampers (THREAD_ID tid, const std::set< MooseVariable *> &damped_vars)
 Compute the incremental change in variables at nodes for dampers. More...
 
unsigned int nNonlinearIterations () const
 Return the number of non-linear iterations. More...
 
unsigned int nLinearIterations () const
 Return the number of linear iterations. More...
 
unsigned int nResidualEvaluations () const
 Return the total number of residual evaluations done so far in this calculation. More...
 
Real finalNonlinearResidual () const
 Return the final nonlinear residual. More...
 
Real nonlinearNorm () const
 Return the last nonlinear norm. More...
 
void printAllVariableNorms (bool state)
 Force the printing of all variable norms after each solve. More...
 
void debuggingResiduals (bool state)
 
void setPredictor (std::shared_ptr< Predictor > predictor)
 
PredictorgetPredictor ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, THREAD_ID tid) const
 Indicated whether this system needs material properties on boundaries. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, THREAD_ID tid) const
 Indicated whether this system needs material properties on interfaces. More...
 
bool needSubdomainMaterialOnSide (SubdomainID subdomain_id, THREAD_ID tid) const
 Indicates whether this system needs material properties on internal sides. More...
 
bool doingDG () const
 Getter for _doing_dg. More...
 
bool hasSaveIn () const
 Weather or not the nonlinear system has save-ins. More...
 
bool hasDiagSaveIn () const
 Weather or not the nonlinear system has diagonal Jacobian save-ins. More...
 
virtual libMesh::Systemsystem () override
 Get the reference to the libMesh system. More...
 
virtual const libMesh::Systemsystem () const override
 
virtual void setSolutionUDotOld (const NumericVector< Number > &u_dot_old)
 
virtual void setSolutionUDotDotOld (const NumericVector< Number > &u_dotdot_old)
 
virtual void setPreviousNewtonSolution (const NumericVector< Number > &soln)
 
TagID timeVectorTag () const override
 Ideally, we should not need this API. More...
 
TagID nonTimeVectorTag () const override
 
TagID residualVectorTag () const override
 
TagID systemMatrixTag () const override
 Return the Matrix Tag ID for System. More...
 
virtual void residualAndJacobianTogether ()=0
 Call this method if you want the residual and Jacobian to be computed simultaneously. More...
 
bool computeScalingOnce () const
 
void computeScalingOnce (bool compute_scaling_once)
 
void autoScalingParam (Real resid_vs_jac_scaling_param)
 Sets the param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters. More...
 
void scalingGroupVariables (const std::vector< std::vector< std::string >> &scaling_group_variables)
 
void ignoreVariablesForAutoscaling (const std::vector< std::string > &ignore_variables_for_autoscaling)
 
bool offDiagonalsInAutoScaling () const
 
void offDiagonalsInAutoScaling (bool off_diagonals_in_auto_scaling)
 
void setupDM ()
 Setup the PETSc DM object (when appropriate) More...
 
virtual void potentiallySetupFiniteDifferencing ()
 Create finite differencing contexts for assembly of the Jacobian and/or approximating the action of the Jacobian on vectors (e.g. More...
 
void destroyColoring ()
 Destroy the coloring object if it exists. More...
 
virtual void subdomainSetup ()
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, THREAD_ID tid)
 Reinit nodal assembly info on a face. More...
 
virtual void restoreSolutions () override final
 Restore current solutions (call after your solve failed) More...
 
void serializeSolution ()
 
virtual void stopSolve (const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
 Quit the current solve as soon as possible. More...
 
virtual bool converged ()=0
 Returns the convergence state. More...
 
void setSolution (const NumericVector< Number > &soln)
 Set the solution to a given vector. More...
 
void setPCSide (MooseEnum pcs)
 Set the side on which the preconditioner is applied to. More...
 
Moose::PCSideType getPCSide ()
 Get the current preconditioner side. More...
 
void setMooseKSPNormType (MooseEnum kspnorm)
 Set the norm in which the linear convergence will be measured. More...
 
Moose::MooseKSPNormType getMooseKSPNormType ()
 Get the norm in which the linear convergence is measured. More...
 
virtual const NumericVector< Number > *const & currentSolution () const override final
 The solution vector that is currently being operated on. More...
 
virtual void compute (ExecFlagType type) override
 Compute time derivatives, auxiliary variables, etc. More...
 
unsigned int number () const
 Gets the number of this system. More...
 
MooseMeshmesh ()
 
const MooseMeshmesh () const
 
SubProblemsubproblem ()
 
const SubProblemsubproblem () const
 
FEProblemBasefeProblem ()
 
const FEProblemBasefeProblem () const
 
void applyScalingFactors (const std::vector< Real > &inverse_scaling_factors)
 Applies scaling factors to the system's variables. More...
 
bool computingScalingJacobian () const
 Whether we are computing an initial Jacobian for automatic variable scaling. More...
 
bool automaticScaling () const
 Getter for whether we are performing automatic scaling. More...
 
void automaticScaling (bool automatic_scaling)
 Setter for whether we are performing automatic scaling. More...
 
void setVerboseFlag (const bool &verbose)
 Sets the verbose flag. More...
 
virtual libMesh::DofMapdofMap ()
 Gets writeable reference to the dof map. More...
 
virtual const libMesh::DofMapdofMap () const
 Gets const reference to the dof map. More...
 
virtual void postInit ()
 
virtual void reinit ()
 Reinitialize the system when the degrees of freedom in this system have changed. More...
 
virtual void initializeObjects ()
 Called only once, just before the solve begins so objects can do some precalculations. More...
 
void update ()
 Update the system (doing libMesh magic) More...
 
virtual void copyOldSolutions ()
 Shifts the solutions backwards in time. More...
 
virtual void copyPreviousNonlinearSolutions ()
 Shifts the solutions backwards in nonlinear iteration history. More...
 
virtual void copyPreviousFixedPointSolutions ()
 
NumericVector< Number > & solution ()
 
const NumericVector< Number > & solution () const
 
NumericVector< Number > & solutionOld ()
 
const NumericVector< Number > & solutionOld () const
 
NumericVector< Number > & solutionOlder ()
 
const NumericVector< Number > & solutionOlder () const
 
virtual const NumericVector< Number > * solutionPreviousNewton () const
 
virtual NumericVector< Number > * solutionPreviousNewton ()
 
virtual void initSolutionState ()
 Initializes the solution state. More...
 
virtual NumericVector< Number > & solutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
 Get a state of the solution (0 = current, 1 = old, 2 = older, etc). More...
 
virtual const NumericVector< Number > & solutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
 Get a state of the solution (0 = current, 1 = old, 2 = older, etc). More...
 
libMesh::ParallelType solutionStateParallelType (const unsigned int state, const Moose::SolutionIterationType iteration_type) const
 Returns the parallel type of the given solution state. More...
 
virtual void needSolutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
 Registers that the solution state state is needed. More...
 
virtual bool hasSolutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
 Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc). More...
 
virtual void addDotVectors ()
 Add u_dot, u_dotdot, u_dot_old and u_dotdot_old vectors if requested by the time integrator. More...
 
virtual std::vector< Number > & duDotDus ()
 
virtual NumberduDotDotDu ()
 
virtual const NumberduDotDotDu () const
 
virtual const NumberduDotDu (unsigned int var_num=0) const
 
virtual NumericVector< Number > * solutionUDot ()
 
virtual const NumericVector< Number > * solutionUDot () const
 
virtual NumericVector< Number > * solutionUDotDot ()
 
virtual const NumericVector< Number > * solutionUDotDot () const
 
virtual NumericVector< Number > * solutionUDotOld ()
 
virtual const NumericVector< Number > * solutionUDotOld () const
 
virtual NumericVector< Number > * solutionUDotDotOld ()
 
virtual const NumericVector< Number > * solutionUDotDotOld () const
 
virtual void saveOldSolutions ()
 Save the old and older solutions. More...
 
virtual void restoreOldSolutions ()
 Restore the old and older solutions when the saved solutions present. More...
 
bool hasVector (const std::string &tag_name) const
 Check if the named vector exists in the system. More...
 
virtual bool hasVector (TagID tag_id) const
 Check if the tagged vector exists in the system. More...
 
virtual std::set< TagIDdefaultVectorTags () const
 Get the default vector tags associated with this system. More...
 
virtual std::set< TagIDdefaultMatrixTags () const
 Get the default matrix tags associted with this system. More...
 
virtual void associateVectorToTag (NumericVector< Number > &vec, TagID tag)
 Associate a vector for a given tag. More...
 
virtual void disassociateVectorFromTag (NumericVector< Number > &vec, TagID tag)
 Disassociate a given vector from a given tag. More...
 
virtual void disassociateVectorFromTag (TagID tag)
 Disassociate any vector that is associated with a given tag. More...
 
virtual void disassociateDefaultVectorTags ()
 Disassociate the vectors associated with the default vector tags of this system. More...
 
virtual bool hasMatrix (TagID tag) const
 Check if the tagged matrix exists in the system. More...
 
virtual libMesh::SparseMatrix< Number > & getMatrix (TagID tag)
 Get a raw SparseMatrix. More...
 
virtual const libMesh::SparseMatrix< Number > & getMatrix (TagID tag) const
 Get a raw SparseMatrix. More...
 
virtual void activateAllMatrixTags ()
 Make all existing matrices active. More...
 
virtual bool matrixTagActive (TagID tag) const
 If or not a matrix tag is active. More...
 
virtual void deactivateAllMatrixTags ()
 Make matrices inactive. More...
 
void closeTaggedMatrices (const std::set< TagID > &tags)
 Close all matrices associated the tags. More...
 
void flushTaggedMatrices (const std::set< TagID > &tags)
 flushes all matrices associated to tags. More...
 
virtual void associateMatrixToTag (libMesh::SparseMatrix< Number > &matrix, TagID tag)
 Associate a matrix to a tag. More...
 
virtual void disassociateMatrixFromTag (libMesh::SparseMatrix< Number > &matrix, TagID tag)
 Disassociate a matrix from a tag. More...
 
virtual void disassociateMatrixFromTag (TagID tag)
 Disassociate any matrix that is associated with a given tag. More...
 
virtual void disassociateDefaultMatrixTags ()
 Disassociate the matrices associated with the default matrix tags of this system. More...
 
virtual NumericVector< Number > & serializedSolution ()
 Returns a reference to a serialized version of the solution vector for this subproblem. More...
 
virtual void augmentSendList (std::vector< dof_id_type > &send_list)
 Will modify the send_list to add all of the extra ghosted dofs for this system. More...
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters)
 Canonical method for adding a variable. More...
 
virtual bool isArrayVariable (const std::string &var_name) const
 If a variable is an array variable. More...
 
virtual bool isScalarVariable (unsigned int var_name) const
 
MooseVariableFieldBasegetVariable (THREAD_ID tid, const std::string &var_name) const
 Gets a reference to a variable of with specified name. More...
 
MooseVariableFieldBasegetVariable (THREAD_ID tid, unsigned int var_number) const
 Gets a reference to a variable with specified number. More...
 
template<typename T >
MooseVariableFE< T > & getFieldVariable (THREAD_ID tid, const std::string &var_name)
 Gets a reference to a variable of with specified name. More...
 
template<typename T >
MooseVariableFE< T > & getFieldVariable (THREAD_ID tid, unsigned int var_number)
 Gets a reference to a variable with specified number. More...
 
template<typename T >
MooseVariableField< T > & getActualFieldVariable (THREAD_ID tid, const std::string &var_name)
 Returns a field variable pointer - this includes finite volume variables. More...
 
template<typename T >
MooseVariableField< T > & getActualFieldVariable (THREAD_ID tid, unsigned int var_number)
 Returns a field variable pointer - this includes finite volume variables. More...
 
template<typename T >
MooseVariableFV< T > & getFVVariable (THREAD_ID tid, const std::string &var_name)
 Return a finite volume variable. More...
 
virtual MooseVariableScalargetScalarVariable (THREAD_ID tid, const std::string &var_name) const
 Gets a reference to a scalar variable with specified number. More...
 
virtual MooseVariableScalargetScalarVariable (THREAD_ID tid, unsigned int var_number) const
 Gets a reference to a variable with specified number. More...
 
virtual const std::set< SubdomainID > * getVariableBlocks (unsigned int var_number)
 Get the block where a variable of this system is defined. More...
 
virtual unsigned int nVariables () const
 Get the number of variables in this system. More...
 
unsigned int nFieldVariables () const
 Get the number of field variables in this system. More...
 
unsigned int nFVVariables () const
 Get the number of finite volume variables in this system. More...
 
std::size_t getMaxVarNDofsPerElem () const
 Gets the maximum number of dofs used by any one variable on any one element. More...
 
std::size_t getMaxVarNDofsPerNode () const
 Gets the maximum number of dofs used by any one variable on any one node. More...
 
void assignMaxVarNDofsPerElem (std::size_t max_dofs)
 assign the maximum element dofs More...
 
void assignMaxVarNDofsPerNode (std::size_t max_dofs)
 assign the maximum node dofs More...
 
virtual void addVariableToZeroOnResidual (std::string var_name)
 Adds this variable to the list of variables to be zeroed during each residual evaluation. More...
 
virtual void addVariableToZeroOnJacobian (std::string var_name)
 Adds this variable to the list of variables to be zeroed during each Jacobian evaluation. More...
 
virtual void zeroVariables (std::vector< std::string > &vars_to_be_zeroed)
 Zero out the solution for the list of variables passed in. More...
 
virtual void zeroVariablesForResidual ()
 Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on residual evaluation by a call to addVariableToZeroOnResidual() More...
 
virtual void zeroVariablesForJacobian ()
 Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on Jacobian evaluation by a call to addVariableToZeroOnResidual() More...
 
virtual libMesh::Order getMinQuadratureOrder ()
 Get minimal quadrature order needed for integrating variables in this system. More...
 
virtual void prepare (THREAD_ID tid)
 Prepare the system for use. More...
 
virtual void prepareFace (THREAD_ID tid, bool resize_data)
 Prepare the system for use on sides. More...
 
virtual void prepareNeighbor (THREAD_ID tid)
 Prepare the system for use. More...
 
virtual void prepareLowerD (THREAD_ID tid)
 Prepare the system for use for lower dimensional elements. More...
 
virtual void reinitElem (const Elem *elem, THREAD_ID tid)
 Reinit an element assembly info. More...
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, THREAD_ID tid)
 Reinit assembly info for a side of an element. More...
 
virtual void reinitNeighborFace (const Elem *elem, unsigned int side, THREAD_ID tid)
 Compute the values of the variables at all the current points. More...
 
virtual void reinitNeighbor (const Elem *elem, THREAD_ID tid)
 Compute the values of the variables at all the current points. More...
 
virtual void reinitLowerD (THREAD_ID tid)
 Compute the values of the variables on the lower dimensional element. More...
 
virtual void reinitNode (const Node *node, THREAD_ID tid)
 Reinit nodal assembly info. More...
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, THREAD_ID tid)
 Reinit nodal assembly info on a face. More...
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, THREAD_ID tid)
 Reinit variables at a set of nodes. More...
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, THREAD_ID tid)
 Reinit variables at a set of neighbor nodes. More...
 
virtual void reinitScalars (THREAD_ID tid, bool reinit_for_derivative_reordering=false)
 Reinit scalar varaibles. More...
 
virtual void addVariableToCopy (const std::string &dest_name, const std::string &source_name, const std::string &timestep)
 Add info about variable that will be copied. More...
 
const std::vector< MooseVariableFieldBase * > & getVariables (THREAD_ID tid)
 
const std::vector< MooseVariableScalar * > & getScalarVariables (THREAD_ID tid)
 
const std::set< SubdomainID > & getSubdomainsForVar (unsigned int var_number) const
 
const std::set< SubdomainID > & getSubdomainsForVar (const std::string &var_name) const
 Get the block where a variable of this system is defined. More...
 
void removeVector (const std::string &name)
 Remove a vector from the system with the given name. More...
 
void removeVector (TagID tag_id)
 Remove a solution length vector from the system with the specified TagID. More...
 
NumericVector< Number > & addVector (const std::string &vector_name, const bool project, const libMesh::ParallelType type)
 Adds a solution length vector to the system. More...
 
NumericVector< Number > & addVector (TagID tag, const bool project, const libMesh::ParallelType type)
 Adds a solution length vector to the system with the specified TagID. More...
 
void closeTaggedVector (const TagID tag)
 Close vector with the given tag. More...
 
void closeTaggedVectors (const std::set< TagID > &tags)
 Close all vectors for given tags. More...
 
void zeroTaggedVector (const TagID tag)
 Zero vector with the given tag. More...
 
void zeroTaggedVectors (const std::set< TagID > &tags)
 Zero all vectors for given tags. More...
 
void setVariableGlobalDoFs (const std::string &var_name)
 set all the global dof indices for a variable More...
 
const std::vector< dof_id_type > & getVariableGlobalDoFs ()
 Get the global dof indices of a variable, this needs to be called after the indices have been set by setVariableGlobalDoFs More...
 
libMesh::SparseMatrix< Number > & addMatrix (TagID tag)
 Adds a matrix with a given tag. More...
 
void removeMatrix (TagID tag)
 Removes a matrix with a given tag. More...
 
virtual const std::string & name () const
 
const std::vector< VariableName > & getVariableNames () const
 
void getStandardFieldVariableNames (std::vector< VariableName > &std_field_variables) const
 
unsigned int getMaxVariableNumber () const
 Returns the maximum number of all variables on the system. More...
 
virtual void computeVariables (const NumericVector< Number > &)
 
void copyVars (libMesh::ExodusII_IO &io)
 
virtual void copySolutionsBackwards ()
 Copy current solution into old and older. More...
 
void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
bool hasVarCopy () const
 Whether or not there are variables to be restarted from an Exodus mesh file. More...
 
void addScalingVector ()
 Add the scaling factor vector to the system. More...
 
bool solutionStatesInitialized () const
 Whether or not the solution states have been initialized via initSolutionState() More...
 
virtual void subdomainSetup ()
 
void clearAllDofIndices ()
 Clear all dof indices from moose variables. More...
 
void setActiveVariableCoupleableVectorTags (const std::set< TagID > &vtags, THREAD_ID tid)
 Set the active vector tags for the variables. More...
 
void setActiveScalarVariableCoupleableVectorTags (const std::set< TagID > &vtags, THREAD_ID tid)
 Set the active vector tags for the scalar variables. More...
 
Moose::VarKindType varKind () const
 
const std::vector< std::unique_ptr< NumericVector< Number > > > & gradientContainer () const
 Reference to the container vector which hold gradients at dofs (if it can be interpreted). More...
 
void copyTimeIntegrators (const SystemBase &other_sys)
 Copy time integrators from another system. More...
 
const TimeIntegratorgetTimeIntegrator (const unsigned int var_num) const
 Retrieve the time integrator that integrates the given variable's equation. More...
 
const TimeIntegratorqueryTimeIntegrator (const unsigned int var_num) const
 Retrieve the time integrator that integrates the given variable's equation. More...
 
const std::vector< std::shared_ptr< TimeIntegrator > > & getTimeIntegrators ()
 
std::string prefix () const
 
void sizeVariableMatrixData ()
 size the matrix data for each variable for the number of matrix tags we have More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
void checkKernelCoverage (const std::set< SubdomainID > &mesh_subdomains) const
 
virtual bool containsTimeKernel () override
 If the system has a kernel that corresponds to a time derivative. More...
 
virtual std::vector< std::string > timeKernelVariableNames () override
 Returns the names of the variables that have time derivative kernels in the system. More...
 
MooseObjectTagWarehouse< KernelBase > & getKernelWarehouse ()
 Access functions to Warehouses from outside NonlinearSystemBase. More...
 
const MooseObjectTagWarehouse< KernelBase > & getKernelWarehouse () const
 
MooseObjectTagWarehouse< DGKernelBase > & getDGKernelWarehouse ()
 
MooseObjectTagWarehouse< InterfaceKernelBase > & getInterfaceKernelWarehouse ()
 
MooseObjectTagWarehouse< DiracKernelBase > & getDiracKernelWarehouse ()
 
MooseObjectTagWarehouse< IntegratedBCBase > & getIntegratedBCWarehouse ()
 
const MooseObjectTagWarehouse< ScalarKernelBase > & getScalarKernelWarehouse () const
 
const MooseObjectTagWarehouse< NodalKernelBase > & getNodalKernelWarehouse () const
 
MooseObjectTagWarehouse< HDGKernel > & getHDGKernelWarehouse ()
 
const MooseObjectWarehouse< ElementDamper > & getElementDamperWarehouse () const
 
const MooseObjectWarehouse< NodalDamper > & getNodalDamperWarehouse () const
 
const ConstraintWarehousegetConstraintWarehouse () const
 
const MooseObjectTagWarehouse< NodalBCBase > & getNodalBCWarehouse () const
 Return the NodalBCBase warehouse. More...
 
const MooseObjectTagWarehouse< IntegratedBCBase > & getIntegratedBCWarehouse () const
 Return the IntegratedBCBase warehouse. More...
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosKernelWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosNodalKernelWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosNodalBCWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosIntegratedBCWarehouse ()
 
virtual NumericVector< Number > & getVector (const std::string &name)
 Get a raw NumericVector by name. More...
 
virtual const NumericVector< Number > & getVector (const std::string &name) const
 
virtual NumericVector< Number > & getVector (TagID tag)
 Get a raw NumericVector by tag. More...
 
virtual const NumericVector< Number > & getVector (TagID tag) const
 
virtual bool hasVariable (const std::string &var_name) const
 Query a system for a variable. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

unsigned int _num_residual_evaluations
 
libMesh::System_sys
 
Real _last_nl_rnorm
 
std::vector< unsigned int_current_l_its
 
unsigned int _current_nl_its
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 

Protected Member Functions

void computeResidualInternal (const std::set< TagID > &tags)
 Compute the residual for a given tag. More...
 
void computeKokkosResidual (const std::set< TagID > &tags)
 Compute residual with Kokkos objects. More...
 
void computeNodalBCs (NumericVector< Number > &residual)
 Enforces nodal boundary conditions. More...
 
void computeNodalBCs (NumericVector< Number > &residual, const std::set< TagID > &tags)
 Form a residual for BCs that at least has one of the given tags. More...
 
void computeNodalBCs (const std::set< TagID > &tags)
 Form multiple tag-associated residual vectors for the given tags. More...
 
void computeNodalBCsResidualAndJacobian ()
 compute the residual and Jacobian for nodal boundary conditions More...
 
void computeJacobianInternal (const std::set< TagID > &tags)
 Form multiple matrices for all the tags. More...
 
void computeKokkosJacobian (const std::set< TagID > &tags)
 Compute Jacobian with Kokkos objects. More...
 
void computeDiracContributions (const std::set< TagID > &tags, bool is_jacobian)
 
void computeScalarKernelsJacobians (const std::set< TagID > &tags)
 
void enforceNodalConstraintsResidual (NumericVector< Number > &residual)
 Enforce nodal constraints. More...
 
void enforceNodalConstraintsJacobian ()
 
void mortarConstraints (Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Do mortar constraint residual/jacobian computations. More...
 
virtual void computeScalingJacobian ()=0
 Compute a "Jacobian" for automatic scaling purposes. More...
 
virtual void computeScalingResidual ()=0
 Compute a "residual" for automatic scaling purposes. More...
 
void assembleScalingVector ()
 Assemble the numeric vector of scaling factors such that it can be used during assembly of the system matrix. More...
 
virtual void postAddResidualObject (ResidualObject &)
 Called after any ResidualObject-derived objects are added to the system. More...
 
void reinitNodeFace (const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
 Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints. More...
 
bool preSolve ()
 Perform some steps to get ready for the solver. More...
 
void getNodeDofs (dof_id_type node_id, std::vector< dof_id_type > &dofs)
 
void checkInvalidSolution ()
 
virtual NumericVector< Number > & solutionInternal () const override final
 Internal getter for solution owned by libMesh. More...
 
virtual bool matrixFromColoring () const
 Whether a system matrix is formed from coloring. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 

Protected Attributes

NumericVector< Number > * _residual_ghosted
 ghosted form of the residual More...
 
std::unique_ptr< NumericVector< Number > > _residual_copy
 Copy of the residual vector, or nullptr if a copy is not needed. More...
 
Number _du_dot_du
 \( {du^dot}\over{du} \) More...
 
Number _du_dotdot_du
 \( {du^dotdot}\over{du} \) More...
 
TagID _Re_time_tag
 Tag for time contribution residual. More...
 
std::set< TagID_nl_vector_tags
 Vector tags to temporarily store all tags associated with the current system. More...
 
std::set< TagID_nl_matrix_tags
 Matrix tags to temporarily store all tags associated with the current system. More...
 
NumericVector< Number > * _Re_time
 residual vector for time contributions More...
 
TagID _Re_non_time_tag
 Tag for non-time contribution residual. More...
 
NumericVector< Number > * _Re_non_time
 residual vector for non-time contributions More...
 
TagID _Re_tag
 Used for the residual vector from PETSc. More...
 
TagID _Ke_non_time_tag
 Tag for non-time contribution Jacobian. More...
 
TagID _Ke_system_tag
 Tag for system contribution Jacobian. More...
 
MooseObjectTagWarehouse< DiracKernelBase_dirac_kernels
 Dirac Kernel storage for each thread. More...
 
MooseObjectWarehouse< ElementDamper_element_dampers
 Element Dampers for each thread. More...
 
MooseObjectWarehouse< NodalDamper_nodal_dampers
 Nodal Dampers for each thread. More...
 
MooseObjectWarehouse< GeneralDamper_general_dampers
 General Dampers. More...
 
MooseObjectTagWarehouse< NodalKernelBase_nodal_kernels
 NodalKernels for each thread. More...
 
MooseObjectWarehouseBase< Split_splits
 Decomposition splits. More...
 
ConstraintWarehouse _constraints
 Constraints storage object. More...
 
NumericVector< Number > * _increment_vec
 increment vector More...
 
std::shared_ptr< MoosePreconditioner_preconditioner
 Preconditioner. More...
 
bool _use_finite_differenced_preconditioner
 Whether or not to use a finite differenced preconditioner. More...
 
MatFDColoring _fdcoloring
 
FieldSplitPreconditionerBase_fsp
 The field split preconditioner if this sytem is using one. More...
 
bool _add_implicit_geometric_coupling_entries_to_jacobian
 Whether or not to add implicit geometric couplings to the Jacobian for FDP. More...
 
bool _assemble_constraints_separately
 Whether or not to assemble the residual and Jacobian after the application of each constraint. More...
 
bool _need_residual_ghosted
 Whether or not a ghosted copy of the residual needs to be made. More...
 
bool _debugging_residuals
 true if debugging residuals More...
 
bool _doing_dg
 true if DG is active (optimization reasons) More...
 
std::vector< std::string > _vecs_to_zero_for_residual
 vectors that will be zeroed before a residual computation More...
 
unsigned int _n_iters
 
unsigned int _n_linear_iters
 
unsigned int _n_residual_evaluations
 Total number of residual evaluations that have been performed. More...
 
Real _final_residual
 
std::shared_ptr< Predictor_predictor
 If predictor is active, this is non-NULL. More...
 
bool _computing_pre_smo_residual
 
Real _pre_smo_residual
 The pre-SMO residual, see setPreSMOResidual for a detailed explanation. More...
 
Real _initial_residual
 The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanation. More...
 
bool _use_pre_smo_residual
 Whether to use the pre-SMO initial residual in the relative convergence check. More...
 
bool _print_all_var_norms
 
bool _has_save_in
 If there is any Kernel or IntegratedBC having save_in. More...
 
bool _has_diag_save_in
 If there is any Kernel or IntegratedBC having diag_save_in. More...
 
bool _has_nodalbc_save_in
 If there is a nodal BC having save_in. More...
 
bool _has_nodalbc_diag_save_in
 If there is a nodal BC having diag_save_in. More...
 
bool _computed_scaling
 Flag used to indicate whether we have already computed the scaling Jacobian. More...
 
bool _compute_scaling_once
 Whether the scaling factors should only be computed once at the beginning of the simulation through an extra Jacobian evaluation. More...
 
Real _resid_vs_jac_scaling_param
 The param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters. More...
 
std::vector< std::vector< std::string > > _scaling_group_variables
 A container of variable groupings that can be used in scaling calculations. More...
 
std::vector< bool > _variable_autoscaled
 Container to hold flag if variable is to participate in autoscaling. More...
 
std::vector< std::string > _ignore_variables_for_autoscaling
 A container for variables that do not partipate in autoscaling. More...
 
bool _off_diagonals_in_auto_scaling
 Whether to include off diagonals when determining automatic scaling factors. More...
 
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
 A diagonal matrix used for computing scaling. More...
 
const NumericVector< Number > * _current_solution
 solution vector from solver More...
 
Moose::PCSideType _pc_side
 Preconditioning side. More...
 
Moose::MooseKSPNormType _ksp_norm
 KSP norm type. More...
 
bool _solution_is_invalid
 Boolean to see if solution is invalid. More...
 
SubProblem_subproblem
 The subproblem for whom this class holds variable data, etc; this can either be the governing finite element/volume problem or a subjugate displaced problem. More...
 
FEProblemBase_fe_problem
 the governing finite element/volume problem More...
 
MooseApp_app
 
Factory_factory
 
MooseMesh_mesh
 
std::string _name
 The name of this system. More...
 
std::vector< VariableWarehouse_vars
 Variable warehouses (one for each thread) More...
 
std::map< unsigned int, std::set< SubdomainID > > _var_map
 Map of variables (variable id -> array of subdomains where it lives) More...
 
unsigned int _max_var_number
 Maximum variable number. More...
 
std::vector< std::string > _vars_to_be_zeroed_on_residual
 
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
 
NumericVector< Number > * _u_dot
 solution vector for u^dot More...
 
NumericVector< Number > * _u_dotdot
 solution vector for u^dotdot More...
 
NumericVector< Number > * _u_dot_old
 old solution vector for u^dot More...
 
NumericVector< Number > * _u_dotdot_old
 old solution vector for u^dotdot More...
 
std::vector< NumericVector< Number > * > _tagged_vectors
 Tagged vectors (pointer) More...
 
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
 Tagged matrices (pointer) More...
 
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
 Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map. We use a map instead of a vector so that users can easily add and remove to this container with calls to (de)activateMatrixTag. More...
 
std::vector< bool > _matrix_tag_active_flags
 Active flags for tagged matrices. More...
 
NumericVector< Real > * _saved_old
 
NumericVector< Real > * _saved_older
 
NumericVector< Real > * _saved_dot_old
 
NumericVector< Real > * _saved_dotdot_old
 
Moose::VarKindType _var_kind
 default kind of variables in this system More...
 
std::vector< VarCopyInfo_var_to_copy
 
size_t _max_var_n_dofs_per_elem
 Maximum number of dofs for any one variable on any one element. More...
 
size_t _max_var_n_dofs_per_node
 Maximum number of dofs for any one variable on any one node. More...
 
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
 Time integrator. More...
 
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
 Map variable number to its pointer. More...
 
bool _automatic_scaling
 Whether to automatically scale the variables. More...
 
bool _verbose
 True if printing out additional information. More...
 
bool _solution_states_initialized
 Whether or not the solution states have been initialized. More...
 
std::vector< dof_id_type_var_all_dof_indices
 Container for the dof indices of a given variable. More...
 
std::unique_ptr< NumericVector< Number > > _serialized_solution
 Serialized version of the solution vector, or nullptr if a serialized solution is not needed. More...
 
std::vector< std::unique_ptr< NumericVector< Number > > > _raw_grad_container
 A cache for storing gradients at dof locations. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseObjectTagWarehouse< KernelBase_kernels
 
MooseObjectTagWarehouse< HDGKernel_hybridized_kernels
 
MooseObjectTagWarehouse< ScalarKernelBase_scalar_kernels
 
MooseObjectTagWarehouse< DGKernelBase_dg_kernels
 
MooseObjectTagWarehouse< InterfaceKernelBase_interface_kernels
 
MooseObjectTagWarehouse< IntegratedBCBase_integrated_bcs
 
MooseObjectTagWarehouse< NodalBCBase_nodal_bcs
 
MooseObjectWarehouse< DirichletBCBase_preset_nodal_bcs
 
MooseObjectWarehouse< ADDirichletBCBase_ad_preset_nodal_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_kernels
 
MooseObjectTagWarehouse< ResidualObject_kokkos_integrated_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_nodal_bcs
 
MooseObjectWarehouse< ResidualObject_kokkos_preset_nodal_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_nodal_kernels
 

Private Member Functions

void findImplicitGeometricCouplingEntries (GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
 Finds the implicit sparsity graph between geometrically related dofs. More...
 
void setupScalingData ()
 Setup group scaling containers. More...
 

Private Attributes

std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor_undisplaced_mortar_functors
 Functors for computing undisplaced mortar constraints. More...
 
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor_displaced_mortar_functors
 Functors for computing displaced mortar constraints. More...
 
std::vector< NumericVector< Number > * > _solution_state
 The current states of the solution (0 = current, 1 = old, etc) More...
 
bool _auto_scaling_initd
 Whether we've initialized the automatic scaling data structures. More...
 
std::unordered_map< unsigned int, unsigned int_var_to_group_var
 A map from variable index to group variable index and it's associated (inverse) scaling factor. More...
 
std::size_t _num_scaling_groups
 The number of scaling groups. More...
 

Detailed Description

Nonlinear system to be solved.

It is a part of FEProblemBase ;-)

Definition at line 68 of file NonlinearSystemBase.h.

Constructor & Destructor Documentation

◆ NonlinearSystemBase()

NonlinearSystemBase::NonlinearSystemBase ( FEProblemBase problem,
libMesh::System sys,
const std::string &  name 
)

Definition at line 113 of file NonlinearSystemBase.C.

116  : SolverSystem(fe_problem, fe_problem, name, Moose::VAR_SOLVER),
117  PerfGraphInterface(fe_problem.getMooseApp().perfGraph(), "NonlinearSystemBase"),
118  _sys(sys),
119  _last_nl_rnorm(0.),
120  _current_nl_its(0),
121  _residual_ghosted(NULL),
122  _Re_time_tag(-1),
123  _Re_time(NULL),
124  _Re_non_time_tag(-1),
125  _Re_non_time(NULL),
126  _scalar_kernels(/*threaded=*/false),
127  _nodal_bcs(/*threaded=*/false),
128  _preset_nodal_bcs(/*threaded=*/false),
129  _ad_preset_nodal_bcs(/*threaded=*/false),
130 #ifdef MOOSE_KOKKOS_ENABLED
131  _kokkos_kernels(/*threaded=*/false),
132  _kokkos_integrated_bcs(/*threaded=*/false),
133  _kokkos_nodal_bcs(/*threaded=*/false),
134  _kokkos_preset_nodal_bcs(/*threaded=*/false),
135  _kokkos_nodal_kernels(/*threaded=*/false),
136 #endif
137  _splits(/*threaded=*/false),
138  _increment_vec(NULL),
140  _fdcoloring(nullptr),
141  _fsp(nullptr),
144  _need_residual_ghosted(false),
145  _debugging_residuals(false),
146  _doing_dg(false),
147  _n_iters(0),
148  _n_linear_iters(0),
150  _final_residual(0.),
154  _use_pre_smo_residual(false),
155  _print_all_var_norms(false),
156  _has_save_in(false),
157  _has_diag_save_in(false),
158  _has_nodalbc_save_in(false),
160  _computed_scaling(false),
161  _compute_scaling_once(true),
164  _auto_scaling_initd(false)
165 {
167  // Don't need to add the matrix - it already exists (for now)
169 
170  // The time matrix tag is not normally used - but must be added to the system
171  // in case it is so that objects can have 'time' in their matrix tags by default
172  _fe_problem.addMatrixTag("TIME");
173 
174  _Re_tag = _fe_problem.addVectorTag("RESIDUAL");
175 
177 
179  {
180  auto & dof_map = _sys.get_dof_map();
181  dof_map.remove_algebraic_ghosting_functor(dof_map.default_algebraic_ghosting());
182  dof_map.set_implicit_neighbor_dofs(false);
183  }
184 }
NumericVector< Number > * _Re_time
residual vector for time contributions
SolverSystem(SubProblem &subproblem, FEProblemBase &fe_problem, const std::string &name, Moose::VarKindType var_kind)
Definition: SolverSystem.C:17
TagID _Re_time_tag
Tag for time contribution residual.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...
bool identifyVariableGroupsInNL() const
Whether to identify variable groups in nonlinear systems.
bool _debugging_residuals
true if debugging residuals
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
Real _pre_smo_residual
The pre-SMO residual, see setPreSMOResidual for a detailed explanation.
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
TagID _Ke_system_tag
Tag for system contribution Jacobian.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
virtual const std::string & name() const
Definition: SystemBase.C:1340
TagID _Re_non_time_tag
Tag for non-time contribution residual.
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:311
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.
bool identify_variable_groups() const
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
TagID _Re_tag
Used for the residual vector from PETSc.
libMesh::System & _sys
NumericVector< Number > * _increment_vec
increment vector
PerfGraphInterface(const MooseObject *moose_object)
For objects that are MooseObjects with a default prefix of type()
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)
NumericVector< Number > & getResidualNonTimeVector()
Return a numeric vector that is associated with the nontime tag.
bool defaultGhosting()
Whether or not the user has requested default ghosting ot be on.
Definition: SubProblem.h:144
const DofMap & get_dof_map() const
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ ~NonlinearSystemBase()

NonlinearSystemBase::~NonlinearSystemBase ( )
virtualdefault

Member Function Documentation

◆ activateAllMatrixTags()

void SystemBase::activateAllMatrixTags ( )
virtualinherited

Make all existing matrices active.

Definition at line 1131 of file SystemBase.C.

Referenced by computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), computeResidualAndJacobianInternal(), and computeResidualTags().

1132 {
1133  auto num_matrix_tags = _subproblem.numMatrixTags();
1134 
1135  _matrix_tag_active_flags.resize(num_matrix_tags);
1136  _active_tagged_matrices.clear();
1137 
1138  for (const auto tag : make_range(num_matrix_tags))
1139  if (hasMatrix(tag))
1140  {
1141  _matrix_tag_active_flags[tag] = true;
1142  _active_tagged_matrices.emplace(tag, &getMatrix(tag));
1143  }
1144  else
1145  _matrix_tag_active_flags[tag] = false;
1146 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
IntRange< T > make_range(T beg, T end)

◆ addBoundaryCondition()

void NonlinearSystemBase::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)

Adds a boundary condition.

Parameters
bc_nameThe type of the boundary condition
nameThe name of the boundary condition
parametersBoundary condition parameters

Definition at line 538 of file NonlinearSystemBase.C.

541 {
542  // ThreadID
543  THREAD_ID tid = 0;
544 
545  // Create the object
546  std::shared_ptr<BoundaryCondition> bc =
547  _factory.create<BoundaryCondition>(bc_name, name, parameters, tid);
549 
550  // Active BoundaryIDs for the object
551  const std::set<BoundaryID> & boundary_ids = bc->boundaryIDs();
552  auto bc_var = dynamic_cast<const MooseVariableFieldBase *>(&bc->variable());
553  _vars[tid].addBoundaryVar(boundary_ids, bc_var);
554 
555  // Cast to the various types of BCs
556  std::shared_ptr<NodalBCBase> nbc = std::dynamic_pointer_cast<NodalBCBase>(bc);
557  std::shared_ptr<IntegratedBCBase> ibc = std::dynamic_pointer_cast<IntegratedBCBase>(bc);
558 
559  // NodalBCBase
560  if (nbc)
561  {
562  if (nbc->checkNodalVar() && !nbc->variable().isNodal())
563  mooseError("Trying to use nodal boundary condition '",
564  nbc->name(),
565  "' on a non-nodal variable '",
566  nbc->variable().name(),
567  "'.");
568 
569  _nodal_bcs.addObject(nbc);
570  // Add to theWarehouse, a centralized storage for all moose objects
572  _vars[tid].addBoundaryVars(boundary_ids, nbc->getCoupledVars());
573 
574  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
575  _has_nodalbc_save_in = true;
576  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
578 
579  // DirichletBCs that are preset
580  std::shared_ptr<DirichletBCBase> dbc = std::dynamic_pointer_cast<DirichletBCBase>(bc);
581  if (dbc && dbc->preset())
583 
584  std::shared_ptr<ADDirichletBCBase> addbc = std::dynamic_pointer_cast<ADDirichletBCBase>(bc);
585  if (addbc && addbc->preset())
587  }
588 
589  // IntegratedBCBase
590  else if (ibc)
591  {
592  _integrated_bcs.addObject(ibc, tid);
593  // Add to theWarehouse, a centralized storage for all moose objects
595  _vars[tid].addBoundaryVars(boundary_ids, ibc->getCoupledVars());
596 
597  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
598  _has_save_in = true;
599  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
600  _has_diag_save_in = true;
601 
602  for (tid = 1; tid < libMesh::n_threads(); tid++)
603  {
604  // Create the object
605  bc = _factory.create<BoundaryCondition>(bc_name, name, parameters, tid);
606 
607  // Give users opportunity to set some parameters
609 
610  // Active BoundaryIDs for the object
611  const std::set<BoundaryID> & boundary_ids = bc->boundaryIDs();
612  _vars[tid].addBoundaryVar(boundary_ids, bc_var);
613 
614  ibc = std::static_pointer_cast<IntegratedBCBase>(bc);
615 
616  _integrated_bcs.addObject(ibc, tid);
617  _vars[tid].addBoundaryVars(boundary_ids, ibc->getCoupledVars());
618  }
619  }
620 
621  else
622  mooseError("Unknown BoundaryCondition type for object named ", bc->name());
623 }
unsigned int n_threads()
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
Base class for automatic differentiation Dirichlet BCs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Base boundary condition of a Dirichlet type.
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
Factory & _factory
Definition: SystemBase.h:989
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
This class provides an interface for common operations on field variables of both FE and FV types wit...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for deriving any boundary condition that works at nodes.
Definition: NodalBCBase.h:26
Base class for creating new types of boundary conditions.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
Base class for deriving any boundary condition of a integrated type.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ addConstraint()

void NonlinearSystemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)

Adds a Constraint.

Parameters
c_nameThe type of the constraint
nameThe name of the constraint
parametersConstraint parameters

Definition at line 626 of file NonlinearSystemBase.C.

629 {
630  std::shared_ptr<Constraint> constraint = _factory.create<Constraint>(c_name, name, parameters);
631  _constraints.addObject(constraint);
632  postAddResidualObject(*constraint);
633 
634  if (constraint && constraint->addCouplingEntriesToJacobian())
636 }
void addImplicitGeometricCouplingEntriesToJacobian(bool add=true)
If called with true this will add entries into the jacobian to link together degrees of freedom that ...
Base class for all Constraint types.
Definition: Constraint.h:19
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
ConstraintWarehouse _constraints
Constraints storage object.
void addObject(std::shared_ptr< Constraint > object, THREAD_ID tid=0, bool recurse=true) override
Add Constraint object to the warehouse.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.

◆ addDamper()

void NonlinearSystemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)

Adds a damper.

Parameters
damper_nameThe type of the damper
nameThe name of the damper
parametersDamper parameters

Definition at line 699 of file NonlinearSystemBase.C.

702 {
703  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
704  {
705  std::shared_ptr<Damper> damper = _factory.create<Damper>(damper_name, name, parameters, tid);
706 
707  // Attempt to cast to the damper types
708  std::shared_ptr<ElementDamper> ed = std::dynamic_pointer_cast<ElementDamper>(damper);
709  std::shared_ptr<NodalDamper> nd = std::dynamic_pointer_cast<NodalDamper>(damper);
710  std::shared_ptr<GeneralDamper> gd = std::dynamic_pointer_cast<GeneralDamper>(damper);
711 
712  if (gd)
713  {
715  break; // not threaded
716  }
717  else if (ed)
718  _element_dampers.addObject(ed, tid);
719  else if (nd)
720  _nodal_dampers.addObject(nd, tid);
721  else
722  mooseError("Invalid damper type");
723  }
724 }
Base class for deriving general dampers.
Definition: GeneralDamper.h:21
unsigned int n_threads()
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Factory & _factory
Definition: SystemBase.h:989
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
Base class for deriving nodal dampers.
Definition: NodalDamper.h:27
Base class for deriving element dampers.
Definition: ElementDamper.h:33
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Base class for deriving dampers.
Definition: Damper.h:24
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addDGKernel()

void NonlinearSystemBase::addDGKernel ( std::string  dg_kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds a DG kernel.

Parameters
dg_kernel_nameThe type of the DG kernel
nameThe name of the DG kernel
parametersDG kernel parameters

Definition at line 655 of file NonlinearSystemBase.C.

658 {
659  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
660  {
661  auto dg_kernel = _factory.create<DGKernelBase>(dg_kernel_name, name, parameters, tid);
662  _dg_kernels.addObject(dg_kernel, tid);
663  // Add to theWarehouse, a centralized storage for all moose objects
664  _fe_problem.theWarehouse().add(dg_kernel);
665  postAddResidualObject(*dg_kernel);
666  }
667 
668  _doing_dg = true;
669 
670  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
671  _has_save_in = true;
672  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
673  _has_diag_save_in = true;
674 }
unsigned int n_threads()
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
Serves as a base class for DGKernel and ADDGKernel.
Definition: DGKernelBase.h:32
virtual const std::string & name() const
Definition: SystemBase.C:1340
bool _doing_dg
true if DG is active (optimization reasons)
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addDiracKernel()

void NonlinearSystemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds a Dirac kernel.

Parameters
kernel_nameThe type of the dirac kernel
nameThe name of the Dirac kernel
parametersDirac kernel parameters

Definition at line 639 of file NonlinearSystemBase.C.

642 {
643  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
644  {
645  std::shared_ptr<DiracKernelBase> kernel =
646  _factory.create<DiracKernelBase>(kernel_name, name, parameters, tid);
647  postAddResidualObject(*kernel);
648  _dirac_kernels.addObject(kernel, tid);
649  // Add to theWarehouse, a centralized storage for all moose objects
650  _fe_problem.theWarehouse().add(kernel);
651  }
652 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
DiracKernelBase is the base class for all DiracKernel type classes.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addDotVectors()

void SystemBase::addDotVectors ( )
virtualinherited

Add u_dot, u_dotdot, u_dot_old and u_dotdot_old vectors if requested by the time integrator.

Reimplemented in DisplacedSystem.

Definition at line 1633 of file SystemBase.C.

Referenced by DisplacedSystem::addDotVectors().

1634 {
1635  if (_fe_problem.uDotRequested())
1636  _u_dot = &addVector("u_dot", true, GHOSTED);
1638  _u_dot_old = &addVector("u_dot_old", true, GHOSTED);
1640  _u_dotdot = &addVector("u_dotdot", true, GHOSTED);
1642  _u_dotdot_old = &addVector("u_dotdot_old", true, GHOSTED);
1643 }
virtual bool uDotDotOldRequested()
Get boolean flag to check whether old solution second time derivative needs to be stored...
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011
virtual bool uDotRequested()
Get boolean flag to check whether solution time derivative needs to be stored.
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
virtual bool uDotOldRequested()
Get boolean flag to check whether old solution time derivative needs to be stored.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ addHDGKernel()

void NonlinearSystemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a hybridized discontinuous Galerkin (HDG) kernel.

Parameters
kernel_nameThe type of the hybridized kernel
nameThe name of the hybridized kernel
parametersHDG kernel parameters

Definition at line 486 of file NonlinearSystemBase.C.

489 {
490  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
491  {
492  // Create the kernel object via the factory and add to warehouse
493  auto kernel = _factory.create<HDGKernel>(kernel_name, name, parameters, tid);
494  _kernels.addObject(kernel, tid);
495  _hybridized_kernels.addObject(kernel, tid);
496  // Add to theWarehouse, a centralized storage for all moose objects
497  _fe_problem.theWarehouse().add(kernel);
498  postAddResidualObject(*kernel);
499  }
500 }
A kernel for hybridized finite element formulations.
Definition: HDGKernel.h:17
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
MooseObjectTagWarehouse< HDGKernel > _hybridized_kernels
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addImplicitGeometricCouplingEntries()

void NonlinearSystemBase::addImplicitGeometricCouplingEntries ( GeometricSearchData geom_search_data)

Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled that are related geometrically (i.e.

near each other across a gap).

Definition at line 2316 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2317 {
2318  if (!hasMatrix(systemMatrixTag()))
2319  mooseError("Need a system matrix ");
2320 
2321  // At this point, have no idea how to make
2322  // this work with tag system
2323  auto & jacobian = getMatrix(systemMatrixTag());
2324 
2325  std::unordered_map<dof_id_type, std::vector<dof_id_type>> graph;
2326 
2327  findImplicitGeometricCouplingEntries(geom_search_data, graph);
2328 
2329  for (const auto & it : graph)
2330  {
2331  dof_id_type dof = it.first;
2332  const auto & row = it.second;
2333 
2334  for (const auto & coupled_dof : row)
2335  jacobian.add(dof, coupled_dof, 0);
2336  }
2337 }
void findImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
Finds the implicit sparsity graph between geometrically related dofs.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
uint8_t dof_id_type

◆ addImplicitGeometricCouplingEntriesToJacobian()

void NonlinearSystemBase::addImplicitGeometricCouplingEntriesToJacobian ( bool  add = true)
inline

If called with true this will add entries into the jacobian to link together degrees of freedom that are found to be related through the geometric search system.

These entries are really only used by the Finite Difference Preconditioner and the constraint system right now.

Definition at line 510 of file NonlinearSystemBase.h.

Referenced by addConstraint(), and FiniteDifferencePreconditioner::FiniteDifferencePreconditioner().

511  {
513  }
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.

◆ addInterfaceKernel()

void NonlinearSystemBase::addInterfaceKernel ( std::string  interface_kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds an interface kernel.

Parameters
interface_kernel_nameThe type of the interface kernel
nameThe name of the interface kernel
parametersinterface kernel parameters

Definition at line 677 of file NonlinearSystemBase.C.

680 {
681  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
682  {
683  std::shared_ptr<InterfaceKernelBase> interface_kernel =
684  _factory.create<InterfaceKernelBase>(interface_kernel_name, name, parameters, tid);
685  postAddResidualObject(*interface_kernel);
686 
687  const std::set<BoundaryID> & boundary_ids = interface_kernel->boundaryIDs();
688  auto ik_var = dynamic_cast<const MooseVariableFieldBase *>(&interface_kernel->variable());
689  _vars[tid].addBoundaryVar(boundary_ids, ik_var);
690 
691  _interface_kernels.addObject(interface_kernel, tid);
692  // Add to theWarehouse, a centralized storage for all moose objects
693  _fe_problem.theWarehouse().add(interface_kernel);
694  _vars[tid].addBoundaryVars(boundary_ids, interface_kernel->getCoupledVars());
695  }
696 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
InterfaceKernelBase is the base class for all InterfaceKernel type classes.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addKernel()

void NonlinearSystemBase::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

Reimplemented in MooseEigenSystem.

Definition at line 464 of file NonlinearSystemBase.C.

467 {
468  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
469  {
470  // Create the kernel object via the factory and add to warehouse
471  std::shared_ptr<KernelBase> kernel =
472  _factory.create<KernelBase>(kernel_name, name, parameters, tid);
473  _kernels.addObject(kernel, tid);
474  postAddResidualObject(*kernel);
475  // Add to theWarehouse, a centralized storage for all moose objects
476  _fe_problem.theWarehouse().add(kernel);
477  }
478 
479  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
480  _has_save_in = true;
481  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
482  _has_diag_save_in = true;
483 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
This is the common base class for the three main kernel types implemented in MOOSE, Kernel, VectorKernel and ArrayKernel.
Definition: KernelBase.h:23
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addKokkosBoundaryCondition()

void NonlinearSystemBase::addKokkosBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)

Adds a Kokkos boundary condition.

Parameters
bc_nameThe type of the boundary condition
nameThe name of the boundary condition
parametersBoundary condition parameters

◆ addKokkosKernel()

virtual void NonlinearSystemBase::addKokkosKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a Kokkos kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

◆ addKokkosNodalKernel()

virtual void NonlinearSystemBase::addKokkosNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a Kokkos nodal kernel.

Parameters
kernel_nameThe type of the nodal kernel
nameThe name of the kernel
parametersKernel parameters

◆ addMatrix()

SparseMatrix< Number > & SystemBase::addMatrix ( TagID  tag)
inherited

Adds a matrix with a given tag.

Parameters
tag_nameThe name of the tag

Definition at line 570 of file SystemBase.C.

571 {
572  if (!_subproblem.matrixTagExists(tag))
573  mooseError("Cannot add tagged matrix with TagID ",
574  tag,
575  " in system '",
576  name(),
577  "' because the tag does not exist in the problem");
578 
579  if (hasMatrix(tag))
580  return getMatrix(tag);
581 
582  const auto matrix_name = _subproblem.matrixTagName(tag);
583  SparseMatrix<Number> & mat = system().add_matrix(matrix_name);
584  associateMatrixToTag(mat, tag);
585 
586  return mat;
587 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328
virtual TagName matrixTagName(TagID tag)
Retrieve the name associated with a TagID.
Definition: SubProblem.C:357

◆ addNodalKernel()

void NonlinearSystemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtual

Adds a NodalKernel.

Parameters
kernel_nameThe type of the nodal kernel
nameThe name of the kernel
parametersKernel parameters

Definition at line 503 of file NonlinearSystemBase.C.

506 {
507  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
508  {
509  // Create the kernel object via the factory and add to the warehouse
510  std::shared_ptr<NodalKernelBase> kernel =
511  _factory.create<NodalKernelBase>(kernel_name, name, parameters, tid);
512  _nodal_kernels.addObject(kernel, tid);
513  // Add to theWarehouse, a centralized storage for all moose objects
514  _fe_problem.theWarehouse().add(kernel);
515  postAddResidualObject(*kernel);
516  }
517 
518  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
519  _has_save_in = true;
520  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
521  _has_diag_save_in = true;
522 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
Base class for creating new types of nodal kernels.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addScalarKernel()

void NonlinearSystemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)

Adds a scalar kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

Definition at line 525 of file NonlinearSystemBase.C.

528 {
529  std::shared_ptr<ScalarKernelBase> kernel =
530  _factory.create<ScalarKernelBase>(kernel_name, name, parameters);
531  postAddResidualObject(*kernel);
532  // Add to theWarehouse, a centralized storage for all moose objects
533  _fe_problem.theWarehouse().add(kernel);
534  _scalar_kernels.addObject(kernel);
535 }
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Base class shared by AD and non-AD scalar kernels.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ addScalingVector()

void SystemBase::addScalingVector ( )
inherited

Add the scaling factor vector to the system.

Definition at line 1545 of file SystemBase.C.

Referenced by MooseVariableBase::initialSetup().

1546 {
1547  addVector("scaling_factors", /*project=*/false, libMesh::ParallelType::GHOSTED);
1549 }
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
void hasScalingVector(const unsigned int nl_sys_num)
Tells this problem that the assembly associated with the given nonlinear system number involves a sca...
Definition: SubProblem.C:1170
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ addSplit()

void NonlinearSystemBase::addSplit ( const std::string &  split_name,
const std::string &  name,
InputParameters parameters 
)

Adds a split.

Parameters
split_nameThe type of the split
nameThe name of the split
parametersSplit parameters

Definition at line 727 of file NonlinearSystemBase.C.

730 {
731  std::shared_ptr<Split> split = _factory.create<Split>(split_name, name, parameters);
733  // Add to theWarehouse, a centralized storage for all moose objects
735 }
Base class for split-based preconditioners.
Definition: Split.h:25
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
tbb::split split
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true)
Adds an object to the storage structure.

◆ addTimeIntegrator()

void SystemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
inherited

Definition at line 1658 of file SystemBase.C.

1661 {
1662  parameters.set<SystemBase *>("_sys") = this;
1663  _time_integrators.push_back(_factory.create<TimeIntegrator>(type, name, parameters));
1664 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Factory & _factory
Definition: SystemBase.h:989
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
Base class for time integrators.

◆ addVariable()

void SystemBase::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
virtualinherited

Canonical method for adding a variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in AuxiliarySystem.

Definition at line 718 of file SystemBase.C.

Referenced by AuxiliarySystem::addVariable().

721 {
723 
724  const auto components = parameters.get<unsigned int>("components");
725 
726  // Convert the std::vector parameter provided by the user into a std::set for use by libMesh's
727  // System::add_variable method
728  std::set<SubdomainID> blocks;
729  const auto & block_param = parameters.get<std::vector<SubdomainName>>("block");
730  for (const auto & subdomain_name : block_param)
731  {
732  SubdomainID blk_id = _mesh.getSubdomainID(subdomain_name);
733  blocks.insert(blk_id);
734  }
735 
736  const auto fe_type =
737  FEType(Utility::string_to_enum<Order>(parameters.get<MooseEnum>("order")),
738  Utility::string_to_enum<FEFamily>(parameters.get<MooseEnum>("family")));
739  const auto fe_field_type = FEInterface::field_type(fe_type);
740 
741  unsigned int var_num;
742 
743  if (var_type == "ArrayMooseVariable")
744  {
745  if (fe_field_type == TYPE_VECTOR)
746  mooseError("Vector family type cannot be used in an array variable");
747 
748  std::vector<std::string> array_var_component_names;
749  const bool has_array_names = parameters.isParamValid("array_var_component_names");
750  if (has_array_names)
751  {
752  array_var_component_names =
753  parameters.get<std::vector<std::string>>("array_var_component_names");
754  if (array_var_component_names.size() != components)
755  parameters.paramError("array_var_component_names",
756  "Must be the same size as 'components' (size ",
757  components,
758  ") for array variable '",
759  name,
760  "'");
761  }
762 
763  // Build up the variable names
764  std::vector<std::string> var_names;
765  for (unsigned int i = 0; i < components; i++)
766  {
767  if (!has_array_names)
768  array_var_component_names.push_back(std::to_string(i));
769  var_names.push_back(name + "_" + array_var_component_names[i]);
770  }
771 
772  // makes sure there is always a name, either the provided one or '1 2 3 ...'
773  parameters.set<std::vector<std::string>>("array_var_component_names") =
774  array_var_component_names;
775 
776  // The number returned by libMesh is the _last_ variable number... we want to hold onto the
777  // _first_
778  var_num = system().add_variables(var_names, fe_type, &blocks) - (components - 1);
779 
780  // Set as array variable
781  if (parameters.isParamSetByUser("array") && !parameters.get<bool>("array"))
782  parameters.paramError("array",
783  "Must be set to true for variable '",
784  name,
785  "' because 'components' > 1 (is an array variable)");
786  parameters.set<bool>("array") = true;
787  }
788  else
789  {
790  if (parameters.isParamSetByUser("array_var_component_names"))
791  parameters.paramError("array_var_component_names",
792  "Should not be set because this variable (",
793  name,
794  ") is a non-array variable");
795  var_num = system().add_variable(name, fe_type, &blocks);
796  }
797 
798  parameters.set<unsigned int>("_var_num") = var_num;
799  parameters.set<SystemBase *>("_system_base") = this;
800 
801  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
802  {
803  parameters.set<THREAD_ID>("tid") = tid;
804  std::shared_ptr<MooseVariableBase> var =
805  _factory.create<MooseVariableBase>(var_type, name, parameters, tid);
806 
807  _vars[tid].add(name, var);
808 
809  if (auto fe_var = dynamic_cast<MooseVariableFieldBase *>(var.get()))
810  {
811  auto required_size = var_num + components;
812  if (required_size > _numbered_vars[tid].size())
813  _numbered_vars[tid].resize(required_size);
814  for (MooseIndex(components) component = 0; component < components; ++component)
815  _numbered_vars[tid][var_num + component] = fe_var;
816 
817  if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADReal> *>(fe_var))
818  _subproblem.addFunctor(name, *functor, tid);
819  else if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADRealVectorValue> *>(fe_var))
820  _subproblem.addFunctor(name, *functor, tid);
821  else if (auto * const functor = dynamic_cast<Moose::FunctorBase<RealEigenVector> *>(fe_var))
822  _subproblem.addFunctor(name, *functor, tid);
823  else
824  mooseError("This should be a functor");
825  }
826 
827  if (auto scalar_var = dynamic_cast<MooseVariableScalar *>(var.get()))
828  {
829  if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADReal> *>(scalar_var))
830  _subproblem.addFunctor(name, *functor, tid);
831  else
832  mooseError("Scalar variables should be functors");
833  }
834 
835  if (var->blockRestricted())
836  for (const SubdomainID & id : var->blockIDs())
837  for (MooseIndex(components) component = 0; component < components; ++component)
838  _var_map[var_num + component].insert(id);
839  else
840  for (MooseIndex(components) component = 0; component < components; ++component)
841  _var_map[var_num + component] = std::set<SubdomainID>();
842  }
843 
844  // getMaxVariableNumber is an API method used in Rattlesnake
845  if (var_num > _max_var_number)
846  _max_var_number = var_num;
847  _du_dot_du.resize(var_num + 1);
848 }
unsigned int add_variables(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
Map variable number to its pointer.
Definition: SystemBase.h:1052
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017
unsigned int n_threads()
char ** blocks
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
Factory & _factory
Definition: SystemBase.h:989
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const std::string & name() const
Definition: SystemBase.C:1340
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...
virtual std::unique_ptr< Base > create()=0
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
MooseMesh & _mesh
Definition: SystemBase.h:991
unsigned int _max_var_number
Maximum variable number.
Definition: SystemBase.h:1000
Base variable class.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1769
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addVariableToCopy()

void SystemBase::addVariableToCopy ( const std::string &  dest_name,
const std::string &  source_name,
const std::string &  timestep 
)
virtualinherited

Add info about variable that will be copied.

Parameters
dest_nameName of the nodal variable being used for copying into (name is from the exodusII file)
source_nameName of the nodal variable being used for copying from (name is from the exodusII file)
timestepTimestep in the file being used

Definition at line 1175 of file SystemBase.C.

Referenced by CopyNodalVarsAction::act(), and PhysicsBase::copyVariablesFromMesh().

1178 {
1179  _var_to_copy.push_back(VarCopyInfo(dest_name, source_name, timestep));
1180 }
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040
Information about variables that will be copied.
Definition: SystemBase.h:66

◆ addVariableToZeroOnJacobian()

void SystemBase::addVariableToZeroOnJacobian ( std::string  var_name)
virtualinherited

Adds this variable to the list of variables to be zeroed during each Jacobian evaluation.

Parameters
var_nameThe name of the variable to be zeroed.

Reimplemented in DisplacedSystem.

Definition at line 180 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), DisplacedSystem::addVariableToZeroOnJacobian(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ArrayDGKernel::ArrayDGKernel(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), DGKernel::DGKernel(), IntegratedBC::IntegratedBC(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), Kernel::Kernel(), NodalBC::NodalBC(), and NodalKernel::NodalKernel().

181 {
182  _vars_to_be_zeroed_on_jacobian.push_back(var_name);
183 }
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
Definition: SystemBase.h:1003

◆ addVariableToZeroOnResidual()

void SystemBase::addVariableToZeroOnResidual ( std::string  var_name)
virtualinherited

Adds this variable to the list of variables to be zeroed during each residual evaluation.

Parameters
var_nameThe name of the variable to be zeroed.

Reimplemented in DisplacedSystem.

Definition at line 174 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), DisplacedSystem::addVariableToZeroOnResidual(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ArrayDGKernel::ArrayDGKernel(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), DGKernel::DGKernel(), IntegratedBC::IntegratedBC(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), Kernel::Kernel(), NodalBC::NodalBC(), and NodalKernel::NodalKernel().

175 {
176  _vars_to_be_zeroed_on_residual.push_back(var_name);
177 }
std::vector< std::string > _vars_to_be_zeroed_on_residual
Definition: SystemBase.h:1002

◆ addVector() [1/2]

NumericVector<Number>& SystemBase::addVector ( const std::string &  vector_name,
const bool  project,
const libMesh::ParallelType  type 
)
inherited

Adds a solution length vector to the system.

Parameters
vector_nameThe name of the vector.
projectWhether or not to project this vector when doing mesh refinement. If the vector is just going to be recomputed then there is no need to project it.
typeWhat type of parallel vector. This is usually either PARALLEL or GHOSTED. GHOSTED is needed if you are going to be accessing off-processor entries. The ghosting pattern is the same as the solution vector.

Referenced by SystemBase::addDotVectors(), SystemBase::addScalingVector(), NonlinearTimeIntegratorInterface::addVector(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), getResidualNonTimeVector(), getResidualTimeVector(), CentralDifference::initialSetup(), SystemBase::needSolutionState(), residualGhosted(), and SystemBase::saveOldSolutions().

◆ addVector() [2/2]

NumericVector<Number>& SystemBase::addVector ( TagID  tag,
const bool  project,
const libMesh::ParallelType  type 
)
inherited

Adds a solution length vector to the system with the specified TagID.

Parameters
tag_nameThe name of the tag
projectWhether or not to project this vector when doing mesh refinement. If the vector is just going to be recomputed then there is no need to project it.
typeWhat type of parallel vector. This is usually either PARALLEL or GHOSTED. GHOSTED is needed if you are going to be accessing off-processor entries. The ghosting pattern is the same as the solution vector.

◆ applyScalingFactors()

void SystemBase::applyScalingFactors ( const std::vector< Real > &  inverse_scaling_factors)
inherited

Applies scaling factors to the system's variables.

Parameters
inverse_scaling_factorsA vector containing the inverse of each variable's scaling factor, e.g. 1 / scaling_factor

Definition at line 1495 of file SystemBase.C.

Referenced by computeScaling().

1496 {
1497  for (MooseIndex(_vars) thread = 0; thread < _vars.size(); ++thread)
1498  {
1499  auto & field_variables = _vars[thread].fieldVariables();
1500  for (MooseIndex(field_variables) i = 0, p = 0; i < field_variables.size(); ++i)
1501  {
1502  auto factors = field_variables[i]->arrayScalingFactor();
1503  for (unsigned int j = 0; j < field_variables[i]->count(); ++j, ++p)
1504  factors[j] /= inverse_scaling_factors[p];
1505 
1506  field_variables[i]->scalingFactor(factors);
1507  }
1508 
1509  auto offset = field_variables.size();
1510 
1511  auto & scalar_variables = _vars[thread].scalars();
1512  for (MooseIndex(scalar_variables) i = 0; i < scalar_variables.size(); ++i)
1513  scalar_variables[i]->scalingFactor(
1514  {1. / inverse_scaling_factors[offset + i] * scalar_variables[i]->scalingFactor()});
1515 
1516  if (thread == 0 && _verbose)
1517  {
1518  _console << "Automatic scaling factors:\n";
1519  auto original_flags = _console.flags();
1520  auto original_precision = _console.precision();
1521  _console.unsetf(std::ios_base::floatfield);
1522  _console.precision(6);
1523 
1524  for (const auto & field_variable : field_variables)
1525  {
1526  const auto & factors = field_variable->arrayScalingFactor();
1527  _console << " " << field_variable->name() << ":";
1528  for (const auto i : make_range(field_variable->count()))
1529  _console << " " << factors[i];
1530  _console << "\n";
1531  }
1532  for (const auto & scalar_variable : scalar_variables)
1533  _console << " " << scalar_variable->name() << ": " << scalar_variable->scalingFactor()
1534  << "\n";
1535  _console << "\n" << std::endl;
1536 
1537  // restore state
1538  _console.flags(original_flags);
1539  _console.precision(original_precision);
1540  }
1541  }
1542 }
std::ios_base::fmtflags flags() const
Return the current flags.
Definition: ConsoleStream.C:56
void unsetf(std::ios_base::fmtflags mask) const
Unset format flags.
Definition: ConsoleStream.C:38
std::streamsize precision() const
Return the current precision.
Definition: ConsoleStream.C:44
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
bool _verbose
True if printing out additional information.
Definition: SystemBase.h:1058
IntRange< T > make_range(T beg, T end)
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ assembleConstraintsSeparately()

void NonlinearSystemBase::assembleConstraintsSeparately ( bool  separately = true)
inline

Indicates whether to assemble residual and Jacobian after each constraint application.

When true, enables "transitive" constraint application: subsequent constraints can use prior constraints' results.

Definition at line 520 of file NonlinearSystemBase.h.

521  {
523  }
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...

◆ assembleScalingVector()

void NonlinearSystemBase::assembleScalingVector ( )
protected

Assemble the numeric vector of scaling factors such that it can be used during assembly of the system matrix.

Definition at line 4114 of file NonlinearSystemBase.C.

Referenced by computeScaling(), and preSolve().

4115 {
4116  if (!hasVector("scaling_factors"))
4117  // No variables have indicated they need scaling
4118  return;
4119 
4120  auto & scaling_vector = getVector("scaling_factors");
4121 
4122  const auto & lm_mesh = _mesh.getMesh();
4123  const auto & dof_map = dofMap();
4124 
4125  const auto & field_variables = _vars[0].fieldVariables();
4126  const auto & scalar_variables = _vars[0].scalars();
4127 
4128  std::vector<dof_id_type> dof_indices;
4129 
4130  for (const Elem * const elem :
4131  as_range(lm_mesh.active_local_elements_begin(), lm_mesh.active_local_elements_end()))
4132  for (const auto * const field_var : field_variables)
4133  {
4134  const auto & factors = field_var->arrayScalingFactor();
4135  for (const auto i : make_range(field_var->count()))
4136  {
4137  dof_map.dof_indices(elem, dof_indices, field_var->number() + i);
4138  for (const auto dof : dof_indices)
4139  scaling_vector.set(dof, factors[i]);
4140  }
4141  }
4142 
4143  for (const auto * const scalar_var : scalar_variables)
4144  {
4145  mooseAssert(scalar_var->count() == 1,
4146  "Scalar variables should always have only one component.");
4147  dof_map.SCALAR_dof_indices(dof_indices, scalar_var->number());
4148  for (const auto dof : dof_indices)
4149  scaling_vector.set(dof, scalar_var->scalingFactor());
4150  }
4151 
4152  // Parallel assemble
4153  scaling_vector.close();
4154 
4155  if (auto * displaced_problem = _fe_problem.getDisplacedProblem().get())
4156  // copy into the corresponding displaced system vector because they should be the exact same
4157  displaced_problem->systemBaseNonlinear(number()).getVector("scaling_factors") = scaling_vector;
4158 }
std::shared_ptr< DisplacedProblem > displaced_problem
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
MooseMesh & _mesh
Definition: SystemBase.h:991
IntRange< T > make_range(T beg, T end)
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ assignMaxVarNDofsPerElem()

void SystemBase::assignMaxVarNDofsPerElem ( std::size_t  max_dofs)
inlineinherited

assign the maximum element dofs

Definition at line 597 of file SystemBase.h.

597 { _max_var_n_dofs_per_elem = max_dofs; }
size_t _max_var_n_dofs_per_elem
Maximum number of dofs for any one variable on any one element.
Definition: SystemBase.h:1043

◆ assignMaxVarNDofsPerNode()

void SystemBase::assignMaxVarNDofsPerNode ( std::size_t  max_dofs)
inlineinherited

assign the maximum node dofs

Definition at line 602 of file SystemBase.h.

602 { _max_var_n_dofs_per_node = max_dofs; }
size_t _max_var_n_dofs_per_node
Maximum number of dofs for any one variable on any one node.
Definition: SystemBase.h:1046

◆ associateMatrixToTag()

void SystemBase::associateMatrixToTag ( libMesh::SparseMatrix< Number > &  matrix,
TagID  tag 
)
virtualinherited

Associate a matrix to a tag.

Reimplemented in DisplacedSystem.

Definition at line 1076 of file SystemBase.C.

Referenced by SystemBase::addMatrix(), DisplacedSystem::associateMatrixToTag(), computeJacobian(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

1077 {
1078  if (!_subproblem.matrixTagExists(tag))
1079  mooseError("Cannot associate matrix to tag ", tag, " because that tag does not exist");
1080 
1081  if (_tagged_matrices.size() < tag + 1)
1082  _tagged_matrices.resize(tag + 1);
1083 
1084  _tagged_matrices[tag] = &matrix;
1085 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ associateVectorToTag()

void SystemBase::associateVectorToTag ( NumericVector< Number > &  vec,
TagID  tag 
)
virtualinherited

Associate a vector for a given tag.

Reimplemented in DisplacedSystem.

Definition at line 981 of file SystemBase.C.

Referenced by DisplacedSystem::associateVectorToTag(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), computeResidualTag(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualType(), LinearSystem::LinearSystem(), and SolverSystem::setSolution().

982 {
983  if (!_subproblem.vectorTagExists(tag))
984  mooseError("Cannot associate vector to tag ", tag, " because that tag does not exist");
985 
986  if (_tagged_vectors.size() < tag + 1)
987  _tagged_vectors.resize(tag + 1);
988 
989  _tagged_vectors[tag] = &vec;
990 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ attachPreconditioner()

virtual void NonlinearSystemBase::attachPreconditioner ( libMesh::Preconditioner< Number > *  preconditioner)
pure virtual

Attach a customized preconditioner that requires physics knowledge.

Generic preconditioners should be implemented in PETSc, instead.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

Referenced by PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

◆ augmentSendList()

void SystemBase::augmentSendList ( std::vector< dof_id_type > &  send_list)
virtualinherited

Will modify the send_list to add all of the extra ghosted dofs for this system.

Reimplemented in DisplacedSystem.

Definition at line 452 of file SystemBase.C.

Referenced by DisplacedSystem::augmentSendList(), and extraSendList().

453 {
454  std::set<dof_id_type> & ghosted_elems = _subproblem.ghostedElems();
455 
456  DofMap & dof_map = dofMap();
457 
458  std::vector<dof_id_type> dof_indices;
459 
460  System & sys = system();
461 
462  unsigned int sys_num = sys.number();
463 
464  unsigned int n_vars = sys.n_vars();
465 
466  for (const auto & elem_id : ghosted_elems)
467  {
468  Elem * elem = _mesh.elemPtr(elem_id);
469 
470  if (elem->active())
471  {
472  dof_map.dof_indices(elem, dof_indices);
473 
474  // Only need to ghost it if it's actually not on this processor
475  for (const auto & dof : dof_indices)
476  if (dof < dof_map.first_dof() || dof >= dof_map.end_dof())
477  send_list.push_back(dof);
478 
479  // Now add the DoFs from all of the nodes. This is necessary because of block
480  // restricted variables. A variable might not live _on_ this element but it
481  // might live on nodes connected to this element.
482  for (unsigned int n = 0; n < elem->n_nodes(); n++)
483  {
484  Node * node = elem->node_ptr(n);
485 
486  // Have to get each variable's dofs
487  for (unsigned int v = 0; v < n_vars; v++)
488  {
489  const Variable & var = sys.variable(v);
490  unsigned int var_num = var.number();
491  unsigned int n_comp = var.n_components();
492 
493  // See if this variable has any dofs at this node
494  if (node->n_dofs(sys_num, var_num) > 0)
495  {
496  // Loop over components of the variable
497  for (unsigned int c = 0; c < n_comp; c++)
498  send_list.push_back(node->dof_number(sys_num, var_num, c));
499  }
500  }
501  }
502  }
503  }
504 }
dof_id_type end_dof(const processor_id_type proc) const
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
const Variable & variable(unsigned int var) const
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
unsigned int n_dofs(const unsigned int s, const unsigned int var=libMesh::invalid_uint) const
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
unsigned int number() const
unsigned int n_vars
virtual unsigned int n_nodes() const=0
unsigned int n_components() const
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual std::set< dof_id_type > & ghostedElems()
Return the list of elements that should have their DoFs ghosted to this processor.
Definition: SubProblem.h:672
MooseMesh & _mesh
Definition: SystemBase.h:991
const Node * node_ptr(const unsigned int i) const
dof_id_type first_dof(const processor_id_type proc) const
unsigned int number() const
unsigned int n_vars() const
bool active() const

◆ augmentSparsity()

void NonlinearSystemBase::augmentSparsity ( libMesh::SparsityPattern::Graph sparsity,
std::vector< dof_id_type > &  n_nz,
std::vector< dof_id_type > &  n_oz 
)
overridevirtual

Will modify the sparsity pattern to add logical geometric connections.

Implements SystemBase.

Definition at line 3530 of file NonlinearSystemBase.C.

3533 {
3535  {
3537 
3538  std::unordered_map<dof_id_type, std::vector<dof_id_type>> graph;
3539 
3541 
3544  graph);
3545 
3546  const dof_id_type first_dof_on_proc = dofMap().first_dof(processor_id());
3547  const dof_id_type end_dof_on_proc = dofMap().end_dof(processor_id());
3548 
3549  // The total number of dofs on and off processor
3550  const dof_id_type n_dofs_on_proc = dofMap().n_local_dofs();
3551  const dof_id_type n_dofs_not_on_proc = dofMap().n_dofs() - dofMap().n_local_dofs();
3552 
3553  for (const auto & git : graph)
3554  {
3555  dof_id_type dof = git.first;
3556  dof_id_type local_dof = dof - first_dof_on_proc;
3557 
3558  if (dof < first_dof_on_proc || dof >= end_dof_on_proc)
3559  continue;
3560 
3561  const auto & row = git.second;
3562 
3563  SparsityPattern::Row & sparsity_row = sparsity[local_dof];
3564 
3565  unsigned int original_row_length = sparsity_row.size();
3566 
3567  sparsity_row.insert(sparsity_row.end(), row.begin(), row.end());
3568 
3570  sparsity_row.begin(), sparsity_row.begin() + original_row_length, sparsity_row.end());
3571 
3572  // Fix up nonzero arrays
3573  for (const auto & coupled_dof : row)
3574  {
3575  if (coupled_dof < first_dof_on_proc || coupled_dof >= end_dof_on_proc)
3576  {
3577  if (n_oz[local_dof] < n_dofs_not_on_proc)
3578  n_oz[local_dof]++;
3579  }
3580  else
3581  {
3582  if (n_nz[local_dof] < n_dofs_on_proc)
3583  n_nz[local_dof]++;
3584  }
3585  }
3586  }
3587  }
3588 }
dof_id_type end_dof(const processor_id_type proc) const
void findImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
Finds the implicit sparsity graph between geometrically related dofs.
dof_id_type n_dofs(const unsigned int vn) const
dof_id_type n_local_dofs(const unsigned int vn) const
virtual GeometricSearchData & geomSearchData() override
std::vector< dof_id_type, Threads::scalable_allocator< dof_id_type > > Row
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
virtual void updateGeomSearch(GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
dof_id_type first_dof(const processor_id_type proc) const
processor_id_type processor_id() const
uint8_t dof_id_type
static void sort_row(const BidirectionalIterator begin, BidirectionalIterator middle, const BidirectionalIterator end)

◆ automaticScaling() [1/2]

bool SystemBase::automaticScaling ( ) const
inlineinherited

Getter for whether we are performing automatic scaling.

Returns
whether we are performing automatic scaling

Definition at line 122 of file SystemBase.h.

Referenced by SubProblem::automaticScaling().

122 { return _automatic_scaling; }
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055

◆ automaticScaling() [2/2]

void SystemBase::automaticScaling ( bool  automatic_scaling)
inlineinherited

Setter for whether we are performing automatic scaling.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 128 of file SystemBase.h.

128 { _automatic_scaling = automatic_scaling; }
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055

◆ autoScalingParam()

void NonlinearSystemBase::autoScalingParam ( Real  resid_vs_jac_scaling_param)
inline

Sets the param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters.

A value of 1 indicates pure residual-based scaling. A value of 0 indicates pure Jacobian-based scaling

Definition at line 725 of file NonlinearSystemBase.h.

726  {
727  _resid_vs_jac_scaling_param = resid_vs_jac_scaling_param;
728  }
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...

◆ checkInvalidSolution()

void SolverSystem::checkInvalidSolution ( )
protectedinherited

Definition at line 111 of file SolverSystem.C.

Referenced by NonlinearSystem::solve(), and LinearSystem::solve().

112 {
113  auto & solution_invalidity = _app.solutionInvalidity();
114 
115  // sync all solution invalid counts to rank 0 process
116  solution_invalidity.syncIteration();
117 
118  if (solution_invalidity.hasInvalidSolution())
119  {
122  solution_invalidity.print(_console);
123  else
124  mooseWarning("The Solution Invalidity warnings are detected but silenced! "
125  "Use Problem/show_invalid_solution_console=true to show solution counts");
126  else
127  // output the occurrence of solution invalid in a summary table
129  solution_invalidity.print(_console);
130  }
131 }
void mooseWarning(Args &&... args)
Emit a warning message with the given stringified, concatenated args.
Definition: MooseError.h:357
void syncIteration()
Sync iteration counts to main processor.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
bool showInvalidSolutionConsole() const
Whether or not to print out the invalid solutions summary table in console.
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool acceptInvalidSolution() const
Whether or not to accept the solution based on its invalidity.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ checkKernelCoverage()

void NonlinearSystemBase::checkKernelCoverage ( const std::set< SubdomainID > &  mesh_subdomains) const

System Integrity Checks

Definition at line 3652 of file NonlinearSystemBase.C.

3653 {
3654  // Obtain all blocks and variables covered by all kernels
3655  std::set<SubdomainID> input_subdomains;
3656  std::set<std::string> kernel_variables;
3657 
3658  bool global_kernels_exist = false;
3659  global_kernels_exist |= _scalar_kernels.hasActiveObjects();
3660  global_kernels_exist |= _nodal_kernels.hasActiveObjects();
3661 
3662  _kernels.subdomainsCovered(input_subdomains, kernel_variables);
3663  _dg_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3664  _nodal_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3665  _scalar_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3666  _constraints.subdomainsCovered(input_subdomains, kernel_variables);
3667 
3668 #ifdef MOOSE_KOKKOS_ENABLED
3669  _kokkos_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3670  _kokkos_nodal_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3671 #endif
3672 
3673  if (_fe_problem.haveFV())
3674  {
3675  std::vector<FVElementalKernel *> fv_elemental_kernels;
3677  .query()
3678  .template condition<AttribSystem>("FVElementalKernel")
3679  .queryInto(fv_elemental_kernels);
3680 
3681  for (auto fv_kernel : fv_elemental_kernels)
3682  {
3683  if (fv_kernel->blockRestricted())
3684  for (auto block_id : fv_kernel->blockIDs())
3685  input_subdomains.insert(block_id);
3686  else
3687  global_kernels_exist = true;
3688  kernel_variables.insert(fv_kernel->variable().name());
3689 
3690  // Check for lagrange multiplier
3691  if (dynamic_cast<FVScalarLagrangeMultiplierConstraint *>(fv_kernel))
3692  kernel_variables.insert(dynamic_cast<FVScalarLagrangeMultiplierConstraint *>(fv_kernel)
3693  ->lambdaVariable()
3694  .name());
3695  }
3696 
3697  std::vector<FVFluxKernel *> fv_flux_kernels;
3699  .query()
3700  .template condition<AttribSystem>("FVFluxKernel")
3701  .queryInto(fv_flux_kernels);
3702 
3703  for (auto fv_kernel : fv_flux_kernels)
3704  {
3705  if (fv_kernel->blockRestricted())
3706  for (auto block_id : fv_kernel->blockIDs())
3707  input_subdomains.insert(block_id);
3708  else
3709  global_kernels_exist = true;
3710  kernel_variables.insert(fv_kernel->variable().name());
3711  }
3712 
3713  std::vector<FVInterfaceKernel *> fv_interface_kernels;
3715  .query()
3716  .template condition<AttribSystem>("FVInterfaceKernel")
3717  .queryInto(fv_interface_kernels);
3718 
3719  for (auto fvik : fv_interface_kernels)
3720  if (auto scalar_fvik = dynamic_cast<FVScalarLagrangeMultiplierInterface *>(fvik))
3721  kernel_variables.insert(scalar_fvik->lambdaVariable().name());
3722 
3723  std::vector<FVFluxBC *> fv_flux_bcs;
3725  .query()
3726  .template condition<AttribSystem>("FVFluxBC")
3727  .queryInto(fv_flux_bcs);
3728 
3729  for (auto fvbc : fv_flux_bcs)
3730  if (auto scalar_fvbc = dynamic_cast<FVBoundaryScalarLagrangeMultiplierConstraint *>(fvbc))
3731  kernel_variables.insert(scalar_fvbc->lambdaVariable().name());
3732  }
3733 
3734  // Check kernel coverage of subdomains (blocks) in your mesh
3735  if (!global_kernels_exist)
3736  {
3737  std::set<SubdomainID> difference;
3738  std::set_difference(mesh_subdomains.begin(),
3739  mesh_subdomains.end(),
3740  input_subdomains.begin(),
3741  input_subdomains.end(),
3742  std::inserter(difference, difference.end()));
3743 
3744  // there supposed to be no kernels on this lower-dimensional subdomain
3745  for (const auto & id : _mesh.interiorLowerDBlocks())
3746  difference.erase(id);
3747  for (const auto & id : _mesh.boundaryLowerDBlocks())
3748  difference.erase(id);
3749 
3750  if (!difference.empty())
3751  {
3752  std::vector<SubdomainID> difference_vec =
3753  std::vector<SubdomainID>(difference.begin(), difference.end());
3754  std::vector<SubdomainName> difference_names = _mesh.getSubdomainNames(difference_vec);
3755  std::stringstream missing_block_names;
3756  std::copy(difference_names.begin(),
3757  difference_names.end(),
3758  std::ostream_iterator<std::string>(missing_block_names, " "));
3759  std::stringstream missing_block_ids;
3760  std::copy(difference.begin(),
3761  difference.end(),
3762  std::ostream_iterator<unsigned int>(missing_block_ids, " "));
3763 
3764  mooseError("Each subdomain must contain at least one Kernel.\nThe following block(s) lack an "
3765  "active kernel: " +
3766  missing_block_names.str(),
3767  " (ids: ",
3768  missing_block_ids.str(),
3769  ")");
3770  }
3771  }
3772 
3773  // Check kernel use of variables
3774  std::set<VariableName> variables(getVariableNames().begin(), getVariableNames().end());
3775 
3776  std::set<VariableName> difference;
3777  std::set_difference(variables.begin(),
3778  variables.end(),
3779  kernel_variables.begin(),
3780  kernel_variables.end(),
3781  std::inserter(difference, difference.end()));
3782 
3783  // skip checks for varaibles defined on lower-dimensional subdomain
3784  std::set<VariableName> vars(difference);
3785  for (auto & var_name : vars)
3786  {
3787  auto blks = getSubdomainsForVar(var_name);
3788  for (const auto & id : blks)
3789  if (_mesh.interiorLowerDBlocks().count(id) > 0 || _mesh.boundaryLowerDBlocks().count(id) > 0)
3790  difference.erase(var_name);
3791  }
3792 
3793  if (!difference.empty())
3794  {
3795  std::stringstream missing_kernel_vars;
3796  std::copy(difference.begin(),
3797  difference.end(),
3798  std::ostream_iterator<std::string>(missing_kernel_vars, " "));
3799  mooseError("Each variable must be referenced by at least one active Kernel.\nThe following "
3800  "variable(s) lack an active kernel: " +
3801  missing_kernel_vars.str());
3802  }
3803 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1429
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
char ** vars
TheWarehouse & theWarehouse() const
void subdomainsCovered(std::set< SubdomainID > &subdomains_covered, std::set< std::string > &unique_variables, THREAD_ID tid=0) const
Populates a set of covered subdomains and the associated variable names.
MooseObjectTagWarehouse< KernelBase > _kernels
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1433
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1807
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseMesh & _mesh
Definition: SystemBase.h:991
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860
const std::set< SubdomainID > & getSubdomainsForVar(unsigned int var_number) const
Definition: SystemBase.h:761
void subdomainsCovered(std::set< SubdomainID > &subdomains_covered, std::set< std::string > &unique_variables, THREAD_ID tid=0) const
Update supplied subdomain and variable coverate containters.
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ clearAllDofIndices()

void SystemBase::clearAllDofIndices ( )
inherited

Clear all dof indices from moose variables.

Definition at line 1613 of file SystemBase.C.

Referenced by SubProblem::clearAllDofIndices().

1614 {
1615  for (auto & var_warehouse : _vars)
1616  var_warehouse.clearAllDofIndices();
1617 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ closeTaggedMatrices()

void SystemBase::closeTaggedMatrices ( const std::set< TagID > &  tags)
inherited

Close all matrices associated the tags.

Definition at line 1060 of file SystemBase.C.

Referenced by computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), and computeResidualAndJacobianTags().

1061 {
1062  for (auto tag : tags)
1063  if (hasMatrix(tag))
1064  getMatrix(tag).close();
1065 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void close()=0
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024

◆ closeTaggedVector()

void SystemBase::closeTaggedVector ( const TagID  tag)
inherited

Close vector with the given tag.

Definition at line 649 of file SystemBase.C.

Referenced by SystemBase::closeTaggedVectors().

650 {
651  if (!_subproblem.vectorTagExists(tag))
652  mooseError("Cannot close vector with TagID ",
653  tag,
654  " in system '",
655  name(),
656  "' because that tag does not exist in the problem");
657  else if (!hasVector(tag))
658  mooseError("Cannot close vector tag with name '",
660  "' in system '",
661  name(),
662  "' because there is no vector associated with that tag");
663  getVector(tag).close();
664 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual void close()=0
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:221
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ closeTaggedVectors()

void SystemBase::closeTaggedVectors ( const std::set< TagID > &  tags)
inherited

Close all vectors for given tags.

Definition at line 667 of file SystemBase.C.

Referenced by computeResidualAndJacobianTags(), computeResidualTags(), NonlinearSystem::stopSolve(), and LinearSystem::stopSolve().

668 {
669  for (const auto tag : tags)
670  closeTaggedVector(tag);
671 }
void closeTaggedVector(const TagID tag)
Close vector with the given tag.
Definition: SystemBase.C:649

◆ compute()

void SolverSystem::compute ( ExecFlagType  type)
overridevirtualinherited

Compute time derivatives, auxiliary variables, etc.

Parameters
typeOur current execution stage

Implements SystemBase.

Reimplemented in LinearSystem.

Definition at line 134 of file SolverSystem.C.

135 {
136  // Let's try not to overcompute
137  bool compute_tds = false;
138  if (type == EXEC_LINEAR)
139  compute_tds = true;
140  else if (type == EXEC_NONLINEAR)
141  {
143  compute_tds = true;
144  }
145  else if ((type == EXEC_TIMESTEP_END) || (type == EXEC_FINAL))
146  {
148  // We likely don't have a final residual evaluation upon which we compute the time derivatives
149  // so we need to do so now
150  compute_tds = true;
151  }
152 
153  if (compute_tds && _fe_problem.dt() > 0.)
154  for (auto & ti : _time_integrators)
155  {
156  // avoid division by dt which might be zero.
157  ti->preStep();
158  ti->computeTimeDerivatives();
159  }
160 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
Solving a linear problem.
Definition: MooseTypes.h:849
const ExecFlagType EXEC_TIMESTEP_END
Definition: Moose.C:36
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
virtual bool matrixFromColoring() const
Whether a system matrix is formed from coloring.
Definition: SolverSystem.h:102
Moose::SolveType _type
Definition: SolverParams.h:19
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
virtual Real & dt() const
const ExecFlagType EXEC_FINAL
Definition: Moose.C:46

◆ computeDamping()

Real NonlinearSystemBase::computeDamping ( const NumericVector< Number > &  solution,
const NumericVector< Number > &  update 
)

Compute damping.

Parameters
solutionThe trail solution vector
updateThe incremental update to the solution vector
Returns
returns The damping factor

Definition at line 3378 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computeDamping().

3380 {
3381  // Default to no damping
3382  Real damping = 1.0;
3383  bool has_active_dampers = false;
3384 
3385  try
3386  {
3388  {
3389  PARALLEL_TRY
3390  {
3391  TIME_SECTION("computeDampers", 3, "Computing Dampers");
3392  has_active_dampers = true;
3396  damping = std::min(cid.damping(), damping);
3397  }
3398  PARALLEL_CATCH;
3399  }
3400 
3402  {
3403  PARALLEL_TRY
3404  {
3405  TIME_SECTION("computeDamping::element", 3, "Computing Element Damping");
3406 
3407  has_active_dampers = true;
3411  damping = std::min(cndt.damping(), damping);
3412  }
3413  PARALLEL_CATCH;
3414  }
3415 
3417  {
3418  PARALLEL_TRY
3419  {
3420  TIME_SECTION("computeDamping::general", 3, "Computing General Damping");
3421 
3422  has_active_dampers = true;
3423  const auto & gdampers = _general_dampers.getActiveObjects();
3424  for (const auto & damper : gdampers)
3425  {
3426  Real gd_damping = damper->computeDamping(solution, update);
3427  try
3428  {
3429  damper->checkMinDamping(gd_damping);
3430  }
3431  catch (MooseException & e)
3432  {
3434  }
3435  damping = std::min(gd_damping, damping);
3436  }
3437  }
3438  PARALLEL_CATCH;
3439  }
3440  }
3441  catch (MooseException & e)
3442  {
3443  // The buck stops here, we have already handled the exception by
3444  // calling stopSolve(), it is now up to PETSc to return a
3445  // "diverged" reason during the next solve.
3446  }
3447 
3448  _communicator.min(damping);
3449 
3450  if (has_active_dampers && damping < 1.0)
3451  _console << " Damping factor: " << damping << std::endl;
3452 
3453  return damping;
3454 }
virtual const char * what() const
Get out the error message.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual void setException(const std::string &message)
Set an exception, which is stored at this point by toggling a member variable in this class...
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
const Parallel::Communicator & _communicator
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Provides a way for users to bail out of the current solve.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
NumericVector< Number > * _increment_vec
increment vector
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
auto min(const L &left, const R &right)

◆ computeDiracContributions()

void NonlinearSystemBase::computeDiracContributions ( const std::set< TagID > &  tags,
bool  is_jacobian 
)
protected

Definition at line 3457 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal(), and computeResidualInternal().

3458 {
3460 
3461  std::set<const Elem *> dirac_elements;
3462 
3464  {
3465  TIME_SECTION("computeDirac", 3, "Computing DiracKernels");
3466 
3467  // TODO: Need a threading fix... but it's complicated!
3468  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3469  {
3470  const auto & dkernels = _dirac_kernels.getActiveObjects(tid);
3471  for (const auto & dkernel : dkernels)
3472  {
3473  dkernel->clearPoints();
3474  dkernel->addPoints();
3475  }
3476  }
3477 
3478  ComputeDiracThread cd(_fe_problem, tags, is_jacobian);
3479 
3480  _fe_problem.getDiracElements(dirac_elements);
3481 
3482  DistElemRange range(dirac_elements.begin(), dirac_elements.end(), 1);
3483  // TODO: Make Dirac work thread!
3484  // Threads::parallel_reduce(range, cd);
3485 
3486  cd(range);
3487  }
3488 }
unsigned int n_threads()
virtual void getDiracElements(std::set< const Elem *> &elems) override
Fills "elems" with the elements that should be looped over for Dirac Kernels.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
virtual void clearDiracInfo() override
Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in...
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool hasActiveObjects(THREAD_ID tid=0) const
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computedScalingJacobian()

bool NonlinearSystemBase::computedScalingJacobian ( ) const
inline

Definition at line 78 of file NonlinearSystemBase.h.

78 { return _computed_scaling; }
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.

◆ computeJacobian() [1/2]

void NonlinearSystemBase::computeJacobian ( libMesh::SparseMatrix< Number > &  jacobian,
const std::set< TagID > &  tags 
)

Associate jacobian to systemMatrixTag, and then form a matrix for all the tags.

Definition at line 3219 of file NonlinearSystemBase.C.

Referenced by computeJacobian().

3220 {
3222 
3223  computeJacobianTags(tags);
3224 
3226 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.

◆ computeJacobian() [2/2]

void NonlinearSystemBase::computeJacobian ( libMesh::SparseMatrix< Number > &  jacobian)

Take all tags in the system, and form a matrix for all tags in the system.

Definition at line 3206 of file NonlinearSystemBase.C.

3207 {
3208  _nl_matrix_tags.clear();
3209 
3210  auto & tags = _fe_problem.getMatrixTags();
3211 
3212  for (auto & tag : tags)
3213  _nl_matrix_tags.insert(tag.second);
3214 
3215  computeJacobian(jacobian, _nl_matrix_tags);
3216 }
void computeJacobian(libMesh::SparseMatrix< Number > &jacobian, const std::set< TagID > &tags)
Associate jacobian to systemMatrixTag, and then form a matrix for all the tags.
std::set< TagID > _nl_matrix_tags
Matrix tags to temporarily store all tags associated with the current system.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ computeJacobianBlocks() [1/2]

void NonlinearSystemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks)

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Definition at line 3248 of file NonlinearSystemBase.C.

Referenced by EigenProblem::computeJacobianBlocks(), and FEProblemBase::computeJacobianBlocks().

3249 {
3250  _nl_matrix_tags.clear();
3251 
3252  auto & tags = _fe_problem.getMatrixTags();
3253  for (auto & tag : tags)
3254  _nl_matrix_tags.insert(tag.second);
3255 
3257 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
std::set< TagID > _nl_matrix_tags
Matrix tags to temporarily store all tags associated with the current system.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ computeJacobianBlocks() [2/2]

void NonlinearSystemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const std::set< TagID > &  tags 
)

Definition at line 3260 of file NonlinearSystemBase.C.

3262 {
3263  TIME_SECTION("computeJacobianBlocks", 3);
3264  FloatingPointExceptionGuard fpe_guard(_app);
3265 
3266  for (unsigned int i = 0; i < blocks.size(); i++)
3267  {
3268  SparseMatrix<Number> & jacobian = blocks[i]->_jacobian;
3269 
3270  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
3271  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
3272  PETSC_TRUE));
3274  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
3275  MAT_NEW_NONZERO_ALLOCATION_ERR,
3276  PETSC_TRUE));
3277 
3278  jacobian.zero();
3279  }
3280 
3281  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
3283 
3284  PARALLEL_TRY
3285  {
3288  Threads::parallel_reduce(elem_range, cjb);
3289  }
3290  PARALLEL_CATCH;
3291 
3292  for (unsigned int i = 0; i < blocks.size(); i++)
3293  blocks[i]->_jacobian.close();
3294 
3295  for (unsigned int i = 0; i < blocks.size(); i++)
3296  {
3297  libMesh::System & precond_system = blocks[i]->_precond_system;
3298  SparseMatrix<Number> & jacobian = blocks[i]->_jacobian;
3299 
3300  unsigned int ivar = blocks[i]->_ivar;
3301  unsigned int jvar = blocks[i]->_jvar;
3302 
3303  // Dirichlet BCs
3304  std::vector<numeric_index_type> zero_rows;
3305  PARALLEL_TRY
3306  {
3308  for (const auto & bnode : bnd_nodes)
3309  {
3310  BoundaryID boundary_id = bnode->_bnd_id;
3311  Node * node = bnode->_node;
3312 
3313  if (_nodal_bcs.hasActiveBoundaryObjects(boundary_id))
3314  {
3315  const auto & bcs = _nodal_bcs.getActiveBoundaryObjects(boundary_id);
3316 
3317  if (node->processor_id() == processor_id())
3318  {
3319  _fe_problem.reinitNodeFace(node, boundary_id, 0);
3320 
3321  for (const auto & bc : bcs)
3322  if (bc->variable().number() == ivar && bc->shouldApply())
3323  {
3324  // The first zero is for the variable number... there is only one variable in
3325  // each mini-system The second zero only works with Lagrange elements!
3326  zero_rows.push_back(node->dof_number(precond_system.number(), 0, 0));
3327  }
3328  }
3329  }
3330  }
3331  }
3332  PARALLEL_CATCH;
3333 
3334  jacobian.close();
3335 
3336  // This zeroes the rows corresponding to Dirichlet BCs and puts a 1.0 on the diagonal
3337  if (ivar == jvar)
3338  jacobian.zero_rows(zero_rows, 1.0);
3339  else
3340  jacobian.zero_rows(zero_rows, 0.0);
3341 
3342  jacobian.close();
3343  }
3344 }
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
unsigned int n_threads()
char ** blocks
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
Scope guard for starting and stopping Floating Point Exception Trapping.
Specialization for filling multiple "small" preconditioning matrices simulatenously.
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
unsigned int number() const
virtual void zero()=0
boundary_id_type BoundaryID
virtual void zero_rows(std::vector< numeric_index_type > &rows, T diag_value=0.0)
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void close()=0
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const

◆ computeJacobianInternal()

void NonlinearSystemBase::computeJacobianInternal ( const std::set< TagID > &  tags)
protected

Form multiple matrices for all the tags.

Users should not call this func directly.

Definition at line 2835 of file NonlinearSystemBase.C.

Referenced by computeJacobianTags().

2836 {
2837  TIME_SECTION("computeJacobianInternal", 3);
2838 
2840 
2841  // Make matrix ready to use
2843 
2844  for (auto tag : tags)
2845  {
2846  if (!hasMatrix(tag))
2847  continue;
2848 
2849  auto & jacobian = getMatrix(tag);
2850  // Necessary for speed
2851  if (auto petsc_matrix = dynamic_cast<PetscMatrix<Number> *>(&jacobian))
2852  {
2853  LibmeshPetscCall(MatSetOption(petsc_matrix->mat(),
2854  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2855  PETSC_TRUE));
2857  LibmeshPetscCall(
2858  MatSetOption(petsc_matrix->mat(), MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));
2860  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2861  MAT_IGNORE_ZERO_ENTRIES,
2862  PETSC_TRUE));
2863  }
2864  }
2865 
2866  jacobianSetup();
2867 
2868 #ifdef MOOSE_KOKKOS_ENABLED
2870  computeKokkosJacobian(tags);
2871 #endif
2872 
2873  // Jacobian contributions from UOs - for now this is used for ray tracing
2874  // and ray kernels that contribute to the Jacobian (think line sources)
2875  std::vector<UserObject *> uos;
2877  .query()
2878  .condition<AttribSystem>("UserObject")
2879  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
2880  .queryInto(uos);
2881  for (auto & uo : uos)
2882  uo->jacobianSetup();
2883  for (auto & uo : uos)
2884  {
2885  uo->initialize();
2886  uo->execute();
2887  uo->finalize();
2888  }
2889 
2890  // reinit scalar variables
2891  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
2893 
2894  PARALLEL_TRY
2895  {
2896  // We would like to compute ScalarKernels, block NodalKernels, FVFluxKernels, and mortar objects
2897  // up front because we want these included whether we are computing an ordinary Jacobian or a
2898  // Jacobian for determining variable scaling factors
2900 
2901  // Block restricted Nodal Kernels
2903  {
2906  Threads::parallel_reduce(range, cnkjt);
2907 
2908  unsigned int n_threads = libMesh::n_threads();
2909  for (unsigned int i = 0; i < n_threads;
2910  i++) // Add any cached jacobians that might be hanging around
2912  }
2913 
2915  if (_fe_problem.haveFV())
2916  {
2917  // the same loop works for both residual and jacobians because it keys
2918  // off of FEProblem's _currently_computing_jacobian parameter
2920  _fe_problem, this->number(), tags, /*on_displaced=*/false);
2922  Threads::parallel_reduce(faces, fvj);
2923  }
2925  displaced_problem && displaced_problem->haveFV())
2926  {
2928  _fe_problem, this->number(), tags, /*on_displaced=*/true);
2929  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
2930  displaced_problem->mesh().ownedFaceInfoEnd());
2931  Threads::parallel_reduce(faces, fvr);
2932  }
2933 
2935 
2936  // Get our element range for looping over
2938 
2940  {
2941  // Only compute Jacobians corresponding to the diagonals of volumetric compute objects
2942  // because this typically gives us a good representation of the physics. NodalBCs and
2943  // Constraints can introduce dramatically different scales (often order unity).
2944  // IntegratedBCs and/or InterfaceKernels may use penalty factors. DGKernels may be ok, but
2945  // they are almost always used in conjunction with Kernels
2947  Threads::parallel_reduce(elem_range, cj);
2948  unsigned int n_threads = libMesh::n_threads();
2949  for (unsigned int i = 0; i < n_threads;
2950  i++) // Add any Jacobian contributions still hanging around
2952 
2953  // Check whether any exceptions were thrown and propagate this information for parallel
2954  // consistency before
2955  // 1) we do parallel communication when closing tagged matrices
2956  // 2) early returning before reaching our PARALLEL_CATCH below
2958 
2959  closeTaggedMatrices(tags);
2960 
2961  return;
2962  }
2963 
2964  switch (_fe_problem.coupling())
2965  {
2966  case Moose::COUPLING_DIAG:
2967  {
2969  Threads::parallel_reduce(elem_range, cj);
2970 
2971  unsigned int n_threads = libMesh::n_threads();
2972  for (unsigned int i = 0; i < n_threads;
2973  i++) // Add any Jacobian contributions still hanging around
2975 
2976  // Boundary restricted Nodal Kernels
2978  {
2981 
2982  Threads::parallel_reduce(bnd_range, cnkjt);
2983  unsigned int n_threads = libMesh::n_threads();
2984  for (unsigned int i = 0; i < n_threads;
2985  i++) // Add any cached jacobians that might be hanging around
2987  }
2988  }
2989  break;
2990 
2991  default:
2993  {
2995  Threads::parallel_reduce(elem_range, cj);
2996  unsigned int n_threads = libMesh::n_threads();
2997 
2998  for (unsigned int i = 0; i < n_threads; i++)
3000 
3001  // Boundary restricted Nodal Kernels
3003  {
3006 
3007  Threads::parallel_reduce(bnd_range, cnkjt);
3008  unsigned int n_threads = libMesh::n_threads();
3009  for (unsigned int i = 0; i < n_threads;
3010  i++) // Add any cached jacobians that might be hanging around
3012  }
3013  }
3014  break;
3015  }
3016 
3017  computeDiracContributions(tags, true);
3018 
3019  static bool first = true;
3020 
3021  // This adds zeroes into geometric coupling entries to ensure they stay in the matrix
3022  if ((_fe_problem.restoreOriginalNonzeroPattern() || first) &&
3024  {
3025  first = false;
3027 
3030  }
3031  }
3032  PARALLEL_CATCH;
3033 
3034  // Have no idea how to have constraints work
3035  // with the tag system
3036  PARALLEL_TRY
3037  {
3038  // Add in Jacobian contributions from other Constraints
3039  if (_fe_problem._has_constraints && tags.count(systemMatrixTag()))
3040  {
3041  // Some constraints need to be able to read values from the Jacobian, which requires that it
3042  // be closed/assembled
3043  auto & system_matrix = getMatrix(systemMatrixTag());
3044 #if PETSC_RELEASE_GREATER_EQUALS(3, 23, 0)
3045  SparseMatrix<Number> * view_jac_ptr;
3046  std::unique_ptr<SparseMatrix<Number>> hash_copy;
3047  if (system_matrix.use_hash_table())
3048  {
3049  hash_copy = libMesh::cast_ref<PetscMatrix<Number> &>(system_matrix).copy_from_hash();
3050  view_jac_ptr = hash_copy.get();
3051  }
3052  else
3053  view_jac_ptr = &system_matrix;
3054  auto & jacobian_to_view = *view_jac_ptr;
3055 #else
3056  auto & jacobian_to_view = system_matrix;
3057 #endif
3058  if (&jacobian_to_view == &system_matrix)
3059  system_matrix.close();
3060 
3061  // Nodal Constraints
3063 
3064  // Undisplaced Constraints
3065  constraintJacobians(jacobian_to_view, false);
3066 
3067  // Displaced Constraints
3069  constraintJacobians(jacobian_to_view, true);
3070  }
3071  }
3072  PARALLEL_CATCH;
3073 
3074  // We need to close the save_in variables on the aux system before NodalBCBases clear the dofs
3075  // on boundary nodes
3076  if (_has_diag_save_in)
3078 
3079  PARALLEL_TRY
3080  {
3081  MooseObjectWarehouse<NodalBCBase> * nbc_warehouse;
3082  // Select nodal kernels
3083  if (tags.size() == _fe_problem.numMatrixTags() || !tags.size())
3084  nbc_warehouse = &_nodal_bcs;
3085  else if (tags.size() == 1)
3086  nbc_warehouse = &(_nodal_bcs.getMatrixTagObjectWarehouse(*(tags.begin()), 0));
3087  else
3088  nbc_warehouse = &(_nodal_bcs.getMatrixTagsObjectWarehouse(tags, 0));
3089 
3090  if (nbc_warehouse->hasActiveObjects())
3091  {
3092  // We may be switching from add to set. Moreover, we rely on a call to MatZeroRows to enforce
3093  // the nodal boundary condition constraints which requires that the matrix be truly assembled
3094  // as opposed to just flushed. Consequently we can't do the following despite any desire to
3095  // keep our initial sparsity pattern honored (see https://gitlab.com/petsc/petsc/-/issues/852)
3096  //
3097  // flushTaggedMatrices(tags);
3098  closeTaggedMatrices(tags);
3099 
3100  // Cache the information about which BCs are coupled to which
3101  // variables, so we don't have to figure it out for each node.
3102  std::map<std::string, std::set<unsigned int>> bc_involved_vars;
3103  const std::set<BoundaryID> & all_boundary_ids = _mesh.getBoundaryIDs();
3104  for (const auto & bid : all_boundary_ids)
3105  {
3106  // Get reference to all the NodalBCs for this ID. This is only
3107  // safe if there are NodalBCBases there to be gotten...
3108  if (nbc_warehouse->hasActiveBoundaryObjects(bid))
3109  {
3110  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(bid);
3111  for (const auto & bc : bcs)
3112  {
3113  const std::vector<MooseVariableFEBase *> & coupled_moose_vars =
3114  bc->getCoupledMooseVars();
3115 
3116  // Create the set of "involved" MOOSE nonlinear vars, which includes all coupled vars
3117  // and the BC's own variable
3118  std::set<unsigned int> & var_set = bc_involved_vars[bc->name()];
3119  for (const auto & coupled_var : coupled_moose_vars)
3120  if (coupled_var->kind() == Moose::VAR_SOLVER)
3121  var_set.insert(coupled_var->number());
3122 
3123  var_set.insert(bc->variable().number());
3124  }
3125  }
3126  }
3127 
3128  // reinit scalar variables again. This reinit does not re-fill any of the scalar variable
3129  // solution arrays because that was done above. It only will reorder the derivative
3130  // information for AD calculations to be suitable for NodalBC calculations
3131  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
3132  _fe_problem.reinitScalars(tid, true);
3133 
3134  // Get variable coupling list. We do all the NodalBCBase stuff on
3135  // thread 0... The couplingEntries() data structure determines
3136  // which variables are "coupled" as far as the preconditioner is
3137  // concerned, not what variables a boundary condition specifically
3138  // depends on.
3139  auto & coupling_entries = _fe_problem.couplingEntries(/*_tid=*/0, this->number());
3140 
3141  // Compute Jacobians for NodalBCBases
3143  for (const auto & bnode : bnd_nodes)
3144  {
3145  BoundaryID boundary_id = bnode->_bnd_id;
3146  Node * node = bnode->_node;
3147 
3148  if (nbc_warehouse->hasActiveBoundaryObjects(boundary_id) &&
3149  node->processor_id() == processor_id())
3150  {
3151  _fe_problem.reinitNodeFace(node, boundary_id, 0);
3152 
3153  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(boundary_id);
3154  for (const auto & bc : bcs)
3155  {
3156  // Get the set of involved MOOSE vars for this BC
3157  std::set<unsigned int> & var_set = bc_involved_vars[bc->name()];
3158 
3159  // Loop over all the variables whose Jacobian blocks are
3160  // actually being computed, call computeOffDiagJacobian()
3161  // for each one which is actually coupled (otherwise the
3162  // value is zero.)
3163  for (const auto & it : coupling_entries)
3164  {
3165  unsigned int ivar = it.first->number(), jvar = it.second->number();
3166 
3167  // We are only going to call computeOffDiagJacobian() if:
3168  // 1.) the BC's variable is ivar
3169  // 2.) jvar is "involved" with the BC (including jvar==ivar), and
3170  // 3.) the BC should apply.
3171  if ((bc->variable().number() == ivar) && var_set.count(jvar) && bc->shouldApply())
3172  bc->computeOffDiagJacobian(jvar);
3173  }
3174 
3175  const auto & coupled_scalar_vars = bc->getCoupledMooseScalarVars();
3176  for (const auto & jvariable : coupled_scalar_vars)
3177  if (hasScalarVariable(jvariable->name()))
3178  bc->computeOffDiagJacobianScalar(jvariable->number());
3179  }
3180  }
3181  } // end loop over boundary nodes
3182 
3183  // Set the cached NodalBCBase values in the Jacobian matrix
3185  }
3186  }
3187  PARALLEL_CATCH;
3188 
3189  closeTaggedMatrices(tags);
3190 
3191  // We need to close the save_in variables on the aux system before NodalBCBases clear the dofs
3192  // on boundary nodes
3195 
3196  if (hasDiagSaveIn())
3198 
3199  // Accumulate the occurrence of solution invalid warnings for the current iteration cumulative
3200  // counters
3203 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries(const THREAD_ID tid, const unsigned int nl_sys_num)
unsigned int n_threads()
bool hasActiveBlockObjects(THREAD_ID tid=0) const
std::shared_ptr< DisplacedProblem > displaced_problem
virtual void checkExceptionAndStopSolve(bool print_message=true)
Check to see if an exception has occurred on any processor and, if possible, force the solve to fail...
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1548
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool hasDiagSaveIn() const
Weather or not the nonlinear system has diagonal Jacobian save-ins.
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
virtual GeometricSearchData & geomSearchData() override
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
void closeTaggedMatrices(const std::set< TagID > &tags)
Close all matrices associated the tags.
Definition: SystemBase.C:1060
void solutionInvalidAccumulation()
Pass the number of solution invalid occurrences from current iteration to cumulative counters...
void syncIteration()
Sync iteration counts to main processor.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void computeDiracContributions(const std::set< TagID > &tags, bool is_jacobian)
TheWarehouse & theWarehouse() const
boundary_id_type BoundaryID
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
void addImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data)
Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled th...
MooseObjectWarehouse< T > & getMatrixTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given matrix tag...
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
Moose::CouplingType coupling() const
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
AuxiliarySystem & getAuxiliarySystem()
virtual void close()=0
void computeKokkosJacobian(const std::set< TagID > &tags)
Compute Jacobian with Kokkos objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void close()=0
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
MooseMesh & _mesh
Definition: SystemBase.h:991
bool hasActiveObjects(THREAD_ID tid=0) const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
MooseObjectWarehouse< T > & getMatrixTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has one of the given matrix tags...
void computeScalarKernelsJacobians(const std::set< TagID > &tags)
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual MooseMesh & mesh() override
void setCachedJacobian(GlobalDataKey)
Sets previously-cached Jacobian values via SparseMatrix::set() calls.
Definition: Assembly.C:4492
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
bool hasKokkosObjects() const
bool restoreOriginalNonzeroPattern() const
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1557
void constraintJacobians(const SparseMatrix< Number > &jacobian_to_view, bool displaced)
Add jacobian contributions from Constraints.
std::vector< BoundaryID > getBoundaryIDs(const Elem *const elem, const unsigned short int side) const
Returns a vector of boundary IDs for the requested element on the requested side. ...
bool _has_constraints
Whether or not this system has any Constraints.
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876
processor_id_type processor_id() const
void addCachedJacobian(GlobalDataKey)
Adds the values that have been cached by calling cacheJacobian() and or cacheJacobianNeighbor() to th...
Definition: Assembly.C:3815
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void jacobianSetup() override
virtual void addCachedJacobian(const THREAD_ID tid) override
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ computeJacobianTags()

void NonlinearSystemBase::computeJacobianTags ( const std::set< TagID > &  tags)

Computes multiple (tag associated) Jacobian matricese.

Definition at line 3229 of file NonlinearSystemBase.C.

Referenced by computeJacobian(), and FEProblemBase::computeJacobianTags().

3230 {
3231  TIME_SECTION("computeJacobianTags", 5);
3232 
3233  FloatingPointExceptionGuard fpe_guard(_app);
3234 
3235  try
3236  {
3238  }
3239  catch (MooseException & e)
3240  {
3241  // The buck stops here, we have already handled the exception by
3242  // calling stopSolve(), it is now up to PETSc to return a
3243  // "diverged" reason during the next solve.
3244  }
3245 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MooseApp & _app
Definition: SystemBase.h:988
Provides a way for users to bail out of the current solve.
void computeJacobianInternal(const std::set< TagID > &tags)
Form multiple matrices for all the tags.

◆ computeKokkosJacobian()

void NonlinearSystemBase::computeKokkosJacobian ( const std::set< TagID > &  tags)
protected

Compute Jacobian with Kokkos objects.

Referenced by computeJacobianInternal().

◆ computeKokkosResidual()

void NonlinearSystemBase::computeKokkosResidual ( const std::set< TagID > &  tags)
protected

Compute residual with Kokkos objects.

Referenced by computeResidualInternal().

◆ computeNodalBCs() [1/3]

void NonlinearSystemBase::computeNodalBCs ( NumericVector< Number > &  residual)
protected

Enforces nodal boundary conditions.

The boundary condition will be implemented in the residual using all the tags in the system.

Referenced by computeResidualTags().

◆ computeNodalBCs() [2/3]

void NonlinearSystemBase::computeNodalBCs ( NumericVector< Number > &  residual,
const std::set< TagID > &  tags 
)
protected

Form a residual for BCs that at least has one of the given tags.

◆ computeNodalBCs() [3/3]

void NonlinearSystemBase::computeNodalBCs ( const std::set< TagID > &  tags)
protected

Form multiple tag-associated residual vectors for the given tags.

Definition at line 2101 of file NonlinearSystemBase.C.

2102 {
2103  // We need to close the diag_save_in variables on the aux system before NodalBCBases clear the
2104  // dofs on boundary nodes
2105  if (_has_save_in)
2107 
2108  // Select nodal kernels
2109  MooseObjectWarehouse<NodalBCBase> * nbc_warehouse;
2110 
2111  if (tags.size() == _fe_problem.numVectorTags(Moose::VECTOR_TAG_RESIDUAL) || !tags.size())
2112  nbc_warehouse = &_nodal_bcs;
2113  else if (tags.size() == 1)
2114  nbc_warehouse = &(_nodal_bcs.getVectorTagObjectWarehouse(*(tags.begin()), 0));
2115  else
2116  nbc_warehouse = &(_nodal_bcs.getVectorTagsObjectWarehouse(tags, 0));
2117 
2118  // Return early if there is no nodal kernel
2119  if (!nbc_warehouse->size())
2120  return;
2121 
2122  PARALLEL_TRY
2123  {
2125 
2126  if (!bnd_nodes.empty())
2127  {
2128  TIME_SECTION("NodalBCs", 3 /*, "Computing NodalBCs"*/);
2129 
2130  for (const auto & bnode : bnd_nodes)
2131  {
2132  BoundaryID boundary_id = bnode->_bnd_id;
2133  Node * node = bnode->_node;
2134 
2135  if (node->processor_id() == processor_id() &&
2136  nbc_warehouse->hasActiveBoundaryObjects(boundary_id))
2137  {
2138  // reinit variables in nodes
2139  _fe_problem.reinitNodeFace(node, boundary_id, 0);
2140 
2141  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(boundary_id);
2142  for (const auto & nbc : bcs)
2143  if (nbc->shouldApply())
2144  nbc->computeResidual();
2145  }
2146  }
2147  }
2148  }
2149  PARALLEL_CATCH;
2150 
2151  if (_Re_time)
2152  _Re_time->close();
2153  _Re_non_time->close();
2154 }
NumericVector< Number > * _Re_time
residual vector for time contributions
unsigned int size(THREAD_ID tid=0) const
Return how many kernels we store in the current warehouse.
bool empty() const
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & solution()
Definition: SystemBase.h:196
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< T > & getVectorTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object at least has one of the given vector ta...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
boundary_id_type BoundaryID
AuxiliarySystem & getAuxiliarySystem()
virtual void close()=0
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual unsigned int numVectorTags(const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
The total number of tags, which can be limited to the tag type.
Definition: SubProblem.C:195
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const

◆ computeNodalBCsResidualAndJacobian()

void NonlinearSystemBase::computeNodalBCsResidualAndJacobian ( )
protected

compute the residual and Jacobian for nodal boundary conditions

Definition at line 2157 of file NonlinearSystemBase.C.

Referenced by computeResidualAndJacobianTags().

2158 {
2159  PARALLEL_TRY
2160  {
2162 
2163  if (!bnd_nodes.empty())
2164  {
2165  TIME_SECTION("NodalBCs", 3 /*, "Computing NodalBCs"*/);
2166 
2167  for (const auto & bnode : bnd_nodes)
2168  {
2169  BoundaryID boundary_id = bnode->_bnd_id;
2170  Node * node = bnode->_node;
2171 
2172  if (node->processor_id() == processor_id())
2173  {
2174  // reinit variables in nodes
2175  _fe_problem.reinitNodeFace(node, boundary_id, 0);
2176  if (_nodal_bcs.hasActiveBoundaryObjects(boundary_id))
2177  {
2178  const auto & bcs = _nodal_bcs.getActiveBoundaryObjects(boundary_id);
2179  for (const auto & nbc : bcs)
2180  if (nbc->shouldApply())
2181  nbc->computeResidualAndJacobian();
2182  }
2183  }
2184  }
2185  }
2186  }
2187  PARALLEL_CATCH;
2188 
2189  // Set the cached NodalBCBase values in the Jacobian matrix
2191 }
bool empty() const
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
boundary_id_type BoundaryID
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
void setCachedJacobian(GlobalDataKey)
Sets previously-cached Jacobian values via SparseMatrix::set() calls.
Definition: Assembly.C:4492
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ computeResidual()

void NonlinearSystemBase::computeResidual ( NumericVector< Number > &  residual,
TagID  tag_id 
)

Form a residual vector for a given tag.

Definition at line 813 of file NonlinearSystemBase.C.

814 {
815  mooseDeprecated(" Please use computeResidualTag");
816 
817  computeResidualTag(residual, tag_id);
818 }
void mooseDeprecated(Args &&... args)
Emit a deprecated code/feature message with the given stringified, concatenated args.
Definition: MooseError.h:374
void computeResidualTag(NumericVector< Number > &residual, TagID tag_id)
Computes residual for a given tag.

◆ computeResidualAndJacobianInternal()

void NonlinearSystemBase::computeResidualAndJacobianInternal ( const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)

Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary conditions.

Definition at line 1982 of file NonlinearSystemBase.C.

Referenced by computeResidualAndJacobianTags().

1984 {
1985  TIME_SECTION("computeResidualAndJacobianInternal", 3);
1986 
1987  // Make matrix ready to use
1989 
1990  for (auto tag : matrix_tags)
1991  {
1992  if (!hasMatrix(tag))
1993  continue;
1994 
1995  auto & jacobian = getMatrix(tag);
1996  // Necessary for speed
1997  if (auto petsc_matrix = dynamic_cast<PetscMatrix<Number> *>(&jacobian))
1998  {
1999  LibmeshPetscCall(MatSetOption(petsc_matrix->mat(),
2000  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2001  PETSC_TRUE));
2003  LibmeshPetscCall(
2004  MatSetOption(petsc_matrix->mat(), MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));
2006  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2007  MAT_IGNORE_ZERO_ENTRIES,
2008  PETSC_TRUE));
2009  }
2010  }
2011 
2012  residualSetup();
2013 
2014  // Residual contributions from UOs - for now this is used for ray tracing
2015  // and ray kernels that contribute to the residual (think line sources)
2016  std::vector<UserObject *> uos;
2018  .query()
2019  .condition<AttribSystem>("UserObject")
2020  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
2021  .queryInto(uos);
2022  for (auto & uo : uos)
2023  uo->residualSetup();
2024  for (auto & uo : uos)
2025  {
2026  uo->initialize();
2027  uo->execute();
2028  uo->finalize();
2029  }
2030 
2031  // reinit scalar variables
2032  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
2034 
2035  // residual contributions from the domain
2036  PARALLEL_TRY
2037  {
2038  TIME_SECTION("Kernels", 3 /*, "Computing Kernels"*/);
2039 
2041 
2042  ComputeResidualAndJacobianThread crj(_fe_problem, vector_tags, matrix_tags);
2043  Threads::parallel_reduce(elem_range, crj);
2044 
2046  if (_fe_problem.haveFV())
2047  {
2049  _fe_problem, this->number(), vector_tags, matrix_tags, /*on_displaced=*/false);
2051  Threads::parallel_reduce(faces, fvrj);
2052  }
2054  displaced_problem && displaced_problem->haveFV())
2055  {
2057  _fe_problem, this->number(), vector_tags, matrix_tags, /*on_displaced=*/true);
2058  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
2059  displaced_problem->mesh().ownedFaceInfoEnd());
2060  Threads::parallel_reduce(faces, fvr);
2061  }
2062 
2064 
2065  unsigned int n_threads = libMesh::n_threads();
2066  for (unsigned int i = 0; i < n_threads;
2067  i++) // Add any cached residuals that might be hanging around
2068  {
2071  }
2072  }
2073  PARALLEL_CATCH;
2074 }
unsigned int n_threads()
std::shared_ptr< DisplacedProblem > displaced_problem
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1548
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
TheWarehouse & theWarehouse() const
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual MooseMesh & mesh() override
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1557
virtual void addCachedResidual(const THREAD_ID tid) override
virtual void addCachedJacobian(const THREAD_ID tid) override
virtual void residualSetup() override

◆ computeResidualAndJacobianTags()

void NonlinearSystemBase::computeResidualAndJacobianTags ( const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)

Form possibly multiple tag-associated vectors and matrices.

Definition at line 901 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian().

903 {
904  const bool required_residual =
905  vector_tags.find(residualVectorTag()) == vector_tags.end() ? false : true;
906 
907  try
908  {
909  zeroTaggedVectors(vector_tags);
910  computeResidualAndJacobianInternal(vector_tags, matrix_tags);
911  closeTaggedVectors(vector_tags);
912  closeTaggedMatrices(matrix_tags);
913 
914  if (required_residual)
915  {
916  auto & residual = getVector(residualVectorTag());
917  if (!_time_integrators.empty())
918  {
919  for (auto & ti : _time_integrators)
920  ti->postResidual(residual);
921  }
922  else
923  residual += *_Re_non_time;
924  residual.close();
925  }
926 
928  closeTaggedVectors(vector_tags);
929  closeTaggedMatrices(matrix_tags);
930  }
931  catch (MooseException & e)
932  {
933  // The buck stops here, we have already handled the exception by
934  // calling stopSolve(), it is now up to PETSc to return a
935  // "diverged" reason during the next solve.
936  }
937 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
void zeroTaggedVectors(const std::set< TagID > &tags)
Zero all vectors for given tags.
Definition: SystemBase.C:693
void computeNodalBCsResidualAndJacobian()
compute the residual and Jacobian for nodal boundary conditions
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
void computeResidualAndJacobianInternal(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary c...
void closeTaggedMatrices(const std::set< TagID > &tags)
Close all matrices associated the tags.
Definition: SystemBase.C:1060
void closeTaggedVectors(const std::set< TagID > &tags)
Close all vectors for given tags.
Definition: SystemBase.C:667
virtual void close()=0
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeResidualInternal()

void NonlinearSystemBase::computeResidualInternal ( const std::set< TagID > &  tags)
protected

Compute the residual for a given tag.

Parameters
tagsThe tags of kernels for which the residual is to be computed.

Definition at line 1757 of file NonlinearSystemBase.C.

Referenced by computeResidualTags().

1758 {
1759  parallel_object_only();
1760 
1761  TIME_SECTION("computeResidualInternal", 3);
1762 
1763  residualSetup();
1764 
1765 #ifdef MOOSE_KOKKOS_ENABLED
1767  computeKokkosResidual(tags);
1768 #endif
1769 
1770  const auto vector_tag_data = _fe_problem.getVectorTags(tags);
1771 
1772  // Residual contributions from UOs - for now this is used for ray tracing
1773  // and ray kernels that contribute to the residual (think line sources)
1774  std::vector<UserObject *> uos;
1776  .query()
1777  .condition<AttribSystem>("UserObject")
1778  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
1779  .queryInto(uos);
1780  for (auto & uo : uos)
1781  uo->residualSetup();
1782  for (auto & uo : uos)
1783  {
1784  uo->initialize();
1785  uo->execute();
1786  uo->finalize();
1787  }
1788 
1789  // reinit scalar variables
1790  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
1792 
1793  // residual contributions from the domain
1794  PARALLEL_TRY
1795  {
1796  TIME_SECTION("Kernels", 3 /*, "Computing Kernels"*/);
1797 
1799 
1801  Threads::parallel_reduce(elem_range, cr);
1802 
1803  // We pass face information directly to FV residual objects for their evaluation. Consequently
1804  // we must make sure to do separate threaded loops for 1) undisplaced face information objects
1805  // and undisplaced residual objects and 2) displaced face information objects and displaced
1806  // residual objects
1808  if (_fe_problem.haveFV())
1809  {
1811  _fe_problem, this->number(), tags, /*on_displaced=*/false);
1813  Threads::parallel_reduce(faces, fvr);
1814  }
1816  displaced_problem && displaced_problem->haveFV())
1817  {
1819  _fe_problem, this->number(), tags, /*on_displaced=*/true);
1820  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
1821  displaced_problem->mesh().ownedFaceInfoEnd());
1822  Threads::parallel_reduce(faces, fvr);
1823  }
1824 
1825  unsigned int n_threads = libMesh::n_threads();
1826  for (unsigned int i = 0; i < n_threads;
1827  i++) // Add any cached residuals that might be hanging around
1829  }
1830  PARALLEL_CATCH;
1831 
1832  // residual contributions from the scalar kernels
1833  PARALLEL_TRY
1834  {
1835  // do scalar kernels (not sure how to thread this)
1837  {
1838  TIME_SECTION("ScalarKernels", 3 /*, "Computing ScalarKernels"*/);
1839 
1840  MooseObjectWarehouse<ScalarKernelBase> * scalar_kernel_warehouse;
1841  // This code should be refactored once we can do tags for scalar
1842  // kernels
1843  // Should redo this based on Warehouse
1844  if (!tags.size() || tags.size() == _fe_problem.numVectorTags(Moose::VECTOR_TAG_RESIDUAL))
1845  scalar_kernel_warehouse = &_scalar_kernels;
1846  else if (tags.size() == 1)
1847  scalar_kernel_warehouse =
1848  &(_scalar_kernels.getVectorTagObjectWarehouse(*(tags.begin()), 0));
1849  else
1850  // scalar_kernels is not threading
1851  scalar_kernel_warehouse = &(_scalar_kernels.getVectorTagsObjectWarehouse(tags, 0));
1852 
1853  bool have_scalar_contributions = false;
1854  const auto & scalars = scalar_kernel_warehouse->getActiveObjects();
1855  for (const auto & scalar_kernel : scalars)
1856  {
1857  scalar_kernel->reinit();
1858  const std::vector<dof_id_type> & dof_indices = scalar_kernel->variable().dofIndices();
1859  const DofMap & dof_map = scalar_kernel->variable().dofMap();
1860  const dof_id_type first_dof = dof_map.first_dof();
1861  const dof_id_type end_dof = dof_map.end_dof();
1862  for (dof_id_type dof : dof_indices)
1863  {
1864  if (dof >= first_dof && dof < end_dof)
1865  {
1866  scalar_kernel->computeResidual();
1867  have_scalar_contributions = true;
1868  break;
1869  }
1870  }
1871  }
1872  if (have_scalar_contributions)
1874  }
1875  }
1876  PARALLEL_CATCH;
1877 
1878  // residual contributions from Block NodalKernels
1879  PARALLEL_TRY
1880  {
1882  {
1883  TIME_SECTION("NodalKernels", 3 /*, "Computing NodalKernels"*/);
1884 
1886 
1888 
1889  if (range.begin() != range.end())
1890  {
1891  _fe_problem.reinitNode(*range.begin(), 0);
1892 
1893  Threads::parallel_reduce(range, cnk);
1894 
1895  unsigned int n_threads = libMesh::n_threads();
1896  for (unsigned int i = 0; i < n_threads;
1897  i++) // Add any cached residuals that might be hanging around
1899  }
1900  }
1901  }
1902  PARALLEL_CATCH;
1903 
1905  // We computed the volumetric objects. We can return now before we get into
1906  // any strongly enforced constraint conditions or penalty-type objects
1907  // (DGKernels, IntegratedBCs, InterfaceKernels, Constraints)
1908  return;
1909 
1910  // residual contributions from boundary NodalKernels
1911  PARALLEL_TRY
1912  {
1914  {
1915  TIME_SECTION("NodalKernelBCs", 3 /*, "Computing NodalKernelBCs"*/);
1916 
1918 
1920 
1921  Threads::parallel_reduce(bnd_node_range, cnk);
1922 
1923  unsigned int n_threads = libMesh::n_threads();
1924  for (unsigned int i = 0; i < n_threads;
1925  i++) // Add any cached residuals that might be hanging around
1927  }
1928  }
1929  PARALLEL_CATCH;
1930 
1932 
1933  if (_residual_copy.get())
1934  {
1935  _Re_non_time->close();
1937  }
1938 
1940  {
1941  _Re_non_time->close();
1944  }
1945 
1946  PARALLEL_TRY { computeDiracContributions(tags, false); }
1947  PARALLEL_CATCH;
1948 
1950  {
1951  PARALLEL_TRY { enforceNodalConstraintsResidual(*_Re_non_time); }
1952  PARALLEL_CATCH;
1953  _Re_non_time->close();
1954  }
1955 
1956  // Add in Residual contributions from other Constraints
1958  {
1959  PARALLEL_TRY
1960  {
1961  // Undisplaced Constraints
1963 
1964  // Displaced Constraints
1967 
1970  }
1971  PARALLEL_CATCH;
1972  _Re_non_time->close();
1973  }
1974 
1975  // Accumulate the occurrence of solution invalid warnings for the current iteration cumulative
1976  // counters
1979 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
dof_id_type end_dof(const processor_id_type proc) const
unsigned int n_threads()
bool hasActiveBlockObjects(THREAD_ID tid=0) const
std::shared_ptr< DisplacedProblem > displaced_problem
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
virtual void reinitNode(const Node *node, const THREAD_ID tid) override
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1548
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectWarehouse< T > & getVectorTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object at least has one of the given vector ta...
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void constraintResiduals(NumericVector< Number > &residual, bool displaced)
Add residual contributions from Constraints.
const Variable & variable(const unsigned int c) const override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
void solutionInvalidAccumulation()
Pass the number of solution invalid occurrences from current iteration to cumulative counters...
void syncIteration()
Sync iteration counts to main processor.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void computeDiracContributions(const std::set< TagID > &tags, bool is_jacobian)
TheWarehouse & theWarehouse() const
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
void computingNonlinearResid(bool computing_nonlinear_residual) final
Set whether or not the problem is in the process of computing the nonlinear residual.
const_iterator end() const
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
const_iterator begin() const
void computeKokkosResidual(const std::set< TagID > &tags)
Compute residual with Kokkos objects.
virtual MooseMesh & mesh() override
virtual unsigned int numVectorTags(const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
The total number of tags, which can be limited to the tag type.
Definition: SubProblem.C:195
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
bool hasKokkosObjects() const
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1557
bool _has_constraints
Whether or not this system has any Constraints.
dof_id_type first_dof(const processor_id_type proc) const
void enforceNodalConstraintsResidual(NumericVector< Number > &residual)
Enforce nodal constraints.
virtual void addResidualScalar(const THREAD_ID tid=0)
virtual void addCachedResidual(const THREAD_ID tid) override
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
virtual void residualEnd(THREAD_ID tid=0) const
uint8_t dof_id_type
virtual void residualSetup() override
virtual void localize(std::vector< T > &v_local) const=0

◆ computeResidualTag()

void NonlinearSystemBase::computeResidualTag ( NumericVector< Number > &  residual,
TagID  tag_id 
)

Computes residual for a given tag.

Parameters
residualResidual is formed in here
thetag of kernels for which the residual is to be computed.

Definition at line 799 of file NonlinearSystemBase.C.

Referenced by computeResidual(), and CrankNicolson::init().

800 {
801  _nl_vector_tags.clear();
802  _nl_vector_tags.insert(tag_id);
804 
806 
808 
810 }
std::set< TagID > _nl_vector_tags
Vector tags to temporarily store all tags associated with the current system.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override

◆ computeResidualTags()

void NonlinearSystemBase::computeResidualTags ( const std::set< TagID > &  tags)

Form multiple tag-associated residual vectors for all the given tags.

Definition at line 821 of file NonlinearSystemBase.C.

Referenced by computeResidualTag(), and FEProblemBase::computeResidualTags().

822 {
823  parallel_object_only();
824 
825  TIME_SECTION("nl::computeResidualTags", 5);
826 
829 
830  bool required_residual = tags.find(residualVectorTag()) == tags.end() ? false : true;
831 
833 
834  // not suppose to do anythin on matrix
836 
838 
839  for (const auto & numeric_vec : _vecs_to_zero_for_residual)
840  if (hasVector(numeric_vec))
841  {
842  NumericVector<Number> & vec = getVector(numeric_vec);
843  vec.close();
844  vec.zero();
845  }
846 
847  try
848  {
849  zeroTaggedVectors(tags);
851  closeTaggedVectors(tags);
852 
853  if (required_residual)
854  {
855  auto & residual = getVector(residualVectorTag());
856  if (!_time_integrators.empty())
857  {
858  for (auto & ti : _time_integrators)
859  ti->postResidual(residual);
860  }
861  else
862  residual += *_Re_non_time;
863  residual.close();
864  }
866  // We don't want to do nodal bcs or anything else
867  return;
868 
869  computeNodalBCs(tags);
870  closeTaggedVectors(tags);
871 
872  // If we are debugging residuals we need one more assignment to have the ghosted copy up to
873  // date
874  if (_need_residual_ghosted && _debugging_residuals && required_residual)
875  {
876  auto & residual = getVector(residualVectorTag());
877 
878  *_residual_ghosted = residual;
880  }
881  // Need to close and update the aux system in case residuals were saved to it.
884  if (hasSaveIn())
886  }
887  catch (MooseException & e)
888  {
889  // The buck stops here, we have already handled the exception by
890  // calling stopSolve(), it is now up to PETSc to return a
891  // "diverged" reason during the next solve.
892  }
893 
894  // not supposed to do anything on matrix
896 
898 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
void zeroTaggedVectors(const std::set< TagID > &tags)
Zero all vectors for given tags.
Definition: SystemBase.C:693
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
bool _debugging_residuals
true if debugging residuals
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
Scope guard for starting and stopping Floating Point Exception Trapping.
virtual void zero()=0
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
virtual void deactivateAllMatrixTags()
Make matrices inactive.
Definition: SystemBase.C:1119
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
std::vector< std::string > _vecs_to_zero_for_residual
vectors that will be zeroed before a residual computation
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
AuxiliarySystem & getAuxiliarySystem()
void closeTaggedVectors(const std::set< TagID > &tags)
Close all vectors for given tags.
Definition: SystemBase.C:667
void computeResidualInternal(const std::set< TagID > &tags)
Compute the residual for a given tag.
virtual void close()=0
TagID residualVectorTag() const override
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Provides a way for users to bail out of the current solve.
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.
bool hasSaveIn() const
Weather or not the nonlinear system has save-ins.
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
void computeNodalBCs(NumericVector< Number > &residual)
Enforces nodal boundary conditions.
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeScalarKernelsJacobians()

void NonlinearSystemBase::computeScalarKernelsJacobians ( const std::set< TagID > &  tags)
protected

Definition at line 2751 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2752 {
2753  MooseObjectWarehouse<ScalarKernelBase> * scalar_kernel_warehouse;
2754 
2755  if (!tags.size() || tags.size() == _fe_problem.numMatrixTags())
2756  scalar_kernel_warehouse = &_scalar_kernels;
2757  else if (tags.size() == 1)
2758  scalar_kernel_warehouse = &(_scalar_kernels.getMatrixTagObjectWarehouse(*(tags.begin()), 0));
2759  else
2760  scalar_kernel_warehouse = &(_scalar_kernels.getMatrixTagsObjectWarehouse(tags, 0));
2761 
2762  // Compute the diagonal block for scalar variables
2763  if (scalar_kernel_warehouse->hasActiveObjects())
2764  {
2765  const auto & scalars = scalar_kernel_warehouse->getActiveObjects();
2766 
2767  _fe_problem.reinitScalars(/*tid=*/0);
2768 
2769  _fe_problem.reinitOffDiagScalars(/*_tid*/ 0);
2770 
2771  bool have_scalar_contributions = false;
2772  for (const auto & kernel : scalars)
2773  {
2774  if (!kernel->computesJacobian())
2775  continue;
2776 
2777  kernel->reinit();
2778  const std::vector<dof_id_type> & dof_indices = kernel->variable().dofIndices();
2779  const DofMap & dof_map = kernel->variable().dofMap();
2780  const dof_id_type first_dof = dof_map.first_dof();
2781  const dof_id_type end_dof = dof_map.end_dof();
2782  for (dof_id_type dof : dof_indices)
2783  {
2784  if (dof >= first_dof && dof < end_dof)
2785  {
2786  kernel->computeJacobian();
2787  _fe_problem.addJacobianOffDiagScalar(kernel->variable().number());
2788  have_scalar_contributions = true;
2789  break;
2790  }
2791  }
2792  }
2793 
2794  if (have_scalar_contributions)
2796  }
2797 }
dof_id_type end_dof(const processor_id_type proc) const
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
virtual void addJacobianOffDiagScalar(unsigned int ivar, const THREAD_ID tid=0)
const Variable & variable(const unsigned int c) const override
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< T > & getMatrixTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given matrix tag...
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< T > & getMatrixTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has one of the given matrix tags...
dof_id_type first_dof(const processor_id_type proc) const
virtual void reinitOffDiagScalars(const THREAD_ID tid) override
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
uint8_t dof_id_type
virtual void addJacobianScalar(const THREAD_ID tid=0)

◆ computeScaling()

bool NonlinearSystemBase::computeScaling ( )

Method used to obtain scaling factors for variables.

Returns
whether this method ran without exceptions

Definition at line 3953 of file NonlinearSystemBase.C.

Referenced by preSolve().

3954 {
3956  return true;
3957 
3958  _console << "\nPerforming automatic scaling calculation\n" << std::endl;
3959 
3960  TIME_SECTION("computeScaling", 3, "Computing Automatic Scaling");
3961 
3962  // It's funny but we need to assemble our vector of scaling factors here otherwise we will be
3963  // applying scaling factors of 0 during Assembly of our scaling Jacobian
3965 
3966  // container for repeated access of element global dof indices
3967  std::vector<dof_id_type> dof_indices;
3968 
3969  if (!_auto_scaling_initd)
3970  setupScalingData();
3971 
3972  std::vector<Real> inverse_scaling_factors(_num_scaling_groups, 0);
3973  std::vector<Real> resid_inverse_scaling_factors(_num_scaling_groups, 0);
3974  std::vector<Real> jac_inverse_scaling_factors(_num_scaling_groups, 0);
3975  auto & dof_map = dofMap();
3976 
3977  // what types of scaling do we want?
3978  bool jac_scaling = _resid_vs_jac_scaling_param < 1. - TOLERANCE;
3979  bool resid_scaling = _resid_vs_jac_scaling_param > TOLERANCE;
3980 
3981  const NumericVector<Number> & scaling_residual = RHS();
3982 
3983  if (jac_scaling)
3984  {
3985  // if (!_auto_scaling_initd)
3986  // We need to reinit this when the number of dofs changes
3987  // but there is no good way to track that
3988  // In theory, it is the job of libmesh system to track this,
3989  // but this special matrix is not owned by libMesh system
3990  // Let us reinit eveytime since it is not expensive
3991  {
3992  auto init_vector = NumericVector<Number>::build(this->comm());
3993  init_vector->init(system().n_dofs(), system().n_local_dofs(), /*fast=*/false, PARALLEL);
3994 
3995  _scaling_matrix->clear();
3996  _scaling_matrix->init(*init_vector);
3997  }
3998 
4000  // Dispatch to derived classes to ensure that we use the correct matrix tag
4003  }
4004 
4005  if (resid_scaling)
4006  {
4009  // Dispatch to derived classes to ensure that we use the correct vector tag
4013  }
4014 
4015  // Did something bad happen during residual/Jacobian scaling computation?
4017  return false;
4018 
4019  auto examine_dof_indices = [this,
4020  jac_scaling,
4021  resid_scaling,
4022  &dof_map,
4023  &jac_inverse_scaling_factors,
4024  &resid_inverse_scaling_factors,
4025  &scaling_residual](const auto & dof_indices, const auto var_number)
4026  {
4027  for (auto dof_index : dof_indices)
4028  if (dof_map.local_index(dof_index))
4029  {
4030  if (jac_scaling)
4031  {
4032  // For now we will use the diagonal for determining scaling
4033  auto mat_value = (*_scaling_matrix)(dof_index, dof_index);
4034  auto & factor = jac_inverse_scaling_factors[_var_to_group_var[var_number]];
4035  factor = std::max(factor, std::abs(mat_value));
4036  }
4037  if (resid_scaling)
4038  {
4039  auto vec_value = scaling_residual(dof_index);
4040  auto & factor = resid_inverse_scaling_factors[_var_to_group_var[var_number]];
4041  factor = std::max(factor, std::abs(vec_value));
4042  }
4043  }
4044  };
4045 
4046  // Compute our scaling factors for the spatial field variables
4047  for (const auto & elem : _fe_problem.getCurrentAlgebraicElementRange())
4048  for (const auto i : make_range(system().n_vars()))
4050  {
4051  dof_map.dof_indices(elem, dof_indices, i);
4052  examine_dof_indices(dof_indices, i);
4053  }
4054 
4055  for (const auto i : make_range(system().n_vars()))
4056  if (_variable_autoscaled[i] && system().variable_type(i).family == SCALAR)
4057  {
4058  dof_map.SCALAR_dof_indices(dof_indices, i);
4059  examine_dof_indices(dof_indices, i);
4060  }
4061 
4062  if (resid_scaling)
4063  _communicator.max(resid_inverse_scaling_factors);
4064  if (jac_scaling)
4065  _communicator.max(jac_inverse_scaling_factors);
4066 
4067  if (jac_scaling && resid_scaling)
4068  for (MooseIndex(inverse_scaling_factors) i = 0; i < inverse_scaling_factors.size(); ++i)
4069  {
4070  // Be careful not to take log(0)
4071  if (!resid_inverse_scaling_factors[i])
4072  {
4073  if (!jac_inverse_scaling_factors[i])
4074  inverse_scaling_factors[i] = 1;
4075  else
4076  inverse_scaling_factors[i] = jac_inverse_scaling_factors[i];
4077  }
4078  else if (!jac_inverse_scaling_factors[i])
4079  // We know the resid is not zero
4080  inverse_scaling_factors[i] = resid_inverse_scaling_factors[i];
4081  else
4082  inverse_scaling_factors[i] =
4083  std::exp(_resid_vs_jac_scaling_param * std::log(resid_inverse_scaling_factors[i]) +
4084  (1 - _resid_vs_jac_scaling_param) * std::log(jac_inverse_scaling_factors[i]));
4085  }
4086  else if (jac_scaling)
4087  inverse_scaling_factors = jac_inverse_scaling_factors;
4088  else if (resid_scaling)
4089  inverse_scaling_factors = resid_inverse_scaling_factors;
4090  else
4091  mooseError("We shouldn't be calling this routine if we're not performing any scaling");
4092 
4093  // We have to make sure that our scaling values are not zero
4094  for (auto & scaling_factor : inverse_scaling_factors)
4095  if (scaling_factor == 0)
4096  scaling_factor = 1;
4097 
4098  // Now flatten the group scaling factors to the individual variable scaling factors
4099  std::vector<Real> flattened_inverse_scaling_factors(system().n_vars());
4100  for (const auto i : index_range(flattened_inverse_scaling_factors))
4101  flattened_inverse_scaling_factors[i] = inverse_scaling_factors[_var_to_group_var[i]];
4102 
4103  // Now set the scaling factors for the variables
4104  applyScalingFactors(flattened_inverse_scaling_factors);
4106  displaced_problem->systemBaseNonlinear(number()).applyScalingFactors(
4107  flattened_inverse_scaling_factors);
4108 
4109  _computed_scaling = true;
4110  return true;
4111 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:42
std::vector< bool > _variable_autoscaled
Container to hold flag if variable is to participate in autoscaling.
std::shared_ptr< DisplacedProblem > displaced_problem
void applyScalingFactors(const std::vector< Real > &inverse_scaling_factors)
Applies scaling factors to the system&#39;s variables.
Definition: SystemBase.C:1495
SCALAR
auto exp(const T &)
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const Parallel::Communicator & comm() const
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
A diagonal matrix used for computing scaling.
const Parallel::Communicator & _communicator
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
std::size_t _num_scaling_groups
The number of scaling groups.
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...
auto max(const L &left, const R &right)
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
virtual void computeScalingResidual()=0
Compute a "residual" for automatic scaling purposes.
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
std::unordered_map< unsigned int, unsigned int > _var_to_group_var
A map from variable index to group variable index and it&#39;s associated (inverse) scaling factor...
unsigned int n_vars
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
virtual void computeScalingJacobian()=0
Compute a "Jacobian" for automatic scaling purposes.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
void setupScalingData()
Setup group scaling containers.
auto log(const T &)
void computingNonlinearResid(bool computing_nonlinear_residual) final
Set whether or not the problem is in the process of computing the nonlinear residual.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual NumericVector< Number > & RHS()=0
const FEType & variable_type(const unsigned int i) const
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
void max(const T &r, T &o, Request &req) const
bool getFailNextNonlinearConvergenceCheck() const
Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) ...
IntRange< T > make_range(T beg, T end)
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.
auto index_range(const T &sizable)
void assembleScalingVector()
Assemble the numeric vector of scaling factors such that it can be used during assembly of the system...
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeScalingJacobian()

virtual void NonlinearSystemBase::computeScalingJacobian ( )
protectedpure virtual

Compute a "Jacobian" for automatic scaling purposes.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

Referenced by computeScaling().

◆ computeScalingOnce() [1/2]

bool NonlinearSystemBase::computeScalingOnce ( ) const
inline

Definition at line 714 of file NonlinearSystemBase.h.

714 { return _compute_scaling_once; }
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...

◆ computeScalingOnce() [2/2]

void NonlinearSystemBase::computeScalingOnce ( bool  compute_scaling_once)
inline

Definition at line 715 of file NonlinearSystemBase.h.

716  {
717  _compute_scaling_once = compute_scaling_once;
718  }
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...

◆ computeScalingResidual()

virtual void NonlinearSystemBase::computeScalingResidual ( )
protectedpure virtual

Compute a "residual" for automatic scaling purposes.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

Referenced by computeScaling().

◆ computeVariables()

virtual void SystemBase::computeVariables ( const NumericVector< Number > &  )
inlinevirtualinherited

Definition at line 869 of file SystemBase.h.

869 {}

◆ computingPreSMOResidual()

bool NonlinearSystemBase::computingPreSMOResidual ( )
inline

Returns true if this system is currently computing the pre-SMO residual for a solve.

Returns
Whether or not we are currently computing the pre-SMO residual.

Definition at line 97 of file NonlinearSystemBase.h.

◆ computingScalingJacobian()

bool SystemBase::computingScalingJacobian ( ) const
inherited

Whether we are computing an initial Jacobian for automatic variable scaling.

Definition at line 1552 of file SystemBase.C.

Referenced by Assembly::addJacobianBlock(), Assembly::addJacobianBlockNonlocal(), VectorKernel::computeJacobian(), Kernel::computeJacobian(), EigenKernel::computeJacobian(), and FEProblemBase::computeJacobianTags().

1553 {
1555 }
virtual bool computingScalingJacobian() const =0
Getter for whether we&#39;re computing the scaling jacobian.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983

◆ constraintJacobians()

void NonlinearSystemBase::constraintJacobians ( const SparseMatrix< Number > &  jacobian_to_view,
bool  displaced 
)

Add jacobian contributions from Constraints.

Parameters
jacobianreference to a read-only view of the Jacobian matrix
displacedControls whether to do the displaced Constraints or non-displaced

Definition at line 2340 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2342 {
2343  if (!hasMatrix(systemMatrixTag()))
2344  mooseError("A system matrix is required");
2345 
2346  auto & jacobian = getMatrix(systemMatrixTag());
2347 
2349  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2350  MAT_NEW_NONZERO_ALLOCATION_ERR,
2351  PETSC_FALSE));
2353  LibmeshPetscCall(MatSetOption(
2354  static_cast<PetscMatrix<Number> &>(jacobian).mat(), MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2355 
2356  std::vector<numeric_index_type> zero_rows;
2357 
2358  if (displaced)
2359  mooseAssert(_fe_problem.getDisplacedProblem(),
2360  "If we're calling this method with displaced = true, then we better well have a "
2361  "displaced problem");
2362  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
2363  : static_cast<SubProblem &>(_fe_problem);
2364  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
2365 
2366  bool constraints_applied;
2368  constraints_applied = false;
2369  for (const auto & it : penetration_locators)
2370  {
2372  {
2373  // Reset the constraint_applied flag before each new constraint, as they need to be
2374  // assembled separately
2375  constraints_applied = false;
2376  }
2377  PenetrationLocator & pen_loc = *(it.second);
2378 
2379  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
2380 
2381  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
2382  BoundaryID primary_boundary = pen_loc._primary_boundary;
2383 
2384  zero_rows.clear();
2385  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
2386  {
2387  const auto & constraints =
2388  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
2389 
2390  for (const auto & secondary_node_num : secondary_nodes)
2391  {
2392  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
2393 
2394  if (secondary_node.processor_id() == processor_id())
2395  {
2396  if (pen_loc._penetration_info[secondary_node_num])
2397  {
2398  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
2399 
2400  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
2402 
2403  for (const auto & nfc : constraints)
2404  {
2405  if (nfc->isExplicitConstraint())
2406  continue;
2407  // Return if this constraint does not correspond to the primary-secondary pair
2408  // prepared by the outer loops.
2409  // This continue statement is required when, e.g. one secondary surface constrains
2410  // more than one primary surface.
2411  if (nfc->secondaryBoundary() != secondary_boundary ||
2412  nfc->primaryBoundary() != primary_boundary)
2413  continue;
2414 
2415  nfc->_jacobian = &jacobian_to_view;
2416 
2417  if (nfc->shouldApply())
2418  {
2419  constraints_applied = true;
2420 
2421  nfc->prepareShapes(nfc->variable().number());
2422  nfc->prepareNeighborShapes(nfc->variable().number());
2423 
2424  nfc->computeJacobian();
2425 
2426  if (nfc->overwriteSecondaryJacobian())
2427  {
2428  // Add this variable's dof's row to be zeroed
2429  zero_rows.push_back(nfc->variable().nodalDofIndex());
2430  }
2431 
2432  std::vector<dof_id_type> secondary_dofs(1, nfc->variable().nodalDofIndex());
2433 
2434  // Assume that if the user is overwriting the secondary Jacobian, then they are
2435  // supplying Jacobians that do not correspond to their other physics
2436  // (e.g. Kernels), hence we should not apply a scalingFactor that is normally
2437  // based on the order of their other physics (e.g. Kernels)
2438  Real scaling_factor =
2439  nfc->overwriteSecondaryJacobian() ? 1. : nfc->variable().scalingFactor();
2440 
2441  // Cache the jacobian block for the secondary side
2442  nfc->addJacobian(_fe_problem.assembly(0, number()),
2443  nfc->_Kee,
2444  secondary_dofs,
2445  nfc->_connected_dof_indices,
2446  scaling_factor);
2447 
2448  // Cache Ken, Kne, Knn
2449  if (nfc->addCouplingEntriesToJacobian())
2450  {
2451  // Make sure we use a proper scaling factor (e.g. don't use an interior scaling
2452  // factor when we're overwriting secondary stuff)
2453  nfc->addJacobian(_fe_problem.assembly(0, number()),
2454  nfc->_Ken,
2455  secondary_dofs,
2456  nfc->primaryVariable().dofIndicesNeighbor(),
2457  scaling_factor);
2458 
2459  // Use _connected_dof_indices to get all the correct columns
2460  nfc->addJacobian(_fe_problem.assembly(0, number()),
2461  nfc->_Kne,
2462  nfc->primaryVariable().dofIndicesNeighbor(),
2463  nfc->_connected_dof_indices,
2464  nfc->primaryVariable().scalingFactor());
2465 
2466  // We've handled Ken and Kne, finally handle Knn
2468  }
2469 
2470  // Do the off-diagonals next
2471  const std::vector<MooseVariableFEBase *> coupled_vars = nfc->getCoupledMooseVars();
2472  for (const auto & jvar : coupled_vars)
2473  {
2474  // Only compute jacobians for nonlinear variables
2475  if (jvar->kind() != Moose::VAR_SOLVER)
2476  continue;
2477 
2478  // Only compute Jacobian entries if this coupling is being used by the
2479  // preconditioner
2480  if (nfc->variable().number() == jvar->number() ||
2482  nfc->variable().number(), jvar->number(), this->number()))
2483  continue;
2484 
2485  // Need to zero out the matrices first
2487 
2488  nfc->prepareShapes(nfc->variable().number());
2489  nfc->prepareNeighborShapes(jvar->number());
2490 
2491  nfc->computeOffDiagJacobian(jvar->number());
2492 
2493  // Cache the jacobian block for the secondary side
2494  nfc->addJacobian(_fe_problem.assembly(0, number()),
2495  nfc->_Kee,
2496  secondary_dofs,
2497  nfc->_connected_dof_indices,
2498  scaling_factor);
2499 
2500  // Cache Ken, Kne, Knn
2501  if (nfc->addCouplingEntriesToJacobian())
2502  {
2503  // Make sure we use a proper scaling factor (e.g. don't use an interior scaling
2504  // factor when we're overwriting secondary stuff)
2505  nfc->addJacobian(_fe_problem.assembly(0, number()),
2506  nfc->_Ken,
2507  secondary_dofs,
2508  jvar->dofIndicesNeighbor(),
2509  scaling_factor);
2510 
2511  // Use _connected_dof_indices to get all the correct columns
2512  nfc->addJacobian(_fe_problem.assembly(0, number()),
2513  nfc->_Kne,
2514  nfc->variable().dofIndicesNeighbor(),
2515  nfc->_connected_dof_indices,
2516  nfc->variable().scalingFactor());
2517 
2518  // We've handled Ken and Kne, finally handle Knn
2520  }
2521  }
2522  }
2523  }
2524  }
2525  }
2526  }
2527  }
2529  {
2530  // See if constraints were applied anywhere
2531  _communicator.max(constraints_applied);
2532 
2533  if (constraints_applied)
2534  {
2535  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2536  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2537  PETSC_TRUE));
2538 
2539  jacobian.close();
2540  jacobian.zero_rows(zero_rows, 0.0);
2541  jacobian.close();
2543  jacobian.close();
2544  }
2545  }
2546  }
2548  {
2549  // See if constraints were applied anywhere
2550  _communicator.max(constraints_applied);
2551 
2552  if (constraints_applied)
2553  {
2554  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2555  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2556  PETSC_TRUE));
2557 
2558  jacobian.close();
2559  jacobian.zero_rows(zero_rows, 0.0);
2560  jacobian.close();
2562  jacobian.close();
2563  }
2564  }
2565 
2566  THREAD_ID tid = 0;
2567  // go over element-element constraint interface
2568  const auto & element_pair_locators = subproblem.geomSearchData()._element_pair_locators;
2569  for (const auto & it : element_pair_locators)
2570  {
2571  ElementPairLocator & elem_pair_loc = *(it.second);
2572 
2573  if (_constraints.hasActiveElemElemConstraints(it.first, displaced))
2574  {
2575  // ElemElemConstraint objects
2576  const auto & _element_constraints =
2577  _constraints.getActiveElemElemConstraints(it.first, displaced);
2578 
2579  // go over pair elements
2580  const std::list<std::pair<const Elem *, const Elem *>> & elem_pairs =
2581  elem_pair_loc.getElemPairs();
2582  for (const auto & pr : elem_pairs)
2583  {
2584  const Elem * elem1 = pr.first;
2585  const Elem * elem2 = pr.second;
2586 
2587  if (elem1->processor_id() != processor_id())
2588  continue;
2589 
2590  const ElementPairInfo & info = elem_pair_loc.getElemPairInfo(pr);
2591 
2592  // for each element process constraints on the
2593  for (const auto & ec : _element_constraints)
2594  {
2595  _fe_problem.setCurrentSubdomainID(elem1, tid);
2596  subproblem.reinitElemPhys(elem1, info._elem1_constraint_q_point, tid);
2597  _fe_problem.setNeighborSubdomainID(elem2, tid);
2598  subproblem.reinitNeighborPhys(elem2, info._elem2_constraint_q_point, tid);
2599 
2600  ec->prepareShapes(ec->variable().number());
2601  ec->prepareNeighborShapes(ec->variable().number());
2602 
2603  ec->reinit(info);
2604  ec->computeJacobian();
2607  }
2609  }
2610  }
2611  }
2612 
2613  // go over NodeElemConstraints
2614  std::set<dof_id_type> unique_secondary_node_ids;
2615  constraints_applied = false;
2616  for (const auto & secondary_id : _mesh.meshSubdomains())
2617  {
2618  for (const auto & primary_id : _mesh.meshSubdomains())
2619  {
2620  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
2621  {
2622  const auto & constraints =
2623  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
2624 
2625  // get unique set of ids of all nodes on current block
2626  unique_secondary_node_ids.clear();
2627  const MeshBase & meshhelper = _mesh.getMesh();
2628  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
2629  meshhelper.active_subdomain_elements_end(secondary_id)))
2630  {
2631  for (auto & n : elem->node_ref_range())
2632  unique_secondary_node_ids.insert(n.id());
2633  }
2634 
2635  for (auto secondary_node_id : unique_secondary_node_ids)
2636  {
2637  const Node & secondary_node = _mesh.nodeRef(secondary_node_id);
2638  // check if secondary node is on current processor
2639  if (secondary_node.processor_id() == processor_id())
2640  {
2641  // This reinits the variables that exist on the secondary node
2642  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
2643 
2644  // This will set aside residual and jacobian space for the variables that have dofs
2645  // on the secondary node
2648 
2649  for (const auto & nec : constraints)
2650  {
2651  if (nec->shouldApply())
2652  {
2653  constraints_applied = true;
2654 
2655  nec->_jacobian = &jacobian_to_view;
2656  nec->prepareShapes(nec->variable().number());
2657  nec->prepareNeighborShapes(nec->variable().number());
2658 
2659  nec->computeJacobian();
2660 
2661  if (nec->overwriteSecondaryJacobian())
2662  {
2663  // Add this variable's dof's row to be zeroed
2664  zero_rows.push_back(nec->variable().nodalDofIndex());
2665  }
2666 
2667  std::vector<dof_id_type> secondary_dofs(1, nec->variable().nodalDofIndex());
2668 
2669  // Cache the jacobian block for the secondary side
2670  nec->addJacobian(_fe_problem.assembly(0, number()),
2671  nec->_Kee,
2672  secondary_dofs,
2673  nec->_connected_dof_indices,
2674  nec->variable().scalingFactor());
2675 
2676  // Cache the jacobian block for the primary side
2677  nec->addJacobian(_fe_problem.assembly(0, number()),
2678  nec->_Kne,
2679  nec->primaryVariable().dofIndicesNeighbor(),
2680  nec->_connected_dof_indices,
2681  nec->primaryVariable().scalingFactor());
2682 
2685 
2686  // Do the off-diagonals next
2687  const std::vector<MooseVariableFEBase *> coupled_vars = nec->getCoupledMooseVars();
2688  for (const auto & jvar : coupled_vars)
2689  {
2690  // Only compute jacobians for nonlinear variables
2691  if (jvar->kind() != Moose::VAR_SOLVER)
2692  continue;
2693 
2694  // Only compute Jacobian entries if this coupling is being used by the
2695  // preconditioner
2696  if (nec->variable().number() == jvar->number() ||
2698  nec->variable().number(), jvar->number(), this->number()))
2699  continue;
2700 
2701  // Need to zero out the matrices first
2703 
2704  nec->prepareShapes(nec->variable().number());
2705  nec->prepareNeighborShapes(jvar->number());
2706 
2707  nec->computeOffDiagJacobian(jvar->number());
2708 
2709  // Cache the jacobian block for the secondary side
2710  nec->addJacobian(_fe_problem.assembly(0, number()),
2711  nec->_Kee,
2712  secondary_dofs,
2713  nec->_connected_dof_indices,
2714  nec->variable().scalingFactor());
2715 
2716  // Cache the jacobian block for the primary side
2717  nec->addJacobian(_fe_problem.assembly(0, number()),
2718  nec->_Kne,
2719  nec->variable().dofIndicesNeighbor(),
2720  nec->_connected_dof_indices,
2721  nec->variable().scalingFactor());
2722 
2725  }
2726  }
2727  }
2728  }
2729  }
2730  }
2731  }
2732  }
2733  // See if constraints were applied anywhere
2734  _communicator.max(constraints_applied);
2735 
2736  if (constraints_applied)
2737  {
2738  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2739  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2740  PETSC_TRUE));
2741 
2742  jacobian.close();
2743  jacobian.zero_rows(zero_rows, 0.0);
2744  jacobian.close();
2746  jacobian.close();
2747  }
2748 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
MPI_Info info
bool areCoupled(const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const ElementPairInfo & getElemPairInfo(std::pair< const Elem *, const Elem *> elem_pair) const
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual void cacheJacobianNeighbor(const THREAD_ID tid) override
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
const ElementPairList & getElemPairs() const
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
This is the ElementPairLocator class.
This is the ElementPairInfo class.
std::map< BoundaryID, std::shared_ptr< ElementPairLocator > > _element_pair_locators
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual GeometricSearchData & geomSearchData()=0
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void setCurrentSubdomainID(const Elem *elem, const THREAD_ID tid) override
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void reinitElemPhys(const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid)=0
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
bool hasActiveElemElemConstraints(const InterfaceID interface_id, bool displaced) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
processor_id_type processor_id() const
const std::vector< std::shared_ptr< ElemElemConstraint > > & getActiveElemElemConstraints(InterfaceID interface_id, bool displaced) const
virtual void cacheJacobian(const THREAD_ID tid) override
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
virtual void reinitOffDiagScalars(const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
BoundaryID _primary_boundary
unsigned int THREAD_ID
Definition: MooseTypes.h:209
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3211
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ constraintResiduals()

void NonlinearSystemBase::constraintResiduals ( NumericVector< Number > &  residual,
bool  displaced 
)

Add residual contributions from Constraints.

Parameters
residual- reference to the residual vector where constraint contributions will be computed
displacedControls whether to do the displaced Constraints or non-displaced

Definition at line 1355 of file NonlinearSystemBase.C.

Referenced by computeResidualInternal().

1356 {
1357  // Make sure the residual is in a good state
1358  residual.close();
1359 
1360  if (displaced)
1361  mooseAssert(_fe_problem.getDisplacedProblem(),
1362  "If we're calling this method with displaced = true, then we better well have a "
1363  "displaced problem");
1364  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1365  : static_cast<SubProblem &>(_fe_problem);
1366  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1367 
1368  bool constraints_applied;
1369  bool residual_has_inserted_values = false;
1371  constraints_applied = false;
1372  for (const auto & it : penetration_locators)
1373  {
1375  {
1376  // Reset the constraint_applied flag before each new constraint, as they need to be
1377  // assembled separately
1378  constraints_applied = false;
1379  }
1380  PenetrationLocator & pen_loc = *(it.second);
1381 
1382  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1383 
1384  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1385  BoundaryID primary_boundary = pen_loc._primary_boundary;
1386 
1387  bool has_writable_variables(false);
1388 
1389  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
1390  {
1391  const auto & constraints =
1392  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
1393 
1394  for (unsigned int i = 0; i < secondary_nodes.size(); i++)
1395  {
1396  dof_id_type secondary_node_num = secondary_nodes[i];
1397  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1398 
1399  if (secondary_node.processor_id() == processor_id())
1400  {
1401  if (pen_loc._penetration_info[secondary_node_num])
1402  {
1403  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
1404 
1405  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
1406 
1407  for (const auto & nfc : constraints)
1408  {
1409  // Return if this constraint does not correspond to the primary-secondary pair
1410  // prepared by the outer loops.
1411  // This continue statement is required when, e.g. one secondary surface constrains
1412  // more than one primary surface.
1413  if (nfc->secondaryBoundary() != secondary_boundary ||
1414  nfc->primaryBoundary() != primary_boundary)
1415  continue;
1416 
1417  if (nfc->shouldApply())
1418  {
1419  constraints_applied = true;
1420  nfc->computeResidual();
1421 
1422  if (nfc->overwriteSecondaryResidual())
1423  {
1424  // The below will actually overwrite the residual for every single dof that
1425  // lives on the node. We definitely don't want to do that!
1426  // _fe_problem.setResidual(residual, 0);
1427 
1428  const auto & secondary_var = nfc->variable();
1429  const auto & secondary_dofs = secondary_var.dofIndices();
1430  mooseAssert(secondary_dofs.size() == secondary_var.count(),
1431  "We are on a node so there should only be one dof per variable (for "
1432  "an ArrayVariable we should have a number of dofs equal to the "
1433  "number of components");
1434 
1435  // Assume that if the user is overwriting the secondary residual, then they are
1436  // supplying residuals that do not correspond to their other physics
1437  // (e.g. Kernels), hence we should not apply a scalingFactor that is normally
1438  // based on the order of their other physics (e.g. Kernels)
1439  std::vector<Number> values = {nfc->secondaryResidual()};
1440  residual.insert(values, secondary_dofs);
1441  residual_has_inserted_values = true;
1442  }
1443  else
1446  }
1447  if (nfc->hasWritableCoupledVariables())
1448  {
1449  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1450  has_writable_variables = true;
1451  for (auto * var : nfc->getWritableCoupledVariables())
1452  {
1453  if (var->isNodalDefined())
1454  var->insert(_fe_problem.getAuxiliarySystem().solution());
1455  }
1456  }
1457  }
1458  }
1459  }
1460  }
1461  }
1462  _communicator.max(has_writable_variables);
1463 
1464  if (has_writable_variables)
1465  {
1466  // Explicit contact dynamic constraints write to auxiliary variables and update the old
1467  // displacement solution on the constraint boundaries. Close solutions and update system
1468  // accordingly.
1471  solutionOld().close();
1472  }
1473 
1475  {
1476  // Make sure that secondary contribution to primary are assembled, and ghosts have been
1477  // exchanged, as current primaries might become secondaries on next iteration and will need to
1478  // contribute their former secondaries' contributions to the future primaries. See if
1479  // constraints were applied anywhere
1480  _communicator.max(constraints_applied);
1481 
1482  if (constraints_applied)
1483  {
1484  // If any of the above constraints inserted values in the residual, it needs to be
1485  // assembled before adding the cached residuals below.
1486  _communicator.max(residual_has_inserted_values);
1487  if (residual_has_inserted_values)
1488  {
1489  residual.close();
1490  residual_has_inserted_values = false;
1491  }
1493  residual.close();
1494 
1496  *_residual_ghosted = residual;
1497  }
1498  }
1499  }
1501  {
1502  _communicator.max(constraints_applied);
1503 
1504  if (constraints_applied)
1505  {
1506  // If any of the above constraints inserted values in the residual, it needs to be assembled
1507  // before adding the cached residuals below.
1508  _communicator.max(residual_has_inserted_values);
1509  if (residual_has_inserted_values)
1510  residual.close();
1511 
1513  residual.close();
1514 
1516  *_residual_ghosted = residual;
1517  }
1518  }
1519 
1520  // go over element-element constraint interface
1521  THREAD_ID tid = 0;
1522  const auto & element_pair_locators = subproblem.geomSearchData()._element_pair_locators;
1523  for (const auto & it : element_pair_locators)
1524  {
1525  ElementPairLocator & elem_pair_loc = *(it.second);
1526 
1527  if (_constraints.hasActiveElemElemConstraints(it.first, displaced))
1528  {
1529  // ElemElemConstraint objects
1530  const auto & _element_constraints =
1531  _constraints.getActiveElemElemConstraints(it.first, displaced);
1532 
1533  // go over pair elements
1534  const std::list<std::pair<const Elem *, const Elem *>> & elem_pairs =
1535  elem_pair_loc.getElemPairs();
1536  for (const auto & pr : elem_pairs)
1537  {
1538  const Elem * elem1 = pr.first;
1539  const Elem * elem2 = pr.second;
1540 
1541  if (elem1->processor_id() != processor_id())
1542  continue;
1543 
1544  const ElementPairInfo & info = elem_pair_loc.getElemPairInfo(pr);
1545 
1546  // for each element process constraints on the
1547  for (const auto & ec : _element_constraints)
1548  {
1549  _fe_problem.setCurrentSubdomainID(elem1, tid);
1550  subproblem.reinitElemPhys(elem1, info._elem1_constraint_q_point, tid);
1551  _fe_problem.setNeighborSubdomainID(elem2, tid);
1552  subproblem.reinitNeighborPhys(elem2, info._elem2_constraint_q_point, tid);
1553 
1554  ec->prepareShapes(ec->variable().number());
1555  ec->prepareNeighborShapes(ec->variable().number());
1556 
1557  ec->reinit(info);
1558  ec->computeResidual();
1561  }
1563  }
1564  }
1565  }
1566 
1567  // go over NodeElemConstraints
1568  std::set<dof_id_type> unique_secondary_node_ids;
1569 
1570  constraints_applied = false;
1571  residual_has_inserted_values = false;
1572  bool has_writable_variables = false;
1573  for (const auto & secondary_id : _mesh.meshSubdomains())
1574  {
1575  for (const auto & primary_id : _mesh.meshSubdomains())
1576  {
1577  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
1578  {
1579  const auto & constraints =
1580  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
1581 
1582  // get unique set of ids of all nodes on current block
1583  unique_secondary_node_ids.clear();
1584  const MeshBase & meshhelper = _mesh.getMesh();
1585  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
1586  meshhelper.active_subdomain_elements_end(secondary_id)))
1587  {
1588  for (auto & n : elem->node_ref_range())
1589  unique_secondary_node_ids.insert(n.id());
1590  }
1591 
1592  for (auto secondary_node_id : unique_secondary_node_ids)
1593  {
1594  Node & secondary_node = _mesh.nodeRef(secondary_node_id);
1595  // check if secondary node is on current processor
1596  if (secondary_node.processor_id() == processor_id())
1597  {
1598  // This reinits the variables that exist on the secondary node
1599  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
1600 
1601  // This will set aside residual and jacobian space for the variables that have dofs
1602  // on the secondary node
1604 
1605  for (const auto & nec : constraints)
1606  {
1607  if (nec->shouldApply())
1608  {
1609  constraints_applied = true;
1610  nec->computeResidual();
1611 
1612  if (nec->overwriteSecondaryResidual())
1613  {
1614  _fe_problem.setResidual(residual, 0);
1615  residual_has_inserted_values = true;
1616  }
1617  else
1620  }
1621  if (nec->hasWritableCoupledVariables())
1622  {
1623  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1624  has_writable_variables = true;
1625  for (auto * var : nec->getWritableCoupledVariables())
1626  {
1627  if (var->isNodalDefined())
1628  var->insert(_fe_problem.getAuxiliarySystem().solution());
1629  }
1630  }
1631  }
1633  }
1634  }
1635  }
1636  }
1637  }
1638  _communicator.max(constraints_applied);
1639 
1640  if (constraints_applied)
1641  {
1642  // If any of the above constraints inserted values in the residual, it needs to be assembled
1643  // before adding the cached residuals below.
1644  _communicator.max(residual_has_inserted_values);
1645  if (residual_has_inserted_values)
1646  residual.close();
1647 
1649  residual.close();
1650 
1652  *_residual_ghosted = residual;
1653  }
1654  _communicator.max(has_writable_variables);
1655 
1656  if (has_writable_variables)
1657  {
1658  // Explicit contact dynamic constraints write to auxiliary variables and update the old
1659  // displacement solution on the constraint boundaries. Close solutions and update system
1660  // accordingly.
1663  solutionOld().close();
1664  }
1665 
1666  // We may have additional tagged vectors that also need to be accumulated
1668 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
virtual void insert(const T *v, const std::vector< numeric_index_type > &dof_indices)
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
virtual void cacheResidualNeighbor(const THREAD_ID tid) override
BoundaryID _secondary_boundary
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
MPI_Info info
NumericVector< Number > & solution()
Definition: SystemBase.h:196
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const ElementPairInfo & getElemPairInfo(std::pair< const Elem *, const Elem *> elem_pair) const
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
virtual void setResidual(NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
virtual void addCachedResidualDirectly(NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
Allows for all the residual contributions that are currently cached to be added directly into the vec...
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
const ElementPairList & getElemPairs() const
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual void cacheResidual(const THREAD_ID tid) override
This is the ElementPairLocator class.
This is the ElementPairInfo class.
std::map< BoundaryID, std::shared_ptr< ElementPairLocator > > _element_pair_locators
virtual GeometricSearchData & geomSearchData()=0
AuxiliarySystem & getAuxiliarySystem()
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void setCurrentSubdomainID(const Elem *elem, const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void reinitElemPhys(const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid)=0
virtual void update()
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
bool hasActiveElemElemConstraints(const InterfaceID interface_id, bool displaced) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
virtual libMesh::System & system() override
Get the reference to the libMesh system.
NumericVector< Number > & solutionOld()
Definition: SystemBase.h:197
processor_id_type processor_id() const
const std::vector< std::shared_ptr< ElemElemConstraint > > & getActiveElemElemConstraints(InterfaceID interface_id, bool displaced) const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
virtual void addCachedResidual(const THREAD_ID tid) override
BoundaryID _primary_boundary
unsigned int THREAD_ID
Definition: MooseTypes.h:209
uint8_t dof_id_type
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3211

◆ containsTimeKernel()

bool NonlinearSystemBase::containsTimeKernel ( )
overridevirtual

If the system has a kernel that corresponds to a time derivative.

Implements SolverSystem.

Definition at line 3806 of file NonlinearSystemBase.C.

Referenced by EigenExecutionerBase::checkIntegrity(), and Eigenvalue::checkIntegrity().

3807 {
3808  auto & time_kernels = _kernels.getVectorTagObjectWarehouse(timeVectorTag(), 0);
3809 
3810  return time_kernels.hasActiveObjects();
3811 }
MooseObjectTagWarehouse< KernelBase > _kernels
TagID timeVectorTag() const override
Ideally, we should not need this API.
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...

◆ converged()

virtual bool SolverSystem::converged ( )
pure virtualinherited

Returns the convergence state.

Returns
true if converged, otherwise false

Implemented in NonlinearEigenSystem, NonlinearEigenSystem, NonlinearSystem, LinearSystem, DumpObjectsLinearSystem, and DumpObjectsNonlinearSystem.

◆ copyOldSolutions()

void SystemBase::copyOldSolutions ( )
virtualinherited

Shifts the solutions backwards in time.

Definition at line 1286 of file SystemBase.C.

Referenced by SystemBase::copySolutionsBackwards(), and EigenExecutionerBase::inversePowerIteration().

1287 {
1288  // copy the solutions backward: current->old, old->older
1289  const auto states =
1290  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
1291  if (states > 1)
1292  for (unsigned int i = states - 1; i > 0; --i)
1293  solutionState(i) = solutionState(i - 1);
1294 
1295  if (solutionUDotOld())
1296  *solutionUDotOld() = *solutionUDot();
1297  if (solutionUDotDotOld())
1299 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
virtual NumericVector< Number > * solutionUDot()
Definition: SystemBase.h:261
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > * solutionUDotDot()
Definition: SystemBase.h:262

◆ copyPreviousFixedPointSolutions()

void SystemBase::copyPreviousFixedPointSolutions ( )
virtualinherited

Definition at line 1302 of file SystemBase.C.

Referenced by FixedPointSolve::solveStep().

1303 {
1304  const auto n_states =
1305  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::FixedPoint)]
1306  .size();
1307  if (n_states > 1)
1308  for (unsigned int i = n_states - 1; i > 0; --i)
1311 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ copyPreviousNonlinearSolutions()

void SystemBase::copyPreviousNonlinearSolutions ( )
virtualinherited

Shifts the solutions backwards in nonlinear iteration history.

Definition at line 1269 of file SystemBase.C.

Referenced by SystemBase::copySolutionsBackwards().

1270 {
1271  const auto states =
1272  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Nonlinear)].size();
1273  if (states > 1)
1274  for (unsigned int i = states - 1; i > 0; --i)
1277 
1278  if (solutionPreviousNewton())
1280 }
virtual const NumericVector< Number > *const & currentSolution() const =0
The solution vector that is currently being operated on.
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual const NumericVector< Number > * solutionPreviousNewton() const
Definition: SystemBase.C:1355

◆ copySolutionsBackwards()

void SystemBase::copySolutionsBackwards ( )
virtualinherited

Copy current solution into old and older.

Definition at line 1258 of file SystemBase.C.

1259 {
1260  system().update();
1261  copyOldSolutions();
1263 }
virtual void copyOldSolutions()
Shifts the solutions backwards in time.
Definition: SystemBase.C:1286
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual void copyPreviousNonlinearSolutions()
Shifts the solutions backwards in nonlinear iteration history.
Definition: SystemBase.C:1269
virtual void update()

◆ copyTimeIntegrators()

void SystemBase::copyTimeIntegrators ( const SystemBase other_sys)
inherited

Copy time integrators from another system.

Definition at line 1667 of file SystemBase.C.

1668 {
1670 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ copyVars()

void SystemBase::copyVars ( libMesh::ExodusII_IO io)
inherited

Definition at line 1183 of file SystemBase.C.

1184 {
1185  int n_steps = io.get_num_time_steps();
1186 
1187  bool did_copy = false;
1188  for (const auto & vci : _var_to_copy)
1189  {
1190  int timestep = -1;
1191 
1192  if (vci._timestep == "LATEST")
1193  // Use the last time step in the file from which to retrieve the solution
1194  timestep = n_steps;
1195  else
1196  {
1197  timestep = MooseUtils::convert<int>(vci._timestep);
1198  if (timestep > n_steps)
1199  mooseError("Invalid value passed as \"initial_from_file_timestep\". Expected \"LATEST\" or "
1200  "a valid integer between 1 and ",
1201  n_steps,
1202  " inclusive, received ",
1203  vci._timestep);
1204  }
1205 
1206  did_copy = true;
1207 
1208  if (hasVariable(vci._dest_name))
1209  {
1210  const auto & var = getVariable(0, vci._dest_name);
1211  if (var.isArray())
1212  {
1213  const auto & array_var = getFieldVariable<RealEigenVector>(0, vci._dest_name);
1214  for (MooseIndex(var.count()) i = 0; i < var.count(); ++i)
1215  {
1216  const auto & exodus_var = var.arrayVariableComponent(i);
1217  const auto & system_var = array_var.componentName(i);
1218  if (var.isNodal())
1219  io.copy_nodal_solution(system(), exodus_var, system_var, timestep);
1220  else
1221  io.copy_elemental_solution(system(), exodus_var, system_var, timestep);
1222  }
1223  }
1224  else
1225  {
1226  if (var.isNodal())
1227  io.copy_nodal_solution(system(), vci._dest_name, vci._source_name, timestep);
1228  else
1229  io.copy_elemental_solution(system(), vci._dest_name, vci._source_name, timestep);
1230  }
1231  }
1232  else if (hasScalarVariable(vci._dest_name))
1233  io.copy_scalar_solution(system(), {vci._dest_name}, {vci._source_name}, timestep);
1234  else
1235  mooseError("Unrecognized variable ", vci._dest_name, " in variables to copy.");
1236  }
1237 
1238  if (did_copy)
1239  solution().close();
1240 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040
void copy_nodal_solution(System &system, std::string system_var_name, std::string exodus_var_name, unsigned int timestep=1)
void copy_elemental_solution(System &system, std::string system_var_name, std::string exodus_var_name, unsigned int timestep=1)
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual void close()=0
void copy_scalar_solution(System &system, std::vector< std::string > system_var_names, std::vector< std::string > exodus_var_names, unsigned int timestep=1)
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876

◆ currentSolution()

const NumericVector< Number > *const & SolverSystem::currentSolution ( ) const
inlinefinaloverridevirtualinherited

The solution vector that is currently being operated on.

This is typically a ghosted vector that comes in from the Nonlinear solver.

Implements SystemBase.

Definition at line 117 of file SolverSystem.h.

Referenced by FEProblemBase::computeDamping(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualL2Norm(), and AB2PredictorCorrector::step().

118 {
119  return _current_solution;
120 }
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105

◆ customSetup()

void NonlinearSystemBase::customSetup ( const ExecFlagType exec_type)
overridevirtual

Reimplemented from SystemBase.

Definition at line 396 of file NonlinearSystemBase.C.

397 {
398  SolverSystem::customSetup(exec_type);
399 
400  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
401  {
402  _kernels.customSetup(exec_type, tid);
403  _nodal_kernels.customSetup(exec_type, tid);
404  _dirac_kernels.customSetup(exec_type, tid);
405  if (_doing_dg)
406  _dg_kernels.customSetup(exec_type, tid);
407  _interface_kernels.customSetup(exec_type, tid);
408  _element_dampers.customSetup(exec_type, tid);
409  _nodal_dampers.customSetup(exec_type, tid);
410  _integrated_bcs.customSetup(exec_type, tid);
411 
412  if (_fe_problem.haveFV())
413  {
414  std::vector<FVFluxBC *> bcs;
416  .query()
417  .template condition<AttribSystem>("FVFluxBC")
418  .template condition<AttribThread>(tid)
419  .queryInto(bcs);
420 
421  std::vector<FVInterfaceKernel *> iks;
423  .query()
424  .template condition<AttribSystem>("FVInterfaceKernel")
425  .template condition<AttribThread>(tid)
426  .queryInto(iks);
427 
428  std::vector<FVFluxKernel *> kernels;
430  .query()
431  .template condition<AttribSystem>("FVFluxKernel")
432  .template condition<AttribThread>(tid)
433  .queryInto(kernels);
434 
435  for (auto * bc : bcs)
436  bc->customSetup(exec_type);
437  for (auto * ik : iks)
438  ik->customSetup(exec_type);
439  for (auto * kernel : kernels)
440  kernel->customSetup(exec_type);
441  }
442  }
443  _scalar_kernels.customSetup(exec_type);
444  _constraints.customSetup(exec_type);
445  _general_dampers.customSetup(exec_type);
446  _nodal_bcs.customSetup(exec_type);
447 
448 #ifdef MOOSE_KOKKOS_ENABLED
449  _kokkos_kernels.customSetup(exec_type);
452  _kokkos_nodal_bcs.customSetup(exec_type);
453 #endif
454 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SystemBase.C:1585
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ deactivateAllMatrixTags()

void SystemBase::deactivateAllMatrixTags ( )
virtualinherited

Make matrices inactive.

Definition at line 1119 of file SystemBase.C.

Referenced by computeResidualTags(), and setInitialSolution().

1120 {
1121  auto num_matrix_tags = _subproblem.numMatrixTags();
1122 
1123  _matrix_tag_active_flags.resize(num_matrix_tags);
1124 
1125  for (decltype(num_matrix_tags) tag = 0; tag < num_matrix_tags; tag++)
1126  _matrix_tag_active_flags[tag] = false;
1127  _active_tagged_matrices.clear();
1128 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248

◆ debuggingResiduals()

void NonlinearSystemBase::debuggingResiduals ( bool  state)
inline

Definition at line 589 of file NonlinearSystemBase.h.

589 { _debugging_residuals = state; }
bool _debugging_residuals
true if debugging residuals

◆ defaultMatrixTags()

virtual std::set<TagID> SystemBase::defaultMatrixTags ( ) const
inlinevirtualinherited

Get the default matrix tags associted with this system.

Reimplemented in NonlinearEigenSystem, and DisplacedSystem.

Definition at line 319 of file SystemBase.h.

Referenced by DisplacedSystem::defaultMatrixTags(), NonlinearEigenSystem::defaultMatrixTags(), and SystemBase::disassociateDefaultMatrixTags().

319 { return {systemMatrixTag()}; }
virtual TagID systemMatrixTag() const
Return the Matrix Tag ID for System.
Definition: SystemBase.h:297

◆ defaultVectorTags()

virtual std::set<TagID> SystemBase::defaultVectorTags ( ) const
inlinevirtualinherited

Get the default vector tags associated with this system.

Reimplemented in NonlinearEigenSystem, and DisplacedSystem.

Definition at line 312 of file SystemBase.h.

Referenced by DisplacedSystem::defaultVectorTags(), NonlinearEigenSystem::defaultVectorTags(), and SystemBase::disassociateDefaultVectorTags().

313  {
315  }
virtual TagID timeVectorTag() const
Ideally, we should not need this API.
Definition: SystemBase.h:292
virtual TagID nonTimeVectorTag() const
Definition: SystemBase.h:302
virtual TagID residualVectorTag() const
Definition: SystemBase.h:307

◆ destroyColoring()

void NonlinearSystemBase::destroyColoring ( )

Destroy the coloring object if it exists.

Definition at line 4187 of file NonlinearSystemBase.C.

Referenced by LStableDirk2::solve(), LStableDirk3::solve(), and LStableDirk4::solve().

4188 {
4189  if (matrixFromColoring())
4190  LibmeshPetscCall(MatFDColoringDestroy(&_fdcoloring));
4191 }
virtual bool matrixFromColoring() const
Whether a system matrix is formed from coloring.
Definition: SolverSystem.h:102

◆ disassociateDefaultMatrixTags()

void SystemBase::disassociateDefaultMatrixTags ( )
virtualinherited

Disassociate the matrices associated with the default matrix tags of this system.

Reimplemented in DisplacedSystem.

Definition at line 1110 of file SystemBase.C.

Referenced by DisplacedSystem::disassociateDefaultMatrixTags().

1111 {
1112  const auto tags = defaultMatrixTags();
1113  for (const auto tag : tags)
1114  if (_subproblem.matrixTagExists(tag))
1116 }
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual std::set< TagID > defaultMatrixTags() const
Get the default matrix tags associted with this system.
Definition: SystemBase.h:319
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ disassociateDefaultVectorTags()

void SystemBase::disassociateDefaultVectorTags ( )
virtualinherited

Disassociate the vectors associated with the default vector tags of this system.

Reimplemented in DisplacedSystem.

Definition at line 1015 of file SystemBase.C.

Referenced by DisplacedSystem::disassociateDefaultVectorTags().

1016 {
1017  const auto tags = defaultVectorTags();
1018  for (const auto tag : tags)
1019  if (_subproblem.vectorTagExists(tag))
1021 }
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual std::set< TagID > defaultVectorTags() const
Get the default vector tags associated with this system.
Definition: SystemBase.h:312

◆ disassociateMatrixFromTag() [1/2]

void SystemBase::disassociateMatrixFromTag ( libMesh::SparseMatrix< Number > &  matrix,
TagID  tag 
)
virtualinherited

Disassociate a matrix from a tag.

Reimplemented in DisplacedSystem.

Definition at line 1088 of file SystemBase.C.

Referenced by computeJacobian(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), SystemBase::disassociateDefaultMatrixTags(), and DisplacedSystem::disassociateMatrixFromTag().

1089 {
1090  if (!_subproblem.matrixTagExists(tag))
1091  mooseError("Cannot disassociate matrix from tag ", tag, " because that tag does not exist");
1092  if (hasMatrix(tag) && &getMatrix(tag) != &matrix)
1093  mooseError("You can not disassociate a matrix from a tag which it was not associated to");
1094 
1096 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ disassociateMatrixFromTag() [2/2]

void SystemBase::disassociateMatrixFromTag ( TagID  tag)
virtualinherited

Disassociate any matrix that is associated with a given tag.

Reimplemented in DisplacedSystem.

Definition at line 1099 of file SystemBase.C.

1100 {
1101  if (!_subproblem.matrixTagExists(tag))
1102  mooseError("Cannot disassociate matrix from tag ", tag, " because that tag does not exist");
1103 
1104  if (_tagged_matrices.size() < tag + 1)
1105  _tagged_matrices.resize(tag + 1);
1106  _tagged_matrices[tag] = nullptr;
1107 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ disassociateVectorFromTag() [1/2]

virtual void SystemBase::disassociateVectorFromTag ( NumericVector< Number > &  vec,
TagID  tag 
)
virtualinherited

◆ disassociateVectorFromTag() [2/2]

void SystemBase::disassociateVectorFromTag ( TagID  tag)
virtualinherited

Disassociate any vector that is associated with a given tag.

Reimplemented in DisplacedSystem.

Definition at line 1004 of file SystemBase.C.

1005 {
1006  if (!_subproblem.vectorTagExists(tag))
1007  mooseError("Cannot disassociate vector from tag ", tag, " because that tag does not exist");
1008 
1009  if (_tagged_vectors.size() < tag + 1)
1010  _tagged_vectors.resize(tag + 1);
1011  _tagged_vectors[tag] = nullptr;
1012 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ dofMap() [1/2]

DofMap & SystemBase::dofMap ( )
virtualinherited

◆ dofMap() [2/2]

const DofMap & SystemBase::dofMap ( ) const
virtualinherited

Gets const reference to the dof map.

Definition at line 1169 of file SystemBase.C.

1170 {
1171  return system().get_dof_map();
1172 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const DofMap & get_dof_map() const

◆ doingDG()

bool NonlinearSystemBase::doingDG ( ) const

Getter for _doing_dg.

Definition at line 3845 of file NonlinearSystemBase.C.

3846 {
3847  return _doing_dg;
3848 }
bool _doing_dg
true if DG is active (optimization reasons)

◆ duDotDotDu() [1/2]

virtual Number& SystemBase::duDotDotDu ( )
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 257 of file SystemBase.h.

Referenced by DisplacedSystem::duDotDotDu(), and MooseVariableScalar::reinit().

257 { return _du_dotdot_du; }
Real _du_dotdot_du
Definition: SystemBase.h:1018

◆ duDotDotDu() [2/2]

virtual const Number& SystemBase::duDotDotDu ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 259 of file SystemBase.h.

259 { return _du_dotdot_du; }
Real _du_dotdot_du
Definition: SystemBase.h:1018

◆ duDotDu()

const Number & SystemBase::duDotDu ( unsigned int  var_num = 0) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1701 of file SystemBase.C.

Referenced by DisplacedSystem::duDotDu(), and MooseVariableScalar::reinit().

1702 {
1703  return _du_dot_du[var_num];
1704 }
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017

◆ duDotDus()

virtual std::vector<Number>& SystemBase::duDotDus ( )
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 256 of file SystemBase.h.

Referenced by DisplacedSystem::duDotDus().

256 { return _du_dot_du; }
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017

◆ enforceNodalConstraintsJacobian()

void NonlinearSystemBase::enforceNodalConstraintsJacobian ( )
protected

Definition at line 1123 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

1124 {
1125  if (!hasMatrix(systemMatrixTag()))
1126  mooseError(" A system matrix is required");
1127 
1128  auto & jacobian = getMatrix(systemMatrixTag());
1129  THREAD_ID tid = 0; // constraints are going to be done single-threaded
1130 
1132  {
1133  const auto & ncs = _constraints.getActiveNodalConstraints();
1134  for (const auto & nc : ncs)
1135  {
1136  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
1137  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
1138 
1139  if ((secondary_node_ids.size() > 0) && (primary_node_ids.size() > 0))
1140  {
1141  _fe_problem.reinitNodes(primary_node_ids, tid);
1142  _fe_problem.reinitNodesNeighbor(secondary_node_ids, tid);
1143  nc->computeJacobian(jacobian);
1144  }
1145  }
1147  }
1148 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
virtual void reinitNodes(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
bool hasActiveNodalConstraints() const
Deterimine if active objects exist.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void reinitNodesNeighbor(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ enforceNodalConstraintsResidual()

void NonlinearSystemBase::enforceNodalConstraintsResidual ( NumericVector< Number > &  residual)
protected

Enforce nodal constraints.

Definition at line 1098 of file NonlinearSystemBase.C.

Referenced by computeResidualInternal().

1099 {
1100  THREAD_ID tid = 0; // constraints are going to be done single-threaded
1101  residual.close();
1103  {
1104  const auto & ncs = _constraints.getActiveNodalConstraints();
1105  for (const auto & nc : ncs)
1106  {
1107  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
1108  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
1109 
1110  if ((secondary_node_ids.size() > 0) && (primary_node_ids.size() > 0))
1111  {
1112  _fe_problem.reinitNodes(primary_node_ids, tid);
1113  _fe_problem.reinitNodesNeighbor(secondary_node_ids, tid);
1114  nc->computeResidual(residual);
1115  }
1116  }
1117  _fe_problem.addCachedResidualDirectly(residual, tid);
1118  residual.close();
1119  }
1120 }
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
virtual void reinitNodes(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
bool hasActiveNodalConstraints() const
Deterimine if active objects exist.
virtual void addCachedResidualDirectly(NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
Allows for all the residual contributions that are currently cached to be added directly into the vec...
virtual void reinitNodesNeighbor(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ feProblem() [1/2]

FEProblemBase& SystemBase::feProblem ( )
inlineinherited

Definition at line 103 of file SystemBase.h.

Referenced by DMMooseGetEmbedding_Private(), and DMSetUp_Moose_Pre().

103 { return _fe_problem; }
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ feProblem() [2/2]

const FEProblemBase& SystemBase::feProblem ( ) const
inlineinherited

Definition at line 104 of file SystemBase.h.

104 { return _fe_problem; }
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ finalNonlinearResidual()

Real NonlinearSystemBase::finalNonlinearResidual ( ) const
inline

Return the final nonlinear residual.

Definition at line 575 of file NonlinearSystemBase.h.

575 { return _final_residual; }

◆ findImplicitGeometricCouplingEntries()

void NonlinearSystemBase::findImplicitGeometricCouplingEntries ( GeometricSearchData geom_search_data,
std::unordered_map< dof_id_type, std::vector< dof_id_type >> &  graph 
)
private

Finds the implicit sparsity graph between geometrically related dofs.

Definition at line 2207 of file NonlinearSystemBase.C.

Referenced by addImplicitGeometricCouplingEntries(), and augmentSparsity().

2210 {
2211  const auto & node_to_elem_map = _mesh.nodeToElemMap();
2212  const auto & nearest_node_locators = geom_search_data._nearest_node_locators;
2213  for (const auto & it : nearest_node_locators)
2214  {
2215  std::vector<dof_id_type> & secondary_nodes = it.second->_secondary_nodes;
2216 
2217  for (const auto & secondary_node : secondary_nodes)
2218  {
2219  std::set<dof_id_type> unique_secondary_indices;
2220  std::set<dof_id_type> unique_primary_indices;
2221 
2222  auto node_to_elem_pair = node_to_elem_map.find(secondary_node);
2223  if (node_to_elem_pair != node_to_elem_map.end())
2224  {
2225  const std::vector<dof_id_type> & elems = node_to_elem_pair->second;
2226 
2227  // Get the dof indices from each elem connected to the node
2228  for (const auto & cur_elem : elems)
2229  {
2230  std::vector<dof_id_type> dof_indices;
2231  dofMap().dof_indices(_mesh.elemPtr(cur_elem), dof_indices);
2232 
2233  for (const auto & dof : dof_indices)
2234  unique_secondary_indices.insert(dof);
2235  }
2236  }
2237 
2238  std::vector<dof_id_type> primary_nodes = it.second->_neighbor_nodes[secondary_node];
2239 
2240  for (const auto & primary_node : primary_nodes)
2241  {
2242  auto primary_node_to_elem_pair = node_to_elem_map.find(primary_node);
2243  mooseAssert(primary_node_to_elem_pair != node_to_elem_map.end(),
2244  "Missing entry in node to elem map");
2245  const std::vector<dof_id_type> & primary_node_elems = primary_node_to_elem_pair->second;
2246 
2247  // Get the dof indices from each elem connected to the node
2248  for (const auto & cur_elem : primary_node_elems)
2249  {
2250  std::vector<dof_id_type> dof_indices;
2251  dofMap().dof_indices(_mesh.elemPtr(cur_elem), dof_indices);
2252 
2253  for (const auto & dof : dof_indices)
2254  unique_primary_indices.insert(dof);
2255  }
2256  }
2257 
2258  for (const auto & secondary_id : unique_secondary_indices)
2259  for (const auto & primary_id : unique_primary_indices)
2260  {
2261  graph[secondary_id].push_back(primary_id);
2262  graph[primary_id].push_back(secondary_id);
2263  }
2264  }
2265  }
2266 
2267  // handle node-to-node constraints
2268  const auto & ncs = _constraints.getActiveNodalConstraints();
2269  for (const auto & nc : ncs)
2270  {
2271  std::vector<dof_id_type> primary_dofs;
2272  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
2273  for (const auto & node_id : primary_node_ids)
2274  {
2275  Node * node = _mesh.queryNodePtr(node_id);
2276  if (node && node->processor_id() == this->processor_id())
2277  {
2278  getNodeDofs(node_id, primary_dofs);
2279  }
2280  }
2281 
2282  _communicator.allgather(primary_dofs);
2283 
2284  std::vector<dof_id_type> secondary_dofs;
2285  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
2286  for (const auto & node_id : secondary_node_ids)
2287  {
2288  Node * node = _mesh.queryNodePtr(node_id);
2289  if (node && node->processor_id() == this->processor_id())
2290  {
2291  getNodeDofs(node_id, secondary_dofs);
2292  }
2293  }
2294 
2295  _communicator.allgather(secondary_dofs);
2296 
2297  for (const auto & primary_id : primary_dofs)
2298  for (const auto & secondary_id : secondary_dofs)
2299  {
2300  graph[primary_id].push_back(secondary_id);
2301  graph[secondary_id].push_back(primary_id);
2302  }
2303  }
2304 
2305  // Make every entry sorted and unique
2306  for (auto & it : graph)
2307  {
2308  std::vector<dof_id_type> & row = it.second;
2309  std::sort(row.begin(), row.end());
2310  std::vector<dof_id_type>::iterator uit = std::unique(row.begin(), row.end());
2311  row.resize(uit - row.begin());
2312  }
2313 }
void allgather(const T &send_data, std::vector< T, A > &recv_data) const
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
void getNodeDofs(dof_id_type node_id, std::vector< dof_id_type > &dofs)
virtual const Node * queryNodePtr(const dof_id_type i) const
Definition: MooseMesh.C:875
const Parallel::Communicator & _communicator
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
ConstraintWarehouse _constraints
Constraints storage object.
MooseMesh & _mesh
Definition: SystemBase.h:991
processor_id_type processor_id() const
processor_id_type processor_id() const
const std::map< dof_id_type, std::vector< dof_id_type > > & nodeToElemMap()
If not already created, creates a map from every node to all elements to which they are connected...
Definition: MooseMesh.C:1216

◆ flushTaggedMatrices()

void SystemBase::flushTaggedMatrices ( const std::set< TagID > &  tags)
inherited

flushes all matrices associated to tags.

Flush assembles the matrix but doesn't shrink memory allocation

Definition at line 1068 of file SystemBase.C.

1069 {
1070  for (auto tag : tags)
1071  if (hasMatrix(tag))
1072  getMatrix(tag).flush();
1073 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void flush()
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024

◆ getActualFieldVariable() [1/2]

template<typename T >
MooseVariableField< T > & SystemBase::getActualFieldVariable ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Returns a field variable pointer - this includes finite volume variables.

Definition at line 118 of file SystemBase.C.

Referenced by BoundsBase::BoundsBase(), Assembly::copyFaceShapes(), Assembly::copyNeighborShapes(), and Assembly::copyShapes().

119 {
120  return *_vars[tid].getActualFieldVariable<T>(var_name);
121 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getActualFieldVariable() [2/2]

template<typename T >
MooseVariableField< T > & SystemBase::getActualFieldVariable ( THREAD_ID  tid,
unsigned int  var_number 
)
inherited

Returns a field variable pointer - this includes finite volume variables.

Definition at line 139 of file SystemBase.C.

140 {
141  return *_vars[tid].getActualFieldVariable<T>(var_number);
142 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getConstraintWarehouse()

const ConstraintWarehouse& NonlinearSystemBase::getConstraintWarehouse ( ) const
inline

Definition at line 649 of file NonlinearSystemBase.h.

649 { return _constraints; }
ConstraintWarehouse _constraints
Constraints storage object.

◆ getCurrentNonlinearIterationNumber()

virtual unsigned int NonlinearSystemBase::getCurrentNonlinearIterationNumber ( )
pure virtual

◆ getDGKernelWarehouse()

MooseObjectTagWarehouse<DGKernelBase>& NonlinearSystemBase::getDGKernelWarehouse ( )
inline

Definition at line 625 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

625 { return _dg_kernels; }
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels

◆ getDiracKernelWarehouse()

MooseObjectTagWarehouse<DiracKernelBase>& NonlinearSystemBase::getDiracKernelWarehouse ( )
inline

Definition at line 630 of file NonlinearSystemBase.h.

630 { return _dirac_kernels; }
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.

◆ getElementDamperWarehouse()

const MooseObjectWarehouse<ElementDamper>& NonlinearSystemBase::getElementDamperWarehouse ( ) const
inline

Definition at line 641 of file NonlinearSystemBase.h.

Referenced by ComputeElemDampingThread::onElement(), and ComputeElemDampingThread::printGeneralExecutionInformation().

642  {
643  return _element_dampers;
644  }
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.

◆ getFieldSplitPreconditioner()

FieldSplitPreconditionerBase & NonlinearSystemBase::getFieldSplitPreconditioner ( )
Returns
A field split preconditioner. This will error if there is no field split preconditioner

Definition at line 4194 of file NonlinearSystemBase.C.

4195 {
4196  if (!_fsp)
4197  mooseError("No field split preconditioner is present for this system");
4198 
4199  return *_fsp;
4200 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ getFieldVariable() [1/2]

template<typename T >
MooseVariableFE< T > & SystemBase::getFieldVariable ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Gets a reference to a variable of with specified name.

This excludes and cannot return finite volume variables.

Parameters
tidThread id
var_namevariable name
Returns
reference the variable (class)

Definition at line 111 of file SystemBase.C.

Referenced by Marker::getMarkerValue().

112 {
113  return *_vars[tid].getFieldVariable<T>(var_name);
114 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getFieldVariable() [2/2]

template<typename T >
MooseVariableFE< T > & SystemBase::getFieldVariable ( THREAD_ID  tid,
unsigned int  var_number 
)
inherited

Gets a reference to a variable with specified number.

This excludes and cannot return finite volume variables.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 132 of file SystemBase.C.

133 {
134  return *_vars[tid].getFieldVariable<T>(var_number);
135 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getFVVariable()

template<typename T >
template MooseVariableFV< Real > & SystemBase::getFVVariable< Real > ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Return a finite volume variable.

Definition at line 125 of file SystemBase.C.

126 {
127  return *_vars[tid].getFVVariable<T>(var_name);
128 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getHDGKernelWarehouse()

MooseObjectTagWarehouse<HDGKernel>& NonlinearSystemBase::getHDGKernelWarehouse ( )
inline

Definition at line 640 of file NonlinearSystemBase.h.

640 { return _hybridized_kernels; }
MooseObjectTagWarehouse< HDGKernel > _hybridized_kernels

◆ getIntegratedBCWarehouse() [1/2]

MooseObjectTagWarehouse<IntegratedBCBase>& NonlinearSystemBase::getIntegratedBCWarehouse ( )
inline

Definition at line 631 of file NonlinearSystemBase.h.

Referenced by BoundaryElemIntegrityCheckThread::operator()().

631 { return _integrated_bcs; }
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ getIntegratedBCWarehouse() [2/2]

const MooseObjectTagWarehouse<IntegratedBCBase>& NonlinearSystemBase::getIntegratedBCWarehouse ( ) const
inline

Return the IntegratedBCBase warehouse.

Definition at line 659 of file NonlinearSystemBase.h.

660  {
661  return _integrated_bcs;
662  }
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ getInterfaceKernelWarehouse()

MooseObjectTagWarehouse<InterfaceKernelBase>& NonlinearSystemBase::getInterfaceKernelWarehouse ( )
inline

Definition at line 626 of file NonlinearSystemBase.h.

627  {
628  return _interface_kernels;
629  }
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels

◆ getKernelWarehouse() [1/2]

MooseObjectTagWarehouse<KernelBase>& NonlinearSystemBase::getKernelWarehouse ( )
inline

Access functions to Warehouses from outside NonlinearSystemBase.

Definition at line 623 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup(), DOFMapOutput::output(), and BlockRestrictionDebugOutput::printBlockRestrictionMap().

623 { return _kernels; }
MooseObjectTagWarehouse< KernelBase > _kernels

◆ getKernelWarehouse() [2/2]

const MooseObjectTagWarehouse<KernelBase>& NonlinearSystemBase::getKernelWarehouse ( ) const
inline

Definition at line 624 of file NonlinearSystemBase.h.

624 { return _kernels; }
MooseObjectTagWarehouse< KernelBase > _kernels

◆ getKokkosIntegratedBCWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosIntegratedBCWarehouse ( )
inline

Definition at line 676 of file NonlinearSystemBase.h.

677  {
678  return _kokkos_integrated_bcs;
679  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs

◆ getKokkosKernelWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosKernelWarehouse ( )
inline

Return the Kokkos residual object warehouses

Definition at line 667 of file NonlinearSystemBase.h.

667 { return _kokkos_kernels; }
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels

◆ getKokkosNodalBCWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosNodalBCWarehouse ( )
inline

Definition at line 672 of file NonlinearSystemBase.h.

673  {
674  return _kokkos_nodal_bcs;
675  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs

◆ getKokkosNodalKernelWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosNodalKernelWarehouse ( )
inline

Definition at line 668 of file NonlinearSystemBase.h.

669  {
670  return _kokkos_nodal_kernels;
671  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels

◆ getMatrix() [1/2]

SparseMatrix< Number > & SystemBase::getMatrix ( TagID  tag)
virtualinherited

Get a raw SparseMatrix.

Reimplemented in DisplacedSystem.

Definition at line 1024 of file SystemBase.C.

Referenced by SystemBase::activateAllMatrixTags(), Assembly::addCachedJacobian(), addImplicitGeometricCouplingEntries(), Assembly::addJacobianCoupledVarPair(), Assembly::addJacobianLowerD(), Assembly::addJacobianNeighbor(), Assembly::addJacobianNeighborLowerD(), Assembly::addJacobianNonlocal(), SystemBase::addMatrix(), SystemBase::closeTaggedMatrices(), computeJacobianInternal(), FEProblemBase::computeJacobianTags(), LinearSystem::computeLinearSystemInternal(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), computeResidualAndJacobianInternal(), constraintJacobians(), SystemBase::disassociateMatrixFromTag(), enforceNodalConstraintsJacobian(), SystemBase::flushTaggedMatrices(), DisplacedSystem::getMatrix(), LinearSystemContributionObject::linkTaggedVectorsAndMatrices(), MooseVariableScalar::reinit(), Assembly::setCachedJacobian(), and Assembly::zeroCachedJacobian().

1025 {
1026  if (!hasMatrix(tag))
1027  {
1028  if (!_subproblem.matrixTagExists(tag))
1029  mooseError("Cannot retreive matrix with tag ", tag, " because that tag does not exist");
1030  else
1031  mooseError("Cannot retreive matrix with tag ",
1032  tag,
1033  " in system '",
1034  name(),
1035  "'\nbecause a matrix has not been associated with that tag.");
1036  }
1037 
1038  return *_tagged_matrices[tag];
1039 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ getMatrix() [2/2]

const SparseMatrix< Number > & SystemBase::getMatrix ( TagID  tag) const
virtualinherited

Get a raw SparseMatrix.

Reimplemented in DisplacedSystem.

Definition at line 1042 of file SystemBase.C.

1043 {
1044  if (!hasMatrix(tag))
1045  {
1046  if (!_subproblem.matrixTagExists(tag))
1047  mooseError("Cannot retreive matrix with tag ", tag, " because that tag does not exist");
1048  else
1049  mooseError("Cannot retreive matrix with tag ",
1050  tag,
1051  " in system '",
1052  name(),
1053  "'\nbecause a matrix has not been associated with that tag.");
1054  }
1055 
1056  return *_tagged_matrices[tag];
1057 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ getMaxVariableNumber()

unsigned int SystemBase::getMaxVariableNumber ( ) const
inlineinherited

Returns the maximum number of all variables on the system.

Definition at line 867 of file SystemBase.h.

867 { return _max_var_number; }
unsigned int _max_var_number
Maximum variable number.
Definition: SystemBase.h:1000

◆ getMaxVarNDofsPerElem()

std::size_t SystemBase::getMaxVarNDofsPerElem ( ) const
inlineinherited

Gets the maximum number of dofs used by any one variable on any one element.

Returns
The max

Definition at line 585 of file SystemBase.h.

Referenced by Moose::globalDofIndexToDerivative().

585 { return _max_var_n_dofs_per_elem; }
size_t _max_var_n_dofs_per_elem
Maximum number of dofs for any one variable on any one element.
Definition: SystemBase.h:1043

◆ getMaxVarNDofsPerNode()

std::size_t SystemBase::getMaxVarNDofsPerNode ( ) const
inlineinherited

Gets the maximum number of dofs used by any one variable on any one node.

Returns
The max

Definition at line 592 of file SystemBase.h.

592 { return _max_var_n_dofs_per_node; }
size_t _max_var_n_dofs_per_node
Maximum number of dofs for any one variable on any one node.
Definition: SystemBase.h:1046

◆ getMinQuadratureOrder()

Order SystemBase::getMinQuadratureOrder ( )
virtualinherited

Get minimal quadrature order needed for integrating variables in this system.

Returns
The minimal order of quadrature

Reimplemented in AuxiliarySystem.

Definition at line 241 of file SystemBase.C.

242 {
243  Order order = CONSTANT;
244  const std::vector<MooseVariableFieldBase *> & vars = _vars[0].fieldVariables();
245  for (const auto & var : vars)
246  {
247  FEType fe_type = var->feType();
248  if (fe_type.default_quadrature_order() > order)
249  order = fe_type.default_quadrature_order();
250  }
251 
252  return order;
253 }
Order
char ** vars
Order default_quadrature_order() const
CONSTANT
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getMooseKSPNormType()

Moose::MooseKSPNormType SolverSystem::getMooseKSPNormType ( )
inlineinherited

Get the norm in which the linear convergence is measured.

Definition at line 87 of file SolverSystem.h.

Referenced by Moose::PetscSupport::petscSetDefaultKSPNormType().

87 { return _ksp_norm; }
Moose::MooseKSPNormType _ksp_norm
KSP norm type.
Definition: SolverSystem.h:110

◆ getNodalBCWarehouse()

const MooseObjectTagWarehouse<NodalBCBase>& NonlinearSystemBase::getNodalBCWarehouse ( ) const
inline

Return the NodalBCBase warehouse.

Definition at line 654 of file NonlinearSystemBase.h.

654 { return _nodal_bcs; }
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs

◆ getNodalDamperWarehouse()

const MooseObjectWarehouse<NodalDamper>& NonlinearSystemBase::getNodalDamperWarehouse ( ) const
inline

Definition at line 645 of file NonlinearSystemBase.h.

Referenced by ComputeNodalDampingThread::onNode(), and ComputeNodalDampingThread::printGeneralExecutionInformation().

646  {
647  return _nodal_dampers;
648  }
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.

◆ getNodalKernelWarehouse()

const MooseObjectTagWarehouse<NodalKernelBase>& NonlinearSystemBase::getNodalKernelWarehouse ( ) const
inline

Definition at line 636 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

637  {
638  return _nodal_kernels;
639  }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.

◆ getNodeDofs()

void NonlinearSystemBase::getNodeDofs ( dof_id_type  node_id,
std::vector< dof_id_type > &  dofs 
)
protected

Definition at line 2194 of file NonlinearSystemBase.C.

Referenced by findImplicitGeometricCouplingEntries().

2195 {
2196  const Node & node = _mesh.nodeRef(node_id);
2197  unsigned int s = number();
2198  if (node.has_dofs(s))
2199  {
2200  for (unsigned int v = 0; v < nVariables(); v++)
2201  for (unsigned int c = 0; c < node.n_comp(s, v); c++)
2202  dofs.push_back(node.dof_number(s, v, c));
2203  }
2204 }
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
unsigned int n_comp(const unsigned int s, const unsigned int var) const
bool has_dofs(const unsigned int s=libMesh::invalid_uint) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
virtual unsigned int nVariables() const
Get the number of variables in this system.
Definition: SystemBase.C:891
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ getPCSide()

Moose::PCSideType SolverSystem::getPCSide ( )
inlineinherited

Get the current preconditioner side.

Definition at line 76 of file SolverSystem.h.

Referenced by Moose::PetscSupport::petscSetDefaultPCSide().

76 { return _pc_side; }
Moose::PCSideType _pc_side
Preconditioning side.
Definition: SolverSystem.h:108

◆ getPreconditioner()

MoosePreconditioner const * NonlinearSystemBase::getPreconditioner ( ) const

Definition at line 3624 of file NonlinearSystemBase.C.

Referenced by ConsoleUtils::outputExecutionInformation().

3625 {
3626  return _preconditioner.get();
3627 }
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.

◆ getPredictor()

Predictor* NonlinearSystemBase::getPredictor ( )
inline

Definition at line 594 of file NonlinearSystemBase.h.

Referenced by AB2PredictorCorrector::estimateTimeError().

594 { return _predictor.get(); }
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ getResidualNonTimeVector()

NumericVector< Number > & NonlinearSystemBase::getResidualNonTimeVector ( )

Return a numeric vector that is associated with the nontime tag.

Definition at line 1058 of file NonlinearSystemBase.C.

Referenced by PseudoTimestep::currentResidualNorm(), NonlinearSystemBase(), and residualVector().

1059 {
1060  if (!_Re_non_time)
1061  {
1063 
1064  // Most applications don't need the expense of ghosting
1066  _Re_non_time = &addVector(_Re_non_time_tag, false, ptype);
1067  }
1069  {
1070  const auto vector_name = _subproblem.vectorTagName(_Re_non_time_tag);
1071 
1072  // If an application changes its mind, the libMesh API lets us
1073  // change the vector.
1074  _Re_non_time = &system().add_vector(vector_name, false, GHOSTED);
1075  }
1076 
1077  return *_Re_non_time;
1078 }
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
PARALLEL
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
TagID _Re_non_time_tag
Tag for non-time contribution residual.
GHOSTED
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
ParallelType type() const
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:221
ParallelType
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ getResidualTimeVector()

NumericVector< Number > & NonlinearSystemBase::getResidualTimeVector ( )

Return a numeric vector that is associated with the time tag.

Definition at line 1035 of file NonlinearSystemBase.C.

Referenced by residualVector().

1036 {
1037  if (!_Re_time)
1038  {
1040 
1041  // Most applications don't need the expense of ghosting
1043  _Re_time = &addVector(_Re_time_tag, false, ptype);
1044  }
1045  else if (_need_residual_ghosted && _Re_time->type() == PARALLEL)
1046  {
1047  const auto vector_name = _subproblem.vectorTagName(_Re_time_tag);
1048 
1049  // If an application changes its mind, the libMesh API lets us
1050  // change the vector.
1051  _Re_time = &system().add_vector(vector_name, false, GHOSTED);
1052  }
1053 
1054  return *_Re_time;
1055 }
NumericVector< Number > * _Re_time
residual vector for time contributions
TagID _Re_time_tag
Tag for time contribution residual.
PARALLEL
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
GHOSTED
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
ParallelType type() const
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:221
ParallelType
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ getScalarKernelWarehouse()

const MooseObjectTagWarehouse<ScalarKernelBase>& NonlinearSystemBase::getScalarKernelWarehouse ( ) const
inline

Definition at line 632 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

633  {
634  return _scalar_kernels;
635  }
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ getScalarVariable() [1/2]

MooseVariableScalar & SystemBase::getScalarVariable ( THREAD_ID  tid,
const std::string &  var_name 
) const
virtualinherited

Gets a reference to a scalar variable with specified number.

Parameters
tidThread id
var_nameA string which is the name of the variable to get.
Returns
reference the variable (class)

Definition at line 145 of file SystemBase.C.

Referenced by Assembly::addJacobianOffDiagScalar(), ODEKernel::computeOffDiagJacobianScalar(), VectorKernel::computeOffDiagJacobianScalar(), ArrayKernel::computeOffDiagJacobianScalar(), IntegratedBC::computeOffDiagJacobianScalar(), VectorIntegratedBC::computeOffDiagJacobianScalar(), Kernel::computeOffDiagJacobianScalar(), ArrayIntegratedBC::computeOffDiagJacobianScalar(), ScalarLagrangeMultiplier::computeOffDiagJacobianScalar(), MortarScalarBase::computeOffDiagJacobianScalar(), KernelScalarBase::computeOffDiagJacobianScalarLocal(), KernelScalarBase::computeScalarOffDiagJacobianScalar(), MortarScalarBase::computeScalarOffDiagJacobianScalar(), DMMooseSetVariables(), Assembly::init(), ReferenceResidualConvergence::initialSetup(), and setupScalingData().

146 {
147  MooseVariableScalar * var = dynamic_cast<MooseVariableScalar *>(_vars[tid].getVariable(var_name));
148  if (!var)
149  mooseError("Scalar variable '" + var_name + "' does not exist in this system");
150  return *var;
151 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
Class for scalar variables (they are different).

◆ getScalarVariable() [2/2]

MooseVariableScalar & SystemBase::getScalarVariable ( THREAD_ID  tid,
unsigned int  var_number 
) const
virtualinherited

Gets a reference to a variable with specified number.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 154 of file SystemBase.C.

155 {
156  MooseVariableScalar * var =
157  dynamic_cast<MooseVariableScalar *>(_vars[tid].getVariable(var_number));
158  if (!var)
159  mooseError("variable #" + Moose::stringify(var_number) + " does not exist in this system");
160  return *var;
161 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
Class for scalar variables (they are different).

◆ getScalarVariables()

const std::vector<MooseVariableScalar *>& SystemBase::getScalarVariables ( THREAD_ID  tid)
inlineinherited

◆ getSNES()

virtual SNES NonlinearSystemBase::getSNES ( )
pure virtual

◆ getSplit()

std::shared_ptr< Split > NonlinearSystemBase::getSplit ( const std::string &  name)

Retrieves a split by name.

Parameters
nameThe name of the split

Definition at line 738 of file NonlinearSystemBase.C.

Referenced by FieldSplitPreconditioner::FieldSplitPreconditioner(), Split::setup(), and StaticCondensationFieldSplitPreconditioner::StaticCondensationFieldSplitPreconditioner().

739 {
740  return _splits.getActiveObject(name);
741 }
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
virtual const std::string & name() const
Definition: SystemBase.C:1340
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const

◆ getSplits()

MooseObjectWarehouseBase<Split>& NonlinearSystemBase::getSplits ( )
inline

Retrieves all splits.

Definition at line 262 of file NonlinearSystemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

262 { return _splits; }
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.

◆ getStandardFieldVariableNames()

void SystemBase::getStandardFieldVariableNames ( std::vector< VariableName > &  std_field_variables) const
inherited

◆ getSubdomainsForVar() [1/2]

const std::set<SubdomainID>& SystemBase::getSubdomainsForVar ( unsigned int  var_number) const
inlineinherited

Definition at line 761 of file SystemBase.h.

Referenced by checkKernelCoverage(), and SystemBase::getSubdomainsForVar().

762  {
763  return _var_map.at(var_number);
764  }
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998

◆ getSubdomainsForVar() [2/2]

const std::set< SubdomainID > & SystemBase::getSubdomainsForVar ( const std::string &  var_name) const
inherited

Get the block where a variable of this system is defined.

Parameters
var_nameThe name of the variable
Returns
the set of subdomain ids where the variable is active (defined)

Definition at line 1707 of file SystemBase.C.

1708 {
1709  return getSubdomainsForVar(getVariable(0, var_name).number());
1710 }
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const std::set< SubdomainID > & getSubdomainsForVar(unsigned int var_number) const
Definition: SystemBase.h:761
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getTimeIntegrator()

const TimeIntegrator & SystemBase::getTimeIntegrator ( const unsigned int  var_num) const
inherited

Retrieve the time integrator that integrates the given variable's equation.

Definition at line 1683 of file SystemBase.C.

Referenced by AB2PredictorCorrector::estimateTimeError().

1684 {
1685  const auto * const ti = queryTimeIntegrator(var_num);
1686 
1687  if (ti)
1688  return *ti;
1689  else
1690  mooseError("No time integrator found that integrates variable number ",
1691  std::to_string(var_num));
1692 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const TimeIntegrator * queryTimeIntegrator(const unsigned int var_num) const
Retrieve the time integrator that integrates the given variable&#39;s equation.
Definition: SystemBase.C:1673

◆ getTimeIntegrators()

const std::vector< std::shared_ptr< TimeIntegrator > > & SystemBase::getTimeIntegrators ( )
inherited
Returns
All the time integrators owned by this system

Definition at line 1695 of file SystemBase.C.

1696 {
1697  return _time_integrators;
1698 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ getVariable() [1/2]

MooseVariableFieldBase & SystemBase::getVariable ( THREAD_ID  tid,
const std::string &  var_name 
) const
inherited

Gets a reference to a variable of with specified name.

Parameters
tidThread id
var_namevariable name
Returns
reference the variable (class)

Definition at line 90 of file SystemBase.C.

Referenced by AdaptivityAction::act(), Assembly::addJacobianBlockNonlocal(), FEProblemBase::addJacobianBlockTags(), NonlocalKernel::computeNonlocalOffDiagJacobian(), NonlocalIntegratedBC::computeNonlocalOffDiagJacobian(), Assembly::copyFaceShapes(), Assembly::copyNeighborShapes(), Assembly::copyShapes(), SystemBase::copyVars(), DMMooseSetVariables(), FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NodeElemConstraint::getConnectedDofIndices(), NodeFaceConstraint::getConnectedDofIndices(), SystemBase::getSubdomainsForVar(), ResidualObject::getVariable(), SubProblem::getVariableHelper(), Assembly::init(), NodalNormalsPreprocessor::initialize(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), LinearSystem::initialSetup(), Assembly::initNonlocalCoupling(), PNGOutput::makeMeshFunc(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), UpdateErrorVectorsThread::onElement(), Assembly::prepareBlock(), Assembly::prepareBlockNonlocal(), AddPeriodicBCAction::setPeriodicVars(), setupScalingData(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

91 {
93  dynamic_cast<MooseVariableFieldBase *>(_vars[tid].getVariable(var_name));
94  if (!var)
95  mooseError("Variable '", var_name, "' does not exist in this system");
96  return *var;
97 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getVariable() [2/2]

MooseVariableFieldBase & SystemBase::getVariable ( THREAD_ID  tid,
unsigned int  var_number 
) const
inherited

Gets a reference to a variable with specified number.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 100 of file SystemBase.C.

101 {
102  if (var_number < _numbered_vars[tid].size())
103  if (_numbered_vars[tid][var_number])
104  return *_numbered_vars[tid][var_number];
105 
106  mooseError("Variable #", Moose::stringify(var_number), " does not exist in this system");
107 }
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
Map variable number to its pointer.
Definition: SystemBase.h:1052
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64

◆ getVariableBlocks()

const std::set< SubdomainID > * SystemBase::getVariableBlocks ( unsigned int  var_number)
virtualinherited

Get the block where a variable of this system is defined.

Parameters
var_numberThe number of the variable
Returns
the set of subdomain ids where the variable is active (defined)

Definition at line 164 of file SystemBase.C.

Referenced by PhysicsBasedPreconditioner::addSystem().

165 {
166  mooseAssert(_var_map.find(var_number) != _var_map.end(), "Variable does not exist.");
167  if (_var_map[var_number].empty())
168  return nullptr;
169  else
170  return &_var_map[var_number];
171 }
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998

◆ getVariableGlobalDoFs()

const std::vector<dof_id_type>& SystemBase::getVariableGlobalDoFs ( )
inlineinherited

Get the global dof indices of a variable, this needs to be called after the indices have been set by setVariableGlobalDoFs

Definition at line 842 of file SystemBase.h.

842 { return _var_all_dof_indices; }
std::vector< dof_id_type > _var_all_dof_indices
Container for the dof indices of a given variable.
Definition: SystemBase.h:1064

◆ getVariableNames()

const std::vector<VariableName>& SystemBase::getVariableNames ( ) const
inlineinherited

◆ getVariables()

const std::vector<MooseVariableFieldBase *>& SystemBase::getVariables ( THREAD_ID  tid)
inlineinherited

◆ getVector() [1/4]

NumericVector< Number > & SystemBase::getVector ( const std::string &  name)
virtualinherited

Get a raw NumericVector by name.

Get a raw NumericVector with the given name.

Reimplemented in DisplacedSystem.

Definition at line 933 of file SystemBase.C.

Referenced by Assembly::addCachedResiduals(), Assembly::addResidual(), Assembly::addResidualLower(), Assembly::addResidualNeighbor(), Assembly::addResidualScalar(), assembleScalingVector(), SystemBase::closeTaggedVector(), FEProblemBase::computeBounds(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), computeResidualAndJacobianTags(), computeResidualTags(), CentralDifference::computeTimeDerivatives(), FEProblemBase::computeTransposeNullSpace(), DisplacedSystem::getVector(), Assembly::hasScalingVector(), LinearSystemContributionObject::linkTaggedVectorsAndMatrices(), SystemBase::needSolutionState(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseVariableScalar::reinit(), SecantSolve::saveVariableValues(), SteffensenSolve::saveVariableValues(), PicardSolve::saveVariableValues(), setPreviousNewtonSolution(), TaggingInterface::setResidual(), SystemBase::solutionPreviousNewton(), SystemBase::solutionState(), MultiAppDofCopyTransfer::transfer(), SecantSolve::transformVariables(), SteffensenSolve::transformVariables(), PicardSolve::transformVariables(), and SystemBase::zeroTaggedVector().

934 {
935  return system().get_vector(name);
936 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
const NumericVector< Number > & get_vector(std::string_view vec_name) const

◆ getVector() [2/4]

const NumericVector< Number > & SystemBase::getVector ( const std::string &  name) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 939 of file SystemBase.C.

940 {
941  return system().get_vector(name);
942 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
const NumericVector< Number > & get_vector(std::string_view vec_name) const

◆ getVector() [3/4]

NumericVector< Number > & SystemBase::getVector ( TagID  tag)
virtualinherited

Get a raw NumericVector by tag.

Reimplemented in DisplacedSystem.

Definition at line 945 of file SystemBase.C.

946 {
947  if (!hasVector(tag))
948  {
949  if (!_subproblem.vectorTagExists(tag))
950  mooseError("Cannot retreive vector with tag ", tag, " because that tag does not exist");
951  else
952  mooseError("Cannot retreive vector with tag ",
953  tag,
954  " in system '",
955  name(),
956  "'\nbecause a vector has not been associated with that tag.");
957  }
958 
959  return *_tagged_vectors[tag];
960 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ getVector() [4/4]

const NumericVector< Number > & SystemBase::getVector ( TagID  tag) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 963 of file SystemBase.C.

964 {
965  if (!hasVector(tag))
966  {
967  if (!_subproblem.vectorTagExists(tag))
968  mooseError("Cannot retreive vector with tag ", tag, " because that tag does not exist");
969  else
970  mooseError("Cannot retreive vector with tag ",
971  tag,
972  " in system '",
973  name(),
974  "'\nbecause a vector has not been associated with that tag.");
975  }
976 
977  return *_tagged_vectors[tag];
978 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ gradientContainer()

const std::vector<std::unique_ptr<NumericVector<Number> > >& SystemBase::gradientContainer ( ) const
inlineinherited

Reference to the container vector which hold gradients at dofs (if it can be interpreted).

Mainly used for finite volume systems.

Definition at line 930 of file SystemBase.h.

931  {
932  return _raw_grad_container;
933  }
std::vector< std::unique_ptr< NumericVector< Number > > > _raw_grad_container
A cache for storing gradients at dof locations.
Definition: SystemBase.h:1073

◆ hasDiagSaveIn()

bool NonlinearSystemBase::hasDiagSaveIn ( ) const
inline

Weather or not the nonlinear system has diagonal Jacobian save-ins.

Definition at line 693 of file NonlinearSystemBase.h.

Referenced by computeJacobianInternal().

bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.

◆ hasMatrix()

virtual bool SystemBase::hasMatrix ( TagID  tag) const
inlinevirtualinherited

◆ hasSaveIn()

bool NonlinearSystemBase::hasSaveIn ( ) const
inline

Weather or not the nonlinear system has save-ins.

Definition at line 688 of file NonlinearSystemBase.h.

Referenced by computeResidualTags().

688 { return _has_save_in || _has_nodalbc_save_in; }
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.

◆ hasScalarVariable()

bool SystemBase::hasScalarVariable ( const std::string &  var_name) const
virtualinherited

Definition at line 876 of file SystemBase.C.

Referenced by MortarScalarBase::computeJacobian(), computeJacobianInternal(), ComputeFullJacobianThread::computeOnBoundary(), ComputeFullJacobianThread::computeOnElement(), SystemBase::copyVars(), ExplicitTimeIntegrator::initialSetup(), NonlinearEigenSystem::postAddResidualObject(), AddPeriodicBCAction::setPeriodicVars(), and setupScalingData().

877 {
878  if (system().has_variable(var_name))
879  return system().variable_type(var_name).family == SCALAR;
880  else
881  return false;
882 }
SCALAR
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const FEType & variable_type(const unsigned int i) const

◆ hasSolutionState()

bool SystemBase::hasSolutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
) const
inlinevirtualinherited

Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).

Reimplemented in DisplacedSystem.

Definition at line 1090 of file SystemBase.h.

Referenced by PointwiseRenormalizeVector::execute(), PointwiseRenormalizeVector::finalize(), DisplacedSystem::hasSolutionState(), SystemBase::needSolutionState(), SystemBase::restoreSolutions(), ElementSubdomainModifierBase::setOldAndOlderSolutions(), SystemBase::solutionState(), and SystemBase::solutionStateParallelType().

1092 {
1093  return _solution_states[static_cast<unsigned short>(iteration_type)].size() > state;
1094 }
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ hasVarCopy()

bool SystemBase::hasVarCopy ( ) const
inlineinherited

Whether or not there are variables to be restarted from an Exodus mesh file.

Definition at line 883 of file SystemBase.h.

883 { return _var_to_copy.size() > 0; }
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040

◆ hasVariable()

bool SystemBase::hasVariable ( const std::string &  var_name) const
virtualinherited

Query a system for a variable.

Parameters
var_namename of the variable
Returns
true if the variable exists

Definition at line 851 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), ArrayDGKernel::ArrayDGKernel(), SystemBase::copyVars(), DGKernel::DGKernel(), DMMooseSetVariables(), FEProblemBase::duplicateVariableCheck(), SubProblem::getVariableHelper(), SubProblem::hasAuxiliaryVariable(), ExplicitTimeIntegrator::initialSetup(), ElementSubdomainModifierBase::initialSetup(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), PNGOutput::makeMeshFunc(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), setupScalingData(), and Coupleable::writableCoupledValue().

852 {
853  auto & names = getVariableNames();
854  if (system().has_variable(var_name))
855  return system().variable_type(var_name).family != SCALAR;
856  if (std::find(names.begin(), names.end(), var_name) != names.end())
857  // array variable
858  return true;
859  else
860  return false;
861 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
SCALAR
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const FEType & variable_type(const unsigned int i) const
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ hasVector() [1/2]

bool SystemBase::hasVector ( const std::string &  tag_name) const
inherited

◆ hasVector() [2/2]

virtual bool SystemBase::hasVector ( TagID  tag_id) const
inlinevirtualinherited

Check if the tagged vector exists in the system.

Reimplemented in DisplacedSystem.

Definition at line 281 of file SystemBase.h.

282  {
283  return tag_id < _tagged_vectors.size() && _tagged_vectors[tag_id];
284  }
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ haveFieldSplitPreconditioner()

bool NonlinearSystemBase::haveFieldSplitPreconditioner ( ) const
inline

Definition at line 112 of file NonlinearSystemBase.h.

112 { return _fsp; }
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ haveFiniteDifferencedPreconditioner()

bool NonlinearSystemBase::haveFiniteDifferencedPreconditioner ( ) const
inline

Definition at line 108 of file NonlinearSystemBase.h.

109  {
111  }
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.

◆ ignoreVariablesForAutoscaling()

void NonlinearSystemBase::ignoreVariablesForAutoscaling ( const std::vector< std::string > &  ignore_variables_for_autoscaling)
inline

Definition at line 736 of file NonlinearSystemBase.h.

737  {
738  _ignore_variables_for_autoscaling = ignore_variables_for_autoscaling;
739  }
std::vector< std::string > _ignore_variables_for_autoscaling
A container for variables that do not partipate in autoscaling.

◆ initializeObjects()

virtual void SystemBase::initializeObjects ( )
inlinevirtualinherited

Called only once, just before the solve begins so objects can do some precalculations.

Definition at line 173 of file SystemBase.h.

173 {}

◆ initialResidual()

Real NonlinearSystemBase::initialResidual ( ) const

The initial residual.

Definition at line 777 of file NonlinearSystemBase.C.

Referenced by referenceResidual().

778 {
779  return _initial_residual;
780 }
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...

◆ initialSetup()

void NonlinearSystemBase::initialSetup ( )
overridevirtual

Setup Functions.

Reimplemented from SystemBase.

Definition at line 224 of file NonlinearSystemBase.C.

225 {
226  TIME_SECTION("nlInitialSetup", 2, "Setting Up Nonlinear System");
227 
229 
230  {
231  TIME_SECTION("kernelsInitialSetup", 2, "Setting Up Kernels/BCs/Constraints");
232 
233  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
234  {
235  _kernels.initialSetup(tid);
238  if (_doing_dg)
241 
245 
246  if (_fe_problem.haveFV())
247  {
248  std::vector<FVElementalKernel *> fv_elemental_kernels;
250  .query()
251  .template condition<AttribSystem>("FVElementalKernel")
252  .template condition<AttribThread>(tid)
253  .queryInto(fv_elemental_kernels);
254 
255  for (auto * fv_kernel : fv_elemental_kernels)
256  fv_kernel->initialSetup();
257 
258  std::vector<FVFluxKernel *> fv_flux_kernels;
260  .query()
261  .template condition<AttribSystem>("FVFluxKernel")
262  .template condition<AttribThread>(tid)
263  .queryInto(fv_flux_kernels);
264 
265  for (auto * fv_kernel : fv_flux_kernels)
266  fv_kernel->initialSetup();
267  }
268  }
269 
274 
275 #ifdef MOOSE_KOKKOS_ENABLED
280 #endif
281  }
282 
283  {
284  TIME_SECTION("mortarSetup", 2, "Initializing Mortar Interfaces");
285 
286  auto create_mortar_functors = [this](const bool displaced)
287  {
288  // go over mortar interfaces and construct functors
289  const auto & mortar_interfaces = _fe_problem.getMortarInterfaces(displaced);
290  for (const auto & mortar_interface : mortar_interfaces)
291  {
292  const auto primary_secondary_boundary_pair = mortar_interface.first;
293  if (!_constraints.hasActiveMortarConstraints(primary_secondary_boundary_pair, displaced))
294  continue;
295 
296  const auto & mortar_generation_object = mortar_interface.second;
297 
298  auto & mortar_constraints =
299  _constraints.getActiveMortarConstraints(primary_secondary_boundary_pair, displaced);
300 
301  auto & subproblem = displaced
302  ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
303  : static_cast<SubProblem &>(_fe_problem);
304 
305  auto & mortar_functors =
307 
308  mortar_functors.emplace(primary_secondary_boundary_pair,
309  ComputeMortarFunctor(mortar_constraints,
310  mortar_generation_object,
311  subproblem,
312  _fe_problem,
313  displaced,
314  subproblem.assembly(0, number())));
315  }
316  };
317 
318  create_mortar_functors(false);
319  create_mortar_functors(true);
320  }
321 
322  if (_automatic_scaling)
323  {
325  _scaling_matrix = std::make_unique<OffDiagonalScalingMatrix<Number>>(_communicator);
326  else
327  _scaling_matrix = std::make_unique<DiagonalMatrix<Number>>(_communicator);
328  }
329 
330  if (_preconditioner)
331  _preconditioner->initialSetup();
332 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
bool hasActiveMortarConstraints(const std::pair< BoundaryID, BoundaryID > &mortar_interface_key, bool displaced) const
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
A diagonal matrix used for computing scaling.
const Parallel::Communicator & _communicator
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
TheWarehouse & theWarehouse() const
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.
SubProblem & subproblem()
Definition: SystemBase.h:101
MooseObjectTagWarehouse< KernelBase > _kernels
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods.
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
const std::vector< std::shared_ptr< MortarConstraintBase > > & getActiveMortarConstraints(const std::pair< BoundaryID, BoundaryID > &mortar_interface_key, bool displaced) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
virtual void initialSetup()
Setup Functions.
Definition: SystemBase.C:1558
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ initSolutionState()

void SystemBase::initSolutionState ( )
virtualinherited

Initializes the solution state.

Reimplemented in DisplacedSystem.

Definition at line 1364 of file SystemBase.C.

Referenced by DisplacedSystem::initSolutionState().

1365 {
1366  // Default is the current solution
1367  unsigned int state = 0;
1368 
1369  // Add additional states as required by the variable states requested
1370  for (const auto & var : getVariables(/* tid = */ 0))
1371  state = std::max(state, var->oldestSolutionStateRequested());
1372  for (const auto & var : getScalarVariables(/* tid = */ 0))
1373  state = std::max(state, var->oldestSolutionStateRequested());
1374 
1376 
1378 }
const std::vector< MooseVariableFieldBase * > & getVariables(THREAD_ID tid)
Definition: SystemBase.h:751
const std::vector< MooseVariableScalar * > & getScalarVariables(THREAD_ID tid)
Definition: SystemBase.h:756
bool _solution_states_initialized
Whether or not the solution states have been initialized.
Definition: SystemBase.h:1061
auto max(const L &left, const R &right)
virtual void needSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
Registers that the solution state state is needed.
Definition: SystemBase.C:1450

◆ isArrayVariable()

bool SystemBase::isArrayVariable ( const std::string &  var_name) const
virtualinherited

If a variable is an array variable.

Definition at line 864 of file SystemBase.C.

865 {
866  auto & names = getVariableNames();
867  if (!system().has_variable(var_name) &&
868  std::find(names.begin(), names.end(), var_name) != names.end())
869  // array variable
870  return true;
871  else
872  return false;
873 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ isScalarVariable()

bool SystemBase::isScalarVariable ( unsigned int  var_name) const
virtualinherited

Definition at line 885 of file SystemBase.C.

Referenced by Assembly::init(), ReferenceResidualConvergence::initialSetup(), and Assembly::initNonlocalCoupling().

886 {
887  return (system().variable(var_num).type().family == SCALAR);
888 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.

◆ jacobianSetup()

void NonlinearSystemBase::jacobianSetup ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 2800 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal().

2801 {
2803 
2804  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2805  {
2806  _kernels.jacobianSetup(tid);
2809  if (_doing_dg)
2815  }
2820 
2821 #ifdef MOOSE_KOKKOS_ENABLED
2826 #endif
2827 
2828  // Avoid recursion
2829  if (this == &_fe_problem.currentNonlinearSystem())
2832 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
virtual void jacobianSetup()
Definition: SystemBase.C:1606
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
NonlinearSystemBase & currentNonlinearSystem()
MooseObjectTagWarehouse< KernelBase > _kernels
virtual void jacobianSetup(THREAD_ID tid=0) const
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
void resetSolutionInvalidCurrentIteration()
Reset the number of solution invalid occurrences back to zero.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
void jacobianSetup() override
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ matrixFromColoring()

virtual bool SolverSystem::matrixFromColoring ( ) const
inlineprotectedvirtualinherited

Whether a system matrix is formed from coloring.

This influences things like when to compute time derivatives

Reimplemented in NonlinearSystem.

Definition at line 102 of file SolverSystem.h.

Referenced by SolverSystem::compute(), and destroyColoring().

102 { return false; }

◆ matrixTagActive()

bool SystemBase::matrixTagActive ( TagID  tag) const
virtualinherited

If or not a matrix tag is active.

Definition at line 1149 of file SystemBase.C.

1150 {
1151  mooseAssert(_subproblem.matrixTagExists(tag), "Matrix tag " << tag << " does not exist");
1152 
1153  return tag < _matrix_tag_active_flags.size() && _matrix_tag_active_flags[tag];
1154 }
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ mesh() [1/2]

MooseMesh& SystemBase::mesh ( )
inlineinherited

◆ mesh() [2/2]

const MooseMesh& SystemBase::mesh ( ) const
inlineinherited

Definition at line 100 of file SystemBase.h.

100 { return _mesh; }
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ mortarConstraints()

void NonlinearSystemBase::mortarConstraints ( Moose::ComputeType  compute_type,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)
protected

Do mortar constraint residual/jacobian computations.

Definition at line 3858 of file NonlinearSystemBase.C.

Referenced by computeJacobianInternal(), computeResidualAndJacobianInternal(), and computeResidualInternal().

3861 {
3862  parallel_object_only();
3863 
3864  try
3865  {
3866  for (auto & map_pr : _undisplaced_mortar_functors)
3867  map_pr.second(compute_type, vector_tags, matrix_tags);
3868 
3869  for (auto & map_pr : _displaced_mortar_functors)
3870  map_pr.second(compute_type, vector_tags, matrix_tags);
3871  }
3872  catch (MetaPhysicL::LogicError &)
3873  {
3874  mooseError(
3875  "We caught a MetaPhysicL error in NonlinearSystemBase::mortarConstraints. This is very "
3876  "likely due to AD not having a sufficiently large derivative container size. Please run "
3877  "MOOSE configure with the '--with-derivative-size=<n>' option");
3878  }
3879 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.

◆ name()

const std::string & SystemBase::name ( ) const
virtualinherited

◆ needBoundaryMaterialOnSide()

bool NonlinearSystemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
THREAD_ID  tid 
) const

Indicated whether this system needs material properties on boundaries.

Returns
Boolean if IntegratedBCs are active

Definition at line 3826 of file NonlinearSystemBase.C.

3827 {
3828  return _integrated_bcs.hasActiveBoundaryObjects(bnd_id, tid);
3829 }
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ needInterfaceMaterialOnSide()

bool NonlinearSystemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
THREAD_ID  tid 
) const

Indicated whether this system needs material properties on interfaces.

Returns
Boolean if IntegratedBCs are active

Definition at line 3832 of file NonlinearSystemBase.C.

3833 {
3834  return _interface_kernels.hasActiveBoundaryObjects(bnd_id, tid);
3835 }
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels

◆ needSolutionState()

void SystemBase::needSolutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time,
libMesh::ParallelType  parallel_type = GHOSTED 
)
virtualinherited

Registers that the solution state state is needed.

Reimplemented in DisplacedSystem.

Definition at line 1450 of file SystemBase.C.

Referenced by SecantSolve::allocateStorage(), PicardSolve::allocateStorage(), EigenExecutionerBase::EigenExecutionerBase(), SystemBase::initSolutionState(), DisplacedSystem::needSolutionState(), and SystemBase::solutionState().

1453 {
1454  libmesh_parallel_only(this->comm());
1455  mooseAssert(!Threads::in_threads,
1456  "This routine is not thread-safe. Request the solution state before using it in "
1457  "a threaded region.");
1458 
1459  if (hasSolutionState(state, iteration_type))
1460  return;
1461 
1462  auto & solution_states = _solution_states[static_cast<unsigned short>(iteration_type)];
1463  solution_states.resize(state + 1);
1464 
1465  // The 0-th (current) solution state is owned by libMesh
1466  if (!solution_states[0])
1467  solution_states[0] = &solutionInternal();
1468  else
1469  mooseAssert(solution_states[0] == &solutionInternal(), "Inconsistent current solution");
1470 
1471  // We will manually add all states past current
1472  for (unsigned int i = 1; i <= state; ++i)
1473  if (!solution_states[i])
1474  {
1475  auto tag = _subproblem.addVectorTag(oldSolutionStateVectorName(i, iteration_type),
1477  solution_states[i] = &addVector(tag, true, parallel_type);
1478  }
1479  else
1480  {
1481  // If the existing parallel type is PARALLEL and GHOSTED is now requested,
1482  // this would require an upgrade, which is risky if anybody has already
1483  // stored a pointer to the existing vector, since the upgrade would create
1484  // a new vector and make that pointer null. If the existing parallel type
1485  // is GHOSTED and PARALLEL is now requested, we don't need to do anything.
1486  if (parallel_type == GHOSTED && solutionStateParallelType(i, iteration_type) == PARALLEL)
1487  mooseError("The solution state has already been declared as PARALLEL");
1488 
1489  mooseAssert(solution_states[i] == &getVector(oldSolutionStateVectorName(i, iteration_type)),
1490  "Inconsistent solution state");
1491  }
1492 }
virtual NumericVector< Number > & solutionInternal() const =0
Internal getter for solution owned by libMesh.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
const Parallel::Communicator & comm() const
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
TagName oldSolutionStateVectorName(const unsigned int, Moose::SolutionIterationType iteration_type) const
Gets the vector name used for an old (not current) solution state.
Definition: SystemBase.C:1381
libMesh::ParallelType solutionStateParallelType(const unsigned int state, const Moose::SolutionIterationType iteration_type) const
Returns the parallel type of the given solution state.
Definition: SystemBase.C:1440
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ needSubdomainMaterialOnSide()

bool NonlinearSystemBase::needSubdomainMaterialOnSide ( SubdomainID  subdomain_id,
THREAD_ID  tid 
) const

Indicates whether this system needs material properties on internal sides.

Returns
Boolean if DGKernels are active

Definition at line 3838 of file NonlinearSystemBase.C.

3840 {
3841  return _doing_dg;
3842 }
bool _doing_dg
true if DG is active (optimization reasons)

◆ nFieldVariables()

unsigned int SystemBase::nFieldVariables ( ) const
inherited

Get the number of field variables in this system.

Returns
the number of field variables

Definition at line 900 of file SystemBase.C.

Referenced by SystemBase::nVariables().

901 {
902  unsigned int n = 0;
903  for (auto & var : _vars[0].fieldVariables())
904  n += var->count();
905 
906  return n;
907 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ nFVVariables()

unsigned int SystemBase::nFVVariables ( ) const
inherited

Get the number of finite volume variables in this system.

Returns
the number of finite volume variables

Definition at line 910 of file SystemBase.C.

911 {
912  unsigned int n = 0;
913  for (auto & var : _vars[0].fieldVariables())
914  if (var->isFV())
915  n += var->count();
916 
917  return n;
918 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ nLinearIterations()

unsigned int NonlinearSystemBase::nLinearIterations ( ) const
inline

Return the number of linear iterations.

Definition at line 565 of file NonlinearSystemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

565 { return _n_linear_iters; }

◆ nNonlinearIterations()

unsigned int NonlinearSystemBase::nNonlinearIterations ( ) const
inline

Return the number of non-linear iterations.

Definition at line 560 of file NonlinearSystemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

560 { return _n_iters; }

◆ nonlinearNorm()

Real NonlinearSystemBase::nonlinearNorm ( ) const
inline

Return the last nonlinear norm.

Returns
A Real containing the last computed residual norm

Definition at line 581 of file NonlinearSystemBase.h.

Referenced by Console::writeVariableNorms().

581 { return _last_nl_rnorm; }

◆ nonlinearSolver()

virtual libMesh::NonlinearSolver<Number>* NonlinearSystemBase::nonlinearSolver ( )
pure virtual

◆ nonTimeVectorTag()

TagID NonlinearSystemBase::nonTimeVectorTag ( ) const
inlineoverridevirtual

Reimplemented from SystemBase.

Definition at line 705 of file NonlinearSystemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), and CrankNicolson::init().

705 { return _Re_non_time_tag; }
TagID _Re_non_time_tag
Tag for non-time contribution residual.

◆ nResidualEvaluations()

unsigned int NonlinearSystemBase::nResidualEvaluations ( ) const
inline

Return the total number of residual evaluations done so far in this calculation.

Definition at line 570 of file NonlinearSystemBase.h.

570 { return _n_residual_evaluations; }
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.

◆ number()

unsigned int SystemBase::number ( ) const
inherited

Gets the number of this system.

Returns
The number of this system

Definition at line 1157 of file SystemBase.C.

Referenced by SetupResidualDebugAction::act(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), SystemBase::addScalingVector(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), assembleScalingVector(), NonlinearEigenSystem::attachPreconditioner(), DiffusionLHDGAssemblyHelper::checkCoupling(), SolverSystem::compute(), MooseVariableScalar::computeAD(), FEProblemBase::computeBounds(), Assembly::computeFaceMap(), InternalSideIndicatorBase::computeIndicator(), VectorNodalBC::computeJacobian(), ArrayNodalBC::computeJacobian(), NodalBC::computeJacobian(), FVBoundaryScalarLagrangeMultiplierConstraint::computeJacobian(), FVFluxBC::computeJacobian(), FVFluxKernel::computeJacobian(), FVInterfaceKernel::computeJacobian(), FEProblemBase::computeJacobianBlock(), computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), FEProblemBase::computeNearNullSpace(), computeNodalBCsResidualAndJacobian(), FEProblemBase::computeNullSpace(), ArrayNodalBC::computeOffDiagJacobian(), VectorNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NodalKernel::computeOffDiagJacobian(), ComputeFullJacobianThread::computeOnBoundary(), ComputeFullJacobianThread::computeOnElement(), ComputeFullJacobianThread::computeOnInterface(), ComputeFullJacobianThread::computeOnInternalFace(), FEProblemBase::computePostCheck(), FVBoundaryScalarLagrangeMultiplierConstraint::computeResidual(), FVFluxKernel::computeResidual(), FVInterfaceKernel::computeResidual(), Kernel::computeResidualAndJacobian(), NodalBC::computeResidualAndJacobian(), IntegratedBC::computeResidualAndJacobian(), computeResidualAndJacobianInternal(), computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), computeResidualTags(), computeScaling(), Assembly::computeSinglePointMapAD(), FEProblemBase::computeTransposeNullSpace(), DebugResidualAux::computeValue(), NearestNodeValueAux::computeValue(), SlepcEigenSolverConfiguration::configure_solver(), constraintJacobians(), LinearSystem::containsTimeKernel(), Coupleable::coupled(), FEProblemBase::currentLinearSysNum(), FEProblemBase::currentNlSysNum(), PseudoTimestep::currentResidualNorm(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), Moose::doDerivatives(), VariableResidual::execute(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), GreaterThanLessThanPostprocessor::execute(), NodalNormalsPreprocessor::execute(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), InternalSideIndicatorBase::finalize(), NumNonlinearIterations::finalize(), BoundsBase::getDoFIndex(), getNodeDofs(), NonlinearEigenSystem::getSNES(), SystemBase::getSubdomainsForVar(), NumLinearIterations::getValue(), Residual::getValue(), NumResidualEvaluations::getValue(), Moose::globalDofIndexToDerivative(), FVBoundaryCondition::hasFaceSide(), ExplicitTimeIntegrator::init(), ExplicitTimeIntegrator::initialSetup(), initialSetup(), ActivateElementsUserObjectBase::initSolutions(), EigenExecutionerBase::inversePowerIteration(), Kernel::Kernel(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableInterface< Real >::MooseVariableInterface(), EigenExecutionerBase::nonlinearSolve(), ComputeDiracThread::onElement(), ComputeNodalKernelBCJacobiansThread::onNode(), ComputeNodalKernelJacobiansThread::onNode(), VariableResidualNormsDebugOutput::output(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), FEProblemBase::prepareAssembly(), SystemBase::prepareFace(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), NonlinearSystem::residualAndJacobianTogether(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), PhysicsBasedPreconditioner::setup(), FVInterfaceKernel::setupData(), shouldEvaluatePreSMOResidual(), ActuallyExplicitEuler::solve(), NonlinearEigenSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), ExplicitSSPRungeKutta::solveStage(), NonlinearThread::subdomainChanged(), UserObject::systemNumber(), MultiAppDofCopyTransfer::transferDofObject(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), FVFluxBC::updateCurrentFace(), and MortarConstraintBase::zeroInactiveLMDofs().

1158 {
1159  return system().number();
1160 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
unsigned int number() const

◆ nVariables()

unsigned int SystemBase::nVariables ( ) const
virtualinherited

Get the number of variables in this system.

Returns
the number of variables

Definition at line 891 of file SystemBase.C.

Referenced by AdaptivityAction::act(), FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), getNodeDofs(), Assembly::init(), ExplicitTimeIntegrator::initialSetup(), MaxVarNDofsPerElem::onElement(), MaxVarNDofsPerNode::onNode(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), and AuxiliarySystem::variableWiseRelativeSolutionDifferenceNorm().

892 {
893  unsigned int n = nFieldVariables();
894  n += _vars[0].scalars().size();
895 
896  return n;
897 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
unsigned int nFieldVariables() const
Get the number of field variables in this system.
Definition: SystemBase.C:900

◆ offDiagonalsInAutoScaling() [1/2]

bool NonlinearSystemBase::offDiagonalsInAutoScaling ( ) const
inline

Definition at line 741 of file NonlinearSystemBase.h.

Referenced by ComputeJacobianForScalingThread::computeOnElement().

bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.

◆ offDiagonalsInAutoScaling() [2/2]

void NonlinearSystemBase::offDiagonalsInAutoScaling ( bool  off_diagonals_in_auto_scaling)
inline

Definition at line 742 of file NonlinearSystemBase.h.

743  {
744  _off_diagonals_in_auto_scaling = off_diagonals_in_auto_scaling;
745  }
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.

◆ onTimestepBegin()

void NonlinearSystemBase::onTimestepBegin ( )

Called at the beginning of the time step.

Definition at line 940 of file NonlinearSystemBase.C.

941 {
942  for (auto & ti : _time_integrators)
943  ti->preSolve();
944  if (_predictor.get())
945  _predictor->timestepSetup();
946 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ overwriteNodeFace()

void NonlinearSystemBase::overwriteNodeFace ( NumericVector< Number > &  soln)

Called from explicit time stepping to overwrite boundary positions (explicit dynamics).

This will close/assemble the passed-in soln after overwrite

Definition at line 1671 of file NonlinearSystemBase.C.

Referenced by ActuallyExplicitEuler::solve().

1672 {
1673  // Overwrite results from integrator in case we have explicit dynamics contact constraints
1675  ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1676  : static_cast<SubProblem &>(_fe_problem);
1677  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1678 
1679  for (const auto & it : penetration_locators)
1680  {
1681  PenetrationLocator & pen_loc = *(it.second);
1682 
1683  const auto & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1684  const BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1685  const BoundaryID primary_boundary = pen_loc._primary_boundary;
1686 
1687  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, true))
1688  {
1689  const auto & constraints =
1690  _constraints.getActiveNodeFaceConstraints(secondary_boundary, true);
1691  for (const auto i : index_range(secondary_nodes))
1692  {
1693  const auto secondary_node_num = secondary_nodes[i];
1694  const Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1695 
1696  if (secondary_node.processor_id() == processor_id())
1697  if (pen_loc._penetration_info[secondary_node_num])
1698  for (const auto & nfc : constraints)
1699  {
1700  if (!nfc->isExplicitConstraint())
1701  continue;
1702 
1703  // Return if this constraint does not correspond to the primary-secondary pair
1704  // prepared by the outer loops.
1705  // This continue statement is required when, e.g. one secondary surface constrains
1706  // more than one primary surface.
1707  if (nfc->secondaryBoundary() != secondary_boundary ||
1708  nfc->primaryBoundary() != primary_boundary)
1709  continue;
1710 
1711  nfc->overwriteBoundaryVariables(soln, secondary_node);
1712  }
1713  }
1714  }
1715  }
1716  soln.close();
1717 }
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
boundary_id_type BoundaryID
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual GeometricSearchData & geomSearchData()=0
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
processor_id_type processor_id() const
processor_id_type processor_id() const
auto index_range(const T &sizable)
BoundaryID _primary_boundary
NearestNodeLocator & _nearest_node

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:173

◆ postAddResidualObject()

virtual void NonlinearSystemBase::postAddResidualObject ( ResidualObject )
inlineprotectedvirtual

Called after any ResidualObject-derived objects are added to the system.

Reimplemented in NonlinearEigenSystem.

Definition at line 855 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), addConstraint(), addDGKernel(), addDiracKernel(), addHDGKernel(), addInterfaceKernel(), addKernel(), addNodalKernel(), and addScalarKernel().

855 {}

◆ postInit()

virtual void SystemBase::postInit ( )
inlinevirtualinherited

Reimplemented in NonlinearEigenSystem.

Definition at line 162 of file SystemBase.h.

Referenced by NonlinearEigenSystem::postInit().

162 {}

◆ potentiallySetupFiniteDifferencing()

virtual void NonlinearSystemBase::potentiallySetupFiniteDifferencing ( )
inlinevirtual

Create finite differencing contexts for assembly of the Jacobian and/or approximating the action of the Jacobian on vectors (e.g.

FD and/or MFFD respectively)

Reimplemented in NonlinearSystem.

Definition at line 764 of file NonlinearSystemBase.h.

Referenced by LStableDirk2::solve(), LStableDirk3::solve(), and LStableDirk4::solve().

764 {}

◆ prefix()

std::string SystemBase::prefix ( ) const
inherited
Returns
The prefix used for this system for solver settings for PETSc. This prefix is used to prevent collision of solver settings for different systems. Note that this prefix does not have a leading dash so it's appropriate for passage straight to PETSc APIs

Definition at line 1713 of file SystemBase.C.

Referenced by FieldSplitPreconditioner::FieldSplitPreconditioner(), MoosePreconditioner::initialSetup(), and FieldSplitPreconditioner::prefix().

1714 {
1715  return system().prefix_with_name() ? system().prefix() : "";
1716 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::string prefix() const
void prefix_with_name(bool value)

◆ preInit()

void NonlinearSystemBase::preInit ( )
overridevirtual

This is called prior to the libMesh system has been init'd.

MOOSE system wrappers can use this method to add vectors and matrices to the libMesh system

Reimplemented from SolverSystem.

Definition at line 189 of file NonlinearSystemBase.C.

190 {
192 
193  if (_fe_problem.hasDampers())
194  setupDampers();
195 
196  if (_residual_copy.get())
197  _residual_copy->init(_sys.n_dofs(), false, SERIAL);
198 
199 #ifdef MOOSE_KOKKOS_ENABLED
202 #endif
203 }
void setupDampers()
Setup damping stuff (called before we actually start)
bool hasDampers()
Whether or not this system has dampers.
dof_id_type n_dofs() const
SERIAL
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.
virtual void preInit() override
This is called prior to the libMesh system has been init&#39;d.
Definition: SolverSystem.C:32
libMesh::System & _sys
bool hasKokkosObjects() const
void full_sparsity_pattern_needed()
const DofMap & get_dof_map() const

◆ prepare()

void SystemBase::prepare ( THREAD_ID  tid)
virtualinherited

Prepare the system for use.

Parameters
tidID of the thread

Definition at line 256 of file SystemBase.C.

Referenced by SubProblem::reinitElemFaceRef().

257 {
259  {
260  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
262  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
263  for (const auto & var : vars)
264  var->clearDofIndices();
265 
266  for (const auto & var : active_elemental_moose_variables)
267  if (&(var->sys()) == this)
268  var->prepare();
269  }
270  else
271  {
272  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
273  for (const auto & var : vars)
274  var->prepare();
275  }
276 }
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:460

◆ prepareFace()

void SystemBase::prepareFace ( THREAD_ID  tid,
bool  resize_data 
)
virtualinherited

Prepare the system for use on sides.

This will try to reuse the preparation done on the element.

Parameters
tidID of the thread
resize_dataPass True if this system needs to resize residual and jacobian datastructures based on preparing this face

Definition at line 279 of file SystemBase.C.

280 {
281  // We only need to do something if the element prepare was restricted
283  {
284  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
286 
287  std::vector<MooseVariableFieldBase *> newly_prepared_vars;
288 
289  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
290  for (const auto & var : vars)
291  {
292  mooseAssert(&var->sys() == this,
293  "I will cry if we store variables in our warehouse that don't belong to us");
294 
295  // If it wasn't in the active list, we need to prepare it. This has the potential to duplicate
296  // prepare if we have these conditions:
297  //
298  // 1. We have a displaced problem
299  // 2. We are using AD
300  // 3. We are not using global AD indexing
301  //
302  // But I think I would rather risk duplicate prepare than introduce an additional member set
303  // variable for tracking prepared variables. Set insertion is slow and some simulations have a
304  // ton of variables
305  if (!active_elemental_moose_variables.count(var))
306  {
307  var->prepare();
308  newly_prepared_vars.push_back(var);
309  }
310  }
311 
312  // Make sure to resize the residual and jacobian datastructures for all the new variables
313  if (resize_data)
314  for (const auto var_ptr : newly_prepared_vars)
315  {
316  _subproblem.assembly(tid, number()).prepareVariable(var_ptr);
319  }
320  }
321 }
virtual bool checkNonlocalCouplingRequirement() const =0
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
void prepareVariableNonlocal(MooseVariableFieldBase *var)
Definition: Assembly.C:2772
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
void prepareVariable(MooseVariableFieldBase *var)
Used for preparing the dense residual and jacobian blocks for one particular variable.
Definition: Assembly.C:2744
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:460

◆ prepareLowerD()

void SystemBase::prepareLowerD ( THREAD_ID  tid)
virtualinherited

Prepare the system for use for lower dimensional elements.

Parameters
tidID of the thread

Definition at line 332 of file SystemBase.C.

Referenced by SubProblem::reinitLowerDElem().

333 {
334  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
335  for (const auto & var : vars)
336  var->prepareLowerD();
337 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ prepareNeighbor()

void SystemBase::prepareNeighbor ( THREAD_ID  tid)
virtualinherited

Prepare the system for use.

Parameters
tidID of the thread

Definition at line 324 of file SystemBase.C.

Referenced by SubProblem::reinitNeighborFaceRef().

325 {
326  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
327  for (const auto & var : vars)
328  var->prepareNeighbor();
329 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ preSMOResidual()

Real NonlinearSystemBase::preSMOResidual ( ) const

The pre-SMO residual.

Definition at line 768 of file NonlinearSystemBase.C.

Referenced by Residual::getValue(), and referenceResidual().

769 {
771  mooseError("pre-SMO residual is requested but not evaluated.");
772 
773  return _pre_smo_residual;
774 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Real _pre_smo_residual
The pre-SMO residual, see setPreSMOResidual for a detailed explanation.
bool shouldEvaluatePreSMOResidual() const
We offer the option to check convergence against the pre-SMO residual.

◆ preSolve()

bool NonlinearSystemBase::preSolve ( )
protected

Perform some steps to get ready for the solver.

These include

  • zeroing iteration counters
  • setting initial solutions
  • possibly performing automatic scaling
  • forming a scaling vector which, at least at some point, was required when AD objects were used with non-unity scaling factors for nonlinear variables
    Returns
    Whether any exceptions were raised while running this method

Definition at line 4161 of file NonlinearSystemBase.C.

Referenced by NonlinearSystem::solve(), and NonlinearEigenSystem::solve().

4162 {
4163  // Clear the iteration counters
4164  _current_l_its.clear();
4165  _current_nl_its = 0;
4166 
4167  // Initialize the solution vector using a predictor and known values from nodal bcs
4169 
4170  // Now that the initial solution has ben set, potentially perform a residual/Jacobian evaluation
4171  // to determine variable scaling factors
4172  if (_automatic_scaling)
4173  {
4174  const bool scaling_succeeded = computeScaling();
4175  if (!scaling_succeeded)
4176  return false;
4177  }
4178 
4179  // We do not know a priori what variable a global degree of freedom corresponds to, so we need a
4180  // map from global dof to scaling factor. We just use a ghosted NumericVector for that mapping
4182 
4183  return true;
4184 }
std::vector< unsigned int > _current_l_its
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055
bool computeScaling()
Method used to obtain scaling factors for variables.
void assembleScalingVector()
Assemble the numeric vector of scaling factors such that it can be used during assembly of the system...

◆ printAllVariableNorms()

void NonlinearSystemBase::printAllVariableNorms ( bool  state)
inline

Force the printing of all variable norms after each solve.

Todo:
{Remove after output update

Definition at line 587 of file NonlinearSystemBase.h.

◆ queryTimeIntegrator()

const TimeIntegrator * SystemBase::queryTimeIntegrator ( const unsigned int  var_num) const
inherited

Retrieve the time integrator that integrates the given variable's equation.

If no suitable time integrator is found (this could happen for instance if we're solving a non-transient problem), then a nullptr will be returned

Definition at line 1673 of file SystemBase.C.

Referenced by SystemBase::getTimeIntegrator(), HDGKernel::HDGKernel(), and MooseVariableData< OutputType >::MooseVariableData().

1674 {
1675  for (auto & ti : _time_integrators)
1676  if (ti->integratesVar(var_num))
1677  return ti.get();
1678 
1679  return nullptr;
1680 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ referenceResidual()

Real NonlinearSystemBase::referenceResidual ( ) const

The reference residual used in relative convergence check.

Definition at line 762 of file NonlinearSystemBase.C.

Referenced by DefaultNonlinearConvergence::checkConvergence(), and EigenExecutionerBase::inversePowerIteration().

763 {
765 }
Real preSMOResidual() const
The pre-SMO residual.
Real initialResidual() const
The initial residual.
const bool & usePreSMOResidual() const
Whether we are using pre-SMO residual in relative convergence checks.

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ reinit()

virtual void SystemBase::reinit ( )
inlinevirtualinherited

Reinitialize the system when the degrees of freedom in this system have changed.

This is called after the libMesh system has been reinit'd

Reimplemented in NonlinearEigenSystem.

Definition at line 168 of file SystemBase.h.

Referenced by NonlinearEigenSystem::reinit().

168 {}

◆ reinitElem()

void SystemBase::reinitElem ( const Elem elem,
THREAD_ID  tid 
)
virtualinherited

Reinit an element assembly info.

Parameters
elemWhich element we are reinitializing for
tidID of the thread

Reimplemented in AuxiliarySystem.

Definition at line 340 of file SystemBase.C.

341 {
343  {
344  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
346  for (const auto & var : active_elemental_moose_variables)
347  if (&(var->sys()) == this)
348  var->computeElemValues();
349  }
350  else
351  {
352  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
353  for (const auto & var : vars)
354  var->computeElemValues();
355  }
356 
357  if (system().has_static_condensation())
358  for (auto & [tag, matrix] : _active_tagged_matrices)
359  {
360  libmesh_ignore(tag);
361  cast_ptr<StaticCondensation *>(matrix)->set_current_elem(*elem);
362  }
363 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void libmesh_ignore(const Args &...)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:460

◆ reinitElemFace()

void SystemBase::reinitElemFace ( const Elem elem,
unsigned int  side,
THREAD_ID  tid 
)
virtualinherited

Reinit assembly info for a side of an element.

Parameters
elemThe element
sideSide of of the element
tidThread ID

Reimplemented in AuxiliarySystem.

Definition at line 366 of file SystemBase.C.

Referenced by SubProblem::reinitElemFaceRef().

367 {
368  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
369  for (const auto & var : vars)
370  var->computeElemValuesFace();
371 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitIncrementAtNodeForDampers()

void NonlinearSystemBase::reinitIncrementAtNodeForDampers ( THREAD_ID  tid,
const std::set< MooseVariable *> &  damped_vars 
)

Compute the incremental change in variables at nodes for dampers.

Called before we use damping

Parameters
tidThread ID
damped_varsSet of variables for which increment is to be computed

Definition at line 3644 of file NonlinearSystemBase.C.

Referenced by ComputeNodalDampingThread::onNode().

3646 {
3647  for (const auto & var : damped_vars)
3648  var->computeIncrementAtNode(*_increment_vec);
3649 }
NumericVector< Number > * _increment_vec
increment vector

◆ reinitIncrementAtQpsForDampers()

void NonlinearSystemBase::reinitIncrementAtQpsForDampers ( THREAD_ID  tid,
const std::set< MooseVariable *> &  damped_vars 
)

Compute the incremental change in variables at QPs for dampers.

Called before we use damping

Parameters
tidThread ID
damped_varsSet of variables for which increment is to be computed

Definition at line 3636 of file NonlinearSystemBase.C.

Referenced by ComputeElemDampingThread::onElement().

3638 {
3639  for (const auto & var : damped_vars)
3640  var->computeIncrementAtQps(*_increment_vec);
3641 }
NumericVector< Number > * _increment_vec
increment vector

◆ reinitLowerD()

void SystemBase::reinitLowerD ( THREAD_ID  tid)
virtualinherited

Compute the values of the variables on the lower dimensional element.

Definition at line 390 of file SystemBase.C.

Referenced by SubProblem::reinitLowerDElem().

391 {
392  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
393  for (const auto & var : vars)
394  var->computeLowerDValues();
395 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitMortarFunctors()

void NonlinearSystemBase::reinitMortarFunctors ( )

Update the mortar functors if the mesh has changed.

Definition at line 206 of file NonlinearSystemBase.C.

207 {
208  // reinit is called on meshChanged() in FEProblemBase. We could implement meshChanged() instead.
209  // Subdomains might have changed
210  for (auto & functor : _displaced_mortar_functors)
211  functor.second.setupMortarMaterials();
212  for (auto & functor : _undisplaced_mortar_functors)
213  functor.second.setupMortarMaterials();
214 }
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.

◆ reinitNeighbor()

void SystemBase::reinitNeighbor ( const Elem elem,
THREAD_ID  tid 
)
virtualinherited

Compute the values of the variables at all the current points.

Definition at line 382 of file SystemBase.C.

383 {
384  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
385  for (const auto & var : vars)
386  var->computeNeighborValues();
387 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNeighborFace()

void SystemBase::reinitNeighborFace ( const Elem elem,
unsigned int  side,
THREAD_ID  tid 
)
virtualinherited

Compute the values of the variables at all the current points.

Definition at line 374 of file SystemBase.C.

Referenced by SubProblem::reinitNeighborFaceRef().

375 {
376  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
377  for (const auto & var : vars)
378  var->computeNeighborValuesFace();
379 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNode()

void SystemBase::reinitNode ( const Node node,
THREAD_ID  tid 
)
virtualinherited

Reinit nodal assembly info.

Parameters
nodeNode to reinit for
tidThread ID

Definition at line 398 of file SystemBase.C.

399 {
400  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
401  for (const auto & var : vars)
402  {
403  var->reinitNode();
404  if (var->isNodalDefined())
405  var->computeNodalValues();
406  }
407 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [1/3]

void SystemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
THREAD_ID  tid 
)
virtualinherited

Reinit nodal assembly info on a face.

Parameters
nodeNode to reinit
bnd_idBoundary ID
tidThread ID

Definition at line 410 of file SystemBase.C.

411 {
412  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
413  for (const auto & var : vars)
414  {
415  var->reinitNode();
416  if (var->isNodalDefined())
417  var->computeNodalValues();
418  }
419 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [2/3]

void SystemBase::reinitNodeFace

Reinit nodal assembly info on a face.

Parameters
nodeNode to reinit
bnd_idBoundary ID
tidThread ID

Definition at line 410 of file SystemBase.C.

411 {
412  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
413  for (const auto & var : vars)
414  {
415  var->reinitNode();
416  if (var->isNodalDefined())
417  var->computeNodalValues();
418  }
419 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [3/3]

void NonlinearSystemBase::reinitNodeFace ( const Node secondary_node,
const BoundaryID  secondary_boundary,
const PenetrationInfo info,
const bool  displaced 
)
protected

Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints.

Definition at line 1151 of file NonlinearSystemBase.C.

Referenced by constraintJacobians(), constraintResiduals(), and setConstraintSecondaryValues().

1155 {
1156  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1157  : static_cast<SubProblem &>(_fe_problem);
1158 
1159  const Elem * primary_elem = info._elem;
1160  unsigned int primary_side = info._side_num;
1161  std::vector<Point> points;
1162  points.push_back(info._closest_point);
1163 
1164  // *These next steps MUST be done in this order!*
1165  // ADL: This is a Chesterton's fence situation. I don't know which calls exactly the above comment
1166  // is referring to. If I had to guess I would guess just the reinitNodeFace and prepareAssembly
1167  // calls since the former will size the variable's dof indices and then the latter will resize the
1168  // residual/Jacobian based off the variable's cached dof indices size
1169 
1170  // This reinits the variables that exist on the secondary node
1171  _fe_problem.reinitNodeFace(&secondary_node, secondary_boundary, 0);
1172 
1173  // This will set aside residual and jacobian space for the variables that have dofs on
1174  // the secondary node
1176 
1177  _fe_problem.setNeighborSubdomainID(primary_elem, 0);
1178 
1179  //
1180  // Reinit material on undisplaced mesh
1181  //
1182 
1183  const Elem * const undisplaced_primary_elem =
1184  displaced ? _mesh.elemPtr(primary_elem->id()) : primary_elem;
1185  const Point undisplaced_primary_physical_point =
1186  [&points, displaced, primary_elem, undisplaced_primary_elem]()
1187  {
1188  if (displaced)
1189  {
1190  const Point reference_point =
1191  FEMap::inverse_map(primary_elem->dim(), primary_elem, points[0]);
1192  return FEMap::map(primary_elem->dim(), undisplaced_primary_elem, reference_point);
1193  }
1194  else
1195  // If our penetration locator is on the reference mesh, then our undisplaced
1196  // physical point is simply the point coming from the penetration locator
1197  return points[0];
1198  }();
1199 
1201  undisplaced_primary_elem, primary_side, {undisplaced_primary_physical_point}, 0);
1202  // Stateful material properties are only initialized for neighbor material data for internal faces
1203  // for discontinuous Galerkin methods or for conforming interfaces for interface kernels. We don't
1204  // have either of those use cases here where we likely have disconnected meshes
1205  _fe_problem.reinitMaterialsNeighbor(primary_elem->subdomain_id(), 0, /*swap_stateful=*/false);
1206 
1207  // Reinit points for constraint enforcement
1208  if (displaced)
1209  subproblem.reinitNeighborPhys(primary_elem, primary_side, points, 0);
1210 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3153
MPI_Info info
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
dof_id_type id() const
void reinitMaterialsNeighbor(SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
reinit materials on the neighboring element face
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual void prepareAssembly(const THREAD_ID tid) override
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override

◆ reinitNodes()

void SystemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
THREAD_ID  tid 
)
virtualinherited

Reinit variables at a set of nodes.

Parameters
nodesList of node ids to reinit
tidThread ID

Definition at line 422 of file SystemBase.C.

423 {
424  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
425  for (const auto & var : vars)
426  {
427  var->reinitNodes(nodes);
428  var->computeNodalValues();
429  }
430 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodesNeighbor()

void SystemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
THREAD_ID  tid 
)
virtualinherited

Reinit variables at a set of neighbor nodes.

Parameters
nodesList of node ids to reinit
tidThread ID

Definition at line 433 of file SystemBase.C.

434 {
435  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
436  for (const auto & var : vars)
437  {
438  var->reinitNodesNeighbor(nodes);
439  var->computeNodalNeighborValues();
440  }
441 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitScalars()

void SystemBase::reinitScalars ( THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
virtualinherited

Reinit scalar varaibles.

Parameters
tidThread ID
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Definition at line 444 of file SystemBase.C.

445 {
446  const std::vector<MooseVariableScalar *> & vars = _vars[tid].scalars();
447  for (const auto & var : vars)
448  var->reinit(reinit_for_derivative_reordering);
449 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ removeMatrix()

void SystemBase::removeMatrix ( TagID  tag)
inherited

Removes a matrix with a given tag.

Parameters
tag_nameThe name of the tag

Definition at line 590 of file SystemBase.C.

591 {
592  if (!_subproblem.matrixTagExists(tag_id))
593  mooseError("Cannot remove the matrix with TagID ",
594  tag_id,
595  "\nin system '",
596  name(),
597  "', because that tag does not exist in the problem");
598 
599  if (hasMatrix(tag_id))
600  {
601  const auto matrix_name = _subproblem.matrixTagName(tag_id);
602  system().remove_matrix(matrix_name);
603  _tagged_matrices[tag_id] = nullptr;
604  }
605 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_matrix(std::string_view mat_name)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328
virtual TagName matrixTagName(TagID tag)
Retrieve the name associated with a TagID.
Definition: SubProblem.C:357

◆ removeVector() [1/2]

void SystemBase::removeVector ( const std::string &  name)
inherited

Remove a vector from the system with the given name.

Definition at line 1334 of file SystemBase.C.

Referenced by SystemBase::restoreOldSolutions().

1335 {
1337 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_vector(std::string_view vec_name)

◆ removeVector() [2/2]

void SystemBase::removeVector ( TagID  tag_id)
inherited

Remove a solution length vector from the system with the specified TagID.

Parameters
tag_idTag ID

Definition at line 700 of file SystemBase.C.

701 {
702  if (!_subproblem.vectorTagExists(tag_id))
703  mooseError("Cannot remove the vector with TagID ",
704  tag_id,
705  "\nin system '",
706  name(),
707  "', because that tag does not exist in the problem");
708 
709  if (hasVector(tag_id))
710  {
711  auto vector_name = _subproblem.vectorTagName(tag_id);
712  system().remove_vector(vector_name);
713  _tagged_vectors[tag_id] = nullptr;
714  }
715 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_vector(std::string_view vec_name)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:221
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ residualAndJacobianTogether()

virtual void NonlinearSystemBase::residualAndJacobianTogether ( )
pure virtual

Call this method if you want the residual and Jacobian to be computed simultaneously.

Implemented in NonlinearEigenSystem, NonlinearSystem, and DumpObjectsNonlinearSystem.

◆ residualCopy()

NumericVector< Number > & NonlinearSystemBase::residualCopy ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 3491 of file NonlinearSystemBase.C.

3492 {
3493  if (!_residual_copy.get())
3495 
3496  return *_residual_copy;
3497 }
const Parallel::Communicator & _communicator
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.

◆ residualGhosted()

NumericVector< Number > & NonlinearSystemBase::residualGhosted ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 3500 of file NonlinearSystemBase.C.

3501 {
3502  _need_residual_ghosted = true;
3503  if (!_residual_ghosted)
3504  {
3505  // The first time we realize we need a ghosted residual vector,
3506  // we add it.
3507  _residual_ghosted = &addVector("residual_ghosted", false, GHOSTED);
3508 
3509  // If we've already realized we need time and/or non-time
3510  // residual vectors, but we haven't yet realized they need to be
3511  // ghosted, fix that now.
3512  //
3513  // If an application changes its mind, the libMesh API lets us
3514  // change the vector.
3515  if (_Re_time)
3516  {
3517  const auto vector_name = _subproblem.vectorTagName(_Re_time_tag);
3518  _Re_time = &system().add_vector(vector_name, false, GHOSTED);
3519  }
3520  if (_Re_non_time)
3521  {
3522  const auto vector_name = _subproblem.vectorTagName(_Re_non_time_tag);
3523  _Re_non_time = &system().add_vector(vector_name, false, GHOSTED);
3524  }
3525  }
3526  return *_residual_ghosted;
3527 }
NumericVector< Number > * _Re_time
residual vector for time contributions
TagID _Re_time_tag
Tag for time contribution residual.
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
TagID _Re_non_time_tag
Tag for non-time contribution residual.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:221
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ residualSetup()

void NonlinearSystemBase::residualSetup ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 1720 of file NonlinearSystemBase.C.

Referenced by computeResidualAndJacobianInternal(), and computeResidualInternal().

1721 {
1722  TIME_SECTION("residualSetup", 3);
1723 
1725 
1726  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1727  {
1728  _kernels.residualSetup(tid);
1731  if (_doing_dg)
1737  }
1742 
1743 #ifdef MOOSE_KOKKOS_ENABLED
1748 #endif
1749 
1750  // Avoid recursion
1751  if (this == &_fe_problem.currentNonlinearSystem())
1754 }
virtual void residualSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
void residualSetup() override
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
NonlinearSystemBase & currentNonlinearSystem()
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
void resetSolutionInvalidCurrentIteration()
Reset the number of solution invalid occurrences back to zero.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void residualSetup()
Definition: SystemBase.C:1599
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ residualVector()

NumericVector< Number > & NonlinearSystemBase::residualVector ( TagID  tag)

Return a residual vector that is associated with the residual tag.

Definition at line 1081 of file NonlinearSystemBase.C.

1082 {
1083  mooseDeprecated("Please use getVector()");
1084  switch (tag)
1085  {
1086  case 0:
1087  return getResidualNonTimeVector();
1088 
1089  case 1:
1090  return getResidualTimeVector();
1091 
1092  default:
1093  mooseError("The required residual vector is not available");
1094  }
1095 }
NumericVector< Number > & getResidualTimeVector()
Return a numeric vector that is associated with the time tag.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
void mooseDeprecated(Args &&... args)
Emit a deprecated code/feature message with the given stringified, concatenated args.
Definition: MooseError.h:374
NumericVector< Number > & getResidualNonTimeVector()
Return a numeric vector that is associated with the nontime tag.

◆ residualVectorTag()

TagID NonlinearSystemBase::residualVectorTag ( ) const
inlineoverridevirtual

◆ restoreOldSolutions()

void SystemBase::restoreOldSolutions ( )
virtualinherited

Restore the old and older solutions when the saved solutions present.

Definition at line 542 of file SystemBase.C.

543 {
544  const auto states =
545  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
546  if (states > 1)
547  for (unsigned int i = 1; i <= states - 1; ++i)
548  if (_saved_solution_states[i])
549  {
551  removeVector("save_solution_state_" + std::to_string(i));
552  _saved_solution_states[i] = nullptr;
553  }
554 
556  {
558  removeVector("save_solution_dot_old");
559  _saved_dot_old = nullptr;
560  }
562  {
564  removeVector("save_solution_dotdot_old");
565  _saved_dotdot_old = nullptr;
566  }
567 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
NumericVector< Real > * _saved_dot_old
Definition: SystemBase.h:1034
void removeVector(const std::string &name)
Remove a vector from the system with the given name.
Definition: SystemBase.C:1334
NumericVector< Real > * _saved_dotdot_old
Definition: SystemBase.h:1035
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
std::vector< NumericVector< Number > * > _saved_solution_states
The saved solution states (0 = current, 1 = old, 2 = older, etc)
Definition: SystemBase.h:1086

◆ restoreSolutions()

void SolverSystem::restoreSolutions ( )
finaloverridevirtualinherited

Restore current solutions (call after your solve failed)

Reimplemented from SystemBase.

Definition at line 43 of file SolverSystem.C.

44 {
45  // call parent
47  // and update _current_solution
49 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual void restoreSolutions()
Restore current solutions (call after your solve failed)
Definition: SystemBase.C:1317

◆ RHS()

virtual NumericVector<Number>& NonlinearSystemBase::RHS ( )
pure virtual

◆ saveOldSolutions()

void SystemBase::saveOldSolutions ( )
virtualinherited

Save the old and older solutions.

Definition at line 510 of file SystemBase.C.

511 {
512  const auto states =
513  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
514  if (states > 1)
515  {
516  _saved_solution_states.resize(states);
517  for (unsigned int i = 1; i <= states - 1; ++i)
518  if (!_saved_solution_states[i])
520  &addVector("save_solution_state_" + std::to_string(i), false, PARALLEL);
521 
522  for (unsigned int i = 1; i <= states - 1; ++i)
524  }
525 
527  _saved_dot_old = &addVector("save_solution_dot_old", false, PARALLEL);
529  _saved_dotdot_old = &addVector("save_solution_dotdot_old", false, PARALLEL);
530 
531  if (solutionUDotOld())
533 
534  if (solutionUDotDotOld())
536 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
NumericVector< Real > * _saved_dot_old
Definition: SystemBase.h:1034
NumericVector< Real > * _saved_dotdot_old
Definition: SystemBase.h:1035
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
std::vector< NumericVector< Number > * > _saved_solution_states
The saved solution states (0 = current, 1 = old, 2 = older, etc)
Definition: SystemBase.h:1086

◆ scalingGroupVariables()

void NonlinearSystemBase::scalingGroupVariables ( const std::vector< std::vector< std::string >> &  scaling_group_variables)
inline

Definition at line 730 of file NonlinearSystemBase.h.

731  {
732  _scaling_group_variables = scaling_group_variables;
733  }
std::vector< std::vector< std::string > > _scaling_group_variables
A container of variable groupings that can be used in scaling calculations.

◆ serializedSolution()

NumericVector< Number > & SystemBase::serializedSolution ( )
virtualinherited

Returns a reference to a serialized version of the solution vector for this subproblem.

Reimplemented in DisplacedSystem.

Definition at line 1646 of file SystemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), PNGOutput::makeMeshFunc(), and DisplacedSystem::serializedSolution().

1647 {
1648  if (!_serialized_solution.get())
1649  {
1651  _serialized_solution->init(system().n_dofs(), false, SERIAL);
1652  }
1653 
1654  return *_serialized_solution;
1655 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const Parallel::Communicator & _communicator
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068

◆ serializeSolution()

void SolverSystem::serializeSolution ( )
inherited

Definition at line 52 of file SolverSystem.C.

Referenced by SolverSystem::setSolution().

53 {
54  if (_serialized_solution.get())
55  {
56  if (!_serialized_solution->initialized() || _serialized_solution->size() != system().n_dofs())
57  {
58  _serialized_solution->clear();
59  _serialized_solution->init(system().n_dofs(), false, SERIAL);
60  }
61 
63  }
64 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068
dof_id_type n_dofs() const
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
virtual void localize(std::vector< T > &v_local) const=0

◆ setActiveScalarVariableCoupleableVectorTags()

void SystemBase::setActiveScalarVariableCoupleableVectorTags ( const std::set< TagID > &  vtags,
THREAD_ID  tid 
)
inherited

Set the active vector tags for the scalar variables.

Definition at line 1626 of file SystemBase.C.

Referenced by SubProblem::setActiveScalarVariableCoupleableVectorTags().

1628 {
1629  _vars[tid].setActiveScalarVariableCoupleableVectorTags(vtags);
1630 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ setActiveVariableCoupleableVectorTags()

void SystemBase::setActiveVariableCoupleableVectorTags ( const std::set< TagID > &  vtags,
THREAD_ID  tid 
)
inherited

Set the active vector tags for the variables.

Definition at line 1620 of file SystemBase.C.

Referenced by SubProblem::setActiveFEVariableCoupleableVectorTags().

1621 {
1622  _vars[tid].setActiveVariableCoupleableVectorTags(vtags);
1623 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ setConstraintSecondaryValues()

void NonlinearSystemBase::setConstraintSecondaryValues ( NumericVector< Number > &  solution,
bool  displaced 
)

Sets the value of constrained variables in the solution vector.

Definition at line 1213 of file NonlinearSystemBase.C.

Referenced by setInitialSolution().

1214 {
1215 
1216  if (displaced)
1217  mooseAssert(_fe_problem.getDisplacedProblem(),
1218  "If we're calling this method with displaced = true, then we better well have a "
1219  "displaced problem");
1220  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1221  : static_cast<SubProblem &>(_fe_problem);
1222  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1223 
1224  bool constraints_applied = false;
1225 
1226  for (const auto & it : penetration_locators)
1227  {
1228  PenetrationLocator & pen_loc = *(it.second);
1229 
1230  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1231 
1232  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1233  BoundaryID primary_boundary = pen_loc._primary_boundary;
1234 
1235  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
1236  {
1237  const auto & constraints =
1238  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
1239  std::unordered_set<unsigned int> needed_mat_props;
1240  for (const auto & constraint : constraints)
1241  {
1242  const auto & mp_deps = constraint->getMatPropDependencies();
1243  needed_mat_props.insert(mp_deps.begin(), mp_deps.end());
1244  }
1245  _fe_problem.setActiveMaterialProperties(needed_mat_props, /*tid=*/0);
1246 
1247  for (unsigned int i = 0; i < secondary_nodes.size(); i++)
1248  {
1249  dof_id_type secondary_node_num = secondary_nodes[i];
1250  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1251 
1252  if (secondary_node.processor_id() == processor_id())
1253  {
1254  if (pen_loc._penetration_info[secondary_node_num])
1255  {
1256  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
1257 
1258  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
1259 
1260  for (const auto & nfc : constraints)
1261  {
1262  if (nfc->isExplicitConstraint())
1263  continue;
1264  // Return if this constraint does not correspond to the primary-secondary pair
1265  // prepared by the outer loops.
1266  // This continue statement is required when, e.g. one secondary surface constrains
1267  // more than one primary surface.
1268  if (nfc->secondaryBoundary() != secondary_boundary ||
1269  nfc->primaryBoundary() != primary_boundary)
1270  continue;
1271 
1272  if (nfc->shouldApply())
1273  {
1274  constraints_applied = true;
1275  nfc->computeSecondaryValue(solution);
1276  }
1277 
1278  if (nfc->hasWritableCoupledVariables())
1279  {
1280  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1281  for (auto * var : nfc->getWritableCoupledVariables())
1282  {
1283  if (var->isNodalDefined())
1284  var->insert(_fe_problem.getAuxiliarySystem().solution());
1285  }
1286  }
1287  }
1288  }
1289  }
1290  }
1291  }
1292  }
1293 
1294  // go over NodeELemConstraints
1295  std::set<dof_id_type> unique_secondary_node_ids;
1296 
1297  for (const auto & secondary_id : _mesh.meshSubdomains())
1298  {
1299  for (const auto & primary_id : _mesh.meshSubdomains())
1300  {
1301  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
1302  {
1303  const auto & constraints =
1304  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
1305 
1306  // get unique set of ids of all nodes on current block
1307  unique_secondary_node_ids.clear();
1308  const MeshBase & meshhelper = _mesh.getMesh();
1309  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
1310  meshhelper.active_subdomain_elements_end(secondary_id)))
1311  {
1312  for (auto & n : elem->node_ref_range())
1313  unique_secondary_node_ids.insert(n.id());
1314  }
1315 
1316  for (auto secondary_node_id : unique_secondary_node_ids)
1317  {
1318  Node & secondary_node = _mesh.nodeRef(secondary_node_id);
1319 
1320  // check if secondary node is on current processor
1321  if (secondary_node.processor_id() == processor_id())
1322  {
1323  // This reinits the variables that exist on the secondary node
1324  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
1325 
1326  // This will set aside residual and jacobian space for the variables that have dofs
1327  // on the secondary node
1329 
1330  for (const auto & nec : constraints)
1331  {
1332  if (nec->shouldApply())
1333  {
1334  constraints_applied = true;
1335  nec->computeSecondaryValue(solution);
1336  }
1337  }
1338  }
1339  }
1340  }
1341  }
1342  }
1343 
1344  // See if constraints were applied anywhere
1345  _communicator.max(constraints_applied);
1346 
1347  if (constraints_applied)
1348  {
1349  solution.close();
1350  update();
1351  }
1352 }
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
MPI_Info info
NumericVector< Number > & solution()
Definition: SystemBase.h:196
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:849
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3488
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual GeometricSearchData & geomSearchData()=0
AuxiliarySystem & getAuxiliarySystem()
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
BoundaryID _primary_boundary
uint8_t dof_id_type
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3211

◆ setInitialResidual()

void NonlinearSystemBase::setInitialResidual ( Real  r)

Record the initial residual (for later relative convergence check)

Definition at line 783 of file NonlinearSystemBase.C.

Referenced by DefaultNonlinearConvergence::checkConvergence().

784 {
785  _initial_residual = r;
786 }
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...

◆ setInitialSolution()

void NonlinearSystemBase::setInitialSolution ( )

Definition at line 949 of file NonlinearSystemBase.C.

Referenced by preSolve().

950 {
952 
953  NumericVector<Number> & initial_solution(solution());
954  if (_predictor.get())
955  {
956  if (_predictor->shouldApply())
957  {
958  TIME_SECTION("applyPredictor", 2, "Applying Predictor");
959 
960  _predictor->apply(initial_solution);
961  _fe_problem.predictorCleanup(initial_solution);
962  }
963  else
964  _console << " Skipping predictor this step" << std::endl;
965  }
966 
967  // do nodal BC
968  {
969  TIME_SECTION("initialBCs", 2, "Applying BCs To Initial Condition");
970 
972  for (const auto & bnode : bnd_nodes)
973  {
974  BoundaryID boundary_id = bnode->_bnd_id;
975  Node * node = bnode->_node;
976 
977  if (node->processor_id() == processor_id())
978  {
979  bool has_preset_nodal_bcs = _preset_nodal_bcs.hasActiveBoundaryObjects(boundary_id);
980  bool has_ad_preset_nodal_bcs = _ad_preset_nodal_bcs.hasActiveBoundaryObjects(boundary_id);
981 
982  // reinit variables in nodes
983  if (has_preset_nodal_bcs || has_ad_preset_nodal_bcs)
984  _fe_problem.reinitNodeFace(node, boundary_id, 0);
985 
986  if (has_preset_nodal_bcs)
987  {
988  const auto & preset_bcs = _preset_nodal_bcs.getActiveBoundaryObjects(boundary_id);
989  for (const auto & preset_bc : preset_bcs)
990  preset_bc->computeValue(initial_solution);
991  }
992  if (has_ad_preset_nodal_bcs)
993  {
994  const auto & preset_bcs_res = _ad_preset_nodal_bcs.getActiveBoundaryObjects(boundary_id);
995  for (const auto & preset_bc : preset_bcs_res)
996  preset_bc->computeValue(initial_solution);
997  }
998  }
999  }
1000  }
1001 
1002 #ifdef MOOSE_KOKKOS_ENABLED
1005 #endif
1006 
1007  _sys.solution->close();
1008  update();
1009 
1010  // Set constraint secondary values
1011  setConstraintSecondaryValues(initial_solution, false);
1012 
1014  setConstraintSecondaryValues(initial_solution, true);
1015 }
virtual void predictorCleanup(NumericVector< libMesh::Number > &ghosted_solution)
Perform cleanup tasks after application of predictor to solution vector.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
bool hasObjects(THREAD_ID tid=0) const
Convenience functions for determining if objects exist.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
virtual void deactivateAllMatrixTags()
Make matrices inactive.
Definition: SystemBase.C:1119
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
boundary_id_type BoundaryID
std::unique_ptr< NumericVector< Number > > solution
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
libMesh::System & _sys
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
processor_id_type processor_id() const
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.
void setKokkosInitialSolution()
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
void setConstraintSecondaryValues(NumericVector< Number > &solution, bool displaced)
Sets the value of constrained variables in the solution vector.
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ setKokkosInitialSolution()

void NonlinearSystemBase::setKokkosInitialSolution ( )

Referenced by setInitialSolution().

◆ setMooseKSPNormType()

void SolverSystem::setMooseKSPNormType ( MooseEnum  kspnorm)
inherited

Set the norm in which the linear convergence will be measured.

Parameters
kspnormThe required norm

Definition at line 94 of file SolverSystem.C.

Referenced by MoosePreconditioner::MoosePreconditioner().

95 {
96  if (kspnorm == "none")
98  else if (kspnorm == "preconditioned")
100  else if (kspnorm == "unpreconditioned")
102  else if (kspnorm == "natural")
104  else if (kspnorm == "default")
106  else
107  mooseError("Unknown ksp norm type specified.");
108 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Use whatever we have in PETSc.
Definition: MooseTypes.h:837
Moose::MooseKSPNormType _ksp_norm
KSP norm type.
Definition: SolverSystem.h:110

◆ setPCSide()

void SolverSystem::setPCSide ( MooseEnum  pcs)
inherited

Set the side on which the preconditioner is applied to.

Parameters
pcsThe required preconditioning side

Definition at line 79 of file SolverSystem.C.

Referenced by MoosePreconditioner::MoosePreconditioner().

80 {
81  if (pcs == "left")
83  else if (pcs == "right")
85  else if (pcs == "symmetric")
87  else if (pcs == "default")
89  else
90  mooseError("Unknown PC side specified.");
91 }
Moose::PCSideType _pc_side
Preconditioning side.
Definition: SolverSystem.h:108
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Use whatever we have in PETSc.
Definition: MooseTypes.h:825

◆ setPreconditioner()

void NonlinearSystemBase::setPreconditioner ( std::shared_ptr< MoosePreconditioner pc)

Sets a preconditioner.

Parameters
pcThe preconditioner to be set

Definition at line 3615 of file NonlinearSystemBase.C.

Referenced by SetupPreconditionerAction::act().

3616 {
3617  if (_preconditioner.get() != nullptr)
3618  mooseError("More than one active Preconditioner detected");
3619 
3620  _preconditioner = pc;
3621 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.

◆ setPredictor()

void NonlinearSystemBase::setPredictor ( std::shared_ptr< Predictor predictor)

Definition at line 1018 of file NonlinearSystemBase.C.

Referenced by SetupPredictorAction::act().

1019 {
1020  _predictor = predictor;
1021 }
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ setPreSMOResidual()

void NonlinearSystemBase::setPreSMOResidual ( bool  use)
inline

Set whether to evaluate the pre-SMO residual and use it in the subsequent relative convergence checks.

If set to true, an additional residual evaluation is performed before any solution-modifying object is executed, and before the initial (0-th nonlinear iteration) residual evaluation. Such residual is referred to as the pre-SMO residual. If the pre-SMO residual is evaluated, it is used in the subsequent relative convergence checks.

If set to false, no residual evaluation takes place before the initial residual evaluation, and the initial residual is used in the subsequent relative convergence checks. This mode is recommended for performance-critical code as it avoids the additional pre-SMO residual evaluation.

Definition at line 286 of file NonlinearSystemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

286 { _use_pre_smo_residual = use; }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.

◆ setPreviousNewtonSolution()

void NonlinearSystemBase::setPreviousNewtonSolution ( const NumericVector< Number > &  soln)
virtual

Definition at line 3851 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computePostCheck().

3852 {
3855 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ setSolution()

void SolverSystem::setSolution ( const NumericVector< Number > &  soln)
inherited

Set the solution to a given vector.

Parameters
solnThe vector which should be treated as the solution.

Definition at line 67 of file SolverSystem.C.

Referenced by FEProblemBase::computeDamping(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualType(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

68 {
69  _current_solution = &soln;
70 
72  associateVectorToTag(const_cast<NumericVector<Number> &>(soln), tag);
73 
74  if (_serialized_solution.get())
76 }
virtual TagID getVectorTagID(const TagName &tag_name) const
Get a TagID from a TagName.
Definition: SubProblem.C:203
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void serializeSolution()
Definition: SolverSystem.C:52
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ setSolutionUDot()

void NonlinearSystemBase::setSolutionUDot ( const NumericVector< Number > &  udot)
virtual

Set transient term used by residual and Jacobian evaluation.

Parameters
udottransient term
Note
If the calling sequence for residual evaluation was changed, this could become an explicit argument.

Definition at line 3591 of file NonlinearSystemBase.C.

3592 {
3593  *_u_dot = u_dot;
3594 }
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006

◆ setSolutionUDotDot()

void NonlinearSystemBase::setSolutionUDotDot ( const NumericVector< Number > &  udotdot)
virtual

Set transient term used by residual and Jacobian evaluation.

Parameters
udotdottransient term
Note
If the calling sequence for residual evaluation was changed, this could become an explicit argument.

Definition at line 3597 of file NonlinearSystemBase.C.

3598 {
3599  *_u_dotdot = u_dotdot;
3600 }
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008

◆ setSolutionUDotDotOld()

void NonlinearSystemBase::setSolutionUDotDotOld ( const NumericVector< Number > &  u_dotdot_old)
virtual

Definition at line 3609 of file NonlinearSystemBase.C.

3610 {
3611  *_u_dotdot_old = u_dotdot_old;
3612 }
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ setSolutionUDotOld()

void NonlinearSystemBase::setSolutionUDotOld ( const NumericVector< Number > &  u_dot_old)
virtual

Definition at line 3603 of file NonlinearSystemBase.C.

3604 {
3605  *_u_dot_old = u_dot_old;
3606 }
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011

◆ setupDampers()

void NonlinearSystemBase::setupDampers ( )

Setup damping stuff (called before we actually start)

Definition at line 3630 of file NonlinearSystemBase.C.

Referenced by preInit().

3631 {
3632  _increment_vec = &_sys.add_vector("u_increment", true, GHOSTED);
3633 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
libMesh::System & _sys
NumericVector< Number > * _increment_vec
increment vector

◆ setupDM()

void NonlinearSystemBase::setupDM ( )

Setup the PETSc DM object (when appropriate)

Definition at line 457 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::solve().

458 {
459  if (_fsp)
460  _fsp->setupDM();
461 }
virtual void setupDM()=0
setup the data management data structure that manages the field split
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ setupFiniteDifferencedPreconditioner()

virtual void NonlinearSystemBase::setupFiniteDifferencedPreconditioner ( )
pure virtual

◆ setupScalingData()

void NonlinearSystemBase::setupScalingData ( )
private

Setup group scaling containers.

Definition at line 3882 of file NonlinearSystemBase.C.

Referenced by computeScaling().

3883 {
3884  if (_auto_scaling_initd)
3885  return;
3886 
3887  // Want the libMesh count of variables, not MOOSE, e.g. I don't care about array variable counts
3888  const auto n_vars = system().n_vars();
3889 
3890  if (_scaling_group_variables.empty())
3891  {
3892  _var_to_group_var.reserve(n_vars);
3894 
3895  for (const auto var_number : make_range(n_vars))
3896  _var_to_group_var.emplace(var_number, var_number);
3897  }
3898  else
3899  {
3900  std::set<unsigned int> var_numbers, var_numbers_covered, var_numbers_not_covered;
3901  for (const auto var_number : make_range(n_vars))
3902  var_numbers.insert(var_number);
3903 
3905 
3906  for (const auto group_index : index_range(_scaling_group_variables))
3907  for (const auto & var_name : _scaling_group_variables[group_index])
3908  {
3909  if (!hasVariable(var_name) && !hasScalarVariable(var_name))
3910  mooseError("'",
3911  var_name,
3912  "', provided to the 'scaling_group_variables' parameter, does not exist in "
3913  "the nonlinear system.");
3914 
3915  const MooseVariableBase & var =
3916  hasVariable(var_name)
3917  ? static_cast<MooseVariableBase &>(getVariable(0, var_name))
3918  : static_cast<MooseVariableBase &>(getScalarVariable(0, var_name));
3919  auto map_pair = _var_to_group_var.emplace(var.number(), group_index);
3920  if (!map_pair.second)
3921  mooseError("Variable ", var_name, " is contained in multiple scaling grouplings");
3922  var_numbers_covered.insert(var.number());
3923  }
3924 
3925  std::set_difference(var_numbers.begin(),
3926  var_numbers.end(),
3927  var_numbers_covered.begin(),
3928  var_numbers_covered.end(),
3929  std::inserter(var_numbers_not_covered, var_numbers_not_covered.begin()));
3930 
3931  _num_scaling_groups = _scaling_group_variables.size() + var_numbers_not_covered.size();
3932 
3933  auto index = static_cast<unsigned int>(_scaling_group_variables.size());
3934  for (auto var_number : var_numbers_not_covered)
3935  _var_to_group_var.emplace(var_number, index++);
3936  }
3937 
3938  _variable_autoscaled.resize(n_vars, true);
3939  const auto & number_to_var_map = _vars[0].numberToVariableMap();
3940 
3942  for (const auto i : index_range(_variable_autoscaled))
3945  libmesh_map_find(number_to_var_map, i)->name()) !=
3947  _variable_autoscaled[i] = false;
3948 
3949  _auto_scaling_initd = true;
3950 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:30
std::vector< bool > _variable_autoscaled
Container to hold flag if variable is to participate in autoscaling.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
unsigned int number() const
Get variable number coming from libMesh.
std::vector< std::string > _ignore_variables_for_autoscaling
A container for variables that do not partipate in autoscaling.
std::size_t _num_scaling_groups
The number of scaling groups.
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
std::unordered_map< unsigned int, unsigned int > _var_to_group_var
A map from variable index to group variable index and it&#39;s associated (inverse) scaling factor...
unsigned int n_vars
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual MooseVariableScalar & getScalarVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a scalar variable with specified number.
Definition: SystemBase.C:145
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
IntRange< T > make_range(T beg, T end)
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
unsigned int n_vars() const
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876
std::vector< std::vector< std::string > > _scaling_group_variables
A container of variable groupings that can be used in scaling calculations.
auto index_range(const T &sizable)
Base variable class.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ setVariableGlobalDoFs()

void SystemBase::setVariableGlobalDoFs ( const std::string &  var_name)
inherited

set all the global dof indices for a variable

Parameters
var_nameThe name of the variable

Definition at line 186 of file SystemBase.C.

187 {
188  AllLocalDofIndicesThread aldit(_subproblem, {var_name});
190  Threads::parallel_reduce(elem_range, aldit);
191 
192  // Gather the dof indices across procs to get all the dof indices for var_name
193  aldit.dofIndicesSetUnion();
194 
195  const auto & all_dof_indices = aldit.getDofIndices();
196  _var_all_dof_indices.assign(all_dof_indices.begin(), all_dof_indices.end());
197 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
std::vector< dof_id_type > _var_all_dof_indices
Container for the dof indices of a given variable.
Definition: SystemBase.h:1064
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
Grab all the (possibly semi)local dof indices for the variables passed in, in the system passed in...
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ setVerboseFlag()

void SystemBase::setVerboseFlag ( const bool &  verbose)
inlineinherited

Sets the verbose flag.

Parameters
[in]verboseVerbose flag

Definition at line 134 of file SystemBase.h.

Referenced by Executioner::Executioner().

134 { _verbose = verbose; }
bool _verbose
True if printing out additional information.
Definition: SystemBase.h:1058

◆ shouldEvaluatePreSMOResidual()

bool NonlinearSystemBase::shouldEvaluatePreSMOResidual ( ) const

We offer the option to check convergence against the pre-SMO residual.

This method handles the logic as to whether we should perform such residual evaluation.

Returns
A boolean indicating whether we should evaluate the pre-SMO residual.

Definition at line 744 of file NonlinearSystemBase.C.

Referenced by preSMOResidual(), and NonlinearSystem::solve().

745 {
747  return false;
748 
749  // The legacy behavior (#10464) _always_ performs the pre-SMO residual evaluation
750  // regardless of whether it is needed.
751  //
752  // This is not ideal and has been fixed by #23472. This legacy option ensures a smooth transition
753  // to the new behavior. Modules and Apps that want to migrate to the new behavior should set this
754  // parameter to false.
755  if (_app.parameters().get<bool>("use_legacy_initial_residual_evaluation_behavior"))
756  return true;
757 
758  return _use_pre_smo_residual;
759 }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
Solving a linear problem.
Definition: MooseTypes.h:849
Moose::SolveType _type
Definition: SolverParams.h:19
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ sizeVariableMatrixData()

void SystemBase::sizeVariableMatrixData ( )
inherited

size the matrix data for each variable for the number of matrix tags we have

Definition at line 1719 of file SystemBase.C.

1720 {
1721  for (const auto & warehouse : _vars)
1722  for (const auto & [var_num, var_ptr] : warehouse.numberToVariableMap())
1723  var_ptr->sizeMatrixTagData();
1724 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ solution() [1/2]

NumericVector<Number>& SystemBase::solution ( )
inlineinherited

Definition at line 196 of file SystemBase.h.

Referenced by Adaptivity::adaptMesh(), TransientMultiApp::appTransferVector(), MooseEigenSystem::combineSystemSolution(), computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), computeJacobianInternal(), AuxiliarySystem::computeMortarNodalVars(), computeNodalBCs(), AuxiliarySystem::computeNodalVarsHelper(), computeResidualTags(), AuxiliarySystem::computeScalarVars(), constraintResiduals(), SystemBase::copyVars(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppScalarToAuxScalarTransfer::execute(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), NodalNormalsPreprocessor::execute(), NodalNormalsCorner::finalize(), NodalNormalsEvaluator::finalize(), NodalNormalsPreprocessor::finalize(), NodalNormalsCorner::initialize(), NodalNormalsEvaluator::initialize(), NodalNormalsPreprocessor::initialize(), MooseEigenSystem::initSystemSolution(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeNodalUserObjectsThread::onNode(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), Transient::relativeSolutionDifferenceNorm(), MultiApp::restore(), ElementSubdomainModifierBase::restoreOverriddenDofValues(), SystemBase::restoreSolutions(), SecantSolve::saveVariableValues(), SteffensenSolve::saveVariableValues(), PicardSolve::saveVariableValues(), MooseEigenSystem::scaleSystemSolution(), AuxiliarySystem::serializeSolution(), setConstraintSecondaryValues(), setInitialSolution(), DisplacedSystem::solutionInternal(), NonlinearEigenSystem::solve(), MultiAppDofCopyTransfer::transfer(), SecantSolve::transformVariables(), SteffensenSolve::transformVariables(), PicardSolve::transformVariables(), AuxiliarySystem::variableWiseRelativeSolutionDifferenceNorm(), and SystemBase::zeroVariables().

196 { return solutionState(0); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solution() [2/2]

const NumericVector<Number>& SystemBase::solution ( ) const
inlineinherited

Definition at line 199 of file SystemBase.h.

199 { return solutionState(0); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionInternal()

NumericVector< Number > & SolverSystem::solutionInternal ( ) const
inlinefinaloverrideprotectedvirtualinherited

Internal getter for solution owned by libMesh.

Implements SystemBase.

Definition at line 123 of file SolverSystem.h.

124 {
125  return *system().solution;
126 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::unique_ptr< NumericVector< Number > > solution

◆ solutionOld() [1/2]

NumericVector<Number>& SystemBase::solutionOld ( )
inlineinherited

◆ solutionOld() [2/2]

const NumericVector<Number>& SystemBase::solutionOld ( ) const
inlineinherited

Definition at line 200 of file SystemBase.h.

200 { return solutionState(1); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionOlder() [1/2]

NumericVector<Number>& SystemBase::solutionOlder ( )
inlineinherited

Definition at line 198 of file SystemBase.h.

Referenced by MooseEigenSystem::combineSystemSolution(), CentralDifference::computeTimeDerivatives(), ActivateElementsUserObjectBase::initSolutions(), MooseVariableScalar::reinit(), and ElementSubdomainModifierBase::setOldAndOlderSolutions().

198 { return solutionState(2); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionOlder() [2/2]

const NumericVector<Number>& SystemBase::solutionOlder ( ) const
inlineinherited

Definition at line 201 of file SystemBase.h.

201 { return solutionState(2); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionPreviousNewton() [1/2]

const NumericVector< Number > * SystemBase::solutionPreviousNewton ( ) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1355 of file SystemBase.C.

Referenced by AuxiliarySystem::copyCurrentIntoPreviousNL(), SystemBase::copyPreviousNonlinearSolutions(), and SystemBase::restoreSolutions().

1356 {
1359  else
1360  return nullptr;
1361 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionPreviousNewton() [2/2]

NumericVector< Number > * SystemBase::solutionPreviousNewton ( )
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1346 of file SystemBase.C.

1347 {
1350  else
1351  return nullptr;
1352 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionState() [1/2]

NumericVector< Number > & SystemBase::solutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
)
virtualinherited

Get a state of the solution (0 = current, 1 = old, 2 = older, etc).

If the state does not exist, it will be initialized in addition to any newer states before it that have not been initialized.

Reimplemented in DisplacedSystem.

Definition at line 1431 of file SystemBase.C.

Referenced by SystemBase::copyOldSolutions(), SystemBase::copyPreviousFixedPointSolutions(), SystemBase::copyPreviousNonlinearSolutions(), PointwiseRenormalizeVector::execute(), PointwiseRenormalizeVector::finalize(), MooseVariableBase::getSolution(), SystemBase::restoreOldSolutions(), SystemBase::saveOldSolutions(), SystemBase::solution(), SystemBase::solutionOld(), SystemBase::solutionOlder(), and DisplacedSystem::solutionState().

1433 {
1434  if (!hasSolutionState(state, iteration_type))
1435  needSolutionState(state, iteration_type);
1436  return *_solution_states[static_cast<unsigned short>(iteration_type)][state];
1437 }
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
virtual void needSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
Registers that the solution state state is needed.
Definition: SystemBase.C:1450
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ solutionState() [2/2]

const NumericVector< Number > & SystemBase::solutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
) const
virtualinherited

Get a state of the solution (0 = current, 1 = old, 2 = older, etc).

Reimplemented in DisplacedSystem.

Definition at line 1402 of file SystemBase.C.

1404 {
1405  if (!hasSolutionState(state, iteration_type))
1406  mooseError("For iteration type '",
1407  Moose::stringify(iteration_type),
1408  "': solution state ",
1409  state,
1410  " was requested in ",
1411  name(),
1412  " but only up to state ",
1413  (_solution_states[static_cast<unsigned short>(iteration_type)].size() == 0)
1414  ? 0
1415  : _solution_states[static_cast<unsigned short>(iteration_type)].size() - 1,
1416  " is available.");
1417 
1418  const auto & solution_states = _solution_states[static_cast<unsigned short>(iteration_type)];
1419 
1420  if (state == 0)
1421  mooseAssert(solution_states[0] == &solutionInternal(), "Inconsistent current solution");
1422  else
1423  mooseAssert(solution_states[state] ==
1424  &getVector(oldSolutionStateVectorName(state, iteration_type)),
1425  "Inconsistent solution state");
1426 
1427  return *solution_states[state];
1428 }
virtual NumericVector< Number > & solutionInternal() const =0
Internal getter for solution owned by libMesh.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
TagName oldSolutionStateVectorName(const unsigned int, Moose::SolutionIterationType iteration_type) const
Gets the vector name used for an old (not current) solution state.
Definition: SystemBase.C:1381
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionStateParallelType()

libMesh::ParallelType SystemBase::solutionStateParallelType ( const unsigned int  state,
const Moose::SolutionIterationType  iteration_type 
) const
inherited

Returns the parallel type of the given solution state.

Definition at line 1440 of file SystemBase.C.

Referenced by SystemBase::needSolutionState().

1442 {
1443  if (!hasSolutionState(state, iteration_type))
1444  mooseError("solutionStateParallelType() may only be called if the solution state exists.");
1445 
1446  return _solution_states[static_cast<unsigned short>(iteration_type)][state]->type();
1447 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ solutionStatesInitialized()

bool SystemBase::solutionStatesInitialized ( ) const
inlineinherited

Whether or not the solution states have been initialized via initSolutionState()

After the solution states have been initialized, additional solution states cannot be added.

Definition at line 896 of file SystemBase.h.

Referenced by ScalarKernelBase::uOld(), and AuxScalarKernel::uOld().

bool _solution_states_initialized
Whether or not the solution states have been initialized.
Definition: SystemBase.h:1061

◆ solutionUDot() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDot ( )
inlinevirtualinherited

◆ solutionUDot() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDot ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 265 of file SystemBase.h.

265 { return _u_dot; }
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006

◆ solutionUDotDot() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotDot ( )
inlinevirtualinherited

◆ solutionUDotDot() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotDot ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 266 of file SystemBase.h.

266 { return _u_dotdot; }
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008

◆ solutionUDotDotOld() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotDotOld ( )
inlinevirtualinherited

◆ solutionUDotDotOld() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotDotOld ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 268 of file SystemBase.h.

268 { return _u_dotdot_old; }
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ solutionUDotOld() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotOld ( )
inlinevirtualinherited

◆ solutionUDotOld() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotOld ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 267 of file SystemBase.h.

267 { return _u_dot_old; }
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011

◆ solve()

virtual void NonlinearSystemBase::solve ( )
overridepure virtual

◆ stopSolve()

virtual void SolverSystem::stopSolve ( const ExecFlagType exec_flag,
const std::set< TagID > &  vector_tags_to_close 
)
pure virtualinherited

◆ subdomainSetup() [1/3]

void SystemBase::subdomainSetup

Definition at line 1592 of file SystemBase.C.

1593 {
1594  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1595  _vars[tid].subdomainSetup();
1596 }
unsigned int n_threads()
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void subdomainSetup()
Definition: SystemBase.C:1592
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ subdomainSetup() [2/3]

void NonlinearSystemBase::subdomainSetup ( SubdomainID  subdomain,
THREAD_ID  tid 
)
virtual

Called from assembling when we hit a new subdomain.

Parameters
subdomainID of the new subdomain
tidThread ID

Definition at line 1024 of file NonlinearSystemBase.C.

1025 {
1027 
1028  _kernels.subdomainSetup(subdomain, tid);
1029  _nodal_kernels.subdomainSetup(subdomain, tid);
1030  _element_dampers.subdomainSetup(subdomain, tid);
1031  _nodal_dampers.subdomainSetup(subdomain, tid);
1032 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< KernelBase > _kernels
virtual void subdomainSetup()
Definition: SystemBase.C:1592
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
virtual void subdomainSetup(THREAD_ID tid=0) const

◆ subdomainSetup() [3/3]

void SystemBase::subdomainSetup ( )
virtualinherited

Reimplemented in AuxiliarySystem.

Definition at line 1592 of file SystemBase.C.

Referenced by AuxiliarySystem::subdomainSetup(), and subdomainSetup().

1593 {
1594  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1595  _vars[tid].subdomainSetup();
1596 }
unsigned int n_threads()
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void subdomainSetup()
Definition: SystemBase.C:1592
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ subproblem() [1/2]

SubProblem& SystemBase::subproblem ( )
inlineinherited

◆ subproblem() [2/2]

const SubProblem& SystemBase::subproblem ( ) const
inlineinherited

Definition at line 102 of file SystemBase.h.

102 { return _subproblem; }
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983

◆ system() [1/2]

virtual libMesh::System& NonlinearSystemBase::system ( )
inlineoverridevirtual

Get the reference to the libMesh system.

Implements SystemBase.

Definition at line 695 of file NonlinearSystemBase.h.

Referenced by Adaptivity::adaptMesh(), PhysicsBasedPreconditioner::addSystem(), PhysicsBasedPreconditioner::apply(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), computeScaling(), PseudoTimestep::currentResidualNorm(), DMMooseFunction(), DMMooseJacobian(), VariableResidual::execute(), getResidualNonTimeVector(), getResidualTimeVector(), NonlinearSystem::getSNES(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), ComputeJacobianThread::postElement(), residualGhosted(), Moose::PetscSupport::setLineSearchFromParams(), PhysicsBasedPreconditioner::setup(), setupScalingData(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), NonlinearSystem::solve(), NonlinearEigenSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), FieldSplitPreconditioner::system(), turnOffJacobian(), ReferenceResidualConvergence::updateReferenceResidual(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and Console::writeVariableNorms().

695 { return _sys; }
libMesh::System & _sys

◆ system() [2/2]

virtual const libMesh::System& NonlinearSystemBase::system ( ) const
inlineoverridevirtual

Implements SystemBase.

Definition at line 696 of file NonlinearSystemBase.h.

696 { return _sys; }
libMesh::System & _sys

◆ systemMatrixTag()

TagID NonlinearSystemBase::systemMatrixTag ( ) const
inlineoverridevirtual

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeKernelVariableNames()

std::vector< std::string > NonlinearSystemBase::timeKernelVariableNames ( )
overridevirtual

Returns the names of the variables that have time derivative kernels in the system.

Implements SolverSystem.

Definition at line 3814 of file NonlinearSystemBase.C.

3815 {
3816  std::vector<std::string> variable_names;
3817  const auto & time_kernels = _kernels.getVectorTagObjectWarehouse(timeVectorTag(), 0);
3818  if (time_kernels.hasActiveObjects())
3819  for (const auto & kernel : time_kernels.getObjects())
3820  variable_names.push_back(kernel->variable().name());
3821 
3822  return variable_names;
3823 }
MooseObjectTagWarehouse< KernelBase > _kernels
TagID timeVectorTag() const override
Ideally, we should not need this API.
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...

◆ timestepSetup()

void NonlinearSystemBase::timestepSetup ( )
overridevirtual

Reimplemented from SystemBase.

Definition at line 335 of file NonlinearSystemBase.C.

336 {
338 
339  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
340  {
341  _kernels.timestepSetup(tid);
344  if (_doing_dg)
350 
351  if (_fe_problem.haveFV())
352  {
353  std::vector<FVFluxBC *> bcs;
355  .query()
356  .template condition<AttribSystem>("FVFluxBC")
357  .template condition<AttribThread>(tid)
358  .queryInto(bcs);
359 
360  std::vector<FVInterfaceKernel *> iks;
362  .query()
363  .template condition<AttribSystem>("FVInterfaceKernel")
364  .template condition<AttribThread>(tid)
365  .queryInto(iks);
366 
367  std::vector<FVFluxKernel *> kernels;
369  .query()
370  .template condition<AttribSystem>("FVFluxKernel")
371  .template condition<AttribThread>(tid)
372  .queryInto(kernels);
373 
374  for (auto * bc : bcs)
375  bc->timestepSetup();
376  for (auto * ik : iks)
377  ik->timestepSetup();
378  for (auto * kernel : kernels)
379  kernel->timestepSetup();
380  }
381  }
386 
387 #ifdef MOOSE_KOKKOS_ENABLED
392 #endif
393 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
TheWarehouse & theWarehouse() const
virtual void timestepSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void timestepSetup()
Definition: SystemBase.C:1578

◆ timeVectorTag()

TagID NonlinearSystemBase::timeVectorTag ( ) const
inlineoverridevirtual

Ideally, we should not need this API.

There exists a really bad API "addCachedResidualDirectly " in FEProblem and DisplacedProblem This API should go away once addCachedResidualDirectly is removed in the future Return Tag ID for Time

Reimplemented from SystemBase.

Definition at line 704 of file NonlinearSystemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), containsTimeKernel(), and timeKernelVariableNames().

704 { return _Re_time_tag; }
TagID _Re_time_tag
Tag for time contribution residual.

◆ turnOffJacobian()

void NonlinearSystemBase::turnOffJacobian ( )
virtual

Turn off the Jacobian (must be called before equation system initialization)

Reimplemented in NonlinearEigenSystem.

Definition at line 217 of file NonlinearSystemBase.C.

218 {
220  nonlinearSolver()->jacobian = NULL;
221 }
virtual libMesh::NonlinearSolver< Number > * nonlinearSolver()=0
void set_basic_system_only()
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ update()

void SystemBase::update ( )
inherited

◆ updateActive()

void NonlinearSystemBase::updateActive ( THREAD_ID  tid)

Update active objects of Warehouses owned by NonlinearSystemBase.

Definition at line 3347 of file NonlinearSystemBase.C.

3348 {
3355  _kernels.updateActive(tid);
3357 
3358  if (tid == 0)
3359  {
3366 
3367 #ifdef MOOSE_KOKKOS_ENABLED
3373 #endif
3374  }
3375 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
void updateActive(THREAD_ID tid=0) override
Update the various active lists.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ useFieldSplitPreconditioner()

void NonlinearSystemBase::useFieldSplitPreconditioner ( FieldSplitPreconditionerBase fsp)
inline

If called with a non-null object true this system will use a field split preconditioner matrix.

Definition at line 494 of file NonlinearSystemBase.h.

Referenced by FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl().

494 { _fsp = fsp; }
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ useFiniteDifferencedPreconditioner()

void NonlinearSystemBase::useFiniteDifferencedPreconditioner ( bool  use = true)
inline

If called with true this system will use a finite differenced form of the Jacobian as the preconditioner.

Definition at line 486 of file NonlinearSystemBase.h.

Referenced by FiniteDifferencePreconditioner::FiniteDifferencePreconditioner().

487  {
489  }
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.

◆ usePreSMOResidual()

const bool& NonlinearSystemBase::usePreSMOResidual ( ) const
inline

Whether we are using pre-SMO residual in relative convergence checks.

Definition at line 289 of file NonlinearSystemBase.h.

Referenced by Console::outputSystemInformation(), and referenceResidual().

289 { return _use_pre_smo_residual; }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.

◆ validParams()

InputParameters PerfGraphInterface::validParams ( )
staticinherited

Definition at line 16 of file PerfGraphInterface.C.

Referenced by Convergence::validParams().

17 {
19  return params;
20 }
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
InputParameters emptyInputParameters()

◆ varKind()

Moose::VarKindType SystemBase::varKind ( ) const
inlineinherited
Returns
the type of variables this system holds, e.g. nonlinear or auxiliary

Definition at line 924 of file SystemBase.h.

Referenced by Coupleable::coupled().

924 { return _var_kind; }
Moose::VarKindType _var_kind
default kind of variables in this system
Definition: SystemBase.h:1038

◆ zeroTaggedVector()

void SystemBase::zeroTaggedVector ( const TagID  tag)
inherited

Zero vector with the given tag.

Definition at line 674 of file SystemBase.C.

Referenced by SystemBase::zeroTaggedVectors().

675 {
676  if (!_subproblem.vectorTagExists(tag))
677  mooseError("Cannot zero vector with TagID ",
678  tag,
679  " in system '",
680  name(),
681  "' because that tag does not exist in the problem");
682  else if (!hasVector(tag))
683  mooseError("Cannot zero vector tag with name '",
685  "' in system '",
686  name(),
687  "' because there is no vector associated with that tag");
689  getVector(tag).zero();
690 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
bool vectorTagNotZeroed(const TagID tag) const
Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors ar...
Definition: SubProblem.C:155
virtual void zero()=0
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:221
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ zeroTaggedVectors()

void SystemBase::zeroTaggedVectors ( const std::set< TagID > &  tags)
inherited

Zero all vectors for given tags.

Definition at line 693 of file SystemBase.C.

Referenced by computeResidualAndJacobianTags(), and computeResidualTags().

694 {
695  for (const auto tag : tags)
696  zeroTaggedVector(tag);
697 }
void zeroTaggedVector(const TagID tag)
Zero vector with the given tag.
Definition: SystemBase.C:674

◆ zeroVariables()

void SystemBase::zeroVariables ( std::vector< std::string > &  vars_to_be_zeroed)
virtualinherited

Zero out the solution for the list of variables passed in.

@ param vars_to_be_zeroed The variable names in this vector will have their solutions set to zero after this call

Reimplemented in DisplacedSystem.

Definition at line 200 of file SystemBase.C.

Referenced by DisplacedSystem::zeroVariables(), SystemBase::zeroVariablesForJacobian(), and SystemBase::zeroVariablesForResidual().

201 {
202  if (vars_to_be_zeroed.size() > 0)
203  {
205 
206  auto problem = dynamic_cast<FEProblemBase *>(&_subproblem);
207  if (!problem)
208  mooseError("System needs to be registered in FEProblemBase for using zeroVariables.");
209 
210  AllLocalDofIndicesThread aldit(*problem, vars_to_be_zeroed, true);
212  Threads::parallel_reduce(elem_range, aldit);
213 
214  const auto & dof_indices_to_zero = aldit.getDofIndices();
215 
216  solution.close();
217 
218  for (const auto & dof : dof_indices_to_zero)
219  solution.set(dof, 0);
220 
221  solution.close();
222 
223  // Call update to update the current_local_solution for this system
224  system().update();
225  }
226 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1276
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Grab all the (possibly semi)local dof indices for the variables passed in, in the system passed in...
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual void close()=0
virtual void update()
MooseMesh & _mesh
Definition: SystemBase.h:991
virtual void set(const numeric_index_type i, const T value)=0

◆ zeroVariablesForJacobian()

void SystemBase::zeroVariablesForJacobian ( )
virtualinherited

Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on Jacobian evaluation by a call to addVariableToZeroOnResidual()

Definition at line 235 of file SystemBase.C.

236 {
238 }
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
Definition: SystemBase.h:1003
virtual void zeroVariables(std::vector< std::string > &vars_to_be_zeroed)
Zero out the solution for the list of variables passed in.
Definition: SystemBase.C:200

◆ zeroVariablesForResidual()

void SystemBase::zeroVariablesForResidual ( )
virtualinherited

Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on residual evaluation by a call to addVariableToZeroOnResidual()

Definition at line 229 of file SystemBase.C.

230 {
232 }
std::vector< std::string > _vars_to_be_zeroed_on_residual
Definition: SystemBase.h:1002
virtual void zeroVariables(std::vector< std::string > &vars_to_be_zeroed)
Zero out the solution for the list of variables passed in.
Definition: SystemBase.C:200

◆ zeroVectorForResidual()

void NonlinearSystemBase::zeroVectorForResidual ( const std::string &  vector_name)

Definition at line 789 of file NonlinearSystemBase.C.

790 {
791  for (unsigned int i = 0; i < _vecs_to_zero_for_residual.size(); ++i)
792  if (vector_name == _vecs_to_zero_for_residual[i])
793  return;
794 
795  _vecs_to_zero_for_residual.push_back(vector_name);
796 }
std::vector< std::string > _vecs_to_zero_for_residual
vectors that will be zeroed before a residual computation

Member Data Documentation

◆ _active_tagged_matrices

std::unordered_map<TagID, libMesh::SparseMatrix<Number> *> SystemBase::_active_tagged_matrices
protectedinherited

Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map. We use a map instead of a vector so that users can easily add and remove to this container with calls to (de)activateMatrixTag.

Definition at line 1025 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), SystemBase::deactivateAllMatrixTags(), and SystemBase::reinitElem().

◆ _ad_preset_nodal_bcs

MooseObjectWarehouse<ADDirichletBCBase> NonlinearSystemBase::_ad_preset_nodal_bcs
protected

Definition at line 928 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), setInitialSolution(), and updateActive().

◆ _add_implicit_geometric_coupling_entries_to_jacobian

bool NonlinearSystemBase::_add_implicit_geometric_coupling_entries_to_jacobian
protected

Whether or not to add implicit geometric couplings to the Jacobian for FDP.

Definition at line 977 of file NonlinearSystemBase.h.

Referenced by addImplicitGeometricCouplingEntriesToJacobian(), augmentSparsity(), and computeJacobianInternal().

◆ _app

MooseApp& SystemBase::_app
protectedinherited

◆ _assemble_constraints_separately

bool NonlinearSystemBase::_assemble_constraints_separately
protected

Whether or not to assemble the residual and Jacobian after the application of each constraint.

Definition at line 980 of file NonlinearSystemBase.h.

Referenced by assembleConstraintsSeparately(), constraintJacobians(), and constraintResiduals().

◆ _auto_scaling_initd

bool NonlinearSystemBase::_auto_scaling_initd
private

Whether we've initialized the automatic scaling data structures.

Definition at line 1084 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _automatic_scaling

bool SystemBase::_automatic_scaling
protectedinherited

Whether to automatically scale the variables.

Definition at line 1055 of file SystemBase.h.

Referenced by SystemBase::automaticScaling(), initialSetup(), and preSolve().

◆ _compute_scaling_once

bool NonlinearSystemBase::_compute_scaling_once
protected

Whether the scaling factors should only be computed once at the beginning of the simulation through an extra Jacobian evaluation.

If this is set to false, then the scaling factors will be computed during an extra Jacobian evaluation at the beginning of every time step.

Definition at line 1035 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and computeScalingOnce().

◆ _computed_scaling

bool NonlinearSystemBase::_computed_scaling
protected

Flag used to indicate whether we have already computed the scaling Jacobian.

Definition at line 1030 of file NonlinearSystemBase.h.

Referenced by computedScalingJacobian(), and computeScaling().

◆ _computing_pre_smo_residual

bool NonlinearSystemBase::_computing_pre_smo_residual
protected

Definition at line 1004 of file NonlinearSystemBase.h.

Referenced by computingPreSMOResidual(), and NonlinearSystem::solve().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), InversePowerMethod::init(), NonlinearEigen::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), NonlinearSystem::solve(), FixedPointSolve::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _constraints

ConstraintWarehouse NonlinearSystemBase::_constraints
protected

◆ _current_l_its

std::vector<unsigned int> NonlinearSystemBase::_current_l_its

Definition at line 750 of file NonlinearSystemBase.h.

Referenced by SolutionHistory::output(), and preSolve().

◆ _current_nl_its

unsigned int NonlinearSystemBase::_current_nl_its

◆ _current_solution

const NumericVector<Number>* SolverSystem::_current_solution
protectedinherited

◆ _debugging_residuals

bool NonlinearSystemBase::_debugging_residuals
protected

true if debugging residuals

Definition at line 985 of file NonlinearSystemBase.h.

Referenced by computeResidualTags(), and debuggingResiduals().

◆ _dg_kernels

MooseObjectTagWarehouse<DGKernelBase> NonlinearSystemBase::_dg_kernels
protected

◆ _dirac_kernels

MooseObjectTagWarehouse<DiracKernelBase> NonlinearSystemBase::_dirac_kernels
protected

◆ _displaced_mortar_functors

std::unordered_map<std::pair<BoundaryID, BoundaryID>, ComputeMortarFunctor> NonlinearSystemBase::_displaced_mortar_functors
private

Functors for computing displaced mortar constraints.

Definition at line 1078 of file NonlinearSystemBase.h.

Referenced by initialSetup(), mortarConstraints(), and reinitMortarFunctors().

◆ _doing_dg

bool NonlinearSystemBase::_doing_dg
protected

true if DG is active (optimization reasons)

Definition at line 988 of file NonlinearSystemBase.h.

Referenced by addDGKernel(), customSetup(), doingDG(), initialSetup(), jacobianSetup(), needSubdomainMaterialOnSide(), residualSetup(), and timestepSetup().

◆ _du_dot_du

Number NonlinearSystemBase::_du_dot_du
protected

\( {du^dot}\over{du} \)

Definition at line 884 of file NonlinearSystemBase.h.

◆ _du_dotdot_du

Number NonlinearSystemBase::_du_dotdot_du
protected

\( {du^dotdot}\over{du} \)

Definition at line 886 of file NonlinearSystemBase.h.

◆ _element_dampers

MooseObjectWarehouse<ElementDamper> NonlinearSystemBase::_element_dampers
protected

◆ _factory

Factory& SystemBase::_factory
protectedinherited

◆ _fdcoloring

MatFDColoring NonlinearSystemBase::_fdcoloring
protected

◆ _fe_problem

FEProblemBase& SystemBase::_fe_problem
protectedinherited

the governing finite element/volume problem

Definition at line 986 of file SystemBase.h.

Referenced by addBoundaryCondition(), addDGKernel(), addDiracKernel(), SystemBase::addDotVectors(), addHDGKernel(), addInterfaceKernel(), addKernel(), addNodalKernel(), addScalarKernel(), addSplit(), assembleScalingVector(), augmentSparsity(), AuxiliarySystem::AuxiliarySystem(), SolverSystem::checkInvalidSolution(), checkKernelCoverage(), AuxiliarySystem::clearScalarVariableCoupleableTags(), SolverSystem::compute(), AuxiliarySystem::compute(), computeDamping(), computeDiracContributions(), AuxiliarySystem::computeElementalVarsHelper(), LinearSystem::computeGradients(), computeJacobian(), computeJacobianBlocks(), computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), LinearSystem::computeLinearSystemTags(), AuxiliarySystem::computeMortarNodalVars(), computeNodalBCs(), computeNodalBCsResidualAndJacobian(), AuxiliarySystem::computeNodalVarsHelper(), computeResidualAndJacobianInternal(), computeResidualInternal(), computeResidualTags(), computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), computeScaling(), NonlinearSystem::computeScalingJacobian(), NonlinearSystem::computeScalingResidual(), constraintJacobians(), constraintResiduals(), LinearSystem::containsTimeKernel(), NonlinearSystem::converged(), customSetup(), MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), enforceNodalConstraintsJacobian(), enforceNodalConstraintsResidual(), SystemBase::feProblem(), getResidualNonTimeVector(), getResidualTimeVector(), LinearSystem::initialSetup(), initialSetup(), jacobianSetup(), LinearSystem::LinearSystem(), NonlinearSystemBase(), overwriteNodeFace(), NonlinearSystem::potentiallySetupFiniteDifferencing(), preInit(), reinitNodeFace(), NonlinearSystem::residualAndJacobianTogether(), residualSetup(), setConstraintSecondaryValues(), setInitialSolution(), AuxiliarySystem::setScalarVariableCoupleableTags(), shouldEvaluatePreSMOResidual(), NonlinearSystem::solve(), and timestepSetup().

◆ _final_residual

Real NonlinearSystemBase::_final_residual
protected

Definition at line 999 of file NonlinearSystemBase.h.

Referenced by finalNonlinearResidual(), and NonlinearSystem::solve().

◆ _fsp

FieldSplitPreconditionerBase* NonlinearSystemBase::_fsp
protected

The field split preconditioner if this sytem is using one.

Definition at line 974 of file NonlinearSystemBase.h.

Referenced by getFieldSplitPreconditioner(), haveFieldSplitPreconditioner(), setupDM(), and useFieldSplitPreconditioner().

◆ _general_dampers

MooseObjectWarehouse<GeneralDamper> NonlinearSystemBase::_general_dampers
protected

◆ _has_diag_save_in

bool NonlinearSystemBase::_has_diag_save_in
protected

◆ _has_nodalbc_diag_save_in

bool NonlinearSystemBase::_has_nodalbc_diag_save_in
protected

If there is a nodal BC having diag_save_in.

Definition at line 1025 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), computeJacobianInternal(), and hasDiagSaveIn().

◆ _has_nodalbc_save_in

bool NonlinearSystemBase::_has_nodalbc_save_in
protected

If there is a nodal BC having save_in.

Definition at line 1022 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), computeResidualTags(), and hasSaveIn().

◆ _has_save_in

bool NonlinearSystemBase::_has_save_in
protected

◆ _hybridized_kernels

MooseObjectTagWarehouse<HDGKernel> NonlinearSystemBase::_hybridized_kernels
protected

Definition at line 917 of file NonlinearSystemBase.h.

Referenced by addHDGKernel(), and getHDGKernelWarehouse().

◆ _ignore_variables_for_autoscaling

std::vector<std::string> NonlinearSystemBase::_ignore_variables_for_autoscaling
protected

A container for variables that do not partipate in autoscaling.

Definition at line 1051 of file NonlinearSystemBase.h.

Referenced by ignoreVariablesForAutoscaling(), and setupScalingData().

◆ _increment_vec

NumericVector<Number>* NonlinearSystemBase::_increment_vec
protected

◆ _initial_residual

Real NonlinearSystemBase::_initial_residual
protected

The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanation.

Definition at line 1009 of file NonlinearSystemBase.h.

Referenced by initialResidual(), and setInitialResidual().

◆ _integrated_bcs

MooseObjectTagWarehouse<IntegratedBCBase> NonlinearSystemBase::_integrated_bcs
protected

◆ _interface_kernels

MooseObjectTagWarehouse<InterfaceKernelBase> NonlinearSystemBase::_interface_kernels
protected

◆ _Ke_non_time_tag

TagID NonlinearSystemBase::_Ke_non_time_tag
protected

Tag for non-time contribution Jacobian.

Definition at line 909 of file NonlinearSystemBase.h.

◆ _Ke_system_tag

TagID NonlinearSystemBase::_Ke_system_tag
protected

Tag for system contribution Jacobian.

Definition at line 912 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase(), and systemMatrixTag().

◆ _kernels

MooseObjectTagWarehouse<KernelBase> NonlinearSystemBase::_kernels
protected

◆ _kokkos_integrated_bcs

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_integrated_bcs
protected

◆ _kokkos_kernels

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_kernels
protected

Kokkos residual object warhouses

Definition at line 934 of file NonlinearSystemBase.h.

Referenced by checkKernelCoverage(), customSetup(), initialSetup(), jacobianSetup(), residualSetup(), timestepSetup(), and updateActive().

◆ _kokkos_nodal_bcs

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_nodal_bcs
protected

◆ _kokkos_nodal_kernels

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_nodal_kernels
protected

◆ _kokkos_preset_nodal_bcs

MooseObjectWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_preset_nodal_bcs
protected

Definition at line 937 of file NonlinearSystemBase.h.

Referenced by setInitialSolution(), and updateActive().

◆ _ksp_norm

Moose::MooseKSPNormType SolverSystem::_ksp_norm
protectedinherited

KSP norm type.

Definition at line 110 of file SolverSystem.h.

Referenced by SolverSystem::getMooseKSPNormType(), and SolverSystem::setMooseKSPNormType().

◆ _last_nl_rnorm

Real NonlinearSystemBase::_last_nl_rnorm

◆ _matrix_tag_active_flags

std::vector<bool> SystemBase::_matrix_tag_active_flags
protectedinherited

Active flags for tagged matrices.

Definition at line 1027 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), SystemBase::deactivateAllMatrixTags(), and SystemBase::matrixTagActive().

◆ _max_var_n_dofs_per_elem

size_t SystemBase::_max_var_n_dofs_per_elem
protectedinherited

Maximum number of dofs for any one variable on any one element.

Definition at line 1043 of file SystemBase.h.

Referenced by SystemBase::assignMaxVarNDofsPerElem(), and SystemBase::getMaxVarNDofsPerElem().

◆ _max_var_n_dofs_per_node

size_t SystemBase::_max_var_n_dofs_per_node
protectedinherited

Maximum number of dofs for any one variable on any one node.

Definition at line 1046 of file SystemBase.h.

Referenced by SystemBase::assignMaxVarNDofsPerNode(), and SystemBase::getMaxVarNDofsPerNode().

◆ _max_var_number

unsigned int SystemBase::_max_var_number
protectedinherited

Maximum variable number.

Definition at line 1000 of file SystemBase.h.

Referenced by SystemBase::addVariable(), and SystemBase::getMaxVariableNumber().

◆ _mesh

MooseMesh& SystemBase::_mesh
protectedinherited

◆ _n_iters

unsigned int NonlinearSystemBase::_n_iters
protected

Definition at line 993 of file NonlinearSystemBase.h.

Referenced by nNonlinearIterations(), and NonlinearSystem::solve().

◆ _n_linear_iters

unsigned int NonlinearSystemBase::_n_linear_iters
protected

Definition at line 994 of file NonlinearSystemBase.h.

Referenced by nLinearIterations(), and NonlinearSystem::solve().

◆ _n_residual_evaluations

unsigned int NonlinearSystemBase::_n_residual_evaluations
protected

Total number of residual evaluations that have been performed.

Definition at line 997 of file NonlinearSystemBase.h.

Referenced by computeResidualTags(), and nResidualEvaluations().

◆ _name

std::string SystemBase::_name
protectedinherited

The name of this system.

Definition at line 993 of file SystemBase.h.

◆ _need_residual_ghosted

bool NonlinearSystemBase::_need_residual_ghosted
protected

Whether or not a ghosted copy of the residual needs to be made.

Definition at line 983 of file NonlinearSystemBase.h.

Referenced by computeResidualInternal(), computeResidualTags(), constraintResiduals(), getResidualNonTimeVector(), getResidualTimeVector(), and residualGhosted().

◆ _nl_matrix_tags

std::set<TagID> NonlinearSystemBase::_nl_matrix_tags
protected

Matrix tags to temporarily store all tags associated with the current system.

Definition at line 895 of file NonlinearSystemBase.h.

Referenced by computeJacobian(), and computeJacobianBlocks().

◆ _nl_vector_tags

std::set<TagID> NonlinearSystemBase::_nl_vector_tags
protected

Vector tags to temporarily store all tags associated with the current system.

Definition at line 892 of file NonlinearSystemBase.h.

Referenced by computeResidualTag().

◆ _nodal_bcs

MooseObjectTagWarehouse<NodalBCBase> NonlinearSystemBase::_nodal_bcs
protected

◆ _nodal_dampers

MooseObjectWarehouse<NodalDamper> NonlinearSystemBase::_nodal_dampers
protected

◆ _nodal_kernels

MooseObjectTagWarehouse<NodalKernelBase> NonlinearSystemBase::_nodal_kernels
protected

◆ _num_residual_evaluations

unsigned int NonlinearSystemBase::_num_residual_evaluations

Definition at line 591 of file NonlinearSystemBase.h.

◆ _num_scaling_groups

std::size_t NonlinearSystemBase::_num_scaling_groups
private

The number of scaling groups.

Definition at line 1090 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _numbered_vars

std::vector<std::vector<MooseVariableFieldBase *> > SystemBase::_numbered_vars
protectedinherited

Map variable number to its pointer.

Definition at line 1052 of file SystemBase.h.

Referenced by SystemBase::addVariable(), and SystemBase::getVariable().

◆ _off_diagonals_in_auto_scaling

bool NonlinearSystemBase::_off_diagonals_in_auto_scaling
protected

Whether to include off diagonals when determining automatic scaling factors.

Definition at line 1054 of file NonlinearSystemBase.h.

Referenced by initialSetup(), and offDiagonalsInAutoScaling().

◆ _pc_side

Moose::PCSideType SolverSystem::_pc_side
protectedinherited

Preconditioning side.

Definition at line 108 of file SolverSystem.h.

Referenced by SolverSystem::getPCSide(), and SolverSystem::setPCSide().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _pre_smo_residual

Real NonlinearSystemBase::_pre_smo_residual
protected

The pre-SMO residual, see setPreSMOResidual for a detailed explanation.

Definition at line 1007 of file NonlinearSystemBase.h.

Referenced by preSMOResidual(), and NonlinearSystem::solve().

◆ _preconditioner

std::shared_ptr<MoosePreconditioner> NonlinearSystemBase::_preconditioner
protected

◆ _predictor

std::shared_ptr<Predictor> NonlinearSystemBase::_predictor
protected

If predictor is active, this is non-NULL.

Definition at line 1002 of file NonlinearSystemBase.h.

Referenced by getPredictor(), onTimestepBegin(), setInitialSolution(), and setPredictor().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _preset_nodal_bcs

MooseObjectWarehouse<DirichletBCBase> NonlinearSystemBase::_preset_nodal_bcs
protected

Definition at line 927 of file NonlinearSystemBase.h.

Referenced by addBoundaryCondition(), setInitialSolution(), and updateActive().

◆ _print_all_var_norms

bool NonlinearSystemBase::_print_all_var_norms
protected

Definition at line 1013 of file NonlinearSystemBase.h.

Referenced by printAllVariableNorms().

◆ _raw_grad_container

std::vector<std::unique_ptr<NumericVector<Number> > > SystemBase::_raw_grad_container
protectedinherited

A cache for storing gradients at dof locations.

We store it on the system because we create copies of variables on each thread and that would lead to increased data duplication when using threading-based parallelism.

Definition at line 1073 of file SystemBase.h.

Referenced by LinearSystem::computeGradients(), SystemBase::gradientContainer(), and SystemBase::initialSetup().

◆ _Re_non_time

NumericVector<Number>* NonlinearSystemBase::_Re_non_time
protected

◆ _Re_non_time_tag

TagID NonlinearSystemBase::_Re_non_time_tag
protected

Tag for non-time contribution residual.

Definition at line 901 of file NonlinearSystemBase.h.

Referenced by getResidualNonTimeVector(), nonTimeVectorTag(), and residualGhosted().

◆ _Re_tag

TagID NonlinearSystemBase::_Re_tag
protected

Used for the residual vector from PETSc.

Definition at line 906 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase(), and residualVectorTag().

◆ _Re_time

NumericVector<Number>* NonlinearSystemBase::_Re_time
protected

residual vector for time contributions

Definition at line 898 of file NonlinearSystemBase.h.

Referenced by computeNodalBCs(), getResidualTimeVector(), and residualGhosted().

◆ _Re_time_tag

TagID NonlinearSystemBase::_Re_time_tag
protected

Tag for time contribution residual.

Definition at line 889 of file NonlinearSystemBase.h.

Referenced by getResidualTimeVector(), residualGhosted(), and timeVectorTag().

◆ _resid_vs_jac_scaling_param

Real NonlinearSystemBase::_resid_vs_jac_scaling_param
protected

The param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters.

A value of 1 indicates pure residual-based scaling. A value of 0 indicates pure Jacobian-based scaling

Definition at line 1040 of file NonlinearSystemBase.h.

Referenced by autoScalingParam(), and computeScaling().

◆ _residual_copy

std::unique_ptr<NumericVector<Number> > NonlinearSystemBase::_residual_copy
protected

Copy of the residual vector, or nullptr if a copy is not needed.

Definition at line 881 of file NonlinearSystemBase.h.

Referenced by computeResidualInternal(), preInit(), and residualCopy().

◆ _residual_ghosted

NumericVector<Number>* NonlinearSystemBase::_residual_ghosted
protected

ghosted form of the residual

Definition at line 878 of file NonlinearSystemBase.h.

Referenced by computeResidualInternal(), computeResidualTags(), constraintResiduals(), and residualGhosted().

◆ _saved_dot_old

NumericVector<Real>* SystemBase::_saved_dot_old
protectedinherited

Definition at line 1034 of file SystemBase.h.

Referenced by SystemBase::restoreOldSolutions(), and SystemBase::saveOldSolutions().

◆ _saved_dotdot_old

NumericVector<Real>* SystemBase::_saved_dotdot_old
protectedinherited

Definition at line 1035 of file SystemBase.h.

Referenced by SystemBase::restoreOldSolutions(), and SystemBase::saveOldSolutions().

◆ _saved_old

NumericVector<Real>* SystemBase::_saved_old
protectedinherited

Definition at line 1030 of file SystemBase.h.

◆ _saved_older

NumericVector<Real>* SystemBase::_saved_older
protectedinherited

Definition at line 1031 of file SystemBase.h.

◆ _scalar_kernels

MooseObjectTagWarehouse<ScalarKernelBase> NonlinearSystemBase::_scalar_kernels
protected

◆ _scaling_group_variables

std::vector<std::vector<std::string> > NonlinearSystemBase::_scaling_group_variables
protected

A container of variable groupings that can be used in scaling calculations.

This can be useful for simulations in which vector-like variables are split into invidual scalar-field components like for solid/fluid mechanics

Definition at line 1045 of file NonlinearSystemBase.h.

Referenced by scalingGroupVariables(), and setupScalingData().

◆ _scaling_matrix

std::unique_ptr<libMesh::DiagonalMatrix<Number> > NonlinearSystemBase::_scaling_matrix
protected

A diagonal matrix used for computing scaling.

Definition at line 1057 of file NonlinearSystemBase.h.

Referenced by computeScaling(), NonlinearSystem::computeScalingJacobian(), NonlinearEigenSystem::computeScalingJacobian(), and initialSetup().

◆ _serialized_solution

std::unique_ptr<NumericVector<Number> > SystemBase::_serialized_solution
protectedinherited

Serialized version of the solution vector, or nullptr if a serialized solution is not needed.

Definition at line 1068 of file SystemBase.h.

Referenced by AuxiliarySystem::compute(), SolverSystem::preInit(), SystemBase::serializedSolution(), SolverSystem::serializeSolution(), AuxiliarySystem::serializeSolution(), and SolverSystem::setSolution().

◆ _solution_is_invalid

bool SolverSystem::_solution_is_invalid
protectedinherited

Boolean to see if solution is invalid.

Definition at line 113 of file SolverSystem.h.

◆ _solution_state

std::vector<NumericVector<Number> *> NonlinearSystemBase::_solution_state
private

The current states of the solution (0 = current, 1 = old, etc)

Definition at line 1081 of file NonlinearSystemBase.h.

◆ _solution_states_initialized

bool SystemBase::_solution_states_initialized
protectedinherited

Whether or not the solution states have been initialized.

Definition at line 1061 of file SystemBase.h.

Referenced by SystemBase::initSolutionState(), and SystemBase::solutionStatesInitialized().

◆ _splits

MooseObjectWarehouseBase<Split> NonlinearSystemBase::_splits
protected

Decomposition splits.

Definition at line 958 of file NonlinearSystemBase.h.

Referenced by addSplit(), getSplit(), and getSplits().

◆ _subproblem

SubProblem& SystemBase::_subproblem
protectedinherited

◆ _sys

libMesh::System& NonlinearSystemBase::_sys

◆ _tagged_matrices

std::vector<libMesh::SparseMatrix<Number> *> SystemBase::_tagged_matrices
protectedinherited

◆ _tagged_vectors

std::vector<NumericVector<Number> *> SystemBase::_tagged_vectors
protectedinherited

◆ _time_integrators

std::vector<std::shared_ptr<TimeIntegrator> > SystemBase::_time_integrators
protectedinherited

◆ _u_dot

NumericVector<Number>* SystemBase::_u_dot
protectedinherited

solution vector for u^dot

Definition at line 1006 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDot(), and SystemBase::solutionUDot().

◆ _u_dot_old

NumericVector<Number>* SystemBase::_u_dot_old
protectedinherited

old solution vector for u^dot

Definition at line 1011 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDotOld(), and SystemBase::solutionUDotOld().

◆ _u_dotdot

NumericVector<Number>* SystemBase::_u_dotdot
protectedinherited

solution vector for u^dotdot

Definition at line 1008 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDotDot(), and SystemBase::solutionUDotDot().

◆ _u_dotdot_old

NumericVector<Number>* SystemBase::_u_dotdot_old
protectedinherited

old solution vector for u^dotdot

Definition at line 1013 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), setSolutionUDotDotOld(), and SystemBase::solutionUDotDotOld().

◆ _undisplaced_mortar_functors

std::unordered_map<std::pair<BoundaryID, BoundaryID>, ComputeMortarFunctor> NonlinearSystemBase::_undisplaced_mortar_functors
private

Functors for computing undisplaced mortar constraints.

Definition at line 1074 of file NonlinearSystemBase.h.

Referenced by initialSetup(), mortarConstraints(), and reinitMortarFunctors().

◆ _use_finite_differenced_preconditioner

bool NonlinearSystemBase::_use_finite_differenced_preconditioner
protected

Whether or not to use a finite differenced preconditioner.

Definition at line 969 of file NonlinearSystemBase.h.

Referenced by haveFiniteDifferencedPreconditioner(), NonlinearSystem::potentiallySetupFiniteDifferencing(), and useFiniteDifferencedPreconditioner().

◆ _use_pre_smo_residual

bool NonlinearSystemBase::_use_pre_smo_residual
protected

Whether to use the pre-SMO initial residual in the relative convergence check.

Definition at line 1011 of file NonlinearSystemBase.h.

Referenced by setPreSMOResidual(), shouldEvaluatePreSMOResidual(), and usePreSMOResidual().

◆ _var_all_dof_indices

std::vector<dof_id_type> SystemBase::_var_all_dof_indices
protectedinherited

Container for the dof indices of a given variable.

Definition at line 1064 of file SystemBase.h.

Referenced by SystemBase::getVariableGlobalDoFs(), and SystemBase::setVariableGlobalDoFs().

◆ _var_kind

Moose::VarKindType SystemBase::_var_kind
protectedinherited

default kind of variables in this system

Definition at line 1038 of file SystemBase.h.

Referenced by SystemBase::varKind().

◆ _var_map

std::map<unsigned int, std::set<SubdomainID> > SystemBase::_var_map
protectedinherited

Map of variables (variable id -> array of subdomains where it lives)

Definition at line 998 of file SystemBase.h.

Referenced by SystemBase::addVariable(), SystemBase::getSubdomainsForVar(), and SystemBase::getVariableBlocks().

◆ _var_to_copy

std::vector<VarCopyInfo> SystemBase::_var_to_copy
protectedinherited

◆ _var_to_group_var

std::unordered_map<unsigned int, unsigned int> NonlinearSystemBase::_var_to_group_var
private

A map from variable index to group variable index and it's associated (inverse) scaling factor.

Definition at line 1087 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _variable_autoscaled

std::vector<bool> NonlinearSystemBase::_variable_autoscaled
protected

Container to hold flag if variable is to participate in autoscaling.

Definition at line 1048 of file NonlinearSystemBase.h.

Referenced by computeScaling(), and setupScalingData().

◆ _vars

std::vector<VariableWarehouse> SystemBase::_vars
protectedinherited

Variable warehouses (one for each thread)

Definition at line 996 of file SystemBase.h.

Referenced by addBoundaryCondition(), addInterfaceKernel(), AuxiliarySystem::addVariable(), SystemBase::addVariable(), SystemBase::applyScalingFactors(), assembleScalingVector(), SystemBase::clearAllDofIndices(), AuxiliarySystem::compute(), SystemBase::customSetup(), SystemBase::getActualFieldVariable(), SystemBase::getFieldVariable(), SystemBase::getFVVariable(), AuxiliarySystem::getMinQuadratureOrder(), SystemBase::getMinQuadratureOrder(), SystemBase::getScalarVariable(), SystemBase::getScalarVariables(), SystemBase::getVariable(), SystemBase::getVariableNames(), SystemBase::getVariables(), LinearSystem::initialSetup(), SystemBase::initialSetup(), SystemBase::jacobianSetup(), SystemBase::nFieldVariables(), SystemBase::nFVVariables(), SystemBase::nVariables(), SystemBase::prepare(), SystemBase::prepareFace(), SystemBase::prepareLowerD(), SystemBase::prepareNeighbor(), SystemBase::reinitElem(), SystemBase::reinitElemFace(), SystemBase::reinitLowerD(), SystemBase::reinitNeighbor(), SystemBase::reinitNeighborFace(), SystemBase::reinitNode(), SystemBase::reinitNodeFace(), SystemBase::reinitNodes(), SystemBase::reinitNodesNeighbor(), SystemBase::reinitScalars(), SystemBase::residualSetup(), SystemBase::setActiveScalarVariableCoupleableVectorTags(), SystemBase::setActiveVariableCoupleableVectorTags(), setupScalingData(), SystemBase::sizeVariableMatrixData(), SystemBase::subdomainSetup(), and SystemBase::timestepSetup().

◆ _vars_to_be_zeroed_on_jacobian

std::vector<std::string> SystemBase::_vars_to_be_zeroed_on_jacobian
protectedinherited

◆ _vars_to_be_zeroed_on_residual

std::vector<std::string> SystemBase::_vars_to_be_zeroed_on_residual
protectedinherited

◆ _vecs_to_zero_for_residual

std::vector<std::string> NonlinearSystemBase::_vecs_to_zero_for_residual
protected

vectors that will be zeroed before a residual computation

Definition at line 991 of file NonlinearSystemBase.h.

Referenced by computeResidualTags(), and zeroVectorForResidual().

◆ _verbose

bool SystemBase::_verbose
protectedinherited

True if printing out additional information.

Definition at line 1058 of file SystemBase.h.

Referenced by SystemBase::applyScalingFactors(), and SystemBase::setVerboseFlag().


The documentation for this class was generated from the following files: