https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
DumpObjectsProblem Class Referenceabstract

Specialization of SubProblem for dumping generated objects as input file syntax. More...

#include <DumpObjectsProblem.h>

Inheritance diagram for DumpObjectsProblem:
[legend]

Public Types

enum  CoverageCheckMode {
  CoverageCheckMode::FALSE, CoverageCheckMode::TRUE, CoverageCheckMode::OFF, CoverageCheckMode::ON,
  CoverageCheckMode::SKIP_LIST, CoverageCheckMode::ONLY_LIST
}
 
using DataFileParameterType = DataFileName
 The parameter type this interface expects for a data file name. More...
 

Public Member Functions

 DumpObjectsProblem (const InputParameters &parameters)
 
void dumpGeneratedSyntax (const std::string path)
 output input blocks for a given action path More...
 
void dumpAllGeneratedSyntax () const
 output input blocks for all paths More...
 
virtual void solve (unsigned int) override
 output data in solve (if ever called) More...
 
virtual void solveLinearSystem (unsigned int, const Moose::PetscSupport::PetscOptions *) override
 Build and solve a linear system. More...
 
void printObjects ()
 
virtual void initialSetup () override
 
virtual void advanceState () override
 Advance all of the state holding vectors / datastructures so that we can move to the next timestep. More...
 
virtual void timestepSetup () override
 
virtual void execute (const ExecFlagType &) override
 Convenience function for performing execution of MOOSE systems. More...
 
virtual void outputStep (ExecFlagType) override
 Output the current step. More...
 
virtual void updateActiveObjects () override
 Update the active objects in the warehouses. More...
 
virtual void onTimestepEnd () override
 
virtual void computeIndicators () override
 
virtual void computeMarkers () override
 
virtual bool adaptMesh () override
 
virtual void addLineSearch (const InputParameters &) override
 add a MOOSE line search More...
 
 captureDump (addAuxKernel, "AuxKernels") captureDump(addAuxScalarKernel
 
AuxScalarKernels captureDump (addAuxVariable, "AuxVariables") captureDump(addBoundaryCondition
 
AuxScalarKernels BCs captureDump (addConstraint, "Constraints") captureDump(addConvergence
 
AuxScalarKernels BCs Convergence captureDump (addDamper, "Dampers") captureDump(addDGKernel
 
AuxScalarKernels BCs Convergence DGKernels captureDump (addDiracKernel, "DiracKernels") captureDump(addDistribution
 
AuxScalarKernels BCs Convergence DGKernels Distributions captureDump (addFunction, "Functions") captureDump(addFunctorMaterial
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials captureDump (addFVBC, "FVBCs") captureDump(addFVInitialCondition
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs captureDump (addFVInterfaceKernel, "FVInterfaceKernels") captureDump(addFVKernel
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels captureDump (addHDGKernel, "HDGKernels") captureDump(addIndicator
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators captureDump (addInitialCondition, "ICs") captureDump(addInterfaceKernel
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels captureDump (addKernel, "Kernels") captureDump(addLinearFVBC
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs captureDump (addLinearFVKernel, "LinearFVKernels") captureDump(addMarker
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers captureDump (addMaterial, "Materials") captureDump(addMeshDivision
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions captureDump (addMultiApp, "MultiApps") captureDump(addNodalKernel
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels captureDump (addPostprocessor, "Postprocessors") captureDump(addPredictor
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels Executioner Predictor captureDump (addSampler, "Samplers") captureDump(addScalarKernel
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels Executioner Predictor ScalarKernels captureDump (addTransfer, "Transfers") captureDump(addTimeIntegrator
 
AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels Executioner Predictor ScalarKernels Executioner TimeIntegrators captureDumpUO (addUserObject, "UserObjects") captureDump(addVariable
 
virtual void addAuxVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding an auxiliary variable. More...
 
virtual void addAuxVariable (const std::string &var_name, const libMesh::FEType &type, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding a non-linear variable. More...
 
virtual libMesh::EquationSystemses () override
 
virtual MooseMeshmesh () override
 
virtual const MooseMeshmesh () const override
 
const MooseMeshmesh (bool use_displaced) const override
 
void setCoordSystem (const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
 
void setAxisymmetricCoordAxis (const MooseEnum &rz_coord_axis)
 
void setCoupling (Moose::CouplingType type)
 Set the coupling between variables TODO: allow user-defined coupling. More...
 
Moose::CouplingType coupling () const
 
void setCouplingMatrix (std::unique_ptr< libMesh::CouplingMatrix > cm, const unsigned int nl_sys_num)
 Set custom coupling matrix. More...
 
void setCouplingMatrix (libMesh::CouplingMatrix *cm, const unsigned int nl_sys_num)
 
const libMesh::CouplingMatrixcouplingMatrix (const unsigned int nl_sys_num) const override
 The coupling matrix defining what blocks exist in the preconditioning matrix. More...
 
void setNonlocalCouplingMatrix ()
 Set custom coupling matrix for variables requiring nonlocal contribution. More...
 
bool areCoupled (const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
 
bool hasUOAuxStateCheck () const
 Whether or not MOOSE will perform a user object/auxiliary kernel state check. More...
 
bool checkingUOAuxState () const
 Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e. More...
 
void trustUserCouplingMatrix ()
 Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix. More...
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & nonlocalCouplingEntries (const THREAD_ID tid, const unsigned int nl_sys_num)
 
virtual bool hasVariable (const std::string &var_name) const override
 Whether or not this problem has the variable. More...
 
bool hasSolverVariable (const std::string &var_name) const
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual const MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const=0
 Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs. More...
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
virtual MooseVariableFieldBasegetVariable (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY)
 
MooseVariableFieldBasegetActualFieldVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariableField which may be in any system. More...
 
virtual MooseVariablegetStandardVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested MooseVariable which may be in any system. More...
 
virtual VectorMooseVariablegetVectorVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested VectorMooseVariable which may be in any system. More...
 
virtual ArrayMooseVariablegetArrayVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the variable reference for requested ArrayMooseVariable which may be in any system. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const override
 Returns a Boolean indicating whether any system contains a variable with the name provided. More...
 
virtual MooseVariableScalargetScalarVariable (const THREAD_ID tid, const std::string &var_name) override
 Returns the scalar variable reference from whichever system contains it. More...
 
virtual libMesh::SystemgetSystem (const std::string &var_name) override
 Returns the equation system containing the variable provided. More...
 
virtual void setActiveElementalMooseVariables (const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
 Set the MOOSE variables to be reinited on each element. More...
 
virtual void clearActiveElementalMooseVariables (const THREAD_ID tid) override
 Clear the active elemental MooseVariableFEBase. More...
 
virtual void clearActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveFEVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) override
 
virtual void clearActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableVectorTags (std::set< TagID > &vtags, const THREAD_ID tid) override
 
virtual void setActiveScalarVariableCoupleableMatrixTags (std::set< TagID > &mtags, const THREAD_ID tid) override
 
virtual void createQRules (libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
 
void bumpVolumeQRuleOrder (libMesh::Order order, SubdomainID block)
 Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower. More...
 
void bumpAllQRuleOrder (libMesh::Order order, SubdomainID block)
 
unsigned int getMaxQps () const
 
libMesh::Order getMaxScalarOrder () const
 
void checkNonlocalCoupling ()
 
void checkUserObjectJacobianRequirement (THREAD_ID tid)
 
void setVariableAllDoFMap (const std::vector< const MooseVariableFEBase *> &moose_vars)
 
const std::vector< const MooseVariableFEBase * > & getUserObjectJacobianVariables (const THREAD_ID tid) const
 
virtual Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) override
 
virtual const Assemblyassembly (const THREAD_ID tid, const unsigned int sys_num) const override
 
virtual std::vector< VariableName > getVariableNames ()
 Returns a list of all the variables in the problem (both from the NL and Aux systems. More...
 
void checkDuplicatePostprocessorVariableNames ()
 
void customSetup (const ExecFlagType &exec_type) override
 
void residualSetup () override
 
void jacobianSetup () override
 
virtual void prepare (const Elem *elem, const THREAD_ID tid) override
 
virtual void prepare (const Elem *elem, unsigned int ivar, unsigned int jvar, const std::vector< dof_id_type > &dof_indices, const THREAD_ID tid) override
 
virtual void prepareFace (const Elem *elem, const THREAD_ID tid) override
 
virtual void setCurrentSubdomainID (const Elem *elem, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void setNeighborSubdomainID (const Elem *elem, const THREAD_ID tid)
 
virtual void prepareAssembly (const THREAD_ID tid) override
 
virtual void addGhostedElem (dof_id_type elem_id) override
 Will make sure that all dofs connected to elem_id are ghosted to this processor. More...
 
virtual void addGhostedBoundary (BoundaryID boundary_id) override
 Will make sure that all necessary elements from boundary_id are ghosted to this processor. More...
 
virtual void ghostGhostedBoundaries () override
 Causes the boundaries added using addGhostedBoundary to actually be ghosted. More...
 
virtual void sizeZeroes (unsigned int size, const THREAD_ID tid)
 
virtual bool reinitDirac (const Elem *elem, const THREAD_ID tid) override
 Returns true if the Problem has Dirac kernels it needs to compute on elem. More...
 
virtual void reinitElem (const Elem *elem, const THREAD_ID tid) override
 
virtual void reinitElemPhys (const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid) override
 
void reinitElemFace (const Elem *elem, unsigned int side, BoundaryID, const THREAD_ID tid)
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitLowerDElem (const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 
virtual void reinitNode (const Node *node, const THREAD_ID tid) override
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
 
virtual void reinitNeighbor (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitNeighborPhys (const Elem *neighbor, const std::vector< Point > &physical_points, const THREAD_ID tid) override
 
virtual void reinitElemNeighborAndLowerD (const Elem *elem, unsigned int side, const THREAD_ID tid) override
 
virtual void reinitScalars (const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
 fills the VariableValue arrays for scalar variables from the solution vector More...
 
virtual void reinitOffDiagScalars (const THREAD_ID tid) override
 
virtual void getDiracElements (std::set< const Elem *> &elems) override
 Fills "elems" with the elements that should be looped over for Dirac Kernels. More...
 
virtual void clearDiracInfo () override
 Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in. More...
 
virtual void subdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void neighborSubdomainSetup (SubdomainID subdomain, const THREAD_ID tid)
 
virtual void newAssemblyArray (std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
 
virtual void initNullSpaceVectors (const InputParameters &parameters, std::vector< std::shared_ptr< NonlinearSystemBase >> &nl)
 
virtual void init () override
 
virtual void setException (const std::string &message)
 Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve(). More...
 
virtual bool hasException ()
 Whether or not an exception has occurred. More...
 
virtual void checkExceptionAndStopSolve (bool print_message=true)
 Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut. More...
 
virtual bool solverSystemConverged (const unsigned int solver_sys_num) override
 
virtual unsigned int nNonlinearIterations (const unsigned int nl_sys_num) const override
 
virtual unsigned int nLinearIterations (const unsigned int nl_sys_num) const override
 
virtual Real finalNonlinearResidual (const unsigned int nl_sys_num) const override
 
virtual bool computingPreSMOResidual (const unsigned int nl_sys_num) const override
 Returns true if the problem is in the process of computing it's initial residual. More...
 
virtual std::string solverTypeString (unsigned int solver_sys_num=0)
 Return solver type as a human readable string. More...
 
virtual bool startedInitialSetup ()
 Returns true if we are in or beyond the initialSetup stage. More...
 
virtual void onTimestepBegin () override
 
virtual Realtime () const
 
virtual RealtimeOld () const
 
virtual inttimeStep () const
 
virtual Realdt () const
 
virtual RealdtOld () const
 
Real getTimeFromStateArg (const Moose::StateArg &state) const
 Returns the time associated with the requested state. More...
 
virtual void transient (bool trans)
 
virtual bool isTransient () const override
 
virtual void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void addPredictor (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual void copySolutionsBackwards ()
 
virtual void restoreSolutions ()
 
virtual void saveOldSolutions ()
 Allocate vectors and save old solutions into them. More...
 
virtual void restoreOldSolutions ()
 Restore old solutions from the backup vectors and deallocate them. More...
 
void needSolutionState (unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
 Declare that we need up to old (1) or older (2) solution states for a given type of iteration. More...
 
virtual void postExecute ()
 Method called at the end of the simulation. More...
 
void forceOutput ()
 Indicates that the next call to outputStep should be forced. More...
 
virtual void initPetscOutputAndSomeSolverSettings ()
 Reinitialize PETSc output for proper linear/nonlinear iteration display. More...
 
Moose::PetscSupport::PetscOptionsgetPetscOptions ()
 Retrieve a writable reference the PETSc options (used by PetscSupport) More...
 
void logAdd (const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
 Output information about the object just added to the problem. More...
 
virtual void addFunction (const std::string &type, const std::string &name, InputParameters &parameters)
 
virtual bool hasFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual FunctiongetFunction (const std::string &name, const THREAD_ID tid=0)
 
virtual void addMeshDivision (const std::string &type, const std::string &name, InputParameters &params)
 Add a MeshDivision. More...
 
MeshDivisiongetMeshDivision (const std::string &name, const THREAD_ID tid=0) const
 Get a MeshDivision. More...
 
virtual void addConvergence (const std::string &type, const std::string &name, InputParameters &parameters)
 Adds a Convergence object. More...
 
virtual ConvergencegetConvergence (const std::string &name, const THREAD_ID tid=0) const
 Gets a Convergence object. More...
 
virtual const std::vector< std::shared_ptr< Convergence > > & getConvergenceObjects (const THREAD_ID tid=0) const
 Gets the Convergence objects. More...
 
virtual bool hasConvergence (const std::string &name, const THREAD_ID tid=0) const
 Returns true if the problem has a Convergence object of the given name. More...
 
bool needToAddDefaultNonlinearConvergence () const
 Returns true if the problem needs to add the default nonlinear convergence. More...
 
bool needToAddDefaultMultiAppFixedPointConvergence () const
 Returns true if the problem needs to add the default fixed point convergence. More...
 
bool needToAddDefaultSteadyStateConvergence () const
 Returns true if the problem needs to add the default steady-state detection convergence. More...
 
void setNeedToAddDefaultNonlinearConvergence ()
 Sets _need_to_add_default_nonlinear_convergence to true. More...
 
void setNeedToAddDefaultMultiAppFixedPointConvergence ()
 Sets _need_to_add_default_multiapp_fixed_point_convergence to true. More...
 
void setNeedToAddDefaultSteadyStateConvergence ()
 Sets _need_to_add_default_steady_state_convergence to true. More...
 
bool hasSetMultiAppFixedPointConvergenceName () const
 Returns true if the problem has set the fixed point convergence name. More...
 
bool hasSetSteadyStateConvergenceName () const
 Returns true if the problem has set the steady-state detection convergence name. More...
 
virtual void addDefaultNonlinearConvergence (const InputParameters &params)
 Adds the default nonlinear Convergence associated with the problem. More...
 
virtual bool onlyAllowDefaultNonlinearConvergence () const
 Returns true if an error will result if the user supplies 'nonlinear_convergence'. More...
 
void addDefaultMultiAppFixedPointConvergence (const InputParameters &params)
 Adds the default fixed point Convergence associated with the problem. More...
 
void addDefaultSteadyStateConvergence (const InputParameters &params)
 Adds the default steady-state detection Convergence. More...
 
virtual void lineSearch ()
 execute MOOSE line search More...
 
LineSearchgetLineSearch () override
 getter for the MOOSE line search More...
 
virtual void addDistribution (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import distributions. More...
 
virtual DistributiongetDistribution (const std::string &name)
 
virtual void addSampler (const std::string &type, const std::string &name, InputParameters &parameters)
 The following functions will enable MOOSE to have the capability to import Samplers. More...
 
virtual SamplergetSampler (const std::string &name, const THREAD_ID tid=0)
 
NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num)
 
const NonlinearSystemBasegetNonlinearSystemBase (const unsigned int sys_num) const
 
void setCurrentNonlinearSystem (const unsigned int nl_sys_num)
 
NonlinearSystemBasecurrentNonlinearSystem ()
 
const NonlinearSystemBasecurrentNonlinearSystem () const
 
virtual const SystemBasesystemBaseNonlinear (const unsigned int sys_num) const override
 Return the nonlinear system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseNonlinear (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseSolver (const unsigned int sys_num) const override
 Return the solver system object as a base class reference given the system number. More...
 
virtual SystemBasesystemBaseSolver (const unsigned int sys_num) override
 
virtual const SystemBasesystemBaseAuxiliary () const override
 Return the auxiliary system object as a base class reference. More...
 
virtual SystemBasesystemBaseAuxiliary () override
 
virtual NonlinearSystemgetNonlinearSystem (const unsigned int sys_num)
 
virtual const SystemBasegetSystemBase (const unsigned int sys_num) const
 Get constant reference to a system in this problem. More...
 
virtual SystemBasegetSystemBase (const unsigned int sys_num)
 Get non-constant reference to a system in this problem. More...
 
SystemBasegetSystemBase (const std::string &sys_name)
 Get non-constant reference to a system in this problem. More...
 
LinearSystemgetLinearSystem (unsigned int sys_num)
 Get non-constant reference to a linear system. More...
 
const LinearSystemgetLinearSystem (unsigned int sys_num) const
 Get a constant reference to a linear system. More...
 
SolverSystemgetSolverSystem (unsigned int sys_num)
 Get non-constant reference to a solver system. More...
 
const SolverSystemgetSolverSystem (unsigned int sys_num) const
 Get a constant reference to a solver system. More...
 
void setCurrentLinearSystem (unsigned int sys_num)
 Set the current linear system pointer. More...
 
LinearSystemcurrentLinearSystem ()
 Get a non-constant reference to the current linear system. More...
 
const LinearSystemcurrentLinearSystem () const
 Get a constant reference to the current linear system. More...
 
virtual const SystemBasesystemBaseLinear (unsigned int sys_num) const override
 Get a constant base class reference to a linear system. More...
 
virtual SystemBasesystemBaseLinear (unsigned int sys_num) override
 Get a non-constant base class reference to a linear system. More...
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding a non-linear variable. More...
 
virtual void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 
virtual void setInputParametersFEProblem (InputParameters &parameters)
 
virtual void addAuxVariable (const std::string &var_type, const std::string &var_name, InputParameters &params)
 Canonical method for adding an auxiliary variable. More...
 
virtual void addAuxVariable (const std::string &var_name, const libMesh::FEType &type, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxArrayVariable (const std::string &var_name, const libMesh::FEType &type, unsigned int components, const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxScalarVariable (const std::string &var_name, libMesh::Order order, Real scale_factor=1., const std::set< SubdomainID > *const active_subdomains=NULL)
 
virtual void addAuxKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addAuxScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
AuxiliarySystemgetAuxiliarySystem ()
 
virtual void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addLinearFVBC (const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInterfaceKernel (const std::string &fv_ik_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 
virtual void addInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 
virtual void addFVInitialCondition (const std::string &ic_name, const std::string &name, InputParameters &parameters)
 Add an initial condition for a finite volume variables. More...
 
void projectSolution ()
 
unsigned short getCurrentICState ()
 Retrieves the current initial condition state. More...
 
void projectInitialConditionOnCustomRange (libMesh::ConstElemRange &elem_range, ConstBndNodeRange &bnd_node_range, const std::optional< std::set< VariableName >> &target_vars=std::nullopt)
 Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
void projectFunctionOnCustomRange (ConstElemRange &elem_range, Number(*func)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &), Gradient(*func_grad)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &), const libMesh::Parameters &params, const VariableName &target_var)
 Project a function onto a range of elements for a given variable. More...
 
virtual void addMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addMaterialHelper (std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addInterfaceMaterial (const std::string &material_name, const std::string &name, InputParameters &parameters)
 
virtual void addFunctorMaterial (const std::string &functor_material_name, const std::string &name, InputParameters &parameters)
 
void prepareMaterials (const std::unordered_set< unsigned int > &consumer_needed_mat_props, const SubdomainID blk_id, const THREAD_ID tid)
 Add the MooseVariables and the material properties that the current materials depend on to the dependency list. More...
 
void reinitMaterials (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true)
 
void reinitMaterialsFace (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on element faces More...
 
void reinitMaterialsNeighbor (SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on the neighboring element face More...
 
void reinitMaterialsBoundary (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
 reinit materials on a boundary More...
 
void reinitMaterialsInterface (BoundaryID boundary_id, const THREAD_ID tid, bool swap_stateful=true)
 
virtual void swapBackMaterials (const THREAD_ID tid)
 
virtual void swapBackMaterialsFace (const THREAD_ID tid)
 
virtual void swapBackMaterialsNeighbor (const THREAD_ID tid)
 
void setActiveMaterialProperties (const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
 Record and set the material properties required by the current computing thread. More...
 
bool hasActiveMaterialProperties (const THREAD_ID tid) const
 Method to check whether or not a list of active material roperties has been set. More...
 
void clearActiveMaterialProperties (const THREAD_ID tid)
 Clear the active material properties. More...
 
template<typename T >
std::vector< std::shared_ptr< T > > addObject (const std::string &type, const std::string &name, InputParameters &parameters, const bool threaded=true, const std::string &var_param_name="variable")
 Method for creating and adding an object to the warehouse. More...
 
virtual void addPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addVectorPostprocessor (const std::string &pp_name, const std::string &name, InputParameters &parameters)
 
virtual void addReporter (const std::string &type, const std::string &name, InputParameters &parameters)
 Add a Reporter object to the simulation. More...
 
const ReporterDatagetReporterData () const
 Provides const access the ReporterData object. More...
 
ReporterDatagetReporterData (ReporterData::WriteKey)
 Provides non-const access the ReporterData object that is used to store reporter values. More...
 
virtual std::vector< std::shared_ptr< UserObject > > addUserObject (const std::string &user_object_name, const std::string &name, InputParameters &parameters)
 
const ExecuteMooseObjectWarehouse< UserObject > & getUserObjects () const
 
template<class T >
T & getUserObject (const std::string &name, unsigned int tid=0) const
 Get the user object by its name. More...
 
const UserObjectgetUserObjectBase (const std::string &name, const THREAD_ID tid=0) const
 Get the user object by its name. More...
 
const PositionsgetPositionsObject (const std::string &name) const
 Get the Positions object by its name. More...
 
bool hasUserObject (const std::string &name) const
 Check if there if a user object of given name. More...
 
bool hasPostprocessorValueByName (const PostprocessorName &name) const
 Whether or not a Postprocessor value exists by a given name. More...
 
const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name, std::size_t t_index=0) const
 Get a read-only reference to the value associated with a Postprocessor that exists. More...
 
void setPostprocessorValueByName (const PostprocessorName &name, const PostprocessorValue &value, std::size_t t_index=0)
 Set the value of a PostprocessorValue. More...
 
bool hasPostprocessor (const std::string &name) const
 Deprecated. More...
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, std::size_t t_index=0) const
 Get a read-only reference to the vector value associated with the VectorPostprocessor. More...
 
void setVectorPostprocessorValueByName (const std::string &object_name, const std::string &vector_name, const VectorPostprocessorValue &value, std::size_t t_index=0)
 Set the value of a VectorPostprocessor vector. More...
 
const VectorPostprocessorgetVectorPostprocessorObjectByName (const std::string &object_name, const THREAD_ID tid=0) const
 Return the VPP object given the name. More...
 
virtual void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 
void setupDampers ()
 
bool hasDampers ()
 Whether or not this system has dampers. More...
 
virtual void addIndicator (const std::string &indicator_name, const std::string &name, InputParameters &parameters)
 
virtual void addMarker (const std::string &marker_name, const std::string &name, InputParameters &parameters)
 
virtual void addMultiApp (const std::string &multi_app_name, const std::string &name, InputParameters &parameters)
 Add a MultiApp to the problem. More...
 
std::shared_ptr< MultiAppgetMultiApp (const std::string &multi_app_name) const
 Get a MultiApp object by name. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (ExecFlagType type, Transfer::DIRECTION direction) const
 Get Transfers by ExecFlagType and direction. More...
 
std::vector< std::shared_ptr< Transfer > > getTransfers (Transfer::DIRECTION direction) const
 
const ExecuteMooseObjectWarehouse< Transfer > & getMultiAppTransferWarehouse (Transfer::DIRECTION direction) const
 Return the complete warehouse for MultiAppTransfer object for the given direction. More...
 
void execMultiAppTransfers (ExecFlagType type, Transfer::DIRECTION direction)
 Execute MultiAppTransfers associated with execution flag and direction. More...
 
bool execMultiApps (ExecFlagType type, bool auto_advance=true)
 Execute the MultiApps associated with the ExecFlagType. More...
 
void finalizeMultiApps ()
 
void incrementMultiAppTStep (ExecFlagType type)
 Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType. More...
 
void advanceMultiApps (ExecFlagType type)
 Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose. More...
 
void finishMultiAppStep (ExecFlagType type, bool recurse_through_multiapp_levels=false)
 Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType. More...
 
void backupMultiApps (ExecFlagType type)
 Backup the MultiApps associated with the ExecFlagType. More...
 
void restoreMultiApps (ExecFlagType type, bool force=false)
 Restore the MultiApps associated with the ExecFlagType. More...
 
Real computeMultiAppsDT (ExecFlagType type)
 Find the smallest timestep over all MultiApps. More...
 
virtual void addTransfer (const std::string &transfer_name, const std::string &name, InputParameters &parameters)
 Add a Transfer to the problem. More...
 
void execTransfers (ExecFlagType type)
 Execute the Transfers associated with the ExecFlagType. More...
 
Real computeResidualL2Norm (NonlinearSystemBase &sys)
 Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
Real computeResidualL2Norm (LinearSystem &sys)
 Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual Real computeResidualL2Norm ()
 Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm. More...
 
virtual void computeResidualSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
void computeResidual (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
 This function is called by Libmesh to form a residual. More...
 
virtual void computeResidual (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const unsigned int nl_sys_num)
 Form a residual with default tags (nontime, time, residual). More...
 
void computeResidualAndJacobian (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a residual and Jacobian with default tags. More...
 
virtual void computeResidualTag (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag. More...
 
virtual void computeResidualType (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, TagID tag)
 Form a residual vector for a given tag and "residual" tag. More...
 
virtual void computeResidualInternal (const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, const std::set< TagID > &tags)
 Form a residual vector for a set of tags. More...
 
virtual void computeResidualTags (const std::set< TagID > &tags)
 Form multiple residual vectors and each is associated with one tag. More...
 
virtual void computeJacobianSys (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian)
 Form a Jacobian matrix. More...
 
virtual void computeJacobian (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
 Form a Jacobian matrix with the default tag (system). More...
 
virtual void computeJacobianTag (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, TagID tag)
 Form a Jacobian matrix for a given tag. More...
 
virtual void computeJacobianInternal (const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
 Form a Jacobian matrix for multiple tags. More...
 
virtual void computeJacobianTags (const std::set< TagID > &tags)
 Form multiple matrices, and each is associated with a tag. More...
 
virtual void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
virtual void computeJacobianBlock (libMesh::SparseMatrix< libMesh::Number > &jacobian, libMesh::System &precond_system, unsigned int ivar, unsigned int jvar)
 Really not a good idea to use this. More...
 
virtual void computeLinearSystemSys (libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
 Assemble both the right hand side and the system matrix of a given linear system. More...
 
void computeLinearSystemTags (const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
 Assemble the current linear system given a set of vector and matrix tags. More...
 
virtual Real computeDamping (const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)
 
virtual bool shouldUpdateSolution ()
 Check to see whether the problem should update the solution. More...
 
virtual bool updateSolution (NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
 Update the solution. More...
 
virtual void predictorCleanup (NumericVector< libMesh::Number > &ghosted_solution)
 Perform cleanup tasks after application of predictor to solution vector. More...
 
virtual void computeBounds (libMesh::NonlinearImplicitSystem &sys, NumericVector< libMesh::Number > &lower, NumericVector< libMesh::Number > &upper)
 
virtual void computeNearNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computeTransposeNullSpace (libMesh::NonlinearImplicitSystem &sys, std::vector< NumericVector< libMesh::Number > *> &sp)
 
virtual void computePostCheck (libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &old_soln, NumericVector< libMesh::Number > &search_direction, NumericVector< libMesh::Number > &new_soln, bool &changed_search_direction, bool &changed_new_soln)
 
virtual void computeIndicatorsAndMarkers ()
 
virtual void addResidual (const THREAD_ID tid) override
 
virtual void addResidualNeighbor (const THREAD_ID tid) override
 
virtual void addResidualLower (const THREAD_ID tid) override
 
virtual void addResidualScalar (const THREAD_ID tid=0)
 
virtual void cacheResidual (const THREAD_ID tid) override
 
virtual void cacheResidualNeighbor (const THREAD_ID tid) override
 
virtual void addCachedResidual (const THREAD_ID tid) override
 
virtual void addCachedResidualDirectly (NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
 Allows for all the residual contributions that are currently cached to be added directly into the vector passed in. More...
 
virtual void setResidual (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidual (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void setResidualNeighbor (NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
 
virtual void setResidualNeighbor (libMesh::NumericVector< libMesh::Number > &residual, const THREAD_ID tid)=0
 
virtual void addJacobian (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid) override
 
virtual void addJacobianNeighbor (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const libMesh::DofMap &dof_map, std::vector< dof_id_type > &dof_indices, std::vector< dof_id_type > &neighbor_dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)=0
 
virtual void addJacobianNeighborLowerD (const THREAD_ID tid) override
 
virtual void addJacobianLowerD (const THREAD_ID tid) override
 
virtual void addJacobianBlockTags (libMesh::SparseMatrix< libMesh::Number > &jacobian, unsigned int ivar, unsigned int jvar, const DofMap &dof_map, std::vector< dof_id_type > &dof_indices, const std::set< TagID > &tags, const THREAD_ID tid)
 
virtual void addJacobianScalar (const THREAD_ID tid=0)
 
virtual void addJacobianOffDiagScalar (unsigned int ivar, const THREAD_ID tid=0)
 
virtual void cacheJacobian (const THREAD_ID tid) override
 
virtual void cacheJacobianNeighbor (const THREAD_ID tid) override
 
virtual void addCachedJacobian (const THREAD_ID tid) override
 
virtual void prepareShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareFaceShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void prepareNeighborShapes (unsigned int var, const THREAD_ID tid) override
 
virtual void addDisplacedProblem (std::shared_ptr< DisplacedProblem > displaced_problem)
 
virtual std::shared_ptr< const DisplacedProblemgetDisplacedProblem () const
 
virtual std::shared_ptr< DisplacedProblemgetDisplacedProblem ()
 
virtual void updateGeomSearch (GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
 
virtual void updateMortarMesh ()
 
void createMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
 
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces (bool on_displaced) const
 
virtual void possiblyRebuildGeomSearchPatches ()
 
virtual GeometricSearchDatageomSearchData () override
 
void setRestartFile (const std::string &file_name)
 Communicate to the Resurector the name of the restart filer. More...
 
const MaterialPropertyRegistrygetMaterialPropertyRegistry () const
 
const InitialConditionWarehousegetInitialConditionWarehouse () const
 Return InitialCondition storage. More...
 
const FVInitialConditionWarehousegetFVInitialConditionWarehouse () const
 Return FVInitialCondition storage. More...
 
SolverParamssolverParams (unsigned int solver_sys_num=0)
 Get the solver parameters. More...
 
const SolverParamssolverParams (unsigned int solver_sys_num=0) const
 const version More...
 
Adaptivityadaptivity ()
 
virtual void initialAdaptMesh ()
 
unsigned int getNumCyclesCompleted ()
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
bool hasInitialAdaptivity () const
 Return a Boolean indicating whether initial AMR is turned on. More...
 
void initXFEM (std::shared_ptr< XFEMInterface > xfem)
 Create XFEM controller object. More...
 
std::shared_ptr< XFEMInterfacegetXFEM ()
 Get a pointer to the XFEM controller object. More...
 
bool haveXFEM ()
 Find out whether the current analysis is using XFEM. More...
 
virtual bool updateMeshXFEM ()
 Update the mesh due to changing XFEM cuts. More...
 
virtual void meshChanged (bool intermediate_change, bool contract_mesh, bool clean_refinement_flags)
 Update data after a mesh change. More...
 
void notifyWhenMeshChanges (MeshChangedInterface *mci)
 Register an object that derives from MeshChangedInterface to be notified when the mesh changes. More...
 
void notifyWhenMeshDisplaces (MeshDisplacedInterface *mdi)
 Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated. More...
 
void initElementStatefulProps (const libMesh::ConstElemRange &elem_range, const bool threaded)
 Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step. More...
 
virtual void checkProblemIntegrity ()
 Method called to perform a series of sanity checks before a simulation is run. More...
 
void registerRandomInterface (RandomInterface &random_interface, const std::string &name)
 
void setConstJacobian (bool state)
 Set flag that Jacobian is constant (for optimization purposes) More...
 
void setKernelCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setKernelCoverageCheck (bool flag)
 Set flag to indicate whether kernel coverage checks should be performed. More...
 
void setMaterialCoverageCheck (CoverageCheckMode mode)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setMaterialCoverageCheck (bool flag)
 Set flag to indicate whether material coverage checks should be performed. More...
 
void setParallelBarrierMessaging (bool flag)
 Toggle parallel barrier messaging (defaults to on). More...
 
void setVerboseProblem (bool verbose)
 Make the problem be verbose. More...
 
bool verboseMultiApps () const
 Whether or not to use verbose printing for MultiApps. More...
 
void parentOutputPositionChanged ()
 Calls parentOutputPositionChanged() on all sub apps. More...
 
unsigned int subspaceDim (const std::string &prefix) const
 Dimension of the subspace spanned by vectors with a given prefix. More...
 
const MaterialWarehousegetMaterialWarehouse () const
 
const MaterialWarehousegetRegularMaterialsWarehouse () const
 
const MaterialWarehousegetDiscreteMaterialWarehouse () const
 
const MaterialWarehousegetInterfaceMaterialsWarehouse () const
 
std::shared_ptr< MaterialBasegetMaterial (std::string name, Moose::MaterialDataType type, const THREAD_ID tid=0, bool no_warn=false)
 Return a pointer to a MaterialBase object. More...
 
MaterialDatagetMaterialData (Moose::MaterialDataType type, const THREAD_ID tid=0) const
 
bool restoreOriginalNonzeroPattern () const
 
bool errorOnJacobianNonzeroReallocation () const
 Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc. More...
 
void setErrorOnJacobianNonzeroReallocation (bool state)
 
bool preserveMatrixSparsityPattern () const
 Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve. More...
 
void setPreserveMatrixSparsityPattern (bool preserve)
 Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved. More...
 
bool ignoreZerosInJacobian () const
 Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern. More...
 
void setIgnoreZerosInJacobian (bool state)
 Set whether the zeros in the Jacobian should be dropped from the sparsity pattern. More...
 
bool acceptInvalidSolution () const
 Whether or not to accept the solution based on its invalidity. More...
 
bool allowInvalidSolution () const
 Whether to accept / allow an invalid solution. More...
 
bool showInvalidSolutionConsole () const
 Whether or not to print out the invalid solutions summary table in console. More...
 
bool immediatelyPrintInvalidSolution () const
 Whether or not the solution invalid warnings are printed out immediately. More...
 
bool hasTimeIntegrator () const
 Returns whether or not this Problem has a TimeIntegrator. More...
 
virtual void executeAllObjects (const ExecFlagType &exec_type)
 
virtual ExecutorgetExecutor (const std::string &name)
 
virtual void computeUserObjects (const ExecFlagType &type, const Moose::AuxGroup &group)
 Call compute methods on UserObjects. More...
 
virtual void computeUserObjectByName (const ExecFlagType &type, const Moose::AuxGroup &group, const std::string &name)
 Compute an user object with the given name. More...
 
void needsPreviousNewtonIteration (bool state)
 Set a flag that indicated that user required values for the previous Newton iterate. More...
 
bool needsPreviousNewtonIteration () const
 Check to see whether we need to compute the variable values of the previous Newton iterate. More...
 
ExecuteMooseObjectWarehouse< Control > & getControlWarehouse ()
 Reference to the control logic warehouse. More...
 
void executeControls (const ExecFlagType &exec_type)
 Performs setup and execute calls for Control objects. More...
 
void executeSamplers (const ExecFlagType &exec_type)
 Performs setup and execute calls for Sampler objects. More...
 
void reportMooseObjectDependency (MooseObject *a, MooseObject *b)
 Register a MOOSE object dependency so we can either order operations properly or report when we cannot. More...
 
ExecuteMooseObjectWarehouse< MultiApp > & getMultiAppWarehouse ()
 
bool hasJacobian () const
 Returns _has_jacobian. More...
 
bool constJacobian () const
 Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed) More...
 
void addOutput (const std::string &, const std::string &, InputParameters &)
 Adds an Output object. More...
 
TheWarehousetheWarehouse () const
 
void setSNESMFReuseBase (bool reuse, bool set_by_user)
 If or not to reuse the base vector for matrix-free calculation. More...
 
bool useSNESMFReuseBase ()
 Return a flag that indicates if we are reusing the vector base. More...
 
void skipExceptionCheck (bool skip_exception_check)
 Set a flag that indicates if we want to skip exception and stop solve. More...
 
bool isSNESMFReuseBaseSetbyUser ()
 Return a flag to indicate if _snesmf_reuse_base is set by users. More...
 
bool & petscOptionsInserted ()
 If PETSc options are already inserted. More...
 
PetscOptions & petscOptionsDatabase ()
 
virtual void setUDotRequested (const bool u_dot_requested)
 Set boolean flag to true to store solution time derivative. More...
 
virtual void setUDotDotRequested (const bool u_dotdot_requested)
 Set boolean flag to true to store solution second time derivative. More...
 
virtual void setUDotOldRequested (const bool u_dot_old_requested)
 Set boolean flag to true to store old solution time derivative. More...
 
virtual void setUDotDotOldRequested (const bool u_dotdot_old_requested)
 Set boolean flag to true to store old solution second time derivative. More...
 
virtual bool uDotRequested ()
 Get boolean flag to check whether solution time derivative needs to be stored. More...
 
virtual bool uDotDotRequested ()
 Get boolean flag to check whether solution second time derivative needs to be stored. More...
 
virtual bool uDotOldRequested ()
 Get boolean flag to check whether old solution time derivative needs to be stored. More...
 
virtual bool uDotDotOldRequested ()
 Get boolean flag to check whether old solution second time derivative needs to be stored. More...
 
void haveADObjects (bool have_ad_objects) override
 Method for setting whether we have any ad objects. More...
 
virtual void haveADObjects (bool have_ad_objects)
 Method for setting whether we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool haveADObjects () const
 Method for reading wehther we have any ad objects. More...
 
bool shouldSolve () const
 
const MortarDatamortarData () const
 Returns the mortar data object. More...
 
MortarDatamortarData ()
 
virtual bool hasNeighborCoupling () const
 Whether the simulation has neighbor coupling. More...
 
virtual bool hasMortarCoupling () const
 Whether the simulation has mortar coupling. More...
 
void computingNonlinearResid (bool computing_nonlinear_residual) final
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
virtual void computingNonlinearResid (const bool computing_nonlinear_residual)
 Set whether or not the problem is in the process of computing the nonlinear residual. More...
 
bool computingNonlinearResid () const
 Returns true if the problem is in the process of computing the nonlinear residual. More...
 
void setCurrentlyComputingResidual (bool currently_computing_residual) final
 Set whether or not the problem is in the process of computing the residual. More...
 
void numGridSteps (unsigned int num_grid_steps)
 Set the number of steps in a grid sequences. More...
 
void uniformRefine ()
 uniformly refine the problem mesh(es). More...
 
void automaticScaling (bool automatic_scaling) override
 Automatic scaling setter. More...
 
virtual void automaticScaling (bool automatic_scaling)
 Automatic scaling setter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
bool automaticScaling () const
 Automatic scaling getter. More...
 
virtual void reinitElemFaceRef (const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data. More...
 
virtual void reinitNeighborFaceRef (const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0) override
 reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data. More...
 
bool fvBCsIntegrityCheck () const
 
void fvBCsIntegrityCheck (bool fv_bcs_integrity_check)
 
void getFVMatsAndDependencies (SubdomainID block_id, std::vector< std::shared_ptr< MaterialBase >> &face_materials, std::vector< std::shared_ptr< MaterialBase >> &neighbor_materials, std::set< MooseVariableFieldBase *> &variables, const THREAD_ID tid)
 Get the materials and variables potentially needed for FV. More...
 
void resizeMaterialData (Moose::MaterialDataType data_type, unsigned int nqp, const THREAD_ID tid)
 Resize material data. More...
 
bool haveDisplaced () const override final
 Whether we have a displaced problem in our simulation. More...
 
bool hasLinearConvergenceObjects () const
 Whether we have linear convergence objects. More...
 
void setNonlinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the nonlinear convergence object name(s) if there is one. More...
 
void setLinearConvergenceNames (const std::vector< ConvergenceName > &convergence_names)
 Sets the linear convergence object name(s) if there is one. More...
 
void setMultiAppFixedPointConvergenceName (const ConvergenceName &convergence_name)
 Sets the MultiApp fixed point convergence object name if there is one. More...
 
void setSteadyStateConvergenceName (const ConvergenceName &convergence_name)
 Sets the steady-state detection convergence object name if there is one. More...
 
const std::vector< ConvergenceName > & getNonlinearConvergenceNames () const
 Gets the nonlinear system convergence object name(s). More...
 
const std::vector< ConvergenceName > & getLinearConvergenceNames () const
 Gets the linear convergence object name(s). More...
 
const ConvergenceName & getMultiAppFixedPointConvergenceName () const
 Gets the MultiApp fixed point convergence object name. More...
 
const ConvergenceName & getSteadyStateConvergenceName () const
 Gets the steady-state detection convergence object name. More...
 
void computingScalingJacobian (bool computing_scaling_jacobian)
 Setter for whether we're computing the scaling jacobian. More...
 
bool computingScalingJacobian () const override final
 Getter for whether we're computing the scaling jacobian. More...
 
void computingScalingResidual (bool computing_scaling_residual)
 Setter for whether we're computing the scaling residual. More...
 
bool computingScalingResidual () const override final
 
MooseAppCoordTransformcoordTransform ()
 
virtual std::size_t numNonlinearSystems () const override
 
virtual std::size_t numLinearSystems () const override
 
virtual std::size_t numSolverSystems () const override
 
bool isSolverSystemNonlinear (const unsigned int sys_num)
 Check if the solver system is nonlinear. More...
 
virtual unsigned int currentNlSysNum () const override
 
virtual unsigned int currentLinearSysNum () const override
 
virtual unsigned int nlSysNum (const NonlinearSystemName &nl_sys_name) const override
 
unsigned int linearSysNum (const LinearSystemName &linear_sys_name) const override
 
unsigned int solverSysNum (const SolverSystemName &solver_sys_name) const override
 
unsigned int systemNumForVariable (const VariableName &variable_name) const
 
bool getFailNextNonlinearConvergenceCheck () const
 Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
bool getFailNextSystemConvergenceCheck () const
 Whether it will fail the next system convergence check(s), triggering failed step behavior. More...
 
void setFailNextNonlinearConvergenceCheck ()
 Skip further residual evaluations and fail the next nonlinear convergence check(s) More...
 
void setFailNextSystemConvergenceCheck ()
 Tell the problem that the system(s) cannot be considered converged next time convergence is checked. More...
 
void resetFailNextNonlinearConvergenceCheck ()
 Tell the problem that the nonlinear convergence check(s) may proceed as normal. More...
 
void resetFailNextSystemConvergenceCheck ()
 Tell the problem that the system convergence check(s) may proceed as normal. More...
 
void setExecutionPrinting (const ExecFlagEnum &print_exec)
 
bool shouldPrintExecution (const THREAD_ID tid) const
 Check whether the problem should output execution orders at this time. More...
 
void reinitMortarUserObjects (BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced)
 Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics. More...
 
virtual const std::vector< VectorTag > & currentResidualVectorTags () const override
 Return the residual vector tags we are currently computing. More...
 
void setCurrentResidualVectorTags (const std::set< TagID > &vector_tags)
 Set the current residual vector tag data structure based on the passed in tag IDs. More...
 
void clearCurrentResidualVectorTags ()
 Clear the current residual vector tag data structure. More...
 
void clearCurrentJacobianMatrixTags ()
 Clear the current Jacobian matrix tag data structure ... More...
 
virtual void needFV () override
 marks this problem as including/needing finite volume functionality. More...
 
virtual bool haveFV () const override
 returns true if this problem includes/needs finite volume functionality. More...
 
virtual bool hasNonlocalCoupling () const override
 Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian. More...
 
bool identifyVariableGroupsInNL () const
 Whether to identify variable groups in nonlinear systems. More...
 
virtual void setCurrentLowerDElem (const Elem *const lower_d_elem, const THREAD_ID tid) override
 Set the current lower dimensional element. More...
 
virtual void setCurrentBoundaryID (BoundaryID bid, const THREAD_ID tid) override
 sets the current boundary ID in assembly More...
 
const std::vector< NonlinearSystemName > & getNonlinearSystemNames () const
 
const std::vector< LinearSystemName > & getLinearSystemNames () const
 
const std::vector< SolverSystemName > & getSolverSystemNames () const
 
virtual const libMesh::CouplingMatrixnonlocalCouplingMatrix (const unsigned i) const override
 
virtual bool checkNonlocalCouplingRequirement () const override
 
virtual Moose::FEBackend feBackend () const
 
void createTagMatrices (CreateTaggedMatrixKey)
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
const bool & currentlyComputingResidual () const
 Returns true if the problem is in the process of computing the residual. More...
 
virtual bool nlConverged (const unsigned int nl_sys_num)
 
virtual bool converged (const unsigned int sys_num)
 Eventually we want to convert this virtual over to taking a solver system number argument. More...
 
bool defaultGhosting ()
 Whether or not the user has requested default ghosting ot be on. More...
 
virtual TagID addVectorTag (const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
 Create a Tag. More...
 
void addNotZeroedVectorTag (const TagID tag)
 Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are. More...
 
bool vectorTagNotZeroed (const TagID tag) const
 Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are. More...
 
virtual const VectorTaggetVectorTag (const TagID tag_id) const
 Get a VectorTag from a TagID. More...
 
std::vector< VectorTaggetVectorTags (const std::set< TagID > &tag_ids) const
 
virtual const std::vector< VectorTag > & getVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 Return all vector tags, where a tag is represented by a map from name to ID. More...
 
virtual TagID getVectorTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName vectorTagName (const TagID tag) const
 Retrieve the name associated with a TagID. More...
 
virtual bool vectorTagExists (const TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual bool vectorTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists by using Tag name. More...
 
virtual unsigned int numVectorTags (const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
 The total number of tags, which can be limited to the tag type. More...
 
virtual Moose::VectorTagType vectorTagType (const TagID tag_id) const
 
virtual TagID addMatrixTag (TagName tag_name)
 Create a Tag. More...
 
virtual TagID getMatrixTagID (const TagName &tag_name) const
 Get a TagID from a TagName. More...
 
virtual TagName matrixTagName (TagID tag)
 Retrieve the name associated with a TagID. More...
 
virtual bool matrixTagExists (const TagName &tag_name) const
 Check to see if a particular Tag exists. More...
 
virtual bool matrixTagExists (TagID tag_id) const
 Check to see if a particular Tag exists. More...
 
virtual unsigned int numMatrixTags () const
 The total number of tags. More...
 
virtual std::map< TagName, TagID > & getMatrixTags ()
 Return all matrix tags in the system, where a tag is represented by a map from name to ID. More...
 
virtual bool hasLinearVariable (const std::string &var_name) const
 Whether or not this problem has this linear variable. More...
 
virtual bool hasAuxiliaryVariable (const std::string &var_name) const
 Whether or not this problem has this auxiliary variable. More...
 
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables (const THREAD_ID tid) const
 Get the MOOSE variables to be reinited on each element. More...
 
virtual bool hasActiveElementalMooseVariables (const THREAD_ID tid) const
 Whether or not a list of active elemental moose variables has been set. More...
 
Moose::CoordinateSystemType getCoordSystem (SubdomainID sid) const
 
unsigned int getAxisymmetricRadialCoord () const
 Returns the desired radial direction for RZ coordinate transformation. More...
 
virtual DiracKernelInfodiracKernelInfo ()
 
void reinitNeighborLowerDElem (const Elem *elem, const THREAD_ID tid=0)
 reinitialize a neighboring lower dimensional element More...
 
void reinitMortarElem (const Elem *elem, const THREAD_ID tid=0)
 Reinit a mortar element to obtain a valid JxW. More...
 
virtual void storeSubdomainMatPropName (SubdomainID block_id, const std::string &name)
 Adds the given material property to a storage map based on block ids. More...
 
virtual void storeBoundaryMatPropName (BoundaryID boundary_id, const std::string &name)
 Adds the given material property to a storage map based on boundary ids. More...
 
virtual void storeSubdomainZeroMatProp (SubdomainID block_id, const MaterialPropertyName &name)
 Adds to a map based on block ids of material properties for which a zero value can be returned. More...
 
virtual void storeBoundaryZeroMatProp (BoundaryID boundary_id, const MaterialPropertyName &name)
 Adds to a map based on boundary ids of material properties for which a zero value can be returned. More...
 
virtual void storeSubdomainDelayedCheckMatProp (const std::string &requestor, SubdomainID block_id, const std::string &name)
 Adds to a map based on block ids of material properties to validate. More...
 
virtual void storeBoundaryDelayedCheckMatProp (const std::string &requestor, BoundaryID boundary_id, const std::string &name)
 Adds to a map based on boundary ids of material properties to validate. More...
 
virtual void checkBlockMatProps ()
 Checks block material properties integrity. More...
 
virtual void checkBoundaryMatProps ()
 Checks boundary material properties integrity. More...
 
virtual void markMatPropRequested (const std::string &)
 Helper method for adding a material property name to the _material_property_requested set. More...
 
virtual bool isMatPropRequested (const std::string &prop_name) const
 Find out if a material property has been requested by any object. More...
 
void addConsumedPropertyName (const MooseObjectName &obj_name, const std::string &prop_name)
 Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput. More...
 
const std::map< MooseObjectName, std::set< std::string > > & getConsumedPropertyMap () const
 Return the map that tracks the object with consumed material properties. More...
 
virtual std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBlockMaterialProperty (SubdomainID block_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &prop_name)
 Get a vector containing the block ids the material property is defined on. More...
 
virtual std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &prop_name)
 Get a vector of block id equivalences that the material property is defined on. More...
 
virtual bool hasBoundaryMaterialProperty (BoundaryID boundary_id, const std::string &prop_name)
 Check if a material property is defined on a block. More...
 
virtual std::set< dof_id_type > & ghostedElems ()
 Return the list of elements that should have their DoFs ghosted to this processor. More...
 
const bool & currentlyComputingJacobian () const
 Returns true if the problem is in the process of computing the Jacobian. More...
 
void setCurrentlyComputingJacobian (const bool currently_computing_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
const bool & currentlyComputingResidualAndJacobian () const
 Returns true if the problem is in the process of computing the residual and the Jacobian. More...
 
void setCurrentlyComputingResidualAndJacobian (bool currently_computing_residual_and_jacobian)
 Set whether or not the problem is in the process of computing the Jacobian. More...
 
virtual bool safeAccessTaggedMatrices () const
 Is it safe to access the tagged matrices. More...
 
virtual bool safeAccessTaggedVectors () const
 Is it safe to access the tagged vectors. More...
 
const std::set< TagID > & getActiveScalarVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveScalarVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableVectorTags (const THREAD_ID tid) const
 
const std::set< TagID > & getActiveFEVariableCoupleableMatrixTags (const THREAD_ID tid) const
 
void addAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
 Add an algebraic ghosting functor to this problem's DofMaps. More...
 
void addCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
 Add a coupling functor to this problem's DofMaps. More...
 
void removeAlgebraicGhostingFunctor (libMesh::GhostingFunctor &algebraic_gf)
 Remove an algebraic ghosting functor from this problem's DofMaps. More...
 
void removeCouplingGhostingFunctor (libMesh::GhostingFunctor &coupling_gf)
 Remove a coupling ghosting functor from this problem's DofMaps. More...
 
void hasScalingVector (const unsigned int nl_sys_num)
 Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector. More...
 
void clearAllDofIndices ()
 Clear dof indices from variables in nl and aux systems. More...
 
template<typename T >
const Moose::Functor< T > & getFunctor (const std::string &name, const THREAD_ID tid, const std::string &requestor_name, bool requestor_is_ad)
 
bool hasFunctor (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor corresponding to name on the thread id tid More...
 
template<typename T >
bool hasFunctorWithType (const std::string &name, const THREAD_ID tid) const
 checks whether we have a functor of type T corresponding to name on the thread id tid More...
 
template<typename T >
void addFunctor (const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
 add a functor to the problem functor container More...
 
template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & addPiecewiseByBlockLambdaFunctor (const std::string &name, PolymorphicLambda my_lammy, const std::set< ExecFlagType > &clearance_schedule, const MooseMesh &mesh, const std::set< SubdomainID > &block_ids, const THREAD_ID tid)
 Add a functor that has block-wise lambda definitions, e.g. More...
 
void setFunctorOutput (bool set_output)
 Setter for debug functor output. More...
 
template<typename T >
void registerUnfilledFunctorRequest (T *functor_interface, const std::string &functor_name, const THREAD_ID tid)
 Register an unfulfilled functor request. More...
 
void reinitFVFace (const THREAD_ID tid, const FaceInfo &fi)
 reinitialize the finite volume assembly data for the provided face and thread More...
 
void preparePRefinement ()
 Prepare DofMap and Assembly classes with our p-refinement information. More...
 
bool doingPRefinement () const
 
bool havePRefinement () const
 Query whether p-refinement has been requested at any point during the simulation. More...
 
template<typename T >
MooseVariableFEBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &systems, const SystemBase &aux) const
 
void _setCLIOption ()
 For Internal Use. More...
 
virtual void terminateSolve ()
 Allow objects to request clean termination of the solve. More...
 
virtual bool isSolveTerminationRequested () const
 Check of termination has been requested. More...
 
const ConsoleStreamconsole () const
 Return console handle. More...
 
virtual bool enabled () const
 Return the enabled status of the object. More...
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 Get another shared pointer to this object that has the same ownership group. More...
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 Get the MooseApp this class is associated with. More...
 
const std::string & type () const
 Get the type of this class. More...
 
const std::string & name () const
 Get the name of the class. More...
 
std::string typeAndName () const
 Get the class's combined type and name; useful in error handling. More...
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
MooseObjectName uniqueName () const
 
const InputParametersparameters () const
 Get the parameters of the object. More...
 
const hit::Node * getHitNode () const
 
bool hasBase () const
 
const std::string & getBase () const
 
template<typename T >
const T & getParam (const std::string &name) const
 Retrieve a parameter for the object. More...
 
template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 Retrieve two parameters and provide pair of parameters for the object. More...
 
template<typename T >
const T * queryParam (const std::string &name) const
 Query a parameter for the object. More...
 
template<typename T >
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 Retrieve a renamed parameter for the object. More...
 
template<typename T >
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 Verifies that the requested parameter exists and is not NULL and returns it to the caller. More...
 
bool isParamValid (const std::string &name) const
 Test if the supplied parameter is valid. More...
 
bool isParamSetByUser (const std::string &name) const
 Test if the supplied parameter is set by a user, as opposed to not set or set to default. More...
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 Connect controllable parameter of this action with the controllable parameters of the objects added by this action. More...
 
template<typename... Args>
void paramError (const std::string &param, Args... args) const
 Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramWarning (const std::string &param, Args... args) const
 Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
template<typename... Args>
void paramInfo (const std::string &param, Args... args) const
 Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message. More...
 
std::string messagePrefix (const bool hit_prefix=true) const
 
std::string errorPrefix (const std::string &) const
 Deprecated message prefix; the error type is no longer used. More...
 
template<typename... Args>
void mooseError (Args &&... args) const
 Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available. More...
 
template<typename... Args>
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
template<typename... Args>
void mooseErrorNonPrefixed (Args &&... args) const
 Emits an error without the prefixing included in mooseError(). More...
 
template<typename... Args>
void mooseWarning (Args &&... args) const
 Emits a warning prefixed with object name and type. More...
 
template<typename... Args>
void mooseWarningNonPrefixed (Args &&... args) const
 Emits a warning without the prefixing included in mooseWarning(). More...
 
template<typename... Args>
void mooseDeprecated (Args &&... args) const
 
template<typename... Args>
void mooseInfo (Args &&... args) const
 
void callMooseError (std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
 External method for calling moose error with added object context. More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
std::string getDataFileName (const std::string &param) const
 Deprecated method. More...
 
std::string getDataFileNameByName (const std::string &relative_path) const
 Deprecated method. More...
 
std::string getDataFilePath (const std::string &relative_path) const
 Returns the path of a data file for a given relative file path. More...
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
const libMesh::ConstElemRangegetEvaluableElementRange ()
 In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}. More...
 
const libMesh::ConstElemRangegetNonlinearEvaluableElementRange ()
 
const libMesh::ConstElemRangegetCurrentAlgebraicElementRange ()
 These are the element and nodes that contribute to the jacobian and residual for this local processor. More...
 
const libMesh::ConstNodeRangegetCurrentAlgebraicNodeRange ()
 
const ConstBndNodeRangegetCurrentAlgebraicBndNodeRange ()
 
void setCurrentAlgebraicElementRange (libMesh::ConstElemRange *range)
 These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor. More...
 
void setCurrentAlgebraicNodeRange (libMesh::ConstNodeRange *range)
 
void setCurrentAlgebraicBndNodeRange (ConstBndNodeRange *range)
 
void allowOutput (bool state)
 Ability to enable/disable all output calls. More...
 
template<typename T >
void allowOutput (bool state)
 
bool hasMultiApps () const
 Returns whether or not the current simulation has any multiapps. More...
 
bool hasMultiApps (ExecFlagType type) const
 
bool hasMultiApp (const std::string &name) const
 
const AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced) const
 Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains. More...
 
AutomaticMortarGenerationgetMortarInterface (const std::pair< BoundaryID, BoundaryID > &primary_secondary_boundary_pair, const std::pair< SubdomainID, SubdomainID > &primary_secondary_subdomain_pair, bool on_displaced)
 
const MaterialPropertyStoragegetMaterialPropertyStorage ()
 Return a reference to the material property storage. More...
 
const MaterialPropertyStoragegetBndMaterialPropertyStorage ()
 
const MaterialPropertyStoragegetNeighborMaterialPropertyStorage ()
 
const MooseObjectWarehouse< Indicator > & getIndicatorWarehouse ()
 Return indicator/marker storage. More...
 
const MooseObjectWarehouse< InternalSideIndicatorBase > & getInternalSideIndicatorWarehouse ()
 
const MooseObjectWarehouse< Marker > & getMarkerWarehouse ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 These methods are used to determine whether stateful material properties need to be stored on internal sides. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, const THREAD_ID tid)
 
bool needSubdomainMaterialOnSide (SubdomainID subdomain_id, const THREAD_ID tid)
 
const ExecFlagTypegetCurrentExecuteOnFlag () const
 Return/set the current execution flag. More...
 
void setCurrentExecuteOnFlag (const ExecFlagType &)
 

Static Public Member Functions

static InputParameters validParams ()
 
static void selectVectorTagsFromSystem (const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
 Select the vector tags which belong to a specific system. More...
 
static void selectMatrixTagsFromSystem (const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
 Select the matrix tags which belong to a specific system. More...
 
static void callMooseError (MooseApp *const app, const InputParameters &params, std::string msg, const bool with_prefix, const hit::Node *node)
 External method for calling moose error with added object context. More...
 
template<typename T >
static void objectSetupHelper (const std::vector< T *> &objects, const ExecFlagType &exec_flag)
 Helpers for calling the necessary setup/execute functions for the supplied objects. More...
 
template<typename T >
static void objectExecuteHelper (const std::vector< T *> &objects)
 

Public Attributes

std::map< std::string, std::vector< dof_id_type > > _var_dof_map
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 
std::vector< Real_real_zero
 Convenience zeros. More...
 
std::vector< VariableValue_scalar_zero
 
std::vector< VariableValue_zero
 
std::vector< VariablePhiValue_phi_zero
 
std::vector< MooseArray< ADReal > > _ad_zero
 
std::vector< VariableGradient_grad_zero
 
std::vector< MooseArray< ADRealVectorValue > > _ad_grad_zero
 
std::vector< VariablePhiGradient_grad_phi_zero
 
std::vector< VariableSecond_second_zero
 
std::vector< MooseArray< ADRealTensorValue > > _ad_second_zero
 
std::vector< VariablePhiSecond_second_phi_zero
 
std::vector< Point > _point_zero
 
std::vector< VectorVariableValue_vector_zero
 
std::vector< VectorVariableCurl_vector_curl_zero
 

Static Public Attributes

static const std::string type_param = "_type"
 The name of the parameter that contains the object type. More...
 
static const std::string name_param = "_object_name"
 The name of the parameter that contains the object name. More...
 
static const std::string unique_name_param = "_unique_name"
 The name of the parameter that contains the unique object name. More...
 
static const std::string app_param = "_moose_app"
 The name of the parameter that contains the MooseApp. More...
 
static const std::string moose_base_param = "_moose_base"
 The name of the parameter that contains the moose system base. More...
 

Protected Member Functions

void dumpObjectHelper (const std::string &system, const std::string &type, const std::string &name, const InputParameters &parameters)
 
void dumpVariableHelper (const std::string &system, const std::string &var_name, libMesh::FEFamily family, Order order, Real scale_factor, const std::set< SubdomainID > *const active_subdomains)
 
std::string deduceNecessaryParameters (const std::string &type, const InputParameters &parameters)
 build a text snippet of the minimal set of parameters that need to be specified More...
 
std::map< std::string, std::string > stringifyParameters (const InputParameters &parameters)
 create a string map form parameter names to stringified parameter values More...
 
virtual void meshChanged ()
 Deprecated. More...
 
void createTagVectors ()
 Create extra tagged vectors and matrices. More...
 
void createTagSolutions ()
 Create extra tagged solution vectors. More...
 
virtual void meshDisplaced ()
 Update data after a mesh displaced. More...
 
void computeSystems (const ExecFlagType &type)
 Do generic system computations. More...
 
bool duplicateVariableCheck (const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
 Helper to check for duplicate variable names across systems or within a single system. More...
 
void computeUserObjectsInternal (const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
 
void checkDisplacementOrders ()
 Verify that SECOND order mesh uses SECOND order displacements. More...
 
void checkUserObjects ()
 
void checkDependMaterialsHelper (const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
 Helper method for checking Material object dependency. More...
 
void checkCoordinateSystems ()
 Verify that there are no element type/coordinate type conflicts. More...
 
void reinitBecauseOfGhostingOrNewGeomObjects (bool mortar_changed=false)
 Call when it is possible that the needs for ghosted elements has changed. More...
 
void addObjectParamsHelper (InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
 Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject(). More...
 
template<typename T >
MooseVariableFieldBasegetVariableHelper (const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
 Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available. More...
 
bool verifyVectorTags () const
 Verify the integrity of _vector_tags and _typed_vector_tags. More...
 
void markFamilyPRefinement (const InputParameters &params)
 Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 
template<typename T , typename... Args>
T & declareRestartableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declares a piece of "managed" restartable data and initialize it. More...
 
template<typename T , typename... Args>
const T & getRestartableData (const std::string &data_name) const
 Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 Declare a piece of data as "restartable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 Declare a piece of data as "recoverable" and initialize it. More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 Declare a piece of data as "restartable". More...
 
template<typename T , typename... Args>
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 Declare a piece of data as "restartable". More...
 
std::string restartableName (const std::string &data_name) const
 Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix. More...
 

Protected Attributes

std::map< std::string, std::map< std::string, std::string > > _generated_syntax
 store input syntax to build objects generated by a specific action More...
 
const bool _include_all_user_specified_params
 Whether to include all user-specified parameters in the dump or only parameters that differ from the default value. More...
 
MooseMesh_mesh
 
bool _initialized
 
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
 Nonlinear system(s) convergence name(s) More...
 
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
 Linear system(s) convergence name(s) (if any) More...
 
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
 MultiApp fixed point convergence name. More...
 
std::optional< ConvergenceName > _steady_state_convergence_name
 Steady-state detection convergence name. More...
 
std::set< TagID_fe_vector_tags
 
std::set< TagID_fe_matrix_tags
 
std::set< TagID_linear_vector_tags
 Temporary storage for filtered vector tags for linear systems. More...
 
std::set< TagID_linear_matrix_tags
 Temporary storage for filtered matrix tags for linear systems. More...
 
const bool & _solve
 Whether or not to actually solve the nonlinear system. More...
 
bool _transient
 
Real_time
 
Real_time_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _need_to_add_default_nonlinear_convergence
 Flag that the problem needs to add the default nonlinear convergence. More...
 
bool _need_to_add_default_multiapp_fixed_point_convergence
 Flag that the problem needs to add the default fixed point convergence. More...
 
bool _need_to_add_default_steady_state_convergence
 Flag that the problem needs to add the default steady convergence. More...
 
const std::vector< LinearSystemName > _linear_sys_names
 The linear system names. More...
 
const std::size_t _num_linear_sys
 The number of linear systems. More...
 
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
 The vector of linear systems. More...
 
std::map< LinearSystemName, unsigned int_linear_sys_name_to_num
 Map from linear system name to number. More...
 
LinearSystem_current_linear_sys
 The current linear system that we are solving. More...
 
const bool _using_default_nl
 Boolean to check if we have the default nonlinear system. More...
 
const std::vector< NonlinearSystemName > _nl_sys_names
 The nonlinear system names. More...
 
const std::size_t _num_nl_sys
 The number of nonlinear systems. More...
 
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
 The nonlinear systems. More...
 
std::map< NonlinearSystemName, unsigned int_nl_sys_name_to_num
 Map from nonlinear system name to number. More...
 
NonlinearSystemBase_current_nl_sys
 The current nonlinear system that we are solving. More...
 
SolverSystem_current_solver_sys
 The current solver system. More...
 
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
 Combined container to base pointer of every solver system. More...
 
std::map< SolverVariableName, unsigned int_solver_var_to_sys_num
 Map connecting variable names with their respective solver systems. More...
 
std::map< SolverSystemName, unsigned int_solver_sys_name_to_num
 Map connecting solver system names with their respective systems. More...
 
std::vector< SolverSystemName > _solver_sys_names
 The union of nonlinear and linear system names. More...
 
std::shared_ptr< AuxiliarySystem_aux
 The auxiliary system. More...
 
Moose::CouplingType _coupling
 Type of variable coupling. More...
 
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
 Coupling matrix for variables. More...
 
std::map< std::string, unsigned int_subspace_dim
 Dimension of the subspace spanned by the vectors with a given prefix. More...
 
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
 The Assembly objects. More...
 
MooseObjectWarehouse< MeshDivision_mesh_divisions
 Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best. More...
 
MooseObjectWarehouse< Function_functions
 functions More...
 
MooseObjectWarehouse< Convergence_convergences
 convergence warehouse More...
 
MooseObjectWarehouse< KernelBase_nonlocal_kernels
 nonlocal kernels More...
 
MooseObjectWarehouse< IntegratedBCBase_nonlocal_integrated_bcs
 nonlocal integrated_bcs More...
 
MaterialPropertyRegistry _material_prop_registry
 
MaterialPropertyStorage_material_props
 
MaterialPropertyStorage_bnd_material_props
 
MaterialPropertyStorage_neighbor_material_props
 
MooseObjectWarehouse< Marker_markers
 
ReporterData _reporter_data
 
ExecuteMooseObjectWarehouse< UserObject_all_user_objects
 
ExecuteMooseObjectWarehouse< MultiApp_multi_apps
 MultiApp Warehouse. More...
 
ExecuteMooseObjectWarehouse< TransientMultiApp_transient_multi_apps
 Storage for TransientMultiApps (only needed for calling 'computeDT') More...
 
ExecuteMooseObjectWarehouse< Transfer_transfers
 Normal Transfers. More...
 
ExecuteMooseObjectWarehouse< Transfer_to_multi_app_transfers
 Transfers executed just before MultiApps to transfer data to them. More...
 
ExecuteMooseObjectWarehouse< Transfer_from_multi_app_transfers
 Transfers executed just after MultiApps to transfer data from them. More...
 
ExecuteMooseObjectWarehouse< Transfer_between_multi_app_transfers
 Transfers executed just before MultiApps to transfer data between them. More...
 
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
 A map of objects that consume random numbers. More...
 
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
 Cache for calculating materials on side. More...
 
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
 Cache for calculating materials on interface. More...
 
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
 Objects to be notified when the mesh changes. More...
 
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
 Objects to be notified when the mesh displaces. More...
 
Adaptivity _adaptivity
 
unsigned int _cycles_completed
 
std::shared_ptr< XFEMInterface_xfem
 Pointer to XFEM controller. More...
 
MooseMesh_displaced_mesh
 
std::shared_ptr< DisplacedProblem_displaced_problem
 
GeometricSearchData _geometric_search_data
 
MortarData _mortar_data
 
bool _reinit_displaced_elem
 Whether to call DisplacedProblem::reinitElem when this->reinitElem is called. More...
 
bool _reinit_displaced_face
 Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called. More...
 
bool _reinit_displaced_neighbor
 Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called. More...
 
bool _input_file_saved
 whether input file has been written More...
 
bool _has_dampers
 Whether or not this system has any Dampers associated with it. More...
 
bool _has_constraints
 Whether or not this system has any Constraints. More...
 
bool _snesmf_reuse_base
 If or not to resuse the base vector for matrix-free calculation. More...
 
bool _skip_exception_check
 If or not skip 'exception and stop solve'. More...
 
bool _snesmf_reuse_base_set_by_user
 If or not _snesmf_reuse_base is set by user. More...
 
bool _has_initialized_stateful
 Whether nor not stateful materials have been initialized. More...
 
bool _const_jacobian
 true if the Jacobian is constant More...
 
bool _has_jacobian
 Indicates if the Jacobian was computed. More...
 
bool _needs_old_newton_iter
 Indicates that we need to compute variable values for previous Newton iteration. More...
 
bool _previous_nl_solution_required
 Indicates we need to save the previous NL iteration variable values. More...
 
bool _has_nonlocal_coupling
 Indicates if nonlocal coupling is required/exists. More...
 
bool _calculate_jacobian_in_uo
 
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
 
std::vector< unsigned char > _has_active_material_properties
 Whether there are active material properties on each thread. More...
 
std::vector< SolverParams_solver_params
 
CoverageCheckMode _kernel_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active kernel. More...
 
std::vector< SubdomainName > _kernel_coverage_blocks
 
const bool _boundary_restricted_node_integrity_check
 whether to perform checking of boundary restricted nodal object variable dependencies, e.g. More...
 
const bool _boundary_restricted_elem_integrity_check
 whether to perform checking of boundary restricted elemental object variable dependencies, e.g. More...
 
CoverageCheckMode _material_coverage_check
 Determines whether and which subdomains are to be checked to ensure that they have an active material. More...
 
std::vector< SubdomainName > _material_coverage_blocks
 
bool _fv_bcs_integrity_check
 Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset. More...
 
const bool _material_dependency_check
 Determines whether a check to verify material dependencies on every subdomain. More...
 
const bool _uo_aux_state_check
 Whether or not checking the state of uo/aux evaluation. More...
 
unsigned int _max_qps
 Maximum number of quadrature points used in the problem. More...
 
libMesh::Order _max_scalar_order
 Maximum scalar variable order. More...
 
bool _has_time_integrator
 Indicates whether or not this executioner has a time integrator (during setup) More...
 
bool _has_exception
 Whether or not an exception has occurred. More...
 
bool _parallel_barrier_messaging
 Whether or not information about how many transfers have completed is printed. More...
 
MooseEnum _verbose_setup
 Whether or not to be verbose during setup. More...
 
bool _verbose_multiapps
 Whether or not to be verbose with multiapps. More...
 
bool _verbose_restore
 Whether or not to be verbose on solution restoration post a failed time step. More...
 
std::string _exception_message
 The error message to go with an exception. More...
 
ExecFlagType _current_execute_on_flag
 Current execute_on flag. More...
 
ExecuteMooseObjectWarehouse< Control_control_warehouse
 The control logic warehouse. More...
 
Moose::PetscSupport::PetscOptions _petsc_options
 PETSc option storage. More...
 
PetscOptions _petsc_option_data_base
 
bool _is_petsc_options_inserted
 If or not PETSc options have been added to database. More...
 
std::shared_ptr< LineSearch_line_search
 
std::unique_ptr< libMesh::ConstElemRange_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_nl_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_aux_evaluable_local_elem_range
 
std::unique_ptr< libMesh::ConstElemRange_current_algebraic_elem_range
 
std::unique_ptr< libMesh::ConstNodeRange_current_algebraic_node_range
 
std::unique_ptr< ConstBndNodeRange_current_algebraic_bnd_node_range
 
bool _using_ad_mat_props
 Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property. More...
 
unsigned short _current_ic_state
 
const bool _use_hash_table_matrix_assembly
 Whether to assemble matrices using hash tables instead of preallocating matrix memory. More...
 
std::map< TagName, TagID_matrix_tag_name_to_tag_id
 The currently declared tags. More...
 
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
 Reverse map. More...
 
Factory_factory
 The Factory for building objects. More...
 
DiracKernelInfo _dirac_kernel_info
 
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
 Map of material properties (block_id -> list of properties) More...
 
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
 Map for boundary material properties (boundary_id -> list of properties) More...
 
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
 Set of properties returned as zero properties. More...
 
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
 
std::set< std::string > _material_property_requested
 set containing all material property names that have been requested by getMaterialProperty* More...
 
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
 This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) More...
 
std::vector< unsigned int_has_active_elemental_moose_variables
 Whether or not there is currently a list of active elemental moose variables. More...
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
 
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
 
bool _default_ghosting
 Whether or not to use default libMesh coupling. More...
 
std::set< dof_id_type_ghosted_elems
 Elements that should have Dofs ghosted to the local processor. More...
 
bool _currently_computing_jacobian
 Flag to determine whether the problem is currently computing Jacobian. More...
 
bool _currently_computing_residual_and_jacobian
 Flag to determine whether the problem is currently computing the residual and Jacobian. More...
 
bool _computing_nonlinear_residual
 Whether the non-linear residual is being evaluated. More...
 
bool _currently_computing_residual
 Whether the residual is being evaluated. More...
 
bool _safe_access_tagged_matrices
 Is it safe to retrieve data from tagged matrices. More...
 
bool _safe_access_tagged_vectors
 Is it safe to retrieve data from tagged vectors. More...
 
bool _have_ad_objects
 AD flag indicating whether any AD objects have been added. More...
 
std::unordered_set< TagID_not_zeroed_tagged_vectors
 the list of vector tags that will not be zeroed when all other tags are More...
 
bool _cli_option_found
 True if the CLI option is found. More...
 
bool _color_output
 True if we're going to attempt to write color output. More...
 
bool _termination_requested
 True if termination of the solve has been requested. More...
 
const bool & _enabled
 Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects. More...
 
MooseApp_app
 The MOOSE application this is associated with. More...
 
ActionFactory_action_factory
 Builds Actions. More...
 
const std::string & _type
 The type of this class. More...
 
const std::string & _name
 The name of this class. More...
 
const InputParameters_pars
 The object's parameters. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseApp_restartable_app
 Reference to the application. More...
 
const std::string _restartable_system_name
 The system name this object is in. More...
 
const THREAD_ID _restartable_tid
 The thread ID for this object. More...
 
const bool _restartable_read_only
 Flag for toggling read only status (see ReporterData) More...
 
InitialConditionWarehouse _ics
 
FVInitialConditionWarehouse _fv_ics
 
ScalarInitialConditionWarehouse _scalar_ics
 
MaterialWarehouse _materials
 
MaterialWarehouse _interface_materials
 
MaterialWarehouse _discrete_materials
 
MaterialWarehouse _all_materials
 
MooseObjectWarehouse< Indicator_indicators
 
MooseObjectWarehouse< InternalSideIndicatorBase_internal_side_indicators
 
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
 Data structures of the requested material properties. More...
 
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
 

Detailed Description

Specialization of SubProblem for dumping generated objects as input file syntax.

Definition at line 36 of file DumpObjectsProblem.h.

Member Typedef Documentation

◆ DataFileParameterType

using DataFileInterface::DataFileParameterType = DataFileName
inherited

The parameter type this interface expects for a data file name.

Definition at line 27 of file DataFileInterface.h.

Member Enumeration Documentation

◆ CoverageCheckMode

enum FEProblemBase::CoverageCheckMode
stronginherited
Enumerator
FALSE 
TRUE 
OFF 
ON 
SKIP_LIST 
ONLY_LIST 

Definition at line 140 of file FEProblemBase.h.

141  {
142  FALSE,
143  TRUE,
144  OFF,
145  ON,
146  SKIP_LIST,
147  ONLY_LIST,
148  };

Constructor & Destructor Documentation

◆ DumpObjectsProblem()

DumpObjectsProblem::DumpObjectsProblem ( const InputParameters parameters)

Definition at line 53 of file DumpObjectsProblem.C.

55  _include_all_user_specified_params(getParam<bool>("include_all_user_specified_params"))
56 {
57  // Make dummy systems based on parameters passed
58  _solver_systems.resize(0);
59  for (const auto i : index_range(_nl_sys_names))
60  {
61  const auto & sys_name = _nl_sys_names[i];
62  const auto & new_sys = std::make_shared<DumpObjectsNonlinearSystem>(*this, sys_name);
63  _solver_systems.push_back(new_sys);
64  _nl[i] = new_sys;
65  }
66  for (const auto i : index_range(_linear_sys_names))
67  {
68  const auto & sys_name = _linear_sys_names[i];
69  const auto & new_sys = std::make_shared<DumpObjectsLinearSystem>(*this, sys_name);
70  _solver_systems.push_back(new_sys);
71  _linear_systems[i] = new_sys;
72  }
73  _aux = std::make_shared<AuxiliarySystem>(*this, "aux0");
74 
75  // Create a dummy assembly for the systems at hand
77 
78  // Create extra vectors and matrices if any
80 
81  // Create extra solution vectors if any
83 
84  // Add an action to call printObjects at the end of the action/tasks phase
85  // NOTE: We previously relied on problem.solve() but some executioners (SIMPLE in NavierStokes) do
86  // not support this
87  auto action_params = _app.getActionFactory().getValidParams("DumpObjectsAction");
88  action_params.applyParameters(parameters);
89  auto dump_objects_action =
90  _app.getActionFactory().create("DumpObjectsAction", "dump_objects", action_params);
91  _app.actionWarehouse().addActionBlock(dump_objects_action);
92 }
InputParameters getValidParams(const std::string &name)
Definition: ActionFactory.C:94
const bool _include_all_user_specified_params
Whether to include all user-specified parameters in the dump or only parameters that differ from the ...
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
virtual void newAssemblyArray(std::vector< std::shared_ptr< SolverSystem >> &solver_systems)
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
void addActionBlock(std::shared_ptr< Action > blk)
This method add an Action instance to the warehouse.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
FEProblemBase(const InputParameters &parameters)
ActionFactory & getActionFactory()
Retrieve a writable reference to the ActionFactory associated with this App.
Definition: MooseApp.h:399
std::shared_ptr< Action > create(const std::string &action, const std::string &action_name, InputParameters &parameters)
Definition: ActionFactory.C:40
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
void createTagSolutions()
Create extra tagged solution vectors.
void createTagVectors()
Create extra tagged vectors and matrices.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
ActionWarehouse & actionWarehouse()
Return a writable reference to the ActionWarehouse associated with this app.
Definition: MooseApp.h:204
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.
auto index_range(const T &sizable)

Member Function Documentation

◆ _setCLIOption()

void Problem::_setCLIOption ( )
inlineinherited

For Internal Use.

Definition at line 32 of file Problem.h.

32 { _cli_option_found = true; }
bool _cli_option_found
True if the CLI option is found.
Definition: Problem.h:52

◆ acceptInvalidSolution()

bool FEProblemBase::acceptInvalidSolution ( ) const
inherited

Whether or not to accept the solution based on its invalidity.

If this returns false, it means that an invalid solution was encountered (an error) that was not allowed.

Definition at line 3876 of file FEProblemBase.C.

Referenced by SolverSystem::checkInvalidSolution(), and NonlinearSystem::converged().

3877 {
3878  return allowInvalidSolution() || // invalid solutions are always allowed
3879  !_app.solutionInvalidity().hasInvalidSolutionError(); // if not allowed, check for errors
3880 }
bool hasInvalidSolutionError() const
Whether or not an invalid solution was encountered that was an error.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:172
bool allowInvalidSolution() const
Whether to accept / allow an invalid solution.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ adaptivity()

Adaptivity& FEProblemBase::adaptivity ( )
inlineinherited

◆ adaptMesh()

virtual bool DumpObjectsProblem::adaptMesh ( )
inlineoverridevirtual
Returns
Whether or not the mesh was changed

Reimplemented from FEProblemBase.

Definition at line 70 of file DumpObjectsProblem.h.

70 { return false; }

◆ addAlgebraicGhostingFunctor()

void SubProblem::addAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf,
bool  to_mesh = true 
)
inherited

Add an algebraic ghosting functor to this problem's DofMaps.

Definition at line 1023 of file SubProblem.C.

1024 {
1025  EquationSystems & eq = es();
1026  const auto n_sys = eq.n_systems();
1027  if (!n_sys)
1028  return;
1029 
1030  eq.get_system(0).get_dof_map().add_algebraic_ghosting_functor(algebraic_gf, to_mesh);
1031  cloneAlgebraicGhostingFunctor(algebraic_gf, to_mesh);
1032 }
unsigned int n_systems() const
void cloneAlgebraicGhostingFunctor(libMesh::GhostingFunctor &algebraic_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided algebraic ghosting functor (corresponding to the nonlinear...
Definition: SubProblem.C:1001
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0

◆ addAuxArrayVariable()

void FEProblemBase::addAuxArrayVariable ( const std::string &  var_name,
const libMesh::FEType type,
unsigned int  components,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3185 of file FEProblemBase.C.

3189 {
3190  parallel_object_only();
3191 
3192  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3193 
3194  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3195  return;
3196 
3197  InputParameters params = _factory.getValidParams("ArrayMooseVariable");
3198  params.set<FEProblemBase *>("_fe_problem_base") = this;
3200  params.set<MooseEnum>("order") = type.order.get_order();
3201  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3202  params.set<unsigned int>("components") = components;
3203 
3204  if (active_subdomains)
3205  for (const SubdomainID & id : *active_subdomains)
3206  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3207 
3208  logAdd("Variable", var_name, "ArrayMooseVariable", params);
3209  _aux->addVariable("ArrayMooseVariable", var_name, params);
3210  if (_displaced_problem)
3211  _displaced_problem->addAuxVariable("ArrayMooseVariable", var_name, params);
3212 
3213  markFamilyPRefinement(params);
3214 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxKernel()

void FEProblemBase::addAuxKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3251 of file FEProblemBase.C.

3254 {
3255  parallel_object_only();
3256 
3257  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3258  {
3259  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3260  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3261  parameters.set<SystemBase *>("_nl_sys") = &_displaced_problem->solverSys(0);
3262  if (!parameters.get<std::vector<BoundaryName>>("boundary").empty())
3263  _reinit_displaced_face = true;
3264  else
3265  _reinit_displaced_elem = true;
3266  }
3267  else
3268  {
3269  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3270  {
3271  // We allow AuxKernels to request that they use_displaced_mesh,
3272  // but then be overridden when no displacements variables are
3273  // provided in the Mesh block. If that happened, update the value
3274  // of use_displaced_mesh appropriately for this AuxKernel.
3275  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3276  parameters.set<bool>("use_displaced_mesh") = false;
3277  }
3278 
3279  parameters.set<SubProblem *>("_subproblem") = this;
3280  parameters.set<SystemBase *>("_sys") = _aux.get();
3281  parameters.set<SystemBase *>("_nl_sys") = _solver_systems[0].get();
3282  }
3283 
3284  logAdd("AuxKernel", name, kernel_name, parameters);
3285  _aux->addKernel(kernel_name, name, parameters);
3286 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarKernel()

void FEProblemBase::addAuxScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3289 of file FEProblemBase.C.

3292 {
3293  parallel_object_only();
3294 
3295  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3296  {
3297  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3298  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
3299  }
3300  else
3301  {
3302  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3303  {
3304  // We allow AuxScalarKernels to request that they use_displaced_mesh,
3305  // but then be overridden when no displacements variables are
3306  // provided in the Mesh block. If that happened, update the value
3307  // of use_displaced_mesh appropriately for this AuxScalarKernel.
3308  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3309  parameters.set<bool>("use_displaced_mesh") = false;
3310  }
3311 
3312  parameters.set<SubProblem *>("_subproblem") = this;
3313  parameters.set<SystemBase *>("_sys") = _aux.get();
3314  }
3315 
3316  logAdd("AuxScalarKernel", name, kernel_name, parameters);
3317  _aux->addScalarKernel(kernel_name, name, parameters);
3318 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxScalarVariable()

void FEProblemBase::addAuxScalarVariable ( const std::string &  var_name,
libMesh::Order  order,
Real  scale_factor = 1.,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3217 of file FEProblemBase.C.

3221 {
3222  parallel_object_only();
3223 
3224  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3225 
3226  if (order > _max_scalar_order)
3227  _max_scalar_order = order;
3228 
3229  FEType type(order, SCALAR);
3230  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3231  return;
3232 
3233  InputParameters params = _factory.getValidParams("MooseVariableScalar");
3234  params.set<FEProblemBase *>("_fe_problem_base") = this;
3236 
3237  params.set<MooseEnum>("order") = type.order.get_order();
3238  params.set<MooseEnum>("family") = "SCALAR";
3239  params.set<std::vector<Real>>("scaling") = {1};
3240  if (active_subdomains)
3241  for (const SubdomainID & id : *active_subdomains)
3242  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3243 
3244  logAdd("ScalarVariable", var_name, "MooseVariableScalar", params);
3245  _aux->addVariable("MooseVariableScalar", var_name, params);
3246  if (_displaced_problem)
3247  _displaced_problem->addAuxVariable("MooseVariableScalar", var_name, params);
3248 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ addAuxVariable() [1/4]

void FEProblemBase::addAuxVariable

Canonical method for adding an auxiliary variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Definition at line 3114 of file FEProblemBase.C.

3117 {
3118  parallel_object_only();
3119 
3120  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
3121  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
3122  const auto fe_type = FEType(order, family);
3123 
3124  const auto active_subdomains_vector =
3125  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
3126  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
3127  active_subdomains_vector.end());
3128 
3129  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ true, &active_subdomains))
3130  return;
3131 
3132  params.set<FEProblemBase *>("_fe_problem_base") = this;
3133  params.set<Moose::VarKindType>("_var_kind") = Moose::VarKindType::VAR_AUXILIARY;
3134 
3135  logAdd("AuxVariable", var_name, var_type, params);
3136  _aux->addVariable(var_type, var_name, params);
3137  if (_displaced_problem)
3138  // MooseObjects need to be unique so change the name here
3139  _displaced_problem->addAuxVariable(var_type, var_name, params);
3140 
3141  markFamilyPRefinement(params);
3142 }
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1737
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxVariable() [2/4]

void FEProblemBase::addAuxVariable

Definition at line 3145 of file FEProblemBase.C.

3148 {
3149  parallel_object_only();
3150 
3151  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3152 
3153  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3154  return;
3155 
3156  std::string var_type;
3157  if (type == FEType(0, MONOMIAL))
3158  var_type = "MooseVariableConstMonomial";
3159  else if (type.family == SCALAR)
3160  var_type = "MooseVariableScalar";
3161  else if (FEInterface::field_type(type) == TYPE_VECTOR)
3162  var_type = "VectorMooseVariable";
3163  else
3164  var_type = "MooseVariable";
3165 
3166  InputParameters params = _factory.getValidParams(var_type);
3167  params.set<FEProblemBase *>("_fe_problem_base") = this;
3169  params.set<MooseEnum>("order") = type.order.get_order();
3170  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3171 
3172  if (active_subdomains)
3173  for (const SubdomainID & id : *active_subdomains)
3174  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3175 
3176  logAdd("AuxVariable", var_name, var_type, params);
3177  _aux->addVariable(var_type, var_name, params);
3178  if (_displaced_problem)
3179  _displaced_problem->addAuxVariable("MooseVariable", var_name, params);
3180 
3181  markFamilyPRefinement(params);
3182 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxVariable() [3/4]

void FEProblemBase::addAuxVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters params 
)
virtualinherited

Canonical method for adding an auxiliary variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in MFEMProblem.

Definition at line 3114 of file FEProblemBase.C.

Referenced by AddElementalFieldAction::init(), and AddAuxVariableAction::init().

3117 {
3118  parallel_object_only();
3119 
3120  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
3121  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
3122  const auto fe_type = FEType(order, family);
3123 
3124  const auto active_subdomains_vector =
3125  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
3126  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
3127  active_subdomains_vector.end());
3128 
3129  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ true, &active_subdomains))
3130  return;
3131 
3132  params.set<FEProblemBase *>("_fe_problem_base") = this;
3134 
3135  logAdd("AuxVariable", var_name, var_type, params);
3136  _aux->addVariable(var_type, var_name, params);
3137  if (_displaced_problem)
3138  // MooseObjects need to be unique so change the name here
3139  _displaced_problem->addAuxVariable(var_type, var_name, params);
3140 
3141  markFamilyPRefinement(params);
3142 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1737
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addAuxVariable() [4/4]

void FEProblemBase::addAuxVariable ( const std::string &  var_name,
const libMesh::FEType type,
const std::set< SubdomainID > *const  active_subdomains = NULL 
)
virtualinherited

Definition at line 3145 of file FEProblemBase.C.

3148 {
3149  parallel_object_only();
3150 
3151  mooseDeprecated("Please use the addAuxVariable(var_type, var_name, params) API instead");
3152 
3153  if (duplicateVariableCheck(var_name, type, /* is_aux = */ true, active_subdomains))
3154  return;
3155 
3156  std::string var_type;
3157  if (type == FEType(0, MONOMIAL))
3158  var_type = "MooseVariableConstMonomial";
3159  else if (type.family == SCALAR)
3160  var_type = "MooseVariableScalar";
3161  else if (FEInterface::field_type(type) == TYPE_VECTOR)
3162  var_type = "VectorMooseVariable";
3163  else
3164  var_type = "MooseVariable";
3165 
3166  InputParameters params = _factory.getValidParams(var_type);
3167  params.set<FEProblemBase *>("_fe_problem_base") = this;
3169  params.set<MooseEnum>("order") = type.order.get_order();
3170  params.set<MooseEnum>("family") = Moose::stringify(type.family);
3171 
3172  if (active_subdomains)
3173  for (const SubdomainID & id : *active_subdomains)
3174  params.set<std::vector<SubdomainName>>("block").push_back(Moose::stringify(id));
3175 
3176  logAdd("AuxVariable", var_name, var_type, params);
3177  _aux->addVariable(var_type, var_name, params);
3178  if (_displaced_problem)
3179  _displaced_problem->addAuxVariable("MooseVariable", var_name, params);
3180 
3181  markFamilyPRefinement(params);
3182 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addBoundaryCondition()

void FEProblemBase::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3043 of file FEProblemBase.C.

Referenced by DiffusionCG::addBoundaryConditionsFromComponents(), and DiffusionCG::addFEBCs().

3046 {
3047  parallel_object_only();
3048 
3049  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3050  if (!isSolverSystemNonlinear(nl_sys_num))
3051  mooseError(
3052  "You are trying to add a BoundaryCondition to a linear variable/system, which is not "
3053  "supported at the moment!");
3054 
3056  bc_name, name, parameters, nl_sys_num, "BoundaryCondition", _reinit_displaced_face);
3057  _nl[nl_sys_num]->addBoundaryCondition(bc_name, name, parameters);
3058 }
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addCachedJacobian()

void FEProblemBase::addCachedJacobian ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidual()

void FEProblemBase::addCachedResidual ( const THREAD_ID  tid)
overridevirtualinherited

◆ addCachedResidualDirectly()

void FEProblemBase::addCachedResidualDirectly ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
virtualinherited

Allows for all the residual contributions that are currently cached to be added directly into the vector passed in.

Parameters
residualThe vector to add the cached contributions to.
tidThe thread id.

Definition at line 1887 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

1888 {
1890  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1892 
1894  _assembly[tid][_current_nl_sys->number()]->addCachedResidualDirectly(
1896 
1897  // We do this because by adding the cached residual directly, we cannot ensure that all of the
1898  // cached residuals are emptied after only the two add calls above
1899  _assembly[tid][_current_nl_sys->number()]->clearCachedResiduals(Assembly::GlobalDataKey{});
1900 
1901  if (_displaced_problem)
1902  _displaced_problem->addCachedResidualDirectly(residual, tid);
1903 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916
TagID nonTimeVectorTag() const override
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
TagID timeVectorTag() const override
Ideally, we should not need this API.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addConstraint()

void FEProblemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3061 of file FEProblemBase.C.

3064 {
3065  parallel_object_only();
3066 
3067  _has_constraints = true;
3068 
3069  auto determine_var_param_name = [&parameters, this]()
3070  {
3071  if (parameters.isParamValid("variable"))
3072  return "variable";
3073  else
3074  {
3075  // must be a mortar constraint
3076  const bool has_secondary_var = parameters.isParamValid("secondary_variable");
3077  const bool has_primary_var = parameters.isParamValid("primary_variable");
3078  if (!has_secondary_var && !has_primary_var)
3079  mooseError(
3080  "Either a 'secondary_variable' or 'primary_variable' parameter must be supplied for '",
3082  "'");
3083  return has_secondary_var ? "secondary_variable" : "primary_variable";
3084  }
3085  };
3086 
3087  const auto nl_sys_num =
3088  determineSolverSystem(parameters.varName(determine_var_param_name(), name), true).second;
3089  if (!isSolverSystemNonlinear(nl_sys_num))
3090  mooseError("You are trying to add a Constraint to a linear variable/system, which is not "
3091  "supported at the moment!");
3092 
3093  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3094  {
3095  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3096  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3097  _reinit_displaced_face = true;
3098  }
3099  else
3100  {
3101  // It might _want_ to use a displaced mesh... but we're not so set it to false
3102  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3103  parameters.set<bool>("use_displaced_mesh") = false;
3104 
3105  parameters.set<SubProblem *>("_subproblem") = this;
3106  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3107  }
3108 
3109  logAdd("Constraint", name, c_name, parameters);
3110  _nl[nl_sys_num]->addConstraint(c_name, name, parameters);
3111 }
const std::string & getObjectName() const
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_constraints
Whether or not this system has any Constraints.
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addConsumedPropertyName()

void SubProblem::addConsumedPropertyName ( const MooseObjectName obj_name,
const std::string &  prop_name 
)
inherited

Helper for tracking the object that is consuming a property for MaterialPropertyDebugOutput.

Definition at line 736 of file SubProblem.C.

Referenced by MaterialPropertyInterface::addConsumedPropertyName().

737 {
738  _consumed_material_properties[obj_name].insert(prop_name);
739 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ addConvergence()

void FEProblemBase::addConvergence ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a Convergence object.

Definition at line 2518 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), and FEProblemBase::addDefaultSteadyStateConvergence().

2521 {
2522  parallel_object_only();
2523 
2524  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2525  {
2526  std::shared_ptr<Convergence> conv = _factory.create<Convergence>(type, name, parameters, tid);
2527  _convergences.addObject(conv, tid);
2528  }
2529 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
virtual std::unique_ptr< Base > create()=0
Base class for convergence criteria.
Definition: Convergence.h:21
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addCouplingGhostingFunctor()

void SubProblem::addCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf,
bool  to_mesh = true 
)
inherited

Add a coupling functor to this problem's DofMaps.

Definition at line 1056 of file SubProblem.C.

1057 {
1058  const auto num_nl_sys = numNonlinearSystems();
1059  if (!num_nl_sys)
1060  return;
1061 
1062  systemBaseNonlinear(0).system().get_dof_map().add_coupling_functor(coupling_gf, to_mesh);
1063  cloneCouplingGhostingFunctor(coupling_gf, to_mesh);
1064 }
void cloneCouplingGhostingFunctor(libMesh::GhostingFunctor &coupling_gf, bool to_mesh=true)
Creates (n_sys - 1) clones of the provided coupling ghosting functor (corresponding to the nonlinear ...
Definition: SubProblem.C:1035
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void add_coupling_functor(GhostingFunctor &coupling_functor, bool to_mesh=true)
virtual std::size_t numNonlinearSystems() const =0
const DofMap & get_dof_map() const

◆ addDamper()

void FEProblemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5223 of file FEProblemBase.C.

5226 {
5227  parallel_object_only();
5228 
5229  const auto nl_sys_num =
5230  parameters.isParamValid("variable")
5231  ? determineSolverSystem(parameters.varName("variable", name), true).second
5232  : (unsigned int)0;
5233 
5234  if (!isSolverSystemNonlinear(nl_sys_num))
5235  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
5236  "supported at the moment!");
5237 
5238  parameters.set<SubProblem *>("_subproblem") = this;
5239  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
5240 
5241  _has_dampers = true;
5242  logAdd("Damper", name, damper_name, parameters);
5243  _nl[nl_sys_num]->addDamper(damper_name, name, parameters);
5244 }
bool _has_dampers
Whether or not this system has any Dampers associated with it.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addDefaultMultiAppFixedPointConvergence()

void FEProblemBase::addDefaultMultiAppFixedPointConvergence ( const InputParameters params)
inherited

Adds the default fixed point Convergence associated with the problem.

This is called if the user does not supply 'multiapp_fixed_point_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2544 of file FEProblemBase.C.

2545 {
2546  const std::string class_name = "DefaultMultiAppFixedPointConvergence";
2547  InputParameters params = _factory.getValidParams(class_name);
2548  params.applyParameters(params_to_apply);
2549  params.applyParameters(parameters());
2550  params.set<bool>("added_as_default") = true;
2552 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.
const ConvergenceName & getMultiAppFixedPointConvergenceName() const
Gets the MultiApp fixed point convergence object name.

◆ addDefaultNonlinearConvergence()

void FEProblemBase::addDefaultNonlinearConvergence ( const InputParameters params)
virtualinherited

Adds the default nonlinear Convergence associated with the problem.

This is called if the user does not supply 'nonlinear_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Reimplemented in ReferenceResidualProblem.

Definition at line 2532 of file FEProblemBase.C.

2533 {
2534  const std::string class_name = "DefaultNonlinearConvergence";
2535  InputParameters params = _factory.getValidParams(class_name);
2536  params.applyParameters(params_to_apply);
2537  params.applyParameters(parameters());
2538  params.set<bool>("added_as_default") = true;
2539  for (const auto & conv_name : getNonlinearConvergenceNames())
2540  addConvergence(class_name, conv_name, params);
2541 }
const std::vector< ConvergenceName > & getNonlinearConvergenceNames() const
Gets the nonlinear system convergence object name(s).
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDefaultSteadyStateConvergence()

void FEProblemBase::addDefaultSteadyStateConvergence ( const InputParameters params)
inherited

Adds the default steady-state detection Convergence.

This is called if the user does not supply 'steady_state_convergence'.

Parameters
[in]paramsParameters to apply to Convergence parameters

Definition at line 2555 of file FEProblemBase.C.

2556 {
2557  const std::string class_name = "DefaultSteadyStateConvergence";
2558  InputParameters params = _factory.getValidParams(class_name);
2559  params.applyParameters(params_to_apply);
2560  params.applyParameters(parameters());
2561  params.set<bool>("added_as_default") = true;
2562  addConvergence(class_name, getSteadyStateConvergenceName(), params);
2563 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
const ConvergenceName & getSteadyStateConvergenceName() const
Gets the steady-state detection convergence object name.
virtual void addConvergence(const std::string &type, const std::string &name, InputParameters &parameters)
Adds a Convergence object.

◆ addDGKernel()

void FEProblemBase::addDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3361 of file FEProblemBase.C.

3364 {
3365  parallel_object_only();
3366 
3367  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3368  if (!isSolverSystemNonlinear(nl_sys_num))
3369  mooseError("You are trying to add a DGKernel to a linear variable/system, which is not "
3370  "supported at the moment!");
3371 
3372  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3373  {
3374  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3375  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3377  }
3378  else
3379  {
3380  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3381  {
3382  // We allow DGKernels to request that they use_displaced_mesh,
3383  // but then be overridden when no displacements variables are
3384  // provided in the Mesh block. If that happened, update the value
3385  // of use_displaced_mesh appropriately for this DGKernel.
3386  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3387  parameters.set<bool>("use_displaced_mesh") = false;
3388  }
3389 
3390  parameters.set<SubProblem *>("_subproblem") = this;
3391  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3392  }
3393 
3394  logAdd("DGKernel", name, dg_kernel_name, parameters);
3395  _nl[nl_sys_num]->addDGKernel(dg_kernel_name, name, parameters);
3396 
3398 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addDiracKernel()

void FEProblemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3321 of file FEProblemBase.C.

3324 {
3325  parallel_object_only();
3326 
3327  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3328  if (!isSolverSystemNonlinear(nl_sys_num))
3329  mooseError("You are trying to add a DiracKernel to a linear variable/system, which is not "
3330  "supported at the moment!");
3331 
3332  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3333  {
3334  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3335  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3336  _reinit_displaced_elem = true;
3337  }
3338  else
3339  {
3340  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3341  {
3342  // We allow DiracKernels to request that they use_displaced_mesh,
3343  // but then be overridden when no displacements variables are
3344  // provided in the Mesh block. If that happened, update the value
3345  // of use_displaced_mesh appropriately for this DiracKernel.
3346  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3347  parameters.set<bool>("use_displaced_mesh") = false;
3348  }
3349 
3350  parameters.set<SubProblem *>("_subproblem") = this;
3351  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3352  }
3353 
3354  logAdd("DiracKernel", name, kernel_name, parameters);
3355  _nl[nl_sys_num]->addDiracKernel(kernel_name, name, parameters);
3356 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addDisplacedProblem()

void FEProblemBase::addDisplacedProblem ( std::shared_ptr< DisplacedProblem displaced_problem)
virtualinherited

Definition at line 7847 of file FEProblemBase.C.

7848 {
7849  parallel_object_only();
7850 
7853 }
std::shared_ptr< DisplacedProblem > displaced_problem
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ addDistribution()

void FEProblemBase::addDistribution ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import distributions.

Definition at line 2684 of file FEProblemBase.C.

2687 {
2688  parameters.set<std::string>("type") = type;
2689  addObject<Distribution>(type, name, parameters, /* threaded = */ false);
2690 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ addFunction()

void FEProblemBase::addFunction ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 2492 of file FEProblemBase.C.

Referenced by MFEMProblem::addFunction(), and FEProblemBase::getFunction().

2495 {
2496  parallel_object_only();
2497 
2498  parameters.set<SubProblem *>("_subproblem") = this;
2499 
2500  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2501  {
2502  std::shared_ptr<Function> func = _factory.create<Function>(type, name, parameters, tid);
2503  logAdd("Function", name, type, parameters);
2504  _functions.addObject(func, tid);
2505 
2506  if (auto * const functor = dynamic_cast<Moose::FunctorBase<Real> *>(func.get()))
2507  {
2508  this->addFunctor(name, *functor, tid);
2509  if (_displaced_problem)
2510  _displaced_problem->addFunctor(name, *functor, tid);
2511  }
2512  else
2513  mooseError("Unrecognized function functor type");
2514  }
2515 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFunctor()

template<typename T >
void SubProblem::addFunctor ( const std::string &  name,
const Moose::FunctorBase< T > &  functor,
const THREAD_ID  tid 
)
inherited

add a functor to the problem functor container

Definition at line 1375 of file SubProblem.h.

Referenced by FEProblemBase::addFunction(), SubProblem::addPiecewiseByBlockLambdaFunctor(), FEProblemBase::addUserObject(), and SystemBase::addVariable().

1378 {
1379  constexpr bool added_functor_is_ad =
1380  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1381 
1382  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1383 
1384  auto & functor_to_request_info = _functor_to_request_info[tid];
1385  auto & functors = _functors[tid];
1386  auto it = functors.find("wraps_" + name);
1387  if (it != functors.end())
1388  {
1389  // We have this functor already. If it's a null functor, we want to replace it with the valid
1390  // functor we have now. If it's not then we'll add a new entry into the multimap and then we'll
1391  // error later if a user requests a functor because their request is ambiguous. This is the
1392  // reason that the functors container is a multimap: for nice error messages
1393  auto * const existing_wrapper_base =
1394  added_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get();
1395  auto * const existing_wrapper = dynamic_cast<Moose::Functor<T> *>(existing_wrapper_base);
1396  if (existing_wrapper && existing_wrapper->template wrapsType<Moose::NullFunctor<T>>())
1397  {
1398  // Sanity check
1399  auto [request_info_it, request_info_end_it] = functor_to_request_info.equal_range(name);
1400  if (request_info_it == request_info_end_it)
1401  mooseError("We are wrapping a NullFunctor but we don't have any unfilled functor request "
1402  "info. This doesn't make sense.");
1403 
1404  // Check for valid requests
1405  while (request_info_it != request_info_end_it)
1406  {
1407  auto & [requested_functor_is_ad, requestor_is_ad] = request_info_it->second;
1408  if (!requested_functor_is_ad && requestor_is_ad && added_functor_is_ad)
1409  mooseError("We are requesting a non-AD functor '" + name +
1410  "' from an AD object, but the true functor is AD. This means we could be "
1411  "dropping important derivatives. We will not allow this");
1412  // We're going to eventually check whether we've fulfilled all functor requests and our
1413  // check will be that the multimap is empty. This request is fulfilled, so erase it from the
1414  // map now
1415  request_info_it = functor_to_request_info.erase(request_info_it);
1416  }
1417 
1418  // Ok we didn't have the functor before, so we will add it now
1419  std::get<0>(it->second) =
1421  existing_wrapper->assign(functor);
1422  // Finally we create the non-AD or AD complement of the just added functor
1423  if constexpr (added_functor_is_ad)
1424  {
1425  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1426  auto * const existing_non_ad_wrapper_base = std::get<1>(it->second).get();
1427  auto * const existing_non_ad_wrapper =
1428  dynamic_cast<Moose::Functor<NonADType> *>(existing_non_ad_wrapper_base);
1429  mooseAssert(existing_non_ad_wrapper->template wrapsType<Moose::NullFunctor<NonADType>>(),
1430  "Both members of pair should have been wrapping a NullFunctor");
1431  existing_non_ad_wrapper->assign(
1432  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1433  }
1434  else
1435  {
1436  typedef typename Moose::ADType<T>::type ADType;
1437  auto * const existing_ad_wrapper_base = std::get<2>(it->second).get();
1438  auto * const existing_ad_wrapper =
1439  dynamic_cast<Moose::Functor<ADType> *>(existing_ad_wrapper_base);
1440  mooseAssert(existing_ad_wrapper->template wrapsType<Moose::NullFunctor<ADType>>(),
1441  "Both members of pair should have been wrapping a NullFunctor");
1442  existing_ad_wrapper->assign(std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1443  }
1444  return;
1445  }
1446  else if (!existing_wrapper)
1447  {
1448  // Functor was emplaced but the cast failed. This could be a double definition with
1449  // different types, or it could be a request with one type then a definition with another
1450  // type. Either way it is going to error later, but it is cleaner to catch it now
1451  mooseError("Functor '",
1452  name,
1453  "' is being added with return type '",
1454  MooseUtils::prettyCppType<T>(),
1455  "' but it has already been defined or requested with return type '",
1456  existing_wrapper_base->returnType(),
1457  "'.");
1458  }
1459  }
1460 
1461  // We are a new functor, create the opposite ADType one and store it with other functors
1462  if constexpr (added_functor_is_ad)
1463  {
1464  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1465  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<NonADType>>(
1466  std::make_unique<Moose::RawValueFunctor<NonADType>>(functor));
1467  auto new_ad_wrapper = std::make_unique<Moose::Functor<T>>(functor);
1468  _functors[tid].emplace("wraps_" + name,
1469  std::make_tuple(SubProblem::TrueFunctorIs::AD,
1470  std::move(new_non_ad_wrapper),
1471  std::move(new_ad_wrapper)));
1472  }
1473  else
1474  {
1475  typedef typename Moose::ADType<T>::type ADType;
1476  auto new_non_ad_wrapper = std::make_unique<Moose::Functor<T>>((functor));
1477  auto new_ad_wrapper = std::make_unique<Moose::Functor<ADType>>(
1478  std::make_unique<Moose::ADWrapperFunctor<ADType>>(functor));
1479  _functors[tid].emplace("wraps_" + name,
1480  std::make_tuple(SubProblem::TrueFunctorIs::NONAD,
1481  std::move(new_non_ad_wrapper),
1482  std::move(new_ad_wrapper)));
1483  }
1484 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1155
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
Wraps non-AD functors such that they can be used in objects that have requested the functor as AD...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...

◆ addFunctorMaterial()

void FEProblemBase::addFunctorMaterial ( const std::string &  functor_material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3883 of file FEProblemBase.C.

3886 {
3887  parallel_object_only();
3888 
3889  auto add_functor_materials = [&](const auto & parameters, const auto & name)
3890  {
3891  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
3892  {
3893  // Create the general Block/Boundary MaterialBase object
3894  std::shared_ptr<MaterialBase> material =
3895  _factory.create<MaterialBase>(functor_material_name, name, parameters, tid);
3896  logAdd("FunctorMaterial", name, functor_material_name, parameters);
3897  _all_materials.addObject(material, tid);
3898  _materials.addObject(material, tid);
3899  }
3900  };
3901 
3902  parameters.set<SubProblem *>("_subproblem") = this;
3903  add_functor_materials(parameters, name);
3904  if (_displaced_problem)
3905  {
3906  auto disp_params = parameters;
3907  disp_params.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3908  add_functor_materials(disp_params, name + "_displaced");
3909  }
3910 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MaterialWarehouse _materials

◆ addFVBC()

void FEProblemBase::addFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3415 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVBCs().

3418 {
3419  addObject<FVBoundaryCondition>(fv_bc_name, name, parameters);
3420 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addFVInitialCondition()

void FEProblemBase::addFVInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add an initial condition for a finite volume variables.

Parameters
ic_nameThe name of the boundary condition object
nameThe user-defined name from the input file
parametersThe input parameters for construction

Definition at line 3584 of file FEProblemBase.C.

3587 {
3588  parallel_object_only();
3589 
3590  // before we start to mess with the initial condition, we need to check parameters for errors.
3592  const std::string & var_name = parameters.get<VariableName>("variable");
3593 
3594  // Forbid initial conditions on a restarted problem, as they would override the restart
3595  checkICRestartError(ic_name, name, var_name);
3596 
3597  parameters.set<SubProblem *>("_subproblem") = this;
3598 
3599  // field IC
3600  if (hasVariable(var_name))
3601  {
3602  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3603  {
3604  auto & var = getVariable(
3606  parameters.set<SystemBase *>("_sys") = &var.sys();
3607  std::shared_ptr<FVInitialConditionBase> ic;
3608  if (var.isFV())
3609  ic = _factory.create<FVInitialCondition>(ic_name, name, parameters, tid);
3610  else
3611  mooseError(
3612  "Your variable for an FVInitialCondition needs to be an a finite volume variable!");
3613  _fv_ics.addObject(ic, tid);
3614  }
3615  }
3616  else
3617  mooseError("Variable '",
3618  var_name,
3619  "' requested in finite volume initial condition '",
3620  name,
3621  "' does not exist.");
3622 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
void addObject(std::shared_ptr< FVInitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
FVInitialConditionWarehouse _fv_ics
This is a template class that implements the workhorse compute and computeNodal methods.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addFVInterfaceKernel()

void FEProblemBase::addFVInterfaceKernel ( const std::string &  fv_ik_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

We assume that variable1 and variable2 can live on different systems, in this case the user needs to create two interface kernels with flipped variables and parameters

Definition at line 3423 of file FEProblemBase.C.

3426 {
3429  addObject<FVInterfaceKernel>(
3430  fv_ik_name, name, parameters, /*threaded=*/true, /*variable_param_name=*/"variable1");
3431 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addFVKernel()

void FEProblemBase::addFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3401 of file FEProblemBase.C.

Referenced by DiffusionFV::addFVKernels().

3404 {
3405  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3406  // FVElementalKernels are computed in the historically finite element threaded loops. They rely
3407  // on Assembly data like _current_elem. When we call reinit on the FEProblemBase we will only
3408  // reinit the DisplacedProblem and its associated Assembly objects if we mark this boolean as
3409  // true
3410  _reinit_displaced_elem = true;
3411  addObject<FVKernel>(fv_kernel_name, name, parameters);
3412 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addGhostedBoundary()

void FEProblemBase::addGhostedBoundary ( BoundaryID  boundary_id)
overridevirtualinherited

Will make sure that all necessary elements from boundary_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2089 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedBoundary().

2090 {
2091  _mesh.addGhostedBoundary(boundary_id);
2092  if (_displaced_problem)
2093  _displaced_mesh->addGhostedBoundary(boundary_id);
2094 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void addGhostedBoundary(BoundaryID boundary_id)
This will add the boundary ids to be ghosted to this processor.
Definition: MooseMesh.C:3229
MooseMesh * _displaced_mesh

◆ addGhostedElem()

void FEProblemBase::addGhostedElem ( dof_id_type  elem_id)
overridevirtualinherited

Will make sure that all dofs connected to elem_id are ghosted to this processor.

Implements SubProblem.

Definition at line 2082 of file FEProblemBase.C.

Referenced by DisplacedProblem::addGhostedElem(), and NodalPatchRecovery::NodalPatchRecovery().

2083 {
2084  if (_mesh.elemPtr(elem_id)->processor_id() != processor_id())
2085  _ghosted_elems.insert(elem_id);
2086 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
MooseMesh & _mesh
processor_id_type processor_id() const
processor_id_type processor_id() const

◆ addHDGKernel()

void FEProblemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 2957 of file FEProblemBase.C.

2960 {
2961  parallel_object_only();
2962  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2963  if (!isSolverSystemNonlinear(nl_sys_num))
2964  mooseError("You are trying to add a HDGKernel to a linear variable/system, which is not "
2965  "supported at the moment!");
2967  kernel_name, name, parameters, nl_sys_num, "HDGKernel", _reinit_displaced_elem);
2968 
2969  _nl[nl_sys_num]->addHDGKernel(kernel_name, name, parameters);
2970 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addIndicator()

void FEProblemBase::addIndicator ( const std::string &  indicator_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5254 of file FEProblemBase.C.

5257 {
5258  parallel_object_only();
5259 
5260  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5261  {
5262  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5263  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5264  _reinit_displaced_elem = true;
5265  }
5266  else
5267  {
5268  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5269  {
5270  // We allow Indicators to request that they use_displaced_mesh,
5271  // but then be overridden when no displacements variables are
5272  // provided in the Mesh block. If that happened, update the value
5273  // of use_displaced_mesh appropriately for this Indicator.
5274  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5275  parameters.set<bool>("use_displaced_mesh") = false;
5276  }
5277 
5278  parameters.set<SubProblem *>("_subproblem") = this;
5279  parameters.set<SystemBase *>("_sys") = _aux.get();
5280  }
5281 
5282  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5283  {
5284  std::shared_ptr<Indicator> indicator =
5285  _factory.create<Indicator>(indicator_name, name, parameters, tid);
5286  logAdd("Indicator", name, indicator_name, parameters);
5287  std::shared_ptr<InternalSideIndicatorBase> isi =
5289  if (isi)
5291  else
5292  _indicators.addObject(indicator, tid);
5293  }
5294 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseObjectWarehouse< Indicator > _indicators
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInitialCondition()

void FEProblemBase::addInitialCondition ( const std::string &  ic_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3524 of file FEProblemBase.C.

Referenced by DiffusionPhysicsBase::addInitialConditions(), and DiffusionPhysicsBase::addInitialConditionsFromComponents().

3527 {
3528  parallel_object_only();
3529 
3530  // before we start to mess with the initial condition, we need to check parameters for errors.
3532  const std::string & var_name = parameters.get<VariableName>("variable");
3533 
3534  // Forbid initial conditions on a restarted problem, as they would override the restart
3535  checkICRestartError(ic_name, name, var_name);
3536 
3537  parameters.set<SubProblem *>("_subproblem") = this;
3538 
3539  // field IC
3540  if (hasVariable(var_name))
3541  {
3542  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3543  {
3546  parameters.set<SystemBase *>("_sys") = &var.sys();
3547  std::shared_ptr<InitialConditionBase> ic;
3548  if (dynamic_cast<MooseVariable *>(&var))
3549  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3550  else if (dynamic_cast<VectorMooseVariable *>(&var))
3551  ic = _factory.create<VectorInitialCondition>(ic_name, name, parameters, tid);
3552  else if (dynamic_cast<ArrayMooseVariable *>(&var))
3553  ic = _factory.create<ArrayInitialCondition>(ic_name, name, parameters, tid);
3554  else if (dynamic_cast<MooseVariableFVReal *>(&var))
3555  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3556  else if (dynamic_cast<MooseLinearVariableFVReal *>(&var))
3557  ic = _factory.create<InitialCondition>(ic_name, name, parameters, tid);
3558  else
3559  mooseError("Your FE variable in initial condition ",
3560  name,
3561  " must be either of scalar or vector type");
3562  logAdd("IC", name, ic_name, parameters);
3563  _ics.addObject(ic, tid);
3564  }
3565  }
3566 
3567  // scalar IC
3568  else if (hasScalarVariable(var_name))
3569  {
3570  MooseVariableScalar & var = getScalarVariable(0, var_name);
3571  parameters.set<SystemBase *>("_sys") = &var.sys();
3572  std::shared_ptr<ScalarInitialCondition> ic =
3574  logAdd("ScalarIC", name, ic_name, parameters);
3575  _scalar_ics.addObject(ic);
3576  }
3577 
3578  else
3579  mooseError(
3580  "Variable '", var_name, "' requested in initial condition '", name, "' does not exist.");
3581 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
This is a template class that implements the workhorse compute and computeNodal methods.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
This class provides an interface for common operations on field variables of both FE and FV types wit...
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
ScalarInitialConditionWarehouse _scalar_ics
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
virtual MooseVariableScalar & getScalarVariable(const THREAD_ID tid, const std::string &var_name) override
Returns the scalar variable reference from whichever system contains it.
void addObject(std::shared_ptr< InitialConditionBase > object, THREAD_ID tid, bool recurse=true)
Add object to the warehouse.
void checkParams(const std::string &parsing_syntax)
This function checks parameters stored in the object to make sure they are in the correct state as th...
InitialConditions are objects that set the initial value of variables.
InitialConditionWarehouse _ics
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for scalar variables (they are different).
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true)
Adds an object to the storage structure.
void checkICRestartError(const std::string &ic_name, const std::string &name, const VariableName &var_name)
Checks if the variable of the initial condition is getting restarted and errors for specific cases...
SystemBase & sys()
Get the system this variable is part of.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addInterfaceKernel()

void FEProblemBase::addInterfaceKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3452 of file FEProblemBase.C.

3455 {
3456  parallel_object_only();
3457 
3458  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3459  if (!isSolverSystemNonlinear(nl_sys_num))
3460  mooseError("You are trying to add a InterfaceKernel to a linear variable/system, which is not "
3461  "supported at the moment!");
3462 
3463  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3464  {
3465  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3466  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3468  }
3469  else
3470  {
3471  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3472  {
3473  // We allow InterfaceKernels to request that they use_displaced_mesh,
3474  // but then be overridden when no displacements variables are
3475  // provided in the Mesh block. If that happened, update the value
3476  // of use_displaced_mesh appropriately for this InterfaceKernel.
3477  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3478  parameters.set<bool>("use_displaced_mesh") = false;
3479  }
3480 
3481  parameters.set<SubProblem *>("_subproblem") = this;
3482  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3483  }
3484 
3485  logAdd("InterfaceKernel", name, interface_kernel_name, parameters);
3486  _nl[nl_sys_num]->addInterfaceKernel(interface_kernel_name, name, parameters);
3487 
3489 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ addInterfaceMaterial()

void FEProblemBase::addInterfaceMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3921 of file FEProblemBase.C.

3924 {
3926 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
MaterialWarehouse _interface_materials
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addJacobian()

void FEProblemBase::addJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1926 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1927 {
1928  _assembly[tid][_current_nl_sys->number()]->addJacobian(Assembly::GlobalDataKey{});
1930  _assembly[tid][_current_nl_sys->number()]->addJacobianNonlocal(Assembly::GlobalDataKey{});
1931  if (_displaced_problem)
1932  {
1933  _displaced_problem->addJacobian(tid);
1935  _displaced_problem->addJacobianNonlocal(tid);
1936  }
1937 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianBlockTags()

void FEProblemBase::addJacobianBlockTags ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2001 of file FEProblemBase.C.

Referenced by ComputeJacobianBlocksThread::postElement().

2008 {
2009  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockTags(
2010  jacobian, ivar, jvar, dof_map, dof_indices, Assembly::GlobalDataKey{}, tags);
2011 
2013  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2014  {
2015  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2016  _assembly[tid][_current_nl_sys->number()]->addJacobianBlockNonlocalTags(
2017  jacobian,
2018  ivar,
2019  jvar,
2020  dof_map,
2021  dof_indices,
2022  jv.allDofIndices(),
2024  tags);
2025  }
2026 
2027  if (_displaced_problem)
2028  {
2029  _displaced_problem->addJacobianBlockTags(jacobian, ivar, jvar, dof_map, dof_indices, tags, tid);
2031  if (_nonlocal_cm[_current_nl_sys->number()](ivar, jvar) != 0)
2032  {
2033  MooseVariableFEBase & jv = _current_nl_sys->getVariable(tid, jvar);
2034  _displaced_problem->addJacobianBlockNonlocal(
2035  jacobian, ivar, jvar, dof_map, dof_indices, jv.allDofIndices(), tags, tid);
2036  }
2037  }
2038 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
This class provides an interface for common operations on field variables of both FE and FV types wit...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::vector< dof_id_type > & allDofIndices() const
Get all global dofindices for the variable.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianLowerD()

void FEProblemBase::addJacobianLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1956 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateLower(), and ComputeJacobianThread::accumulateLower().

1957 {
1958  _assembly[tid][_current_nl_sys->number()]->addJacobianLowerD(Assembly::GlobalDataKey{});
1959  if (_displaced_problem)
1960  _displaced_problem->addJacobianLowerD(tid);
1961 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianNeighbor() [1/3]

virtual void SubProblem::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const libMesh::DofMap dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
pure virtualinherited

Implemented in DisplacedProblem.

◆ addJacobianNeighbor() [2/3]

void FEProblemBase::addJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1940 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeJacobianThread::accumulateNeighbor(), and ComputeJacobianBlocksThread::postInternalSide().

1941 {
1942  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighbor(Assembly::GlobalDataKey{});
1943  if (_displaced_problem)
1944  _displaced_problem->addJacobianNeighbor(tid);
1945 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianNeighbor() [3/3]

virtual void FEProblemBase::addJacobianNeighbor ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
unsigned int  ivar,
unsigned int  jvar,
const DofMap &  dof_map,
std::vector< dof_id_type > &  dof_indices,
std::vector< dof_id_type > &  neighbor_dof_indices,
const std::set< TagID > &  tags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ addJacobianNeighborLowerD()

void FEProblemBase::addJacobianNeighborLowerD ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1948 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulateNeighborLower(), and ComputeJacobianThread::accumulateNeighborLower().

1949 {
1950  _assembly[tid][_current_nl_sys->number()]->addJacobianNeighborLowerD(Assembly::GlobalDataKey{});
1951  if (_displaced_problem)
1952  _displaced_problem->addJacobianNeighborLowerD(tid);
1953 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianOffDiagScalar()

void FEProblemBase::addJacobianOffDiagScalar ( unsigned int  ivar,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 1970 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

1971 {
1972  _assembly[tid][_current_nl_sys->number()]->addJacobianOffDiagScalar(ivar,
1974 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addJacobianScalar()

void FEProblemBase::addJacobianScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 1964 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians().

1965 {
1966  _assembly[tid][_current_nl_sys->number()]->addJacobianScalar(Assembly::GlobalDataKey{});
1967 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addKernel()

void FEProblemBase::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 2941 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEKernels().

2944 {
2945  parallel_object_only();
2946  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2947  if (!isSolverSystemNonlinear(nl_sys_num))
2948  mooseError("You are trying to add a Kernel to a linear variable/system, which is not "
2949  "supported at the moment!");
2951  kernel_name, name, parameters, nl_sys_num, "Kernel", _reinit_displaced_elem);
2952 
2953  _nl[nl_sys_num]->addKernel(kernel_name, name, parameters);
2954 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void setResidualObjectParamsAndLog(const std::string &ro_name, const std::string &name, InputParameters &params, const unsigned int nl_sys_num, const std::string &base_name, bool &reinit_displaced)
Set the subproblem and system parameters for residual objects and log their addition.
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addLinearFVBC()

void FEProblemBase::addLinearFVBC ( const std::string &  fv_bc_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3442 of file FEProblemBase.C.

3445 {
3446  addObject<LinearFVBoundaryCondition>(bc_name, name, parameters);
3447 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addLinearFVKernel()

void FEProblemBase::addLinearFVKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3434 of file FEProblemBase.C.

3437 {
3438  addObject<LinearFVKernel>(kernel_name, name, parameters);
3439 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ addLineSearch()

virtual void DumpObjectsProblem::addLineSearch ( const InputParameters )
inlineoverridevirtual

add a MOOSE line search

Reimplemented from FEProblemBase.

Definition at line 71 of file DumpObjectsProblem.h.

71 {}

◆ addMarker()

void FEProblemBase::addMarker ( const std::string &  marker_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 5297 of file FEProblemBase.C.

5300 {
5301  parallel_object_only();
5302 
5303  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5304  {
5305  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5306  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5307  _reinit_displaced_elem = true;
5308  }
5309  else
5310  {
5311  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5312  {
5313  // We allow Markers to request that they use_displaced_mesh,
5314  // but then be overridden when no displacements variables are
5315  // provided in the Mesh block. If that happened, update the value
5316  // of use_displaced_mesh appropriately for this Marker.
5317  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5318  parameters.set<bool>("use_displaced_mesh") = false;
5319  }
5320 
5321  parameters.set<SubProblem *>("_subproblem") = this;
5322  parameters.set<SystemBase *>("_sys") = _aux.get();
5323  }
5324 
5325  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
5326  {
5327  std::shared_ptr<Marker> marker = _factory.create<Marker>(marker_name, name, parameters, tid);
5328  logAdd("Marker", name, marker_name, parameters);
5329  _markers.addObject(marker, tid);
5330  }
5331 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Definition: Marker.h:41
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectWarehouse< Marker > _markers
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMaterial()

void FEProblemBase::addMaterial ( const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 3913 of file FEProblemBase.C.

Referenced by ComponentMaterialPropertyInterface::addMaterials().

3916 {
3917  addMaterialHelper({&_materials}, mat_name, name, parameters);
3918 }
virtual void addMaterialHelper(std::vector< MaterialWarehouse *> warehouse, const std::string &material_name, const std::string &name, InputParameters &parameters)
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MaterialWarehouse _materials

◆ addMaterialHelper()

void FEProblemBase::addMaterialHelper ( std::vector< MaterialWarehouse *>  warehouse,
const std::string &  material_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3929 of file FEProblemBase.C.

Referenced by FEProblemBase::addInterfaceMaterial(), and FEProblemBase::addMaterial().

3933 {
3934  parallel_object_only();
3935 
3936  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3937  {
3938  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3940  }
3941  else
3942  {
3943  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3944  {
3945  // We allow Materials to request that they use_displaced_mesh,
3946  // but then be overridden when no displacements variables are
3947  // provided in the Mesh block. If that happened, update the value
3948  // of use_displaced_mesh appropriately for this Material.
3949  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3950  parameters.set<bool>("use_displaced_mesh") = false;
3951  }
3952 
3953  parameters.set<SubProblem *>("_subproblem") = this;
3954  }
3955 
3956  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
3957  {
3958  // Create the general Block/Boundary MaterialBase object
3959  std::shared_ptr<MaterialBase> material =
3960  _factory.create<MaterialBase>(mat_name, name, parameters, tid);
3961  logAdd("Material", name, mat_name, parameters);
3962  bool discrete = !material->getParam<bool>("compute");
3963 
3964  // If the object is boundary restricted or if it is a functor material we do not create the
3965  // neighbor and face objects
3966  if (material->boundaryRestricted() || dynamic_cast<FunctorMaterial *>(material.get()))
3967  {
3968  _all_materials.addObject(material, tid);
3969  if (discrete)
3970  _discrete_materials.addObject(material, tid);
3971  else
3972  for (auto && warehouse : warehouses)
3973  warehouse->addObject(material, tid);
3974  }
3975 
3976  // Non-boundary restricted require face and neighbor objects
3977  else
3978  {
3979  // TODO: we only need to do this if we have needs for face materials (e.g.
3980  // FV, DG, etc.) - but currently we always do it. Figure out how to fix
3981  // this.
3982 
3983  // The name of the object being created, this is changed multiple times as objects are
3984  // created below
3985  std::string object_name;
3986 
3987  // Create a copy of the supplied parameters to the setting for "_material_data_type" isn't
3988  // used from a previous tid loop
3989  InputParameters current_parameters = parameters;
3990 
3991  // face material
3992  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
3994  object_name = name + "_face";
3995  std::shared_ptr<MaterialBase> face_material =
3996  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
3997 
3998  // neighbor material
3999  current_parameters.set<Moose::MaterialDataType>("_material_data_type") =
4001  current_parameters.set<bool>("_neighbor") = true;
4002  object_name = name + "_neighbor";
4003  std::shared_ptr<MaterialBase> neighbor_material =
4004  _factory.create<MaterialBase>(mat_name, object_name, current_parameters, tid);
4005 
4006  // Store the material objects
4007  _all_materials.addObjects(material, neighbor_material, face_material, tid);
4008 
4009  if (discrete)
4010  _discrete_materials.addObjects(material, neighbor_material, face_material, tid);
4011  else
4012  for (auto && warehouse : warehouses)
4013  warehouse->addObjects(material, neighbor_material, face_material, tid);
4014 
4015  // Names of all controllable parameters for this Material object
4016  const std::string & base = parameters.getBase();
4017  MooseObjectParameterName name(MooseObjectName(base, material->name()), "*");
4018  const auto param_names =
4020 
4021  // Connect parameters of the primary Material object to those on the face and neighbor
4022  // objects
4023  for (const auto & p_name : param_names)
4024  {
4025  MooseObjectParameterName primary_name(MooseObjectName(base, material->name()),
4026  p_name.parameter());
4027  MooseObjectParameterName face_name(MooseObjectName(base, face_material->name()),
4028  p_name.parameter());
4029  MooseObjectParameterName neighbor_name(MooseObjectName(base, neighbor_material->name()),
4030  p_name.parameter());
4032  primary_name, face_name, false);
4034  primary_name, neighbor_name, false);
4035  }
4036  }
4037  }
4038 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addControllableParameterConnection(const MooseObjectParameterName &primary, const MooseObjectParameterName &secondary, bool error_on_empty=true)
Method for linking control parameters of different names.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2900
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
MaterialDataType
MaterialData types.
Definition: MooseTypes.h:692
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & getBase() const
std::vector< MooseObjectParameterName > getControllableParameterNames(const MooseObjectParameterName &input) const
Return a vector of parameters names matching the supplied name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
FunctorMaterials compute functor material properties.
virtual std::unique_ptr< Base > create()=0
void addObjects(std::shared_ptr< MaterialBase > block, std::shared_ptr< MaterialBase > neighbor, std::shared_ptr< MaterialBase > face, THREAD_ID tid=0)
A special method unique to this class for adding Block, Neighbor, and Face material objects...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
MaterialWarehouse _discrete_materials
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A class for storing an input parameter name.
A class for storing the names of MooseObject by tag and object name.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MaterialBases compute MaterialProperties.
Definition: MaterialBase.h:62
MaterialWarehouse _all_materials
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMatrixTag()

TagID SubProblem::addMatrixTag ( TagName  tag_name)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated

Reimplemented in DisplacedProblem.

Definition at line 311 of file SubProblem.C.

Referenced by DisplacedProblem::addMatrixTag(), FEProblemBase::createTagMatrices(), LinearSystem::LinearSystem(), and NonlinearSystemBase::NonlinearSystemBase().

312 {
313  auto tag_name_upper = MooseUtils::toUpper(tag_name);
314  auto existing_tag = _matrix_tag_name_to_tag_id.find(tag_name_upper);
315  if (existing_tag == _matrix_tag_name_to_tag_id.end())
316  {
317  auto tag_id = _matrix_tag_name_to_tag_id.size();
318 
319  _matrix_tag_name_to_tag_id[tag_name_upper] = tag_id;
320 
321  _matrix_tag_id_to_tag_name[tag_id] = tag_name_upper;
322  }
323 
324  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
325 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ addMeshDivision()

void FEProblemBase::addMeshDivision ( const std::string &  type,
const std::string &  name,
InputParameters params 
)
virtualinherited

Add a MeshDivision.

Definition at line 2639 of file FEProblemBase.C.

2642 {
2643  parallel_object_only();
2644  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
2645  parameters.set<SubProblem *>("_subproblem") = this;
2646  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2647  {
2648  std::shared_ptr<MeshDivision> func = _factory.create<MeshDivision>(type, name, parameters, tid);
2649  _mesh_divisions.addObject(func, tid);
2650  }
2651 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addMultiApp()

void FEProblemBase::addMultiApp ( const std::string &  multi_app_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a MultiApp to the problem.

Definition at line 5334 of file FEProblemBase.C.

5337 {
5338  parallel_object_only();
5339 
5340  parameters.set<MPI_Comm>("_mpi_comm") = _communicator.get();
5341 
5342  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5343  {
5344  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5345  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5346  _reinit_displaced_elem = true;
5347  }
5348  else
5349  {
5350  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5351  {
5352  // We allow MultiApps to request that they use_displaced_mesh,
5353  // but then be overridden when no displacements variables are
5354  // provided in the Mesh block. If that happened, update the value
5355  // of use_displaced_mesh appropriately for this MultiApp.
5356  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5357  parameters.set<bool>("use_displaced_mesh") = false;
5358  }
5359 
5360  parameters.set<SubProblem *>("_subproblem") = this;
5361  parameters.set<SystemBase *>("_sys") = _aux.get();
5362  }
5363 
5364  std::shared_ptr<MultiApp> multi_app = _factory.create<MultiApp>(multi_app_name, name, parameters);
5365  logAdd("MultiApp", name, multi_app_name, parameters);
5366  multi_app->setupPositions();
5367 
5368  _multi_apps.addObject(multi_app);
5369 
5370  // Store TransientMultiApp objects in another container, this is needed for calling computeDT
5371  std::shared_ptr<TransientMultiApp> trans_multi_app =
5373  if (trans_multi_app)
5374  _transient_multi_apps.addObject(trans_multi_app);
5375 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
MultiApp Implementation for Transient Apps.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem
A MultiApp represents one or more MOOSE applications that are running simultaneously.
Definition: MultiApp.h:112

◆ addNodalKernel()

void FEProblemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 2973 of file FEProblemBase.C.

2976 {
2977  parallel_object_only();
2978 
2979  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
2980  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
2981  {
2982  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
2983  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
2984  _reinit_displaced_elem = true;
2985  }
2986  else
2987  {
2988  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
2989  {
2990  // We allow NodalKernels to request that they use_displaced_mesh,
2991  // but then be overridden when no displacements variables are
2992  // provided in the Mesh block. If that happened, update the value
2993  // of use_displaced_mesh appropriately for this NodalKernel.
2994  if (parameters.have_parameter<bool>("use_displaced_mesh"))
2995  parameters.set<bool>("use_displaced_mesh") = false;
2996  }
2997 
2998  parameters.set<SubProblem *>("_subproblem") = this;
2999  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3000  }
3001  logAdd("NodalKernel", name, kernel_name, parameters);
3002  _nl[nl_sys_num]->addNodalKernel(kernel_name, name, parameters);
3003 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addNotZeroedVectorTag()

void SubProblem::addNotZeroedVectorTag ( const TagID  tag)
inherited

Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that will be manually managed

Definition at line 149 of file SubProblem.C.

Referenced by FEProblemBase::createTagVectors().

150 {
151  _not_zeroed_tagged_vectors.insert(tag);
152 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ addObject()

template<typename T >
std::vector< std::shared_ptr< T > > FEProblemBase::addObject ( const std::string &  type,
const std::string &  name,
InputParameters parameters,
const bool  threaded = true,
const std::string &  var_param_name = "variable" 
)
inherited

Method for creating and adding an object to the warehouse.

Template Parameters
TThe base object type (registered in the Factory)
Parameters
typeString type of the object (registered in the Factory)
nameName for the object to be created
parametersInputParameters for the object
threadedWhether or not to create n_threads copies of the object
var_param_nameThe name of the parameter on the object which holds the primary variable.
Returns
A vector of shared_ptrs to the added objects

Definition at line 3192 of file FEProblemBase.h.

3197 {
3198  parallel_object_only();
3199 
3200  logAdd(MooseUtils::prettyCppType<T>(), name, type, parameters);
3201  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
3202  addObjectParamsHelper(parameters, name, var_param_name);
3203 
3204  const auto n_threads = threaded ? libMesh::n_threads() : 1;
3205  std::vector<std::shared_ptr<T>> objects(n_threads);
3206  for (THREAD_ID tid = 0; tid < n_threads; ++tid)
3207  {
3208  std::shared_ptr<T> obj = _factory.create<T>(type, name, parameters, tid);
3209  theWarehouse().add(obj);
3210  objects[tid] = std::move(obj);
3211  }
3212 
3213  return objects;
3214 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::shared_ptr< MooseObject > create(const std::string &obj_name, const std::string &name, const InputParameters &parameters, THREAD_ID tid=0, bool print_deprecated=true)
Definition: Factory.C:111
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ addObjectParamsHelper()

void FEProblemBase::addObjectParamsHelper ( InputParameters params,
const std::string &  object_name,
const std::string &  var_param_name = "variable" 
)
protectedinherited

Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().

This is needed due to header includes/forward declaration issues

Definition at line 4271 of file FEProblemBase.C.

Referenced by FEProblemBase::addObject(), and FEProblemBase::addUserObject().

4274 {
4275  // Due to objects like SolutionUserObject which manipulate libmesh objects
4276  // and variables directly at the back end, we need a default option here
4277  // which is going to be the pointer to the first solver system within this
4278  // problem
4279  unsigned int sys_num = 0;
4280  if (parameters.isParamValid(var_param_name))
4281  {
4282  const auto variable_name = parameters.varName(var_param_name, object_name);
4283  if (this->hasVariable(variable_name) || this->hasScalarVariable(variable_name))
4284  sys_num = getSystem(variable_name).number();
4285  }
4286  if (parameters.isParamValid("solver_sys"))
4287  {
4288  const auto var_sys_num = sys_num;
4289  sys_num = getSystemBase(parameters.get<SolverSystemName>("solver_sys")).number();
4290  if (sys_num != var_sys_num && parameters.isParamValid(var_param_name))
4291  mooseError("We dont support setting 'variable' to a variable that is not set to the same "
4292  "system as the 'solver_sys' parameter");
4293  }
4294 
4295  if (_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4296  parameters.get<bool>("use_displaced_mesh"))
4297  {
4298  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
4299  if (sys_num == _aux->number())
4300  parameters.set<SystemBase *>("_sys") = &_displaced_problem->systemBaseAuxiliary();
4301  else
4302  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(sys_num);
4303  }
4304  else
4305  {
4306  // The object requested use_displaced_mesh, but it was overridden
4307  // due to there being no displacements variables in the [Mesh] block.
4308  // If that happened, update the value of use_displaced_mesh appropriately.
4309  if (!_displaced_problem && parameters.have_parameter<bool>("use_displaced_mesh") &&
4310  parameters.get<bool>("use_displaced_mesh"))
4311  parameters.set<bool>("use_displaced_mesh") = false;
4312 
4313  parameters.set<SubProblem *>("_subproblem") = this;
4314 
4315  if (sys_num == _aux->number())
4316  parameters.set<SystemBase *>("_sys") = _aux.get();
4317  else
4318  parameters.set<SystemBase *>("_sys") = _solver_systems[sys_num].get();
4319  }
4320 }
virtual bool hasVariable(const std::string &var_name) const override
Whether or not this problem has the variable.
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
unsigned int number() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addOutput()

void FEProblemBase::addOutput ( const std::string &  object_type,
const std::string &  object_name,
InputParameters parameters 
)
inherited

Adds an Output object.

Definition at line 8896 of file FEProblemBase.C.

8899 {
8900  parallel_object_only();
8901 
8902  // Get a reference to the OutputWarehouse
8903  OutputWarehouse & output_warehouse = _app.getOutputWarehouse();
8904 
8905  // Reject the reserved names for objects not built by MOOSE
8906  if (!parameters.get<bool>("_built_by_moose") && output_warehouse.isReservedName(object_name))
8907  mooseError("The name '", object_name, "' is a reserved name for output objects");
8908 
8909  // Check that an object by the same name does not already exist; this must be done before the
8910  // object is created to avoid getting misleading errors from the Parser
8911  if (output_warehouse.hasOutput(object_name))
8912  mooseError("An output object named '", object_name, "' already exists");
8913 
8914  // Add a pointer to the FEProblemBase class
8915  parameters.addPrivateParam<FEProblemBase *>("_fe_problem_base", this);
8916 
8917  // Create common parameter exclude list
8918  std::vector<std::string> exclude;
8919  if (object_type == "Console")
8920  {
8921  exclude.push_back("execute_on");
8922 
8923  // --show-input should enable the display of the input file on the screen
8924  if (_app.getParam<bool>("show_input") && parameters.get<bool>("output_screen"))
8925  parameters.set<ExecFlagEnum>("execute_input_on") = EXEC_INITIAL;
8926  }
8927  // Need this because Checkpoint::validParams changes the default value of
8928  // execute_on
8929  else if (object_type == "Checkpoint")
8930  exclude.push_back("execute_on");
8931 
8932  // Apply the common parameters loaded with Outputs input syntax
8933  const InputParameters * common = output_warehouse.getCommonParameters();
8934  if (common)
8935  parameters.applyParameters(*common, exclude);
8936  if (common && std::find(exclude.begin(), exclude.end(), "execute_on") != exclude.end() &&
8937  common->isParamSetByUser("execute_on") && object_type != "Console")
8939  "'execute_on' parameter specified in [Outputs] block is ignored for object '" +
8940  object_name +
8941  "'.\nDefine this object in its own sub-block of [Outputs] to modify its "
8942  "execution schedule.");
8943 
8944  // Set the correct value for the binary flag for XDA/XDR output
8945  if (object_type == "XDR")
8946  parameters.set<bool>("_binary") = true;
8947  else if (object_type == "XDA")
8948  parameters.set<bool>("_binary") = false;
8949 
8950  // Adjust the checkpoint suffix if auto recovery was enabled
8951  if (object_name == "auto_recovery_checkpoint")
8952  parameters.set<std::string>("suffix") = "auto_recovery";
8953 
8954  // Create the object and add it to the warehouse
8955  std::shared_ptr<Output> output = _factory.create<Output>(object_type, object_name, parameters);
8956  logAdd("Output", object_name, object_type, parameters);
8957  output_warehouse.addOutput(output);
8958 }
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
void addPrivateParam(const std::string &name, const T &value)
These method add a parameter to the InputParameters object which can be retrieved like any other para...
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
bool isReservedName(const std::string &name)
Test if the given name is reserved.
bool hasOutput(const std::string &name) const
Returns true if the output object exists.
void mooseInfoRepeated(Args &&... args)
Emit an informational message with the given stringified, concatenated args.
Definition: MooseError.h:408
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void applyParameters(const InputParameters &common, const std::vector< std::string > &exclude={}, const bool allow_private=false)
Method for applying common parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Based class for output objects.
Definition: Output.h:43
virtual std::unique_ptr< Base > create()=0
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
Class for storing and utilizing output objects.
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
const InputParameters * getCommonParameters() const
Get a reference to the common output parameters.
void addOutput(std::shared_ptr< Output > output)
Adds an existing output object to the warehouse.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ addPiecewiseByBlockLambdaFunctor()

template<typename T , typename PolymorphicLambda >
const Moose::FunctorBase< T > & SubProblem::addPiecewiseByBlockLambdaFunctor ( const std::string &  name,
PolymorphicLambda  my_lammy,
const std::set< ExecFlagType > &  clearance_schedule,
const MooseMesh mesh,
const std::set< SubdomainID > &  block_ids,
const THREAD_ID  tid 
)
inherited

Add a functor that has block-wise lambda definitions, e.g.

the evaluations of the functor are based on a user-provided lambda expression.

Parameters
nameThe name of the functor to add
my_lammyThe lambda expression that will be called when the functor is evaluated
clearance_scheduleHow often to clear functor evaluations. The default value is always, which means that the functor will be re-evaluated every time it is called. If it is something other than always, than cached values may be returned
meshThe mesh on which this functor operates
block_idsThe blocks on which the lambda expression is defined
tidThe thread on which the functor we are adding will run
Returns
The added functor

Definition at line 1338 of file SubProblem.h.

Referenced by FunctorMaterial::addFunctorPropertyByBlocks().

1344 {
1345  auto & pbblf_functors = _pbblf_functors[tid];
1346 
1347  auto [it, first_time_added] =
1348  pbblf_functors.emplace(name,
1349  std::make_unique<PiecewiseByBlockLambdaFunctor<T>>(
1350  name, my_lammy, clearance_schedule, mesh, block_ids));
1351 
1352  auto * functor = dynamic_cast<PiecewiseByBlockLambdaFunctor<T> *>(it->second.get());
1353  if (!functor)
1354  {
1355  if (first_time_added)
1356  mooseError("This should be impossible. If this was the first time we added the functor, then "
1357  "the dynamic cast absolutely should have succeeded");
1358  else
1359  mooseError("Attempted to add a lambda functor with the name '",
1360  name,
1361  "' but another lambda functor of that name returns a different type");
1362  }
1363 
1364  if (first_time_added)
1365  addFunctor(name, *functor, tid);
1366  else
1367  // The functor already exists
1368  functor->setFunctor(mesh, block_ids, my_lammy);
1369 
1370  return *functor;
1371 }
virtual MooseMesh & mesh()=0
A material property that is evaluated on-the-fly via calls to various overloads of operator() ...
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::map< std::string, std::unique_ptr< Moose::FunctorAbstract > > > _pbblf_functors
Container to hold PiecewiseByBlockLambdaFunctors.
Definition: SubProblem.h:1147
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ addPostprocessor()

void FEProblemBase::addPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Reimplemented in MFEMProblem.

Definition at line 4323 of file FEProblemBase.C.

Referenced by MFEMProblem::addPostprocessor(), and DiffusionPhysicsBase::addPostprocessors().

4326 {
4327  // Check for name collision
4328  if (hasUserObject(name))
4329  mooseError("A ",
4331  " already exists. You may not add a Postprocessor by the same name.");
4332 
4333  addUserObject(pp_name, name, parameters);
4334 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addPredictor()

void FEProblemBase::addPredictor ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 6870 of file FEProblemBase.C.

Referenced by AB2PredictorCorrector::AB2PredictorCorrector().

6873 {
6874  parallel_object_only();
6875 
6877  mooseError("Vector bounds cannot be used with LinearSystems!");
6878 
6879  parameters.set<SubProblem *>("_subproblem") = this;
6880  std::shared_ptr<Predictor> predictor = _factory.create<Predictor>(type, name, parameters);
6881  logAdd("Predictor", name, type, parameters);
6882 
6883  for (auto & nl : _nl)
6884  nl->setPredictor(predictor);
6885 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
virtual std::size_t numNonlinearSystems() const override
Base class for predictors.
Definition: Predictor.h:28
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual std::size_t numLinearSystems() const override

◆ addReporter()

void FEProblemBase::addReporter ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a Reporter object to the simulation.

Parameters
typeC++ object type to construct
nameA uniquely identifying object name
parametersComplete parameters for the object to be created.

For an example use, refer to AddReporterAction.C/h

Definition at line 4351 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer().

4354 {
4355  // Check for name collision
4356  if (hasUserObject(name))
4357  mooseError("A ",
4359  " already exists. You may not add a Reporter by the same name.");
4360 
4362 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addResidual()

void FEProblemBase::addResidual ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1826 of file FEProblemBase.C.

Referenced by ComputeDiracThread::postElement().

1827 {
1828  _assembly[tid][_current_nl_sys->number()]->addResidual(Assembly::GlobalDataKey{},
1830 
1831  if (_displaced_problem)
1832  _displaced_problem->addResidual(tid);
1833 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualLower()

void FEProblemBase::addResidualLower ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1846 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateLower(), ComputeResidualAndJacobianThread::accumulateLower(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1847 {
1848  _assembly[tid][_current_nl_sys->number()]->addResidualLower(Assembly::GlobalDataKey{},
1850 
1851  if (_displaced_problem)
1852  _displaced_problem->addResidualLower(tid);
1853 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualNeighbor()

void FEProblemBase::addResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1836 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulateNeighbor(), ComputeResidualAndJacobianThread::accumulateNeighbor(), ComputeResidualThread::accumulateNeighborLower(), and ComputeResidualAndJacobianThread::accumulateNeighborLower().

1837 {
1838  _assembly[tid][_current_nl_sys->number()]->addResidualNeighbor(Assembly::GlobalDataKey{},
1840 
1841  if (_displaced_problem)
1842  _displaced_problem->addResidualNeighbor(tid);
1843 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addResidualScalar()

void FEProblemBase::addResidualScalar ( const THREAD_ID  tid = 0)
virtualinherited

Definition at line 1856 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1857 {
1858  _assembly[tid][_current_nl_sys->number()]->addResidualScalar(Assembly::GlobalDataKey{},
1860 }
virtual const std::vector< VectorTag > & currentResidualVectorTags() const override
Return the residual vector tags we are currently computing.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ addSampler()

void FEProblemBase::addSampler ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

The following functions will enable MOOSE to have the capability to import Samplers.

Definition at line 2707 of file FEProblemBase.C.

2710 {
2711  const auto samplers = addObject<Sampler>(type, name, parameters);
2712  for (auto & sampler : samplers)
2713  sampler->init();
2714 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ addScalarKernel()

void FEProblemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 3006 of file FEProblemBase.C.

3009 {
3010  parallel_object_only();
3011 
3012  const auto nl_sys_num = determineSolverSystem(parameters.varName("variable", name), true).second;
3013  if (!isSolverSystemNonlinear(nl_sys_num))
3014  mooseError("You are trying to add a ScalarKernel to a linear variable/system, which is not "
3015  "supported at the moment!");
3016 
3017  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
3018  {
3019  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
3020  parameters.set<SystemBase *>("_sys") = &_displaced_problem->solverSys(nl_sys_num);
3021  }
3022  else
3023  {
3024  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
3025  {
3026  // We allow ScalarKernels to request that they use_displaced_mesh,
3027  // but then be overridden when no displacements variables are
3028  // provided in the Mesh block. If that happened, update the value
3029  // of use_displaced_mesh appropriately for this ScalarKernel.
3030  if (parameters.have_parameter<bool>("use_displaced_mesh"))
3031  parameters.set<bool>("use_displaced_mesh") = false;
3032  }
3033 
3034  parameters.set<SubProblem *>("_subproblem") = this;
3035  parameters.set<SystemBase *>("_sys") = _nl[nl_sys_num].get();
3036  }
3037 
3038  logAdd("ScalarKernel", name, kernel_name, parameters);
3039  _nl[nl_sys_num]->addScalarKernel(kernel_name, name, parameters);
3040 }
bool isSolverSystemNonlinear(const unsigned int sys_num)
Check if the solver system is nonlinear.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
std::string varName(const std::string &var_param_name, const std::string &moose_object_with_var_param_name) const
Determine the actual variable name from the given variable parameter name.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTimeIntegrator()

void FEProblemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 6835 of file FEProblemBase.C.

Referenced by TransientBase::setupTimeIntegrator().

6838 {
6839  parallel_object_only();
6840 
6841  parameters.set<SubProblem *>("_subproblem") = this;
6842  logAdd("TimeIntegrator", name, type, parameters);
6843  _aux->addTimeIntegrator(type, name + ":aux", parameters);
6844  for (auto & sys : _solver_systems)
6845  sys->addTimeIntegrator(type, name + ":" + sys->name(), parameters);
6846  _has_time_integrator = true;
6847 
6848  // add vectors to store u_dot, u_dotdot, udot_old, u_dotdot_old and
6849  // solution vectors older than 2 time steps, if requested by the time
6850  // integrator
6851  _aux->addDotVectors();
6852  for (auto & nl : _nl)
6853  {
6854  nl->addDotVectors();
6855 
6856  auto tag_udot = nl->getTimeIntegrators()[0]->uDotFactorTag();
6857  if (!nl->hasVector(tag_udot))
6858  nl->associateVectorToTag(*nl->solutionUDot(), tag_udot);
6859  auto tag_udotdot = nl->getTimeIntegrators()[0]->uDotDotFactorTag();
6860  if (!nl->hasVector(tag_udotdot) && uDotDotRequested())
6861  nl->associateVectorToTag(*nl->solutionUDotDot(), tag_udotdot);
6862  }
6863 
6864  if (_displaced_problem)
6865  // Time integrator does not exist when displaced problem is created.
6866  _displaced_problem->addTimeIntegrator();
6867 }
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addTransfer()

void FEProblemBase::addTransfer ( const std::string &  transfer_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Add a Transfer to the problem.

Reimplemented in MFEMProblem.

Definition at line 5680 of file FEProblemBase.C.

Referenced by MFEMProblem::addTransfer().

5683 {
5684  parallel_object_only();
5685 
5686  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
5687  {
5688  parameters.set<SubProblem *>("_subproblem") = _displaced_problem.get();
5689  parameters.set<SystemBase *>("_sys") = &_displaced_problem->auxSys();
5690  _reinit_displaced_elem = true;
5691  }
5692  else
5693  {
5694  if (_displaced_problem == nullptr && parameters.get<bool>("use_displaced_mesh"))
5695  {
5696  // We allow Transfers to request that they use_displaced_mesh,
5697  // but then be overridden when no displacements variables are
5698  // provided in the Mesh block. If that happened, update the value
5699  // of use_displaced_mesh appropriately for this Transfer.
5700  if (parameters.have_parameter<bool>("use_displaced_mesh"))
5701  parameters.set<bool>("use_displaced_mesh") = false;
5702  }
5703 
5704  parameters.set<SubProblem *>("_subproblem") = this;
5705  parameters.set<SystemBase *>("_sys") = _aux.get();
5706  }
5707 
5708  // Handle the "SAME_AS_MULTIAPP" execute option. The get method is used to test for the
5709  // flag so the set by user flag is not reset, calling set with the true flag causes the set
5710  // by user status to be reset, which should only be done if the EXEC_SAME_AS_MULTIAPP is
5711  // being applied to the object.
5713  {
5714  ExecFlagEnum & exec_enum = parameters.set<ExecFlagEnum>("execute_on", true);
5715  std::shared_ptr<MultiApp> multiapp;
5716  if (parameters.isParamValid("multi_app"))
5717  multiapp = getMultiApp(parameters.get<MultiAppName>("multi_app"));
5718  // This catches the sibling transfer case, where we want to be executing only as often as the
5719  // receiving application. A transfer 'to' a multiapp is executed before that multiapp
5720  else if (parameters.isParamValid("to_multi_app"))
5721  multiapp = getMultiApp(parameters.get<MultiAppName>("to_multi_app"));
5722  else if (parameters.isParamValid("from_multi_app"))
5723  multiapp = getMultiApp(parameters.get<MultiAppName>("from_multi_app"));
5724  // else do nothing because the user has provided invalid input. They should get a nice error
5725  // about this during transfer construction. This necessitates checking for null in this next
5726  // line, however
5727  if (multiapp)
5728  exec_enum = multiapp->getParam<ExecFlagEnum>("execute_on");
5729  }
5730 
5731  // Create the Transfer objects
5732  std::shared_ptr<Transfer> transfer = _factory.create<Transfer>(transfer_name, name, parameters);
5733  logAdd("Transfer", name, transfer_name, parameters);
5734 
5735  // Add MultiAppTransfer object
5736  std::shared_ptr<MultiAppTransfer> multi_app_transfer =
5738  if (multi_app_transfer)
5739  {
5740  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::TO_MULTIAPP))
5741  _to_multi_app_transfers.addObject(multi_app_transfer);
5742  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::FROM_MULTIAPP))
5743  _from_multi_app_transfers.addObject(multi_app_transfer);
5744  if (multi_app_transfer->directions().isValueSet(MultiAppTransfer::BETWEEN_MULTIAPP))
5745  _between_multi_app_transfers.addObject(multi_app_transfer);
5746  }
5747  else
5748  _transfers.addObject(transfer);
5749 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
A MultiMooseEnum object to hold "execute_on" flags.
Definition: ExecFlagEnum.h:21
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
Base class for a system (of equations)
Definition: SystemBase.h:84
std::shared_ptr< MultiApp > getMultiApp(const std::string &multi_app_name) const
Get a MultiApp object by name.
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
virtual std::unique_ptr< Base > create()=0
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Base class for all MultiAppTransfer objects.
const ExecFlagType EXEC_SAME_AS_MULTIAPP
Definition: Moose.C:53
std::shared_ptr< DisplacedProblem > _displaced_problem
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
Base class for all Transfer objects.
Definition: Transfer.h:36
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addUserObject()

std::vector< std::shared_ptr< UserObject > > FEProblemBase::addUserObject ( const std::string &  user_object_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4365 of file FEProblemBase.C.

Referenced by MFEMProblem::addAuxKernel(), MFEMProblem::addBoundaryCondition(), MFEMProblem::addFESpace(), MFEMProblem::addFunctorMaterial(), MFEMProblem::addGridFunction(), MFEMProblem::addInitialCondition(), MFEMProblem::addKernel(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), MFEMProblem::addSubMesh(), MFEMProblem::addTransfer(), and FEProblemBase::addVectorPostprocessor().

4368 {
4369  parallel_object_only();
4370 
4371  std::vector<std::shared_ptr<UserObject>> uos;
4372 
4373  // Add the _subproblem and _sys parameters depending on use_displaced_mesh
4375 
4376  for (const auto tid : make_range(libMesh::n_threads()))
4377  {
4378  // Create the UserObject
4379  std::shared_ptr<UserObject> user_object =
4380  _factory.create<UserObject>(user_object_name, name, parameters, tid);
4381  logAdd("UserObject", name, user_object_name, parameters);
4382  uos.push_back(user_object);
4383 
4384  if (tid != 0)
4385  user_object->setPrimaryThreadCopy(uos[0].get());
4386 
4387  // TODO: delete this line after apps have been updated to not call getUserObjects
4388  _all_user_objects.addObject(user_object, tid);
4389 
4390  theWarehouse().add(user_object);
4391 
4392  // Attempt to create all the possible UserObject types
4393  auto euo = std::dynamic_pointer_cast<ElementUserObject>(user_object);
4394  auto suo = std::dynamic_pointer_cast<SideUserObject>(user_object);
4395  auto isuo = std::dynamic_pointer_cast<InternalSideUserObject>(user_object);
4396  auto iuo = std::dynamic_pointer_cast<InterfaceUserObjectBase>(user_object);
4397  auto nuo = std::dynamic_pointer_cast<NodalUserObject>(user_object);
4398  auto duo = std::dynamic_pointer_cast<DomainUserObject>(user_object);
4399  auto guo = std::dynamic_pointer_cast<GeneralUserObject>(user_object);
4400  auto tguo = std::dynamic_pointer_cast<ThreadedGeneralUserObject>(user_object);
4401  auto muo = std::dynamic_pointer_cast<MortarUserObject>(user_object);
4402 
4403  // Account for displaced mesh use
4404  if (_displaced_problem && parameters.get<bool>("use_displaced_mesh"))
4405  {
4406  // Whether to re-init or not depends on the attributes of the base classes.
4407  // For example, InterfaceUOBase has "_current_side_elem" and "_neighbor_elem"
4408  // so it needs to reinit on displaced neighbors and faces
4409  // _reinit_displaced_elem -> _current_elem will be reinited
4410  // _reinit_displaced_face -> _current_elem, lowerD if any and _current_side_elem to be
4411  // reinited _reinit_displaced_neighbor -> _current_elem, lowerD if any and _current_neighbor
4412  // to be reinited Note that as soon as you use materials on the displaced mesh, all three get
4413  // turned on.
4414  if (euo || nuo || duo)
4415  _reinit_displaced_elem = true;
4416  if (suo || duo || isuo || iuo)
4417  _reinit_displaced_face = true;
4418  if (iuo || duo || isuo)
4420  }
4421 
4422  // These objects only require one thread
4423  if ((guo && !tguo) || muo)
4424  break;
4425  }
4426 
4427  // Add as a Functor if it is one. We usually need to add the user object from thread 0 as the
4428  // registered functor for all threads because when user objects are thread joined, generally only
4429  // the primary thread copy ends up with all the data
4430  for (const auto tid : make_range(libMesh::n_threads()))
4431  {
4432  const decltype(uos)::size_type uo_index = uos.front()->needThreadedCopy() ? tid : 0;
4433  if (const auto functor = dynamic_cast<Moose::FunctorBase<Real> *>(uos[uo_index].get()))
4434  {
4435  this->addFunctor(name, *functor, tid);
4436  if (_displaced_problem)
4437  _displaced_problem->addFunctor(name, *functor, tid);
4438  }
4439  }
4440 
4441  return uos;
4442 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
unsigned int n_threads()
Base class for implementing interface user objects.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1375
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
Base class for user objects executed one or more sidesets, which may be on the outer boundary of the ...
This user object allows related evaluations on elements, boundaries, internal sides, interfaces in one single place.
Base class for creating new nodally-based mortar user objects.
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
A user object that runs over all the nodes and does an aggregation step to compute a single value...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for user objects executed on all element sides internal to one or more blocks...
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
IntRange< T > make_range(T beg, T end)
void addObjectParamsHelper(InputParameters &params, const std::string &object_name, const std::string &var_param_name="variable")
Helper for setting the "_subproblem" and "_sys" parameters in addObject() and in addUserObject().
std::shared_ptr< DisplacedProblem > _displaced_problem
Base class for user-specific data.
Definition: UserObject.h:40
An instance of this object type has one copy per thread that runs on each thread. ...

◆ addVariable() [1/2]

void FEProblemBase::addVariable

Canonical method for adding a non-linear variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Definition at line 2846 of file FEProblemBase.C.

2849 {
2850  parallel_object_only();
2851 
2852  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
2853  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
2854  const auto fe_type = FEType(order, family);
2855 
2856  const auto active_subdomains_vector =
2857  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
2858  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
2859  active_subdomains_vector.end());
2860 
2861  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ false, &active_subdomains))
2862  return;
2863 
2864  params.set<FEProblemBase *>("_fe_problem_base") = this;
2865  params.set<Moose::VarKindType>("_var_kind") = Moose::VarKindType::VAR_SOLVER;
2866  SolverSystemName sys_name = params.get<SolverSystemName>("solver_sys");
2867 
2868  const auto solver_system_number = solverSysNum(sys_name);
2869  logAdd("Variable", var_name, var_type, params);
2870  _solver_systems[solver_system_number]->addVariable(var_type, var_name, params);
2871  if (_displaced_problem)
2872  // MooseObjects need to be unique so change the name here
2873  _displaced_problem->addVariable(var_type, var_name, params, solver_system_number);
2874 
2875  _solver_var_to_sys_num[var_name] = solver_system_number;
2876 
2877  markFamilyPRefinement(params);
2878 }
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::map< SolverVariableName, unsigned int > _solver_var_to_sys_num
Map connecting variable names with their respective solver systems.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1737
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addVariable() [2/2]

void FEProblemBase::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters params 
)
virtualinherited

Canonical method for adding a non-linear variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in MFEMProblem.

Definition at line 2846 of file FEProblemBase.C.

Referenced by MFEMProblem::addGridFunction(), DiffusionFV::addSolverVariables(), DiffusionCG::addSolverVariables(), and AddVariableAction::init().

2849 {
2850  parallel_object_only();
2851 
2852  const auto order = Utility::string_to_enum<Order>(params.get<MooseEnum>("order"));
2853  const auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
2854  const auto fe_type = FEType(order, family);
2855 
2856  const auto active_subdomains_vector =
2857  _mesh.getSubdomainIDs(params.get<std::vector<SubdomainName>>("block"));
2858  const std::set<SubdomainID> active_subdomains(active_subdomains_vector.begin(),
2859  active_subdomains_vector.end());
2860 
2861  if (duplicateVariableCheck(var_name, fe_type, /* is_aux = */ false, &active_subdomains))
2862  return;
2863 
2864  params.set<FEProblemBase *>("_fe_problem_base") = this;
2865  params.set<Moose::VarKindType>("_var_kind") = Moose::VarKindType::VAR_SOLVER;
2866  SolverSystemName sys_name = params.get<SolverSystemName>("solver_sys");
2867 
2868  const auto solver_system_number = solverSysNum(sys_name);
2869  logAdd("Variable", var_name, var_type, params);
2870  _solver_systems[solver_system_number]->addVariable(var_type, var_name, params);
2871  if (_displaced_problem)
2872  // MooseObjects need to be unique so change the name here
2873  _displaced_problem->addVariable(var_type, var_name, params, solver_system_number);
2874 
2875  _solver_var_to_sys_num[var_name] = solver_system_number;
2876 
2877  markFamilyPRefinement(params);
2878 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
void logAdd(const std::string &system, const std::string &name, const std::string &type, const InputParameters &params) const
Output information about the object just added to the problem.
std::map< SolverVariableName, unsigned int > _solver_var_to_sys_num
Map connecting variable names with their respective solver systems.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
std::vector< SubdomainID > getSubdomainIDs(const std::vector< SubdomainName > &subdomain_names) const
Get the associated subdomainIDs for the subdomain names that are passed in.
Definition: MooseMesh.C:1737
VarKindType
Framework-wide stuff.
Definition: MooseTypes.h:715
MooseMesh & _mesh
void markFamilyPRefinement(const InputParameters &params)
Mark a variable family for either disabling or enabling p-refinement with valid parameters of a varia...
Definition: SubProblem.C:1367
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
bool duplicateVariableCheck(const std::string &var_name, const libMesh::FEType &type, bool is_aux, const std::set< SubdomainID > *const active_subdomains)
Helper to check for duplicate variable names across systems or within a single system.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ addVectorPostprocessor()

void FEProblemBase::addVectorPostprocessor ( const std::string &  pp_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Definition at line 4337 of file FEProblemBase.C.

Referenced by ExtraIDIntegralReporter::ExtraIDIntegralReporter().

4340 {
4341  // Check for name collision
4342  if (hasUserObject(name))
4343  mooseError("A ",
4345  " already exists. You may not add a VectorPostprocessor by the same name.");
4346 
4347  addUserObject(pp_name, name, parameters);
4348 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool hasUserObject(const std::string &name) const
Check if there if a user object of given name.
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::string typeAndName() const
Get the class&#39;s combined type and name; useful in error handling.
Definition: MooseBase.C:54
virtual std::vector< std::shared_ptr< UserObject > > addUserObject(const std::string &user_object_name, const std::string &name, InputParameters &parameters)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const UserObject & getUserObjectBase(const std::string &name, const THREAD_ID tid=0) const
Get the user object by its name.

◆ addVectorTag()

TagID SubProblem::addVectorTag ( const TagName &  tag_name,
const Moose::VectorTagType  type = Moose::VECTOR_TAG_RESIDUAL 
)
virtualinherited

Create a Tag.

Tags can be associated with Vectors and Matrices and allow objects (such as Kernels) to arbitrarily contribute values to any set of vectors/matrics

Note: If the tag is already present then this will simply return the TagID of that Tag, but the type must be the same.

Parameters
tag_nameThe name of the tag to create, the TagID will get automatically generated
typeThe type of the tag

Reimplemented in DisplacedProblem.

Definition at line 92 of file SubProblem.C.

Referenced by DisplacedProblem::addVectorTag(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), LinearSystem::LinearSystem(), SystemBase::needSolutionState(), and NonlinearSystemBase::NonlinearSystemBase().

94 {
96  mooseError("Vector tag type cannot be VECTOR_TAG_ANY");
97 
98  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
99 
100  // First, see if the tag exists already
101  for (const auto & vector_tag : _vector_tags)
102  {
103  mooseAssert(_vector_tags[vector_tag._id] == vector_tag, "Vector tags index mismatch");
104  if (vector_tag._name == tag_name_upper)
105  {
106  if (vector_tag._type != type)
107  mooseError("While attempting to add vector tag with name '",
108  tag_name_upper,
109  "' and type ",
110  type,
111  ",\na tag with the same name but type ",
112  vector_tag._type,
113  " was found.\n\nA tag can only exist with one type.");
114 
115  return vector_tag._id;
116  }
117  }
118 
119  // Doesn't exist - create it
120  const TagID new_tag_id = _vector_tags.size();
121  const TagTypeID new_tag_type_id = _typed_vector_tags[type].size();
122  // Primary storage for all tags where the index in the vector == the tag ID
123  _vector_tags.emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
124  // Secondary storage for each type so that we can have quick access to all tags of a type
125  _typed_vector_tags[type].emplace_back(new_tag_id, new_tag_type_id, tag_name_upper, type);
126  // Name map storage for quick name access
127  _vector_tags_name_map.emplace(tag_name_upper, new_tag_id);
128 
129  // Make sure that _vector_tags, _typed_vector_tags, and _vector_tags_name_map are sane
131 
132  return new_tag_id;
133 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ advanceMultiApps()

void FEProblemBase::advanceMultiApps ( ExecFlagType  type)
inlineinherited

Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep depending on your purpose.

Definition at line 1364 of file FEProblemBase.h.

1365  {
1366  mooseDeprecated("Deprecated method; use finishMultiAppStep and/or incrementMultiAppTStep "
1367  "depending on your purpose");
1369  }
void finishMultiAppStep(ExecFlagType type, bool recurse_through_multiapp_levels=false)
Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ advanceState()

virtual void DumpObjectsProblem::advanceState ( )
inlineoverridevirtual

Advance all of the state holding vectors / datastructures so that we can move to the next timestep.

Reimplemented from FEProblemBase.

Definition at line 62 of file DumpObjectsProblem.h.

62 {}

◆ allowInvalidSolution()

bool FEProblemBase::allowInvalidSolution ( ) const
inlineinherited

Whether to accept / allow an invalid solution.

Definition at line 2023 of file FEProblemBase.h.

Referenced by FEProblemBase::acceptInvalidSolution().

2023 { return _allow_invalid_solution; }
const bool _allow_invalid_solution

◆ allowOutput() [1/2]

void FEProblemBase::allowOutput ( bool  state)
inherited

Ability to enable/disable all output calls.

This is needed by Multiapps and applications to disable output for cases when executioners call other executions and when Multiapps are sub cycling.

Definition at line 6781 of file FEProblemBase.C.

Referenced by TransientMultiApp::resetApp(), and TransientMultiApp::solveStep().

6782 {
6784 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ allowOutput() [2/2]

template<typename T >
void FEProblemBase::allowOutput ( bool  state)
inherited

Definition at line 3143 of file FEProblemBase.h.

3144 {
3145  _app.getOutputWarehouse().allowOutput<T>(state);
3146 }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void allowOutput(bool state)
Ability to enable/disable output calls This is private, users should utilize FEProblemBase::allowOutp...
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ areCoupled()

bool FEProblemBase::areCoupled ( const unsigned int  ivar,
const unsigned int  jvar,
const unsigned int  nl_sys_num 
) const
inherited

Definition at line 6230 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

6233 {
6234  return (*_cm[nl_sys])(ivar, jvar);
6235 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ assembly() [1/2]

Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
)
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3291 of file FEProblemBase.h.

Referenced by ArrayNodalBC::computeJacobian(), VectorNodalBC::computeJacobian(), NodalBC::computeJacobian(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), VectorNodalBC::computeOffDiagJacobian(), ArrayNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NonlinearSystemBase::constraintJacobians(), FEProblemBase::initialSetup(), ComputeBoundaryInitialConditionThread::onNode(), MaxQpsThread::operator()(), and FEProblemBase::reinitScalars().

3292 {
3293  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3294  mooseAssert(sys_num < _assembly[tid].size(),
3295  "System number larger than the assembly container size");
3296  return *_assembly[tid][sys_num];
3297 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ assembly() [2/2]

const Assembly & FEProblemBase::assembly ( const THREAD_ID  tid,
const unsigned int  sys_num 
) const
inlineoverridevirtualinherited

Implements SubProblem.

Definition at line 3300 of file FEProblemBase.h.

3301 {
3302  mooseAssert(tid < _assembly.size(), "Assembly objects not initialized");
3303  mooseAssert(sys_num < _assembly[tid].size(),
3304  "System number larger than the assembly container size");
3305  return *_assembly[tid][sys_num];
3306 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ automaticScaling() [1/4]

bool SubProblem::automaticScaling ( ) const
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

Referenced by FEProblemBase::automaticScaling(), and DisplacedProblem::DisplacedProblem().

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122

◆ automaticScaling() [2/4]

void SubProblem::automaticScaling
inherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 1155 of file SubProblem.C.

1156 {
1157  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1158  systemBaseNonlinear(nl_sys_num).automaticScaling(automatic_scaling);
1159 }
virtual std::size_t numNonlinearSystems() const override
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.
IntRange< T > make_range(T beg, T end)

◆ automaticScaling() [3/4]

bool SubProblem::automaticScaling
inherited

Automatic scaling getter.

Returns
A boolean representing whether we are performing automatic scaling

Definition at line 1162 of file SubProblem.C.

1163 {
1164  // Currently going to assume that we are applying or not applying automatic scaling consistently
1165  // across nonlinear systems
1167 }
bool automaticScaling() const
Getter for whether we are performing automatic scaling.
Definition: SystemBase.h:122
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const override
Return the nonlinear system object as a base class reference given the system number.

◆ automaticScaling() [4/4]

void FEProblemBase::automaticScaling ( bool  automatic_scaling)
overridevirtualinherited

Automatic scaling setter.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Reimplemented from SubProblem.

Definition at line 9091 of file FEProblemBase.C.

Referenced by DisplacedProblem::DisplacedProblem(), and FEProblemSolve::FEProblemSolve().

9092 {
9093  if (_displaced_problem)
9094  _displaced_problem->automaticScaling(automatic_scaling);
9095 
9096  SubProblem::automaticScaling(automatic_scaling);
9097 }
bool automaticScaling() const
Automatic scaling getter.
Definition: SubProblem.C:1162
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ backupMultiApps()

void FEProblemBase::backupMultiApps ( ExecFlagType  type)
inherited

Backup the MultiApps associated with the ExecFlagType.

Definition at line 5601 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), FixedPointSolve::solve(), and MFEMProblemSolve::solve().

5602 {
5603  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5604 
5605  if (multi_apps.size())
5606  {
5607  TIME_SECTION("backupMultiApps", 5, "Backing Up MultiApp");
5608 
5609  if (_verbose_multiapps)
5610  _console << COLOR_CYAN << "\nBacking Up MultiApps on " << type.name() << COLOR_DEFAULT
5611  << std::endl;
5612 
5613  for (const auto & multi_app : multi_apps)
5614  multi_app->backup();
5615 
5617 
5618  if (_verbose_multiapps)
5619  _console << COLOR_CYAN << "Finished Backing Up MultiApps on " << type.name() << "\n"
5620  << COLOR_DEFAULT << std::endl;
5621  }
5622 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ bumpAllQRuleOrder()

void FEProblemBase::bumpAllQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Definition at line 6087 of file FEProblemBase.C.

6088 {
6089  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6090  for (const auto i : index_range(_nl))
6091  _assembly[tid][i]->bumpAllQRuleOrder(order, block);
6092 
6093  if (_displaced_problem)
6094  _displaced_problem->bumpAllQRuleOrder(order, block);
6095 
6096  updateMaxQps();
6097 }
unsigned int n_threads()
void bumpAllQRuleOrder(libMesh::Order order, SubdomainID block)
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ bumpVolumeQRuleOrder()

void FEProblemBase::bumpVolumeQRuleOrder ( libMesh::Order  order,
SubdomainID  block 
)
inherited

Increases the element/volume quadrature order for the specified mesh block if and only if the current volume quadrature order is lower.

This can only cause the quadrature level to increase. If volume_order is lower than or equal to the current volume/elem quadrature rule order, then nothing is done (i.e. this function is idempotent).

Definition at line 6074 of file FEProblemBase.C.

6075 {
6076  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6077  for (const auto i : index_range(_nl))
6078  _assembly[tid][i]->bumpVolumeQRuleOrder(order, block);
6079 
6080  if (_displaced_problem)
6081  _displaced_problem->bumpVolumeQRuleOrder(order, block);
6082 
6083  updateMaxQps();
6084 }
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void bumpVolumeQRuleOrder(libMesh::Order order, SubdomainID block)
Increases the element/volume quadrature order for the specified mesh block if and only if the current...
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ cacheJacobian()

void FEProblemBase::cacheJacobian ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1977 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobianThread::accumulate(), NonlinearSystemBase::constraintJacobians(), and ComputeJacobianThread::postElement().

1978 {
1980  if (_displaced_problem)
1981  _displaced_problem->cacheJacobian(tid);
1982 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheJacobian(const THREAD_ID tid)
Definition: SubProblem.C:1312

◆ cacheJacobianNeighbor()

void FEProblemBase::cacheJacobianNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1985 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians().

1986 {
1988  if (_displaced_problem)
1989  _displaced_problem->cacheJacobianNeighbor(tid);
1990 }
virtual void cacheJacobianNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1320
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidual()

void FEProblemBase::cacheResidual ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1863 of file FEProblemBase.C.

Referenced by ComputeResidualThread::accumulate(), ComputeResidualAndJacobianThread::accumulate(), and NonlinearSystemBase::constraintResiduals().

1864 {
1866  if (_displaced_problem)
1867  _displaced_problem->cacheResidual(tid);
1868 }
virtual void cacheResidual(const THREAD_ID tid)
Definition: SubProblem.C:1291
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ cacheResidualNeighbor()

void FEProblemBase::cacheResidualNeighbor ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 1871 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1872 {
1874  if (_displaced_problem)
1875  _displaced_problem->cacheResidualNeighbor(tid);
1876 }
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void cacheResidualNeighbor(const THREAD_ID tid)
Definition: SubProblem.C:1298

◆ callMooseError() [1/2]

void MooseBase::callMooseError ( std::string  msg,
const bool  with_prefix,
const hit::Node *  node = nullptr 
) const
inherited

External method for calling moose error with added object context.

Parameters
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 102 of file MooseBase.C.

Referenced by InputParameters::callMooseError(), MooseBase::mooseDocumentedError(), MooseBase::mooseError(), and MooseBase::mooseErrorNonPrefixed().

105 {
106  callMooseError(&_app, _pars, msg, with_prefix, node);
107 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ callMooseError() [2/2]

void MooseBase::callMooseError ( MooseApp *const  app,
const InputParameters params,
std::string  msg,
const bool  with_prefix,
const hit::Node *  node 
)
staticinherited

External method for calling moose error with added object context.

Needed so that objects without the MooseBase context (InputParameters) can call errors with context

Parameters
appThe app pointer (if available); adds multiapp context and clears the console
paramsThe parameters, needed to obtain object information
msgThe message
with_prefixIf true, add the prefix from messagePrefix(), which is the object information (type, name, etc)
nodeOptional hit node to add file path context as a prefix

Definition at line 110 of file MooseBase.C.

115 {
116  if (!node)
117  node = MooseBase::getHitNode(params);
118 
119  std::string multiapp_prefix = "";
120  if (app)
121  {
122  if (!app->isUltimateMaster())
123  multiapp_prefix = app->name();
125  }
126 
127  if (with_prefix)
128  // False here because the hit context will get processed by the node
129  msg = messagePrefix(params, false) + msg;
130 
131  moose::internal::mooseErrorRaw(msg, multiapp_prefix, node);
132 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
void mooseErrorRaw(std::string msg, const std::string &prefix="", const hit::Node *node=nullptr)
Main callback for emitting a moose error.
Definition: MooseError.C:53
void mooseConsole()
Send current output buffer to Console output objects.
const hit::Node * getHitNode() const
Definition: MooseBase.h:132
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ captureDump() [1/17]

DumpObjectsProblem::captureDump ( addAuxKernel  ,
"AuxKernels"   
)

◆ captureDump() [2/17]

AuxScalarKernels DumpObjectsProblem::captureDump ( addAuxVariable  ,
"AuxVariables"   
)

◆ captureDump() [3/17]

AuxScalarKernels BCs DumpObjectsProblem::captureDump ( addConstraint  ,
"Constraints"   
)

◆ captureDump() [4/17]

AuxScalarKernels BCs Convergence DumpObjectsProblem::captureDump ( addDamper  ,
"Dampers"   
)

◆ captureDump() [5/17]

AuxScalarKernels BCs Convergence DGKernels DumpObjectsProblem::captureDump ( addDiracKernel  ,
"DiracKernels"   
)

◆ captureDump() [6/17]

AuxScalarKernels BCs Convergence DGKernels Distributions DumpObjectsProblem::captureDump ( addFunction  ,
"Functions"   
)

◆ captureDump() [7/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials DumpObjectsProblem::captureDump ( addFVBC  ,
"FVBCs"   
)

◆ captureDump() [8/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs DumpObjectsProblem::captureDump ( addFVInterfaceKernel  ,
"FVInterfaceKernels"   
)

◆ captureDump() [9/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels DumpObjectsProblem::captureDump ( addHDGKernel  ,
"HDGKernels"   
)

◆ captureDump() [10/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators DumpObjectsProblem::captureDump ( addInitialCondition  ,
"ICs"   
)

◆ captureDump() [11/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels DumpObjectsProblem::captureDump ( addKernel  ,
"Kernels"   
)

◆ captureDump() [12/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs DumpObjectsProblem::captureDump ( addLinearFVKernel  ,
"LinearFVKernels"   
)

◆ captureDump() [13/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers DumpObjectsProblem::captureDump ( addMaterial  ,
"Materials"   
)

◆ captureDump() [14/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions DumpObjectsProblem::captureDump ( addMultiApp  ,
"MultiApps"   
)

◆ captureDump() [15/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels DumpObjectsProblem::captureDump ( addPostprocessor  ,
"Postprocessors"   
)

◆ captureDump() [16/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels Executioner Predictor DumpObjectsProblem::captureDump ( addSampler  ,
"Samplers"   
)

◆ captureDump() [17/17]

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels Executioner Predictor ScalarKernels DumpObjectsProblem::captureDump ( addTransfer  ,
"Transfers"   
)

◆ captureDumpUO()

AuxScalarKernels BCs Convergence DGKernels Distributions FunctorMaterials FVICs FVKernels Adaptivity Indicators InterfaceKernels LinearFVBCs Adaptivity Markers MeshDivisions NodalKernels Executioner Predictor ScalarKernels Executioner TimeIntegrators DumpObjectsProblem::captureDumpUO ( addUserObject  ,
"UserObjects"   
)

◆ checkBlockMatProps()

void SubProblem::checkBlockMatProps ( )
virtualinherited

Checks block material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 623 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

624 {
625  // Variable for storing all available blocks/boundaries from the mesh
626  std::set<SubdomainID> all_ids(mesh().meshSubdomains());
627 
628  std::stringstream errors;
629 
630  // Loop through the properties to check
631  for (const auto & check_it : _map_block_material_props_check)
632  {
633  // The current id for the property being checked (BoundaryID || BlockID)
634  SubdomainID check_id = check_it.first;
635 
636  std::set<SubdomainID> check_ids = {check_id};
637 
638  // Loop through all the block/boundary ids
639  for (const auto & id : check_ids)
640  {
641  // Loop through all the stored properties
642  for (const auto & prop_it : check_it.second)
643  {
644  // Produce an error if the material property is not defined on the current block/boundary
645  // and any block/boundary
646  // and not is not a zero material property.
647  if (_map_block_material_props[id].count(prop_it.second) == 0 &&
648  _zero_block_material_props[id].count(prop_it.second) == 0)
649  {
650  std::string check_name = restrictionSubdomainCheckName(id);
651  if (check_name.empty())
652  check_name = std::to_string(id);
653  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
654  << "' is not defined on block " << check_name << "\n";
655  }
656  }
657  }
658  }
659 
660  if (!errors.str().empty())
661  mooseError(errors.str());
662 }
virtual MooseMesh & mesh()=0
std::string restrictionSubdomainCheckName(SubdomainID check_id)
Helper functions for checking MaterialProperties.
Definition: SubProblem.C:772
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ checkBoundaryMatProps()

void SubProblem::checkBoundaryMatProps ( )
virtualinherited

Checks boundary material properties integrity.

See also
FEProblemBase::checkProblemIntegrity

Definition at line 665 of file SubProblem.C.

Referenced by FEProblemBase::checkProblemIntegrity().

666 {
667  // Variable for storing the value for ANY_BOUNDARY_ID
669 
670  // Variable for storing all available blocks/boundaries from the mesh
671  std::set<BoundaryID> all_ids(mesh().getBoundaryIDs());
672 
673  std::stringstream errors;
674 
675  // Loop through the properties to check
676  for (const auto & check_it : _map_boundary_material_props_check)
677  {
678  // The current id for the property being checked (BoundaryID || BlockID)
679  BoundaryID check_id = check_it.first;
680 
681  // In the case when the material being checked has an ID is set to ANY, then loop through all
682  // the possible ids and verify that the material property is defined.
683  std::set<BoundaryID> check_ids{check_id};
684  if (check_id == any_id)
685  check_ids = all_ids;
686 
687  // Loop through all the block/boundary ids
688  for (const auto & id : check_ids)
689  {
690  // Loop through all the stored properties
691  for (const auto & prop_it : check_it.second)
692  {
693  // Produce an error if the material property is not defined on the current block/boundary
694  // and any block/boundary
695  // and not is not a zero material property.
696  if (_map_boundary_material_props[id].count(prop_it.second) == 0 &&
697  _map_boundary_material_props[any_id].count(prop_it.second) == 0 &&
698  _zero_boundary_material_props[id].count(prop_it.second) == 0 &&
699  _zero_boundary_material_props[any_id].count(prop_it.second) == 0)
700  {
701  std::string check_name = restrictionBoundaryCheckName(id);
702  if (check_name.empty())
703  check_name = std::to_string(id);
704  errors << "Material property '" << prop_it.second << "', requested by '" << prop_it.first
705  << "' is not defined on boundary " << check_name << "\n";
706  }
707  }
708  }
709  }
710 
711  if (!errors.str().empty())
712  mooseError(errors.str());
713 }
virtual MooseMesh & mesh()=0
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
std::string restrictionBoundaryCheckName(BoundaryID check_id)
Definition: SubProblem.C:783
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
boundary_id_type BoundaryID
std::vector< BoundaryID > getBoundaryIDs(const libMesh::MeshBase &mesh, const std::vector< BoundaryName > &boundary_name, bool generate_unknown, const std::set< BoundaryID > &mesh_boundary_ids)
Gets the boundary IDs with their names.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ checkCoordinateSystems()

void FEProblemBase::checkCoordinateSystems ( )
protectedinherited

Verify that there are no element type/coordinate type conflicts.

Definition at line 8708 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8709 {
8711 }
MooseMesh & _mesh
void checkCoordinateSystems()
Performs a sanity check for every element in the mesh.
Definition: MooseMesh.C:4307

◆ checkDependMaterialsHelper()

void FEProblemBase::checkDependMaterialsHelper ( const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &  materials_map)
protectedinherited

Helper method for checking Material object dependency.

See also
checkProblemIntegrity

These two sets are used to make sure that all dependent props on a block are actually supplied

Definition at line 8583 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8585 {
8586  for (const auto & it : materials_map)
8587  {
8589  std::set<std::string> block_depend_props, block_supplied_props;
8590 
8591  for (const auto & mat1 : it.second)
8592  {
8593  const std::set<std::string> & depend_props = mat1->getRequestedItems();
8594  block_depend_props.insert(depend_props.begin(), depend_props.end());
8595 
8596  auto & alldeps = mat1->getMatPropDependencies(); // includes requested stateful props
8597  for (auto & dep : alldeps)
8598  if (const auto name = _material_props.queryStatefulPropName(dep))
8599  block_depend_props.insert(*name);
8600 
8601  // See if any of the active materials supply this property
8602  for (const auto & mat2 : it.second)
8603  {
8604  const std::set<std::string> & supplied_props = mat2->MaterialBase::getSuppliedItems();
8605  block_supplied_props.insert(supplied_props.begin(), supplied_props.end());
8606  }
8607  }
8608 
8609  // Add zero material properties specific to this block and unrestricted
8610  block_supplied_props.insert(_zero_block_material_props[it.first].begin(),
8611  _zero_block_material_props[it.first].end());
8612 
8613  // Error check to make sure all properties consumed by materials are supplied on this block
8614  std::set<std::string> difference;
8615  std::set_difference(block_depend_props.begin(),
8616  block_depend_props.end(),
8617  block_supplied_props.begin(),
8618  block_supplied_props.end(),
8619  std::inserter(difference, difference.end()));
8620 
8621  if (!difference.empty())
8622  {
8623  std::ostringstream oss;
8624  oss << "One or more Material Properties were not supplied on block ";
8625  const std::string & subdomain_name = _mesh.getSubdomainName(it.first);
8626  if (subdomain_name.length() > 0)
8627  oss << subdomain_name << " (" << it.first << ")";
8628  else
8629  oss << it.first;
8630  oss << ":\n";
8631  for (const auto & name : difference)
8632  oss << name << "\n";
8633  mooseError(oss.str());
8634  }
8635  }
8636 
8637  // This loop checks that materials are not supplied by multiple Material objects
8638  for (const auto & it : materials_map)
8639  {
8640  const auto & materials = it.second;
8641  std::set<std::string> inner_supplied, outer_supplied;
8642 
8643  for (const auto & outer_mat : materials)
8644  {
8645  // Storage for properties for this material (outer) and all other materials (inner)
8646  outer_supplied = outer_mat->getSuppliedItems();
8647  inner_supplied.clear();
8648 
8649  // Property to material map for error reporting
8650  std::map<std::string, std::set<std::string>> prop_to_mat;
8651  for (const auto & name : outer_supplied)
8652  prop_to_mat[name].insert(outer_mat->name());
8653 
8654  for (const auto & inner_mat : materials)
8655  {
8656  if (outer_mat == inner_mat)
8657  continue;
8658 
8659  // Check whether these materials are an AD pair
8660  auto outer_mat_type = outer_mat->type();
8661  auto inner_mat_type = inner_mat->type();
8662  removeSubstring(outer_mat_type, "<RESIDUAL>");
8663  removeSubstring(outer_mat_type, "<JACOBIAN>");
8664  removeSubstring(inner_mat_type, "<RESIDUAL>");
8665  removeSubstring(inner_mat_type, "<JACOBIAN>");
8666  if (outer_mat_type == inner_mat_type && outer_mat_type != outer_mat->type() &&
8667  inner_mat_type != inner_mat->type())
8668  continue;
8669 
8670  inner_supplied.insert(inner_mat->getSuppliedItems().begin(),
8671  inner_mat->getSuppliedItems().end());
8672 
8673  for (const auto & inner_supplied_name : inner_supplied)
8674  prop_to_mat[inner_supplied_name].insert(inner_mat->name());
8675  }
8676 
8677  // Test that a property isn't supplied on multiple blocks
8678  std::set<std::string> intersection;
8679  std::set_intersection(outer_supplied.begin(),
8680  outer_supplied.end(),
8681  inner_supplied.begin(),
8682  inner_supplied.end(),
8683  std::inserter(intersection, intersection.end()));
8684 
8685  if (!intersection.empty())
8686  {
8687  std::ostringstream oss;
8688  oss << "The following material properties are declared on block " << it.first
8689  << " by multiple materials:\n";
8690  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << "Material Property"
8691  << "Material Objects\n";
8692  for (const auto & outer_name : intersection)
8693  {
8694  oss << ConsoleUtils::indent(2) << std::setw(30) << std::left << outer_name;
8695  for (const auto & inner_name : prop_to_mat[outer_name])
8696  oss << inner_name << " ";
8697  oss << '\n';
8698  }
8699 
8700  mooseError(oss.str());
8701  break;
8702  }
8703  }
8704  }
8705 }
std::string indent(unsigned int spaces)
Create empty string for indenting.
Definition: ConsoleUtils.C:41
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1763
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::optional< std::string > queryStatefulPropName(const unsigned int id) const
MooseMesh & _mesh
void removeSubstring(std::string &main, const std::string &sub)
find, erase, length algorithm for removing a substring from a string
Definition: MooseUtils.C:1296
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _material_props
for(PetscInt i=0;i< nvars;++i)

◆ checkDisplacementOrders()

void FEProblemBase::checkDisplacementOrders ( )
protectedinherited

Verify that SECOND order mesh uses SECOND order displacements.

Definition at line 8507 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8508 {
8509  if (_displaced_problem)
8510  {
8511  bool mesh_has_second_order_elements = false;
8512  for (const auto & elem : as_range(_displaced_mesh->activeLocalElementsBegin(),
8514  {
8515  if (elem->default_order() == SECOND)
8516  {
8517  mesh_has_second_order_elements = true;
8518  break;
8519  }
8520  }
8521 
8522  // We checked our local elements, so take the max over all processors.
8523  _displaced_mesh->comm().max(mesh_has_second_order_elements);
8524 
8525  // If the Mesh has second order elements, make sure the
8526  // displacement variables are second-order.
8527  if (mesh_has_second_order_elements)
8528  {
8529  const std::vector<std::string> & displacement_variables =
8530  _displaced_problem->getDisplacementVarNames();
8531 
8532  for (const auto & var_name : displacement_variables)
8533  {
8534  MooseVariableFEBase & mv =
8535  _displaced_problem->getVariable(/*tid=*/0,
8536  var_name,
8539  if (mv.order() != SECOND)
8540  mooseError("Error: mesh has SECOND order elements, so all displacement variables must be "
8541  "SECOND order.");
8542  }
8543  }
8544  }
8545 }
const Parallel::Communicator & comm() const
This class provides an interface for common operations on field variables of both FE and FV types wit...
SECOND
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
MeshBase::element_iterator activeLocalElementsBegin()
Calls active_local_nodes_begin/end() on the underlying libMesh mesh object.
Definition: MooseMesh.C:3051
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
void max(const T &r, T &o, Request &req) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
const MeshBase::element_iterator activeLocalElementsEnd()
Definition: MooseMesh.C:3057
MooseMesh * _displaced_mesh

◆ checkDuplicatePostprocessorVariableNames()

void FEProblemBase::checkDuplicatePostprocessorVariableNames ( )
inherited

Definition at line 1478 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

1479 {
1480  for (const auto & pp : _reporter_data.getPostprocessorNames())
1481  if (hasScalarVariable(pp))
1482  mooseError("Postprocessor \"" + pp +
1483  "\" has the same name as a scalar variable in the system.");
1484 }
virtual bool hasScalarVariable(const std::string &var_name) const override
Returns a Boolean indicating whether any system contains a variable with the name provided...
ReporterData _reporter_data
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< std::string > getPostprocessorNames() const
Return a list of all postprocessor names.
Definition: ReporterData.C:71

◆ checkExceptionAndStopSolve()

void FEProblemBase::checkExceptionAndStopSolve ( bool  print_message = true)
virtualinherited

Check to see if an exception has occurred on any processor and, if possible, force the solve to fail, which will result in the time step being cut.

Notes:

  • The exception have be registered by calling setException() prior to calling this.
  • This is collective on MPI, and must be called simultaneously by all processors!
  • If called when the solve can be interruped, it will do so and also throw a MooseException, which must be handled.
  • If called at a stage in the execution when the solve cannot be interupted (i.e., there is no solve active), it will generate an error and terminate the application.
  • DO NOT CALL THIS IN A THREADED REGION! This is meant to be called just after a threaded section.
Parameters
print_messagewhether to print a message with exception information

Definition at line 6513 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::handleException(), and DisplacedProblem::updateMesh().

6514 {
6516  return;
6517 
6518  TIME_SECTION("checkExceptionAndStopSolve", 5);
6519 
6520  // See if any processor had an exception. If it did, get back the
6521  // processor that the exception occurred on.
6522  unsigned int processor_id;
6523 
6525 
6526  if (_has_exception)
6527  {
6529 
6532  {
6533  // Print the message
6534  if (_communicator.rank() == 0 && print_message)
6535  {
6536  _console << "\n" << _exception_message << "\n";
6537  if (isTransient())
6538  _console
6539  << "To recover, the solution will fail and then be re-attempted with a reduced time "
6540  "step.\n"
6541  << std::endl;
6542  }
6543 
6544  // Stop the solve -- this entails setting
6545  // SNESSetFunctionDomainError() or directly inserting NaNs in the
6546  // residual vector to let PETSc >= 3.6 return DIVERGED_NANORINF.
6547  if (_current_nl_sys)
6549 
6550  if (_current_linear_sys)
6552 
6553  // and close Aux system (we MUST do this here; see #11525)
6554  _aux->solution().close();
6555 
6556  // We've handled this exception, so we no longer have one.
6557  _has_exception = false;
6558 
6559  // Force the next non-linear convergence check to fail (and all further residual evaluation
6560  // to be skipped).
6562 
6563  // Repropagate the exception, so it can be caught at a higher level, typically
6564  // this is NonlinearSystem::computeResidual().
6566  }
6567  else
6568  mooseError("The following parallel-communicated exception was detected during " +
6569  Moose::stringify(_current_execute_on_flag) + " evaluation:\n" +
6571  "\nBecause this did not occur during residual evaluation, there"
6572  " is no way to handle this, so the solution is aborting.\n");
6573  }
6574 }
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close) override
Quit the current solve as soon as possible.
Definition: LinearSystem.C:326
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.
ExecFlagType _current_execute_on_flag
Current execute_on flag.
processor_id_type rank() const
bool _has_exception
Whether or not an exception has occurred.
const Parallel::Communicator & _communicator
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
void maxloc(T &r, unsigned int &max_id) const
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::string _exception_message
The error message to go with an exception.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual void stopSolve(const ExecFlagType &exec_flag, const std::set< TagID > &vector_tags_to_close)=0
Quit the current solve as soon as possible.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< TagID > _fe_vector_tags
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
virtual bool isTransient() const override
bool _fail_next_system_convergence_check
processor_id_type processor_id() const

◆ checkingUOAuxState()

bool FEProblemBase::checkingUOAuxState ( ) const
inlineinherited

Return a flag to indicate whether we are executing user objects and auxliary kernels for state check Note: This function can return true only when hasUOAuxStateCheck() returns true, i.e.

the check has been activated by users through Problem/check_uo_aux_state input parameter.

Definition at line 197 of file FEProblemBase.h.

Referenced by MemoryUsage::execute(), VectorMemoryUsage::execute(), PerfGraphData::finalize(), MemoryUsage::finalize(), and VectorMemoryUsage::finalize().

197 { return _checking_uo_aux_state; }
bool _checking_uo_aux_state
Flag used to indicate whether we are doing the uo/aux state check in execute.

◆ checkNonlocalCoupling()

void FEProblemBase::checkNonlocalCoupling ( )
inherited
Returns
Flag indicating nonlocal coupling exists or not.

Definition at line 1603 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1604 {
1605  TIME_SECTION("checkNonlocalCoupling", 5, "Checking Nonlocal Coupling");
1606 
1607  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1608  for (auto & nl : _nl)
1609  {
1610  const auto & all_kernels = nl->getKernelWarehouse();
1611  const auto & kernels = all_kernels.getObjects(tid);
1612  for (const auto & kernel : kernels)
1613  {
1614  std::shared_ptr<NonlocalKernel> nonlocal_kernel =
1616  if (nonlocal_kernel)
1617  {
1620  _nonlocal_kernels.addObject(kernel, tid);
1621  }
1622  }
1623  const MooseObjectWarehouse<IntegratedBCBase> & all_integrated_bcs =
1624  nl->getIntegratedBCWarehouse();
1625  const auto & integrated_bcs = all_integrated_bcs.getObjects(tid);
1626  for (const auto & integrated_bc : integrated_bcs)
1627  {
1628  std::shared_ptr<NonlocalIntegratedBC> nonlocal_integrated_bc =
1630  if (nonlocal_integrated_bc)
1631  {
1634  _nonlocal_integrated_bcs.addObject(integrated_bc, tid);
1635  }
1636  }
1637  }
1638 }
unsigned int n_threads()
NonlocalIntegratedBC is used for solving integral terms in integro-differential equations.
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
NonlocalKernel is used for solving integral terms in integro-differential equations.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ checkNonlocalCouplingRequirement()

bool FEProblemBase::checkNonlocalCouplingRequirement ( ) const
overridevirtualinherited
Returns
whether there will be nonlocal coupling at any point in the simulation, e.g. whether there are any active or inactive nonlocal kernels or boundary conditions

Implements SubProblem.

Definition at line 9521 of file FEProblemBase.C.

Referenced by DisplacedProblem::checkNonlocalCouplingRequirement(), ComputeJacobianThread::compute(), ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

9522 {
9524 }
bool _requires_nonlocal_coupling
nonlocal coupling requirement flag

◆ checkProblemIntegrity()

void FEProblemBase::checkProblemIntegrity ( )
virtualinherited

Method called to perform a series of sanity checks before a simulation is run.

This method doesn't return when errors are found, instead it generally calls mooseError() directly.

If a material is specified for any block in the simulation, then all blocks must have a material specified.

unsigned int is necessary to print SubdomainIDs in the statement below

vector is necessary to get the subdomain names

Reimplemented in EigenProblem.

Definition at line 8335 of file FEProblemBase.C.

Referenced by EigenProblem::checkProblemIntegrity().

8336 {
8337  TIME_SECTION("checkProblemIntegrity", 5);
8338 
8339  // Subdomains specified by the "Problem/block" parameter
8340  const auto & subdomain_names = getParam<std::vector<SubdomainName>>("block");
8341  auto mesh_subdomains_vec = MooseMeshUtils::getSubdomainIDs(_mesh, subdomain_names);
8342  std::set<SubdomainID> mesh_subdomains(mesh_subdomains_vec.begin(), mesh_subdomains_vec.end());
8343 
8344  // Check kernel coverage of subdomains (blocks) in the mesh
8347  {
8348  std::set<SubdomainID> blocks;
8351  blocks = mesh_subdomains;
8353  {
8354  blocks = mesh_subdomains;
8355  for (const auto & subdomain_name : _kernel_coverage_blocks)
8356  {
8357  const auto id = _mesh.getSubdomainID(subdomain_name);
8358  if (id == Moose::INVALID_BLOCK_ID)
8359  paramError("kernel_coverage_block_list",
8360  "Subdomain \"",
8361  subdomain_name,
8362  "\" not found in mesh.");
8363  blocks.erase(id);
8364  }
8365  }
8367  for (const auto & subdomain_name : _kernel_coverage_blocks)
8368  {
8369  const auto id = _mesh.getSubdomainID(subdomain_name);
8370  if (id == Moose::INVALID_BLOCK_ID)
8371  paramError("kernel_coverage_block_list",
8372  "Subdomain \"",
8373  subdomain_name,
8374  "\" not found in mesh.");
8375  blocks.insert(id);
8376  }
8377  if (!blocks.empty())
8378  for (auto & nl : _nl)
8379  nl->checkKernelCoverage(blocks);
8380  }
8381 
8382  // Check materials
8383  {
8384 #ifdef LIBMESH_ENABLE_AMR
8385  if ((_adaptivity.isOn() || _num_grid_steps) &&
8388  {
8389  _console << "Using EXPERIMENTAL Stateful Material Property projection with Adaptivity!\n"
8390  << std::flush;
8391  }
8392 #endif
8393 
8394  std::set<SubdomainID> local_mesh_subs(mesh_subdomains);
8395 
8398  {
8403  bool check_material_coverage = false;
8404  std::set<SubdomainID> ids = _all_materials.getActiveBlocks();
8405  for (const auto & id : ids)
8406  {
8407  local_mesh_subs.erase(id);
8408  check_material_coverage = true;
8409  }
8410 
8411  // did the user limit the subdomains to be checked?
8413  {
8414  for (const auto & subdomain_name : _material_coverage_blocks)
8415  {
8416  const auto id = _mesh.getSubdomainID(subdomain_name);
8417  if (id == Moose::INVALID_BLOCK_ID)
8418  paramError("material_coverage_block_list",
8419  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8420  local_mesh_subs.erase(id);
8421  }
8422  }
8424  {
8425  std::set<SubdomainID> blocks(local_mesh_subs);
8426  for (const auto & subdomain_name : _material_coverage_blocks)
8427  {
8428  const auto id = _mesh.getSubdomainID(subdomain_name);
8429  if (id == Moose::INVALID_BLOCK_ID)
8430  paramError("material_coverage_block_list",
8431  "Subdomain \"" + subdomain_name + "\" not found in mesh.");
8432  blocks.erase(id);
8433  }
8434  for (const auto id : blocks)
8435  local_mesh_subs.erase(id);
8436  }
8437 
8438  // also exclude mortar spaces from the material check
8439  auto && mortar_subdomain_ids = _mortar_data.getMortarSubdomainIDs();
8440  for (auto subdomain_id : mortar_subdomain_ids)
8441  local_mesh_subs.erase(subdomain_id);
8442 
8443  // Check Material Coverage
8444  if (check_material_coverage && !local_mesh_subs.empty())
8445  {
8446  std::stringstream extra_subdomain_ids;
8448  std::copy(local_mesh_subs.begin(),
8449  local_mesh_subs.end(),
8450  std::ostream_iterator<unsigned int>(extra_subdomain_ids, " "));
8452  std::vector<SubdomainID> local_mesh_subs_vec(local_mesh_subs.begin(),
8453  local_mesh_subs.end());
8454 
8455  mooseError("The following blocks from your input mesh do not contain an active material: " +
8456  extra_subdomain_ids.str() +
8457  "(names: " + Moose::stringify(_mesh.getSubdomainNames(local_mesh_subs_vec)) +
8458  ")\nWhen ANY mesh block contains a Material object, "
8459  "all blocks must contain a Material object.\n");
8460  }
8461  }
8462 
8463  // Check material properties on blocks and boundaries
8466 
8467  // Check that material properties exist when requested by other properties on a given block
8468  const auto & materials = _all_materials.getActiveObjects();
8469  for (const auto & material : materials)
8470  material->checkStatefulSanity();
8471 
8472  // auto mats_to_check = _materials.getActiveBlockObjects();
8473  // const auto & discrete_materials = _discrete_materials.getActiveBlockObjects();
8474  // for (const auto & map_it : discrete_materials)
8475  // for (const auto & container_element : map_it.second)
8476  // mats_to_check[map_it.first].push_back(container_element);
8479  }
8480 
8481  checkUserObjects();
8482 
8483  // Verify that we don't have any Element type/Coordinate Type conflicts
8485 
8486  // Coordinate transforms are only intended for use with MultiApps at this time. If you are not
8487  // using multiapps but still require these, contact a moose developer
8489  !hasMultiApps())
8490  mooseError("Coordinate transformation parameters, listed below, are only to be used in the "
8491  "context of application to application field transfers at this time. The mesh is "
8492  "not modified by these parameters within an application.\n"
8493  "You should likely use a 'TransformGenerator' in the [Mesh] block to achieve the "
8494  "desired mesh modification.\n\n",
8496 
8497  // If using displacements, verify that the order of the displacement
8498  // variables matches the order of the elements in the displaced
8499  // mesh.
8501 
8502  // Check for postprocessor names with same name as a scalar variable
8504 }
bool isUltimateMaster() const
Whether or not this app is the ultimate master app.
Definition: MooseApp.h:813
MaterialPropertyStorage & _bnd_material_props
void checkDependMaterialsHelper(const std::map< SubdomainID, std::vector< std::shared_ptr< MaterialBase >>> &materials_map)
Helper method for checking Material object dependency.
static InputParameters validParams()
Describes the parameters this object can take to setup transformations.
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
char ** blocks
std::vector< SubdomainName > _kernel_coverage_blocks
std::vector< SubdomainName > _material_coverage_blocks
unsigned int _num_grid_steps
Number of steps in a grid sequence.
std::vector< subdomain_id_type > getSubdomainIDs(const libMesh::MeshBase &mesh, const std::vector< SubdomainName > &subdomain_name)
Get the associated subdomainIDs for the subdomain names that are passed in.
bool isOn()
Is adaptivity on?
Definition: Adaptivity.h:179
const bool _skip_nl_system_check
const SubdomainID INVALID_BLOCK_ID
Definition: MooseTypes.C:20
virtual void checkBoundaryMatProps()
Checks boundary material properties integrity.
Definition: SubProblem.C:665
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const bool & _solve
Whether or not to actually solve the nonlinear system.
std::set< SubdomainID > getActiveBlocks(THREAD_ID tid=0) const
Return a set of active SubdomainsIDs.
bool hasScalingOrRotationTransformation() const
Returns true if the app has scaling and/or rotation transformation.
void checkUserObjects()
void checkDisplacementOrders()
Verify that SECOND order mesh uses SECOND order displacements.
MortarData _mortar_data
MooseMesh & _mesh
virtual void checkBlockMatProps()
Checks block material properties integrity.
Definition: SubProblem.C:623
Adaptivity _adaptivity
const std::set< SubdomainID > & getMortarSubdomainIDs() const
Returns the mortar covered subdomains.
Definition: MortarData.h:84
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1769
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1888
void checkDuplicatePostprocessorVariableNames()
const bool _material_dependency_check
Determines whether a check to verify material dependencies on every subdomain.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...
MaterialPropertyStorage & _neighbor_material_props
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool hasMultiApps() const
Returns whether or not the current simulation has any multiapps.
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...
MaterialPropertyStorage & _material_props
MaterialWarehouse _all_materials
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1731
void checkCoordinateSystems()
Verify that there are no element type/coordinate type conflicts.

◆ checkUserObjectJacobianRequirement()

void FEProblemBase::checkUserObjectJacobianRequirement ( THREAD_ID  tid)
inherited

Definition at line 1641 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

1642 {
1643  std::set<const MooseVariableFEBase *> uo_jacobian_moose_vars;
1644  {
1645  std::vector<ShapeElementUserObject *> objs;
1646  theWarehouse()
1647  .query()
1649  .condition<AttribThread>(tid)
1650  .queryInto(objs);
1651 
1652  for (const auto & uo : objs)
1653  {
1654  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1655  const auto & mv_deps = uo->jacobianMooseVariables();
1656  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1657  }
1658  }
1659  {
1660  std::vector<ShapeSideUserObject *> objs;
1661  theWarehouse()
1662  .query()
1664  .condition<AttribThread>(tid)
1665  .queryInto(objs);
1666  for (const auto & uo : objs)
1667  {
1668  _calculate_jacobian_in_uo = uo->computeJacobianFlag();
1669  const auto & mv_deps = uo->jacobianMooseVariables();
1670  uo_jacobian_moose_vars.insert(mv_deps.begin(), mv_deps.end());
1671  }
1672  }
1673 
1674  _uo_jacobian_moose_vars[tid].assign(uo_jacobian_moose_vars.begin(), uo_jacobian_moose_vars.end());
1675  std::sort(
1676  _uo_jacobian_moose_vars[tid].begin(), _uo_jacobian_moose_vars[tid].end(), sortMooseVariables);
1677 }
bool _calculate_jacobian_in_uo
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ checkUserObjects()

void FEProblemBase::checkUserObjects ( )
protectedinherited

Definition at line 8548 of file FEProblemBase.C.

Referenced by FEProblemBase::checkProblemIntegrity().

8549 {
8550  // Check user_objects block coverage
8551  std::set<SubdomainID> mesh_subdomains = _mesh.meshSubdomains();
8552  std::set<SubdomainID> user_objects_blocks;
8553 
8554  // gather names of all user_objects that were defined in the input file
8555  // and the blocks that they are defined on
8556  std::set<std::string> names;
8557 
8558  std::vector<UserObject *> objects;
8560 
8561  for (const auto & obj : objects)
8562  names.insert(obj->name());
8563 
8564  // See if all referenced blocks are covered
8565  std::set<SubdomainID> difference;
8566  std::set_difference(user_objects_blocks.begin(),
8567  user_objects_blocks.end(),
8568  mesh_subdomains.begin(),
8569  mesh_subdomains.end(),
8570  std::inserter(difference, difference.end()));
8571 
8572  if (!difference.empty())
8573  {
8574  std::ostringstream oss;
8575  oss << "One or more UserObjects is referencing a nonexistent block:\n";
8576  for (const auto & id : difference)
8577  oss << id << "\n";
8578  mooseError(oss.str());
8579  }
8580 }
TheWarehouse & theWarehouse() const
MooseMesh & _mesh
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3171

◆ clearActiveElementalMooseVariables()

void FEProblemBase::clearActiveElementalMooseVariables ( const THREAD_ID  tid)
overridevirtualinherited

Clear the active elemental MooseVariableFEBase.

If there are no active variables then they will all be reinited. Call this after finishing the computation that was using a restricted set of MooseVariableFEBases

Parameters
tidThe thread id

Reimplemented from SubProblem.

Definition at line 5916 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::post(), ComputeMarkerThread::post(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

5917 {
5919 
5920  if (_displaced_problem)
5921  _displaced_problem->clearActiveElementalMooseVariables(tid);
5922 }
virtual void clearActiveElementalMooseVariables(const THREAD_ID tid)
Clear the active elemental MooseVariableFieldBase.
Definition: SubProblem.C:466
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5925 of file FEProblemBase.C.

5926 {
5928 
5929  if (_displaced_problem)
5930  _displaced_problem->clearActiveFEVariableCoupleableMatrixTags(tid);
5931 }
virtual void clearActiveFEVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:384
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveFEVariableCoupleableVectorTags()

void FEProblemBase::clearActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5934 of file FEProblemBase.C.

5935 {
5937 
5938  if (_displaced_problem)
5939  _displaced_problem->clearActiveFEVariableCoupleableVectorTags(tid);
5940 }
virtual void clearActiveFEVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:378
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveMaterialProperties()

void FEProblemBase::clearActiveMaterialProperties ( const THREAD_ID  tid)
inherited

Clear the active material properties.

Should be called at the end of every computing thread

Parameters
tidThe thread id

Definition at line 5982 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeDiracThread::post(), ComputeIndicatorThread::post(), and ComputeUserObjectsThread::post().

5983 {
5985 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ clearActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5943 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

5944 {
5946 
5947  if (_displaced_problem)
5948  _displaced_problem->clearActiveScalarVariableCoupleableMatrixTags(tid);
5949 }
virtual void clearActiveScalarVariableCoupleableMatrixTags(const THREAD_ID tid)
Definition: SubProblem.C:425
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::clearActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5952 of file FEProblemBase.C.

Referenced by AuxiliarySystem::clearScalarVariableCoupleableTags().

5953 {
5955 
5956  if (_displaced_problem)
5957  _displaced_problem->clearActiveScalarVariableCoupleableVectorTags(tid);
5958 }
virtual void clearActiveScalarVariableCoupleableVectorTags(const THREAD_ID tid)
Definition: SubProblem.C:419
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ clearAllDofIndices()

void SubProblem::clearAllDofIndices ( )
inherited

Clear dof indices from variables in nl and aux systems.

Definition at line 1177 of file SubProblem.C.

Referenced by FEProblemBase::solve().

1178 {
1179  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
1182 }
virtual const SystemBase & systemBaseNonlinear(const unsigned int sys_num) const =0
Return the nonlinear system object as a base class reference given the system number.
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
void clearAllDofIndices()
Clear all dof indices from moose variables.
Definition: SystemBase.C:1605

◆ clearCurrentJacobianMatrixTags()

void FEProblemBase::clearCurrentJacobianMatrixTags ( )
inlineinherited

Clear the current Jacobian matrix tag data structure ...

if someone creates it

Definition at line 2502 of file FEProblemBase.h.

Referenced by FEProblemBase::resetState().

2502 {}

◆ clearCurrentResidualVectorTags()

void FEProblemBase::clearCurrentResidualVectorTags ( )
inlineinherited

Clear the current residual vector tag data structure.

Definition at line 3337 of file FEProblemBase.h.

Referenced by CrankNicolson::init(), and FEProblemBase::resetState().

3338 {
3340 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ clearDiracInfo()

void FEProblemBase::clearDiracInfo ( )
overridevirtualinherited

Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in.

Implements SubProblem.

Definition at line 2462 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2463 {
2465 
2466  if (_displaced_problem)
2467  _displaced_problem->clearDiracInfo();
2468 }
void clearPoints()
Remove all of the current points and elements.
std::shared_ptr< DisplacedProblem > _displaced_problem
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ computeBounds()

void FEProblemBase::computeBounds ( libMesh::NonlinearImplicitSystem sys,
NumericVector< libMesh::Number > &  lower,
NumericVector< libMesh::Number > &  upper 
)
virtualinherited

Definition at line 7521 of file FEProblemBase.C.

Referenced by Moose::compute_bounds().

7524 {
7525  try
7526  {
7527  try
7528  {
7529  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7530  "I expect these system numbers to be the same");
7531 
7532  if (!_current_nl_sys->hasVector("lower_bound") || !_current_nl_sys->hasVector("upper_bound"))
7533  return;
7534 
7535  TIME_SECTION("computeBounds", 1, "Computing Bounds");
7536 
7537  NumericVector<Number> & _lower = _current_nl_sys->getVector("lower_bound");
7538  NumericVector<Number> & _upper = _current_nl_sys->getVector("upper_bound");
7539  _lower.swap(lower);
7540  _upper.swap(upper);
7541  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
7543 
7544  _aux->residualSetup();
7546  _lower.swap(lower);
7547  _upper.swap(upper);
7548  }
7549  catch (...)
7550  {
7551  handleException("computeBounds");
7552  }
7553  }
7554  catch (MooseException & e)
7555  {
7556  mooseError("Irrecoverable exception: " + std::string(e.what()));
7557  }
7558  catch (...)
7559  {
7560  mooseError("Unexpected exception type");
7561  }
7562 }
virtual const char * what() const
Get out the error message.
unsigned int n_threads()
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916
unsigned int number() const
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
Provides a way for users to bail out of the current solve.
virtual void swap(NumericVector< T > &v)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925
MaterialWarehouse _all_materials
void computeSystems(const ExecFlagType &type)
Do generic system computations.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeDamping()

Real FEProblemBase::computeDamping ( const NumericVector< libMesh::Number > &  soln,
const NumericVector< libMesh::Number > &  update 
)
virtualinherited

Definition at line 7800 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7802 {
7803  // Default to no damping
7804  Real damping = 1.0;
7805 
7806  if (_has_dampers)
7807  {
7808  TIME_SECTION("computeDamping", 1, "Computing Damping");
7809 
7810  // Save pointer to the current solution
7811  const NumericVector<Number> * _saved_current_solution = _current_nl_sys->currentSolution();
7812 
7814  // For now, do not re-compute auxiliary variables. Doing so allows a wild solution increment
7815  // to get to the material models, which may not be able to cope with drastically different
7816  // values. Once more complete dependency checking is in place, auxiliary variables (and
7817  // material properties) will be computed as needed by dampers.
7818  // _aux.compute();
7819  damping = _current_nl_sys->computeDamping(soln, update);
7820 
7821  // restore saved solution
7822  _current_nl_sys->setSolution(*_saved_current_solution);
7823  }
7824 
7825  return damping;
7826 }
Real computeDamping(const NumericVector< Number > &solution, const NumericVector< Number > &update)
Compute damping.
bool _has_dampers
Whether or not this system has any Dampers associated with it.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ computeIndicators()

virtual void DumpObjectsProblem::computeIndicators ( )
inlineoverridevirtual

Reimplemented from FEProblemBase.

Definition at line 68 of file DumpObjectsProblem.h.

68 {}

◆ computeIndicatorsAndMarkers()

void FEProblemBase::computeIndicatorsAndMarkers ( )
virtualinherited

Definition at line 4557 of file FEProblemBase.C.

4558 {
4560  computeMarkers();
4561 }
virtual void computeMarkers()
virtual void computeIndicators()

◆ computeJacobian()

void FEProblemBase::computeJacobian ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a Jacobian matrix with the default tag (system).

Definition at line 7356 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianSys().

7359 {
7360  setCurrentNonlinearSystem(nl_sys_num);
7361 
7362  _fe_matrix_tags.clear();
7363 
7364  auto & tags = getMatrixTags();
7365  for (auto & tag : tags)
7366  _fe_matrix_tags.insert(tag.second);
7367 
7368  computeJacobianInternal(soln, jacobian, _fe_matrix_tags);
7369 }
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
virtual void computeJacobianInternal(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const std::set< TagID > &tags)
Form a Jacobian matrix for multiple tags.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
std::set< TagID > _fe_matrix_tags

◆ computeJacobianBlock()

void FEProblemBase::computeJacobianBlock ( libMesh::SparseMatrix< libMesh::Number > &  jacobian,
libMesh::System precond_system,
unsigned int  ivar,
unsigned int  jvar 
)
virtualinherited

Really not a good idea to use this.

It computes just one block of the Jacobian into a smaller matrix. Calling this in a loop is EXTREMELY ineffecient! Try to use computeJacobianBlocks() instead!

Parameters
jacobianThe matrix you want to fill
precond_systemThe libMesh::system of the preconditioning system
ivarthe block-row of the Jacobian
jvarthe block-column of the Jacobian

Definition at line 7509 of file FEProblemBase.C.

7513 {
7514  JacobianBlock jac_block(precond_system, jacobian, ivar, jvar);
7515  std::vector<JacobianBlock *> blocks = {&jac_block};
7516  mooseAssert(_current_nl_sys, "This should be non-null");
7518 }
Helper class for holding the preconditioning blocks to fill.
char ** blocks
virtual void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks, const unsigned int nl_sys_num)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149

◆ computeJacobianBlocks()

void FEProblemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const unsigned int  nl_sys_num 
)
virtualinherited

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Reimplemented in EigenProblem.

Definition at line 7489 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianBlock(), and PhysicsBasedPreconditioner::setup().

7491 {
7492  TIME_SECTION("computeTransientImplicitJacobian", 2);
7493  setCurrentNonlinearSystem(nl_sys_num);
7494 
7495  if (_displaced_problem)
7496  {
7498  _displaced_problem->updateMesh();
7499  }
7500 
7502 
7506 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
std::shared_ptr< DisplacedProblem > _displaced_problem
void computeSystems(const ExecFlagType &type)
Do generic system computations.

◆ computeJacobianInternal()

void FEProblemBase::computeJacobianInternal ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
const std::set< TagID > &  tags 
)
virtualinherited

Form a Jacobian matrix for multiple tags.

It should not be called directly by users.

Definition at line 7372 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian().

7375 {
7376  TIME_SECTION("computeJacobianInternal", 1);
7377 
7379 
7381 
7382  computeJacobianTags(tags);
7383 
7385 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianSys()

void FEProblemBase::computeJacobianSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
virtualinherited

Form a Jacobian matrix.

It is called by Libmesh.

Definition at line 7334 of file FEProblemBase.C.

Referenced by Moose::compute_jacobian(), and NonlinearSystem::computeScalingJacobian().

7337 {
7338  computeJacobian(soln, jacobian, sys.number());
7339 }
unsigned int number() const
virtual void computeJacobian(const NumericVector< libMesh::Number > &soln, libMesh::SparseMatrix< libMesh::Number > &jacobian, const unsigned int nl_sys_num)
Form a Jacobian matrix with the default tag (system).

◆ computeJacobianTag()

void FEProblemBase::computeJacobianTag ( const NumericVector< libMesh::Number > &  soln,
libMesh::SparseMatrix< libMesh::Number > &  jacobian,
TagID  tag 
)
virtualinherited

Form a Jacobian matrix for a given tag.

Definition at line 7342 of file FEProblemBase.C.

Referenced by ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

7345 {
7347 
7348  _current_nl_sys->associateMatrixToTag(jacobian, tag);
7349 
7350  computeJacobianTags({tag});
7351 
7353 }
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void computeJacobianTags(const std::set< TagID > &tags)
Form multiple matrices, and each is associated with a tag.

◆ computeJacobianTags()

void FEProblemBase::computeJacobianTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple matrices, and each is associated with a tag.

Definition at line 7388 of file FEProblemBase.C.

Referenced by EigenProblem::computeJacobianAB(), FEProblemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), FEProblemBase::computeJacobianTag(), and EigenProblem::computeMatricesTags().

7389 {
7390  try
7391  {
7392  try
7393  {
7394  if (!_has_jacobian || !_const_jacobian)
7395  {
7396  TIME_SECTION("computeJacobianTags", 5, "Computing Jacobian");
7397 
7398  for (auto tag : tags)
7399  if (_current_nl_sys->hasMatrix(tag))
7400  {
7401  auto & matrix = _current_nl_sys->getMatrix(tag);
7404  else
7405  matrix.zero();
7407  // PETSc algorithms require diagonal allocations regardless of whether there is
7408  // non-zero diagonal dependence. With global AD indexing we only add non-zero
7409  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7410  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7411  matrix.add(index, index, 0);
7412  }
7413 
7414  _aux->zeroVariablesForJacobian();
7415 
7416  unsigned int n_threads = libMesh::n_threads();
7417 
7418  // Random interface objects
7419  for (const auto & it : _random_data_objects)
7420  it.second->updateSeeds(EXEC_NONLINEAR);
7421 
7424  if (_displaced_problem)
7425  _displaced_problem->setCurrentlyComputingJacobian(true);
7426 
7429 
7430  for (unsigned int tid = 0; tid < n_threads; tid++)
7431  reinitScalars(tid);
7432 
7434 
7435  _aux->jacobianSetup();
7436 
7437  if (_displaced_problem)
7438  {
7440  _displaced_problem->updateMesh();
7441  }
7442 
7443  for (unsigned int tid = 0; tid < n_threads; tid++)
7444  {
7447  }
7448 
7450 
7452 
7454 
7456 
7458 
7460 
7461  // For explicit Euler calculations for example we often compute the Jacobian one time and
7462  // then re-use it over and over. If we're performing automatic scaling, we don't want to
7463  // use that kernel, diagonal-block only Jacobian for our actual matrix when performing
7464  // solves!
7466  _has_jacobian = true;
7467  }
7468  }
7469  catch (...)
7470  {
7471  handleException("computeJacobianTags");
7472  }
7473  }
7474  catch (const MooseException &)
7475  {
7476  // The buck stops here, we have already handled the exception by
7477  // calling the system's stopSolve() method, it is now up to PETSc to return a
7478  // "diverged" reason during the next solve.
7479  }
7480  catch (...)
7481  {
7482  mooseError("Unexpected exception type");
7483  }
7484 
7485  resetState();
7486 }
virtual void restore_original_nonzero_pattern()
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
bool _has_jacobian
Indicates if the Jacobian was computed.
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
bool computingScalingJacobian() const
Whether we are computing an initial Jacobian for automatic variable scaling.
Definition: SystemBase.C:1544
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool has_static_condensation() const
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void jacobianSetup(THREAD_ID tid=0) const
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _const_jacobian
true if the Jacobian is constant
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeLinearSystemSys()

void FEProblemBase::computeLinearSystemSys ( libMesh::LinearImplicitSystem sys,
libMesh::SparseMatrix< libMesh::Number > &  system_matrix,
NumericVector< libMesh::Number > &  rhs,
const bool  compute_gradients = true 
)
virtualinherited

Assemble both the right hand side and the system matrix of a given linear system.

Parameters
sysThe linear system which should be assembled
system_matrixThe sparse matrix which should hold the system matrix
rhsThe vector which should hold the right hand side
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7565 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), and FEProblemBase::computeResidualL2Norm().

7569 {
7570  TIME_SECTION("computeLinearSystemSys", 5);
7571 
7573 
7576 
7577  // We are using the residual tag system for right hand sides so we fetch everything
7578  const auto & vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
7579 
7580  // We filter out tags which do not have associated vectors in the current
7581  // system. This is essential to be able to use system-dependent vector tags.
7584 
7588  compute_gradients);
7589 
7594  // We reset the tags to the default containers for further operations
7599 }
TagID rightHandSideVectorTag() const
Definition: LinearSystem.h:114
virtual TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
Definition: LinearSystem.h:115
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
SparseMatrix< Number > & getSystemMatrix()
Fetching the system matrix from the libmesh system.
Definition: LinearSystem.h:126
std::set< TagID > _linear_matrix_tags
Temporary storage for filtered matrix tags for linear systems.
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
NumericVector< Number > & getRightHandSideVector()
Fetching the right hand side vector from the libmesh system.
Definition: LinearSystem.h:119
void setCurrentLinearSystem(unsigned int sys_num)
Set the current linear system pointer.
static void selectMatrixTagsFromSystem(const SystemBase &system, const std::map< TagName, TagID > &input_matrix_tags, std::set< TagID > &selected_tags)
Select the matrix tags which belong to a specific system.
Definition: SubProblem.C:300
void computeLinearSystemTags(const NumericVector< libMesh::Number > &soln, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Assemble the current linear system given a set of vector and matrix tags.
unsigned int linearSysNum(const LinearSystemName &linear_sys_name) const override
const std::string & name() const
std::set< TagID > _linear_vector_tags
Temporary storage for filtered vector tags for linear systems.

◆ computeLinearSystemTags()

void FEProblemBase::computeLinearSystemTags ( const NumericVector< libMesh::Number > &  soln,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags,
const bool  compute_gradients = true 
)
inherited

Assemble the current linear system given a set of vector and matrix tags.

Parameters
solnThe solution which should be used for the system assembly
vector_tagsThe vector tags for the right hand side
matrix_tagsThe matrix tags for the matrix
compute_gradientsA flag to disable the computation of new gradients during the assembly, can be used to lag gradients

Definition at line 7602 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys().

7606 {
7607  TIME_SECTION("computeLinearSystemTags", 5, "Computing Linear System");
7608 
7610 
7611  for (auto tag : matrix_tags)
7612  {
7613  auto & matrix = _current_linear_sys->getMatrix(tag);
7614  matrix.zero();
7615  }
7616 
7617  unsigned int n_threads = libMesh::n_threads();
7618 
7620 
7621  // Random interface objects
7622  for (const auto & it : _random_data_objects)
7623  it.second->updateSeeds(EXEC_NONLINEAR);
7624 
7627 
7629 
7630  _aux->jacobianSetup();
7631 
7632  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7633  {
7635  }
7636 
7637  try
7638  {
7640  }
7641  catch (MooseException & e)
7642  {
7643  _console << "\nA MooseException was raised during Auxiliary variable computation.\n"
7644  << "The next solve will fail, the timestep will be reduced, and we will try again.\n"
7645  << std::endl;
7646 
7647  // We know the next solve is going to fail, so there's no point in
7648  // computing anything else after this. Plus, using incompletely
7649  // computed AuxVariables in subsequent calculations could lead to
7650  // other errors or unhandled exceptions being thrown.
7651  return;
7652  }
7653 
7656 
7658 
7659  _current_linear_sys->computeLinearSystemTags(vector_tags, matrix_tags, compute_gradients);
7660 
7661  // Reset execution flag as after this point we are no longer on LINEAR
7663 
7664  // These are the relevant parts of resetState()
7667 }
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
void jacobianSetup()
Calls the jacobianSetup function for each of the output objects.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
virtual void zero()=0
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
LinearSystem * _current_linear_sys
The current linear system that we are solving.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
virtual void jacobianSetup(THREAD_ID tid=0) const
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
MooseObjectWarehouse< Function > _functions
functions
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void computeLinearSystemTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags, const bool compute_gradients=true)
Compute the right hand side and the system matrix of the system for given tags.
Definition: LinearSystem.C:141
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ computeMarkers()

virtual void DumpObjectsProblem::computeMarkers ( )
inlineoverridevirtual

Reimplemented from FEProblemBase.

Definition at line 69 of file DumpObjectsProblem.h.

69 {}

◆ computeMultiAppsDT()

Real FEProblemBase::computeMultiAppsDT ( ExecFlagType  type)
inherited

Find the smallest timestep over all MultiApps.

Definition at line 5653 of file FEProblemBase.C.

Referenced by TransientBase::constrainDTFromMultiApp().

5654 {
5655  const auto & multi_apps = _transient_multi_apps[type].getActiveObjects();
5656 
5657  Real smallest_dt = std::numeric_limits<Real>::max();
5658 
5659  for (const auto & multi_app : multi_apps)
5660  smallest_dt = std::min(smallest_dt, multi_app->computeDT());
5661 
5662  return smallest_dt;
5663 }
ExecuteMooseObjectWarehouse< TransientMultiApp > _transient_multi_apps
Storage for TransientMultiApps (only needed for calling &#39;computeDT&#39;)
auto max(const L &left, const R &right)
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto min(const L &left, const R &right)

◆ computeNearNullSpace()

void FEProblemBase::computeNearNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7670 of file FEProblemBase.C.

Referenced by Moose::compute_nearnullspace().

7672 {
7673  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7674  "I expect these system numbers to be the same");
7675 
7676  sp.clear();
7677  for (unsigned int i = 0; i < subspaceDim("NearNullSpace"); ++i)
7678  {
7679  std::stringstream postfix;
7680  postfix << "_" << i;
7681  std::string modename = "NearNullSpace" + postfix.str();
7682  sp.push_back(&_current_nl_sys->getVector(modename));
7683  }
7684 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computeNullSpace()

void FEProblemBase::computeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7687 of file FEProblemBase.C.

Referenced by Moose::compute_nullspace().

7689 {
7690  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7691  "I expect these system numbers to be the same");
7692  sp.clear();
7693  for (unsigned int i = 0; i < subspaceDim("NullSpace"); ++i)
7694  {
7695  std::stringstream postfix;
7696  postfix << "_" << i;
7697  sp.push_back(&_current_nl_sys->getVector("NullSpace" + postfix.str()));
7698  }
7699 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computePostCheck()

void FEProblemBase::computePostCheck ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  old_soln,
NumericVector< libMesh::Number > &  search_direction,
NumericVector< libMesh::Number > &  new_soln,
bool &  changed_search_direction,
bool &  changed_new_soln 
)
virtualinherited

Definition at line 7717 of file FEProblemBase.C.

Referenced by Moose::compute_postcheck().

7723 {
7724  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7725  "I expect these system numbers to be the same");
7726 
7727  // This function replaces the old PetscSupport::dampedCheck() function.
7728  //
7729  // 1.) Recreate code in PetscSupport::dampedCheck() for constructing
7730  // ghosted "soln" and "update" vectors.
7731  // 2.) Call FEProblemBase::computeDamping() with these ghost vectors.
7732  // 3.) Recreate the code in PetscSupport::dampedCheck() to actually update
7733  // the solution vector based on the damping, and set the "changed" flags
7734  // appropriately.
7735 
7736  TIME_SECTION("computePostCheck", 2, "Computing Post Check");
7737 
7739 
7740  // MOOSE's FEProblemBase doesn't update the solution during the
7741  // postcheck, but FEProblemBase-derived classes might.
7743  {
7744  // We need ghosted versions of new_soln and search_direction (the
7745  // ones we get from libmesh/PETSc are PARALLEL vectors. To make
7746  // our lives simpler, we use the same ghosting pattern as the
7747  // system's current_local_solution to create new ghosted vectors.
7748 
7749  // Construct zeroed-out clones with the same ghosted dofs as the
7750  // System's current_local_solution.
7751  std::unique_ptr<NumericVector<Number>> ghosted_solution =
7752  sys.current_local_solution->zero_clone(),
7753  ghosted_search_direction =
7754  sys.current_local_solution->zero_clone();
7755 
7756  // Copy values from input vectors into clones with ghosted values.
7757  *ghosted_solution = new_soln;
7758  *ghosted_search_direction = search_direction;
7759 
7760  if (_has_dampers)
7761  {
7762  // Compute the damping coefficient using the ghosted vectors
7763  Real damping = computeDamping(*ghosted_solution, *ghosted_search_direction);
7764 
7765  // If some non-trivial damping was computed, update the new_soln
7766  // vector accordingly.
7767  if (damping < 1.0)
7768  {
7769  new_soln = old_soln;
7770  new_soln.add(-damping, search_direction);
7771  changed_new_soln = true;
7772  }
7773  }
7774 
7775  if (shouldUpdateSolution())
7776  {
7777  // Update the ghosted copy of the new solution, if necessary.
7778  if (changed_new_soln)
7779  *ghosted_solution = new_soln;
7780 
7781  bool updated_solution = updateSolution(new_soln, *ghosted_solution);
7782  if (updated_solution)
7783  changed_new_soln = true;
7784  }
7785  }
7786 
7788  {
7790  _aux->copyCurrentIntoPreviousNL();
7791  }
7792 
7793  // MOOSE doesn't change the search_direction
7794  changed_search_direction = false;
7795 
7797 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void setPreviousNewtonSolution(const NumericVector< Number > &soln)
bool _has_dampers
Whether or not this system has any Dampers associated with it.
const ExecFlagType EXEC_NONE
Definition: Moose.C:29
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual bool shouldUpdateSolution()
Check to see whether the problem should update the solution.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
const ExecFlagType EXEC_POSTCHECK
Definition: Moose.C:35
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual bool updateSolution(NumericVector< libMesh::Number > &vec_solution, NumericVector< libMesh::Number > &ghosted_solution)
Update the solution.
virtual void add(const numeric_index_type i, const T value)=0
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual Real computeDamping(const NumericVector< libMesh::Number > &soln, const NumericVector< libMesh::Number > &update)

◆ computeResidual() [1/2]

void FEProblemBase::computeResidual ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
inherited

This function is called by Libmesh to form a residual.

This is deprecated. We should remove this as soon as RattleSnake is fixed.

Referenced by FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualSys(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

◆ computeResidual() [2/2]

virtual void FEProblemBase::computeResidual ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const unsigned int  nl_sys_num 
)
virtualinherited

Form a residual with default tags (nontime, time, residual).

◆ computeResidualAndJacobian()

void FEProblemBase::computeResidualAndJacobian ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
libMesh::SparseMatrix< libMesh::Number > &  jacobian 
)
inherited

Form a residual and Jacobian with default tags.

Definition at line 6979 of file FEProblemBase.C.

Referenced by ComputeResidualAndJacobian::residual_and_jacobian().

6982 {
6983  try
6984  {
6985  try
6986  {
6987  // vector tags
6989  const auto & residual_vector_tags = getVectorTags(Moose::VECTOR_TAG_RESIDUAL);
6990 
6991  mooseAssert(_fe_vector_tags.empty(),
6992  "This should be empty indicating a clean starting state");
6993  // We filter out tags which do not have associated vectors in the current nonlinear
6994  // system. This is essential to be able to use system-dependent residual tags.
6996 
6998 
6999  // matrix tags
7000  {
7001  _fe_matrix_tags.clear();
7002 
7003  auto & tags = getMatrixTags();
7004  for (auto & tag : tags)
7005  _fe_matrix_tags.insert(tag.second);
7006  }
7007 
7009 
7012 
7013  for (const auto tag : _fe_matrix_tags)
7014  if (_current_nl_sys->hasMatrix(tag))
7015  {
7016  auto & matrix = _current_nl_sys->getMatrix(tag);
7017  matrix.zero();
7019  // PETSc algorithms require diagonal allocations regardless of whether there is non-zero
7020  // diagonal dependence. With global AD indexing we only add non-zero
7021  // dependence, so PETSc will scream at us unless we artificially add the diagonals.
7022  for (auto index : make_range(matrix.row_start(), matrix.row_stop()))
7023  matrix.add(index, index, 0);
7024  }
7025 
7026  _aux->zeroVariablesForResidual();
7027 
7028  unsigned int n_threads = libMesh::n_threads();
7029 
7031 
7032  // Random interface objects
7033  for (const auto & it : _random_data_objects)
7034  it.second->updateSeeds(EXEC_LINEAR);
7035 
7039  if (_displaced_problem)
7040  {
7041  _displaced_problem->setCurrentlyComputingResidual(true);
7042  _displaced_problem->setCurrentlyComputingJacobian(true);
7043  _displaced_problem->setCurrentlyComputingResidualAndJacobian(true);
7044  }
7045 
7047 
7049 
7050  for (unsigned int tid = 0; tid < n_threads; tid++)
7051  reinitScalars(tid);
7052 
7054 
7055  _aux->residualSetup();
7056 
7057  if (_displaced_problem)
7058  {
7060  _displaced_problem->updateMesh();
7062  updateMortarMesh();
7063  }
7064 
7065  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7066  {
7069  }
7070 
7072 
7074 
7076 
7078 
7081 
7083 
7086  }
7087  catch (...)
7088  {
7089  handleException("computeResidualAndJacobian");
7090  }
7091  }
7092  catch (const MooseException &)
7093  {
7094  // The buck stops here, we have already handled the exception by
7095  // calling the system's stopSolve() method, it is now up to PETSc to return a
7096  // "diverged" reason during the next solve.
7097  }
7098  catch (...)
7099  {
7100  mooseError("Unexpected exception type");
7101  }
7102 
7103  resetState();
7104  _fe_vector_tags.clear();
7105  _fe_matrix_tags.clear();
7106 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
static void selectVectorTagsFromSystem(const SystemBase &system, const std::vector< VectorTag > &input_vector_tags, std::set< TagID > &selected_tags)
Select the vector tags which belong to a specific system.
Definition: SubProblem.C:289
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1068
bool has_static_condensation() const
void setCurrentlyComputingResidualAndJacobian(bool currently_computing_residual_and_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:1493
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1080
void setCurrentlyComputingJacobian(const bool currently_computing_jacobian)
Set whether or not the problem is in the process of computing the Jacobian.
Definition: SubProblem.h:689
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void computeResidualAndJacobianTags(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Form possibly multiple tag-associated vectors and matrices.
void handleException(const std::string &calling_method)
Handle exceptions.
virtual void zero()=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
TagID residualVectorTag() const override
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
std::set< TagID > _fe_matrix_tags
Provides a way for users to bail out of the current solve.
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1016
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::set< TagID > _fe_vector_tags
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeResidualInternal()

void FEProblemBase::computeResidualInternal ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
const std::set< TagID > &  tags 
)
virtualinherited

Form a residual vector for a set of tags.

It should not be called directly by users.

Definition at line 7138 of file FEProblemBase.C.

7141 {
7142  parallel_object_only();
7143 
7144  TIME_SECTION("computeResidualInternal", 1);
7145 
7146  try
7147  {
7149 
7151 
7152  computeResidualTags(tags);
7153 
7155  }
7156  catch (MooseException & e)
7157  {
7158  // If a MooseException propagates all the way to here, it means
7159  // that it was thrown from a MOOSE system where we do not
7160  // (currently) properly support the throwing of exceptions, and
7161  // therefore we have no choice but to error out. It may be
7162  // *possible* to handle exceptions from other systems, but in the
7163  // meantime, we don't want to silently swallow any unhandled
7164  // exceptions here.
7165  mooseError("An unhandled MooseException was raised during residual computation. Please "
7166  "contact the MOOSE team for assistance.");
7167  }
7168 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeResidualL2Norm() [1/3]

Real FEProblemBase::computeResidualL2Norm ( NonlinearSystemBase sys)
inherited

Computes the residual of a nonlinear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 6888 of file FEProblemBase.C.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), Residual::getValue(), DefaultMultiAppFixedPointConvergence::initialize(), and DefaultMultiAppFixedPointConvergence::preExecute().

6889 {
6890  _current_nl_sys = &sys;
6891  computeResidual(*sys.currentSolution(), sys.RHS(), sys.number());
6892  return sys.RHS().l2_norm();
6893 }
virtual Real l2_norm() const=0
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.
virtual NumericVector< Number > & RHS()=0

◆ computeResidualL2Norm() [2/3]

Real FEProblemBase::computeResidualL2Norm ( LinearSystem sys)
inherited

Computes the residual of a linear system using whatever is sitting in the current solution vector then returns the L2 norm.

Definition at line 6896 of file FEProblemBase.C.

6897 {
6898  _current_linear_sys = &sys;
6899 
6900  // We assemble the current system to check the current residual
6903  *sys.linearImplicitSystem().rhs,
6904  /*compute fresh gradients*/ true);
6905 
6906  // Unfortunate, but we have to allocate a new vector for the residual
6907  auto residual = sys.linearImplicitSystem().rhs->clone();
6908  residual->scale(-1.0);
6909  residual->add_vector(*sys.currentSolution(), *sys.linearImplicitSystem().matrix);
6910  return residual->l2_norm();
6911 }
libMesh::LinearImplicitSystem & linearImplicitSystem()
Return a reference to the stored linear implicit system.
Definition: LinearSystem.h:86
NumericVector< Number > * rhs
virtual std::unique_ptr< NumericVector< T > > clone() const=0
virtual void computeLinearSystemSys(libMesh::LinearImplicitSystem &sys, libMesh::SparseMatrix< libMesh::Number > &system_matrix, NumericVector< libMesh::Number > &rhs, const bool compute_gradients=true)
Assemble both the right hand side and the system matrix of a given linear system. ...
virtual const NumericVector< Number > *const & currentSolution() const override final
The solution vector that is currently being operated on.
Definition: SolverSystem.h:117
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SparseMatrix< Number > * matrix

◆ computeResidualL2Norm() [3/3]

Real FEProblemBase::computeResidualL2Norm ( )
virtualinherited

Computes the residual using whatever is sitting in the current solution vector then returns the L2 norm.

Returns
The L2 norm of the residual

Reimplemented in EigenProblem.

Definition at line 6914 of file FEProblemBase.C.

6915 {
6916  TIME_SECTION("computeResidualL2Norm", 2, "Computing L2 Norm of Residual");
6917 
6918  // We use sum the squared norms of the individual systems and then take the square root of it
6919  Real l2_norm = 0.0;
6920  for (auto sys : _nl)
6921  {
6922  const auto norm = computeResidualL2Norm(*sys);
6923  l2_norm += norm * norm;
6924  }
6925 
6926  for (auto sys : _linear_systems)
6927  {
6928  const auto norm = computeResidualL2Norm(*sys);
6929  l2_norm += norm * norm;
6930  }
6931 
6932  return std::sqrt(l2_norm);
6933 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
auto norm(const T &a) -> decltype(std::abs(a))
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh
virtual Real computeResidualL2Norm()
Computes the residual using whatever is sitting in the current solution vector then returns the L2 no...
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ computeResidualSys()

void FEProblemBase::computeResidualSys ( libMesh::NonlinearImplicitSystem sys,
const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual 
)
virtualinherited

This function is called by Libmesh to form a residual.

Definition at line 6936 of file FEProblemBase.C.

Referenced by NonlinearSystem::computeScalingResidual(), ComputeResidualFunctor::residual(), ComputeFDResidualFunctor::residual(), and NonlinearSystem::solve().

6939 {
6940  parallel_object_only();
6941 
6942  TIME_SECTION("computeResidualSys", 5);
6943 
6944  computeResidual(soln, residual, sys.number());
6945 }
unsigned int number() const
void computeResidual(libMesh::NonlinearImplicitSystem &sys, const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual)
This function is called by Libmesh to form a residual.

◆ computeResidualTag()

void FEProblemBase::computeResidualTag ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag.

Definition at line 7109 of file FEProblemBase.C.

7112 {
7113  try
7114  {
7116 
7117  _current_nl_sys->associateVectorToTag(residual, tag);
7118 
7119  computeResidualTags({tag});
7120 
7122  }
7123  catch (MooseException & e)
7124  {
7125  // If a MooseException propagates all the way to here, it means
7126  // that it was thrown from a MOOSE system where we do not
7127  // (currently) properly support the throwing of exceptions, and
7128  // therefore we have no choice but to error out. It may be
7129  // *possible* to handle exceptions from other systems, but in the
7130  // meantime, we don't want to silently swallow any unhandled
7131  // exceptions here.
7132  mooseError("An unhandled MooseException was raised during residual computation. Please "
7133  "contact the MOOSE team for assistance.");
7134  }
7135 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeResidualTags()

void FEProblemBase::computeResidualTags ( const std::set< TagID > &  tags)
virtualinherited

Form multiple residual vectors and each is associated with one tag.

Definition at line 7254 of file FEProblemBase.C.

Referenced by EigenProblem::computeResidualAB(), FEProblemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), FEProblemBase::computeResidualTag(), and FEProblemBase::computeResidualType().

7255 {
7256  parallel_object_only();
7257 
7258  try
7259  {
7260  try
7261  {
7262  TIME_SECTION("computeResidualTags", 5, "Computing Residual");
7263 
7264  ADReal::do_derivatives = false;
7265 
7267 
7268  _aux->zeroVariablesForResidual();
7269 
7270  unsigned int n_threads = libMesh::n_threads();
7271 
7273 
7274  // Random interface objects
7275  for (const auto & it : _random_data_objects)
7276  it.second->updateSeeds(EXEC_LINEAR);
7277 
7279 
7281 
7282  for (unsigned int tid = 0; tid < n_threads; tid++)
7283  reinitScalars(tid);
7284 
7286 
7287  _aux->residualSetup();
7288 
7289  if (_displaced_problem)
7290  {
7292  _displaced_problem->updateMesh();
7294  updateMortarMesh();
7295  }
7296 
7297  for (THREAD_ID tid = 0; tid < n_threads; tid++)
7298  {
7301  }
7302 
7304 
7306 
7308 
7310 
7313  }
7314  catch (...)
7315  {
7316  handleException("computeResidualTags");
7317  }
7318  }
7319  catch (const MooseException &)
7320  {
7321  // The buck stops here, we have already handled the exception by
7322  // calling the system's stopSolve() method, it is now up to PETSc to return a
7323  // "diverged" reason during the next solve.
7324  }
7325  catch (...)
7326  {
7327  mooseError("Unexpected exception type");
7328  }
7329 
7330  resetState();
7331 }
virtual void residualSetup(THREAD_ID tid=0) const
unsigned int n_threads()
ExecFlagType _current_execute_on_flag
Current execute_on flag.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void resetState()
Reset state of this object in preparation for the next evaluation.
virtual void computeUserObjects(const ExecFlagType &type, const Moose::AuxGroup &group)
Call compute methods on UserObjects.
void handleException(const std::string &calling_method)
Handle exceptions.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
void residualSetup()
Calls the residualSetup function for each of the output objects.
const ExecFlagType EXEC_PRE_DISPLACE
Definition: Moose.C:52
virtual void updateMortarMesh()
Provides a way for users to bail out of the current solve.
void executeControls(const ExecFlagType &exec_type)
Performs setup and execute calls for Control objects.
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::shared_ptr< DisplacedProblem > _displaced_problem
void setCurrentResidualVectorTags(const std::set< TagID > &vector_tags)
Set the current residual vector tag data structure based on the passed in tag IDs.
MooseObjectWarehouse< Function > _functions
functions
bool execMultiApps(ExecFlagType type, bool auto_advance=true)
Execute the MultiApps associated with the ExecFlagType.
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
void computeSystems(const ExecFlagType &type)
Do generic system computations.
void execTransfers(ExecFlagType type)
Execute the Transfers associated with the ExecFlagType.
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void residualSetup(THREAD_ID tid=0) const

◆ computeResidualType()

void FEProblemBase::computeResidualType ( const NumericVector< libMesh::Number > &  soln,
NumericVector< libMesh::Number > &  residual,
TagID  tag 
)
virtualinherited

Form a residual vector for a given tag and "residual" tag.

Definition at line 7171 of file FEProblemBase.C.

7174 {
7175  TIME_SECTION("computeResidualType", 5);
7176 
7177  try
7178  {
7180 
7182 
7184 
7186  }
7187  catch (MooseException & e)
7188  {
7189  // If a MooseException propagates all the way to here, it means
7190  // that it was thrown from a MOOSE system where we do not
7191  // (currently) properly support the throwing of exceptions, and
7192  // therefore we have no choice but to error out. It may be
7193  // *possible* to handle exceptions from other systems, but in the
7194  // meantime, we don't want to silently swallow any unhandled
7195  // exceptions here.
7196  mooseError("An unhandled MooseException was raised during residual computation. Please "
7197  "contact the MOOSE team for assistance.");
7198  }
7199 }
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:973
void setSolution(const NumericVector< Number > &soln)
Set the solution to a given vector.
Definition: SolverSystem.C:67
virtual void computeResidualTags(const std::set< TagID > &tags)
Form multiple residual vectors and each is associated with one tag.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ computeSystems()

void FEProblemBase::computeSystems ( const ExecFlagType type)
protectedinherited

Do generic system computations.

Definition at line 9422 of file FEProblemBase.C.

Referenced by FEProblemBase::computeBounds(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and FEProblemBase::execute().

9423 {
9424  // When performing an adjoint solve in the optimization module, the current solver system is the
9425  // adjoint. However, the adjoint solve requires having accurate time derivative calculations for
9426  // the forward system. The cleanest way to handle such uses is just to compute the time
9427  // derivatives for all solver systems instead of trying to guess which ones we need and don't need
9428  for (auto & solver_sys : _solver_systems)
9429  solver_sys->compute(type);
9430 
9431  _aux->compute(type);
9432 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ computeTransposeNullSpace()

void FEProblemBase::computeTransposeNullSpace ( libMesh::NonlinearImplicitSystem sys,
std::vector< NumericVector< libMesh::Number > *> &  sp 
)
virtualinherited

Definition at line 7702 of file FEProblemBase.C.

Referenced by Moose::compute_transpose_nullspace().

7704 {
7705  mooseAssert(_current_nl_sys && (sys.number() == _current_nl_sys->number()),
7706  "I expect these system numbers to be the same");
7707  sp.clear();
7708  for (unsigned int i = 0; i < subspaceDim("TransposeNullSpace"); ++i)
7709  {
7710  std::stringstream postfix;
7711  postfix << "_" << i;
7712  sp.push_back(&_current_nl_sys->getVector("TransposeNullSpace" + postfix.str()));
7713  }
7714 }
unsigned int subspaceDim(const std::string &prefix) const
Dimension of the subspace spanned by vectors with a given prefix.
unsigned int number() const
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:925

◆ computeUserObjectByName()

void FEProblemBase::computeUserObjectByName ( const ExecFlagType type,
const Moose::AuxGroup group,
const std::string &  name 
)
virtualinherited

Compute an user object with the given name.

Definition at line 4856 of file FEProblemBase.C.

Referenced by MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), MultiAppGeneralFieldUserObjectTransfer::execute(), MultiAppUserObjectTransfer::execute(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), and MultiAppConservativeTransfer::postExecute().

4859 {
4860  const auto old_exec_flag = _current_execute_on_flag;
4863  .query()
4864  .condition<AttribSystem>("UserObject")
4865  .condition<AttribExecOns>(type)
4866  .condition<AttribName>(name);
4867  computeUserObjectsInternal(type, group, query);
4868  _current_execute_on_flag = old_exec_flag;
4869 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjects()

void FEProblemBase::computeUserObjects ( const ExecFlagType type,
const Moose::AuxGroup group 
)
virtualinherited

Call compute methods on UserObjects.

Definition at line 4872 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

4873 {
4875  theWarehouse().query().condition<AttribSystem>("UserObject").condition<AttribExecOns>(type);
4876  computeUserObjectsInternal(type, group, query);
4877 }
QueryCache is a convenient way to construct and pass around (possible partially constructed) warehous...
Definition: TheWarehouse.h:208
void computeUserObjectsInternal(const ExecFlagType &type, const Moose::AuxGroup &group, TheWarehouse::Query &query)
TheWarehouse & theWarehouse() const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
query_obj query
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ computeUserObjectsInternal()

void FEProblemBase::computeUserObjectsInternal ( const ExecFlagType type,
const Moose::AuxGroup group,
TheWarehouse::Query query 
)
protectedinherited

Definition at line 4880 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectByName(), and FEProblemBase::computeUserObjects().

4883 {
4884  try
4885  {
4886  TIME_SECTION("computeUserObjects", 1, "Computing User Objects");
4887 
4888  // Add group to query
4889  if (group == Moose::PRE_IC)
4890  primary_query.condition<AttribPreIC>(true);
4891  else if (group == Moose::PRE_AUX)
4892  primary_query.condition<AttribPreAux>(type);
4893  else if (group == Moose::POST_AUX)
4894  primary_query.condition<AttribPostAux>(type);
4895 
4896  // query everything first to obtain a list of execution groups
4897  std::vector<UserObject *> uos;
4898  primary_query.clone().queryIntoUnsorted(uos);
4899  std::set<int> execution_groups;
4900  for (const auto & uo : uos)
4901  execution_groups.insert(uo->getParam<int>("execution_order_group"));
4902 
4903  // iterate over execution order groups
4904  for (const auto execution_group : execution_groups)
4905  {
4906  auto query = primary_query.clone().condition<AttribExecutionOrderGroup>(execution_group);
4907 
4908  std::vector<GeneralUserObject *> genobjs;
4909  query.clone().condition<AttribInterfaces>(Interfaces::GeneralUserObject).queryInto(genobjs);
4910 
4911  std::vector<UserObject *> userobjs;
4912  query.clone()
4917  .queryInto(userobjs);
4918 
4919  std::vector<UserObject *> tgobjs;
4920  query.clone()
4922  .queryInto(tgobjs);
4923 
4924  std::vector<UserObject *> nodal;
4925  query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).queryInto(nodal);
4926 
4927  std::vector<MortarUserObject *> mortar;
4928  query.clone().condition<AttribInterfaces>(Interfaces::MortarUserObject).queryInto(mortar);
4929 
4930  if (userobjs.empty() && genobjs.empty() && tgobjs.empty() && nodal.empty() && mortar.empty())
4931  continue;
4932 
4933  // Start the timer here since we have at least one active user object
4934  std::string compute_uo_tag = "computeUserObjects(" + Moose::stringify(type) + ")";
4935 
4936  // Perform Residual/Jacobian setups
4937  if (type == EXEC_LINEAR)
4938  {
4939  for (auto obj : userobjs)
4940  obj->residualSetup();
4941  for (auto obj : nodal)
4942  obj->residualSetup();
4943  for (auto obj : mortar)
4944  obj->residualSetup();
4945  for (auto obj : tgobjs)
4946  obj->residualSetup();
4947  for (auto obj : genobjs)
4948  obj->residualSetup();
4949  }
4950  else if (type == EXEC_NONLINEAR)
4951  {
4952  for (auto obj : userobjs)
4953  obj->jacobianSetup();
4954  for (auto obj : nodal)
4955  obj->jacobianSetup();
4956  for (auto obj : mortar)
4957  obj->jacobianSetup();
4958  for (auto obj : tgobjs)
4959  obj->jacobianSetup();
4960  for (auto obj : genobjs)
4961  obj->jacobianSetup();
4962  }
4963 
4964  for (auto obj : userobjs)
4965  obj->initialize();
4966 
4967  // Execute Side/InternalSide/Interface/Elemental/DomainUserObjects
4968  if (!userobjs.empty())
4969  {
4970  // non-nodal user objects have to be run separately before the nodal user objects run
4971  // because some nodal user objects (NodalNormal related) depend on elemental user objects
4972  // :-(
4973  ComputeUserObjectsThread cppt(*this, query);
4975 
4976  // There is one instance in rattlesnake where an elemental user object's finalize depends
4977  // on a side user object having been finalized first :-(
4984  }
4985 
4986  // if any userobject may have written to variables we need to close the aux solution
4987  for (const auto & uo : userobjs)
4988  if (auto euo = dynamic_cast<const ElementUserObject *>(uo);
4989  euo && euo->hasWritableCoupledVariables())
4990  {
4991  _aux->solution().close();
4992  _aux->system().update();
4993  break;
4994  }
4995 
4996  // Execute NodalUserObjects
4997  // BISON has an axial reloc elemental user object that has a finalize func that depends on a
4998  // nodal user object's prev value. So we can't initialize this until after elemental objects
4999  // have been finalized :-(
5000  for (auto obj : nodal)
5001  obj->initialize();
5002  if (query.clone().condition<AttribInterfaces>(Interfaces::NodalUserObject).count() > 0)
5003  {
5004  ComputeNodalUserObjectsThread cnppt(*this, query);
5007  }
5008 
5009  // if any userobject may have written to variables we need to close the aux solution
5010  for (const auto & uo : nodal)
5011  if (auto nuo = dynamic_cast<const NodalUserObject *>(uo);
5012  nuo && nuo->hasWritableCoupledVariables())
5013  {
5014  _aux->solution().close();
5015  _aux->system().update();
5016  break;
5017  }
5018 
5019  // Execute MortarUserObjects
5020  {
5021  for (auto obj : mortar)
5022  obj->initialize();
5023  if (!mortar.empty())
5024  {
5025  auto create_and_run_mortar_functors = [this, type, &mortar](const bool displaced)
5026  {
5027  // go over mortar interfaces and construct functors
5028  const auto & mortar_interfaces = getMortarInterfaces(displaced);
5029  for (const auto & mortar_interface : mortar_interfaces)
5030  {
5031  const auto primary_secondary_boundary_pair = mortar_interface.first;
5032  auto mortar_uos_to_execute =
5033  getMortarUserObjects(primary_secondary_boundary_pair.first,
5034  primary_secondary_boundary_pair.second,
5035  displaced,
5036  mortar);
5037  const auto & mortar_generation_object = mortar_interface.second;
5038 
5039  auto * const subproblem = displaced
5040  ? static_cast<SubProblem *>(_displaced_problem.get())
5041  : static_cast<SubProblem *>(this);
5042  MortarUserObjectThread muot(mortar_uos_to_execute,
5043  mortar_generation_object,
5044  *subproblem,
5045  *this,
5046  displaced,
5047  subproblem->assembly(0, 0));
5048 
5049  muot();
5050  }
5051  };
5052 
5053  create_and_run_mortar_functors(false);
5054  if (_displaced_problem)
5055  create_and_run_mortar_functors(true);
5056  }
5057  for (auto obj : mortar)
5058  obj->finalize();
5059  }
5060 
5061  // Execute threaded general user objects
5062  for (auto obj : tgobjs)
5063  obj->initialize();
5064  std::vector<GeneralUserObject *> tguos_zero;
5065  query.clone()
5066  .condition<AttribThread>(0)
5067  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject)
5068  .queryInto(tguos_zero);
5069  for (auto obj : tguos_zero)
5070  {
5071  std::vector<GeneralUserObject *> tguos;
5072  auto q = query.clone()
5073  .condition<AttribName>(obj->name())
5074  .condition<AttribInterfaces>(Interfaces::ThreadedGeneralUserObject);
5075  q.queryInto(tguos);
5076 
5078  Threads::parallel_reduce(GeneralUserObjectRange(tguos.begin(), tguos.end()), ctguot);
5079  joinAndFinalize(q);
5080  }
5081 
5082  // Execute general user objects
5084  true);
5085  }
5086  }
5087  catch (...)
5088  {
5089  handleException("computeUserObjectsInternal");
5090  }
5091 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
void joinAndFinalize(TheWarehouse::Query query, bool isgen=false)
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:313
Thread to compute threaded general user objects.
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:294
void handleException(const std::string &calling_method)
Handle exceptions.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
StoredRange< std::vector< GeneralUserObject * >::iterator, GeneralUserObject * > GeneralUserObjectRange
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
TODO: delete this later - it is a temporary hack for dealing with inter-system dependencies.
Definition: Attributes.h:344
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
query_obj query
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
Class for threaded computation of UserObjects.
std::shared_ptr< DisplacedProblem > _displaced_problem
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
virtual std::unique_ptr< Attribute > clone() const =0
clone creates and returns and identical (deep) copy of this attribute - i.e.

◆ computingNonlinearResid() [1/4]

bool SubProblem::computingNonlinearResid ( ) const
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [2/4]

bool SubProblem::computingNonlinearResid
inlineinherited

Returns true if the problem is in the process of computing the nonlinear residual.

Definition at line 707 of file SubProblem.h.

bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [3/4]

virtual void SubProblem::computingNonlinearResid
inlineinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Definition at line 712 of file SubProblem.h.

713  {
714  _computing_nonlinear_residual = computing_nonlinear_residual;
715  }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102

◆ computingNonlinearResid() [4/4]

void FEProblemBase::computingNonlinearResid ( bool  computing_nonlinear_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the nonlinear residual.

Reimplemented from SubProblem.

Definition at line 9057 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeScaling(), ComputeFDResidualFunctor::residual(), ComputeResidualFunctor::residual(), and ComputeResidualAndJacobian::residual_and_jacobian().

9058 {
9059  parallel_object_only();
9060 
9061  if (_displaced_problem)
9062  _displaced_problem->computingNonlinearResid(computing_nonlinear_residual);
9063  _computing_nonlinear_residual = computing_nonlinear_residual;
9064 }
bool _computing_nonlinear_residual
Whether the non-linear residual is being evaluated.
Definition: SubProblem.h:1102
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ computingPreSMOResidual()

bool FEProblemBase::computingPreSMOResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Returns true if the problem is in the process of computing it's initial residual.

Returns
Whether or not the problem is currently computing the initial residual.

Implements SubProblem.

Definition at line 6669 of file FEProblemBase.C.

Referenced by DisplacedProblem::computingPreSMOResidual().

6670 {
6671  return _nl[nl_sys_num]->computingPreSMOResidual();
6672 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ computingScalingJacobian() [1/2]

void FEProblemBase::computingScalingJacobian ( bool  computing_scaling_jacobian)
inlineinherited

Setter for whether we're computing the scaling jacobian.

Definition at line 2382 of file FEProblemBase.h.

Referenced by ComputeJacobianThread::compute(), SolverSystem::compute(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingJacobian().

2383  {
2384  _computing_scaling_jacobian = computing_scaling_jacobian;
2385  }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingJacobian() [2/2]

bool FEProblemBase::computingScalingJacobian ( ) const
inlinefinaloverridevirtualinherited

Getter for whether we're computing the scaling jacobian.

Implements SubProblem.

Definition at line 2387 of file FEProblemBase.h.

2387 { return _computing_scaling_jacobian; }
bool _computing_scaling_jacobian
Flag used to indicate whether we are computing the scaling Jacobian.

◆ computingScalingResidual() [1/2]

void FEProblemBase::computingScalingResidual ( bool  computing_scaling_residual)
inlineinherited

Setter for whether we're computing the scaling residual.

Definition at line 2392 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScaling(), and DisplacedProblem::computingScalingResidual().

2393  {
2394  _computing_scaling_residual = computing_scaling_residual;
2395  }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ computingScalingResidual() [2/2]

bool FEProblemBase::computingScalingResidual ( ) const
inlinefinaloverridevirtualinherited
Returns
whether we are currently computing a residual for automatic scaling purposes

Implements SubProblem.

Definition at line 2400 of file FEProblemBase.h.

2400 { return _computing_scaling_residual; }
bool _computing_scaling_residual
Flag used to indicate whether we are computing the scaling Residual.

◆ connectControllableParams()

void MooseBase::connectControllableParams ( const std::string &  parameter,
const std::string &  object_type,
const std::string &  object_name,
const std::string &  object_parameter 
) const
inherited

Connect controllable parameter of this action with the controllable parameters of the objects added by this action.

Parameters
parameterName of the controllable parameter of this action
object_typeType of the object added by this action.
object_nameName of the object added by this action.
object_parameterName of the parameter of the object.

Definition at line 74 of file MooseBase.C.

78 {
79  auto & factory = _app.getFactory();
80  auto & ip_warehouse = _app.getInputParameterWarehouse();
81 
82  MooseObjectParameterName primary_name(uniqueName(), parameter);
83  const auto base_type = factory.getValidParams(object_type).getBase();
84  MooseObjectParameterName secondary_name(base_type, object_name, object_parameter);
85  ip_warehouse.addControllableParameterConnection(primary_name, secondary_name);
86 
87  const auto & tags = _pars.get<std::vector<std::string>>("control_tags");
88  for (const auto & tag : tags)
89  {
90  if (!tag.empty())
91  {
92  // Only adds the parameter with the different control tags if the derived class
93  // properly registers the parameter to its own syntax
94  MooseObjectParameterName tagged_name(tag, name(), parameter);
95  ip_warehouse.addControllableParameterConnection(
96  tagged_name, secondary_name, /*error_on_empty=*/false);
97  }
98  }
99 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
InputParameterWarehouse & getInputParameterWarehouse()
Get the InputParameterWarehouse for MooseObjects.
Definition: MooseApp.C:2900
MooseObjectName uniqueName() const
Definition: MooseBase.C:66
Factory & getFactory()
Retrieve a writable reference to the Factory associated with this App.
Definition: MooseApp.h:394
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
A class for storing an input parameter name.

◆ console()

const ConsoleStream& Problem::console ( ) const
inlineinherited

Return console handle.

Definition at line 48 of file Problem.h.

Referenced by Moose::SlepcSupport::mooseSlepcEPSMonitor(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

48 { return _console; }
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ constJacobian()

bool FEProblemBase::constJacobian ( ) const
inherited

Returns _const_jacobian (whether a MOOSE object has specified that the Jacobian is the same as the previous time it was computed)

Definition at line 8890 of file FEProblemBase.C.

Referenced by Moose::SlepcSupport::moosePetscSNESFormMatricesTags(), and Moose::SlepcSupport::moosePetscSNESFormMatrixTag().

8891 {
8892  return _const_jacobian;
8893 }
bool _const_jacobian
true if the Jacobian is constant

◆ converged()

virtual bool SubProblem::converged ( const unsigned int  sys_num)
inlinevirtualinherited

Eventually we want to convert this virtual over to taking a solver system number argument.

We will have to first convert apps to use solverSystemConverged, and then once that is done, we can change this signature. Then we can go through the apps again and convert back to this changed API

Definition at line 113 of file SubProblem.h.

Referenced by FEProblemBase::initialSetup(), EigenExecutionerBase::inversePowerIteration(), EigenExecutionerBase::nonlinearSolve(), FEProblemSolve::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), DisplacedProblem::solverSystemConverged(), SubProblem::solverSystemConverged(), and AB2PredictorCorrector::step().

113 { return solverSystemConverged(sys_num); }
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ coordTransform()

MooseAppCoordTransform & FEProblemBase::coordTransform ( )
inherited
Returns
the coordinate transformation object that describes how to transform this problem's coordinate system into the canonical/reference coordinate system

Definition at line 9293 of file FEProblemBase.C.

9294 {
9295  return mesh().coordTransform();
9296 }
MooseAppCoordTransform & coordTransform()
Definition: MooseMesh.h:1888
virtual MooseMesh & mesh() override

◆ copySolutionsBackwards()

void FEProblemBase::copySolutionsBackwards ( )
virtualinherited

Definition at line 6675 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6676 {
6677  TIME_SECTION("copySolutionsBackwards", 3, "Copying Solutions Backward");
6678 
6679  for (auto & sys : _solver_systems)
6680  sys->copySolutionsBackwards();
6681  _aux->copySolutionsBackwards();
6682 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ coupling()

Moose::CouplingType FEProblemBase::coupling ( ) const
inlineinherited

Definition at line 165 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), and NonlinearSystemBase::computeJacobianInternal().

165 { return _coupling; }
Moose::CouplingType _coupling
Type of variable coupling.

◆ couplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::couplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

◆ couplingMatrix()

const libMesh::CouplingMatrix * FEProblemBase::couplingMatrix ( const unsigned int  nl_sys_num) const
inlineoverridevirtualinherited

The coupling matrix defining what blocks exist in the preconditioning matrix.

Implements SubProblem.

Definition at line 3309 of file FEProblemBase.h.

Referenced by DiffusionLHDGAssemblyHelper::checkCoupling(), DisplacedProblem::couplingMatrix(), and DisplacedProblem::init().

3310 {
3311  return _cm[i].get();
3312 }
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ createMortarInterface()

void FEProblemBase::createMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced,
bool  periodic,
const bool  debug,
const bool  correct_edge_dropping,
const Real  minimum_projection_angle 
)
inherited

Definition at line 7877 of file FEProblemBase.C.

7885 {
7886  _has_mortar = true;
7887 
7888  if (on_displaced)
7889  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
7890  primary_secondary_subdomain_pair,
7892  on_displaced,
7893  periodic,
7894  debug,
7895  correct_edge_dropping,
7896  minimum_projection_angle);
7897  else
7898  return _mortar_data.createMortarInterface(primary_secondary_boundary_pair,
7899  primary_secondary_subdomain_pair,
7900  *this,
7901  on_displaced,
7902  periodic,
7903  debug,
7904  correct_edge_dropping,
7905  minimum_projection_angle);
7906 }
void createMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &subdomain_key, SubProblem &subproblem, bool on_displaced, bool periodic, const bool debug, const bool correct_edge_dropping, const Real minimum_projection_angle)
Create mortar generation object.
Definition: MortarData.C:22
MortarData _mortar_data
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ createQRules()

void FEProblemBase::createQRules ( libMesh::QuadratureType  type,
libMesh::Order  order,
libMesh::Order  volume_order = libMesh::INVALID_ORDER,
libMesh::Order  face_order = libMesh::INVALID_ORDER,
SubdomainID  block = Moose::ANY_BLOCK_ID,
bool  allow_negative_qweights = true 
)
virtualinherited

Definition at line 6100 of file FEProblemBase.C.

6106 {
6107  if (order == INVALID_ORDER)
6108  {
6109  // automatically determine the integration order
6110  order = _solver_systems[0]->getMinQuadratureOrder();
6111  for (const auto i : make_range(std::size_t(1), _solver_systems.size()))
6112  if (order < _solver_systems[i]->getMinQuadratureOrder())
6113  order = _solver_systems[i]->getMinQuadratureOrder();
6114  if (order < _aux->getMinQuadratureOrder())
6115  order = _aux->getMinQuadratureOrder();
6116  }
6117 
6118  if (volume_order == INVALID_ORDER)
6119  volume_order = order;
6120 
6121  if (face_order == INVALID_ORDER)
6122  face_order = order;
6123 
6124  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
6125  for (const auto i : index_range(_solver_systems))
6126  _assembly[tid][i]->createQRules(
6127  type, order, volume_order, face_order, block, allow_negative_qweights);
6128 
6129  if (_displaced_problem)
6130  _displaced_problem->createQRules(
6131  type, order, volume_order, face_order, block, allow_negative_qweights);
6132 
6133  updateMaxQps();
6134 }
unsigned int n_threads()
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual void createQRules(libMesh::QuadratureType type, libMesh::Order order, libMesh::Order volume_order=libMesh::INVALID_ORDER, libMesh::Order face_order=libMesh::INVALID_ORDER, SubdomainID block=Moose::ANY_BLOCK_ID, bool allow_negative_qweights=true)
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ createTagMatrices()

void FEProblemBase::createTagMatrices ( CreateTaggedMatrixKey  )
inherited

Definition at line 676 of file FEProblemBase.C.

677 {
678  auto & matrices = getParam<std::vector<std::vector<TagName>>>("extra_tag_matrices");
679  for (const auto sys_num : index_range(matrices))
680  for (auto & matrix : matrices[sys_num])
681  {
682  auto tag = addMatrixTag(matrix);
683  _solver_systems[sys_num]->addMatrix(tag);
684  }
685 
686  for (auto & sys : _solver_systems)
687  sys->sizeVariableMatrixData();
688  _aux->sizeVariableMatrixData();
689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual TagID addMatrixTag(TagName tag_name)
Create a Tag.
Definition: SubProblem.C:311
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
auto index_range(const T &sizable)

◆ createTagSolutions()

void FEProblemBase::createTagSolutions ( )
protectedinherited

Create extra tagged solution vectors.

Definition at line 692 of file FEProblemBase.C.

Referenced by DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

693 {
694  for (auto & vector : getParam<std::vector<TagName>>("extra_tag_solutions"))
695  {
696  auto tag = addVectorTag(vector, Moose::VECTOR_TAG_SOLUTION);
697  for (auto & sys : _solver_systems)
698  sys->addVector(tag, false, libMesh::GHOSTED);
699  _aux->addVector(tag, false, libMesh::GHOSTED);
700  }
701 
703  {
704  // We'll populate the zeroth state of the nonlinear iterations with the current solution for
705  // ease of use in doing things like copying solutions backwards. We're just storing pointers in
706  // the solution states containers so populating the zeroth state does not cost us the memory of
707  // a new vector
709  }
710 
712  for (auto & sys : _solver_systems)
713  sys->associateVectorToTag(*sys->system().current_local_solution.get(), tag);
714  _aux->associateVectorToTag(*_aux->system().current_local_solution.get(), tag);
715 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _previous_nl_solution_required
Indicates we need to save the previous NL iteration variable values.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void needSolutionState(unsigned int oldest_needed, Moose::SolutionIterationType iteration_type)
Declare that we need up to old (1) or older (2) solution states for a given type of iteration...
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ createTagVectors()

void FEProblemBase::createTagVectors ( )
protectedinherited

Create extra tagged vectors and matrices.

Definition at line 654 of file FEProblemBase.C.

Referenced by DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

655 {
656  // add vectors and their tags to system
657  auto & vectors = getParam<std::vector<std::vector<TagName>>>("extra_tag_vectors");
658  for (const auto sys_num : index_range(vectors))
659  for (auto & vector : vectors[sys_num])
660  {
661  auto tag = addVectorTag(vector);
662  _solver_systems[sys_num]->addVector(tag, false, libMesh::GHOSTED);
663  }
664 
665  auto & not_zeroed_vectors = getParam<std::vector<std::vector<TagName>>>("not_zeroed_tag_vectors");
666  for (const auto sys_num : index_range(not_zeroed_vectors))
667  for (auto & vector : not_zeroed_vectors[sys_num])
668  {
669  auto tag = addVectorTag(vector);
670  _solver_systems[sys_num]->addVector(tag, false, GHOSTED);
672  }
673 }
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:92
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
auto index_range(const T &sizable)
void addNotZeroedVectorTag(const TagID tag)
Adds a vector tag to the list of vectors that will not be zeroed when other tagged vectors are...
Definition: SubProblem.C:149

◆ currentLinearSysNum()

unsigned int FEProblemBase::currentLinearSysNum ( ) const
overridevirtualinherited
Returns
the current linear system number

Implements SubProblem.

Definition at line 9310 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentLinearSysNum().

9311 {
9312  // If we don't have linear systems this should be an invalid number
9313  unsigned int current_linear_sys_num = libMesh::invalid_uint;
9314  if (_linear_systems.size())
9315  current_linear_sys_num = currentLinearSystem().number();
9316 
9317  return current_linear_sys_num;
9318 }
const unsigned int invalid_uint
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
LinearSystem & currentLinearSystem()
Get a non-constant reference to the current linear system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ currentLinearSystem() [1/2]

LinearSystem & FEProblemBase::currentLinearSystem ( )
inlineinherited

Get a non-constant reference to the current linear system.

Definition at line 3277 of file FEProblemBase.h.

Referenced by FEProblemBase::currentLinearSysNum(), and Moose::PetscSupport::petscLinearConverged().

3278 {
3279  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3280  return *_current_linear_sys;
3281 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentLinearSystem() [2/2]

const LinearSystem & FEProblemBase::currentLinearSystem ( ) const
inlineinherited

Get a constant reference to the current linear system.

Definition at line 3284 of file FEProblemBase.h.

3285 {
3286  mooseAssert(_current_linear_sys, "The linear system is not currently set");
3287  return *_current_linear_sys;
3288 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.

◆ currentlyComputingJacobian()

const bool& SubProblem::currentlyComputingJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the Jacobian.

Definition at line 684 of file SubProblem.h.

Referenced by PenetrationLocator::detectPenetration(), ComputeUserObjectsThread::onBoundary(), ComputeUserObjectsThread::onElement(), ComputeUserObjectsThread::printBlockExecutionInformation(), SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ currentlyComputingResidual() [1/2]

const bool& SubProblem::currentlyComputingResidual ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidual() [2/2]

const bool& SubProblem::currentlyComputingResidual
inlineinherited

Returns true if the problem is in the process of computing the residual.

Definition at line 720 of file SubProblem.h.

bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ currentlyComputingResidualAndJacobian()

const bool & SubProblem::currentlyComputingResidualAndJacobian ( ) const
inlineinherited

Returns true if the problem is in the process of computing the residual and the Jacobian.

Definition at line 1487 of file SubProblem.h.

Referenced by SubProblem::reinitElemFaceRef(), and NEML2Utils::shouldCompute().

1488 {
1490 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ currentNlSysNum()

unsigned int FEProblemBase::currentNlSysNum ( ) const
overridevirtualinherited
Returns
the current nonlinear system number

Implements SubProblem.

Definition at line 9299 of file FEProblemBase.C.

Referenced by DisplacedProblem::currentNlSysNum(), FEProblemBase::jacobianSetup(), and FEProblemBase::residualSetup().

9300 {
9301  // If we don't have nonlinear systems this should be an invalid number
9302  unsigned int current_nl_sys_num = libMesh::invalid_uint;
9303  if (_nl.size())
9304  current_nl_sys_num = currentNonlinearSystem().number();
9305 
9306  return current_nl_sys_num;
9307 }
const unsigned int invalid_uint
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase & currentNonlinearSystem()
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149

◆ currentNonlinearSystem() [1/2]

NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( )
inlineinherited

◆ currentNonlinearSystem() [2/2]

const NonlinearSystemBase & FEProblemBase::currentNonlinearSystem ( ) const
inlineinherited

Definition at line 3254 of file FEProblemBase.h.

3255 {
3256  mooseAssert(_current_nl_sys, "The nonlinear system is not currently set");
3257  return *_current_nl_sys;
3258 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.

◆ currentResidualVectorTags()

const std::vector< VectorTag > & FEProblemBase::currentResidualVectorTags ( ) const
inlineoverridevirtualinherited

Return the residual vector tags we are currently computing.

Implements SubProblem.

Definition at line 3325 of file FEProblemBase.h.

Referenced by FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), and DisplacedProblem::currentResidualVectorTags().

3326 {
3328 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).

◆ customSetup()

void FEProblemBase::customSetup ( const ExecFlagType exec_type)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 4656 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

4657 {
4658  SubProblem::customSetup(exec_type);
4659 
4660  if (_line_search)
4661  _line_search->customSetup(exec_type);
4662 
4663  unsigned int n_threads = libMesh::n_threads();
4664  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4665  {
4666  _all_materials.customSetup(exec_type, tid);
4667  _functions.customSetup(exec_type, tid);
4668  }
4669 
4670  _aux->customSetup(exec_type);
4671  for (auto & nl : _nl)
4672  nl->customSetup(exec_type);
4673 
4674  if (_displaced_problem)
4675  _displaced_problem->customSetup(exec_type);
4676 
4677  for (THREAD_ID tid = 0; tid < n_threads; tid++)
4678  {
4679  _internal_side_indicators.customSetup(exec_type, tid);
4680  _indicators.customSetup(exec_type, tid);
4681  _markers.customSetup(exec_type, tid);
4682  }
4683 
4684  std::vector<UserObject *> userobjs;
4685  theWarehouse().query().condition<AttribSystem>("UserObject").queryIntoUnsorted(userobjs);
4686  for (auto obj : userobjs)
4687  obj->customSetup(exec_type);
4688 
4689  _app.getOutputWarehouse().customSetup(exec_type);
4690 }
unsigned int n_threads()
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
void customSetup(const ExecFlagType &exec_type)
Calls the setup function for each of the output objects.
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SubProblem.C:1193
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
MooseObjectWarehouse< Indicator > _indicators
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseObjectWarehouse< Function > _functions
functions
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
MooseObjectWarehouse< Marker > _markers
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442
unsigned int THREAD_ID
Definition: MooseTypes.h:209
std::shared_ptr< LineSearch > _line_search

◆ declareManagedRestartableDataWithContext()

template<typename T , typename... Args>
Restartable::ManagedValue< T > Restartable::declareManagedRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declares a piece of "managed" restartable data and initialize it.

Here, "managed" restartable data means that the caller can destruct this data upon destruction of the return value of this method. Therefore, this ManagedValue<T> wrapper should survive after the final calls to dataStore() for it. That is... at the very end.

This is needed for objects whose destruction ordering is important, and enables natural c++ destruction in reverse construction order of the object that declares it.

See delcareRestartableData and declareRestartableDataWithContext for more information.

Definition at line 276 of file Restartable.h.

279 {
280  auto & data_ptr =
281  declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...);
282  return Restartable::ManagedValue<T>(data_ptr);
283 }
Wrapper class for restartable data that is "managed.
Definition: Restartable.h:42

◆ declareRecoverableData()

template<typename T , typename... Args>
T & Restartable::declareRecoverableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "recoverable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

Note - this data will NOT be restored on Restart!

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 351 of file Restartable.h.

352 {
353  const auto full_name = restartableName(data_name);
354 
356 
357  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
358 }
std::string restartableName(const std::string &data_name) const
Gets the name of a piece of restartable data given a data name, adding the system name and object nam...
Definition: Restartable.C:66
void registerRestartableNameWithFilterOnApp(const std::string &name, Moose::RESTARTABLE_FILTER filter)
Helper function for actually registering the restartable data.
Definition: Restartable.C:59

◆ declareRestartableData()

template<typename T , typename... Args>
T & Restartable::declareRestartableData ( const std::string &  data_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
argsArguments to forward to the constructor of the data

Definition at line 269 of file Restartable.h.

270 {
271  return declareRestartableDataWithContext<T>(data_name, nullptr, std::forward<Args>(args)...);
272 }

◆ declareRestartableDataWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithContext ( const std::string &  data_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable" and initialize it.

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 294 of file Restartable.h.

297 {
298  return declareRestartableDataHelper<T>(data_name, context, std::forward<Args>(args)...).set();
299 }

◆ declareRestartableDataWithObjectName()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectName ( const std::string &  data_name,
const std::string &  object_name,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
argsArguments to forward to the constructor of the data

Definition at line 323 of file Restartable.h.

326 {
327  return declareRestartableDataWithObjectNameWithContext<T>(
328  data_name, object_name, nullptr, std::forward<Args>(args)...);
329 }

◆ declareRestartableDataWithObjectNameWithContext()

template<typename T , typename... Args>
T & Restartable::declareRestartableDataWithObjectNameWithContext ( const std::string &  data_name,
const std::string &  object_name,
void context,
Args &&...  args 
)
protectedinherited

Declare a piece of data as "restartable".

This means that in the event of a restart this piece of data will be restored back to its previous value.

NOTE: This returns a reference! Make sure you store it in a reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)
object_nameA supplied name for the object that is declaring this data.
contextContext pointer that will be passed to the load and store functions
argsArguments to forward to the constructor of the data

Definition at line 333 of file Restartable.h.

337 {
338  std::string old_name = _restartable_name;
339 
340  _restartable_name = object_name;
341 
342  T & value = declareRestartableDataWithContext<T>(data_name, context, std::forward<Args>(args)...);
343 
344  _restartable_name = old_name;
345 
346  return value;
347 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:243
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)

◆ deduceNecessaryParameters()

std::string DumpObjectsProblem::deduceNecessaryParameters ( const std::string &  type,
const InputParameters parameters 
)
protected

build a text snippet of the minimal set of parameters that need to be specified

Definition at line 95 of file DumpObjectsProblem.C.

Referenced by dumpObjectHelper().

97 {
98  auto factory_params = stringifyParameters(_factory.getValidParams(type));
99  auto specified_params = stringifyParameters(parameters);
100 
101  std::string param_text;
102  for (auto & value_pair : specified_params)
103  {
104  // parameter name
105  const auto & param_name = value_pair.first;
106  const auto & param_value = value_pair.second;
107 
108  // determine whether to include the parameter
109  auto factory_it = factory_params.find(param_name);
110  bool include_param = (factory_it->second != param_value);
112  include_param = include_param || parameters.isParamSetByUser(param_name);
113  if (factory_it == factory_params.end() || include_param)
114  param_text += " " + param_name + " = " + param_value + '\n';
115  }
116 
117  return param_text;
118 }
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
const bool _include_all_user_specified_params
Whether to include all user-specified parameters in the dump or only parameters that differ from the ...
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::map< std::string, std::string > stringifyParameters(const InputParameters &parameters)
create a string map form parameter names to stringified parameter values
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.

◆ defaultGhosting()

bool SubProblem::defaultGhosting ( )
inlineinherited

Whether or not the user has requested default ghosting ot be on.

Definition at line 144 of file SubProblem.h.

Referenced by AuxiliarySystem::AuxiliarySystem(), DisplacedSystem::DisplacedSystem(), and NonlinearSystemBase::NonlinearSystemBase().

144 { return _default_ghosting; }
bool _default_ghosting
Whether or not to use default libMesh coupling.
Definition: SubProblem.h:1090

◆ diracKernelInfo()

DiracKernelInfo & SubProblem::diracKernelInfo ( )
virtualinherited

Definition at line 748 of file SubProblem.C.

749 {
750  return _dirac_kernel_info;
751 }
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ doingPRefinement()

bool SubProblem::doingPRefinement ( ) const
inherited
Returns
whether we're doing p-refinement

Definition at line 1361 of file SubProblem.C.

Referenced by FEProblemBase::meshChanged().

1362 {
1363  return mesh().doingPRefinement();
1364 }
virtual MooseMesh & mesh()=0
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1347

◆ dt()

virtual Real& FEProblemBase::dt ( ) const
inlinevirtualinherited

◆ dtOld()

virtual Real& FEProblemBase::dtOld ( ) const
inlinevirtualinherited

Definition at line 518 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

518 { return _dt_old; }

◆ dumpAllGeneratedSyntax()

void DumpObjectsProblem::dumpAllGeneratedSyntax ( ) const

output input blocks for all paths

Definition at line 210 of file DumpObjectsProblem.C.

Referenced by printObjects().

211 {
212  Moose::out << "**START DUMP DATA**\n";
213  for (const auto & path : _generated_syntax)
214  for (const auto & system_pair : path.second)
215  Moose::out << '[' << system_pair.first << "]\n" << system_pair.second << "[]\n\n";
216  Moose::out << "**END DUMP DATA**\n";
217  Moose::out << std::flush;
218 }
std::map< std::string, std::map< std::string, std::string > > _generated_syntax
store input syntax to build objects generated by a specific action

◆ dumpGeneratedSyntax()

void DumpObjectsProblem::dumpGeneratedSyntax ( const std::string  path)

output input blocks for a given action path

Definition at line 196 of file DumpObjectsProblem.C.

Referenced by printObjects().

197 {
198  auto pathit = _generated_syntax.find(path);
199  if (pathit == _generated_syntax.end())
200  return;
201 
202  Moose::out << "**START DUMP DATA**\n";
203  for (const auto & system_pair : pathit->second)
204  Moose::out << '[' << system_pair.first << "]\n" << system_pair.second << "[]\n\n";
205  Moose::out << "**END DUMP DATA**\n";
206  Moose::out << std::flush;
207 }
std::map< std::string, std::map< std::string, std::string > > _generated_syntax
store input syntax to build objects generated by a specific action

◆ dumpObjectHelper()

void DumpObjectsProblem::dumpObjectHelper ( const std::string &  system,
const std::string &  type,
const std::string &  name,
const InputParameters parameters 
)
protected

Definition at line 121 of file DumpObjectsProblem.C.

125 {
126  auto path = _app.actionWarehouse().getCurrentActionName();
127  auto param_text = deduceNecessaryParameters(type, parameters);
128 
129  // clang-format off
130  _generated_syntax[path][system] +=
131  " [" + name + "]\n"
132  + " type = " + type + '\n'
133  + param_text
134  + " []\n";
135  // clang-format on
136 }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::string getCurrentActionName() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ActionWarehouse & actionWarehouse()
Return a writable reference to the ActionWarehouse associated with this app.
Definition: MooseApp.h:204
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::map< std::string, std::map< std::string, std::string > > _generated_syntax
store input syntax to build objects generated by a specific action
std::string deduceNecessaryParameters(const std::string &type, const InputParameters &parameters)
build a text snippet of the minimal set of parameters that need to be specified

◆ dumpVariableHelper()

void DumpObjectsProblem::dumpVariableHelper ( const std::string &  system,
const std::string &  var_name,
libMesh::FEFamily  family,
Order  order,
Real  scale_factor,
const std::set< SubdomainID > *const  active_subdomains 
)
protected

Definition at line 139 of file DumpObjectsProblem.C.

145 {
146  auto path = _app.actionWarehouse().getCurrentActionName();
147  std::string param_text;
148 
149  if (active_subdomains)
150  {
151  std::string blocks;
152  for (auto & subdomain_id : *active_subdomains)
153  {
154  auto subdomain_name = _mesh.getMesh().subdomain_name(subdomain_id);
155  if (subdomain_name == "")
156  subdomain_name = std::to_string(subdomain_id);
157 
158  if (!blocks.empty())
159  blocks += ' ';
160 
161  blocks += subdomain_name;
162  }
163 
164  if (active_subdomains->size() > 1)
165  blocks = "'" + blocks + "'";
166 
167  param_text += " blocks = " + blocks + '\n';
168  }
169 
170  if (family != LAGRANGE)
171  param_text += " family = " + libMesh::Utility::enum_to_string<FEFamily>(family) + '\n';
172  if (order != FIRST)
173  param_text += " order = " + libMesh::Utility::enum_to_string<Order>(order) + '\n';
174  if (scale_factor != 1.0)
175  param_text += " scale = " + std::to_string(scale_factor);
176 
177  // clang-format off
178  _generated_syntax[path][system] +=
179  " [" + var_name + "]\n"
180  + param_text
181  + " []\n";
182  // clang-format on
183 }
char ** blocks
std::string getCurrentActionName() const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
MooseMesh & _mesh
ActionWarehouse & actionWarehouse()
Return a writable reference to the ActionWarehouse associated with this app.
Definition: MooseApp.h:204
std::string & subdomain_name(subdomain_id_type id)
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
std::map< std::string, std::map< std::string, std::string > > _generated_syntax
store input syntax to build objects generated by a specific action

◆ duplicateVariableCheck()

bool FEProblemBase::duplicateVariableCheck ( const std::string &  var_name,
const libMesh::FEType type,
bool  is_aux,
const std::set< SubdomainID > *const  active_subdomains 
)
protectedinherited

Helper to check for duplicate variable names across systems or within a single system.

Definition at line 2735 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

2739 {
2740  std::set<SubdomainID> subdomainIDs;
2741  if (active_subdomains->size() == 0)
2742  {
2743  const auto subdomains = _mesh.meshSubdomains();
2744  subdomainIDs.insert(subdomains.begin(), subdomains.end());
2745  }
2746  else
2747  subdomainIDs.insert(active_subdomains->begin(), active_subdomains->end());
2748 
2749  for (auto & sys : _solver_systems)
2750  {
2751  SystemBase * curr_sys_ptr = sys.get();
2752  SystemBase * other_sys_ptr = _aux.get();
2753  std::string error_prefix = "";
2754  if (is_aux)
2755  {
2756  curr_sys_ptr = _aux.get();
2757  other_sys_ptr = sys.get();
2758  error_prefix = "aux";
2759  }
2760 
2761  if (other_sys_ptr->hasVariable(var_name))
2762  mooseError("Cannot have an auxiliary variable and a solver variable with the same name: ",
2763  var_name);
2764 
2765  if (curr_sys_ptr->hasVariable(var_name))
2766  {
2767  const Variable & var =
2768  curr_sys_ptr->system().variable(curr_sys_ptr->system().variable_number(var_name));
2769 
2770  // variable type
2771  if (var.type() != type)
2772  {
2773  const auto stringifyType = [](FEType t)
2774  { return Moose::stringify(t.family) + " of order " + Moose::stringify(t.order); };
2775 
2776  mooseError("Mismatching types are specified for ",
2777  error_prefix,
2778  "variable with name '",
2779  var_name,
2780  "': '",
2781  stringifyType(var.type()),
2782  "' and '",
2783  stringifyType(type),
2784  "'");
2785  }
2786 
2787  // block-restriction
2788  if (!(active_subdomains->size() == 0 && var.active_subdomains().size() == 0))
2789  {
2790  const auto varActiveSubdomains = var.active_subdomains();
2791  std::set<SubdomainID> varSubdomainIDs;
2792  if (varActiveSubdomains.size() == 0)
2793  {
2794  const auto subdomains = _mesh.meshSubdomains();
2795  varSubdomainIDs.insert(subdomains.begin(), subdomains.end());
2796  }
2797  else
2798  varSubdomainIDs.insert(varActiveSubdomains.begin(), varActiveSubdomains.end());
2799 
2800  // Is subdomainIDs a subset of varSubdomainIDs? With this we allow the case that the newly
2801  // requested block restriction is only a subset of the existing one.
2802  const auto isSubset = std::includes(varSubdomainIDs.begin(),
2803  varSubdomainIDs.end(),
2804  subdomainIDs.begin(),
2805  subdomainIDs.end());
2806 
2807  if (!isSubset)
2808  {
2809  // helper function: make a string from a set of subdomain ids
2810  const auto stringifySubdomains = [this](std::set<SubdomainID> subdomainIDs)
2811  {
2812  std::stringstream s;
2813  for (auto const i : subdomainIDs)
2814  {
2815  // do we need to insert a comma?
2816  if (s.tellp() != 0)
2817  s << ", ";
2818 
2819  // insert subdomain name and id -or- only the id (if no name is given)
2820  const auto subdomainName = _mesh.getSubdomainName(i);
2821  if (subdomainName.empty())
2822  s << i;
2823  else
2824  s << subdomainName << " (" << i << ")";
2825  }
2826  return s.str();
2827  };
2828 
2829  const std::string msg = "Mismatching block-restrictions are specified for " +
2830  error_prefix + "variable with name '" + var_name + "': {" +
2831  stringifySubdomains(varSubdomainIDs) + "} and {" +
2832  stringifySubdomains(subdomainIDs) + "}";
2833 
2834  mooseError(msg);
2835  }
2836  }
2837 
2838  return true;
2839  }
2840  }
2841 
2842  return false;
2843 }
const Variable & variable(unsigned int var) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Base class for a system (of equations)
Definition: SystemBase.h:84
const std::string & getSubdomainName(SubdomainID subdomain_id) const
Return the name of a block given an id.
Definition: MooseMesh.C:1763
unsigned int variable_number(std::string_view var) const
const std::set< subdomain_id_type > & active_subdomains() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3171
const FEType & type() const

◆ enabled()

virtual bool MooseObject::enabled ( ) const
inlinevirtualinherited

Return the enabled status of the object.

Reimplemented in EigenKernel.

Definition at line 39 of file MooseObject.h.

Referenced by EigenKernel::enabled().

39 { return _enabled; }
const bool & _enabled
Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.
Definition: MooseObject.h:50

◆ errorOnJacobianNonzeroReallocation()

bool FEProblemBase::errorOnJacobianNonzeroReallocation ( ) const
inlineinherited

Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by PETSc.

Definition at line 1983 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

1984  {
1986  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ errorPrefix()

std::string MooseBase::errorPrefix ( const std::string &  ) const
inlineinherited

Deprecated message prefix; the error type is no longer used.

Definition at line 260 of file MooseBase.h.

260 { return messagePrefix(); }
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ es()

virtual libMesh::EquationSystems& FEProblemBase::es ( )
inlineoverridevirtualinherited

◆ execMultiApps()

bool FEProblemBase::execMultiApps ( ExecFlagType  type,
bool  auto_advance = true 
)
inherited

Execute the MultiApps associated with the ExecFlagType.

Definition at line 5496 of file FEProblemBase.C.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), Eigenvalue::execute(), FEProblemBase::initialSetup(), EigenExecutionerBase::postExecute(), MFEMProblemSolve::solve(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

5497 {
5498  // Active MultiApps
5499  const std::vector<MooseSharedPointer<MultiApp>> & multi_apps =
5501 
5502  // Do anything that needs to be done to Apps before transfers
5503  for (const auto & multi_app : multi_apps)
5504  multi_app->preTransfer(_dt, _time);
5505 
5506  // Execute Transfers _to_ MultiApps
5508 
5509  // Execute Transfers _between_ Multiapps
5511 
5512  // Execute MultiApps
5513  if (multi_apps.size())
5514  {
5515  TIME_SECTION("execMultiApps", 1, "Executing MultiApps", false);
5516 
5517  if (_verbose_multiapps)
5518  _console << COLOR_CYAN << "\nExecuting MultiApps on " << Moose::stringify(type)
5519  << COLOR_DEFAULT << std::endl;
5520 
5521  bool success = true;
5522 
5523  for (const auto & multi_app : multi_apps)
5524  {
5525  success = multi_app->solveStep(_dt, _time, auto_advance);
5526  // no need to finish executing the subapps if one fails
5527  if (!success)
5528  break;
5529  }
5530 
5532 
5533  _communicator.min(success);
5534 
5535  if (!success)
5536  return false;
5537 
5538  if (_verbose_multiapps)
5539  _console << COLOR_CYAN << "Finished Executing MultiApps on " << Moose::stringify(type) << "\n"
5540  << COLOR_DEFAULT << std::endl;
5541  }
5542 
5543  // Execute Transfers _from_ MultiApps
5545 
5546  // If we made it here then everything passed
5547  return true;
5548 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
void execMultiAppTransfers(ExecFlagType type, Transfer::DIRECTION direction)
Execute MultiAppTransfers associated with execution flag and direction.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execMultiAppTransfers()

void FEProblemBase::execMultiAppTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
)
inherited

Execute MultiAppTransfers associated with execution flag and direction.

Parameters
typeThe execution flag to execute.
directionThe direction (to or from) to transfer.

Definition at line 5396 of file FEProblemBase.C.

Referenced by FEProblemBase::execMultiApps().

5397 {
5398  bool to_multiapp = direction == MultiAppTransfer::TO_MULTIAPP;
5399  bool from_multiapp = direction == MultiAppTransfer::FROM_MULTIAPP;
5400  std::string string_direction;
5401  if (to_multiapp)
5402  string_direction = " To ";
5403  else if (from_multiapp)
5404  string_direction = " From ";
5405  else
5406  string_direction = " Between ";
5407 
5408  const MooseObjectWarehouse<Transfer> & wh = to_multiapp ? _to_multi_app_transfers[type]
5409  : from_multiapp ? _from_multi_app_transfers[type]
5411 
5412  if (wh.hasActiveObjects())
5413  {
5414  TIME_SECTION("execMultiAppTransfers", 1, "Executing Transfers");
5415 
5416  const auto & transfers = wh.getActiveObjects();
5417 
5418  if (_verbose_multiapps)
5419  {
5420  _console << COLOR_CYAN << "\nTransfers on " << Moose::stringify(type) << string_direction
5421  << "MultiApps" << COLOR_DEFAULT << ":" << std::endl;
5422 
5424  {"Name", "Type", "From", "To"});
5425 
5426  // Build Table of Transfer Info
5427  for (const auto & transfer : transfers)
5428  {
5429  auto multiapp_transfer = dynamic_cast<MultiAppTransfer *>(transfer.get());
5430 
5431  table.addRow(multiapp_transfer->name(),
5432  multiapp_transfer->type(),
5433  multiapp_transfer->getFromName(),
5434  multiapp_transfer->getToName());
5435  }
5436 
5437  // Print it
5438  table.print(_console);
5439  }
5440 
5441  for (const auto & transfer : transfers)
5442  {
5443  transfer->setCurrentDirection(direction);
5444  transfer->execute();
5445  }
5446 
5448 
5449  if (_verbose_multiapps)
5450  _console << COLOR_CYAN << "Transfers on " << Moose::stringify(type) << " Are Finished\n"
5451  << COLOR_DEFAULT << std::endl;
5452  }
5453  else if (_multi_apps[type].getActiveObjects().size())
5454  {
5455  if (_verbose_multiapps)
5456  _console << COLOR_CYAN << "\nNo Transfers on " << Moose::stringify(type) << string_direction
5457  << "MultiApps\n"
5458  << COLOR_DEFAULT << std::endl;
5459  }
5460 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
A class for "pretty printing" a table of data.
Definition: PerfGraph.h:34
void setCurrentDirection(const int direction)
Set this Transfer to be executed in a given direction.
Definition: Transfer.h:89
const Parallel::Communicator & _communicator
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const
Base class for all MultiAppTransfer objects.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ execTransfers()

void FEProblemBase::execTransfers ( ExecFlagType  type)
inherited

Execute the Transfers associated with the ExecFlagType.

Note: This does not execute MultiApp Transfers! Those are executed automatically when MultiApps are executed.

Definition at line 5666 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::initialSetup(), FixedPointSolve::solve(), MFEMProblemSolve::solve(), and FixedPointSolve::solveStep().

5667 {
5668  if (_transfers[type].hasActiveObjects())
5669  {
5670  TIME_SECTION("execTransfers", 3, "Executing Transfers");
5671 
5672  const auto & transfers = _transfers[type].getActiveObjects();
5673 
5674  for (const auto & transfer : transfers)
5675  transfer->execute();
5676  }
5677 }
ExecuteMooseObjectWarehouse< Transfer > _transfers
Normal Transfers.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ execute()

virtual void DumpObjectsProblem::execute ( const ExecFlagType exec_type)
inlineoverridevirtual

Convenience function for performing execution of MOOSE systems.

Reimplemented from FEProblemBase.

Definition at line 64 of file DumpObjectsProblem.h.

64 {}

◆ executeAllObjects()

void FEProblemBase::executeAllObjects ( const ExecFlagType exec_type)
virtualinherited

Definition at line 4651 of file FEProblemBase.C.

Referenced by Executor::exec().

4652 {
4653 }

◆ executeControls()

void FEProblemBase::executeControls ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Control objects.

Definition at line 5094 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::execute(), and FEProblemBase::initialSetup().

5095 {
5096  if (_control_warehouse[exec_type].hasActiveObjects())
5097  {
5098  TIME_SECTION("executeControls", 1, "Executing Controls");
5099 
5101 
5102  auto controls_wh = _control_warehouse[exec_type];
5103  // Add all of the dependencies into the resolver and sort them
5104  for (const auto & it : controls_wh.getActiveObjects())
5105  {
5106  // Make sure an item with no dependencies comes out too!
5107  resolver.addItem(it);
5108 
5109  std::vector<std::string> & dependent_controls = it->getDependencies();
5110  for (const auto & depend_name : dependent_controls)
5111  {
5112  if (controls_wh.hasActiveObject(depend_name))
5113  {
5114  auto dep_control = controls_wh.getActiveObject(depend_name);
5115  resolver.addEdge(dep_control, it);
5116  }
5117  else
5118  mooseError("The Control \"",
5119  depend_name,
5120  "\" was not created, did you make a "
5121  "spelling mistake or forget to include it "
5122  "in your input file?");
5123  }
5124  }
5125 
5126  const auto & ordered_controls = resolver.getSortedValues();
5127 
5128  if (!ordered_controls.empty())
5129  {
5130  _control_warehouse.setup(exec_type);
5131  // Run the controls in the proper order
5132  for (const auto & control : ordered_controls)
5133  control->execute();
5134  }
5135  }
5136 }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.
const std::vector< T > & getSortedValues()
This function also returns dependency resolved values but with a simpler single vector interface...
void setup(const ExecFlagType &exec_flag, THREAD_ID tid=0) const
void addEdge(const T &a, const T &b)
Add an edge between nodes &#39;a&#39; and &#39;b&#39;.
void addItem(const T &value)
Add an independent item to the set.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
Class that represents the dependecy as a graph.

◆ executeSamplers()

void FEProblemBase::executeSamplers ( const ExecFlagType exec_type)
inherited

Performs setup and execute calls for Sampler objects.

Definition at line 5139 of file FEProblemBase.C.

Referenced by FEProblemBase::execute().

5140 {
5141  // TODO: This should be done in a threaded loop, but this should be super quick so for now
5142  // do a serial loop.
5143  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
5144  {
5145  std::vector<Sampler *> objects;
5146  theWarehouse()
5147  .query()
5148  .condition<AttribSystem>("Sampler")
5149  .condition<AttribThread>(tid)
5150  .condition<AttribExecOns>(exec_type)
5151  .queryInto(objects);
5152 
5153  if (!objects.empty())
5154  {
5155  TIME_SECTION("executeSamplers", 1, "Executing Samplers");
5156  FEProblemBase::objectSetupHelper<Sampler>(objects, exec_type);
5157  FEProblemBase::objectExecuteHelper<Sampler>(objects);
5158  }
5159  }
5160 }
unsigned int n_threads()
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ feBackend()

virtual Moose::FEBackend FEProblemBase::feBackend ( ) const
inlinevirtualinherited

◆ finalizeMultiApps()

void FEProblemBase::finalizeMultiApps ( )
inherited

Definition at line 5551 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5552 {
5553  const auto & multi_apps = _multi_apps.getActiveObjects();
5554 
5555  for (const auto & multi_app : multi_apps)
5556  multi_app->finalize();
5557 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ finalNonlinearResidual()

Real FEProblemBase::finalNonlinearResidual ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6663 of file FEProblemBase.C.

6664 {
6665  return _nl[nl_sys_num]->finalNonlinearResidual();
6666 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ finishMultiAppStep()

void FEProblemBase::finishMultiAppStep ( ExecFlagType  type,
bool  recurse_through_multiapp_levels = false 
)
inherited

Finish the MultiApp time step (endStep, postStep) associated with the ExecFlagType.

Optionally recurse through all multi-app levels

Definition at line 5579 of file FEProblemBase.C.

Referenced by FEProblemBase::advanceMultiApps(), TransientBase::execute(), TransientMultiApp::finishStep(), and TransientBase::incrementStepOrReject().

5580 {
5581  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5582 
5583  if (multi_apps.size())
5584  {
5585  if (_verbose_multiapps)
5586  _console << COLOR_CYAN << "\nAdvancing MultiApps on " << type.name() << COLOR_DEFAULT
5587  << std::endl;
5588 
5589  for (const auto & multi_app : multi_apps)
5590  multi_app->finishStep(recurse_through_multiapp_levels);
5591 
5593 
5594  if (_verbose_multiapps)
5595  _console << COLOR_CYAN << "Finished Advancing MultiApps on " << type.name() << "\n"
5596  << COLOR_DEFAULT << std::endl;
5597  }
5598 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ forceOutput()

void FEProblemBase::forceOutput ( )
inherited

Indicates that the next call to outputStep should be forced.

This is needed by the MultiApp system, if forceOutput is called the next call to outputStep, regardless of the type supplied to the call, will be executed with EXEC_FORCED.

Forced output will NOT override the allowOutput flag.

Definition at line 6787 of file FEProblemBase.C.

Referenced by TransientMultiApp::solveStep().

6788 {
6790 }
void forceOutput()
Indicates that the next call to outputStep should be forced This is private, users should utilize FEP...
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ fvBCsIntegrityCheck() [1/2]

bool FEProblemBase::fvBCsIntegrityCheck ( ) const
inlineinherited
Returns
whether to perform a boundary condition integrity check for finite volume

Definition at line 2311 of file FEProblemBase.h.

2311 { return _fv_bcs_integrity_check; }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ fvBCsIntegrityCheck() [2/2]

void FEProblemBase::fvBCsIntegrityCheck ( bool  fv_bcs_integrity_check)
inlineinherited
Parameters
fv_bcs_integrity_checkWhether to perform a boundary condition integrity check for finite volume

Definition at line 3315 of file FEProblemBase.h.

3316 {
3318  // the user has requested that we don't check integrity so we will honor that
3319  return;
3320 
3321  _fv_bcs_integrity_check = fv_bcs_integrity_check;
3322 }
bool _fv_bcs_integrity_check
Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset...

◆ geomSearchData()

virtual GeometricSearchData& FEProblemBase::geomSearchData ( )
inlineoverridevirtualinherited

◆ getActiveElementalMooseVariables()

const std::set< MooseVariableFEBase * > & SubProblem::getActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Get the MOOSE variables to be reinited on each element.

Parameters
tidThe thread id

Definition at line 454 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), FEProblemBase::prepareMaterials(), and SystemBase::reinitElem().

455 {
457 }
std::vector< std::set< MooseVariableFieldBase * > > _active_elemental_moose_variables
This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem) ...
Definition: SubProblem.h:1075

◆ getActiveFEVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 390 of file SubProblem.C.

391 {
393 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_matrix_tags
Definition: SubProblem.h:1081

◆ getActiveFEVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveFEVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 396 of file SubProblem.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

397 {
399 }
std::vector< std::set< TagID > > _active_fe_var_coupleable_vector_tags
Definition: SubProblem.h:1083

◆ getActiveScalarVariableCoupleableMatrixTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableMatrixTags ( const THREAD_ID  tid) const
inherited

Definition at line 431 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit().

432 {
434 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_matrix_tags
Definition: SubProblem.h:1085

◆ getActiveScalarVariableCoupleableVectorTags()

const std::set< TagID > & SubProblem::getActiveScalarVariableCoupleableVectorTags ( const THREAD_ID  tid) const
inherited

Definition at line 437 of file SubProblem.C.

438 {
440 }
std::vector< std::set< TagID > > _active_sc_var_coupleable_vector_tags
Definition: SubProblem.h:1087

◆ getActualFieldVariable()

MooseVariableFieldBase & FEProblemBase::getActualFieldVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariableField which may be in any system.

Implements SubProblem.

Definition at line 5796 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSampleTransfer::execute().

5797 {
5798  for (auto & sys : _solver_systems)
5799  if (sys->hasVariable(var_name))
5800  return sys->getActualFieldVariable<Real>(tid, var_name);
5801  if (_aux->hasVariable(var_name))
5802  return _aux->getActualFieldVariable<Real>(tid, var_name);
5803 
5804  mooseError("Unknown variable " + var_name);
5805 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getArrayVariable()

ArrayMooseVariable & FEProblemBase::getArrayVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested ArrayMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5820 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), and PointwiseRenormalizeVector::PointwiseRenormalizeVector().

5821 {
5822  for (auto & sys : _solver_systems)
5823  if (sys->hasVariable(var_name))
5824  return sys->getFieldVariable<RealEigenVector>(tid, var_name);
5825  if (_aux->hasVariable(var_name))
5826  return _aux->getFieldVariable<RealEigenVector>(tid, var_name);
5827 
5828  mooseError("Unknown variable " + var_name);
5829 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
Eigen::Matrix< Real, Eigen::Dynamic, 1 > RealEigenVector
Definition: MooseTypes.h:146

◆ getAuxiliarySystem()

AuxiliarySystem& FEProblemBase::getAuxiliarySystem ( )
inlineinherited

◆ getAxisymmetricRadialCoord()

unsigned int SubProblem::getAxisymmetricRadialCoord ( ) const
inherited

Returns the desired radial direction for RZ coordinate transformation.

Returns
The coordinate direction for the radial direction

Definition at line 796 of file SubProblem.C.

797 {
798  return mesh().getAxisymmetricRadialCoord();
799 }
virtual MooseMesh & mesh()=0
unsigned int getAxisymmetricRadialCoord() const
Returns the desired radial direction for RZ coordinate transformation.
Definition: MooseMesh.C:4294

◆ getBase()

const std::string& MooseBase::getBase ( ) const
inlineinherited
Returns
The registered base for this object (set via InputParameters::registerBase())

Definition at line 143 of file MooseBase.h.

Referenced by Factory::copyConstruct(), and MooseBase::uniqueParameterName().

143 { return _pars.getBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & getBase() const

◆ getBndMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getBndMaterialPropertyStorage ( )
inlineinherited

Definition at line 1731 of file FEProblemBase.h.

1731 { return _bnd_material_props; }
MaterialPropertyStorage & _bnd_material_props

◆ getCheckedPointerParam()

template<typename T >
T MooseBase::getCheckedPointerParam ( const std::string &  name,
const std::string &  error_string = "" 
) const
inherited

Verifies that the requested parameter exists and is not NULL and returns it to the caller.

The template parameter must be a pointer or an error will be thrown.

Definition at line 428 of file MooseBase.h.

429 {
430  return _pars.getCheckedPointerParam<T>(name, error_string);
431 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
T getCheckedPointerParam(const std::string &name, const std::string &error_string="") const
Verifies that the requested parameter exists and is not NULL and returns it to the caller...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getConsumedPropertyMap()

const std::map< MooseObjectName, std::set< std::string > > & SubProblem::getConsumedPropertyMap ( ) const
inherited

Return the map that tracks the object with consumed material properties.

Definition at line 742 of file SubProblem.C.

Referenced by MaterialPropertyDebugOutput::output().

743 {
745 }
std::map< MooseObjectName, std::set< std::string > > _consumed_material_properties
Definition: SubProblem.h:1185

◆ getControlWarehouse()

ExecuteMooseObjectWarehouse<Control>& FEProblemBase::getControlWarehouse ( )
inlineinherited

Reference to the control logic warehouse.

Definition at line 2103 of file FEProblemBase.h.

Referenced by LibtorchArtificialNeuralNetParameters::initialSetup(), and LibtorchControlValuePostprocessor::initialSetup().

2103 { return _control_warehouse; }
ExecuteMooseObjectWarehouse< Control > _control_warehouse
The control logic warehouse.

◆ getConvergence()

Convergence & FEProblemBase::getConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Gets a Convergence object.

Definition at line 2623 of file FEProblemBase.C.

Referenced by TransientBase::convergedToSteadyState(), FEProblemSolve::convergenceSetup(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), TransientBase::init(), ParsedConvergence::initializeConvergenceSymbol(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

2624 {
2625  auto * const ret = dynamic_cast<Convergence *>(_convergences.getActiveObject(name, tid).get());
2626  if (!ret)
2627  mooseError("The Convergence object '", name, "' does not exist.");
2628 
2629  return *ret;
2630 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
Base class for convergence criteria.
Definition: Convergence.h:21
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getConvergenceObjects()

const std::vector< std::shared_ptr< Convergence > > & FEProblemBase::getConvergenceObjects ( const THREAD_ID  tid = 0) const
virtualinherited

Gets the Convergence objects.

Definition at line 2633 of file FEProblemBase.C.

2634 {
2635  return _convergences.getActiveObjects(tid);
2636 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse

◆ getCoordSystem()

Moose::CoordinateSystemType SubProblem::getCoordSystem ( SubdomainID  sid) const
inherited

Definition at line 1278 of file SubProblem.C.

Referenced by BlockRestrictable::getBlockCoordSystem(), MultiApp::getBoundingBox(), Assembly::reinitLowerDElem(), Assembly::reinitNeighborLowerDElem(), and Assembly::setCoordinateTransformation().

1279 {
1280  return mesh().getCoordSystem(sid);
1281 }
virtual MooseMesh & mesh()=0
Moose::CoordinateSystemType getCoordSystem(SubdomainID sid) const
Get the coordinate system type, e.g.
Definition: MooseMesh.C:4175

◆ getCurrentAlgebraicBndNodeRange()

const ConstBndNodeRange & FEProblemBase::getCurrentAlgebraicBndNodeRange ( )
inherited

Definition at line 9451 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::setInitialSolution().

9452 {
9454  return *_mesh.getBoundaryNodeRange();
9455 
9457 }
MooseMesh & _mesh
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289

◆ getCurrentAlgebraicElementRange()

const ConstElemRange & FEProblemBase::getCurrentAlgebraicElementRange ( )
inherited

These are the element and nodes that contribute to the jacobian and residual for this local processor.

getCurrentAlgebraicElementRange() returns the element range that contributes to the system getCurrentAlgebraicNodeRange() returns the node range that contributes to the system getCurrentAlgebraicBndNodeRange returns the boundary node ranges that contributes to the system

Definition at line 9435 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), and NonlinearSystemBase::computeScaling().

9436 {
9439 
9441 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1238
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range
MooseMesh & _mesh

◆ getCurrentAlgebraicNodeRange()

const ConstNodeRange & FEProblemBase::getCurrentAlgebraicNodeRange ( )
inherited

Definition at line 9443 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

9444 {
9446  return *_mesh.getLocalNodeRange();
9447 
9449 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range
libMesh::ConstNodeRange * getLocalNodeRange()
Definition: MooseMesh.C:1275
MooseMesh & _mesh

◆ getCurrentExecuteOnFlag()

const ExecFlagType & FEProblemBase::getCurrentExecuteOnFlag ( ) const
inherited

Return/set the current execution flag.

Returns EXEC_NONE when not being executed.

See also
FEProblemBase::execute

Definition at line 4639 of file FEProblemBase.C.

Referenced by MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), MultiAppGeneralFieldTransfer::closestToPosition(), MultiAppGeneralFieldNearestLocationTransfer::computeNumSources(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), NearestPositionsDivision::divisionIndex(), PositionsFunctorValueSampler::execute(), PIDTransientControl::execute(), Terminator::execute(), Control::getControllableParameterByName(), Material::getMaterialByName(), MultiAppGeneralFieldNearestLocationTransfer::getNumDivisions(), NumPositions::getValue(), PositionsFunctorValueSampler::initialize(), DistributedPositions::initialize(), TransformedPositions::initialize(), ParsedDownSelectionPositions::initialize(), MultiAppGeneralFieldTransfer::locatePointReceivers(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), NonlinearThread::printGeneralExecutionInformation(), MultiApp::restore(), SolutionInvalidityOutput::shouldOutput(), ElementReporter::shouldStore(), NodalReporter::shouldStore(), GeneralReporter::shouldStore(), and WebServerControl::startServer().

4640 {
4641  return _current_execute_on_flag;
4642 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ getCurrentICState()

unsigned short FEProblemBase::getCurrentICState ( )
inherited

Retrieves the current initial condition state.

Returns
current initial condition state

Definition at line 9494 of file FEProblemBase.C.

Referenced by ComputeInitialConditionThread::operator()().

9495 {
9496  return _current_ic_state;
9497 }
unsigned short _current_ic_state

◆ getDataFileName()

std::string DataFileInterface::getDataFileName ( const std::string &  param) const
inherited

Deprecated method.

The data file paths are now automatically set within the InputParameters object, so using getParam<DataFileName>("param_name") is now sufficient.

Definition at line 21 of file DataFileInterface.C.

22 {
23  _parent.mooseDeprecated("getDataFileName() is deprecated. The file path is now directly set "
24  "within the InputParameters.\nUse getParam<DataFileName>(\"",
25  param,
26  "\") instead.");
27  return _parent.getParam<DataFileName>(param);
28 }
const T & getParam(const std::string &name) const
Retrieve a parameter for the object.
Definition: MooseBase.h:384
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const ParallelParamObject & _parent

◆ getDataFileNameByName()

std::string DataFileInterface::getDataFileNameByName ( const std::string &  relative_path) const
inherited

Deprecated method.

Use getDataFilePath() instead.

Definition at line 31 of file DataFileInterface.C.

32 {
33  _parent.mooseDeprecated("getDataFileNameByName() is deprecated. Use getDataFilePath(\"",
34  relative_path,
35  "\") instead.");
36  return getDataFilePath(relative_path);
37 }
std::string getDataFilePath(const std::string &relative_path) const
Returns the path of a data file for a given relative file path.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
const ParallelParamObject & _parent

◆ getDataFilePath()

std::string DataFileInterface::getDataFilePath ( const std::string &  relative_path) const
inherited

Returns the path of a data file for a given relative file path.

This can be used for hardcoded datafile names and will search the same locations as getDataFileName

Definition at line 40 of file DataFileInterface.C.

Referenced by DataFileInterface::getDataFileNameByName().

41 {
42  // This should only ever be used with relative paths. There is no point to
43  // use this search path with an absolute path.
44  if (std::filesystem::path(relative_path).is_absolute())
45  _parent.mooseWarning("While using getDataFilePath(\"",
46  relative_path,
47  "\"): This API should not be used for absolute paths.");
48 
49  // Throw on error so that if getPath() fails, we can throw an error
50  // with the context of _parent.mooseError()
51  const auto throw_on_error_before = Moose::_throw_on_error;
53  std::optional<std::string> error;
54 
55  // This will search the data paths for this relative path
56  Moose::DataFileUtils::Path found_path;
57  try
58  {
59  found_path = Moose::DataFileUtils::getPath(relative_path);
60  }
61  catch (std::exception & e)
62  {
63  error = e.what();
64  }
65 
66  Moose::_throw_on_error = throw_on_error_before;
67  if (error)
68  _parent.mooseError(*error);
69 
70  mooseAssert(found_path.context == Moose::DataFileUtils::Context::DATA,
71  "Should only ever obtain data");
72  mooseAssert(found_path.data_name, "Should be set");
73 
74  const std::string msg =
75  "Using data file '" + found_path.path + "' from " + *found_path.data_name + " data";
76  _parent.mooseInfo(msg);
77 
78  return found_path.path;
79 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
Context context
Context for the file (where it came from)
Definition: DataFileUtils.h:48
Representation of a data file path.
Definition: DataFileUtils.h:36
Path getPath(std::string path, const std::optional< std::string > &base=std::optional< std::string >())
Get the data path for a given path, searching the registered data.
Definition: DataFileUtils.C:22
std::optional< std::string > data_name
The name of the data registry the file came from (with context == DATA)
Definition: DataFileUtils.h:50
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _throw_on_error
Variable to turn on exceptions during mooseError(), should only be used within MOOSE unit tests or wh...
Definition: Moose.C:780
const ParallelParamObject & _parent

◆ getDiracElements()

void FEProblemBase::getDiracElements ( std::set< const Elem *> &  elems)
overridevirtualinherited

Fills "elems" with the elements that should be looped over for Dirac Kernels.

Implements SubProblem.

Definition at line 2443 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeDiracContributions().

2444 {
2445  // First add in the undisplaced elements
2446  elems = _dirac_kernel_info.getElements();
2447 
2448  if (_displaced_problem)
2449  {
2450  std::set<const Elem *> displaced_elements;
2451  _displaced_problem->getDiracElements(displaced_elements);
2452 
2453  { // Use the ids from the displaced elements to get the undisplaced elements
2454  // and add them to the list
2455  for (const auto & elem : displaced_elements)
2456  elems.insert(_mesh.elemPtr(elem->id()));
2457  }
2458  }
2459 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
std::set< const Elem * > & getElements()
Returns a writeable reference to the _elements container.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049

◆ getDiscreteMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getDiscreteMaterialWarehouse ( ) const
inlineinherited

Definition at line 1954 of file FEProblemBase.h.

1954 { return _discrete_materials; }
MaterialWarehouse _discrete_materials

◆ getDisplacedProblem() [1/2]

virtual std::shared_ptr<const DisplacedProblem> FEProblemBase::getDisplacedProblem ( ) const
inlinevirtualinherited

◆ getDisplacedProblem() [2/2]

virtual std::shared_ptr<DisplacedProblem> FEProblemBase::getDisplacedProblem ( )
inlinevirtualinherited

Definition at line 1673 of file FEProblemBase.h.

1673 { return _displaced_problem; }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ getDistribution()

Distribution & FEProblemBase::getDistribution ( const std::string &  name)
virtualinherited

Definition at line 2693 of file FEProblemBase.C.

Referenced by DistributionInterface::getDistribution(), and DistributionInterface::getDistributionByName().

2694 {
2695  std::vector<Distribution *> objs;
2696  theWarehouse()
2697  .query()
2698  .condition<AttribSystem>("Distribution")
2699  .condition<AttribName>(name)
2700  .queryInto(objs);
2701  if (objs.empty())
2702  mooseError("Unable to find Distribution with name '" + name + "'");
2703  return *(objs[0]);
2704 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getEvaluableElementRange()

const ConstElemRange & FEProblemBase::getEvaluableElementRange ( )
inherited

In general, {evaluable elements} >= {local elements} U {algebraic ghosting elements}.

That is, the number of evaluable elements does NOT necessarily equal to the number of local and algebraic ghosting elements. For example, if using a Lagrange basis for all variables, if a non-local, non-algebraically-ghosted element is surrounded by neighbors which are local or algebraically ghosted, then all the nodal (Lagrange) degrees of freedom associated with the non-local, non-algebraically-ghosted element will be evaluable, and hence that element will be considered evaluable.

getNonlinearEvaluableElementRange() returns the evaluable element range based on the nonlinear system dofmap; getAuxliaryEvaluableElementRange() returns the evaluable element range based on the auxiliary system dofmap; getEvaluableElementRange() returns the element range that is evaluable based on both the nonlinear dofmap and the auxliary dofmap.

Definition at line 831 of file FEProblemBase.C.

Referenced by NodalPatchRecoveryBase::gatherRequestList().

832 {
834  {
835  std::vector<const DofMap *> dof_maps(es().n_systems());
836  for (const auto i : make_range(es().n_systems()))
837  {
838  const auto & sys = es().get_system(i);
839  dof_maps[i] = &sys.get_dof_map();
840  }
842  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
843  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
844  }
846 }
const T_sys & get_system(std::string_view name) const
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
virtual libMesh::EquationSystems & es() override
MooseMesh & _mesh
IntRange< T > make_range(T beg, T end)
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range

◆ getExecutor()

virtual Executor& FEProblemBase::getExecutor ( const std::string &  name)
inlinevirtualinherited

Definition at line 2055 of file FEProblemBase.h.

2055 { return _app.getExecutor(name); }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
Executor * getExecutor() const
Definition: MooseApp.h:328

◆ getFailNextNonlinearConvergenceCheck()

bool FEProblemBase::getFailNextNonlinearConvergenceCheck ( ) const
inlineinherited

Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2443 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), NonlinearSystem::converged(), Moose::PetscSupport::petscNonlinearConverged(), and ComputeResidualFunctor::residual().

bool getFailNextSystemConvergenceCheck() const
Whether it will fail the next system convergence check(s), triggering failed step behavior...

◆ getFailNextSystemConvergenceCheck()

bool FEProblemBase::getFailNextSystemConvergenceCheck ( ) const
inlineinherited

Whether it will fail the next system convergence check(s), triggering failed step behavior.

Definition at line 2445 of file FEProblemBase.h.

Referenced by FEProblemBase::getFailNextNonlinearConvergenceCheck(), and Moose::PetscSupport::petscLinearConverged().

bool _fail_next_system_convergence_check

◆ getFunction()

Function & FEProblemBase::getFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2572 of file FEProblemBase.C.

Referenced by MFEMProblem::addFunction(), FunctionInterface::getFunction(), FunctionInterface::getFunctionByName(), IterationAdaptiveDT::init(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), and ParsedConvergence::initializeFunctionSymbol().

2573 {
2574  // This thread lock is necessary since this method will create functions
2575  // for all threads if one is missing.
2576  Threads::spin_mutex::scoped_lock lock(get_function_mutex);
2577 
2578  if (!hasFunction(name, tid))
2579  {
2580  // If we didn't find a function, it might be a default function, attempt to construct one now
2581  std::istringstream ss(name);
2582  Real real_value;
2583 
2584  // First see if it's just a constant. If it is, build a ConstantFunction
2585  if (ss >> real_value && ss.eof())
2586  {
2587  InputParameters params = _factory.getValidParams("ConstantFunction");
2588  params.set<Real>("value") = real_value;
2589  addFunction("ConstantFunction", ss.str(), params);
2590  }
2591  else
2592  {
2594  std::string vars = "x,y,z,t,NaN,pi,e";
2595  if (fp.Parse(name, vars) == -1) // -1 for success
2596  {
2597  // It parsed ok, so build a MooseParsedFunction
2598  InputParameters params = _factory.getValidParams("ParsedFunction");
2599  params.set<std::string>("expression") = name;
2600  addFunction("ParsedFunction", name, params);
2601  }
2602  }
2603 
2604  // Try once more
2605  if (!hasFunction(name, tid))
2606  mooseError("Unable to find function " + name);
2607  }
2608 
2609  auto * const ret = dynamic_cast<Function *>(_functions.getActiveObject(name, tid).get());
2610  if (!ret)
2611  mooseError("No function named ", name, " of appropriate type");
2612 
2613  return *ret;
2614 }
Base class for function objects.
Definition: Function.h:36
Factory & _factory
The Factory for building objects.
Definition: SubProblem.h:1047
Threads::spin_mutex get_function_mutex
char ** vars
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
virtual void addFunction(const std::string &type, const std::string &name, InputParameters &parameters)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MooseObjectWarehouse< Function > _functions
functions
virtual bool hasFunction(const std::string &name, const THREAD_ID tid=0)

◆ getFunctor()

template<typename T >
const Moose::Functor< T > & SubProblem::getFunctor ( const std::string &  name,
const THREAD_ID  tid,
const std::string &  requestor_name,
bool  requestor_is_ad 
)
inherited
Template Parameters
TThe type that the functor will return when evaluated, e.g. ADReal or Real
Parameters
nameThe name of the functor to retrieve
tidThe thread ID that we are retrieving the functor property for
requestor_nameThe name of the object that is requesting this functor property
requestor_is_adWhether the requesting object is an AD object
Returns
a constant reference to the functor

Definition at line 1214 of file SubProblem.h.

Referenced by FunctorInterface::getFunctorByName().

1218 {
1219  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1220 
1221  // Log the requestor
1222  _functor_to_requestors["wraps_" + name].insert(requestor_name);
1223 
1224  constexpr bool requested_functor_is_ad =
1225  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1226 
1227  auto & functor_to_request_info = _functor_to_request_info[tid];
1228 
1229  // Get the requested functor if we already have it
1230  auto & functors = _functors[tid];
1231  if (auto find_ret = functors.find("wraps_" + name); find_ret != functors.end())
1232  {
1233  if (functors.count("wraps_" + name) > 1)
1234  mooseError("Attempted to get a functor with the name '",
1235  name,
1236  "' but multiple (" + std::to_string(functors.count("wraps_" + name)) +
1237  ") functors match. Make sure that you do not have functor material "
1238  "properties, functions, postprocessors or variables with the same names.");
1239 
1240  auto & [true_functor_is, non_ad_functor, ad_functor] = find_ret->second;
1241  auto & functor_wrapper = requested_functor_is_ad ? *ad_functor : *non_ad_functor;
1242 
1243  auto * const functor = dynamic_cast<Moose::Functor<T> *>(&functor_wrapper);
1244  if (!functor)
1245  mooseError("A call to SubProblem::getFunctor requested a functor named '",
1246  name,
1247  "' that returns the type: '",
1248  libMesh::demangle(typeid(T).name()),
1249  "'. However, that functor already exists and returns a different type: '",
1250  functor_wrapper.returnType(),
1251  "'");
1252 
1253  if (functor->template wrapsType<Moose::NullFunctor<T>>())
1254  // Store for future checking when the actual functor gets added
1255  functor_to_request_info.emplace(name,
1256  std::make_pair(requested_functor_is_ad, requestor_is_ad));
1257  else
1258  {
1259  // We already have the actual functor
1260  if (true_functor_is == SubProblem::TrueFunctorIs::UNSET)
1261  mooseError("We already have the functor; it should not be unset");
1262 
1263  // Check for whether this is a valid request
1264  // We allow auxiliary variables and linear variables to be retrieved as non AD
1265  if (!requested_functor_is_ad && requestor_is_ad &&
1266  true_functor_is == SubProblem::TrueFunctorIs::AD &&
1268  mooseError("The AD object '",
1269  requestor_name,
1270  "' is requesting the functor '",
1271  name,
1272  "' as a non-AD functor even though it is truly an AD functor, which is not "
1273  "allowed, since this may unintentionally drop derivatives.");
1274  }
1275 
1276  return *functor;
1277  }
1278 
1279  // We don't have the functor yet but we could have it in the future. We'll create null functors
1280  // for now
1281  functor_to_request_info.emplace(name, std::make_pair(requested_functor_is_ad, requestor_is_ad));
1282  if constexpr (requested_functor_is_ad)
1283  {
1284  typedef typename MetaPhysicL::RawType<T>::value_type NonADType;
1285  typedef T ADType;
1286 
1287  auto emplace_ret =
1288  functors.emplace("wraps_" + name,
1289  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1290  std::make_unique<Moose::Functor<NonADType>>(
1291  std::make_unique<Moose::NullFunctor<NonADType>>()),
1292  std::make_unique<Moose::Functor<ADType>>(
1293  std::make_unique<Moose::NullFunctor<ADType>>())));
1294 
1295  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1296  ? std::get<2>(emplace_ret->second)
1297  : std::get<1>(emplace_ret->second)));
1298  }
1299  else
1300  {
1301  typedef T NonADType;
1302  typedef typename Moose::ADType<T>::type ADType;
1303 
1304  auto emplace_ret =
1305  functors.emplace("wraps_" + name,
1306  std::make_tuple(SubProblem::TrueFunctorIs::UNSET,
1307  std::make_unique<Moose::Functor<NonADType>>(
1308  std::make_unique<Moose::NullFunctor<NonADType>>()),
1309  std::make_unique<Moose::Functor<ADType>>(
1310  std::make_unique<Moose::NullFunctor<ADType>>())));
1311 
1312  return static_cast<Moose::Functor<T> &>(*(requested_functor_is_ad
1313  ? std::get<2>(emplace_ret->second)
1314  : std::get<1>(emplace_ret->second)));
1315  }
1316 }
std::map< std::string, std::set< std::string > > _functor_to_requestors
The requestors of functors where the key is the prop name and the value is a set of names of requesto...
Definition: SubProblem.h:1157
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::pair< bool, bool > > > _functor_to_request_info
A multimap (for each thread) from unfilled functor requests to whether the requests were for AD funct...
Definition: SubProblem.h:1161
std::string demangle(const char *name)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144
virtual bool hasLinearVariable(const std::string &var_name) const
Whether or not this problem has this linear variable.
Definition: SubProblem.C:802
A functor that serves as a placeholder during the simulation setup phase if a functor consumer reques...
virtual bool hasAuxiliaryVariable(const std::string &var_name) const
Whether or not this problem has this auxiliary variable.
Definition: SubProblem.C:811

◆ getFVInitialConditionWarehouse()

const FVInitialConditionWarehouse& FEProblemBase::getFVInitialConditionWarehouse ( ) const
inlineinherited

Return FVInitialCondition storage.

Definition at line 1758 of file FEProblemBase.h.

Referenced by ComputeFVInitialConditionThread::operator()(), and ComputeFVInitialConditionThread::printGeneralExecutionInformation().

1758 { return _fv_ics; }
FVInitialConditionWarehouse _fv_ics

◆ getFVMatsAndDependencies()

void FEProblemBase::getFVMatsAndDependencies ( SubdomainID  block_id,
std::vector< std::shared_ptr< MaterialBase >> &  face_materials,
std::vector< std::shared_ptr< MaterialBase >> &  neighbor_materials,
std::set< MooseVariableFieldBase *> &  variables,
const THREAD_ID  tid 
)
inherited

Get the materials and variables potentially needed for FV.

Parameters
block_idSubdomainID The subdomain id that we want to retrieve materials for
face_materialsThe face materials container that we will fill
neighbor_materialsThe neighbor materials container that we will fill
variablesThe variables container that we will fill that our materials depend on
tidThe thread id

Definition at line 9130 of file FEProblemBase.C.

9136 {
9137  if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9138  {
9139  auto & this_face_mats =
9141  for (std::shared_ptr<MaterialBase> face_mat : this_face_mats)
9142  if (face_mat->ghostable())
9143  {
9144  face_materials.push_back(face_mat);
9145  auto & var_deps = face_mat->getMooseVariableDependencies();
9146  for (auto * var : var_deps)
9147  {
9148  if (!var->isFV())
9149  mooseError(
9150  "Ghostable materials should only have finite volume variables coupled into them.");
9151  else if (face_mat->hasStatefulProperties())
9152  mooseError("Finite volume materials do not currently support stateful properties.");
9153  variables.insert(var);
9154  }
9155  }
9156  }
9157 
9158  if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
9159  {
9160  auto & this_neighbor_mats =
9162  for (std::shared_ptr<MaterialBase> neighbor_mat : this_neighbor_mats)
9163  if (neighbor_mat->ghostable())
9164  {
9165  neighbor_materials.push_back(neighbor_mat);
9166 #ifndef NDEBUG
9167  auto & var_deps = neighbor_mat->getMooseVariableDependencies();
9168  for (auto * var : var_deps)
9169  {
9170  if (!var->isFV())
9171  mooseError(
9172  "Ghostable materials should only have finite volume variables coupled into them.");
9173  else if (neighbor_mat->hasStatefulProperties())
9174  mooseError("Finite volume materials do not currently support stateful properties.");
9175  auto pr = variables.insert(var);
9176  mooseAssert(!pr.second,
9177  "We should not have inserted any new variables dependencies from our "
9178  "neighbor materials that didn't exist for our face materials");
9179  }
9180 #endif
9181  }
9182  }
9183 }
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialWarehouse _materials

◆ getHitNode()

const hit::Node* MooseBase::getHitNode ( ) const
inlineinherited
Returns
The block-level hit node for this object, if any

Definition at line 132 of file MooseBase.h.

Referenced by FEProblemBase::addAnyRedistributers(), MooseBase::callMooseError(), MooseBase::getHitNode(), and MooseBase::messagePrefix().

132 { return getHitNode(_pars); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const hit::Node * getHitNode() const
Definition: MooseBase.h:132

◆ getIndicatorWarehouse()

const MooseObjectWarehouse<Indicator>& FEProblemBase::getIndicatorWarehouse ( )
inlineinherited

Return indicator/marker storage.

Definition at line 1742 of file FEProblemBase.h.

1742 { return _indicators; }
MooseObjectWarehouse< Indicator > _indicators

◆ getInitialConditionWarehouse()

const InitialConditionWarehouse& FEProblemBase::getInitialConditionWarehouse ( ) const
inlineinherited

Return InitialCondition storage.

Definition at line 1753 of file FEProblemBase.h.

Referenced by ComputeBoundaryInitialConditionThread::onNode(), ComputeInitialConditionThread::operator()(), and ComputeInitialConditionThread::printGeneralExecutionInformation().

1753 { return _ics; }
InitialConditionWarehouse _ics

◆ getInterfaceMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getInterfaceMaterialsWarehouse ( ) const
inlineinherited

Definition at line 1955 of file FEProblemBase.h.

1955 { return _interface_materials; }
MaterialWarehouse _interface_materials

◆ getInternalSideIndicatorWarehouse()

const MooseObjectWarehouse<InternalSideIndicatorBase>& FEProblemBase::getInternalSideIndicatorWarehouse ( )
inlineinherited

Definition at line 1743 of file FEProblemBase.h.

1744  {
1746  }
MooseObjectWarehouse< InternalSideIndicatorBase > _internal_side_indicators

◆ getLinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getLinearConvergenceNames ( ) const
inherited

Gets the linear convergence object name(s).

Definition at line 9239 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscLinearConverged().

9240 {
9242  return *_linear_convergence_names;
9243  mooseError("The linear convergence name(s) have not been set.");
9244 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ getLinearSystem() [1/2]

LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3261 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Moose::compute_linear_system(), ComputeLinearFVGreenGaussGradientFaceThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Moose::PetscSupport::petscSetDefaults(), and FEProblemSolve::solve().

3262 {
3263  mooseAssert(sys_num < _linear_systems.size(),
3264  "System number greater than the number of linear systems");
3265  return *_linear_systems[sys_num];
3266 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystem() [2/2]

const LinearSystem & FEProblemBase::getLinearSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a linear system.

Parameters
sys_numThe number of the linear system

Definition at line 3269 of file FEProblemBase.h.

3270 {
3271  mooseAssert(sys_num < _linear_systems.size(),
3272  "System number greater than the number of linear systems");
3273  return *_linear_systems[sys_num];
3274 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ getLinearSystemNames()

const std::vector<LinearSystemName>& FEProblemBase::getLinearSystemNames ( ) const
inlineinherited
Returns
the linear system names in the problem

Definition at line 2524 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), and MultiSystemSolveObject::MultiSystemSolveObject().

2524 { return _linear_sys_names; }
const std::vector< LinearSystemName > _linear_sys_names
The linear system names.

◆ getLineSearch()

LineSearch* FEProblemBase::getLineSearch ( )
inlineoverridevirtualinherited

getter for the MOOSE line search

Implements SubProblem.

Definition at line 725 of file FEProblemBase.h.

Referenced by DisplacedProblem::getLineSearch().

725 { return _line_search.get(); }
std::shared_ptr< LineSearch > _line_search

◆ getMarkerWarehouse()

const MooseObjectWarehouse<Marker>& FEProblemBase::getMarkerWarehouse ( )
inlineinherited

Definition at line 1747 of file FEProblemBase.h.

1747 { return _markers; }
MooseObjectWarehouse< Marker > _markers

◆ getMaterial()

std::shared_ptr< MaterialBase > FEProblemBase::getMaterial ( std::string  name,
Moose::MaterialDataType  type,
const THREAD_ID  tid = 0,
bool  no_warn = false 
)
inherited

Return a pointer to a MaterialBase object.

If no_warn is true, suppress warning about retrieving a material reference potentially during the material's calculation.

This will return enabled or disabled objects, the main purpose is for iterative materials.

Definition at line 3818 of file FEProblemBase.C.

Referenced by MaterialPropertyInterface::getMaterialByName().

3822 {
3823  switch (type)
3824  {
3826  name += "_neighbor";
3827  break;
3829  name += "_face";
3830  break;
3831  default:
3832  break;
3833  }
3834 
3835  std::shared_ptr<MaterialBase> material = _all_materials[type].getActiveObject(name, tid);
3836  if (!no_warn && material->getParam<bool>("compute") && type == Moose::BLOCK_MATERIAL_DATA)
3837  mooseWarning("You are retrieving a Material object (",
3838  material->name(),
3839  "), but its compute flag is set to true. This indicates that MOOSE is "
3840  "computing this property which may not be desired and produce un-expected "
3841  "results.");
3842 
3843  return material;
3844 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
MaterialWarehouse _all_materials

◆ getMaterialData()

MaterialData & FEProblemBase::getMaterialData ( Moose::MaterialDataType  type,
const THREAD_ID  tid = 0 
) const
inherited

Definition at line 3847 of file FEProblemBase.C.

Referenced by BlockRestrictable::initializeBlockRestrictable(), and FEProblemBase::resizeMaterialData().

3848 {
3849  switch (type)
3850  {
3852  return _material_props.getMaterialData(tid);
3859  }
3860 
3861  mooseError("FEProblemBase::getMaterialData(): Invalid MaterialDataType ", type);
3862 }
MaterialPropertyStorage & _bnd_material_props
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ getMaterialPropertyBlockNames()

std::vector< SubdomainName > SubProblem::getMaterialPropertyBlockNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 489 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBlockNames().

490 {
491  std::set<SubdomainID> blocks = getMaterialPropertyBlocks(prop_name);
492  std::vector<SubdomainName> block_names;
493  block_names.reserve(blocks.size());
494  for (const auto & block_id : blocks)
495  {
496  SubdomainName name;
497  name = mesh().getMesh().subdomain_name(block_id);
498  if (name.empty())
499  {
500  std::ostringstream oss;
501  oss << block_id;
502  name = oss.str();
503  }
504  block_names.push_back(name);
505  }
506 
507  return block_names;
508 }
virtual MooseMesh & mesh()=0
char ** blocks
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
std::string & subdomain_name(subdomain_id_type id)
virtual std::set< SubdomainID > getMaterialPropertyBlocks(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:473

◆ getMaterialPropertyBlocks()

std::set< SubdomainID > SubProblem::getMaterialPropertyBlocks ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 473 of file SubProblem.C.

Referenced by SubProblem::getMaterialPropertyBlockNames(), and MaterialPropertyInterface::getMaterialPropertyBlocks().

474 {
475  std::set<SubdomainID> blocks;
476 
477  for (const auto & it : _map_block_material_props)
478  {
479  const std::set<std::string> & prop_names = it.second;
480  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
481  if (name_it != prop_names.end())
482  blocks.insert(it.first);
483  }
484 
485  return blocks;
486 }
char ** blocks
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ getMaterialPropertyBoundaryIDs()

std::set< BoundaryID > SubProblem::getMaterialPropertyBoundaryIDs ( const std::string &  prop_name)
virtualinherited

Get a vector containing the block ids the material property is defined on.

Definition at line 525 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryIDs(), and SubProblem::getMaterialPropertyBoundaryNames().

526 {
527  std::set<BoundaryID> boundaries;
528 
529  for (const auto & it : _map_boundary_material_props)
530  {
531  const std::set<std::string> & prop_names = it.second;
532  std::set<std::string>::iterator name_it = prop_names.find(prop_name);
533  if (name_it != prop_names.end())
534  boundaries.insert(it.first);
535  }
536 
537  return boundaries;
538 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ getMaterialPropertyBoundaryNames()

std::vector< BoundaryName > SubProblem::getMaterialPropertyBoundaryNames ( const std::string &  prop_name)
virtualinherited

Get a vector of block id equivalences that the material property is defined on.

Definition at line 541 of file SubProblem.C.

Referenced by MaterialPropertyInterface::getMaterialPropertyBoundaryNames().

542 {
543  std::set<BoundaryID> boundaries = getMaterialPropertyBoundaryIDs(prop_name);
544  std::vector<BoundaryName> boundary_names;
545  boundary_names.reserve(boundaries.size());
546  const BoundaryInfo & boundary_info = mesh().getMesh().get_boundary_info();
547 
548  for (const auto & bnd_id : boundaries)
549  {
550  BoundaryName name;
551  if (bnd_id == Moose::ANY_BOUNDARY_ID)
552  name = "ANY_BOUNDARY_ID";
553  else
554  {
555  name = boundary_info.get_sideset_name(bnd_id);
556  if (name.empty())
557  {
558  std::ostringstream oss;
559  oss << bnd_id;
560  name = oss.str();
561  }
562  }
563  boundary_names.push_back(name);
564  }
565 
566  return boundary_names;
567 }
virtual MooseMesh & mesh()=0
virtual std::set< BoundaryID > getMaterialPropertyBoundaryIDs(const std::string &prop_name)
Get a vector containing the block ids the material property is defined on.
Definition: SubProblem.C:525
const BoundaryInfo & get_boundary_info() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
const std::string & get_sideset_name(boundary_id_type id) const
const BoundaryID ANY_BOUNDARY_ID
Definition: MooseTypes.C:21

◆ getMaterialPropertyRegistry()

const MaterialPropertyRegistry& FEProblemBase::getMaterialPropertyRegistry ( ) const
inlineinherited
Returns
A reference to the material property registry

Definition at line 1720 of file FEProblemBase.h.

Referenced by MaterialBase::checkStatefulSanity().

1721  {
1722  return _material_prop_registry;
1723  }
MaterialPropertyRegistry _material_prop_registry

◆ getMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getMaterialPropertyStorage ( )
inlineinherited

Return a reference to the material property storage.

Returns
A const reference to the material property storage

Definition at line 1730 of file FEProblemBase.h.

1730 { return _material_props; }
MaterialPropertyStorage & _material_props

◆ getMaterialWarehouse()

const MaterialWarehouse& FEProblemBase::getMaterialWarehouse ( ) const
inlineinherited

◆ getMatrixTagID()

TagID SubProblem::getMatrixTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 342 of file SubProblem.C.

Referenced by Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), DisplacedProblem::getMatrixTagID(), TaggingInterface::TaggingInterface(), and TaggingInterface::useMatrixTag().

343 {
344  auto tag_name_upper = MooseUtils::toUpper(tag_name);
345 
346  if (!matrixTagExists(tag_name))
347  mooseError("Matrix tag: ",
348  tag_name,
349  " does not exist. ",
350  "If this is a TimeKernel then this may have happened because you didn't "
351  "specify a Transient Executioner.");
352 
353  return _matrix_tag_name_to_tag_id.at(tag_name_upper);
354 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:328

◆ getMatrixTags()

virtual std::map<TagName, TagID>& SubProblem::getMatrixTags ( )
inlinevirtualinherited

Return all matrix tags in the system, where a tag is represented by a map from name to ID.

Definition at line 253 of file SubProblem.h.

Referenced by NonlinearSystemBase::computeJacobian(), FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), NonlinearSystemBase::computeJacobianBlocks(), EigenProblem::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

253 { return _matrix_tag_name_to_tag_id; }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041

◆ getMaxQps()

unsigned int FEProblemBase::getMaxQps ( ) const
inherited
Returns
The maximum number of quadrature points in use on any element in this problem.

Definition at line 1589 of file FEProblemBase.C.

Referenced by MaterialBase::getMaxQps(), MaterialPropertyInterface::getMaxQps(), FEProblemBase::initialSetup(), FEProblemBase::reinitDirac(), Material::subdomainSetup(), and FEProblemBase::updateMaxQps().

1590 {
1592  mooseError("Max QPS uninitialized");
1593  return _max_qps;
1594 }
auto max(const L &left, const R &right)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
unsigned int _max_qps
Maximum number of quadrature points used in the problem.

◆ getMaxScalarOrder()

Order FEProblemBase::getMaxScalarOrder ( ) const
inherited
Returns
The maximum order for all scalar variables in this problem's systems.

Definition at line 1597 of file FEProblemBase.C.

Referenced by ScalarCoupleable::coupledScalarOrder(), ScalarCoupleable::getADDefaultValue(), and ScalarCoupleable::getDefaultValue().

1598 {
1599  return _max_scalar_order;
1600 }
libMesh::Order _max_scalar_order
Maximum scalar variable order.

◆ getMeshDivision()

MeshDivision & FEProblemBase::getMeshDivision ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get a MeshDivision.

Definition at line 2654 of file FEProblemBase.C.

Referenced by NestedDivision::NestedDivision().

2655 {
2656  auto * const ret = dynamic_cast<MeshDivision *>(_mesh_divisions.getActiveObject(name, tid).get());
2657  if (!ret)
2658  mooseError("No MeshDivision object named ", name, " of appropriate type");
2659  return *ret;
2660 }
Base class for MeshDivision objects.
Definition: MeshDivision.h:35
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const
MooseObjectWarehouse< MeshDivision > _mesh_divisions
Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the ...
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getMooseApp()

MooseApp& MooseBase::getMooseApp ( ) const
inlineinherited

Get the MooseApp this class is associated with.

Definition at line 83 of file MooseBase.h.

Referenced by ChainControlSetupAction::act(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::advanceState(), ParsedChainControl::buildFunction(), ReporterTransferInterface::checkHasReporterValue(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), Coupleable::checkWritableVar(), ComponentPhysicsInterface::ComponentPhysicsInterface(), Coupleable::Coupleable(), MortarData::createMortarInterface(), EigenProblem::doFreeNonlinearPowerIterations(), Terminator::execute(), FEProblemSolve::FEProblemSolve(), SolutionInvalidInterface::flagInvalidSolutionInternal(), ChainControl::getChainControlDataSystem(), DefaultConvergenceBase::getSharedExecutionerParam(), ChainControlDataPostprocessor::initialSetup(), MaterialPropertyInterface::MaterialPropertyInterface(), MooseVariableDataFV< OutputType >::MooseVariableDataFV(), ProgressOutput::output(), PetscOutputInterface::petscLinearOutput(), PetscOutputInterface::petscNonlinearOutput(), PetscOutputInterface::PetscOutputInterface(), PostprocessorInterface::postprocessorsAdded(), MultiApp::preTransfer(), Reporter::Reporter(), ReporterInterface::reportersAdded(), MultiApp::restore(), and VectorPostprocessorInterface::vectorPostprocessorsAdded().

83 { return _app; }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353

◆ getMortarInterface() [1/2]

const AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
) const
inherited

Return the undisplaced or displaced mortar generation object associated with the provided boundaries and subdomains.

Definition at line 7909 of file FEProblemBase.C.

7913 {
7915  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
7916 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterface() [2/2]

AutomaticMortarGeneration & FEProblemBase::getMortarInterface ( const std::pair< BoundaryID, BoundaryID > &  primary_secondary_boundary_pair,
const std::pair< SubdomainID, SubdomainID > &  primary_secondary_subdomain_pair,
bool  on_displaced 
)
inherited

Definition at line 7919 of file FEProblemBase.C.

7923 {
7925  primary_secondary_boundary_pair, primary_secondary_subdomain_pair, on_displaced);
7926 }
const AutomaticMortarGeneration & getMortarInterface(const std::pair< BoundaryID, BoundaryID > &boundary_key, const std::pair< SubdomainID, SubdomainID > &, bool on_displaced) const
Getter to retrieve the AutomaticMortarGeneration object corresponding to the boundary and subdomain k...
Definition: MortarData.C:116
MortarData _mortar_data

◆ getMortarInterfaces()

const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & FEProblemBase::getMortarInterfaces ( bool  on_displaced) const
inherited

Definition at line 7929 of file FEProblemBase.C.

Referenced by FEProblemBase::computeUserObjectsInternal(), and NonlinearSystemBase::initialSetup().

7930 {
7931  return _mortar_data.getMortarInterfaces(on_displaced);
7932 }
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, AutomaticMortarGeneration > & getMortarInterfaces(bool on_displaced) const
Return all automatic mortar generation objects on either the displaced or undisplaced mesh...
Definition: MortarData.h:73
MortarData _mortar_data

◆ getMultiApp()

std::shared_ptr< MultiApp > FEProblemBase::getMultiApp ( const std::string &  multi_app_name) const
inherited

Get a MultiApp object by name.

Definition at line 5390 of file FEProblemBase.C.

Referenced by FEProblemBase::addTransfer(), MultiAppPositions::initialize(), and MultiAppTransfer::MultiAppTransfer().

5391 {
5392  return _multi_apps.getObject(multi_app_name);
5393 }
std::shared_ptr< T > getObject(const std::string &name, THREAD_ID tid=0) const
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getMultiAppFixedPointConvergenceName()

const ConvergenceName & FEProblemBase::getMultiAppFixedPointConvergenceName ( ) const
inherited

Gets the MultiApp fixed point convergence object name.

Definition at line 9247 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultMultiAppFixedPointConvergence(), FixedPointSolve::examineFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), SteffensenSolve::initialSetup(), FixedPointSolve::initialSetup(), FixedPointSolve::solve(), and FixedPointSolve::solveStep().

9248 {
9251  else
9252  mooseError("The fixed point convergence name has not been set.");
9253 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getMultiAppTransferWarehouse()

const ExecuteMooseObjectWarehouse< Transfer > & FEProblemBase::getMultiAppTransferWarehouse ( Transfer::DIRECTION  direction) const
inherited

Return the complete warehouse for MultiAppTransfer object for the given direction.

Definition at line 5485 of file FEProblemBase.C.

5486 {
5487  if (direction == MultiAppTransfer::TO_MULTIAPP)
5488  return _to_multi_app_transfers;
5489  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5491  else
5493 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getMultiAppWarehouse()

ExecuteMooseObjectWarehouse<MultiApp>& FEProblemBase::getMultiAppWarehouse ( )
inlineinherited

Definition at line 2127 of file FEProblemBase.h.

Referenced by MooseApp::errorCheck().

2127 { return _multi_apps; }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ getNeighborMaterialPropertyStorage()

const MaterialPropertyStorage& FEProblemBase::getNeighborMaterialPropertyStorage ( )
inlineinherited

Definition at line 1732 of file FEProblemBase.h.

1733  {
1734  return _neighbor_material_props;
1735  }
MaterialPropertyStorage & _neighbor_material_props

◆ getNonlinearConvergenceNames()

const std::vector< ConvergenceName > & FEProblemBase::getNonlinearConvergenceNames ( ) const
inherited

Gets the nonlinear system convergence object name(s).

Definition at line 9215 of file FEProblemBase.C.

Referenced by ReferenceResidualProblem::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), FEProblemSolve::convergenceSetup(), and Moose::PetscSupport::petscNonlinearConverged().

9216 {
9219  mooseError("The nonlinear system convergence name(s) have not been set.");
9220 }
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getNonlinearEvaluableElementRange()

const ConstElemRange & FEProblemBase::getNonlinearEvaluableElementRange ( )
inherited

Definition at line 849 of file FEProblemBase.C.

Referenced by ElemSideNeighborLayersTester::execute().

850 {
852  {
853  std::vector<const DofMap *> dof_maps(_nl.size());
854  for (const auto i : index_range(dof_maps))
855  dof_maps[i] = &_nl[i]->dofMap();
857  std::make_unique<ConstElemRange>(_mesh.getMesh().multi_evaluable_elements_begin(dof_maps),
858  _mesh.getMesh().multi_evaluable_elements_end(dof_maps));
859  }
860 
862 }
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
MooseMesh & _mesh
auto index_range(const T &sizable)

◆ getNonlinearSystem()

NonlinearSystem & FEProblemBase::getNonlinearSystem ( const unsigned int  sys_num)
virtualinherited

Reimplemented in FEProblem.

Definition at line 2669 of file FEProblemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), and PNGOutput::makeMeshFunc().

2670 {
2671  mooseDeprecated("FEProblemBase::getNonlinearSystem() is deprecated, please use "
2672  "FEProblemBase::getNonlinearSystemBase() \n");
2673 
2674  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
2675  auto nl_sys = std::dynamic_pointer_cast<NonlinearSystem>(_nl[sys_num]);
2676 
2677  if (!nl_sys)
2678  mooseError("This is not a NonlinearSystem");
2679 
2680  return *nl_sys;
2681 }
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
Nonlinear system to be solved.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getNonlinearSystemBase() [1/2]

NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num)
inlineinherited

Definition at line 3217 of file FEProblemBase.h.

Referenced by IterationAdaptiveDT::acceptStep(), Adaptivity::adaptMesh(), DisplacedProblem::addTimeIntegrator(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), Eigenvalue::checkIntegrity(), PseudoTimestep::currentResidualNorm(), DisplacedProblem::DisplacedProblem(), AB2PredictorCorrector::estimateTimeError(), VariableResidual::execute(), MatrixSymmetryCheck::execute(), GreaterThanLessThanPostprocessor::execute(), Executioner::Executioner(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NumResidualEvaluations::getValue(), Residual::getValue(), Adaptivity::init(), ReferenceResidualConvergence::initialSetup(), ActivateElementsUserObjectBase::initSolutions(), Kernel::Kernel(), BoundaryElemIntegrityCheckThread::operator()(), DOFMapOutput::output(), SolutionHistory::output(), ConsoleUtils::outputExecutionInformation(), Console::outputSystemInformation(), Moose::PetscSupport::petscSetDefaults(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Moose::PetscSupport::setLineSearchFromParams(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), AB2PredictorCorrector::step(), DisplacedProblem::syncSolutions(), and Console::writeVariableNorms().

3218 {
3219  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3220  return *_nl[sys_num];
3221 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemBase() [2/2]

const NonlinearSystemBase & FEProblemBase::getNonlinearSystemBase ( const unsigned int  sys_num) const
inlineinherited

Definition at line 3224 of file FEProblemBase.h.

3225 {
3226  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
3227  return *_nl[sys_num];
3228 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ getNonlinearSystemNames()

const std::vector<NonlinearSystemName>& FEProblemBase::getNonlinearSystemNames ( ) const
inlineinherited
Returns
the nolinear system names in the problem

Definition at line 2520 of file FEProblemBase.h.

Referenced by PhysicsBase::initializePhysics(), Console::meshChanged(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputExecutionInformation(), and Console::outputSystemInformation().

2520 { return _nl_sys_names; }
const std::vector< NonlinearSystemName > _nl_sys_names
The nonlinear system names.

◆ getNumCyclesCompleted()

unsigned int FEProblemBase::getNumCyclesCompleted ( )
inlineinherited
Returns
The number of adaptivity cycles completed.

Definition at line 1783 of file FEProblemBase.h.

1783 { return _cycles_completed; }
unsigned int _cycles_completed

◆ getParam() [1/2]

template<typename T >
const T & MooseBase::getParam ( const std::string &  name) const
inherited

Retrieve a parameter for the object.

Parameters
nameThe name of the parameter
Returns
The value of the parameter

Definition at line 384 of file MooseBase.h.

Referenced by CreateDisplacedProblemAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FEProblemBase::addOutput(), DiffusionPhysicsBase::addPostprocessors(), ADNodalKernel::ADNodalKernel(), ArrayParsedAux::ArrayParsedAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), ComponentPhysicsInterface::ComponentPhysicsInterface(), FunctorAux::computeValue(), Console::Console(), FEProblemBase::createTagSolutions(), CutMeshByLevelSetGenerator::CutMeshByLevelSetGenerator(), DebugResidualAux::DebugResidualAux(), AccumulateReporter::declareLateValues(), DerivativeParsedMaterialTempl< is_ad >::DerivativeParsedMaterialTempl(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), EigenKernel::EigenKernel(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), FEProblemSolve::FEProblemSolve(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), ParsedSubdomainGeneratorBase::functionInitialize(), FVInterfaceKernel::FVInterfaceKernel(), BoundaryLayerSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), GeneratedMeshGenerator::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), BlockDeletionGenerator::generate(), BreakMeshByBlockGenerator::generate(), CoarsenBlockGenerator::generate(), MeshExtruderGenerator::generate(), GenericConstantRankTwoTensorTempl< is_ad >::GenericConstantRankTwoTensorTempl(), GenericConstantSymmetricRankTwoTensorTempl< is_ad >::GenericConstantSymmetricRankTwoTensorTempl(), MooseApp::getCheckpointDirectories(), DataFileInterface::getDataFileName(), ExecutorInterface::getExecutor(), GhostingUserObject::GhostingUserObject(), FixedPointIterationAdaptiveDT::init(), TimeSequenceStepper::init(), IterationAdaptiveDT::init(), AdvancedOutput::init(), AttribThread::initFrom(), AttribSysNum::initFrom(), AttribResidualObject::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), Console::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseMesh::MooseMesh(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MultiSystemSolveObject::MultiSystemSolveObject(), NEML2ModelExecutor::NEML2ModelExecutor(), NestedDivision::NestedDivision(), PerfGraphOutput::output(), Console::outputSystemInformation(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedElementDeletionGenerator::ParsedElementDeletionGenerator(), ParsedGenerateNodeset::ParsedGenerateNodeset(), ParsedGenerateSideset::ParsedGenerateSideset(), ParsedMaterialTempl< is_ad >::ParsedMaterialTempl(), ParsedNodeTransformGenerator::ParsedNodeTransformGenerator(), ParsedODEKernel::ParsedODEKernel(), ParsedPostprocessor::ParsedPostprocessor(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), PiecewiseConstantByBlockMaterialTempl< is_ad >::PiecewiseConstantByBlockMaterialTempl(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), Moose::FV::setInterpolationMethod(), SetupMeshAction::setupMesh(), Output::setWallTimeIntervalFromCommandLineParam(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), TimePeriod::TimePeriod(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and VectorOfPostprocessors::VectorOfPostprocessors().

385 {
386  return InputParameters::getParamHelper<T>(name, _pars);
387 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ getParam() [2/2]

template<typename T1 , typename T2 >
std::vector< std::pair< T1, T2 > > MooseBase::getParam ( const std::string &  param1,
const std::string &  param2 
) const
inherited

Retrieve two parameters and provide pair of parameters for the object.

Parameters
param1The name of first parameter
param2The name of second parameter
Returns
Vector of pairs of first and second parameters

Definition at line 421 of file MooseBase.h.

422 {
423  return _pars.get<T1, T2>(param1, param2);
424 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.

◆ getPetscOptions()

Moose::PetscSupport::PetscOptions& FEProblemBase::getPetscOptions ( )
inlineinherited

◆ getPositionsObject()

const Positions & FEProblemBase::getPositionsObject ( const std::string &  name) const
inherited

Get the Positions object by its name.

Parameters
nameThe name of the Positions object being retrieved
Returns
Const reference to the Positions object

Definition at line 4461 of file FEProblemBase.C.

Referenced by DistributedPositions::DistributedPositions(), MultiApp::fillPositions(), ParsedDownSelectionPositions::initialize(), Positions::initialized(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), and TransformedPositions::TransformedPositions().

4462 {
4463  std::vector<Positions *> objs;
4464  theWarehouse()
4465  .query()
4466  .condition<AttribSystem>("UserObject")
4467  .condition<AttribName>(name)
4468  .queryInto(objs);
4469  if (objs.empty())
4470  mooseError("Unable to find Positions object with name '" + name + "'");
4471  mooseAssert(objs.size() == 1, "Should only find one Positions");
4472  return *(objs[0]);
4473 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getPostprocessorValueByName()

const PostprocessorValue & FEProblemBase::getPostprocessorValueByName ( const PostprocessorName &  name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the value associated with a Postprocessor that exists.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for retrieving values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4495 of file FEProblemBase.C.

Referenced by MFEMProblem::addPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appPostprocessorValue(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppPostprocessorTransfer::execute(), EigenProblem::formNorm(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializePostprocessorSymbol(), EigenExecutionerBase::inversePowerIteration(), Exodus::outputPostprocessors(), TableOutput::outputPostprocessorsRow(), EigenProblem::postScaleEigenVector(), and TableOutput::shouldOutputPostprocessorsRow().

4497 {
4499  t_index);
4500 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ getRegularMaterialsWarehouse()

const MaterialWarehouse& FEProblemBase::getRegularMaterialsWarehouse ( ) const
inlineinherited

Definition at line 1953 of file FEProblemBase.h.

Referenced by Moose::Mortar::setupMortarMaterials().

1953 { return _materials; }
MaterialWarehouse _materials

◆ getRenamedParam()

template<typename T >
const T & MooseBase::getRenamedParam ( const std::string &  old_name,
const std::string &  new_name 
) const
inherited

Retrieve a renamed parameter for the object.

This helper makes sure we check both names before erroring, and that only one parameter is passed to avoid silent errors

Parameters
old_namethe old name for the parameter
new_namethe new name for the parameter

Definition at line 398 of file MooseBase.h.

399 {
400  // Most important: accept new parameter
401  if (isParamSetByUser(new_name) && !isParamValid(old_name))
402  return getParam<T>(new_name);
403  // Second most: accept old parameter
404  if (isParamValid(old_name) && !isParamSetByUser(new_name))
405  return getParam<T>(old_name);
406  // Third most: accept default for new parameter
407  if (isParamValid(new_name) && !isParamValid(old_name))
408  return getParam<T>(new_name);
409  // Refuse: no default, no value passed
410  if (!isParamValid(old_name) && !isParamValid(new_name))
411  mooseError("parameter '" + new_name +
412  "' is being retrieved without being set.\nDid you misspell it?");
413  // Refuse: both old and new parameters set by user
414  else
415  mooseError("Parameter '" + new_name + "' may not be provided alongside former parameter '" +
416  old_name + "'");
417 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195
bool isParamSetByUser(const std::string &name) const
Test if the supplied parameter is set by a user, as opposed to not set or set to default.
Definition: MooseBase.h:201

◆ getReporterData() [1/2]

const ReporterData& FEProblemBase::getReporterData ( ) const
inlineinherited

Provides const access the ReporterData object.

NOTE: There is a private non-const version of this function that uses a key object only constructable by the correct interfaces. This was done by design to encourage the use of the Reporter and ReporterInterface classes.

Definition at line 1140 of file FEProblemBase.h.

Referenced by ReporterTransferInterface::addReporterTransferMode(), ReporterTransferInterface::checkHasReporterValue(), ReporterTransferInterface::clearVectorReporter(), ConstantPostprocessor::ConstantPostprocessor(), AccumulateReporter::declareAccumulateHelper(), ReporterTransferInterface::declareClone(), AccumulateReporter::declareLateValues(), VectorPostprocessor::declareVector(), ReporterTransferInterface::declareVectorClone(), FEProblemBase::execute(), PostprocessorInterface::getPostprocessorValueByNameInternal(), VectorPostprocessorInterface::getVectorPostprocessorByNameHelper(), VectorPostprocessorInterface::getVectorPostprocessorContextByNameHelper(), PostprocessorInterface::hasPostprocessorByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterPositions::initialize(), ReporterTimes::initialize(), MooseParsedFunctionWrapper::initialize(), ParsedConvergence::initializeSymbols(), JSONOutput::initialSetup(), PostprocessorInterface::isDefaultPostprocessorValueByName(), ReporterDebugOutput::output(), Receiver::Receiver(), ReporterTransferInterface::resizeReporter(), ReporterTransferInterface::sumVectorReporter(), ReporterTransferInterface::transferFromVectorReporter(), ReporterTransferInterface::transferReporter(), and ReporterTransferInterface::transferToVectorReporter().

1140 { return _reporter_data; }
ReporterData _reporter_data

◆ getReporterData() [2/2]

ReporterData& FEProblemBase::getReporterData ( ReporterData::WriteKey  )
inlineinherited

Provides non-const access the ReporterData object that is used to store reporter values.

see ReporterData.h

Definition at line 1147 of file FEProblemBase.h.

1147 { return _reporter_data; }
ReporterData _reporter_data

◆ getRestartableData()

template<typename T , typename... Args>
const T & Restartable::getRestartableData ( const std::string &  data_name) const
protectedinherited

Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but returns a const reference to the object.

Forwarded arguments are not allowed in this case because we assume that the object is restarted and we won't need different constructors to initialize it.

NOTE: This returns a const reference! Make sure you store it in a const reference!

Parameters
data_nameThe name of the data (usually just use the same name as the member variable)

Definition at line 287 of file Restartable.h.

288 {
289  return declareRestartableDataHelper<T>(data_name, nullptr).get();
290 }

◆ getSampler()

Sampler & FEProblemBase::getSampler ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2717 of file FEProblemBase.C.

Referenced by SamplerInterface::getSampler(), and SamplerInterface::getSamplerByName().

2718 {
2719  std::vector<Sampler *> objs;
2720  theWarehouse()
2721  .query()
2722  .condition<AttribSystem>("Sampler")
2723  .condition<AttribThread>(tid)
2724  .condition<AttribName>(name)
2725  .queryInto(objs);
2726  if (objs.empty())
2727  mooseError(
2728  "Unable to find Sampler with name '" + name +
2729  "', if you are attempting to access this object in the constructor of another object then "
2730  "the object being retrieved must occur prior to the caller within the input file.");
2731  return *(objs[0]);
2732 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getScalarVariable()

MooseVariableScalar & FEProblemBase::getScalarVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the scalar variable reference from whichever system contains it.

Implements SubProblem.

Definition at line 5844 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppScalarToAuxScalarTransfer::execute(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), TableOutput::outputScalarVariables(), and Exodus::outputScalarVariables().

5845 {
5846  for (auto & sys : _solver_systems)
5847  if (sys->hasScalarVariable(var_name))
5848  return sys->getScalarVariable(tid, var_name);
5849  if (_aux->hasScalarVariable(var_name))
5850  return _aux->getScalarVariable(tid, var_name);
5851 
5852  mooseError("Unknown variable " + var_name);
5853 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSharedPtr() [1/2]

std::shared_ptr< MooseObject > MooseObject::getSharedPtr ( )
inherited

Get another shared pointer to this object that has the same ownership group.

Wrapper around shared_from_this().

Definition at line 61 of file MooseObject.C.

Referenced by MFEMProblem::addBoundaryCondition(), MFEMProblem::addKernel(), and MFEMProblem::addMFEMSolver().

62 {
63  try
64  {
65  return shared_from_this();
66  }
67  catch (std::bad_weak_ptr &)
68  {
69  mooseError(not_shared_error);
70  }
71 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSharedPtr() [2/2]

std::shared_ptr< const MooseObject > MooseObject::getSharedPtr ( ) const
inherited

Definition at line 74 of file MooseObject.C.

75 {
76  try
77  {
78  return shared_from_this();
79  }
80  catch (std::bad_weak_ptr &)
81  {
82  mooseError(not_shared_error);
83  }
84 }
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSolverSystem() [1/2]

SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num)
inlineinherited

Get non-constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3231 of file FEProblemBase.h.

Referenced by MooseApp::attachRelationshipManagers(), MooseMesh::cacheFaceInfoVariableOwnership(), MooseMesh::cacheFVElementalDoFs(), MultiSystemSolveObject::MultiSystemSolveObject(), ConsoleUtils::outputSolverSystemInformation(), Moose::PetscSupport::petscSetDefaultKSPNormType(), and Moose::PetscSupport::petscSetDefaultPCSide().

3232 {
3233  mooseAssert(sys_num < _solver_systems.size(),
3234  "System number greater than the number of solver systems");
3235  return *_solver_systems[sys_num];
3236 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystem() [2/2]

const SolverSystem & FEProblemBase::getSolverSystem ( unsigned int  sys_num) const
inlineinherited

Get a constant reference to a solver system.

Parameters
sys_numThe number of the solver system

Definition at line 3239 of file FEProblemBase.h.

3240 {
3241  mooseAssert(sys_num < _solver_systems.size(),
3242  "System number greater than the number of solver systems");
3243  return *_solver_systems[sys_num];
3244 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ getSolverSystemNames()

const std::vector<SolverSystemName>& FEProblemBase::getSolverSystemNames ( ) const
inlineinherited
Returns
the solver system names in the problem

Definition at line 2528 of file FEProblemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

2528 { return _solver_sys_names; }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.

◆ getStandardVariable()

MooseVariable & FEProblemBase::getStandardVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested MooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5784 of file FEProblemBase.C.

Referenced by CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), FEProblemBase::projectFunctionOnCustomRange(), LinearFVKernel::requestVariableCellGradient(), and ElementSubdomainModifierBase::storeOverriddenDofValues().

5785 {
5786  for (auto & sys : _solver_systems)
5787  if (sys->hasVariable(var_name))
5788  return sys->getFieldVariable<Real>(tid, var_name);
5789  if (_aux->hasVariable(var_name))
5790  return _aux->getFieldVariable<Real>(tid, var_name);
5791 
5792  mooseError("Unknown variable " + var_name);
5793 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSteadyStateConvergenceName()

const ConvergenceName & FEProblemBase::getSteadyStateConvergenceName ( ) const
inherited

Gets the steady-state detection convergence object name.

Definition at line 9256 of file FEProblemBase.C.

Referenced by FEProblemBase::addDefaultSteadyStateConvergence(), TransientBase::convergedToSteadyState(), and TransientBase::init().

9257 {
9259  return _steady_state_convergence_name.value();
9260  else
9261  mooseError("The steady convergence name has not been set.");
9262 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSystem()

System & FEProblemBase::getSystem ( const std::string &  var_name)
overridevirtualinherited

Returns the equation system containing the variable provided.

Implements SubProblem.

Definition at line 5856 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), MultiApp::appTransferVector(), ElementSubdomainModifierBase::gatherPatchElements(), FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::storeOverriddenDofValues().

5857 {
5858  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
5859  if (var_in_sys)
5860  return _solver_systems[sys_num]->system();
5861  else if (_aux->hasVariable(var_name) || _aux->hasScalarVariable(var_name))
5862  return _aux->system();
5863  else
5864  mooseError("Unable to find a system containing the variable " + var_name);
5865 }
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const override
Determine what solver system the provided variable name lies in.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getSystemBase() [1/3]

const SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num) const
virtualinherited

Get constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 8969 of file FEProblemBase.C.

Referenced by FEProblemBase::addObjectParamsHelper(), PhysicsBase::copyVariablesFromMesh(), FEProblemBase::getSystemBase(), FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::restoreOverriddenDofValues().

8970 {
8971  if (sys_num < _solver_systems.size())
8972  return *_solver_systems[sys_num];
8973 
8974  return *_aux;
8975 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [2/3]

SystemBase & FEProblemBase::getSystemBase ( const unsigned int  sys_num)
virtualinherited

Get non-constant reference to a system in this problem.

Parameters
sys_numThe number of the system

Definition at line 8990 of file FEProblemBase.C.

8991 {
8992  if (sys_num < _solver_systems.size())
8993  return *_solver_systems[sys_num];
8994 
8995  return *_aux;
8996 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getSystemBase() [3/3]

SystemBase & FEProblemBase::getSystemBase ( const std::string &  sys_name)
inherited

Get non-constant reference to a system in this problem.

Parameters
sys_nameThe name of the system

Definition at line 8978 of file FEProblemBase.C.

8979 {
8980  if (std::find(_solver_sys_names.begin(), _solver_sys_names.end(), sys_name) !=
8981  _solver_sys_names.end())
8982  return getSystemBase(solverSysNum(sys_name));
8983  else if (sys_name == "aux0")
8984  return *_aux;
8985  else
8986  mooseError("System '" + sys_name + "' was requested from problem but does not exist.");
8987 }
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
unsigned int solverSysNum(const SolverSystemName &solver_sys_name) const override
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getTimeFromStateArg()

Real FEProblemBase::getTimeFromStateArg ( const Moose::StateArg state) const
inherited

Returns the time associated with the requested state.

Definition at line 6814 of file FEProblemBase.C.

Referenced by Function::evaluate(), Function::evaluateDotHelper(), Function::evaluateGradientHelper(), Function::evaluateHelper(), and ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl().

6815 {
6817  // If we are any iteration type other than time (e.g. nonlinear), then temporally we are still
6818  // in the present time
6819  return time();
6820 
6821  switch (state.state)
6822  {
6823  case 0:
6824  return time();
6825 
6826  case 1:
6827  return timeOld();
6828 
6829  default:
6830  mooseError("Unhandled state ", state.state, " in FEProblemBase::getTimeFromStateArg");
6831  }
6832 }
virtual Real & time() const
SolutionIterationType iteration_type
The solution iteration type, e.g. time or nonlinear.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual Real & timeOld() const
unsigned int state
The state.

◆ getTransfers() [1/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( ExecFlagType  type,
Transfer::DIRECTION  direction 
) const
inherited

Get Transfers by ExecFlagType and direction.

Definition at line 5463 of file FEProblemBase.C.

5464 {
5465  if (direction == MultiAppTransfer::TO_MULTIAPP)
5467  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5469  else
5471 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getTransfers() [2/2]

std::vector< std::shared_ptr< Transfer > > FEProblemBase::getTransfers ( Transfer::DIRECTION  direction) const
inherited

Definition at line 5474 of file FEProblemBase.C.

5475 {
5476  if (direction == MultiAppTransfer::TO_MULTIAPP)
5478  else if (direction == MultiAppTransfer::FROM_MULTIAPP)
5480  else
5482 }
ExecuteMooseObjectWarehouse< Transfer > _from_multi_app_transfers
Transfers executed just after MultiApps to transfer data from them.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< Transfer > _to_multi_app_transfers
Transfers executed just before MultiApps to transfer data to them.
ExecuteMooseObjectWarehouse< Transfer > _between_multi_app_transfers
Transfers executed just before MultiApps to transfer data between them.

◆ getUserObject()

template<class T >
T& FEProblemBase::getUserObject ( const std::string &  name,
unsigned int  tid = 0 
) const
inlineinherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
Returns
Const reference to the user object

Definition at line 1167 of file FEProblemBase.h.

Referenced by ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ReporterTransferInterface::hideVariableHelper(), EigenExecutionerBase::init(), Eigenvalue::init(), IntegralPreservingFunctionIC::initialSetup(), ElementSubdomainModifierBase::initialSetup(), and EigenExecutionerBase::inversePowerIteration().

1168  {
1169  std::vector<T *> objs;
1170  theWarehouse()
1171  .query()
1172  .condition<AttribSystem>("UserObject")
1173  .condition<AttribThread>(tid)
1174  .condition<AttribName>(name)
1175  .queryInto(objs);
1176  if (objs.empty())
1177  mooseError("Unable to find user object with name '" + name + "'");
1178  return *(objs[0]);
1179  }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectBase()

const UserObject & FEProblemBase::getUserObjectBase ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
inherited

Get the user object by its name.

Parameters
nameThe name of the user object being retrieved
tidThe thread of the user object (defaults to 0)
Returns
Const reference to the user object

Definition at line 4445 of file FEProblemBase.C.

Referenced by MFEMProblem::addBoundaryCondition(), MFEMProblem::addKernel(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiApp::appUserObjectBase(), EigenProblem::checkProblemIntegrity(), FunctorAux::computeValue(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectFromFEProblem(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), MultiAppCloneReporterTransfer::initialSetup(), MultiAppConservativeTransfer::initialSetup(), Terminator::initialSetup(), and FunctorIC::value().

4446 {
4447  std::vector<UserObject *> objs;
4448  theWarehouse()
4449  .query()
4450  .condition<AttribSystem>("UserObject")
4451  .condition<AttribThread>(tid)
4452  .condition<AttribName>(name)
4453  .queryInto(objs);
4454  if (objs.empty())
4455  mooseError("Unable to find user object with name '" + name + "'");
4456  mooseAssert(objs.size() == 1, "Should only find one UO");
4457  return *(objs[0]);
4458 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ getUserObjectJacobianVariables()

const std::vector<const MooseVariableFEBase *>& FEProblemBase::getUserObjectJacobianVariables ( const THREAD_ID  tid) const
inlineinherited

Definition at line 309 of file FEProblemBase.h.

Referenced by ComputeUserObjectsThread::onBoundary(), and ComputeUserObjectsThread::onElement().

310  {
311  return _uo_jacobian_moose_vars[tid];
312  }
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars

◆ getUserObjects()

const ExecuteMooseObjectWarehouse<UserObject>& FEProblemBase::getUserObjects ( ) const
inlineinherited

Definition at line 1154 of file FEProblemBase.h.

1155  {
1157  "This function is deprecated, use theWarehouse().query() to construct a query instead");
1158  return _all_user_objects;
1159  }
ExecuteMooseObjectWarehouse< UserObject > _all_user_objects
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310

◆ getVariable() [1/4]

virtual const MooseVariableFieldBase& SubProblem::getVariable
inherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

◆ getVariable() [2/4]

virtual MooseVariableFieldBase& SubProblem::getVariable
inlineinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariable() [3/4]

const MooseVariableFieldBase & FEProblemBase::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
) const
overridevirtualinherited

Returns the variable reference for requested variable which must be of the expected_var_type (Nonlinear vs.

Auxiliary) and expected_var_field_type (standard, scalar, vector). The default values of VAR_ANY and VAR_FIELD_ANY should be used when "any" type of variable is acceptable. Throws an error if the variable in question is not in the expected System or of the expected type.

Implements SubProblem.

Definition at line 5774 of file FEProblemBase.C.

Referenced by FEProblemBase::addFVInitialCondition(), FEProblemBase::addInitialCondition(), EigenProblem::adjustEigenVector(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppGeneralFieldShapeEvaluationTransfer::buildMeshFunctions(), CoupleableMooseVariableDependencyIntermediateInterface::coupledArrayValueByName(), CoupleableMooseVariableDependencyIntermediateInterface::coupledValueByName(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), NodalNormalsPreprocessor::execute(), MultiAppGeometricInterpolationTransfer::execute(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), MultiAppProjectionTransfer::initialSetup(), AdvancedOutput::initShowHideLists(), SolutionUserObjectBase::pointValueWrapper(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MultiAppProjectionTransfer::projectSolution(), MultiAppDofCopyTransfer::transfer(), and MultiAppShapeEvaluationTransfer::transferVariable().

5778 {
5779  return getVariableHelper(
5780  tid, var_name, expected_var_type, expected_var_field_type, _solver_systems, *_aux);
5781 }
MooseVariableFieldBase & getVariableHelper(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type, Moose::VarFieldType expected_var_field_type, const std::vector< T > &nls, const SystemBase &aux) const
Helper function called by getVariable that handles the logic for checking whether Variables of the re...
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVariable() [4/4]

virtual MooseVariableFieldBase& SubProblem::getVariable ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type = Moose::VarKindType::VAR_ANY,
Moose::VarFieldType  expected_var_field_type = Moose::VarFieldType::VAR_FIELD_ANY 
)
inlinevirtualinherited

Definition at line 279 of file SubProblem.h.

283  {
284  return const_cast<MooseVariableFieldBase &>(const_cast<const SubProblem *>(this)->getVariable(
285  tid, var_name, expected_var_type, expected_var_field_type));
286  }
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const =0
Returns the variable reference for requested variable which must be of the expected_var_type (Nonline...
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78

◆ getVariableHelper() [1/2]

template<typename T >
MooseVariableFEBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  systems,
const SystemBase aux 
) const
inherited

Definition at line 818 of file SubProblem.C.

824 {
825  // Eventual return value
826  MooseVariableFEBase * var = nullptr;
827 
828  const auto [var_in_sys, sys_num] = determineSolverSystem(var_name);
829 
830  // First check that the variable is found on the expected system.
831  if (expected_var_type == Moose::VarKindType::VAR_ANY)
832  {
833  if (var_in_sys)
834  var = &(systems[sys_num]->getVariable(tid, var_name));
835  else if (aux.hasVariable(var_name))
836  var = &(aux.getVariable(tid, var_name));
837  else
838  mooseError("Unknown variable " + var_name);
839  }
840  else if (expected_var_type == Moose::VarKindType::VAR_SOLVER && var_in_sys &&
841  systems[sys_num]->hasVariable(var_name))
842  var = &(systems[sys_num]->getVariable(tid, var_name));
843  else if (expected_var_type == Moose::VarKindType::VAR_AUXILIARY && aux.hasVariable(var_name))
844  var = &(aux.getVariable(tid, var_name));
845  else
846  {
847  std::string expected_var_type_string =
848  (expected_var_type == Moose::VarKindType::VAR_SOLVER ? "nonlinear" : "auxiliary");
849  mooseError("No ",
850  expected_var_type_string,
851  " variable named ",
852  var_name,
853  " found. "
854  "Did you specify an auxiliary variable when you meant to specify a nonlinear "
855  "variable (or vice-versa)?");
856  }
857 
858  // Now make sure the var found has the expected field type.
859  if ((expected_var_field_type == Moose::VarFieldType::VAR_FIELD_ANY) ||
860  (expected_var_field_type == var->fieldType()))
861  return *var;
862  else
863  {
864  std::string expected_var_field_type_string =
865  MooseUtils::toLower(Moose::stringify(expected_var_field_type));
866  std::string var_field_type_string = MooseUtils::toLower(Moose::stringify(var->fieldType()));
867 
868  mooseError("No ",
869  expected_var_field_type_string,
870  " variable named ",
871  var_name,
872  " found. "
873  "Did you specify a ",
874  var_field_type_string,
875  " variable when you meant to specify a ",
876  expected_var_field_type_string,
877  " variable?");
878  }
879 }
std::string toLower(const std::string &name)
Convert supplied string to lower case.
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843
virtual std::pair< bool, unsigned int > determineSolverSystem(const std::string &var_name, bool error_if_not_found=false) const =0
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
virtual Moose::VarFieldType fieldType() const =0
Field type of this variable.
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getVariableHelper() [2/2]

template<typename T >
MooseVariableFieldBase& SubProblem::getVariableHelper ( const THREAD_ID  tid,
const std::string &  var_name,
Moose::VarKindType  expected_var_type,
Moose::VarFieldType  expected_var_field_type,
const std::vector< T > &  nls,
const SystemBase aux 
) const
protectedinherited

Helper function called by getVariable that handles the logic for checking whether Variables of the requested type are available.

Referenced by DisplacedProblem::getVariable(), and FEProblemBase::getVariable().

◆ getVariableNames()

std::vector< VariableName > FEProblemBase::getVariableNames ( )
virtualinherited

Returns a list of all the variables in the problem (both from the NL and Aux systems.

Definition at line 8729 of file FEProblemBase.C.

Referenced by EigenProblem::adjustEigenVector(), AdvancedOutput::initAvailableLists(), and ElementSubdomainModifierBase::initialSetup().

8730 {
8731  std::vector<VariableName> names;
8732 
8733  for (auto & sys : _solver_systems)
8734  {
8735  const std::vector<VariableName> & var_names = sys->getVariableNames();
8736  names.insert(names.end(), var_names.begin(), var_names.end());
8737  }
8738 
8739  const std::vector<VariableName> & aux_var_names = _aux->getVariableNames();
8740  names.insert(names.end(), aux_var_names.begin(), aux_var_names.end());
8741 
8742  return names;
8743 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ getVectorPostprocessorObjectByName()

const VectorPostprocessor & FEProblemBase::getVectorPostprocessorObjectByName ( const std::string &  object_name,
const THREAD_ID  tid = 0 
) const
inherited

Return the VPP object given the name.

Parameters
object_nameThe name of the VPP object
Returns
Desired VPP object

This is used by various output objects as well as the scatter value handling.

See also
CSV.C, XMLOutput.C, VectorPostprocessorInterface.C

Definition at line 4539 of file FEProblemBase.C.

Referenced by VectorPostprocessorInterface::isVectorPostprocessorDistributedByName(), CSV::output(), and XMLOutput::outputVectorPostprocessors().

4541 {
4542  return getUserObject<VectorPostprocessor>(object_name, tid);
4543 }

◆ getVectorPostprocessorValueByName()

const VectorPostprocessorValue & FEProblemBase::getVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
std::size_t  t_index = 0 
) const
inherited

Get a read-only reference to the vector value associated with the VectorPostprocessor.

Parameters
object_nameThe name of the VPP object.
vector_nameThe namve of the decalred vector within the object.
Returns
Referent to the vector of data.

Note: This method is only for retrieving values that already exist, the VectorPostprocessor and VectorPostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

Definition at line 4520 of file FEProblemBase.C.

Referenced by HistogramVectorPostprocessor::execute().

4523 {
4525  VectorPostprocessorReporterName(object_name, vector_name), t_index);
4526 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
const T & getReporterValue(const ReporterName &reporter_name, const MooseObject &consumer, const ReporterMode &mode, const std::size_t time_index=0) const
Method for returning read only references to Reporter values.
Definition: ReporterData.h:388
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ getVectorTag()

const VectorTag & SubProblem::getVectorTag ( const TagID  tag_id) const
virtualinherited

Get a VectorTag from a TagID.

Reimplemented in DisplacedProblem.

Definition at line 161 of file SubProblem.C.

Referenced by FEProblemBase::addCachedResidualDirectly(), Assembly::cacheResidual(), Assembly::cacheResidualNodes(), DisplacedProblem::getVectorTag(), SubProblem::getVectorTags(), TaggingInterface::prepareVectorTagInternal(), TaggingInterface::prepareVectorTagLower(), TaggingInterface::prepareVectorTagNeighbor(), FEProblemBase::setResidual(), and FEProblemBase::setResidualNeighbor().

162 {
163  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
164 
165  if (!vectorTagExists(tag_id))
166  mooseError("Vector tag with ID ", tag_id, " does not exist");
167 
168  return _vector_tags[tag_id];
169 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getVectorTagID()

TagID SubProblem::getVectorTagID ( const TagName &  tag_name) const
virtualinherited

Get a TagID from a TagName.

Reimplemented in DisplacedProblem.

Definition at line 203 of file SubProblem.C.

Referenced by Coupleable::coupledVectorTagArrayGradient(), Coupleable::coupledVectorTagArrayGradients(), Coupleable::coupledVectorTagArrayValues(), Coupleable::coupledVectorTagDofValues(), Coupleable::coupledVectorTagGradient(), Coupleable::coupledVectorTagGradients(), Coupleable::coupledVectorTagValues(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), DisplacedProblem::getVectorTagID(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), ReferenceResidualConvergence::ReferenceResidualConvergence(), SolverSystem::setSolution(), TaggingInterface::TaggingInterface(), MultiAppDofCopyTransfer::transfer(), TaggingInterface::useVectorTag(), Coupleable::vectorTagDofValueHelper(), and Coupleable::vectorTagValueHelper().

204 {
205  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
206 
207  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
208  const auto search = _vector_tags_name_map.find(tag_name_upper);
209  if (search != _vector_tags_name_map.end())
210  return search->second;
211 
212  std::string message =
213  tag_name_upper == "TIME"
214  ? ".\n\nThis may occur if "
215  "you have a TimeKernel in your problem but did not specify a transient executioner."
216  : "";
217  mooseError("Vector tag '", tag_name_upper, "' does not exist", message);
218 }
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getVectorTags() [1/2]

std::vector< VectorTag > SubProblem::getVectorTags ( const std::set< TagID > &  tag_ids) const
inherited

Definition at line 172 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), EigenProblem::computeResidualAB(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualInternal(), EigenProblem::computeResidualTag(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), DisplacedProblem::getVectorTags(), SubProblem::numVectorTags(), ComputeMortarFunctor::operator()(), and FEProblemBase::setCurrentResidualVectorTags().

173 {
174  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
175 
176  std::vector<VectorTag> tags;
177  tags.reserve(tag_ids.size());
178  for (const auto & tag_id : tag_ids)
179  tags.push_back(getVectorTag(tag_id));
180  return tags;
181 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161

◆ getVectorTags() [2/2]

const std::vector< VectorTag > & SubProblem::getVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

Return all vector tags, where a tag is represented by a map from name to ID.

Can optionally be limited to a vector tag type.

Reimplemented in DisplacedProblem.

Definition at line 184 of file SubProblem.C.

185 {
186  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
187 
189  return _vector_tags;
190  else
191  return _typed_vector_tags[type];
192 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174

◆ getVectorVariable()

VectorMooseVariable & FEProblemBase::getVectorVariable ( const THREAD_ID  tid,
const std::string &  var_name 
)
overridevirtualinherited

Returns the variable reference for requested VectorMooseVariable which may be in any system.

Implements SubProblem.

Definition at line 5808 of file FEProblemBase.C.

5809 {
5810  for (auto & sys : _solver_systems)
5811  if (sys->hasVariable(var_name))
5812  return sys->getFieldVariable<RealVectorValue>(tid, var_name);
5813  if (_aux->hasVariable(var_name))
5814  return _aux->getFieldVariable<RealVectorValue>(tid, var_name);
5815 
5816  mooseError("Unknown variable " + var_name);
5817 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ getXFEM()

std::shared_ptr<XFEMInterface> FEProblemBase::getXFEM ( )
inlineinherited

Get a pointer to the XFEM controller object.

Definition at line 1800 of file FEProblemBase.h.

1800 { return _xfem; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ ghostedElems()

virtual std::set<dof_id_type>& SubProblem::ghostedElems ( )
inlinevirtualinherited

Return the list of elements that should have their DoFs ghosted to this processor.

Returns
The list

Reimplemented in DisplacedProblem.

Definition at line 672 of file SubProblem.h.

Referenced by SystemBase::augmentSendList(), NearestNodeLocator::findNodes(), DisplacedProblem::ghostedElems(), and NearestNodeLocator::updatePatch().

672 { return _ghosted_elems; }
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093

◆ ghostGhostedBoundaries()

void FEProblemBase::ghostGhostedBoundaries ( )
overridevirtualinherited

Causes the boundaries added using addGhostedBoundary to actually be ghosted.

Implements SubProblem.

Definition at line 2097 of file FEProblemBase.C.

Referenced by DisplacedProblem::ghostGhostedBoundaries(), FEProblemBase::init(), and FEProblemBase::meshChanged().

2098 {
2099  TIME_SECTION("ghostGhostedBoundaries", 3, "Ghosting Ghosted Boundaries");
2100 
2102 
2103  if (_displaced_problem)
2105 }
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem
void ghostGhostedBoundaries()
Actually do the ghosting of boundaries that need to be ghosted to this processor. ...
Definition: MooseMesh.C:3314
MooseMesh * _displaced_mesh

◆ hasActiveElementalMooseVariables()

bool SubProblem::hasActiveElementalMooseVariables ( const THREAD_ID  tid) const
virtualinherited

Whether or not a list of active elemental moose variables has been set.

Returns
True if there has been a list of active elemental moose variables set, False otherwise

Definition at line 460 of file SubProblem.C.

Referenced by SystemBase::prepare(), SystemBase::prepareFace(), and SystemBase::reinitElem().

461 {
463 }
std::vector< unsigned int > _has_active_elemental_moose_variables
Whether or not there is currently a list of active elemental moose variables.
Definition: SubProblem.h:1079

◆ hasActiveMaterialProperties()

bool FEProblemBase::hasActiveMaterialProperties ( const THREAD_ID  tid) const
inherited

Method to check whether or not a list of active material roperties has been set.

This method is called by reinitMaterials to determine whether Material computeProperties methods need to be called. If the return is False, this check prevents unnecessary material property computation

Parameters
tidThe thread id
Returns
True if there has been a list of active material properties set, False otherwise

Definition at line 5976 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::onElement(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsInterface(), and FEProblemBase::reinitMaterialsNeighbor().

5977 {
5978  return _has_active_material_properties[tid];
5979 }
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.

◆ hasAuxiliaryVariable()

bool SubProblem::hasAuxiliaryVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this auxiliary variable.

Definition at line 811 of file SubProblem.C.

Referenced by SubProblem::getFunctor(), and NearestNodeValueAux::NearestNodeValueAux().

812 {
813  return systemBaseAuxiliary().hasVariable(var_name);
814 }
virtual const SystemBase & systemBaseAuxiliary() const =0
Return the auxiliary system object as a base class reference.
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:843

◆ hasBase()

bool MooseBase::hasBase ( ) const
inlineinherited
Returns
Whether or not this object has a registered base (set via InputParameters::registerBase())

Definition at line 138 of file MooseBase.h.

138 { return _pars.hasBase(); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
bool hasBase() const

◆ hasBlockMaterialProperty()

bool SubProblem::hasBlockMaterialProperty ( SubdomainID  block_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 511 of file SubProblem.C.

512 {
513  auto it = _map_block_material_props.find(bid);
514  if (it == _map_block_material_props.end())
515  return false;
516 
517  if (it->second.count(prop_name) > 0)
518  return true;
519  else
520  return false;
521 }
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ hasBoundaryMaterialProperty()

bool SubProblem::hasBoundaryMaterialProperty ( BoundaryID  boundary_id,
const std::string &  prop_name 
)
virtualinherited

Check if a material property is defined on a block.

Definition at line 570 of file SubProblem.C.

571 {
572  auto it = _map_boundary_material_props.find(bid);
573  if (it == _map_boundary_material_props.end())
574  return false;
575 
576  if (it->second.count(prop_name) > 0)
577  return true;
578  else
579  return false;
580 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055

◆ hasConvergence()

bool FEProblemBase::hasConvergence ( const std::string &  name,
const THREAD_ID  tid = 0 
) const
virtualinherited

Returns true if the problem has a Convergence object of the given name.

Definition at line 2617 of file FEProblemBase.C.

Referenced by ParsedConvergence::initializeSymbols().

2618 {
2619  return _convergences.hasActiveObject(name, tid);
2620 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
MooseObjectWarehouse< Convergence > _convergences
convergence warehouse
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasDampers()

bool FEProblemBase::hasDampers ( )
inlineinherited

Whether or not this system has dampers.

Definition at line 1304 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::preInit(), and NonlinearSystem::solve().

1304 { return _has_dampers; }
bool _has_dampers
Whether or not this system has any Dampers associated with it.

◆ hasException()

virtual bool FEProblemBase::hasException ( )
inlinevirtualinherited

Whether or not an exception has occurred.

Definition at line 475 of file FEProblemBase.h.

Referenced by NonlinearSystem::converged(), ThreadedElementLoop< ConstElemPointerRange >::keepGoing(), and ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::keepGoing().

475 { return _has_exception; }
bool _has_exception
Whether or not an exception has occurred.

◆ hasFunction()

bool FEProblemBase::hasFunction ( const std::string &  name,
const THREAD_ID  tid = 0 
)
virtualinherited

Definition at line 2566 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), FunctorIC::FunctorIC(), FEProblemBase::getFunction(), FunctionInterface::hasFunctionByName(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), ParsedConvergence::initializeSymbols(), and MooseParsedFunction::initialSetup().

2567 {
2568  return _functions.hasActiveObject(name, tid);
2569 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.
MooseObjectWarehouse< Function > _functions
functions

◆ hasFunctor()

bool SubProblem::hasFunctor ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor corresponding to name on the thread id tid

Definition at line 1270 of file SubProblem.C.

Referenced by FunctorInterface::isFunctor().

1271 {
1272  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1273  auto & functors = _functors[tid];
1274  return (functors.find("wraps_" + name) != functors.end());
1275 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasFunctorWithType()

template<typename T >
bool SubProblem::hasFunctorWithType ( const std::string &  name,
const THREAD_ID  tid 
) const
inherited

checks whether we have a functor of type T corresponding to name on the thread id tid

Definition at line 1320 of file SubProblem.h.

1321 {
1322  mooseAssert(tid < _functors.size(), "Too large a thread ID");
1323  auto & functors = _functors[tid];
1324 
1325  const auto & it = functors.find("wraps_" + name);
1326  constexpr bool requested_functor_is_ad =
1327  !std::is_same<T, typename MetaPhysicL::RawType<T>::value_type>::value;
1328 
1329  if (it == functors.end())
1330  return false;
1331  else
1332  return dynamic_cast<Moose::Functor<T> *>(
1333  requested_functor_is_ad ? std::get<2>(it->second).get() : std::get<1>(it->second).get());
1334 }
T * get(const std::unique_ptr< T > &u)
The MooseUtils::get() specializations are used to support making forwards-compatible code changes fro...
Definition: MooseUtils.h:1155
This is a wrapper that forwards calls to the implementation, which can be switched out at any time wi...
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::vector< std::multimap< std::string, std::tuple< TrueFunctorIs, std::unique_ptr< Moose::FunctorEnvelopeBase >, std::unique_ptr< Moose::FunctorEnvelopeBase > > > > _functors
A container holding pointers to all the functors in our problem.
Definition: SubProblem.h:1144

◆ hasInitialAdaptivity() [1/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1788 of file FEProblemBase.h.

1788 { return _adaptivity.getInitialSteps() > 0; }
Adaptivity _adaptivity
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98

◆ hasInitialAdaptivity() [2/2]

bool FEProblemBase::hasInitialAdaptivity ( ) const
inlineinherited

Return a Boolean indicating whether initial AMR is turned on.

Definition at line 1793 of file FEProblemBase.h.

1793 { return false; }

◆ hasJacobian()

bool FEProblemBase::hasJacobian ( ) const
inherited

Returns _has_jacobian.

Definition at line 8884 of file FEProblemBase.C.

8885 {
8886  return _has_jacobian;
8887 }
bool _has_jacobian
Indicates if the Jacobian was computed.

◆ hasLinearConvergenceObjects()

bool FEProblemBase::hasLinearConvergenceObjects ( ) const
inherited

Whether we have linear convergence objects.

Definition at line 9223 of file FEProblemBase.C.

Referenced by Moose::PetscSupport::petscSetDefaults().

9224 {
9225  // If false,this means we have not set one, not that we are querying this too early
9226  // TODO: once there is a default linear CV object, error on the 'not set' case
9227  return _linear_convergence_names.has_value();
9228 }
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)

◆ hasLinearVariable()

bool SubProblem::hasLinearVariable ( const std::string &  var_name) const
virtualinherited

Whether or not this problem has this linear variable.

Definition at line 802 of file SubProblem.C.

Referenced by SubProblem::getFunctor().

803 {
804  for (const auto i : make_range(numLinearSystems()))
805  if (systemBaseLinear(i).hasVariable(var_name))
806  return true;
807  return false;
808 }
virtual bool hasVariable(const std::string &var_name) const =0
Whether or not this problem has the variable.
IntRange< T > make_range(T beg, T end)
virtual const SystemBase & systemBaseLinear(const unsigned int sys_num) const =0
Return the linear system object as a base class reference given the system number.
virtual std::size_t numLinearSystems() const =0

◆ hasMortarCoupling()

virtual bool FEProblemBase::hasMortarCoupling ( ) const
inlinevirtualinherited

Whether the simulation has mortar coupling.

Definition at line 2250 of file FEProblemBase.h.

2250 { return _has_mortar; }
bool _has_mortar
Whether the simulation requires mortar coupling.

◆ hasMultiApp()

bool FEProblemBase::hasMultiApp ( const std::string &  name) const
inherited

Definition at line 5384 of file FEProblemBase.C.

5385 {
5386  return _multi_apps.hasActiveObject(multi_app_name);
5387 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObject(const std::string &name, THREAD_ID tid=0) const
Convenience functions for checking/getting specific objects.

◆ hasMultiApps() [1/2]

bool FEProblemBase::hasMultiApps ( ) const
inlineinherited

Returns whether or not the current simulation has any multiapps.

Definition at line 1290 of file FEProblemBase.h.

Referenced by DefaultMultiAppFixedPointConvergence::checkConvergence(), FEProblemBase::checkProblemIntegrity(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), FixedPointIterationAdaptiveDT::init(), and DefaultMultiAppFixedPointConvergence::preExecute().

1290 { return _multi_apps.hasActiveObjects(); }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasMultiApps() [2/2]

bool FEProblemBase::hasMultiApps ( ExecFlagType  type) const
inherited

Definition at line 5378 of file FEProblemBase.C.

5379 {
5380  return _multi_apps[type].hasActiveObjects();
5381 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
bool hasActiveObjects(THREAD_ID tid=0) const

◆ hasNeighborCoupling()

virtual bool FEProblemBase::hasNeighborCoupling ( ) const
inlinevirtualinherited

Whether the simulation has neighbor coupling.

Definition at line 2245 of file FEProblemBase.h.

bool _has_internal_edge_residual_objects
Whether the problem has dgkernels or interface kernels.

◆ hasNonlocalCoupling()

virtual bool FEProblemBase::hasNonlocalCoupling ( ) const
inlineoverridevirtualinherited

Whether the simulation has active nonlocal coupling which should be accounted for in the Jacobian.

For this to return true, there must be at least one active nonlocal kernel or boundary condition

Implements SubProblem.

Definition at line 2507 of file FEProblemBase.h.

Referenced by DisplacedProblem::hasNonlocalCoupling().

2507 { return _has_nonlocal_coupling; }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.

◆ hasPostprocessor()

bool FEProblemBase::hasPostprocessor ( const std::string &  name) const
inherited

Deprecated.

Use hasPostprocessorValueByName

Definition at line 4512 of file FEProblemBase.C.

Referenced by GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl().

4513 {
4514  mooseDeprecated("FEProblemBase::hasPostprocssor is being removed; use "
4515  "hasPostprocessorValueByName instead.");
4517 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
void mooseDeprecated(Args &&... args) const
Definition: MooseBase.h:310
bool hasPostprocessorValueByName(const PostprocessorName &name) const
Whether or not a Postprocessor value exists by a given name.

◆ hasPostprocessorValueByName()

bool FEProblemBase::hasPostprocessorValueByName ( const PostprocessorName &  name) const
inherited

Whether or not a Postprocessor value exists by a given name.

Parameters
nameThe name of the Postprocessor
Returns
True if a Postprocessor value exists

Note: You should prioritize the use of PostprocessorInterface::hasPostprocessor and PostprocessorInterface::hasPostprocessorByName over this method when possible.

Definition at line 4489 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), FunctorAux::computeValue(), FunctorExtremaPositions::FunctorExtremaPositions(), FEProblemBase::hasPostprocessor(), MooseParsedFunction::initialSetup(), and FunctorIC::value().

4490 {
4492 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143
bool hasReporterValue(const ReporterName &reporter_name) const
Return True if a Reporter value with the given type and name have been created.
Definition: ReporterData.h:445

◆ hasScalarVariable()

bool FEProblemBase::hasScalarVariable ( const std::string &  var_name) const
overridevirtualinherited

Returns a Boolean indicating whether any system contains a variable with the name provided.

Implements SubProblem.

Definition at line 5832 of file FEProblemBase.C.

Referenced by FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), EigenProblem::adjustEigenVector(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), AdvancedOutput::initAvailableLists(), MooseParsedFunctionWrapper::initialize(), ChainControlParsedFunctionWrapper::initializeFunctionInputs(), AdvancedOutput::initShowHideLists(), and Split::setup().

5833 {
5834  for (auto & sys : _solver_systems)
5835  if (sys->hasScalarVariable(var_name))
5836  return true;
5837  if (_aux->hasScalarVariable(var_name))
5838  return true;
5839 
5840  return false;
5841 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ hasScalingVector()

void SubProblem::hasScalingVector ( const unsigned int  nl_sys_num)
inherited

Tells this problem that the assembly associated with the given nonlinear system number involves a scaling vector.

Definition at line 1170 of file SubProblem.C.

Referenced by SystemBase::addScalingVector().

1171 {
1172  for (const THREAD_ID tid : make_range(libMesh::n_threads()))
1173  assembly(tid, nl_sys_num).hasScalingVector();
1174 }
unsigned int n_threads()
void hasScalingVector()
signals this object that a vector containing variable scaling factors should be used when doing resid...
Definition: Assembly.C:4574
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
unsigned int THREAD_ID
Definition: MooseTypes.h:209

◆ hasSetMultiAppFixedPointConvergenceName()

bool FEProblemBase::hasSetMultiAppFixedPointConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the fixed point convergence name.

Definition at line 667 of file FEProblemBase.h.

668  {
669  return _multiapp_fixed_point_convergence_name.has_value();
670  }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ hasSetSteadyStateConvergenceName()

bool FEProblemBase::hasSetSteadyStateConvergenceName ( ) const
inlineinherited

Returns true if the problem has set the steady-state detection convergence name.

Definition at line 672 of file FEProblemBase.h.

673  {
674  return _steady_state_convergence_name.has_value();
675  }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ hasSolverVariable()

bool FEProblemBase::hasSolverVariable ( const std::string &  var_name) const
inherited

Definition at line 5764 of file FEProblemBase.C.

5765 {
5766  for (auto & sys : _solver_systems)
5767  if (sys->hasVariable(var_name))
5768  return true;
5769 
5770  return false;
5771 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ hasTimeIntegrator()

bool FEProblemBase::hasTimeIntegrator ( ) const
inlineinherited

Returns whether or not this Problem has a TimeIntegrator.

Definition at line 2036 of file FEProblemBase.h.

Referenced by TransientBase::setupTimeIntegrator().

2036 { return _has_time_integrator; }
bool _has_time_integrator
Indicates whether or not this executioner has a time integrator (during setup)

◆ hasUOAuxStateCheck()

bool FEProblemBase::hasUOAuxStateCheck ( ) const
inlineinherited

Whether or not MOOSE will perform a user object/auxiliary kernel state check.

Definition at line 189 of file FEProblemBase.h.

189 { return _uo_aux_state_check; }
const bool _uo_aux_state_check
Whether or not checking the state of uo/aux evaluation.

◆ hasUserObject()

bool FEProblemBase::hasUserObject ( const std::string &  name) const
inherited

Check if there if a user object of given name.

Parameters
nameThe name of the user object being checked for
Returns
true if the user object exists, false otherwise

Definition at line 4476 of file FEProblemBase.C.

Referenced by MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addPostprocessor(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), FunctorAux::computeValue(), DistributedPositions::DistributedPositions(), UserObjectInterface::hasUserObjectByName(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), ReporterTransferInterface::hideVariableHelper(), ParsedDownSelectionPositions::initialize(), and TransformedPositions::TransformedPositions().

4477 {
4478  std::vector<UserObject *> objs;
4479  theWarehouse()
4480  .query()
4481  .condition<AttribSystem>("UserObject")
4482  .condition<AttribThread>(0)
4483  .condition<AttribName>(name)
4484  .queryInto(objs);
4485  return !objs.empty();
4486 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
TheWarehouse & theWarehouse() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ hasVariable()

bool FEProblemBase::hasVariable ( const std::string &  var_name) const
overridevirtualinherited

Whether or not this problem has the variable.

Implements SubProblem.

Definition at line 5752 of file FEProblemBase.C.

Referenced by DiffusionCG::addFEBCs(), DiffusionCG::addFEKernels(), FEProblemBase::addFVInitialCondition(), DiffusionFV::addFVKernels(), FEProblemBase::addInitialCondition(), FEProblemBase::addObjectParamsHelper(), MultiAppTransfer::checkVariable(), FunctorIC::FunctorIC(), LazyCoupleable::init(), AdvancedOutput::initAvailableLists(), MooseParsedFunction::initialSetup(), AdvancedOutput::initShowHideLists(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), and Split::setup().

5753 {
5754  for (auto & sys : _solver_systems)
5755  if (sys->hasVariable(var_name))
5756  return true;
5757  if (_aux->hasVariable(var_name))
5758  return true;
5759 
5760  return false;
5761 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ haveADObjects() [1/4]

bool SubProblem::haveADObjects ( ) const
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::init().

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [2/4]

virtual void SubProblem::haveADObjects
inlineinherited

Method for setting whether we have any ad objects.

Definition at line 767 of file SubProblem.h.

767 { _have_ad_objects = have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [3/4]

bool SubProblem::haveADObjects
inlineinherited

Method for reading wehther we have any ad objects.

Definition at line 771 of file SubProblem.h.

771 { return _have_ad_objects; }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114

◆ haveADObjects() [4/4]

void FEProblemBase::haveADObjects ( bool  have_ad_objects)
overridevirtualinherited

Method for setting whether we have any ad objects.

Reimplemented from SubProblem.

Definition at line 8961 of file FEProblemBase.C.

8962 {
8963  _have_ad_objects = have_ad_objects;
8964  if (_displaced_problem)
8965  _displaced_problem->SubProblem::haveADObjects(have_ad_objects);
8966 }
bool _have_ad_objects
AD flag indicating whether any AD objects have been added.
Definition: SubProblem.h:1114
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveDisplaced()

bool FEProblemBase::haveDisplaced ( ) const
inlinefinaloverridevirtualinherited

Whether we have a displaced problem in our simulation.

Implements SubProblem.

Definition at line 2341 of file FEProblemBase.h.

2341 { return _displaced_problem.get(); }
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ haveFV()

virtual bool FEProblemBase::haveFV ( ) const
inlineoverridevirtualinherited

◆ havePRefinement()

bool SubProblem::havePRefinement ( ) const
inlineinherited

Query whether p-refinement has been requested at any point during the simulation.

Definition at line 1009 of file SubProblem.h.

Referenced by AdvancedOutput::initAvailableLists(), and FEProblemBase::meshChanged().

1009 { return _have_p_refinement; }
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202

◆ haveXFEM()

bool FEProblemBase::haveXFEM ( )
inlineinherited

Find out whether the current analysis is using XFEM.

Definition at line 1803 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), FixedPointSolve::solveStep(), TransientBase::takeStep(), and FEProblemBase::updateMeshXFEM().

1803 { return _xfem != nullptr; }
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ identifyVariableGroupsInNL()

bool FEProblemBase::identifyVariableGroupsInNL ( ) const
inlineinherited

Whether to identify variable groups in nonlinear systems.

This affects dof ordering

Definition at line 2512 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase().

const bool _identify_variable_groups_in_nl
Whether to identify variable groups in nonlinear systems. This affects dof ordering.

◆ ignoreZerosInJacobian()

bool FEProblemBase::ignoreZerosInJacobian ( ) const
inlineinherited

Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.

Note that this can make preserving the matrix sparsity pattern impossible.

Definition at line 2008 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::constraintJacobians().

2008 { return _ignore_zeros_in_jacobian; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ immediatelyPrintInvalidSolution()

bool FEProblemBase::immediatelyPrintInvalidSolution ( ) const
inlineinherited

Whether or not the solution invalid warnings are printed out immediately.

Definition at line 2033 of file FEProblemBase.h.

Referenced by SolutionInvalidInterface::flagInvalidSolutionInternal().

const bool & _immediately_print_invalid_solution

◆ incrementMultiAppTStep()

void FEProblemBase::incrementMultiAppTStep ( ExecFlagType  type)
inherited

Advance the MultiApps t_step (incrementStepOrReject) associated with the ExecFlagType.

Definition at line 5569 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject().

5570 {
5571  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5572 
5573  if (multi_apps.size())
5574  for (const auto & multi_app : multi_apps)
5575  multi_app->incrementTStep(_time);
5576 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ init()

void FEProblemBase::init ( )
overridevirtualinherited

Implements Problem.

Reimplemented in FEProblem, and EigenProblem.

Definition at line 6250 of file FEProblemBase.C.

Referenced by EigenProblem::init(), and FEProblem::init().

6251 {
6252  if (_initialized)
6253  return;
6254 
6255  TIME_SECTION("init", 2, "Initializing");
6256 
6257  // call executioner's preProblemInit so that it can do some setups before problem init
6259 
6260  // If we have AD and we are doing global AD indexing, then we should by default set the matrix
6261  // coupling to full. If the user has told us to trust their coupling matrix, then this call will
6262  // not do anything
6265 
6266  for (const auto i : index_range(_nl))
6267  {
6268  auto & nl = _nl[i];
6269  auto & cm = _cm[i];
6270 
6271  unsigned int n_vars = nl->nVariables();
6272  {
6273  TIME_SECTION("fillCouplingMatrix", 3, "Filling Coupling Matrix");
6274 
6275  switch (_coupling)
6276  {
6277  case Moose::COUPLING_DIAG:
6278  cm = std::make_unique<CouplingMatrix>(n_vars);
6279  for (unsigned int i = 0; i < n_vars; i++)
6280  (*cm)(i, i) = 1;
6281  break;
6282 
6283  // for full jacobian
6284  case Moose::COUPLING_FULL:
6285  cm = std::make_unique<CouplingMatrix>(n_vars);
6286  for (unsigned int i = 0; i < n_vars; i++)
6287  for (unsigned int j = 0; j < n_vars; j++)
6288  (*cm)(i, j) = 1;
6289  break;
6290 
6292  // do nothing, _cm was already set through couplingMatrix() call
6293  break;
6294  }
6295  }
6296 
6297  nl->dofMap()._dof_coupling = cm.get();
6298 
6299  // If there are no variables, make sure to pass a nullptr coupling
6300  // matrix, to avoid warnings about non-nullptr yet empty
6301  // CouplingMatrices.
6302  if (n_vars == 0)
6303  nl->dofMap()._dof_coupling = nullptr;
6304 
6305  nl->dofMap().attach_extra_sparsity_function(&extraSparsity, nl.get());
6306  nl->dofMap().attach_extra_send_list_function(&extraSendList, nl.get());
6307  _aux->dofMap().attach_extra_send_list_function(&extraSendList, _aux.get());
6308 
6309  if (!_skip_nl_system_check && _solve && n_vars == 0)
6310  mooseError("No variables specified in nonlinear system '", nl->name(), "'.");
6311  }
6312 
6313  ghostGhostedBoundaries(); // We do this again right here in case new boundaries have been added
6314 
6315  // We may have added element/nodes to the mesh in ghostGhostedBoundaries so we need to update
6316  // all of our mesh information. We need to make sure that mesh information is up-to-date before
6317  // EquationSystems::init because that will call through to updateGeomSearch (for sparsity
6318  // augmentation) and if we haven't added back boundary node information before that latter call,
6319  // then we're screwed. We'll get things like "Unable to find closest node!"
6320  _mesh.meshChanged();
6321  if (_displaced_problem)
6323 
6324  if (_mesh.doingPRefinement())
6325  {
6327  if (_displaced_problem)
6328  _displaced_problem->preparePRefinement();
6329  }
6330 
6331  // do not assemble system matrix for JFNK solve
6332  for (auto & nl : _nl)
6333  if (solverParams(nl->number())._type == Moose::ST_JFNK)
6334  nl->turnOffJacobian();
6335 
6336  for (auto & sys : _solver_systems)
6337  sys->preInit();
6338  _aux->preInit();
6339 
6340  // Build the mortar segment meshes, if they haven't been already, for a couple reasons:
6341  // 1) Get the ghosting correct for both static and dynamic meshes
6342  // 2) Make sure the mortar mesh is built for mortar constraints that live on the static mesh
6343  //
6344  // It is worth-while to note that mortar meshes that live on a dynamic mesh will be built
6345  // during residual and Jacobian evaluation because when displacements are solution variables
6346  // the mortar mesh will move and change during the course of a non-linear solve. We DO NOT
6347  // redo ghosting during non-linear solve, so for purpose 1) the below call has to be made
6348  if (!_mortar_data.initialized())
6349  updateMortarMesh();
6350 
6351  {
6352  TIME_SECTION("EquationSystems::Init", 2, "Initializing Equation Systems");
6353  es().init();
6354  }
6355 
6356  for (auto & sys : _solver_systems)
6357  sys->postInit();
6358  _aux->postInit();
6359 
6360  // Now that the equation system and the dof distribution is done, we can generate the
6361  // finite volume-related parts if needed.
6362  if (haveFV())
6364 
6365  for (auto & sys : _solver_systems)
6366  sys->update();
6367  _aux->update();
6368 
6369  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
6370  for (const auto i : index_range(_nl))
6371  {
6372  mooseAssert(
6373  _cm[i],
6374  "Coupling matrix not set for system "
6375  << i
6376  << ". This should only happen if a preconditioner was not setup for this system");
6377  _assembly[tid][i]->init(_cm[i].get());
6378  }
6379 
6380  if (_displaced_problem)
6381  _displaced_problem->init();
6382 
6383  _initialized = true;
6384 }
void extraSparsity(libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz, void *context)
Free function used for a libMesh callback.
Definition: SystemBase.C:48
unsigned int n_threads()
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
bool globalADIndexing()
Whether we are using global AD indexing.
Definition: ADUtils.h:28
bool initialized() const
Definition: MortarData.h:127
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
void preparePRefinement()
Prepare DofMap and Assembly classes with our p-refinement information.
Definition: SubProblem.C:1332
const bool _skip_nl_system_check
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const bool & _solve
Whether or not to actually solve the nonlinear system.
unsigned int n_vars
Moose::CouplingType _coupling
Type of variable coupling.
void extraSendList(std::vector< dof_id_type > &send_list, void *context)
///< Type of coordinate system
Definition: SystemBase.C:40
Jacobian-Free Newton Krylov.
Definition: MooseTypes.h:846
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool haveADObjects() const
Method for reading wehther we have any ad objects.
Definition: SubProblem.h:771
Executioner * getExecutioner() const
Retrieve the Executioner for this App.
Definition: MooseApp.C:2123
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
virtual void preProblemInit()
Perform initializations during executing actions right before init_problem task.
Definition: Executioner.h:57
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.
void doingPRefinement(bool doing_p_refinement)
Indicate whether the kind of adaptivity we&#39;re doing is p-refinement.
Definition: MooseMesh.h:1347
auto index_range(const T &sizable)
const std::string & _type
The type of this class.
Definition: MooseBase.h:356
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:882
unsigned int THREAD_ID
Definition: MooseTypes.h:209
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4072

◆ initElementStatefulProps()

void FEProblemBase::initElementStatefulProps ( const libMesh::ConstElemRange elem_range,
const bool  threaded 
)
inherited

Initialize stateful properties for elements in a specific elem_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Definition at line 8324 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::finalize(), ElementSubdomainModifierBase::initElementStatefulProps(), and FEProblemBase::initialSetup().

8325 {
8328  if (threaded)
8329  Threads::parallel_reduce(elem_range, cmt);
8330  else
8331  cmt(elem_range, true);
8332 }
MaterialPropertyStorage & _bnd_material_props
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialPropertyStorage & _neighbor_material_props
MaterialPropertyStorage & _material_props

◆ initialAdaptMesh()

void FEProblemBase::initialAdaptMesh ( )
virtualinherited

Definition at line 7997 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

7998 {
7999  unsigned int n = adaptivity().getInitialSteps();
8000  _cycles_completed = 0;
8001  if (n)
8002  {
8003  if (!_mesh.interiorLowerDBlocks().empty() || !_mesh.boundaryLowerDBlocks().empty())
8004  mooseError("HFEM does not support mesh adaptivity currently.");
8005 
8006  TIME_SECTION("initialAdaptMesh", 2, "Performing Initial Adaptivity");
8007 
8008  for (unsigned int i = 0; i < n; i++)
8009  {
8011  computeMarkers();
8012 
8014  {
8015  meshChanged(
8016  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
8017 
8018  // reproject the initial condition
8019  projectSolution();
8020 
8022  }
8023  else
8024  {
8025  _console << "Mesh unchanged, skipping remaining steps..." << std::endl;
8026  return;
8027  }
8028  }
8029  }
8030 }
bool initialAdaptMesh()
Used during initial adaptivity.
Definition: Adaptivity.C:268
virtual void meshChanged()
Deprecated.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
unsigned int _cycles_completed
virtual void computeMarkers()
void projectSolution()
virtual void computeIndicators()
MooseMesh & _mesh
Adaptivity _adaptivity
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1407
unsigned int getInitialSteps() const
Pull out the number of initial steps previously set by calling init()
Definition: Adaptivity.h:98
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
Adaptivity & adaptivity()

◆ initialSetup()

void DumpObjectsProblem::initialSetup ( )
overridevirtual

Reimplemented from SubProblem.

Definition at line 276 of file DumpObjectsProblem.C.

277 {
278  TIME_SECTION("initializingFunctions", 5, "Initializing Functions");
279  mooseAssert(libMesh::n_threads() == 1, "We should only use one thread for dumping objects");
280 
281  // Call the initialSetup methods for functions
282  // We need to do that at least for the parsed functions that can be used as parameters
283  // in the input file
284  // Note that we are not planning to use the functions, which is why we are not re-initing scalar
285  // variables
287 }
unsigned int n_threads()
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods.
MooseObjectWarehouse< Function > _functions
functions

◆ initNullSpaceVectors()

void FEProblemBase::initNullSpaceVectors ( const InputParameters parameters,
std::vector< std::shared_ptr< NonlinearSystemBase >> &  nl 
)
virtualinherited

Definition at line 740 of file FEProblemBase.C.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

742 {
743  TIME_SECTION("initNullSpaceVectors", 5, "Initializing Null Space Vectors");
744 
745  unsigned int dimNullSpace = parameters.get<unsigned int>("null_space_dimension");
746  unsigned int dimTransposeNullSpace =
747  parameters.get<unsigned int>("transpose_null_space_dimension");
748  unsigned int dimNearNullSpace = parameters.get<unsigned int>("near_null_space_dimension");
749  for (unsigned int i = 0; i < dimNullSpace; ++i)
750  {
751  std::ostringstream oss;
752  oss << "_" << i;
753  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
754  // builder might march over all nodes
755  for (auto & nl : nls)
756  nl->addVector("NullSpace" + oss.str(), false, libMesh::GHOSTED);
757  }
758  _subspace_dim["NullSpace"] = dimNullSpace;
759  for (unsigned int i = 0; i < dimTransposeNullSpace; ++i)
760  {
761  std::ostringstream oss;
762  oss << "_" << i;
763  // do not project, since this will be recomputed, but make it ghosted, since the near nullspace
764  // builder might march over all nodes
765  for (auto & nl : nls)
766  nl->addVector("TransposeNullSpace" + oss.str(), false, libMesh::GHOSTED);
767  }
768  _subspace_dim["TransposeNullSpace"] = dimTransposeNullSpace;
769  for (unsigned int i = 0; i < dimNearNullSpace; ++i)
770  {
771  std::ostringstream oss;
772  oss << "_" << i;
773  // do not project, since this will be recomputed, but make it ghosted, since the near-nullspace
774  // builder might march over all semilocal nodes
775  for (auto & nl : nls)
776  nl->addVector("NearNullSpace" + oss.str(), false, libMesh::GHOSTED);
777  }
778  _subspace_dim["NearNullSpace"] = dimNearNullSpace;
779 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ initPetscOutputAndSomeSolverSettings()

void FEProblemBase::initPetscOutputAndSomeSolverSettings ( )
virtualinherited

Reinitialize PETSc output for proper linear/nonlinear iteration display.

This also may be used for some PETSc-related solver settings

Reimplemented in EigenProblem.

Definition at line 6793 of file FEProblemBase.C.

Referenced by FEProblemBase::possiblyRebuildGeomSearchPatches(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), and FEProblemBase::solve().

6794 {
6797 }
void petscSetDefaults(FEProblemBase &problem)
Sets the default options for PETSc.
Definition: PetscSupport.C:446
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void solveSetup()
Calls the timestepSetup function for each of the output objects.
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ initXFEM()

void FEProblemBase::initXFEM ( std::shared_ptr< XFEMInterface xfem)
inherited

Create XFEM controller object.

Definition at line 8095 of file FEProblemBase.C.

8096 {
8097  _xfem = xfem;
8098  _xfem->setMesh(&_mesh);
8099  if (_displaced_mesh)
8100  _xfem->setDisplacedMesh(_displaced_mesh);
8101 
8102  auto fill_data = [](auto & storage)
8103  {
8104  std::vector<MaterialData *> data(libMesh::n_threads());
8105  for (const auto tid : make_range(libMesh::n_threads()))
8106  data[tid] = &storage.getMaterialData(tid);
8107  return data;
8108  };
8109  _xfem->setMaterialData(fill_data(_material_props));
8110  _xfem->setBoundaryMaterialData(fill_data(_bnd_material_props));
8111 
8112  unsigned int n_threads = libMesh::n_threads();
8113  for (unsigned int i = 0; i < n_threads; ++i)
8114  for (const auto nl_sys_num : index_range(_nl))
8115  {
8116  _assembly[i][nl_sys_num]->setXFEM(_xfem);
8117  if (_displaced_problem)
8118  _displaced_problem->assembly(i, nl_sys_num).setXFEM(_xfem);
8119  }
8120 }
void fill_data(std::map< processor_id_type, std::vector< std::set< unsigned int >>> &data, int M)
MaterialPropertyStorage & _bnd_material_props
unsigned int n_threads()
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.
MaterialPropertyStorage & _material_props
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ isMatPropRequested()

bool SubProblem::isMatPropRequested ( const std::string &  prop_name) const
virtualinherited

Find out if a material property has been requested by any object.

Definition at line 730 of file SubProblem.C.

731 {
732  return _material_property_requested.find(prop_name) != _material_property_requested.end();
733 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ isParamSetByUser()

bool MooseBase::isParamSetByUser ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is set by a user, as opposed to not set or set to default.

Parameters
nameThe name of the parameter to test

Definition at line 201 of file MooseBase.h.

Referenced by SetupDebugAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEBCs(), DiffusionPhysicsBase::addInitialConditions(), MFEMMesh::buildMesh(), LibtorchNeuralNetControl::conditionalParameterError(), MooseApp::copyInputs(), DiffusionPhysicsBase::DiffusionPhysicsBase(), MooseApp::errorCheck(), MooseBase::getRenamedParam(), DefaultConvergenceBase::getSharedExecutionerParam(), AddVariableAction::init(), PhysicsBase::initializePhysics(), ElementSubdomainModifierBase::initialSetup(), MatrixSymmetryCheck::MatrixSymmetryCheck(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), SolutionInvalidityOutput::output(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), PetscExternalPartitioner::partition(), PiecewiseTabularBase::PiecewiseTabularBase(), MooseMesh::prepare(), SolutionUserObjectBase::readXda(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::runInputFile(), MooseApp::runInputs(), MFEMSolverBase::setPreconditioner(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), TimedSubdomainModifier::TimedSubdomainModifier(), and XYDelaunayGenerator::XYDelaunayGenerator().

202  {
203  return _pars.isParamSetByUser(name);
204  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.

◆ isParamValid()

bool MooseBase::isParamValid ( const std::string &  name) const
inlineinherited

Test if the supplied parameter is valid.

Parameters
nameThe name of the parameter to test

Definition at line 195 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), CopyNodalVarsAction::act(), SetupMeshAction::act(), SetupDebugAction::act(), ComposeTimeStepperAction::act(), SetAdaptivityOptionsAction::act(), AddVariableAction::act(), CreateDisplacedProblemAction::act(), CommonOutputAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEKernels(), DiffusionFV::addFVBCs(), DiffusionFV::addFVKernels(), DiffusionPhysicsBase::addInitialConditions(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), DiffusionPhysicsBase::addPostprocessors(), AdvectiveFluxAux::AdvectiveFluxAux(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayVarReductionAux::ArrayVarReductionAux(), AddPeriodicBCAction::autoTranslationBoundaries(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), ParsedChainControl::buildFunction(), GeneratedMesh::buildMesh(), MooseMesh::buildTypedMesh(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), LibmeshPartitioner::clone(), SampledOutput::cloneMesh(), CombinerGenerator::CombinerGenerator(), FunctorAux::computeValue(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), FEProblemSolve::convergenceSetup(), CopyMeshPartitioner::CopyMeshPartitioner(), CSVReaderVectorPostprocessor::CSVReaderVectorPostprocessor(), CutMeshByLevelSetGeneratorBase::CutMeshByLevelSetGeneratorBase(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), DGKernelBase::DGKernelBase(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), DynamicObjectRegistrationAction::DynamicObjectRegistrationAction(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), PIDTransientControl::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), Exodus::Exodus(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), FunctionDT::FunctionDT(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FVInterfaceKernel::FVInterfaceKernel(), FVMassMatrix::FVMassMatrix(), FileMeshGenerator::generate(), AddMetaDataGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ElementGenerator::generate(), ExtraNodesetGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), BlockDeletionGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), MeshExtruderGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYZDelaunayGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), SubdomainBoundingBoxGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), PropertyReadFile::getFileNames(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getRenamedParam(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), Terminator::handleMessage(), HFEMDirichletBC::HFEMDirichletBC(), EigenExecutionerBase::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AdvancedOutput::initExecutionTypes(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), MultiAppVariableValueSampleTransfer::initialSetup(), PiecewiseTabularBase::initialSetup(), ParsedConvergence::initialSetup(), SolutionScalarAux::initialSetup(), SolutionAux::initialSetup(), Console::initialSetup(), MooseParsedVectorFunction::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), MooseParsedGradFunction::initialSetup(), MooseParsedFunction::initialSetup(), SampledOutput::initSample(), IterationAdaptiveDT::IterationAdaptiveDT(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MassMatrix::MassMatrix(), MatCoupledForce::MatCoupledForce(), MatDiffusionBase< Real >::MatDiffusionBase(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMProblemSolve::MFEMProblemSolve(), MooseMesh::MooseMesh(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableFV< Real >::MooseVariableFV(), MortarConstraintBase::MortarConstraintBase(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NodeSetsGeneratorBase::NodeSetsGeneratorBase(), EigenExecutionerBase::normalizeSolution(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), ParsedCurveGenerator::ParsedCurveGenerator(), PetscOutput::PetscOutput(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseTabularBase::PiecewiseTabularBase(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), MooseMesh::prepare(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), SolutionUserObjectBase::readExodusII(), ReferenceResidualInterface::ReferenceResidualInterface(), RenameBlockGenerator::RenameBlockGenerator(), ReporterPointSource::ReporterPointSource(), PhysicsBase::reportPotentiallyMissedParameters(), ParsedSubdomainMeshGenerator::setBlockName(), MooseMesh::setCoordSystem(), FileOutput::setFileBase(), FileOutput::setFileBaseInternal(), Split::setup(), SideSetsGeneratorBase::setup(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), Output::setWallTimeIntervalFromCommandLineParam(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsGeneratorBase::SideSetsGeneratorBase(), SolutionUserObjectBase::SolutionUserObjectBase(), WebServerControl::startServer(), Terminator::Terminator(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriod::TimePeriod(), MultiAppDofCopyTransfer::transfer(), TransformGenerator::TransformGenerator(), TransientBase::TransientBase(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

195 { return _pars.isParamValid(name); }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ isSNESMFReuseBaseSetbyUser()

bool FEProblemBase::isSNESMFReuseBaseSetbyUser ( )
inlineinherited

Return a flag to indicate if _snesmf_reuse_base is set by users.

Definition at line 2171 of file FEProblemBase.h.

bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.

◆ isSolverSystemNonlinear()

bool FEProblemBase::isSolverSystemNonlinear ( const unsigned int  sys_num)
inlineinherited

◆ isSolveTerminationRequested()

virtual bool Problem::isSolveTerminationRequested ( ) const
inlinevirtualinherited

Check of termination has been requested.

This should be called by transient Executioners in the keepGoing() member.

Definition at line 43 of file Problem.h.

Referenced by WebServerControl::execute(), and TransientBase::keepGoing().

43 { return _termination_requested; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ isTransient()

virtual bool FEProblemBase::isTransient ( ) const
inlineoverridevirtualinherited

◆ jacobianSetup()

void FEProblemBase::jacobianSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9279 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::jacobianSetup().

9280 {
9282  // We need to setup all the nonlinear systems other than our current one which actually called
9283  // this method (so we have to make sure we don't go in a circle)
9284  for (const auto i : make_range(numNonlinearSystems()))
9285  if (i != currentNlSysNum())
9286  _nl[i]->jacobianSetup();
9287  // We don't setup the aux sys because that's been done elsewhere
9288  if (_displaced_problem)
9289  _displaced_problem->jacobianSetup();
9290 }
virtual std::size_t numNonlinearSystems() const override
virtual void jacobianSetup()
Definition: SubProblem.C:1209
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ linearSysNum()

unsigned int FEProblemBase::linearSysNum ( const LinearSystemName &  linear_sys_name) const
overridevirtualinherited
Returns
the linear system number corresponding to the provided linear_sys_name

Implements SubProblem.

Definition at line 6398 of file FEProblemBase.C.

Referenced by Moose::compute_linear_system(), LinearSystem::computeGradients(), FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and DisplacedProblem::linearSysNum().

6399 {
6400  std::istringstream ss(linear_sys_name);
6401  unsigned int linear_sys_num;
6402  if (!(ss >> linear_sys_num) || !ss.eof())
6403  linear_sys_num = libmesh_map_find(_linear_sys_name_to_num, linear_sys_name);
6404 
6405  return linear_sys_num;
6406 }
std::map< LinearSystemName, unsigned int > _linear_sys_name_to_num
Map from linear system name to number.

◆ lineSearch()

void FEProblemBase::lineSearch ( )
virtualinherited

execute MOOSE line search

Definition at line 2663 of file FEProblemBase.C.

Referenced by ComputeLineSearchObjectWrapper::linesearch().

2664 {
2665  _line_search->lineSearch();
2666 }
std::shared_ptr< LineSearch > _line_search

◆ logAdd()

void FEProblemBase::logAdd ( const std::string &  system,
const std::string &  name,
const std::string &  type,
const InputParameters params 
) const
inherited

Output information about the object just added to the problem.

Definition at line 4259 of file FEProblemBase.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addIndicator(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addOutput(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), and FEProblemBase::setResidualObjectParamsAndLog().

4263 {
4264  if (_verbose_setup != "false")
4265  _console << "[DBG] Adding " << system << " '" << name << "' of type " << type << std::endl;
4266  if (_verbose_setup == "extra")
4267  _console << params << std::endl;
4268 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.

◆ markFamilyPRefinement()

void SubProblem::markFamilyPRefinement ( const InputParameters params)
protectedinherited

Mark a variable family for either disabling or enabling p-refinement with valid parameters of a variable.

Definition at line 1367 of file SubProblem.C.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxVariable(), and FEProblemBase::addVariable().

1368 {
1369  auto family = Utility::string_to_enum<FEFamily>(params.get<MooseEnum>("family"));
1370  bool flag = _default_families_without_p_refinement.count(family);
1371  if (params.isParamValid("disable_p_refinement"))
1372  flag = params.get<bool>("disable_p_refinement");
1373 
1374  auto [it, inserted] = _family_for_p_refinement.emplace(family, flag);
1375  if (!inserted && flag != it->second)
1376  mooseError("'disable_p_refinement' not set consistently for variables in ", family);
1377 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
static const std::unordered_set< FEFamily > _default_families_without_p_refinement
The set of variable families by default disable p-refinement.
Definition: SubProblem.h:1207
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ markMatPropRequested()

void SubProblem::markMatPropRequested ( const std::string &  prop_name)
virtualinherited

Helper method for adding a material property name to the _material_property_requested set.

Definition at line 724 of file SubProblem.C.

Referenced by MaterialBase::markMatPropRequested(), and MaterialPropertyInterface::markMatPropRequested().

725 {
726  _material_property_requested.insert(prop_name);
727 }
std::set< std::string > _material_property_requested
set containing all material property names that have been requested by getMaterialProperty* ...
Definition: SubProblem.h:1062

◆ matrixTagExists() [1/2]

bool SubProblem::matrixTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 328 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), SystemBase::associateMatrixToTag(), Coupleable::coupledMatrixTagValue(), Coupleable::coupledMatrixTagValues(), SystemBase::disassociateDefaultMatrixTags(), SystemBase::disassociateMatrixFromTag(), SystemBase::getMatrix(), SubProblem::getMatrixTagID(), SystemBase::matrixTagActive(), DisplacedProblem::matrixTagExists(), SystemBase::removeMatrix(), and TaggingInterface::useMatrixTag().

329 {
330  auto tag_name_upper = MooseUtils::toUpper(tag_name);
331 
332  return _matrix_tag_name_to_tag_id.find(tag_name_upper) != _matrix_tag_name_to_tag_id.end();
333 }
std::map< TagName, TagID > _matrix_tag_name_to_tag_id
The currently declared tags.
Definition: SubProblem.h:1041
std::string toUpper(const std::string &name)
Convert supplied string to upper case.

◆ matrixTagExists() [2/2]

bool SubProblem::matrixTagExists ( TagID  tag_id) const
virtualinherited

Check to see if a particular Tag exists.

Reimplemented in DisplacedProblem.

Definition at line 336 of file SubProblem.C.

337 {
338  return _matrix_tag_id_to_tag_name.find(tag_id) != _matrix_tag_id_to_tag_name.end();
339 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ matrixTagName()

TagName SubProblem::matrixTagName ( TagID  tag)
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 357 of file SubProblem.C.

Referenced by SystemBase::addMatrix(), DisplacedProblem::matrixTagName(), and SystemBase::removeMatrix().

358 {
359  return _matrix_tag_id_to_tag_name[tag];
360 }
std::map< TagID, TagName > _matrix_tag_id_to_tag_name
Reverse map.
Definition: SubProblem.h:1044

◆ mesh() [1/3]

virtual MooseMesh& FEProblemBase::mesh ( )
inlineoverridevirtualinherited

Implements SubProblem.

Reimplemented in MFEMProblem.

Definition at line 151 of file FEProblemBase.h.

Referenced by Adaptivity::adaptMesh(), FEProblemBase::addAnyRedistributers(), MultiAppConservativeTransfer::adjustTransferredSolution(), MultiAppConservativeTransfer::adjustTransferredSolutionNearestPoint(), PhysicsBasedPreconditioner::apply(), MultiAppGeneralFieldNearestLocationTransfer::buildKDTrees(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), SampledOutput::cloneMesh(), LinearSystem::computeGradients(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), ComputeFullJacobianThread::computeOnInternalFace(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::coordTransform(), MultiApp::createApp(), DMMooseGetEmbedding_Private(), ElementsAlongLine::ElementsAlongLine(), ElementsAlongPlane::ElementsAlongPlane(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementsAlongLine::execute(), ElementsAlongPlane::execute(), IntersectionPointsAlongLine::execute(), WorkBalance::execute(), MultiAppUserObjectTransfer::execute(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), FunctionPeriodicBoundary::FunctionPeriodicBoundary(), MultiApp::getBoundingBox(), Exodus::handleExodusIOMeshRenumbering(), FunctorPositions::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), MultiAppDofCopyTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), ImageFunction::initialSetup(), FEProblemBase::initialSetup(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), IntersectionPointsAlongLine::IntersectionPointsAlongLine(), Moose::Mortar::loopOverMortarSegments(), ReporterPointMarker::markerSetup(), MFEMProblem::mesh(), FEProblemBase::mesh(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), ComputeNodalUserObjectsThread::onNode(), BoundaryNodeIntegrityCheckThread::onNode(), ComputeInitialConditionThread::operator()(), BoundaryElemIntegrityCheckThread::operator()(), ComputeLinearFVGreenGaussGradientVolumeThread::operator()(), Output::Output(), Exodus::outputEmptyTimestep(), ConsoleUtils::outputMeshInformation(), Exodus::outputNodalVariables(), Exodus::outputSetup(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), MeshInfo::possiblyAddSidesetInfo(), MeshInfo::possiblyAddSubdomainInfo(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), MaterialPropertyDebugOutput::printMaterialMap(), TopResidualDebugOutput::printTopResiduals(), SolutionUserObjectBase::SolutionUserObjectBase(), FixedPointSolve::solve(), TransientMultiApp::solveStep(), Moose::PetscSupport::storePetscOptions(), MultiAppDofCopyTransfer::transfer(), Checkpoint::updateCheckpointFiles(), and SampledOutput::updateSample().

151 { return _mesh; }
MooseMesh & _mesh

◆ mesh() [2/3]

virtual const MooseMesh& FEProblemBase::mesh ( ) const
inlineoverridevirtualinherited

Implements SubProblem.

Reimplemented in MFEMProblem.

Definition at line 152 of file FEProblemBase.h.

152 { return _mesh; }
MooseMesh & _mesh

◆ mesh() [3/3]

const MooseMesh & FEProblemBase::mesh ( bool  use_displaced) const
overridevirtualinherited

Implements SubProblem.

Definition at line 645 of file FEProblemBase.C.

646 {
647  if (use_displaced && !_displaced_problem)
648  mooseWarning("Displaced mesh was requested but the displaced problem does not exist. "
649  "Regular mesh will be returned");
650  return ((use_displaced && _displaced_problem) ? _displaced_problem->mesh() : mesh());
651 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295
virtual MooseMesh & mesh() override
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ meshChanged() [1/2]

void FEProblemBase::meshChanged ( bool  intermediate_change,
bool  contract_mesh,
bool  clean_refinement_flags 
)
virtualinherited

Update data after a mesh change.

Iff intermediate_change is true, only perform updates as necessary to prepare for another mesh change immediately-subsequent. An example of data that is not updated during an intermediate change is libMesh System matrix data. An example of data that is updated during an intermediate change is libMesh System vectors. These vectors are projected or restricted based off of adaptive mesh refinement or the changing of element subdomain IDs. The flags contract_mesh and clean_refinement_flags should generally only be set to true when the mesh has changed due to mesh refinement. contract_mesh deletes children of coarsened elements and renumbers nodes and elements. clean_refinement_flags resets refinement flags such that any subsequent calls to System::restrict_vectors or System::prolong_vectors before another AMR step do not mistakenly attempt to re-do the restriction/prolongation which occurred in this method

Definition at line 8150 of file FEProblemBase.C.

Referenced by SidesetAroundSubdomainUpdater::finalize(), ActivateElementsUserObjectBase::finalize(), Exodus::handleExodusIOMeshRenumbering(), ElementSubdomainModifierBase::modify(), and Adaptivity::uniformRefineWithProjection().

8153 {
8154  TIME_SECTION("meshChanged", 3, "Handling Mesh Changes");
8155 
8158  _mesh.cacheChangedLists(); // Currently only used with adaptivity and stateful material
8159  // properties
8160 
8161  // Clear these out because they corresponded to the old mesh
8162  _ghosted_elems.clear();
8164 
8165  // The mesh changed. We notify the MooseMesh first, because
8166  // callbacks (e.g. for sparsity calculations) triggered by the
8167  // EquationSystems reinit may require up-to-date MooseMesh caches.
8168  _mesh.meshChanged();
8169 
8170  // If we're just going to alter the mesh again, all we need to
8171  // handle here is AMR and projections, not full system reinit
8172  if (intermediate_change)
8173  es().reinit_solutions();
8174  else
8175  es().reinit();
8176 
8177  if (contract_mesh)
8178  // Once vectors are restricted, we can delete children of coarsened elements
8179  _mesh.getMesh().contract();
8180  if (clean_refinement_flags)
8181  {
8182  // Finally clear refinement flags so that if someone tries to project vectors again without
8183  // an intervening mesh refinement to clear flags they won't run into trouble
8184  MeshRefinement refinement(_mesh.getMesh());
8185  refinement.clean_refinement_flags();
8186  }
8187 
8188  if (!intermediate_change)
8189  {
8190  // Since the mesh has changed, we need to make sure that we update any of our
8191  // MOOSE-system specific data.
8192  for (auto & sys : _solver_systems)
8193  sys->reinit();
8194  _aux->reinit();
8195  }
8196 
8197  // Updating MooseMesh first breaks other adaptivity code, unless we
8198  // then *again* update the MooseMesh caches. E.g. the definition of
8199  // "active" and "local" may have been *changed* by refinement and
8200  // repartitioning done in EquationSystems::reinit().
8201  _mesh.meshChanged();
8202 
8203  // If we have finite volume variables, we will need to recompute additional elemental/face
8204  // quantities
8207 
8208  // Let the meshChangedInterface notify the mesh changed event before we update the active
8209  // semilocal nodes, because the set of ghosted elements may potentially be updated during a mesh
8210  // changed event.
8211  for (const auto & mci : _notify_when_mesh_changes)
8212  mci->meshChanged();
8213 
8214  // Since the Mesh changed, update the PointLocator object used by DiracKernels.
8216 
8217  // Need to redo ghosting
8219 
8220  if (_displaced_problem)
8221  {
8222  _displaced_problem->meshChanged(contract_mesh, clean_refinement_flags);
8224  }
8225 
8227 
8230 
8231  // Just like we reinitialized our geometric search objects, we also need to reinitialize our
8232  // mortar meshes. Note that this needs to happen after DisplacedProblem::meshChanged because the
8233  // mortar mesh discretization will depend necessarily on the displaced mesh being re-displaced
8234  updateMortarMesh();
8235 
8236  // Nonlinear systems hold the mortar mesh functors. The domains of definition of the mortar
8237  // functors might have changed when the mesh changed.
8238  for (auto & nl_sys : _nl)
8239  nl_sys->reinitMortarFunctors();
8240 
8241  reinitBecauseOfGhostingOrNewGeomObjects(/*mortar_changed=*/true);
8242 
8243  // We need to create new storage for newly active elements, and copy
8244  // stateful properties from the old elements.
8247  {
8248  if (havePRefinement())
8250 
8251  // Prolong properties onto newly refined elements' children
8252  {
8254  /* refine = */ true, *this, _material_props, _bnd_material_props, _assembly);
8255  const auto & range = *_mesh.refinedElementRange();
8256  Threads::parallel_reduce(range, pmp);
8257 
8258  // Concurrent erasure from the shared hash map is not safe while we are reading from it in
8259  // ProjectMaterialProperties, so we handle erasure here. Moreover, erasure based on key is
8260  // not thread safe in and of itself because it is a read-write operation. Note that we do not
8261  // do the erasure for p-refinement because the coarse level element is the same as our active
8262  // refined level element
8263  if (!doingPRefinement())
8264  for (const auto & elem : range)
8265  {
8269  }
8270  }
8271 
8272  // Restrict properties onto newly coarsened elements
8273  {
8275  /* refine = */ false, *this, _material_props, _bnd_material_props, _assembly);
8276  const auto & range = *_mesh.coarsenedElementRange();
8277  Threads::parallel_reduce(range, pmp);
8278  // Note that we do not do the erasure for p-refinement because the coarse level element is the
8279  // same as our active refined level element
8280  if (!doingPRefinement())
8281  for (const auto & elem : range)
8282  {
8283  auto && coarsened_children = _mesh.coarsenedElementChildren(elem);
8284  for (auto && child : coarsened_children)
8285  {
8289  }
8290  }
8291  }
8292  }
8293 
8296 
8297  _has_jacobian = false; // we have to recompute jacobian when mesh changed
8298 
8299  // Now for backwards compatibility with user code that overrode the old no-arg meshChanged we must
8300  // call it here
8301  meshChanged();
8302 }
void setVariableAllDoFMap(const std::vector< const MooseVariableFEBase *> &moose_vars)
bool isFiniteVolumeInfoDirty() const
Definition: MooseMesh.h:1304
virtual void meshChanged()
Deprecated.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
MaterialPropertyStorage & _bnd_material_props
bool _has_jacobian
Indicates if the Jacobian was computed.
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void eraseProperty(const Elem *elem)
Remove the property storage and element pointer from internal data structures Use this when elements ...
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
void cacheChangedLists()
Cache information about what elements were refined and coarsened in the previous step.
Definition: MooseMesh.C:913
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
ConstElemPointerRange * refinedElementRange() const
Return a range that is suitable for threaded execution over elements that were just refined...
Definition: MooseMesh.C:931
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
std::unique_ptr< libMesh::ConstElemRange > _nl_evaluable_local_elem_range
bool _calculate_jacobian_in_uo
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
bool havePRefinement() const
Query whether p-refinement has been requested at any point during the simulation. ...
Definition: SubProblem.h:1009
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3448
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.
virtual libMesh::EquationSystems & es() override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
void reinit()
Completely redo all geometric search objects.
bool doingPRefinement() const
Definition: SubProblem.C:1361
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void updateMortarMesh()
const std::vector< const Elem * > & coarsenedElementChildren(const Elem *elem) const
Get the newly removed children element ids for an element that was just coarsened.
Definition: MooseMesh.C:943
virtual bool contract()=0
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
std::vector< std::vector< const MooseVariableFEBase * > > _uo_jacobian_moose_vars
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
bool _has_initialized_stateful
Whether nor not stateful materials have been initialized.
MaterialPropertyStorage & _neighbor_material_props
ConstElemPointerRange * coarsenedElementRange() const
Return a range that is suitable for threaded execution over elements that were just coarsened...
Definition: MooseMesh.C:937
std::unique_ptr< libMesh::ConstElemRange > _evaluable_local_elem_range
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
MaterialPropertyStorage & _material_props
void updatePointLocator(const MooseMesh &mesh)
Called during FEProblemBase::meshChanged() to update the PointLocator object used by the DiracKernels...
MooseMesh * _displaced_mesh
void meshChanged()
Declares that the MooseMesh has changed, invalidates cached data and rebuilds caches.
Definition: MooseMesh.C:882
void buildPRefinementAndCoarseningMaps(Assembly *assembly)
Definition: MooseMesh.C:2368
virtual void ghostGhostedBoundaries() override
Causes the boundaries added using addGhostedBoundary to actually be ghosted.
void setupFiniteVolumeMeshData() const
Sets up the additional data needed for finite volume computations.
Definition: MooseMesh.C:4072

◆ meshChanged() [2/2]

virtual void FEProblemBase::meshChanged ( )
inlineprotectedvirtualinherited

Deprecated.

Users should switch to overriding the meshChanged which takes arguments

Definition at line 2550 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::initialAdaptMesh(), FEProblemBase::meshChanged(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateMeshXFEM().

2550 {}

◆ meshDisplaced()

void FEProblemBase::meshDisplaced ( )
protectedvirtualinherited

Update data after a mesh displaced.

Definition at line 8317 of file FEProblemBase.C.

Referenced by DisplacedProblem::updateMesh().

8318 {
8319  for (const auto & mdi : _notify_when_mesh_displaces)
8320  mdi->meshDisplaced();
8321 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ messagePrefix()

std::string MooseBase::messagePrefix ( const bool  hit_prefix = true) const
inlineinherited
Returns
A prefix to be used in messages that contain the input file location associated with this object (if any) and the name and type of the object.

Definition at line 252 of file MooseBase.h.

Referenced by MooseBase::callMooseError(), MooseBase::errorPrefix(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), and MooseBase::mooseWarning().

253  {
254  return messagePrefix(_pars, hit_prefix);
255  }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseDeprecated()

template<typename... Args>
void MooseBase::mooseDeprecated ( Args &&...  args) const
inlineinherited

Definition at line 310 of file MooseBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::advanceMultiApps(), MultiApp::appProblem(), MooseMesh::buildSideList(), ChangeOverTimestepPostprocessor::ChangeOverTimestepPostprocessor(), AddVariableAction::determineType(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), MooseMesh::elem(), UserForcingFunction::f(), FaceFaceConstraint::FaceFaceConstraint(), FunctionDT::FunctionDT(), RandomICBase::generateRandom(), MooseMesh::getBoundariesToElems(), DataFileInterface::getDataFileName(), DataFileInterface::getDataFileNameByName(), Control::getExecuteOptions(), FEProblemBase::getNonlinearSystem(), MooseApp::getRecoverFileBase(), FEProblemBase::getUserObjects(), FEProblemBase::hasPostprocessor(), MooseApp::hasRecoverFileBase(), MatDiffusionBase< Real >::MatDiffusionBase(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), NodalScalarKernel::NodalScalarKernel(), MooseMesh::node(), FixedPointSolve::numPicardIts(), RelationshipManager::operator>=(), PercentChangePostprocessor::PercentChangePostprocessor(), ReferenceResidualConvergence::ReferenceResidualConvergence(), Residual::Residual(), MooseMesh::setBoundaryToNormalMap(), Exodus::setOutputDimension(), MooseApp::setupOptions(), UserForcingFunction::UserForcingFunction(), and VariableResidual::VariableResidual().

311  {
313  _console, false, true, messagePrefix(true), std::forward<Args>(args)...);
314  }
void mooseDeprecatedStream(S &oss, const bool expired, const bool print_title, Args &&... args)
Definition: MooseError.h:275
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseDocumentedError()

template<typename... Args>
void MooseBase::mooseDocumentedError ( const std::string &  repo_name,
const unsigned int  issue_num,
Args &&...  args 
) const
inlineinherited

Definition at line 273 of file MooseBase.h.

Referenced by ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), DGLowerDKernel::DGLowerDKernel(), HFEMDirichletBC::HFEMDirichletBC(), and LowerDIntegratedBC::LowerDIntegratedBC().

276  {
278  repo_name, issue_num, argumentsToString(std::forward<Args>(args)...)),
279  /* with_prefix = */ true);
280  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102
std::string formatMooseDocumentedError(const std::string &repo_name, const unsigned int issue_num, const std::string &msg)
Formats a documented error.
Definition: MooseError.C:105

◆ mooseError()

template<typename... Args>
void MooseBase::mooseError ( Args &&...  args) const
inlineinherited

Emits an error prefixed with object name and type and optionally a file path to the top-level block parameter if available.

Definition at line 267 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), HierarchicalGridPartitioner::_do_partition(), GridPartitioner::_do_partition(), PetscExternalPartitioner::_do_partition(), MultiAppGeneralFieldTransfer::acceptPointInOriginMesh(), AutoCheckpointAction::act(), AddMeshGeneratorAction::act(), CreateExecutionerAction::act(), CheckFVBCAction::act(), InitProblemAction::act(), AddBoundsVectorsAction::act(), SetupMeshCompleteAction::act(), AddVectorPostprocessorAction::act(), CheckIntegrityAction::act(), AddFVICAction::act(), AddICAction::act(), CreateProblemDefaultAction::act(), CreateProblemAction::act(), CombineComponentsMeshes::act(), SetupMeshAction::act(), SplitMeshAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), ChainControlSetupAction::act(), DeprecatedBlockAction::act(), SetupPredictorAction::act(), SetupTimeStepperAction::act(), CreateDisplacedProblemAction::act(), MaterialDerivativeTestAction::act(), SetAdaptivityOptionsAction::act(), MaterialOutputAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::adaptMesh(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), MooseVariableFV< Real >::adCurlSln(), MooseVariableFV< Real >::adCurlSlnNeighbor(), AddActionComponentAction::AddActionComponentAction(), MFEMProblem::addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), DiffusionCG::addBoundaryConditionsFromComponents(), PhysicsComponentInterface::addBoundaryConditionsFromComponents(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), DistributedRectilinearMeshGenerator::addElement(), MooseApp::addExecutor(), FEProblemBase::addFunction(), SubProblem::addFunctor(), FEProblemBase::addFVInitialCondition(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInitialCondition(), PhysicsComponentInterface::addInitialConditionsFromComponents(), FEProblemBase::addInterfaceKernel(), MFEMProblem::addKernel(), FEProblemBase::addKernel(), FEProblem::addLineSearch(), FEProblemBase::addLineSearch(), MFEMProblem::addMaterial(), MeshGenerator::addMeshSubgenerator(), MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), SubProblem::addPiecewiseByBlockLambdaFunctor(), DiracKernelBase::addPoint(), DistributedRectilinearMeshGenerator::addPoint(), DiracKernelBase::addPointWithValidId(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), MooseMesh::addQuadratureNode(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addScalarKernel(), AddVariableAction::addVariable(), FEProblemBase::addVectorPostprocessor(), SubProblem::addVectorTag(), MooseLinearVariableFV< Real >::adError(), ADInterfaceKernelTempl< T >::ADInterfaceKernelTempl(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), MooseVariableScalar::adUDot(), Output::advancedExecuteOn(), AdvectiveFluxAux::AdvectiveFluxAux(), MooseVariableBase::allDofIndices(), NEML2ModelExecutor::applyPredictor(), MooseApp::appNameToLibName(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayConstantIC::ArrayConstantIC(), ArrayDGKernel::ArrayDGKernel(), ArrayDiffusion::ArrayDiffusion(), ArrayFunctionIC::ArrayFunctionIC(), ArrayReaction::ArrayReaction(), ArrayTimeDerivative::ArrayTimeDerivative(), MooseApp::attachRelationshipManagers(), AddPeriodicBCAction::autoTranslationBoundaries(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), Axisymmetric2D3DSolutionFunction::Axisymmetric2D3DSolutionFunction(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BicubicSplineFunction::BicubicSplineFunction(), BlockDeletionGenerator::BlockDeletionGenerator(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), BoundingValueElementDamper::BoundingValueElementDamper(), BoundingValueNodalDamper::BoundingValueNodalDamper(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), MooseMesh::buildCoarseningMap(), MultiApp::buildComm(), DistributedRectilinearMeshGenerator::buildCube(), TimedSubdomainModifier::buildFromFile(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromJSON(), TimedSubdomainModifier::buildFromParameters(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), MooseMesh::buildLowerDMesh(), TiledMesh::buildMesh(), GeneratedMesh::buildMesh(), SpiralAnnularMesh::buildMesh(), MeshGeneratorMesh::buildMesh(), ImageMeshGenerator::buildMesh3D(), ImageMesh::buildMesh3D(), MooseMesh::buildRefinementMap(), MaterialBase::buildRequiredMaterials(), MooseMesh::buildSideList(), MooseMesh::buildTypedMesh(), MooseMesh::cacheFaceInfoVariableOwnership(), CartesianGridDivision::CartesianGridDivision(), CartesianMeshGenerator::CartesianMeshGenerator(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), EigenExecutionerBase::chebyshev(), SubProblem::checkBlockMatProps(), PhysicsBase::checkBlockRestrictionIdentical(), ComponentBoundaryConditionInterface::checkBoundaryConditionsAllRequested(), SubProblem::checkBoundaryMatProps(), PhysicsBase::checkComponentType(), IterationCountConvergence::checkConvergence(), MooseMesh::checkCoordinateSystems(), DiffusionLHDGAssemblyHelper::checkCoupling(), FEProblemBase::checkDependMaterialsHelper(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::checkDuplicatePostprocessorVariableNames(), DefaultConvergenceBase::checkDuplicateSetSharedExecutionerParams(), MooseMesh::checkDuplicateSubdomainNames(), FEProblemBase::checkExceptionAndStopSolve(), NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), MeshGenerator::checkGetMesh(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Steady::checkIntegrity(), EigenExecutionerBase::checkIntegrity(), Eigenvalue::checkIntegrity(), DefaultMultiAppFixedPointConvergence::checkIterationType(), DefaultNonlinearConvergence::checkIterationType(), DefaultSteadyStateConvergence::checkIterationType(), ExplicitTimeIntegrator::checkLinearConvergence(), MooseApp::checkMetaDataIntegrity(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), Sampler::checkReinitStatus(), MooseApp::checkReservedCapability(), MultiAppGeneralFieldNearestLocationTransfer::checkRestrictionsForSource(), MultiAppPostprocessorToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppScalarToAuxScalarTransfer::checkSiblingsTransferSupported(), MultiAppPostprocessorTransfer::checkSiblingsTransferSupported(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), MultiAppMFEMCopyTransfer::checkSiblingsTransferSupported(), MultiAppCopyTransfer::checkSiblingsTransferSupported(), MultiAppTransfer::checkSiblingsTransferSupported(), MaterialBase::checkStatefulSanity(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), FEProblemBase::checkUserObjects(), Moose::PetscSupport::checkUserProvidedPetscOption(), DomainUserObject::checkVariable(), MultiAppTransfer::checkVariable(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), LibmeshPartitioner::clone(), MooseMesh::clone(), CombinerGenerator::CombinerGenerator(), ComparisonPostprocessor::comparisonIsTrue(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), ElementH1ErrorFunctionAux::compute(), NodalPatchRecovery::compute(), FEProblemBase::computeBounds(), VariableCondensationPreconditioner::computeDInverseDiag(), CompositionDT::computeDT(), ArrayDGKernel::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighResidual(), InternalSideIntegralPostprocessor::computeFaceInfoIntegral(), SideIntegralPostprocessor::computeFaceInfoIntegral(), MooseVariableFieldBase::computeFaceValues(), TimeSequenceStepperBase::computeFailedDT(), IterationAdaptiveDT::computeFailedDT(), TimeStepper::computeFailedDT(), MooseMesh::computeFiniteVolumeCoords(), HistogramVectorPostprocessor::computeHistogram(), ArrayKernel::computeJacobian(), ArrayIntegratedBC::computeJacobian(), FVFluxKernel::computeJacobian(), NodalConstraint::computeJacobian(), FEProblemBase::computeJacobianTags(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), EigenProblem::computeMatricesTags(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), ArrayKernel::computeOffDiagJacobian(), ArrayIntegratedBC::computeOffDiagJacobian(), FVElementalKernel::computeOffDiagJacobian(), MortarScalarBase::computeOffDiagJacobianScalar(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), MaterialBase::computeProperties(), SideFVFluxBCIntegral::computeQpIntegral(), ScalarKernel::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), NodalEqualValueConstraint::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), NodeElemConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), ScalarKernel::computeQpResidual(), MassMatrix::computeQpResidual(), HDGKernel::computeQpResidual(), DiffusionLHDGDirichletBC::computeQpResidual(), NodalEqualValueConstraint::computeQpResidual(), DiffusionLHDGPrescribedGradientBC::computeQpResidual(), IPHDGBC::computeQpResidual(), KernelValue::computeQpResidual(), TorchScriptMaterial::computeQpValues(), InterfaceQpValueUserObject::computeRealValue(), ArrayKernel::computeResidual(), ArrayIntegratedBC::computeResidual(), FVFluxBC::computeResidual(), FVFluxKernel::computeResidual(), NodalConstraint::computeResidual(), FVFluxKernel::computeResidualAndJacobian(), ResidualObject::computeResidualAndJacobian(), FEProblemBase::computeResidualAndJacobian(), HDGKernel::computeResidualAndJacobianOnSide(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), KernelScalarBase::computeScalarOffDiagJacobian(), ADKernelScalarBase::computeScalarQpResidual(), ADMortarScalarBase::computeScalarQpResidual(), MortarScalarBase::computeScalarQpResidual(), KernelScalarBase::computeScalarQpResidual(), TimeStepper::computeStep(), ActuallyExplicitEuler::computeTimeDerivatives(), ExplicitEuler::computeTimeDerivatives(), ImplicitEuler::computeTimeDerivatives(), BDF2::computeTimeDerivatives(), NewmarkBeta::computeTimeDerivatives(), CentralDifference::computeTimeDerivatives(), CrankNicolson::computeTimeDerivatives(), LStableDirk2::computeTimeDerivatives(), LStableDirk3::computeTimeDerivatives(), ImplicitMidpoint::computeTimeDerivatives(), ExplicitTVDRK2::computeTimeDerivatives(), LStableDirk4::computeTimeDerivatives(), AStableDirk4::computeTimeDerivatives(), ExplicitRK2::computeTimeDerivatives(), MultiAppGeometricInterpolationTransfer::computeTransformation(), BuildArrayVariableAux::computeValue(), TagVectorArrayVariableAux::computeValue(), NearestNodeValueAux::computeValue(), ProjectionAux::computeValue(), PenetrationAux::computeValue(), ConcentricCircleMesh::ConcentricCircleMesh(), ConditionalEnableControl::ConditionalEnableControl(), TimeStepper::constrainStep(), LibtorchNeuralNetControl::controlNeuralNet(), TransientBase::convergedToSteadyState(), ParsedConvergence::convertRealToBool(), MooseApp::copyInputs(), CopyMeshPartitioner::CopyMeshPartitioner(), CoupledForceNodalKernel::CoupledForceNodalKernel(), MultiApp::createApp(), MooseApp::createExecutors(), AddVariableAction::createInitialConditionAction(), MooseApp::createRMFromTemplateAndInit(), Function::curl(), MooseVariableFV< Real >::curlPhi(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), SidesetInfoVectorPostprocessor::dataHelper(), ReporterTransferInterface::declareClone(), MeshGenerator::declareMeshProperty(), ReporterTransferInterface::declareVectorClone(), DefaultSteadyStateConvergence::DefaultSteadyStateConvergence(), FunctorRelationshipManager::delete_remote_elements(), MooseMesh::deleteRemoteElements(), BicubicSplineFunction::derivative(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), MooseMesh::detectPairedSidesets(), MooseApp::determineLibtorchDeviceType(), FEProblemBase::determineSolverSystem(), DGKernel::DGKernel(), MeshDiagnosticsGenerator::diagnosticsLog(), DistributedPositions::DistributedPositions(), Function::div(), FunctorBinnedValuesDivision::divisionIndex(), MooseVariableFV< Real >::divPhi(), FunctorRelationshipManager::dofmap_reinit(), EigenProblem::doFreeNonlinearPowerIterations(), FEProblemBase::duplicateVariableCheck(), MooseApp::dynamicAllRegistration(), MooseApp::dynamicAppRegistration(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), Eigenvalues::Eigenvalues(), ElementalVariableValue::ElementalVariableValue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementIntegerAux::ElementIntegerAux(), ElementMaterialSampler::ElementMaterialSampler(), ElementQualityAux::ElementQualityAux(), ElementUOAux::ElementUOAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), DistributedRectilinearMeshGenerator::elemId(), ProjectionAux::elemOnNodeVariableIsDefinedOn(), EigenKernel::enabled(), MooseApp::errorCheck(), MooseMesh::errorIfDistributedMesh(), MultiAppTransfer::errorIfObjectExecutesOnTransferInSourceApp(), SideIntegralPostprocessor::errorNoFaceInfo(), SideIntegralFunctorPostprocessorTempl< false >::errorNoFaceInfo(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), FixedPointSolve::examineFixedPointConvergence(), MultiAppGeneralFieldTransfer::examineReceivedValueConflicts(), RealToBoolChainControl::execute(), DiscreteElementUserObject::execute(), RestartableDataReporter::execute(), MultiAppScalarToAuxScalarTransfer::execute(), MultiAppPostprocessorToAuxScalarTransfer::execute(), NodalValueSampler::execute(), PositionsFunctorValueSampler::execute(), MultiAppPostprocessorInterpolationTransfer::execute(), MultiAppPostprocessorTransfer::execute(), ElementQualityChecker::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppVariableValueSampleTransfer::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), FindValueOnLine::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppMFEMCopyTransfer::execute(), MultiAppCopyTransfer::execute(), MultiAppUserObjectTransfer::execute(), InterfaceQpUserObjectBase::execute(), MultiAppGeometricInterpolationTransfer::execute(), WebServerControl::execute(), TransientBase::execute(), LeastSquaresFit::execute(), VectorPostprocessorComparison::execute(), LeastSquaresFitHistory::execute(), Eigenvalue::execute(), TimeExtremeValue::execute(), DomainUserObject::execute(), FEProblemBase::execute(), FEProblemBase::executeControls(), MooseApp::executeExecutioner(), MultiAppVectorPostprocessorTransfer::executeFromMultiapp(), MultiAppVectorPostprocessorTransfer::executeToMultiapp(), Exodus::Exodus(), ExplicitSSPRungeKutta::ExplicitSSPRungeKutta(), MultiAppGeneralFieldTransfer::extractOutgoingPoints(), NEML2ModelExecutor::extractOutputs(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemSolve::FEProblemSolve(), FileOutput::FileOutput(), NEML2ModelExecutor::fillInputs(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), VerifyNodalUniqueID::finalize(), VerifyElementUniqueID::finalize(), DiscreteElementUserObject::finalize(), ElementQualityChecker::finalize(), MemoryUsage::finalize(), PointSamplerBase::finalize(), DiscreteVariableResidualNorm::finalize(), NearestPointAverage::finalize(), NearestPointIntegralVariablePostprocessor::finalize(), MooseApp::finalizeRestore(), Transfer::find_sys(), BreakMeshByBlockGeneratorBase::findFreeBoundaryId(), FunctionDT::FunctionDT(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FunctionScalarAux::FunctionScalarAux(), FunctionScalarIC::FunctionScalarIC(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVMassMatrix::FVMassMatrix(), FVMatAdvection::FVMatAdvection(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), GapValueAux::GapValueAux(), WorkBalance::gather(), ElementSubdomainModifierBase::gatherPatchElements(), Boundary2DDelaunayGenerator::General2DDelaunay(), ElementOrderConversionGenerator::generate(), RenameBoundaryGenerator::generate(), SideSetsFromNormalsGenerator::generate(), SmoothMeshGenerator::generate(), SubdomainPerElementGenerator::generate(), TiledMeshGenerator::generate(), ExtraNodesetGenerator::generate(), FileMeshGenerator::generate(), MoveNodeGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), SideSetsFromPointsGenerator::generate(), StitchMeshGenerator::generate(), BreakMeshByBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), Boundary2DDelaunayGenerator::generate(), CoarsenBlockGenerator::generate(), MeshDiagnosticsGenerator::generate(), MeshRepairGenerator::generate(), SideSetsFromBoundingBoxGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), AllSideSetsByNormalsGenerator::generate(), CombinerGenerator::generate(), AdvancedExtruderGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedGenerateNodeset::generate(), SpiralAnnularMeshGenerator::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), CutMeshByLevelSetGeneratorBase::generate(), SubdomainBoundingBoxGenerator::generate(), PatternedMeshGenerator::generate(), DistributedRectilinearMeshGenerator::generate(), BoundingBoxNodeSetGenerator::generate(), MeshGenerator::generateData(), GeneratedMesh::GeneratedMesh(), GeneratedMeshGenerator::GeneratedMeshGenerator(), MeshGenerator::generateInternal(), CircularBoundaryCorrectionGenerator::generateRadialCorrectionFactor(), RandomICBase::generateRandom(), GenericConstantMaterialTempl< is_ad >::GenericConstantMaterialTempl(), GenericConstantVectorMaterialTempl< is_ad >::GenericConstantVectorMaterialTempl(), GenericFunctionMaterialTempl< is_ad >::GenericFunctionMaterialTempl(), GenericFunctionVectorMaterialTempl< is_ad >::GenericFunctionVectorMaterialTempl(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), DisplacedProblem::getActualFieldVariable(), FEProblemBase::getActualFieldVariable(), DisplacedProblem::getArrayVariable(), FEProblemBase::getArrayVariable(), MooseMesh::getAxisymmetricRadialCoord(), MFEMFESpace::getBasis(), NEML2BatchIndexGenerator::getBatchIndex(), MooseMesh::getBlockConnectedBlocks(), VariableOldValueBounds::getBound(), MooseMesh::getBoundaryID(), MultiApp::getBoundingBox(), ChainControl::getChainControlDataByName(), MooseMesh::getCoarseningMap(), NodalPatchRecoveryBase::getCoefficients(), MultiApp::getCommandLineArgs(), MooseVariableBase::getContinuity(), Control::getControllableParameterByName(), FEProblemBase::getConvergence(), MooseMesh::getCoordSystem(), PhysicsBase::getCoupledPhysics(), PropertyReadFile::getData(), DataFileInterface::getDataFilePath(), TransfiniteMeshGenerator::getDiscreteEdge(), FEProblemBase::getDistribution(), MooseVariableBase::getDofIndices(), VariableCondensationPreconditioner::getDofToCondense(), TransfiniteMeshGenerator::getEdge(), GhostingUserObject::getElementalValue(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), PropertyReadFile::getElementData(), MooseMesh::getElementIDIndex(), Material::getElementIDNeighbor(), Material::getElementIDNeighborByName(), MooseMesh::getElemIDMapping(), MooseMesh::getElemIDsOnBlocks(), MultiAppFieldTransfer::getEquationSystem(), MultiApp::getExecutioner(), MooseApp::getExecutor(), MFEMVectorFESpace::getFECName(), MultiAppTransfer::getFromMultiApp(), MultiAppTransfer::getFromMultiAppInfo(), FEProblemBase::getFunction(), SubProblem::getFunctor(), FEProblemBase::getFVMatsAndDependencies(), MooseMesh::getGeneralAxisymmetricCoordAxis(), DistributedRectilinearMeshGenerator::getGhostNeighbors(), DistributedRectilinearMeshGenerator::getIndices(), FEProblemBase::getLinearConvergenceNames(), SolutionUserObjectBase::getLocalVarIndex(), Material::getMaterialByName(), FEProblemBase::getMaterialData(), SubProblem::getMatrixTagID(), GeneratedMesh::getMaxInDimension(), AnnularMesh::getMaxInDimension(), FEProblemBase::getMaxQps(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), AnnularMesh::getMinInDimension(), GeneratedMesh::getMinInDimension(), MultiAppTransfer::getMultiApp(), FEProblemBase::getMultiAppFixedPointConvergenceName(), DistributedRectilinearMeshGenerator::getNeighbors(), Times::getNextTime(), MooseMesh::getNodeBlockIds(), PropertyReadFile::getNodeData(), MooseMesh::getNodeList(), FEProblemBase::getNonlinearConvergenceNames(), EigenProblem::getNonlinearEigenSystem(), FEProblemBase::getNonlinearSystem(), NEML2ModelExecutor::getOutput(), NEML2ModelExecutor::getOutputDerivative(), NEML2ModelExecutor::getOutputParameterDerivative(), MooseMesh::getPairedBoundaryMapping(), MaterialOutputAction::getParams(), ImageMeshGenerator::GetPixelInfo(), ImageMesh::GetPixelInfo(), PlaneIDMeshGenerator::getPlaneID(), Positions::getPosition(), Positions::getPositions(), FEProblemBase::getPositionsObject(), Positions::getPositionsVector2D(), Positions::getPositionsVector3D(), Positions::getPositionsVector4D(), PostprocessorInterface::getPostprocessorValueByNameInternal(), Times::getPreviousTime(), ComponentMaterialPropertyInterface::getPropertyValue(), InterfaceQpUserObjectBase::getQpValue(), MooseMesh::getRefinementMap(), MooseBase::getRenamedParam(), ReporterInterface::getReporterContextBaseByName(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), MooseApp::getRMClone(), FEProblemBase::getSampler(), WebServerControl::getScalarJSONValue(), DisplacedProblem::getScalarVariable(), FEProblemBase::getScalarVariable(), MooseObject::getSharedPtr(), InterfaceQpUserObjectBase::getSideAverageValue(), PhysicsBase::getSolverSystem(), DisplacedProblem::getStandardVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSteadyStateConvergenceName(), MooseMesh::getSubdomainBoundaryIds(), TimedSubdomainModifier::getSubdomainIDAndCheck(), DisplacedProblem::getSystem(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), Times::getTimeAtIndex(), FEProblemBase::getTimeFromStateArg(), TransientBase::getTimeIntegratorNames(), Times::getTimes(), MultiAppTransfer::getToMultiApp(), MultiAppTransfer::getToMultiAppInfo(), MooseMesh::getUniqueCoordSystem(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), UserObjectInterface::getUserObjectBaseByName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorComponent::getValue(), NumRelationshipManagers::getValue(), Residual::getValue(), SideAverageValue::getValue(), JSONFileReader::getValue(), LineValueSampler::getValue(), FindValueOnLine::getValueAtPoint(), SubProblem::getVariableHelper(), JSONFileReader::getVector(), VectorPostprocessorInterface::getVectorPostprocessorName(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), DisplacedProblem::getVectorVariable(), FEProblemBase::getVectorVariable(), GhostingFromUOAux::GhostingFromUOAux(), MultiApp::globalAppToLocal(), MooseParsedVectorFunction::gradient(), Function::gradient(), FEProblemBase::handleException(), Terminator::handleMessage(), MooseVariableBase::hasDoFsOnNodes(), PostprocessorInterface::hasPostprocessor(), PostprocessorInterface::hasPostprocessorByName(), ReporterInterface::hasReporterValue(), ReporterInterface::hasReporterValueByName(), VectorPostprocessorInterface::hasVectorPostprocessor(), VectorPostprocessorInterface::hasVectorPostprocessorByName(), HDGKernel::HDGKernel(), TransientBase::incrementStepOrReject(), FixedPointIterationAdaptiveDT::init(), CrankNicolson::init(), CSVTimeSequenceStepper::init(), EigenExecutionerBase::init(), ExplicitTimeIntegrator::init(), FEProblem::init(), TransientBase::init(), AddAuxVariableAction::init(), IterationAdaptiveDT::init(), Eigenvalue::init(), AddVariableAction::init(), MooseMesh::init(), Sampler::init(), FEProblemBase::init(), MultiApp::init(), FEProblemBase::initialAdaptMesh(), NestedDivision::initialize(), DistributedPositions::initialize(), ReporterPositions::initialize(), TransformedPositions::initialize(), ElementGroupCentroidPositions::initialize(), FunctorPositions::initialize(), ReporterTimes::initialize(), FunctorTimes::initialize(), ParsedDownSelectionPositions::initialize(), ParsedConvergence::initializeConstantSymbol(), PhysicsBase::initializePhysics(), SteffensenSolve::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), ChainControlDataPostprocessor::initialSetup(), PiecewiseLinearBase::initialSetup(), IntegralPreservingFunctionIC::initialSetup(), MultiAppConservativeTransfer::initialSetup(), PiecewiseLinear::initialSetup(), FullSolveMultiApp::initialSetup(), CoarsenedPiecewiseLinear::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), LinearFVDiffusion::initialSetup(), LinearFVAdvection::initialSetup(), SolutionScalarAux::initialSetup(), SolutionAux::initialSetup(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), NodalVariableValue::initialSetup(), Axisymmetric2D3DSolutionFunction::initialSetup(), ElementSubdomainModifierBase::initialSetup(), Exodus::initialSetup(), CSV::initialSetup(), MooseParsedFunction::initialSetup(), SolutionUserObjectBase::initialSetup(), FEProblemBase::initialSetup(), SubProblem::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initShowHideLists(), Function::integral(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), InterfaceTimeKernel::InterfaceTimeKernel(), InternalSideIndicatorBase::InternalSideIndicatorBase(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), EigenExecutionerBase::inversePowerIteration(), InversePowerMethod::InversePowerMethod(), Sampler::isAdaptiveSamplingCompleted(), MooseMesh::isBoundaryFullyExternalToSubdomains(), MooseVariableBase::isNodal(), IterationAdaptiveDT::IterationAdaptiveDT(), IterationCountConvergence::IterationCountConvergence(), LeastSquaresFit::LeastSquaresFit(), LibmeshPartitioner::LibmeshPartitioner(), MooseApp::libNameToAppName(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationPostprocessor::LinearCombinationPostprocessor(), LinearNodalConstraint::LinearNodalConstraint(), LineMaterialSamplerBase< Real >::LineMaterialSamplerBase(), LineSearch::lineSearch(), LineValueSampler::LineValueSampler(), MooseApp::loadLibraryAndDependencies(), MultiAppGeneralFieldTransfer::locatePointReceivers(), LowerBoundNodalKernel::LowerBoundNodalKernel(), MooseLinearVariableFV< Real >::lowerDError(), PNGOutput::makePNG(), ReporterPointMarker::markerSetup(), SubProblem::markFamilyPRefinement(), MassMatrix::MassMatrix(), Material::Material(), MaterialRealTensorValueAuxTempl< is_ad >::MaterialRealTensorValueAuxTempl(), MaterialRealVectorValueAuxTempl< T, is_ad, is_functor >::MaterialRealVectorValueAuxTempl(), MaterialStdVectorRealGradientAux::MaterialStdVectorRealGradientAux(), Distribution::median(), FunctorRelationshipManager::mesh_reinit(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshExtruderGenerator::MeshExtruderGenerator(), MeshRepairGenerator::MeshRepairGenerator(), SetupMeshAction::modifyParamsForUseSplit(), MeshMetaDataInterface::mooseErrorInternal(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), MooseMesh::MooseMesh(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MooseVariableConstMonomial::MooseVariableConstMonomial(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NearestNodeDistanceAux::NearestNodeDistanceAux(), FEProblemBase::needsPreviousNewtonIteration(), NewmarkBeta::NewmarkBeta(), NodalConstraint::NodalConstraint(), MooseVariableFV< Real >::nodalDofIndex(), MooseVariableFV< Real >::nodalDofIndexNeighbor(), MooseLinearVariableFV< Real >::nodalError(), MooseVariableFV< Real >::nodalMatrixTagValue(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalScalarKernel::NodalScalarKernel(), MooseVariableFV< Real >::nodalValueArray(), MooseVariableFV< Real >::nodalValueOldArray(), MooseVariableFV< Real >::nodalValueOlderArray(), NodalVariableValue::NodalVariableValue(), MooseVariableFV< Real >::nodalVectorTagValue(), DistributedRectilinearMeshGenerator::nodeId(), MooseVariableFV< Real >::numberOfDofsNeighbor(), NumDOFs::NumDOFs(), NumFailedTimeSteps::NumFailedTimeSteps(), DistributedRectilinearMeshGenerator::numNeighbors(), NumNonlinearIterations::NumNonlinearIterations(), NumVars::NumVars(), Output::onInterval(), FunctorRelationshipManager::operator()(), RelationshipManager::operator==(), ActionComponent::outerSurfaceArea(), ActionComponent::outerSurfaceBoundaries(), XDA::output(), SolutionHistory::output(), Exodus::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), AdvancedOutput::outputInput(), MooseApp::outputMachineReadableData(), AdvancedOutput::outputNodalVariables(), AdvancedOutput::outputPostprocessors(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), Exodus::outputSetup(), AdvancedOutput::outputSystemInformation(), Console::outputVectorPostprocessors(), AdvancedOutput::outputVectorPostprocessors(), DistributedRectilinearMeshGenerator::paritionSquarely(), PiecewiseBilinear::parse(), ParsedConvergence::ParsedConvergence(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), MultiAppConservativeTransfer::performAdjustment(), ExplicitTimeIntegrator::performExplicitSolve(), PetscExternalPartitioner::PetscExternalPartitioner(), MooseVariableFV< Real >::phiLowerSize(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PIDTransientControl::PIDTransientControl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseMulticonstant::PiecewiseMulticonstant(), PiecewiseMultiInterpolation::PiecewiseMultiInterpolation(), PiecewiseTabularBase::PiecewiseTabularBase(), CutMeshByLevelSetGeneratorBase::pointPairLevelSetInterception(), SolutionUserObjectBase::pointValueGradientWrapper(), SolutionUserObjectBase::pointValueWrapper(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessorByName(), LStableDirk2::postResidual(), LStableDirk3::postResidual(), ImplicitMidpoint::postResidual(), ExplicitTVDRK2::postResidual(), AStableDirk4::postResidual(), LStableDirk4::postResidual(), ExplicitRK2::postResidual(), EigenProblem::postScaleEigenVector(), VariableCondensationPreconditioner::preallocateCondensedJacobian(), ADKernelValueTempl< T >::precomputeQpJacobian(), Predictor::Predictor(), TransientBase::preExecute(), MooseMesh::prepare(), MooseMesh::prepared(), ElementSubdomainModifierBase::prepareVariableForReinitialization(), FixedPointSolve::printFixedPointConvergenceReason(), PseudoTimestep::PseudoTimestep(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readExodusII(), SolutionUserObjectBase::readXda(), CoarsenBlockGenerator::recursiveCoarsen(), MooseApp::recursivelyCreateExecutors(), FunctorRelationshipManager::redistribute(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseApp::registerRestartableData(), MooseApp::registerRestartableNameWithFilter(), Sampler::reinit(), RelativeSolutionDifferenceNorm::RelativeSolutionDifferenceNorm(), MFEMTransient::relativeSolutionDifferenceNorm(), MooseApp::removeRelationshipManager(), PhysicsBase::reportPotentiallyMissedParameters(), MooseApp::restore(), RinglebMesh::RinglebMesh(), RinglebMeshGenerator::RinglebMeshGenerator(), MooseApp::run(), MooseApp::runInputs(), PiecewiseMultiInterpolation::sample(), ScalarComponentIC::ScalarComponentIC(), MortarScalarBase::scalarVariable(), DistributedRectilinearMeshGenerator::scaleNodalPositions(), BicubicSplineFunction::secondDerivative(), MooseVariableFV< Real >::secondPhi(), MooseVariableFV< Real >::secondPhiFace(), MooseVariableFV< Real >::secondPhiFaceNeighbor(), MooseVariableFV< Real >::secondPhiNeighbor(), FunctorRelationshipManager::set_mesh(), MooseVariableBase::setActiveTags(), DistributedRectilinearMeshGenerator::setBoundaryNames(), MooseMesh::setCoordSystem(), FEProblemBase::setCoupling(), PiecewiseBase::setData(), FileOutput::setFileBaseInternal(), MooseMesh::setGeneralAxisymmetricCoordAxes(), FEProblemSolve::setInnerSolve(), MeshGenerator::setMeshProperty(), MooseApp::setMFEMDevice(), FVPointValueConstraint::setMyElem(), FEProblemBase::setNonlocalCouplingMatrix(), Sampler::setNumberOfCols(), Sampler::setNumberOfRandomSeeds(), Sampler::setNumberOfRows(), Exodus::setOutputDimensionInExodusWriter(), AddPeriodicBCAction::setPeriodicVars(), MFEMSolverBase::setPreconditioner(), MultiAppGeneralFieldTransfer::setSolutionVectorValues(), Split::setup(), TransientMultiApp::setupApp(), SetupMeshAction::setupMesh(), MooseApp::setupOptions(), TimeSequenceStepperBase::setupSequence(), TransientBase::setupTimeIntegrator(), TimePeriodBase::setupTimes(), IntegratedBCBase::shouldApply(), PhysicsBase::shouldCreateIC(), PhysicsBase::shouldCreateTimeDerivative(), PhysicsBase::shouldCreateVariable(), SideAdvectiveFluxIntegralTempl< is_ad >::SideAdvectiveFluxIntegralTempl(), SideDiffusiveFluxIntegralTempl< is_ad, Real >::SideDiffusiveFluxIntegralTempl(), SideSetsFromNormalsGenerator::SideSetsFromNormalsGenerator(), SideSetsFromPointsGenerator::SideSetsFromPointsGenerator(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), MooseVariableBase::sizeMatrixTagData(), SolutionTimeAdaptiveDT::SolutionTimeAdaptiveDT(), SolutionUserObjectBase::SolutionUserObjectBase(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), TimeIntegrator::solve(), FEProblemBase::solverSysNum(), FullSolveMultiApp::solveStep(), SpatialAverageBase::SpatialAverageBase(), UserObject::spatialPoints(), NearestPointIntegralVariablePostprocessor::spatialValue(), NearestPointAverage::spatialValue(), MeshDivisionFunctorReductionVectorPostprocessor::spatialValue(), UserObject::spatialValue(), SpiralAnnularMesh::SpiralAnnularMesh(), SpiralAnnularMeshGenerator::SpiralAnnularMeshGenerator(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), WebServerControl::stringifyJSONType(), MultiAppGeometricInterpolationTransfer::subdomainIDsNode(), Constraint::subdomainSetup(), NodalUserObject::subdomainSetup(), GeneralUserObject::subdomainSetup(), MaterialBase::subdomainSetup(), FEProblemBase::swapBackMaterialsNeighbor(), DisplacedProblem::systemBaseLinear(), Console::systemInfoFlags(), FEProblemBase::systemNumForVariable(), TerminateChainControl::terminate(), Terminator::Terminator(), CutMeshByLevelSetGeneratorBase::tet4ElemCutter(), ThreadedGeneralUserObject::threadJoin(), DiscreteElementUserObject::threadJoin(), GeneralUserObject::threadJoin(), Function::timeDerivative(), TimedSubdomainModifier::TimedSubdomainModifier(), TimeExtremeValue::TimeExtremeValue(), Function::timeIntegral(), MooseLinearVariableFV< Real >::timeIntegratorError(), TimeIntervalTimes::TimeIntervalTimes(), TimePeriodBase::TimePeriodBase(), VectorPostprocessorVisualizationAux::timestepSetup(), WebServerControl::toMiniJson(), MultiAppDofCopyTransfer::transfer(), MultiAppMFEMCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransformedPositions::TransformedPositions(), FEProblemBase::trustUserCouplingMatrix(), MooseVariableScalar::uDot(), MooseVariableScalar::uDotDot(), MooseVariableScalar::uDotDotOld(), FEProblemBase::uDotDotOldRequested(), MooseVariableScalar::uDotOld(), FEProblemBase::uDotOldRequested(), MooseBase::uniqueName(), Positions::unrollMultiDPositions(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), Checkpoint::updateCheckpointFiles(), EqualValueBoundaryConstraint::updateConstrainedNodes(), SolutionUserObjectBase::updateExodusBracketingTimeIndices(), FEProblemBase::updateMaxQps(), MFEMHypreAMS::updateSolver(), MFEMHypreADS::updateSolver(), MFEMHyprePCG::updateSolver(), MFEMGMRESSolver::updateSolver(), MFEMCGSolver::updateSolver(), MFEMHypreBoomerAMG::updateSolver(), MFEMOperatorJacobiSmoother::updateSolver(), MFEMHypreFGMRES::updateSolver(), MFEMHypreGMRES::updateSolver(), MFEMSuperLU::updateSolver(), UpperBoundNodalKernel::UpperBoundNodalKernel(), NearestPointAverage::userObjectValue(), NearestPointIntegralVariablePostprocessor::userObjectValue(), BoundingBoxIC::value(), PiecewiseConstantFromCSV::value(), IntegralPreservingFunctionIC::value(), Axisymmetric2D3DSolutionFunction::value(), Function::value(), ValueRangeMarker::ValueRangeMarker(), ValueThresholdMarker::ValueThresholdMarker(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VariableTimeIntegrationAux::VariableTimeIntegrationAux(), AddVariableAction::variableType(), VariableValueVolumeHistogram::VariableValueVolumeHistogram(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), VectorNodalBC::VectorNodalBC(), SubProblem::vectorTagName(), SubProblem::vectorTagType(), MooseParsedGradFunction::vectorValue(), MooseParsedFunction::vectorValue(), Function::vectorValue(), SubProblem::verifyVectorTags(), ActionComponent::volume(), VTKOutput::VTKOutput(), WebServerControl::WebServerControl(), MooseApp::writeRestartableMetaData(), DOFMapOutput::writeStreamToFile(), and Console::writeStreamToFile().

268  {
269  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ true);
270  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102

◆ mooseErrorNonPrefixed()

template<typename... Args>
void MooseBase::mooseErrorNonPrefixed ( Args &&...  args) const
inlineinherited

Emits an error without the prefixing included in mooseError().

Definition at line 286 of file MooseBase.h.

287  {
288  callMooseError(argumentsToString(std::forward<Args>(args)...), /* with_prefix = */ false);
289  }
void callMooseError(std::string msg, const bool with_prefix, const hit::Node *node=nullptr) const
External method for calling moose error with added object context.
Definition: MooseBase.C:102

◆ mooseInfo()

template<typename... Args>
void MooseBase::mooseInfo ( Args &&...  args) const
inlineinherited

Definition at line 317 of file MooseBase.h.

Referenced by SetupRecoverFileBaseAction::act(), AStableDirk4::AStableDirk4(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MultiAppGeneralFieldNearestLocationTransfer::evaluateInterpValuesNearestNode(), PIDTransientControl::execute(), Executioner::Executioner(), ExplicitRK2::ExplicitRK2(), ExplicitTVDRK2::ExplicitTVDRK2(), DataFileInterface::getDataFilePath(), MFEMScalarFESpace::getFECName(), MultiAppTransfer::getPointInTargetAppFrame(), ImplicitMidpoint::ImplicitMidpoint(), ParsedDownSelectionPositions::initialize(), PropertyReadFile::initialize(), MultiAppGeneralFieldTransfer::initialSetup(), InversePowerMethod::InversePowerMethod(), LStableDirk2::LStableDirk2(), LStableDirk3::LStableDirk3(), LStableDirk4::LStableDirk4(), PNGOutput::makeMeshFunc(), NonlinearEigen::NonlinearEigen(), SolutionInvalidityOutput::output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramInfo(), ProjectionAux::ProjectionAux(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MFEMDataCollection::registerFields(), FEProblemBase::setRestartFile(), MooseApp::setupOptions(), SolutionUserObjectBase::SolutionUserObjectBase(), SymmetryTransformGenerator::SymmetryTransformGenerator(), TransientBase::takeStep(), and TransientBase::TransientBase().

318  {
319  moose::internal::mooseInfoStream(_console, messagePrefix(true), std::forward<Args>(args)...);
320  }
void mooseInfoStream(S &oss, Args &&... args)
Definition: MooseError.h:268
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseWarning()

template<typename... Args>
void MooseBase::mooseWarning ( Args &&...  args) const
inlineinherited

Emits a warning prefixed with object name and type.

Definition at line 295 of file MooseBase.h.

Referenced by CopyMeshPartitioner::_do_partition(), AddKernelAction::act(), MeshOnlyAction::act(), AddFunctionAction::act(), MaterialOutputAction::act(), CommonOutputAction::act(), MFEMProblem::addFunction(), MooseMesh::addPeriodicVariable(), DiracKernelBase::addPoint(), BoundaryMarker::BoundaryMarker(), DistributedRectilinearMeshGenerator::buildCube(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), CartesianMeshGenerator::CartesianMeshGenerator(), CheckOutputAction::checkConsoleOutput(), MultiAppTransfer::checkMultiAppExecuteOn(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), SampledOutput::cloneMesh(), MultiAppGeneralFieldTransfer::closestToPosition(), VariableValueElementSubdomainModifier::computeSubdomainID(), GapValueAux::computeValue(), MultiApp::createApp(), DebugResidualAux::DebugResidualAux(), MeshDiagnosticsGenerator::diagnosticsLog(), CartesianGridDivision::divisionIndex(), CylindricalGridDivision::divisionIndex(), SphericalGridDivision::divisionIndex(), ElementMaterialSampler::ElementMaterialSampler(), Postprocessor::evaluateDotWarning(), MeshDivisionFunctorReductionVectorPostprocessor::execute(), ElementQualityChecker::finalize(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), FixedPointSolve::FixedPointSolve(), SubdomainPerElementGenerator::generate(), StitchMeshGenerator::generate(), ParsedGenerateSideset::generate(), MultiAppTransfer::getAppInfo(), FunctorBinnedValuesDivision::getBinIndex(), DataFileInterface::getDataFilePath(), PointSamplerBase::getLocalElemContainingPoint(), FEProblemBase::getMaterial(), LineValueSampler::getValue(), Terminator::handleMessage(), IndicatorMarker::IndicatorMarker(), CylindricalGridDivision::initialize(), CartesianGridDivision::initialize(), SphericalGridDivision::initialize(), ElementGroupCentroidPositions::initialize(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), BoundsBase::initialSetup(), ReferenceResidualConvergence::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), LeastSquaresFit::LeastSquaresFit(), IterationAdaptiveDT::limitDTToPostprocessorValue(), MooseApp::loadLibraryAndDependencies(), FEProblemBase::mesh(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), NewmarkBeta::NewmarkBeta(), NodalPatchRecovery::NodalPatchRecovery(), NonlocalIntegratedBC::NonlocalIntegratedBC(), NonlocalKernel::NonlocalKernel(), Output::Output(), MultiAppGeneralFieldTransfer::outputValueConflicts(), MooseBase::paramWarning(), PiecewiseConstantFromCSV::PiecewiseConstantFromCSV(), Executioner::problem(), PropertyReadFile::readData(), TestSourceStepper::rejectStep(), PhysicsBase::reportPotentiallyMissedParameters(), MaterialBase::resetQpProperties(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), MooseMesh::setCoordSystem(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), FEProblemBase::sizeZeroes(), TransientMultiApp::solveStep(), Tecplot::Tecplot(), TimeDerivativeAux::TimeDerivativeAux(), Checkpoint::updateCheckpointFiles(), SampledOutput::updateSample(), PiecewiseConstantFromCSV::value(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

296  {
297  moose::internal::mooseWarningStream(_console, messagePrefix(true), std::forward<Args>(args)...);
298  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:220
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
std::string messagePrefix(const bool hit_prefix=true) const
Definition: MooseBase.h:252

◆ mooseWarningNonPrefixed()

template<typename... Args>
void MooseBase::mooseWarningNonPrefixed ( Args &&...  args) const
inlineinherited

Emits a warning without the prefixing included in mooseWarning().

Definition at line 304 of file MooseBase.h.

305  {
306  moose::internal::mooseWarningStream(_console, std::forward<Args>(args)...);
307  }
void mooseWarningStream(S &oss, Args &&... args)
Definition: MooseError.h:220
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ mortarData() [1/2]

const MortarData& FEProblemBase::mortarData ( ) const
inlineinherited

Returns the mortar data object.

Definition at line 2239 of file FEProblemBase.h.

2239 { return _mortar_data; }
MortarData _mortar_data

◆ mortarData() [2/2]

MortarData& FEProblemBase::mortarData ( )
inlineinherited

Definition at line 2240 of file FEProblemBase.h.

2240 { return _mortar_data; }
MortarData _mortar_data

◆ name()

const std::string& MooseBase::name ( ) const
inlineinherited

Get the name of the class.

Returns
The name of the class

Definition at line 99 of file MooseBase.h.

Referenced by AddElementalFieldAction::act(), CopyNodalVarsAction::act(), AdaptivityAction::act(), AddTimeStepperAction::act(), DeprecatedBlockAction::act(), SetupTimeIntegratorAction::act(), SetupResidualDebugAction::act(), AddActionComponentAction::act(), DisplayGhostingAction::act(), MaterialOutputAction::act(), AddPeriodicBCAction::act(), FEProblemBase::addAnyRedistributers(), Executioner::addAttributeReporter(), MFEMProblem::addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), DisplacedProblem::addAuxVariable(), MFEMProblem::addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), PhysicsComponentInterface::addComponent(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), Registry::addDataFilePath(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), MFEMProblem::addFESpace(), MFEMProblem::addFunction(), FEProblemBase::addFunction(), SubProblem::addFunctor(), MFEMProblem::addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FunctorMaterial::addFunctorProperty(), FunctorMaterial::addFunctorPropertyByBlocks(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), ADDGKernel::ADDGKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), MFEMProblem::addInitialCondition(), FEProblemBase::addInitialCondition(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), DiffusionLHDGKernel::additionalROVariables(), IPHDGAssemblyHelper::additionalROVariables(), MFEMProblem::addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), ComponentMaterialPropertyInterface::addMaterials(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), ComponentMeshTransformHelper::addMeshGenerators(), CylinderComponent::addMeshGenerators(), MeshGenerator::addMeshSubgenerator(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), InitialConditionWarehouse::addObject(), FEProblemBase::addObject(), ComponentPhysicsInterface::addPhysics(), SubProblem::addPiecewiseByBlockLambdaFunctor(), MFEMProblem::addPostprocessor(), FEProblemBase::addPostprocessor(), InitialConditionBase::addPostprocessorDependencyHelper(), UserObject::addPostprocessorDependencyHelper(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), Action::addRelationshipManager(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), MFEMProblem::addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), InitialConditionBase::addUserObjectDependencyHelper(), UserObject::addUserObjectDependencyHelper(), AuxKernelTempl< Real >::addUserObjectDependencyHelper(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), UserObject::addVectorPostprocessorDependencyHelper(), MooseLinearVariableFV< Real >::adError(), Output::advancedExecuteOn(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), MooseVariableBase::allDofIndices(), MooseApp::appBinaryName(), MooseApp::appendMeshGenerator(), Registry::appNameFromAppPath(), MultiApp::appPostprocessorValue(), MultiApp::appProblem(), MultiApp::appProblemBase(), MultiApp::appUserObjectBase(), ArrayDGKernel::ArrayDGKernel(), ArrayParsedAux::ArrayParsedAux(), PhysicsBase::assignBlocks(), AStableDirk4::AStableDirk4(), AuxKernelTempl< Real >::AuxKernelTempl(), Function::average(), MultiApp::backup(), Boundary2DDelaunayGenerator::Boundary2DDelaunayGenerator(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), MFEMFESpace::buildFEC(), PiecewiseTabularBase::buildFromFile(), MultiAppVariableValueSamplePostprocessorTransfer::cacheElemToPostprocessorData(), MooseBase::callMooseError(), ChangeOverFixedPointPostprocessor::ChangeOverFixedPointPostprocessor(), ChangeOverTimePostprocessor::ChangeOverTimePostprocessor(), PhysicsBase::checkBlockRestrictionIdentical(), PhysicsBase::checkComponentType(), ParsedConvergence::checkConvergence(), DefaultNonlinearConvergence::checkConvergence(), FEProblemBase::checkDependMaterialsHelper(), SamplerBase::checkForStandardFieldVariableType(), ReporterTransferInterface::checkHasReporterValue(), FEProblemBase::checkICRestartError(), Material::checkMaterialProperty(), MooseApp::checkMetaDataIntegrity(), Damper::checkMinDamping(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), Checkpoint::checkpointInfo(), DomainUserObject::checkVariable(), BlockRestrictable::checkVariable(), Coupleable::checkWritableVar(), MooseVariableFieldBase::componentName(), CompositeFunction::CompositeFunction(), MaterialBase::computeProperties(), FEProblemBase::computeUserObjectByName(), VectorPostprocessorVisualizationAux::computeValue(), MooseBase::connectControllableParams(), ConstantPostprocessor::ConstantPostprocessor(), Coupleable::coupledName(), CommonOutputAction::create(), MultiApp::createApp(), MooseApp::createExecutors(), MeshGeneratorSystem::createMeshGeneratorOrder(), MooseApp::createRecoverablePerfGraph(), CutMeshByPlaneGenerator::CutMeshByPlaneGenerator(), DebugResidualAux::DebugResidualAux(), MaterialBase::declareADProperty(), MeshGenerator::declareMeshesForSubByName(), MeshGenerator::declareNullMeshName(), MaterialBase::declareProperty(), DOFMapOutput::demangle(), DerivativeSumMaterialTempl< is_ad >::DerivativeSumMaterialTempl(), Registry::determineDataFilePath(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DomainUserObject::DomainUserObject(), dumpObjectHelper(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementMaterialSampler::ElementMaterialSampler(), ElementValueSampler::ElementValueSampler(), EigenKernel::enabled(), MooseMesh::errorIfDistributedMesh(), SolutionUserObjectBase::evalMeshFunction(), SolutionUserObjectBase::evalMeshFunctionGradient(), SolutionUserObjectBase::evalMultiValuedMeshFunction(), SolutionUserObjectBase::evalMultiValuedMeshFunctionGradient(), SideValueSampler::execute(), RestartableDataReporter::execute(), GreaterThanLessThanPostprocessor::execute(), PointValue::execute(), MultiAppNearestNodeTransfer::execute(), MultiAppProjectionTransfer::execute(), MultiAppUserObjectTransfer::execute(), WebServerControl::execute(), MultiAppGeneralFieldTransfer::execute(), ActionWarehouse::executeActionsWithAction(), Exodus::Exodus(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), MultiApp::fillPositions(), MultiAppGeometricInterpolationTransfer::fillSourceInterpolationPoints(), PointSamplerBase::finalize(), ChainControl::fullControlDataName(), FunctionArrayAux::FunctionArrayAux(), FunctionDT::FunctionDT(), FunctionIC::functionName(), FVFunctionIC::functionName(), FunctorPositions::FunctorPositions(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), FVInitialConditionTempl< T >::FVInitialConditionTempl(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), GapValueAux::GapValueAux(), MooseServer::gatherDocumentSymbols(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BreakMeshByBlockGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), StitchBoundaryMeshGenerator::generate(), StitchMeshGenerator::generate(), ParsedExtraElementIDGenerator::generate(), XYDelaunayGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), MeshGenerator::generateInternal(), InterfaceMaterial::getADMaterialProperty(), Material::getADMaterialProperty(), MultiAppTransfer::getAppInfo(), MultiApp::getBoundingBox(), MooseBase::getCheckedPointerParam(), MooseApp::getCheckpointDirectories(), Control::getControllableParameterByName(), Control::getControllableValue(), Control::getControllableValueByName(), FEProblemBase::getConvergence(), Registry::getDataFilePath(), UserObject::getDependObjects(), DistributionInterface::getDistribution(), FEProblemBase::getDistribution(), DistributionInterface::getDistributionByName(), ElementUOProvider::getElementalValueLong(), ElementUOProvider::getElementalValueReal(), MultiApp::getExecutioner(), MooseApp::getExecutor(), FEProblemBase::getExecutor(), OutputWarehouse::getFileNumbers(), FEProblemBase::getFunction(), SubProblem::getFunctor(), NodalPatchRecovery::getGenericMaterialProperty(), InterfaceMaterial::getGenericMaterialProperty(), Material::getGenericMaterialProperty(), AuxKernelTempl< Real >::getGenericMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialProperty(), InterfaceMaterial::getGenericNeighborMaterialPropertyByName(), Material::getGenericOptionalMaterialProperty(), MaterialBase::getGenericZeroMaterialProperty(), MFEMProblem::getGridFunction(), SolutionUserObjectBase::getLocalVarIndex(), Marker::getMarkerValue(), Material::getMaterial(), FEProblemBase::getMaterial(), Material::getMaterialByName(), NodalPatchRecovery::getMaterialProperty(), InterfaceMaterial::getMaterialProperty(), Material::getMaterialProperty(), AuxKernelTempl< Real >::getMaterialProperty(), SubProblem::getMaterialPropertyBlockNames(), SubProblem::getMaterialPropertyBoundaryNames(), NodalPatchRecovery::getMaterialPropertyOld(), InterfaceMaterial::getMaterialPropertyOld(), Material::getMaterialPropertyOld(), AuxKernelTempl< Real >::getMaterialPropertyOld(), NodalPatchRecovery::getMaterialPropertyOlder(), InterfaceMaterial::getMaterialPropertyOlder(), Material::getMaterialPropertyOlder(), AuxKernelTempl< Real >::getMaterialPropertyOlder(), MFEMGeneralUserObject::getMatrixCoefficient(), MFEMGeneralUserObject::getMatrixCoefficientByName(), MeshGenerator::getMesh(), FEProblemBase::getMeshDivision(), MeshGenerator::getMeshesByName(), MooseApp::getMeshGenerator(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), ActionWarehouse::getMooseAppName(), MultiAppTransfer::getMultiApp(), InterfaceMaterial::getNeighborADMaterialProperty(), InterfaceMaterial::getNeighborMaterialProperty(), InterfaceMaterial::getNeighborMaterialPropertyOld(), InterfaceMaterial::getNeighborMaterialPropertyOlder(), MooseServer::getObjectParameters(), Material::getOptionalADMaterialProperty(), Material::getOptionalMaterialProperty(), Material::getOptionalMaterialPropertyOld(), Material::getOptionalMaterialPropertyOlder(), OutputWarehouse::getOutput(), MooseBase::getParam(), FEProblemBase::getPositionsObject(), FEProblemBase::getPostprocessorValueByName(), ComponentMaterialPropertyInterface::getPropertyValue(), ReporterData::getReporterInfo(), MooseApp::getRestartableDataMap(), MooseApp::getRestartableDataMapName(), MooseApp::getRestartableMetaData(), FEProblemBase::getSampler(), MFEMGeneralUserObject::getScalarCoefficient(), MFEMGeneralUserObject::getScalarCoefficientByName(), TransientBase::getTimeStepperName(), ProjectedStatefulMaterialStorageAction::getTypeEnum(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), MFEMGeneralUserObject::getVectorCoefficient(), MFEMGeneralUserObject::getVectorCoefficientByName(), Terminator::handleMessage(), Control::hasControllableParameterByName(), FEProblemBase::hasConvergence(), FEProblemBase::hasFunction(), SubProblem::hasFunctor(), SubProblem::hasFunctorWithType(), MooseApp::hasMeshGenerator(), AdvancedOutput::hasOutputHelper(), FEProblemBase::hasPostprocessor(), FEProblemBase::hasPostprocessorValueByName(), MooseApp::hasRelationshipManager(), MooseApp::hasRestartableDataMap(), MooseApp::hasRestartableMetaData(), FEProblemBase::hasUserObject(), IterationAdaptiveDT::init(), AddVariableAction::init(), AdvancedOutput::init(), AdvancedOutput::initExecutionTypes(), AttribName::initFrom(), NestedDivision::initialize(), TransformedPositions::initialize(), BoundaryRestrictable::initializeBoundaryRestrictable(), JSONOutput::initialSetup(), SideFVFluxBCIntegral::initialSetup(), SolutionScalarAux::initialSetup(), MultiAppProjectionTransfer::initialSetup(), NodalVariableValue::initialSetup(), Console::initialSetup(), SolutionUserObjectBase::initialSetup(), AdvancedOutput::initOutputList(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), MaterialBase::initStatefulProperties(), Function::integral(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), MultiAppGeometricInterpolationTransfer::interpolateTargetPoints(), MeshGenerator::isChildMeshGenerator(), DerivativeMaterialInterface< MortarScalarBase >::isNotObjectVariable(), MeshGenerator::isNullMeshName(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MeshGenerator::isParentMeshGenerator(), LinearCombinationFunction::LinearCombinationFunction(), FEProblemBase::logAdd(), MooseLinearVariableFV< Real >::lowerDError(), Marker::Marker(), MaterialBase::markMatPropRequested(), MatDiffusionBase< Real >::MatDiffusionBase(), Material::Material(), MaterialDerivativeTestKernelBase< Real >::MaterialDerivativeTestKernelBase(), Distribution::median(), MemoryUsageReporter::MemoryUsageReporter(), MeshGenerator::meshPropertyPrefix(), MooseBase::messagePrefix(), OutputWarehouse::mooseConsole(), MooseVariableBase::MooseVariableBase(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MooseLinearVariableFV< Real >::nodalError(), NodalPatchRecoveryAuxBase::NodalPatchRecoveryAuxBase(), NodalValueSampler::NodalValueSampler(), Registry::objData(), MeshGenerator::Comparator::operator()(), ProgressOutput::output(), DOFMapOutput::output(), Output::Output(), AdvancedOutput::outputElementalVariables(), ConsoleUtils::outputExecutionInformation(), MaterialOutputAction::outputHelper(), AdvancedOutput::outputInput(), AdvancedOutput::outputNodalVariables(), Exodus::outputPostprocessors(), AdvancedOutput::outputPostprocessors(), TableOutput::outputReporter(), AdvancedOutput::outputReporters(), AdvancedOutput::outputScalarVariables(), AdvancedOutput::outputSystemInformation(), AdvancedOutput::outputVectorPostprocessors(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedODEKernel::ParsedODEKernel(), ComponentPhysicsInterface::physicsExists(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseByBlockFunctorMaterialTempl< T >::PiecewiseByBlockFunctorMaterialTempl(), MooseApp::possiblyLoadRestartableMetaData(), PhysicsBase::prefix(), MooseMesh::prepare(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), PerfGraphLivePrint::printStats(), FEProblemBase::projectInitialConditionOnCustomRange(), MooseBase::queryParam(), MultiApp::readCommandLineArguments(), Receiver::Receiver(), Executor::Result::record(), AppFactory::reg(), Registry::registerObjectsTo(), FEProblemBase::registerRandomInterface(), MooseApp::registerRestartableDataMapName(), MooseApp::registerRestartableNameWithFilter(), GlobalParamsAction::remove(), MaterialBase::resetQpProperties(), MultiApp::restore(), ScalarComponentIC::ScalarComponentIC(), MultiApp::setAppOutputFileBase(), MooseMesh::setBoundaryName(), Control::setControllableValue(), Control::setControllableValueByName(), GlobalParamsAction::setDoubleIndexParam(), OutputWarehouse::setFileNumbers(), GlobalParamsAction::setParam(), FEProblemBase::setPostprocessorValueByName(), FEProblemBase::setResidualObjectParamsAndLog(), GlobalParamsAction::setScalarParam(), MooseMesh::setSubdomainName(), GlobalParamsAction::setTripleIndexParam(), NodeSetsGeneratorBase::setup(), Split::setup(), SideSetsGeneratorBase::setup(), TransientMultiApp::setupApp(), GlobalParamsAction::setVectorParam(), FullSolveMultiApp::showStatusMessage(), SideSetExtruderGenerator::SideSetExtruderGenerator(), TransientMultiApp::solveStep(), UserObject::spatialValue(), WebServerControl::startServer(), StitchedMesh::StitchedMesh(), SubProblem::storeBoundaryDelayedCheckMatProp(), SubProblem::storeBoundaryMatPropName(), MaterialBase::storeBoundaryZeroMatProp(), SubProblem::storeBoundaryZeroMatProp(), SubProblem::storeSubdomainDelayedCheckMatProp(), SubProblem::storeSubdomainMatPropName(), MaterialBase::storeSubdomainZeroMatProp(), SubProblem::storeSubdomainZeroMatProp(), ConstraintWarehouse::subdomainsCovered(), MaterialBase::subdomainSetup(), TaggingInterface::TaggingInterface(), MooseLinearVariableFV< Real >::timeIntegratorError(), VectorPostprocessorVisualizationAux::timestepSetup(), ElementSubdomainModifierBase::timestepSetup(), to_json(), MultiAppDofCopyTransfer::transfer(), MultiAppShapeEvaluationTransfer::transferVariable(), TransientMultiApp::TransientMultiApp(), MooseServer::traverseParseTreeAndFillSymbols(), MooseBase::typeAndName(), MooseBase::uniqueParameterName(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), UserObject::UserObject(), UserObjectInterface::userObjectName(), ParsedAux::validateGenericVectorNames(), PhysicsBase::variableExists(), MultiAppTransfer::variableIntegrityCheck(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), Convergence::verboseOutput(), AdvancedOutput::wantOutput(), Coupleable::writableCoupledValue(), Coupleable::writableVariable(), Console::write(), and MooseApp::writeRestartableMetaData().

100  {
101  mooseAssert(_name.size(), "Empty name");
102  return _name;
103  }
const std::string & _name
The name of this class.
Definition: MooseBase.h:359

◆ needBoundaryMaterialOnSide()

bool FEProblemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

These methods are used to determine whether stateful material properties need to be stored on internal sides.

There are five situations where this may be the case: 1) DGKernels 2) IntegratedBCs 3)InternalSideUserObjects 4)ElementalAuxBCs 5)InterfaceUserObjects

Method 1:

Parameters
bnd_idthe boundary id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Method 2:

Parameters
subdomain_idthe subdomain id for which to see if stateful material properties need to be stored
tidthe THREAD_ID of the caller
Returns
Boolean indicating whether material properties need to be stored

Definition at line 8771 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onBoundary(), and ProjectMaterialProperties::onBoundary().

8772 {
8773  if (_bnd_mat_side_cache[tid].find(bnd_id) == _bnd_mat_side_cache[tid].end())
8774  {
8775  auto & bnd_mat_side_cache = _bnd_mat_side_cache[tid][bnd_id];
8776  bnd_mat_side_cache = false;
8777 
8778  if (_aux->needMaterialOnSide(bnd_id))
8779  {
8780  bnd_mat_side_cache = true;
8781  return true;
8782  }
8783  else
8784  for (auto & nl : _nl)
8785  if (nl->needBoundaryMaterialOnSide(bnd_id, tid))
8786  {
8787  bnd_mat_side_cache = true;
8788  return true;
8789  }
8790 
8791  if (theWarehouse()
8792  .query()
8793  .condition<AttribThread>(tid)
8794  .condition<AttribInterfaces>(Interfaces::SideUserObject)
8795  .condition<AttribBoundaries>(bnd_id)
8796  .count() > 0)
8797  {
8798  bnd_mat_side_cache = true;
8799  return true;
8800  }
8801  }
8802 
8803  return _bnd_mat_side_cache[tid][bnd_id];
8804 }
std::vector< std::unordered_map< BoundaryID, bool > > _bnd_mat_side_cache
Cache for calculating materials on side.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needFV()

virtual void FEProblemBase::needFV ( )
inlineoverridevirtualinherited

marks this problem as including/needing finite volume functionality.

Implements SubProblem.

Definition at line 2504 of file FEProblemBase.h.

Referenced by DiffusionFV::initializePhysicsAdditional(), and DisplacedProblem::needFV().

2504 { _have_fv = true; }
bool _have_fv
Whether we are performing some calculations with finite volume discretizations.

◆ needInterfaceMaterialOnSide()

bool FEProblemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8807 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface().

8808 {
8809  if (_interface_mat_side_cache[tid].find(bnd_id) == _interface_mat_side_cache[tid].end())
8810  {
8811  auto & interface_mat_side_cache = _interface_mat_side_cache[tid][bnd_id];
8812  interface_mat_side_cache = false;
8813 
8814  for (auto & nl : _nl)
8815  if (nl->needInterfaceMaterialOnSide(bnd_id, tid))
8816  {
8817  interface_mat_side_cache = true;
8818  return true;
8819  }
8820 
8821  if (theWarehouse()
8822  .query()
8823  .condition<AttribThread>(tid)
8824  .condition<AttribInterfaces>(Interfaces::InterfaceUserObject)
8825  .condition<AttribBoundaries>(bnd_id)
8826  .count() > 0)
8827  {
8828  interface_mat_side_cache = true;
8829  return true;
8830  }
8831  else if (_interface_materials.hasActiveBoundaryObjects(bnd_id, tid))
8832  {
8833  interface_mat_side_cache = true;
8834  return true;
8835  }
8836  }
8837  return _interface_mat_side_cache[tid][bnd_id];
8838 }
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
AttribBoundaries tracks all boundary IDs associated with an object.
Definition: Attributes.h:188
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
std::vector< std::unordered_map< BoundaryID, bool > > _interface_mat_side_cache
Cache for calculating materials on interface.

◆ needSolutionState()

void FEProblemBase::needSolutionState ( unsigned int  oldest_needed,
Moose::SolutionIterationType  iteration_type 
)
inherited

Declare that we need up to old (1) or older (2) solution states for a given type of iteration.

Parameters
oldest_neededoldest solution state needed
iteration_typethe type of iteration for which old/older states are needed

Definition at line 718 of file FEProblemBase.C.

Referenced by FEProblemBase::createTagSolutions().

719 {
720  for (auto & sys : _solver_systems)
721  sys->needSolutionState(state, iteration_type);
722  _aux->needSolutionState(state, iteration_type);
723 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ needsPreviousNewtonIteration() [1/2]

void FEProblemBase::needsPreviousNewtonIteration ( bool  state)
inherited

Set a flag that indicated that user required values for the previous Newton iterate.

Definition at line 8876 of file FEProblemBase.C.

Referenced by Coupleable::coupledGradientPreviousNL(), Coupleable::coupledNodalValuePreviousNL(), Coupleable::coupledSecondPreviousNL(), Coupleable::coupledValuePreviousNL(), and NonlinearSystem::solve().

8877 {
8879  mooseError("Previous nonlinear solution is required but not added through "
8880  "Problem/previous_nl_solution_required=true");
8881 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needsPreviousNewtonIteration() [2/2]

bool FEProblemBase::needsPreviousNewtonIteration ( ) const
inherited

Check to see whether we need to compute the variable values of the previous Newton iterate.

Returns
true if the user required values of the previous Newton iterate

Definition at line 8870 of file FEProblemBase.C.

8871 {
8873 }
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28

◆ needSubdomainMaterialOnSide()

bool FEProblemBase::needSubdomainMaterialOnSide ( SubdomainID  subdomain_id,
const THREAD_ID  tid 
)
inherited

Definition at line 8841 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::subdomainChanged(), and ProjectMaterialProperties::subdomainChanged().

8842 {
8843  if (_block_mat_side_cache[tid].find(subdomain_id) == _block_mat_side_cache[tid].end())
8844  {
8845  _block_mat_side_cache[tid][subdomain_id] = false;
8846 
8847  for (auto & nl : _nl)
8848  if (nl->needSubdomainMaterialOnSide(subdomain_id, tid))
8849  {
8850  _block_mat_side_cache[tid][subdomain_id] = true;
8851  return true;
8852  }
8853 
8854  if (theWarehouse()
8855  .query()
8856  .condition<AttribThread>(tid)
8857  .condition<AttribInterfaces>(Interfaces::InternalSideUserObject)
8858  .condition<AttribSubdomains>(subdomain_id)
8859  .count() > 0)
8860  {
8861  _block_mat_side_cache[tid][subdomain_id] = true;
8862  return true;
8863  }
8864  }
8865 
8866  return _block_mat_side_cache[tid][subdomain_id];
8867 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
TheWarehouse & theWarehouse() const
std::vector< std::unordered_map< SubdomainID, bool > > _block_mat_side_cache
Cache for calculating materials on side.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284

◆ needToAddDefaultMultiAppFixedPointConvergence()

bool FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default fixed point convergence.

Definition at line 642 of file FEProblemBase.h.

643  {
645  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ needToAddDefaultNonlinearConvergence()

bool FEProblemBase::needToAddDefaultNonlinearConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default nonlinear convergence.

Definition at line 637 of file FEProblemBase.h.

638  {
640  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ needToAddDefaultSteadyStateConvergence()

bool FEProblemBase::needToAddDefaultSteadyStateConvergence ( ) const
inlineinherited

Returns true if the problem needs to add the default steady-state detection convergence.

Definition at line 647 of file FEProblemBase.h.

648  {
650  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ neighborSubdomainSetup()

void FEProblemBase::neighborSubdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2486 of file FEProblemBase.C.

Referenced by ThreadedFaceLoop< RangeType >::neighborSubdomainChanged().

2487 {
2488  _all_materials.neighborSubdomainSetup(subdomain, tid);
2489 }
virtual void neighborSubdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials

◆ newAssemblyArray()

void FEProblemBase::newAssemblyArray ( std::vector< std::shared_ptr< SolverSystem >> &  solver_systems)
virtualinherited

Definition at line 726 of file FEProblemBase.C.

Referenced by DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), and FEProblem::FEProblem().

727 {
728  unsigned int n_threads = libMesh::n_threads();
729 
730  _assembly.resize(n_threads);
731  for (const auto i : make_range(n_threads))
732  {
733  _assembly[i].resize(solver_systems.size());
734  for (const auto j : index_range(solver_systems))
735  _assembly[i][j] = std::make_unique<Assembly>(*solver_systems[j], i);
736  }
737 }
unsigned int n_threads()
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
IntRange< T > make_range(T beg, T end)
auto index_range(const T &sizable)

◆ nlConverged()

bool SubProblem::nlConverged ( const unsigned int  nl_sys_num)
virtualinherited
Returns
whether the given nonlinear system nl_sys_num is converged.

Definition at line 716 of file SubProblem.C.

717 {
718  mooseAssert(nl_sys_num < numNonlinearSystems(),
719  "The nonlinear system number is higher than the number of systems we have!");
720  return solverSystemConverged(nl_sys_num);
721 }
virtual std::size_t numNonlinearSystems() const =0
virtual bool solverSystemConverged(const unsigned int sys_num)
Definition: SubProblem.h:100

◆ nLinearIterations()

unsigned int FEProblemBase::nLinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6657 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6658 {
6659  return _nl[nl_sys_num]->nLinearIterations();
6660 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nlSysNum()

unsigned int FEProblemBase::nlSysNum ( const NonlinearSystemName &  nl_sys_name) const
overridevirtualinherited
Returns
the nonlinear system number corresponding to the provided nl_sys_name

Implements SubProblem.

Definition at line 6387 of file FEProblemBase.C.

Referenced by DisplacedProblem::nlSysNum().

6388 {
6389  std::istringstream ss(nl_sys_name);
6390  unsigned int nl_sys_num;
6391  if (!(ss >> nl_sys_num) || !ss.eof())
6392  nl_sys_num = libmesh_map_find(_nl_sys_name_to_num, nl_sys_name);
6393 
6394  return nl_sys_num;
6395 }
std::map< NonlinearSystemName, unsigned int > _nl_sys_name_to_num
Map from nonlinear system name to number.

◆ nNonlinearIterations()

unsigned int FEProblemBase::nNonlinearIterations ( const unsigned int  nl_sys_num) const
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 6651 of file FEProblemBase.C.

Referenced by PiecewiseLinearFromVectorPostprocessor::valueInternal().

6652 {
6653  return _nl[nl_sys_num]->nNonlinearIterations();
6654 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ nonlocalCouplingEntries()

std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & FEProblemBase::nonlocalCouplingEntries ( const THREAD_ID  tid,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6244 of file FEProblemBase.C.

Referenced by ComputeFullJacobianThread::computeOnBoundary(), and ComputeFullJacobianThread::computeOnElement().

6245 {
6246  return _assembly[tid][nl_sys]->nonlocalCouplingEntries();
6247 }
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ nonlocalCouplingMatrix()

const libMesh::CouplingMatrix & FEProblemBase::nonlocalCouplingMatrix ( const unsigned  i) const
overridevirtualinherited
Returns
the nonlocal coupling matrix for the i'th nonlinear system

Implements SubProblem.

Definition at line 9515 of file FEProblemBase.C.

Referenced by DisplacedProblem::nonlocalCouplingMatrix().

9516 {
9517  return _nonlocal_cm[i];
9518 }
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix

◆ notifyWhenMeshChanges()

void FEProblemBase::notifyWhenMeshChanges ( MeshChangedInterface mci)
inherited

Register an object that derives from MeshChangedInterface to be notified when the mesh changes.

Definition at line 8305 of file FEProblemBase.C.

Referenced by MeshChangedInterface::MeshChangedInterface().

8306 {
8307  _notify_when_mesh_changes.push_back(mci);
8308 }
std::vector< MeshChangedInterface * > _notify_when_mesh_changes
Objects to be notified when the mesh changes.

◆ notifyWhenMeshDisplaces()

void FEProblemBase::notifyWhenMeshDisplaces ( MeshDisplacedInterface mdi)
inherited

Register an object that derives from MeshDisplacedInterface to be notified when the displaced mesh gets updated.

Definition at line 8311 of file FEProblemBase.C.

Referenced by MeshDisplacedInterface::MeshDisplacedInterface().

8312 {
8313  _notify_when_mesh_displaces.push_back(mdi);
8314 }
std::vector< MeshDisplacedInterface * > _notify_when_mesh_displaces
Objects to be notified when the mesh displaces.

◆ numGridSteps()

void FEProblemBase::numGridSteps ( unsigned int  num_grid_steps)
inlineinherited

Set the number of steps in a grid sequences.

Definition at line 2261 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2261 { _num_grid_steps = num_grid_steps; }
unsigned int _num_grid_steps
Number of steps in a grid sequence.

◆ numLinearSystems()

virtual std::size_t FEProblemBase::numLinearSystems ( ) const
inlineoverridevirtualinherited

◆ numMatrixTags()

virtual unsigned int SubProblem::numMatrixTags ( ) const
inlinevirtualinherited

◆ numNonlinearSystems()

virtual std::size_t FEProblemBase::numNonlinearSystems ( ) const
inlineoverridevirtualinherited

◆ numSolverSystems()

virtual std::size_t FEProblemBase::numSolverSystems ( ) const
inlineoverridevirtualinherited

◆ numVectorTags()

unsigned int SubProblem::numVectorTags ( const Moose::VectorTagType  type = Moose::VECTOR_TAG_ANY) const
virtualinherited

The total number of tags, which can be limited to the tag type.

Reimplemented in DisplacedProblem.

Definition at line 195 of file SubProblem.C.

Referenced by NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeResidualInternal(), ComputeResidualThread::determineObjectWarehouses(), MooseVariableDataBase< OutputType >::MooseVariableDataBase(), MooseVariableScalar::MooseVariableScalar(), DisplacedProblem::numVectorTags(), ComputeNodalKernelBcsThread::pre(), and ComputeNodalKernelsThread::pre().

196 {
197  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
198 
199  return getVectorTags(type).size();
200 }
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ objectExecuteHelper()

template<typename T >
void FEProblemBase::objectExecuteHelper ( const std::vector< T *> &  objects)
staticinherited

Definition at line 3184 of file FEProblemBase.h.

3185 {
3186  for (T * obj_ptr : objects)
3187  obj_ptr->execute();
3188 }

◆ objectSetupHelper()

template<typename T >
void FEProblemBase::objectSetupHelper ( const std::vector< T *> &  objects,
const ExecFlagType exec_flag 
)
staticinherited

Helpers for calling the necessary setup/execute functions for the supplied objects.

Definition at line 3150 of file FEProblemBase.h.

3151 {
3152  if (exec_flag == EXEC_INITIAL)
3153  {
3154  for (T * obj_ptr : objects)
3155  obj_ptr->initialSetup();
3156  }
3157 
3158  else if (exec_flag == EXEC_TIMESTEP_BEGIN)
3159  {
3160  for (const auto obj_ptr : objects)
3161  obj_ptr->timestepSetup();
3162  }
3163  else if (exec_flag == EXEC_SUBDOMAIN)
3164  {
3165  for (const auto obj_ptr : objects)
3166  obj_ptr->subdomainSetup();
3167  }
3168 
3169  else if (exec_flag == EXEC_NONLINEAR)
3170  {
3171  for (const auto obj_ptr : objects)
3172  obj_ptr->jacobianSetup();
3173  }
3174 
3175  else if (exec_flag == EXEC_LINEAR)
3176  {
3177  for (const auto obj_ptr : objects)
3178  obj_ptr->residualSetup();
3179  }
3180 }
const ExecFlagType EXEC_TIMESTEP_BEGIN
Definition: Moose.C:37
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
const ExecFlagType EXEC_SUBDOMAIN
Definition: Moose.C:50
const ExecFlagType EXEC_INITIAL
Definition: Moose.C:30

◆ onlyAllowDefaultNonlinearConvergence()

virtual bool FEProblemBase::onlyAllowDefaultNonlinearConvergence ( ) const
inlinevirtualinherited

Returns true if an error will result if the user supplies 'nonlinear_convergence'.

Some problems are strongly tied to their convergence, and it does not make sense to use any convergence other than their default and additionally would be error-prone.

Reimplemented in ReferenceResidualProblem.

Definition at line 691 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

691 { return false; }

◆ onTimestepBegin()

void FEProblemBase::onTimestepBegin ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 6800 of file FEProblemBase.C.

Referenced by MFEMTransient::takeStep(), and TransientBase::takeStep().

6801 {
6802  TIME_SECTION("onTimestepBegin", 2);
6803 
6804  for (auto & nl : _nl)
6805  nl->onTimestepBegin();
6806 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ onTimestepEnd()

virtual void DumpObjectsProblem::onTimestepEnd ( )
inlineoverridevirtual

Reimplemented from FEProblemBase.

Definition at line 67 of file DumpObjectsProblem.h.

67 {}

◆ outputStep()

virtual void DumpObjectsProblem::outputStep ( ExecFlagType  type)
inlineoverridevirtual

Output the current step.

Will ensure that everything is in the proper state to be outputted. Then tell the OutputWarehouse to do its thing

Parameters
typeThe type execution flag (see Moose.h)

Reimplemented from FEProblemBase.

Definition at line 65 of file DumpObjectsProblem.h.

65 {}

◆ paramError()

template<typename... Args>
void MooseBase::paramError ( const std::string &  param,
Args...  args 
) const
inherited

Emits an error prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseError - only printing a message using the given args.

Definition at line 435 of file MooseBase.h.

Referenced by HierarchicalGridPartitioner::_do_partition(), AutoCheckpointAction::act(), SetupDebugAction::act(), CommonOutputAction::act(), AddPeriodicBCAction::act(), ADConservativeAdvectionBC::ADConservativeAdvectionBC(), DiffusionCG::addFEKernels(), DiffusionFV::addFVKernels(), NEML2ModelExecutor::addGatheredParameter(), NEML2ModelExecutor::addGatheredVariable(), ADDGKernel::ADDGKernel(), CylinderComponent::addMeshGenerators(), AddPeriodicBCAction::AddPeriodicBCAction(), ReporterPointSource::addPoints(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ADNodalKernel::ADNodalKernel(), ADPenaltyPeriodicSegmentalConstraint::ADPenaltyPeriodicSegmentalConstraint(), ADPeriodicSegmentalConstraint::ADPeriodicSegmentalConstraint(), AdvancedExtruderGenerator::AdvancedExtruderGenerator(), AdvectiveFluxAux::AdvectiveFluxAux(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), ArrayBodyForce::ArrayBodyForce(), ArrayDGKernel::ArrayDGKernel(), ArrayDGLowerDKernel::ArrayDGLowerDKernel(), ArrayDirichletBC::ArrayDirichletBC(), ArrayHFEMDirichletBC::ArrayHFEMDirichletBC(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), ArrayLowerDIntegratedBC::ArrayLowerDIntegratedBC(), ArrayParsedAux::ArrayParsedAux(), ArrayPenaltyDirichletBC::ArrayPenaltyDirichletBC(), ArrayVacuumBC::ArrayVacuumBC(), ArrayVarReductionAux::ArrayVarReductionAux(), ParsedSubdomainIDsGenerator::assignElemSubdomainID(), AuxKernelTempl< Real >::AuxKernelTempl(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BlockDeletionGenerator::BlockDeletionGenerator(), BlockWeightedPartitioner::BlockWeightedPartitioner(), BoundsBase::BoundsBase(), BreakMeshByBlockGenerator::BreakMeshByBlockGenerator(), BuildArrayVariableAux::BuildArrayVariableAux(), PiecewiseTabularBase::buildFromFile(), MFEMMesh::buildMesh(), CartesianGridDivision::CartesianGridDivision(), checkComponent(), MeshGenerator::checkGetMesh(), ComponentInitialConditionInterface::checkInitialConditionsAllRequested(), BatchMeshGeneratorAction::checkInputParameterType(), PhysicsBase::checkIntegrityEarly(), PostprocessorInterface::checkParam(), FEProblemBase::checkProblemIntegrity(), MultiAppReporterTransfer::checkSiblingsTransferSupported(), Coupleable::checkVar(), MultiAppTransfer::checkVariable(), CircularBoundaryCorrectionGenerator::CircularBoundaryCorrectionGenerator(), CircularBoundaryCorrectionGenerator::circularCenterCalculator(), MultiAppGeneralFieldTransfer::closestToPosition(), CoarsenBlockGenerator::CoarsenBlockGenerator(), CombinerGenerator::CombinerGenerator(), ComponentInitialConditionInterface::ComponentInitialConditionInterface(), ComponentMaterialPropertyInterface::ComponentMaterialPropertyInterface(), CompositionDT::CompositionDT(), FunctorAux::computeValue(), ConcentricCircleMeshGenerator::ConcentricCircleMeshGenerator(), LibtorchNeuralNetControl::conditionalParameterError(), ConservativeAdvectionTempl< is_ad >::ConservativeAdvectionTempl(), ConstantVectorPostprocessor::ConstantVectorPostprocessor(), ContainsPointAux::ContainsPointAux(), CopyValueAux::CopyValueAux(), Coupleable::Coupleable(), CoupledForceTempl< is_ad >::CoupledForceTempl(), CoupledValueFunctionMaterialTempl< is_ad >::CoupledValueFunctionMaterialTempl(), MultiApp::createApp(), MeshGeneratorSystem::createMeshGenerator(), CylindricalGridDivision::CylindricalGridDivision(), DebugResidualAux::DebugResidualAux(), ConstantReporter::declareConstantReporterValue(), ConstantReporter::declareConstantReporterValues(), AccumulateReporter::declareLateValues(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), DGKernel::DGKernel(), DGKernelBase::DGKernelBase(), DGLowerDKernel::DGLowerDKernel(), DiffusionFluxAux::DiffusionFluxAux(), DomainUserObject::DomainUserObject(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementGroupCentroidPositions::ElementGroupCentroidPositions(), ElementLengthAux::ElementLengthAux(), ElementLpNormAux::ElementLpNormAux(), ExtraIDIntegralVectorPostprocessor::elementValue(), ElementValueSampler::ElementValueSampler(), ElementVectorL2Error::ElementVectorL2Error(), EqualValueEmbeddedConstraintTempl< is_ad >::EqualValueEmbeddedConstraintTempl(), ReporterPointSource::errorCheck(), StitchMeshGeneratorBase::errorMissingBoundary(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), MultiAppNearestNodeTransfer::execute(), MultiAppUserObjectTransfer::execute(), ExtraElementIDAux::ExtraElementIDAux(), ExtraElementIntegerDivision::ExtraElementIntegerDivision(), ExtraIDIntegralVectorPostprocessor::ExtraIDIntegralVectorPostprocessor(), FEProblemBase::FEProblemBase(), FEProblemSolve::FEProblemSolve(), FileMeshGenerator::FileMeshGenerator(), FillBetweenCurvesGenerator::FillBetweenCurvesGenerator(), FillBetweenSidesetsGenerator::FillBetweenSidesetsGenerator(), ReporterPointSource::fillPoint(), SpatialUserObjectVectorPostprocessor::fillPoints(), CombinerGenerator::fillPositions(), MultiApp::fillPositions(), InternalSideIndicatorBase::finalize(), ForcingFunctionAux::ForcingFunctionAux(), FullSolveMultiApp::FullSolveMultiApp(), FunctionArrayAux::FunctionArrayAux(), FunctionValuePostprocessor::FunctionValuePostprocessor(), FunctorADConverterTempl< T >::FunctorADConverterTempl(), FunctorAux::FunctorAux(), FunctorBinnedValuesDivision::FunctorBinnedValuesDivision(), FunctorCoordinatesFunctionAux::FunctorCoordinatesFunctionAux(), FunctorElementalGradientAuxTempl< is_ad >::FunctorElementalGradientAuxTempl(), FunctorExtremaPositions::FunctorExtremaPositions(), FunctorIC::FunctorIC(), FunctorPositions::FunctorPositions(), FunctorVectorElementalAuxTempl< is_ad >::FunctorVectorElementalAuxTempl(), FVAdvection::FVAdvection(), FVFluxBC::FVFluxBC(), FVInterfaceKernel::FVInterfaceKernel(), FVOneVarDiffusionInterface::FVOneVarDiffusionInterface(), FVTwoVarContinuityConstraint::FVTwoVarContinuityConstraint(), Boundary2DDelaunayGenerator::General2DDelaunay(), BoundaryDeletionGenerator::generate(), UniqueExtraIDMeshGenerator::generate(), AddMetaDataGenerator::generate(), ElementsToTetrahedronsConverter::generate(), BlockToMeshConverterGenerator::generate(), BreakBoundaryOnSubdomainGenerator::generate(), ExtraNodesetGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenSidesetsGenerator::generate(), LowerDBlockFromSidesetGenerator::generate(), PlaneIDMeshGenerator::generate(), RenameBlockGenerator::generate(), RenameBoundaryGenerator::generate(), BlockDeletionGenerator::generate(), Boundary2DDelaunayGenerator::generate(), BoundaryElementConversionGenerator::generate(), CoarsenBlockGenerator::generate(), FlipSidesetGenerator::generate(), GeneratedMeshGenerator::generate(), ParsedSubdomainGeneratorBase::generate(), RefineBlockGenerator::generate(), RefineSidesetGenerator::generate(), BreakMeshByBlockGenerator::generate(), AdvancedExtruderGenerator::generate(), BreakMeshByElementGenerator::generate(), CircularBoundaryCorrectionGenerator::generate(), MeshCollectionGenerator::generate(), MeshExtruderGenerator::generate(), ParsedCurveGenerator::generate(), ParsedExtraElementIDGenerator::generate(), CombinerGenerator::generate(), StackGenerator::generate(), XYZDelaunayGenerator::generate(), CutMeshByLevelSetGeneratorBase::generate(), XYDelaunayGenerator::generate(), XYMeshLineCutter::generate(), PatternedMeshGenerator::generate(), SubdomainBoundingBoxGenerator::generate(), GeneratedMeshGenerator::GeneratedMeshGenerator(), GenericFunctorGradientMaterialTempl< is_ad >::GenericFunctorGradientMaterialTempl(), GenericFunctorMaterialTempl< is_ad >::GenericFunctorMaterialTempl(), GenericFunctorTimeDerivativeMaterialTempl< is_ad >::GenericFunctorTimeDerivativeMaterialTempl(), GenericVectorFunctorMaterialTempl< is_ad >::GenericVectorFunctorMaterialTempl(), PropertyReadFile::getBlockData(), ComponentBoundaryConditionInterface::getBoundaryCondition(), MultiApp::getCommandLineArgs(), PropertyReadFile::getData(), PropertyReadFile::getFileNames(), Sampler::getGlobalSamples(), ComponentInitialConditionInterface::getInitialCondition(), NEML2Action::getInputParameterMapping(), MultiAppNearestNodeTransfer::getLocalEntitiesAndComponents(), Sampler::getLocalSamples(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), Sampler::getNextLocalRow(), FEProblemSolve::getParamFromNonlinearSystemVectorParam(), PostprocessorInterface::getPostprocessorNameInternal(), PostprocessorInterface::getPostprocessorValueInternal(), MultiAppNearestNodeTransfer::getTargetLocalNodes(), UserObjectInterface::getUserObjectBase(), UserObjectInterface::getUserObjectName(), HFEMDirichletBC::HFEMDirichletBC(), AddVariableAction::init(), MultiApp::init(), DistributedPositions::initialize(), BlockWeightedPartitioner::initialize(), BlockRestrictable::initializeBlockRestrictable(), BoundaryRestrictable::initializeBoundaryRestrictable(), PhysicsBase::initializePhysics(), JSONOutput::initialSetup(), MultiAppCloneReporterTransfer::initialSetup(), SolutionIC::initialSetup(), SideFVFluxBCIntegral::initialSetup(), MultiAppVariableValueSamplePostprocessorTransfer::initialSetup(), MultiAppDofCopyTransfer::initialSetup(), MultiAppGeneralFieldNearestLocationTransfer::initialSetup(), HistogramVectorPostprocessor::initialSetup(), ReferenceResidualConvergence::initialSetup(), PiecewiseConstantFromCSV::initialSetup(), LibtorchControlValuePostprocessor::initialSetup(), MultiAppGeneralFieldTransfer::initialSetup(), ElementSubdomainModifierBase::initialSetup(), SampledOutput::initSample(), AddMetaDataGenerator::inputChecker(), IntegratedBC::IntegratedBC(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceValueUserObjectAux::InterfaceValueUserObjectAux(), InternalSideIndicatorBase::InternalSideIndicatorBase(), InterpolatedStatefulMaterialTempl< T >::InterpolatedStatefulMaterialTempl(), InversePowerMethod::InversePowerMethod(), IterationAdaptiveDT::IterationAdaptiveDT(), MultiApp::keepSolutionDuringRestore(), Kernel::Kernel(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), LinearCombinationFunction::LinearCombinationFunction(), LinearFVAdvectionDiffusionFunctorRobinBC::LinearFVAdvectionDiffusionFunctorRobinBC(), LowerDIntegratedBC::LowerDIntegratedBC(), PNGOutput::makeMeshFunc(), MatCoupledForce::MatCoupledForce(), MaterialADConverterTempl< T >::MaterialADConverterTempl(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MatrixSymmetryCheck::MatrixSymmetryCheck(), PatternedMeshGenerator::mergeSubdomainNameMaps(), MeshCollectionGenerator::MeshCollectionGenerator(), MeshDiagnosticsGenerator::MeshDiagnosticsGenerator(), MeshDivisionAux::MeshDivisionAux(), MeshGenerator::MeshGenerator(), MeshGeneratorComponent::MeshGeneratorComponent(), MFEMGenericFunctorMaterial::MFEMGenericFunctorMaterial(), MFEMGenericFunctorVectorMaterial::MFEMGenericFunctorVectorMaterial(), MooseLinearVariableFV< Real >::MooseLinearVariableFV(), UserObjectInterface::mooseObjectError(), MoosePreconditioner::MoosePreconditioner(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableBase::MooseVariableBase(), MortarConstraintBase::MortarConstraintBase(), MortarNodalAuxKernelTempl< ComputeValueType >::MortarNodalAuxKernelTempl(), MultiApp::moveApp(), MoveNodeGenerator::MoveNodeGenerator(), MultiApp::MultiApp(), MultiAppCloneReporterTransfer::MultiAppCloneReporterTransfer(), MultiAppGeneralFieldNearestLocationTransfer::MultiAppGeneralFieldNearestLocationTransfer(), MultiAppGeneralFieldShapeEvaluationTransfer::MultiAppGeneralFieldShapeEvaluationTransfer(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppGeometricInterpolationTransfer::MultiAppGeometricInterpolationTransfer(), MultiAppNearestNodeTransfer::MultiAppNearestNodeTransfer(), MultiAppPostprocessorInterpolationTransfer::MultiAppPostprocessorInterpolationTransfer(), MultiAppPostprocessorToAuxScalarTransfer::MultiAppPostprocessorToAuxScalarTransfer(), MultiAppPostprocessorTransfer::MultiAppPostprocessorTransfer(), MultiAppProjectionTransfer::MultiAppProjectionTransfer(), MultiAppReporterTransfer::MultiAppReporterTransfer(), MultiAppScalarToAuxScalarTransfer::MultiAppScalarToAuxScalarTransfer(), MultiAppShapeEvaluationTransfer::MultiAppShapeEvaluationTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppUserObjectTransfer::MultiAppUserObjectTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), MultiAppVariableValueSampleTransfer::MultiAppVariableValueSampleTransfer(), MultiAppVectorPostprocessorTransfer::MultiAppVectorPostprocessorTransfer(), MultiSystemSolveObject::MultiSystemSolveObject(), NearestNodeValueAux::NearestNodeValueAux(), NEML2Action::NEML2Action(), NestedDivision::NestedDivision(), NodalBC::NodalBC(), NodalEqualValueConstraint::NodalEqualValueConstraint(), NodalKernel::NodalKernel(), NodalPatchRecoveryAux::NodalPatchRecoveryAux(), NodalValueSampler::NodalValueSampler(), Output::Output(), ParsedCurveGenerator::ParsedCurveGenerator(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), ParsedPostprocessor::ParsedPostprocessor(), PatternedMeshGenerator::PatternedMeshGenerator(), PenaltyPeriodicSegmentalConstraint::PenaltyPeriodicSegmentalConstraint(), PeriodicSegmentalConstraint::PeriodicSegmentalConstraint(), PIDTransientControl::PIDTransientControl(), PlaneDeletionGenerator::PlaneDeletionGenerator(), PlaneIDMeshGenerator::PlaneIDMeshGenerator(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), PolyLineMeshGenerator::PolyLineMeshGenerator(), ReporterInterface::possiblyCheckHasReporter(), VectorPostprocessorInterface::possiblyCheckHasVectorPostprocessor(), LibmeshPartitioner::prepareBlocksForSubdomainPartitioner(), ProjectedMaterialPropertyNodalPatchRecoveryAux::ProjectedMaterialPropertyNodalPatchRecoveryAux(), ProjectionAux::ProjectionAux(), PropertyReadFile::PropertyReadFile(), RandomIC::RandomIC(), MultiApp::readCommandLineArguments(), PropertyReadFile::readData(), SolutionUserObjectBase::readXda(), ReferenceResidualConvergence::ReferenceResidualConvergence(), RefineBlockGenerator::RefineBlockGenerator(), RefineSidesetGenerator::RefineSidesetGenerator(), RenameBlockGenerator::RenameBlockGenerator(), RenameBoundaryGenerator::RenameBoundaryGenerator(), ReporterPointSource::ReporterPointSource(), FEProblemBase::restoreSolutions(), SecondTimeDerivativeAux::SecondTimeDerivativeAux(), FEProblemBase::setLinearConvergenceNames(), FEProblemBase::setNonlinearConvergenceNames(), MooseMesh::setPartitioner(), NodeSetsGeneratorBase::setup(), SideSetsGeneratorBase::setup(), NEML2Action::setupDerivativeMappings(), NEML2Action::setupParameterDerivativeMappings(), SidesetAroundSubdomainUpdater::SidesetAroundSubdomainUpdater(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), SideValueSampler::SideValueSampler(), SingleRankPartitioner::SingleRankPartitioner(), SphericalGridDivision::SphericalGridDivision(), StitchBoundaryMeshGenerator::StitchBoundaryMeshGenerator(), StitchMeshGenerator::StitchMeshGenerator(), SymmetryTransformGenerator::SymmetryTransformGenerator(), Terminator::Terminator(), TimeDerivativeAux::TimeDerivativeAux(), Transfer::Transfer(), TransformGenerator::TransformGenerator(), TransientMultiApp::TransientMultiApp(), ParsedCurveGenerator::tSectionSpaceDefiner(), UniqueExtraIDMeshGenerator::UniqueExtraIDMeshGenerator(), TimeSequenceStepperBase::updateSequence(), UserObject::UserObject(), Checkpoint::validateExecuteOn(), ParsedAux::validateGenericVectorNames(), ParsedMaterialBase::validateVectorNames(), FunctorIC::value(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VolumeAux::VolumeAux(), WebServerControl::WebServerControl(), XYDelaunayGenerator::XYDelaunayGenerator(), XYMeshLineCutter::XYMeshLineCutter(), and XYZDelaunayGenerator::XYZDelaunayGenerator().

436 {
437  _pars.paramError(param, std::forward<Args>(args)...);
438 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...

◆ parameters()

const InputParameters& MooseBase::parameters ( ) const
inlineinherited

Get the parameters of the object.

Returns
The parameters of the object

Definition at line 127 of file MooseBase.h.

Referenced by MeshOnlyAction::act(), SplitMeshAction::act(), SetupDebugAction::act(), AddActionComponentAction::act(), CommonOutputAction::act(), Action::Action(), FEProblemBase::addAnyRedistributers(), MFEMProblem::addAuxKernel(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), MFEMProblem::addAuxVariable(), DisplacedProblem::addAuxVariable(), MFEMProblem::addBoundaryCondition(), FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addConvergence(), FEProblemBase::addDamper(), AddDefaultConvergenceAction::addDefaultMultiAppFixedPointConvergence(), FEProblemBase::addDefaultMultiAppFixedPointConvergence(), ReferenceResidualProblem::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultNonlinearConvergence(), FEProblemBase::addDefaultNonlinearConvergence(), AddDefaultConvergenceAction::addDefaultSteadyStateConvergence(), FEProblemBase::addDefaultSteadyStateConvergence(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDistribution(), MFEMProblem::addFESpace(), MFEMProblem::addFunction(), FEProblemBase::addFunction(), MFEMProblem::addFunctorMaterial(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVBC(), FEProblemBase::addFVInitialCondition(), FEProblemBase::addFVInterfaceKernel(), FEProblemBase::addFVKernel(), MFEMProblem::addGridFunction(), FEProblemBase::addHDGKernel(), FEProblemBase::addIndicator(), MFEMProblem::addInitialCondition(), FEProblemBase::addInitialCondition(), DiffusionPhysicsBase::addInitialConditions(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addInterfaceMaterial(), MFEMProblem::addKernel(), FEProblemBase::addKernel(), FEProblemBase::addLinearFVBC(), FEProblemBase::addLinearFVKernel(), FEProblem::addLineSearch(), FEProblemBase::addMarker(), FEProblemBase::addMaterial(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMeshDivision(), MFEMProblem::addMFEMFESpaceFromMOOSEVariable(), MFEMProblem::addMFEMPreconditioner(), MFEMProblem::addMFEMSolver(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObject(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addOutput(), MFEMProblem::addPostprocessor(), FEProblemBase::addPostprocessor(), FEProblemBase::addPredictor(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addScalarKernel(), MFEMProblem::addSubMesh(), FEProblemBase::addTimeIntegrator(), MFEMProblem::addTransfer(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), MFEMProblem::addVariable(), DisplacedProblem::addVariable(), FEProblemBase::addVectorPostprocessor(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), AdvancedOutput::AdvancedOutput(), ADVectorFunctionDirichletBC::ADVectorFunctionDirichletBC(), AnnularMesh::AnnularMesh(), AnnularMeshGenerator::AnnularMeshGenerator(), Action::associateWithParameter(), AuxKernelTempl< Real >::AuxKernelTempl(), AuxScalarKernel::AuxScalarKernel(), BoundsBase::BoundsBase(), MooseMesh::buildTypedMesh(), PostprocessorInterface::checkParam(), AddDefaultConvergenceAction::checkUnusedMultiAppFixedPointConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedNonlinearConvergenceParameters(), AddDefaultConvergenceAction::checkUnusedSteadyStateConvergenceParameters(), SampledOutput::cloneMesh(), LibtorchNeuralNetControl::conditionalParameterError(), Console::Console(), CommonOutputAction::create(), MultiApp::createApp(), Postprocessor::declareValue(), deduceNecessaryParameters(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), dumpObjectHelper(), DumpObjectsProblem(), EigenProblem::EigenProblem(), Eigenvalue::Eigenvalue(), ElementMaterialSampler::ElementMaterialSampler(), ExamplePatchMeshGenerator::ExamplePatchMeshGenerator(), Executor::Executor(), Exodus::Exodus(), ElementSubdomainModifierBase::extrapolatePolynomial(), FEProblem::FEProblem(), FixedPointSolve::FixedPointSolve(), FunctorSmootherTempl< T >::FunctorSmootherTempl(), GapValueAux::GapValueAux(), ParsedSubdomainGeneratorBase::generate(), ActionWarehouse::getCurrentActionName(), ExecutorInterface::getExecutor(), Material::getMaterial(), ReporterInterface::getReporterName(), Reporter::getReporterValueName(), UserObjectInterface::getUserObjectName(), VectorPostprocessorInterface::getVectorPostprocessorName(), GhostingUserObject::GhostingUserObject(), MeshGeneratorSystem::hasDataDrivenAllowed(), AttribSystem::initFrom(), AttribDisplaced::initFrom(), BlockRestrictable::initializeBlockRestrictable(), FullSolveMultiApp::initialSetup(), FEProblemBase::initNullSpaceVectors(), InterfaceDiffusiveFluxIntegralTempl< is_ad >::InterfaceDiffusiveFluxIntegralTempl(), InterfaceIntegralVariableValuePostprocessor::InterfaceIntegralVariableValuePostprocessor(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), isValid(), IterationAdaptiveDT::IterationAdaptiveDT(), LibtorchNeuralNetControl::LibtorchNeuralNetControl(), MFEMCGSolver::MFEMCGSolver(), MFEMGMRESSolver::MFEMGMRESSolver(), MFEMHypreADS::MFEMHypreADS(), MFEMHypreAMS::MFEMHypreAMS(), MFEMHypreBoomerAMG::MFEMHypreBoomerAMG(), MFEMHypreFGMRES::MFEMHypreFGMRES(), MFEMHypreGMRES::MFEMHypreGMRES(), MFEMHyprePCG::MFEMHyprePCG(), MFEMOperatorJacobiSmoother::MFEMOperatorJacobiSmoother(), MFEMSuperLU::MFEMSuperLU(), MooseObject::MooseObject(), UserObjectInterface::mooseObjectError(), MooseVariableInterface< Real >::MooseVariableInterface(), MultiApp::MultiApp(), MultiAppGeneralFieldTransfer::MultiAppGeneralFieldTransfer(), MultiAppGeneralFieldUserObjectTransfer::MultiAppGeneralFieldUserObjectTransfer(), MultiAppTransfer::MultiAppTransfer(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NodeFaceConstraint::NodeFaceConstraint(), ConsoleUtils::outputLegacyInformation(), OverlayMeshGenerator::OverlayMeshGenerator(), MooseServer::parseDocumentForDiagnostics(), PenetrationAux::PenetrationAux(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), NEML2Action::printSummary(), ProjectedStatefulMaterialStorageAction::processProperty(), PropertyReadFile::PropertyReadFile(), PseudoTimestep::PseudoTimestep(), RandomIC::RandomIC(), ReferenceResidualConvergence::ReferenceResidualConvergence(), InputParameterWarehouse::removeInputParameters(), FEProblem::setInputParametersFEProblem(), FEProblemBase::setInputParametersFEProblem(), FEProblemBase::setResidualObjectParamsAndLog(), SideSetsGeneratorBase::setup(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), SideSetsFromBoundingBoxGenerator::SideSetsFromBoundingBoxGenerator(), Moose::PetscSupport::storePetscOptions(), stringifyParameters(), TaggingInterface::TaggingInterface(), Transfer::Transfer(), TransientBase::TransientBase(), VectorBodyForce::VectorBodyForce(), VectorFunctionDirichletBC::VectorFunctionDirichletBC(), VectorFunctionIC::VectorFunctionIC(), VectorMagnitudeFunctorMaterialTempl< is_ad >::VectorMagnitudeFunctorMaterialTempl(), and MooseApp::~MooseApp().

127 { return _pars; }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362

◆ paramInfo()

template<typename... Args>
void MooseBase::paramInfo ( const std::string &  param,
Args...  args 
) const
inherited

Emits an informational message prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseInfo - only printing a message using the given args.

Definition at line 449 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), ComboMarker::ComboMarker(), Control::Control(), FunctorIC::FunctorIC(), and TransientMultiApp::TransientMultiApp().

450 {
451  mooseInfo(_pars.paramMessage(param, std::forward<Args>(args)...));
452 }
std::string paramMessage(const std::string &param, Args... args) const
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362

◆ paramWarning()

template<typename... Args>
void MooseBase::paramWarning ( const std::string &  param,
Args...  args 
) const
inherited

Emits a warning prefixed with the file and line number of the given param (from the input file) along with the full parameter path+name followed by the given args as the message.

If this object's parameters were not created directly by the Parser, then this function falls back to the normal behavior of mooseWarning - only printing a message using the given args.

Definition at line 442 of file MooseBase.h.

Referenced by GridPartitioner::_do_partition(), MultiAppTransfer::checkParentAppUserObjectExecuteOn(), EigenProblem::checkProblemIntegrity(), CombinerGenerator::copyIntoMesh(), DefaultMultiAppFixedPointConvergence::DefaultMultiAppFixedPointConvergence(), MultiAppNearestNodeTransfer::execute(), FEProblemSolve::FEProblemSolve(), UniqueExtraIDMeshGenerator::generate(), PlaneIDMeshGenerator::generate(), Terminator::initialSetup(), SampledOutput::initSample(), MooseMesh::MooseMesh(), FEProblemBase::setPreserveMatrixSparsityPattern(), and Terminator::Terminator().

443 {
444  mooseWarning(_pars.paramMessage(param, std::forward<Args>(args)...));
445 }
std::string paramMessage(const std::string &param, Args... args) const
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ parentOutputPositionChanged()

void FEProblemBase::parentOutputPositionChanged ( )
inherited

Calls parentOutputPositionChanged() on all sub apps.

Definition at line 4546 of file FEProblemBase.C.

Referenced by TransientBase::parentOutputPositionChanged().

4547 {
4548  for (const auto & it : _multi_apps)
4549  {
4550  const auto & objects = it.second.getActiveObjects();
4551  for (const auto & obj : objects)
4552  obj->parentOutputPositionChanged();
4553  }
4554 }
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:166

◆ petscOptionsDatabase()

PetscOptions& FEProblemBase::petscOptionsDatabase ( )
inlineinherited

Definition at line 2179 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2179 { return _petsc_option_data_base; }
PetscOptions _petsc_option_data_base

◆ petscOptionsInserted()

bool& FEProblemBase::petscOptionsInserted ( )
inlineinherited

If PETSc options are already inserted.

Definition at line 2176 of file FEProblemBase.h.

Referenced by Eigenvalue::prepareSolverOptions().

2176 { return _is_petsc_options_inserted; }
bool _is_petsc_options_inserted
If or not PETSc options have been added to database.

◆ possiblyRebuildGeomSearchPatches()

void FEProblemBase::possiblyRebuildGeomSearchPatches ( )
virtualinherited

Definition at line 7935 of file FEProblemBase.C.

Referenced by FEProblemBase::solve().

7936 {
7937  if (_displaced_problem) // Only need to do this if things are moving...
7938  {
7939  TIME_SECTION("possiblyRebuildGeomSearchPatches", 5, "Rebuilding Geometric Search Patches");
7940 
7941  switch (_mesh.getPatchUpdateStrategy())
7942  {
7943  case Moose::Never:
7944  break;
7945  case Moose::Iteration:
7946  // Update the list of ghosted elements at the start of the time step
7949 
7950  _displaced_problem->geomSearchData().updateGhostedElems();
7952 
7953  // The commands below ensure that the sparsity of the Jacobian matrix is
7954  // augmented at the start of the time step using neighbor nodes from the end
7955  // of the previous time step.
7956 
7958 
7959  // This is needed to reinitialize PETSc output
7961 
7962  break;
7963 
7964  case Moose::Auto:
7965  {
7966  Real max = _displaced_problem->geomSearchData().maxPatchPercentage();
7968 
7969  // If we haven't moved very far through the patch
7970  if (max < 0.4)
7971  break;
7972  }
7973  libmesh_fallthrough();
7974 
7975  // Let this fall through if things do need to be updated...
7976  case Moose::Always:
7977  // Flush output here to see the message before the reinitialization, which could take a
7978  // while
7979  _console << "\n\nUpdating geometric search patches\n" << std::endl;
7980 
7983 
7984  _displaced_problem->geomSearchData().clearNearestNodeLocators();
7986 
7988 
7989  // This is needed to reinitialize PETSc output
7991  }
7992  }
7993 }
virtual void initPetscOutputAndSomeSolverSettings()
Reinitialize PETSc output for proper linear/nonlinear iteration display.
void reinitBecauseOfGhostingOrNewGeomObjects(bool mortar_changed=false)
Call when it is possible that the needs for ghosted elements has changed.
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
auto max(const L &left, const R &right)
void updateGhostedElems()
Updates the list of ghosted elements at the start of each time step for the nonlinear iteration patch...
MooseMesh & _mesh
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void updateActiveSemiLocalNodeRange(std::set< dof_id_type > &ghosted_elems)
Clears the "semi-local" node list and rebuilds it.
Definition: MooseMesh.C:951
void max(const T &r, T &o, Request &req) const
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
const Moose::PatchUpdateType & getPatchUpdateStrategy() const
Get the current patch update strategy.
Definition: MooseMesh.C:3413
void clearNearestNodeLocators()
Clear out the Penetration Locators so they will redo the search.
MooseMesh * _displaced_mesh

◆ postExecute()

void FEProblemBase::postExecute ( )
virtualinherited

Method called at the end of the simulation.

Definition at line 5560 of file FEProblemBase.C.

Referenced by MFEMSteady::execute(), SteadyBase::execute(), TransientBase::execute(), and Eigenvalue::execute().

5561 {
5562  const auto & multi_apps = _multi_apps.getActiveObjects();
5563 
5564  for (const auto & multi_app : multi_apps)
5565  multi_app->postExecute();
5566 }
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.

◆ predictorCleanup()

void FEProblemBase::predictorCleanup ( NumericVector< libMesh::Number > &  ghosted_solution)
virtualinherited

Perform cleanup tasks after application of predictor to solution vector.

Parameters
ghosted_solutionGhosted solution vector

Definition at line 7842 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::setInitialSolution().

7843 {
7844 }

◆ prepare() [1/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ prepare() [2/2]

virtual void FEProblemBase::prepare ( const Elem *  elem,
unsigned int  ivar,
unsigned int  jvar,
const std::vector< dof_id_type > &  dof_indices,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ prepareAssembly()

void FEProblemBase::prepareAssembly ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 1811 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), NonlinearSystemBase::reinitNodeFace(), and NonlinearSystemBase::setConstraintSecondaryValues().

1812 {
1813  _assembly[tid][_current_nl_sys->number()]->prepare();
1815  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
1816 
1818  {
1819  _displaced_problem->prepareAssembly(tid);
1821  _displaced_problem->prepareNonlocal(tid);
1822  }
1823 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ prepareFace()

void FEProblemBase::prepareFace ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1725 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onInterface(), and ComputeUserObjectsThread::onInternalSide().

1726 {
1727  for (auto & nl : _nl)
1728  nl->prepareFace(tid, true);
1729  _aux->prepareFace(tid, false);
1730 
1732  _displaced_problem->prepareFace(_displaced_mesh->elemPtr(elem->id()), tid);
1733 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ prepareFaceShapes()

void FEProblemBase::prepareFaceShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2070 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary().

2071 {
2072  _assembly[tid][_current_nl_sys->number()]->copyFaceShapes(var);
2073 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ prepareMaterials()

void FEProblemBase::prepareMaterials ( const std::unordered_set< unsigned int > &  consumer_needed_mat_props,
const SubdomainID  blk_id,
const THREAD_ID  tid 
)
inherited

Add the MooseVariables and the material properties that the current materials depend on to the dependency list.

Parameters
consumer_needed_mat_propsThe material properties needed by consumer objects (other than the materials themselves)
blk_idThe subdomain ID for which we are preparing our list of needed vars and props
tidThe thread ID we are preparing the requirements for

This MUST be done after the moose variable dependency list has been set for all the other objects using the setActiveElementalMooseVariables API!

Definition at line 4041 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

4044 {
4045  std::set<MooseVariableFEBase *> needed_moose_vars;
4046  std::unordered_set<unsigned int> needed_mat_props;
4047 
4048  if (_all_materials.hasActiveBlockObjects(blk_id, tid))
4049  {
4050  _all_materials.updateVariableDependency(needed_moose_vars, tid);
4051  _all_materials.updateBlockMatPropDependency(blk_id, needed_mat_props, tid);
4052  }
4053 
4054  const auto & ids = _mesh.getSubdomainBoundaryIds(blk_id);
4055  for (const auto id : ids)
4056  {
4057  _materials.updateBoundaryVariableDependency(id, needed_moose_vars, tid);
4058  _materials.updateBoundaryMatPropDependency(id, needed_mat_props, tid);
4059  }
4060 
4061  const auto & current_active_elemental_moose_variables = getActiveElementalMooseVariables(tid);
4062  needed_moose_vars.insert(current_active_elemental_moose_variables.begin(),
4063  current_active_elemental_moose_variables.end());
4064 
4065  needed_mat_props.insert(consumer_needed_mat_props.begin(), consumer_needed_mat_props.end());
4066 
4067  setActiveElementalMooseVariables(needed_moose_vars, tid);
4068  setActiveMaterialProperties(needed_mat_props, tid);
4069 }
void updateVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
Update variable dependency vector.
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::set< BoundaryID > & getSubdomainBoundaryIds(const SubdomainID subdomain_id) const
Get the list of boundary ids associated with the given subdomain id.
Definition: MooseMesh.C:3497
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:454
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFEBase *> &moose_vars, const THREAD_ID tid) override
Set the MOOSE variables to be reinited on each element.
MooseMesh & _mesh
void updateBoundaryMatPropDependency(std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBlockMatPropDependency(SubdomainID id, std::unordered_set< unsigned int > &needed_mat_props, THREAD_ID tid=0) const
void updateBoundaryVariableDependency(std::set< MooseVariableFieldBase *> &needed_moose_vars, THREAD_ID tid=0) const
MaterialWarehouse _all_materials
MaterialWarehouse _materials

◆ prepareNeighborShapes()

void FEProblemBase::prepareNeighborShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2076 of file FEProblemBase.C.

2077 {
2078  _assembly[tid][_current_nl_sys->number()]->copyNeighborShapes(var);
2079 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preparePRefinement()

void SubProblem::preparePRefinement ( )
inherited

Prepare DofMap and Assembly classes with our p-refinement information.

Definition at line 1332 of file SubProblem.C.

Referenced by FEProblemBase::init().

1333 {
1334  std::unordered_set<FEFamily> disable_families;
1335  for (const auto & [family, flag] : _family_for_p_refinement)
1336  if (flag)
1337  disable_families.insert(family);
1338 
1339  for (const auto tid : make_range(libMesh::n_threads()))
1340  for (const auto s : make_range(numNonlinearSystems()))
1341  assembly(tid, s).havePRefinement(disable_families);
1342 
1343  auto & eq = es();
1344  for (const auto family : disable_families)
1345  for (const auto i : make_range(eq.n_systems()))
1346  {
1347  auto & system = eq.get_system(i);
1348  auto & dof_map = system.get_dof_map();
1349  for (const auto vg : make_range(system.n_variable_groups()))
1350  {
1351  const auto & var_group = system.variable_group(vg);
1352  if (var_group.type().family == family)
1353  dof_map.should_p_refine(vg, false);
1354  }
1355  }
1356 
1357  _have_p_refinement = true;
1358 }
unsigned int n_threads()
virtual libMesh::EquationSystems & es()=0
std::unordered_map< FEFamily, bool > _family_for_p_refinement
Indicate whether a family is disabled for p-refinement.
Definition: SubProblem.h:1205
void havePRefinement(const std::unordered_set< FEFamily > &disable_p_refinement_for_families)
Indicate that we have p-refinement.
Definition: Assembly.C:4859
bool _have_p_refinement
Whether p-refinement has been requested at any point during the simulation.
Definition: SubProblem.h:1202
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ prepareShapes()

void FEProblemBase::prepareShapes ( unsigned int  var,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2064 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onElement().

2065 {
2066  _assembly[tid][_current_nl_sys->number()]->copyShapes(var);
2067 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.

◆ preserveMatrixSparsityPattern()

bool FEProblemBase::preserveMatrixSparsityPattern ( ) const
inlineinherited

Will return True if the executioner in use requires preserving the sparsity pattern of the matrices being formed during the solve.

This is usually the Jacobian.

Definition at line 1997 of file FEProblemBase.h.

bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...

◆ printObjects()

void DumpObjectsProblem::printObjects ( )

Definition at line 186 of file DumpObjectsProblem.C.

187 {
188  const auto path = getParam<std::string>("dump_path");
189  if (path != "all")
190  dumpGeneratedSyntax(path);
191  else
193 }
void dumpAllGeneratedSyntax() const
output input blocks for all paths
void dumpGeneratedSyntax(const std::string path)
output input blocks for a given action path

◆ projectFunctionOnCustomRange()

void FEProblemBase::projectFunctionOnCustomRange ( ConstElemRange elem_range,
Number(*)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &)  func,
Gradient(*)(const Point &, const libMesh::Parameters &, const std::string &, const std::string &)  func_grad,
const libMesh::Parameters params,
const VariableName &  target_var 
)
inherited

Project a function onto a range of elements for a given variable.

Warning
The current implementation is not ideal. The projection takes place on all local active elements, ignoring the specified elem_range. After the projection, dof values on the specified elem_range are copied over to the current solution vector. This should be fixed once the project_vector or project_solution API is modified to take a custom element range.
Parameters
elem_rangeElement range to project on
funcFunction to project
func_gradGradient of the function
paramsParameters to pass to the function
target_varvariable name to project

Definition at line 3768 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::extrapolatePolynomial().

3779 {
3780  mooseAssert(!Threads::in_threads,
3781  "We're performing a projection based on data from just the thread 0 variable, so any "
3782  "modifications to the variable solution must have been thread joined already");
3783 
3784  const auto & var = getStandardVariable(0, target_var);
3785  const auto var_num = var.number();
3786  const auto sn = systemNumForVariable(target_var);
3787  auto & sys = getSystemBase(sn);
3788 
3789  // Let libmesh handle the projection
3790  System & libmesh_sys = getSystem(target_var);
3791  auto temp_vec = libmesh_sys.current_local_solution->zero_clone();
3792  libmesh_sys.project_vector(func, func_grad, params, *temp_vec);
3793  temp_vec->close();
3794 
3795  // Get the dof indices to copy
3796  DofMap & dof_map = sys.dofMap();
3797  std::set<dof_id_type> dof_indices;
3798  std::vector<dof_id_type> elem_dof_indices;
3799 
3800  for (const auto & elem : elem_range)
3801  {
3802  dof_map.dof_indices(elem, elem_dof_indices, var_num);
3803  dof_indices.insert(elem_dof_indices.begin(), elem_dof_indices.end());
3804  }
3805  std::vector<dof_id_type> dof_indices_v(dof_indices.begin(), dof_indices.end());
3806 
3807  // Copy the projected values into the solution vector
3808  std::vector<Real> dof_vals;
3809  temp_vec->get(dof_indices_v, dof_vals);
3810  mooseAssert(sys.solution().closed(),
3811  "The solution should be closed before mapping our projection");
3812  sys.solution().insert(dof_vals, dof_indices_v);
3813  sys.solution().close();
3814  sys.solution().localize(*libmesh_sys.current_local_solution, sys.dofMap().get_send_list());
3815 }
virtual libMesh::System & getSystem(const std::string &var_name) override
Returns the equation system containing the variable provided.
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
unsigned int systemNumForVariable(const VariableName &variable_name) const
virtual MooseVariable & getStandardVariable(const THREAD_ID tid, const std::string &var_name) override
Returns the variable reference for requested MooseVariable which may be in any system.
virtual const SystemBase & getSystemBase(const unsigned int sys_num) const
Get constant reference to a system in this problem.
std::unique_ptr< NumericVector< Number > > current_local_solution
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const

◆ projectInitialConditionOnCustomRange()

void FEProblemBase::projectInitialConditionOnCustomRange ( libMesh::ConstElemRange elem_range,
ConstBndNodeRange bnd_node_range,
const std::optional< std::set< VariableName >> &  target_vars = std::nullopt 
)
inherited

Project initial conditions for custom elem_range and bnd_node_range This is needed when elements/boundary nodes are added to a specific subdomain at an intermediate step.

Parameters
elem_rangeElement range to project on
bnd_node_rangeBoundary node range to project on
target_varsSet of variable names to project ICs

Definition at line 3693 of file FEProblemBase.C.

Referenced by ElementSubdomainModifierBase::applyIC(), and ActivateElementsUserObjectBase::initSolutions().

3697 {
3698  if (target_vars)
3699  {
3700  ComputeInitialConditionThread cic(*this, &(*target_vars));
3701  Threads::parallel_reduce(elem_range, cic);
3702  }
3703  else
3704  {
3705  ComputeInitialConditionThread cic(*this);
3706  Threads::parallel_reduce(elem_range, cic);
3707  }
3708 
3709  // Need to close the solution vector here so that boundary ICs take precendence
3710  for (auto & nl : _nl)
3711  nl->solution().close();
3712  _aux->solution().close();
3713 
3714  if (target_vars)
3715  {
3716  ComputeBoundaryInitialConditionThread cbic(*this, &(*target_vars));
3717  Threads::parallel_reduce(bnd_nodes, cbic);
3718  }
3719  else
3720  {
3722  Threads::parallel_reduce(bnd_nodes, cbic);
3723  }
3724 
3725  for (auto & nl : _nl)
3726  nl->solution().close();
3727  _aux->solution().close();
3728 
3729  // Also, load values into the SCALAR dofs
3730  // Note: We assume that all SCALAR dofs are on the
3731  // processor with highest ID
3732  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3733  {
3734  const auto & ics = _scalar_ics.getActiveObjects();
3735  for (const auto & ic : ics)
3736  {
3737  MooseVariableScalar & var = ic->variable();
3738 
3739  if (target_vars && !target_vars->count(var.name()))
3740  continue;
3741 
3742  var.reinit();
3743 
3744  DenseVector<Number> vals(var.order());
3745  ic->compute(vals);
3746 
3747  const unsigned int n_scalar_dofs = var.dofIndices().size();
3748  for (unsigned int i = 0; i < n_scalar_dofs; i++)
3749  {
3750  const auto global_index = var.dofIndices()[i];
3751  var.sys().solution().set(global_index, vals(i));
3752  var.setValue(i, vals(i));
3753  }
3754  }
3755  }
3756 
3757  for (auto & nl : _nl)
3758  {
3759  nl->solution().close();
3760  nl->solution().localize(*nl->system().current_local_solution, nl->dofMap().get_send_list());
3761  }
3762 
3763  _aux->solution().close();
3764  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3765 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
Class for scalar variables (they are different).
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.

◆ projectSolution()

void FEProblemBase::projectSolution ( )
inherited

Definition at line 3625 of file FEProblemBase.C.

Referenced by FEProblemBase::initialAdaptMesh(), and FEProblemBase::initialSetup().

3626 {
3627  TIME_SECTION("projectSolution", 2, "Projecting Initial Solutions")
3628 
3629  FloatingPointExceptionGuard fpe_guard(_app);
3630 
3631  ConstElemRange & elem_range = *_mesh.getActiveLocalElementRange();
3632  ComputeInitialConditionThread cic(*this);
3633  Threads::parallel_reduce(elem_range, cic);
3634 
3635  if (haveFV())
3636  {
3638  ElemInfoRange elem_info_range(_mesh.ownedElemInfoBegin(), _mesh.ownedElemInfoEnd());
3639 
3640  ComputeFVInitialConditionThread cfvic(*this);
3641  Threads::parallel_reduce(elem_info_range, cfvic);
3642  }
3643 
3644  // Need to close the solution vector here so that boundary ICs take precendence
3645  for (auto & nl : _nl)
3646  nl->solution().close();
3647  _aux->solution().close();
3648 
3649  // now run boundary-restricted initial conditions
3650  ConstBndNodeRange & bnd_nodes = *_mesh.getBoundaryNodeRange();
3652  Threads::parallel_reduce(bnd_nodes, cbic);
3653 
3654  for (auto & nl : _nl)
3655  nl->solution().close();
3656  _aux->solution().close();
3657 
3658  // Also, load values into the SCALAR dofs
3659  // Note: We assume that all SCALAR dofs are on the
3660  // processor with highest ID
3661  if (processor_id() == (n_processors() - 1) && _scalar_ics.hasActiveObjects())
3662  {
3663  const auto & ics = _scalar_ics.getActiveObjects();
3664  for (const auto & ic : ics)
3665  {
3666  MooseVariableScalar & var = ic->variable();
3667  var.reinit();
3668 
3669  DenseVector<Number> vals(var.order());
3670  ic->compute(vals);
3671 
3672  const unsigned int n_scalar_dofs = var.dofIndices().size();
3673  for (unsigned int i = 0; i < n_scalar_dofs; i++)
3674  {
3675  const auto global_index = var.dofIndices()[i];
3676  var.sys().solution().set(global_index, vals(i));
3677  var.setValue(i, vals(i));
3678  }
3679  }
3680  }
3681 
3682  for (auto & sys : _solver_systems)
3683  {
3684  sys->solution().close();
3685  sys->solution().localize(*sys->system().current_local_solution, sys->dofMap().get_send_list());
3686  }
3687 
3688  _aux->solution().close();
3689  _aux->solution().localize(*_aux->sys().current_local_solution, _aux->dofMap().get_send_list());
3690 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void reinit(bool reinit_for_derivative_reordering=false)
Fill out the VariableValue arrays from the system solution vector.
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
Scope guard for starting and stopping Floating Point Exception Trapping.
elem_info_iterator ownedElemInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1528
ScalarInitialConditionWarehouse _scalar_ics
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
processor_id_type n_processors() const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void setValue(unsigned int i, Number value)
Set the nodal value for this variable (to keep everything up to date.
MooseMesh & _mesh
virtual const std::vector< dof_id_type > & dofIndices() const
Get local DoF indices.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
libMesh::Order order() const
Get the order of this variable Note: Order enum can be implicitly converted to unsigned int...
bool hasActiveObjects(THREAD_ID tid=0) const
if(!dmm->_nl) SETERRQ(PETSC_COMM_WORLD
Class for scalar variables (they are different).
elem_info_iterator ownedElemInfoEnd()
Definition: MooseMesh.C:1536
virtual void set(const numeric_index_type i, const T value)=0
processor_id_type processor_id() const
SystemBase & sys()
Get the system this variable is part of.
libMesh::StoredRange< MooseMesh::const_bnd_node_iterator, const BndNode * > * getBoundaryNodeRange()
Definition: MooseMesh.C:1289

◆ queryParam()

template<typename T >
const T * MooseBase::queryParam ( const std::string &  name) const
inherited

Query a parameter for the object.

If the parameter is not valid, nullptr will be returned

Parameters
nameThe name of the parameter
Returns
A pointer to the parameter value, if it exists

Definition at line 391 of file MooseBase.h.

392 {
393  return isParamValid(name) ? &getParam<T>(name) : nullptr;
394 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
bool isParamValid(const std::string &name) const
Test if the supplied parameter is valid.
Definition: MooseBase.h:195

◆ registerRandomInterface()

void FEProblemBase::registerRandomInterface ( RandomInterface random_interface,
const std::string &  name 
)
inherited

Definition at line 8761 of file FEProblemBase.C.

Referenced by RandomInterface::setRandomResetFrequency().

8762 {
8763  auto insert_pair = moose_try_emplace(
8764  _random_data_objects, name, std::make_unique<RandomData>(*this, random_interface));
8765 
8766  auto random_data_ptr = insert_pair.first->second.get();
8767  random_interface.setRandomDataPointer(random_data_ptr);
8768 }
std::pair< typename M::iterator, bool > moose_try_emplace(M &m, const typename M::key_type &k, Args &&... args)
Function to mirror the behavior of the C++17 std::map::try_emplace() method (no hint).
Definition: Moose.h:98
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< std::string, std::unique_ptr< RandomData > > _random_data_objects
A map of objects that consume random numbers.
void setRandomDataPointer(RandomData *random_data)

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerUnfilledFunctorRequest()

template<typename T >
void SubProblem::registerUnfilledFunctorRequest ( T *  functor_interface,
const std::string &  functor_name,
const THREAD_ID  tid 
)
inherited

Register an unfulfilled functor request.

◆ reinitBecauseOfGhostingOrNewGeomObjects()

void FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects ( bool  mortar_changed = false)
protectedinherited

Call when it is possible that the needs for ghosted elements has changed.

Parameters
mortar_changedWhether an update of mortar data has been requested since the last EquationSystems (re)initialization

Definition at line 5196 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), and FEProblemBase::possiblyRebuildGeomSearchPatches().

5197 {
5198  TIME_SECTION("reinitBecauseOfGhostingOrNewGeomObjects",
5199  3,
5200  "Reinitializing Because of Geometric Search Objects");
5201 
5202  // Need to see if _any_ processor has ghosted elems or geometry objects.
5203  bool needs_reinit = !_ghosted_elems.empty();
5204  needs_reinit = needs_reinit || !_geometric_search_data._nearest_node_locators.empty() ||
5205  (_mortar_data.hasObjects() && mortar_changed);
5206  needs_reinit =
5207  needs_reinit || (_displaced_problem &&
5208  (!_displaced_problem->geomSearchData()._nearest_node_locators.empty() ||
5209  (_mortar_data.hasDisplacedObjects() && mortar_changed)));
5210  _communicator.max(needs_reinit);
5211 
5212  if (needs_reinit)
5213  {
5214  // Call reinit to get the ghosted vectors correct now that some geometric search has been done
5215  es().reinit();
5216 
5217  if (_displaced_mesh)
5218  _displaced_problem->es().reinit();
5219  }
5220 }
const Parallel::Communicator & _communicator
std::set< dof_id_type > _ghosted_elems
Elements that should have Dofs ghosted to the local processor.
Definition: SubProblem.h:1093
bool hasObjects() const
Returns whether we have any active AutomaticMortarGeneration objects.
Definition: MortarData.h:104
std::map< std::pair< BoundaryID, BoundaryID >, NearestNodeLocator * > _nearest_node_locators
virtual libMesh::EquationSystems & es() override
MortarData _mortar_data
void max(const T &r, T &o, Request &req) const
bool hasDisplacedObjects() const
Returns whether any of the AutomaticMortarGeneration objects are running on a displaced mesh...
Definition: MortarData.h:99
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data
MooseMesh * _displaced_mesh

◆ reinitDirac()

bool FEProblemBase::reinitDirac ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Returns true if the Problem has Dirac kernels it needs to compute on elem.

The maximum number of qps can rise if several Dirac points are added to a single element. In that case we need to resize the zeros to compensate.

Implements SubProblem.

Definition at line 2115 of file FEProblemBase.C.

Referenced by ComputeDiracThread::onElement().

2116 {
2117  std::vector<Point> & points = _dirac_kernel_info.getPoints()[elem].first;
2118 
2119  unsigned int n_points = points.size();
2120 
2121  if (n_points)
2122  {
2123  if (n_points > _max_qps)
2124  {
2125  _max_qps = n_points;
2126 
2131  unsigned int max_qpts = getMaxQps();
2132  for (unsigned int tid = 0; tid < libMesh::n_threads(); ++tid)
2133  {
2134  // the highest available order in libMesh is 43
2135  _scalar_zero[tid].resize(FORTYTHIRD, 0);
2136  _zero[tid].resize(max_qpts, 0);
2137  _grad_zero[tid].resize(max_qpts, RealGradient(0.));
2138  _second_zero[tid].resize(max_qpts, RealTensor(0.));
2139  _vector_zero[tid].resize(max_qpts, RealGradient(0.));
2140  _vector_curl_zero[tid].resize(max_qpts, RealGradient(0.));
2141  }
2142  }
2143 
2144  for (const auto i : index_range(_nl))
2145  {
2146  _assembly[tid][i]->reinitAtPhysical(elem, points);
2147  _nl[i]->prepare(tid);
2148  }
2149  _aux->prepare(tid);
2150 
2151  reinitElem(elem, tid);
2152  }
2153 
2154  _assembly[tid][_current_nl_sys->number()]->prepare();
2156  _assembly[tid][_current_nl_sys->number()]->prepareNonlocal();
2157 
2158  bool have_points = n_points > 0;
2160  {
2161  have_points |= _displaced_problem->reinitDirac(_displaced_mesh->elemPtr(elem->id()), tid);
2163  _displaced_problem->prepareNonlocal(tid);
2164  }
2165 
2166  return have_points;
2167 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
unsigned int n_threads()
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< VariableSecond > _second_zero
std::vector< VectorVariableCurl > _vector_curl_zero
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MultiPointMap & getPoints()
Returns a writeable reference to the _points container.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::vector< VariableGradient > _grad_zero
std::vector< VariableValue > _scalar_zero
std::vector< VariableValue > _zero
std::shared_ptr< DisplacedProblem > _displaced_problem
std::vector< VectorVariableValue > _vector_zero
unsigned int _max_qps
Maximum number of quadrature points used in the problem.
DiracKernelInfo _dirac_kernel_info
Definition: SubProblem.h:1049
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh
unsigned int getMaxQps() const

◆ reinitElem()

void FEProblemBase::reinitElem ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2170 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeElemDampingThread::onElement(), ComputeIndicatorThread::onElement(), ComputeMaterialsObjectThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeInitialConditionThread::operator()(), FEProblemBase::reinitDirac(), and FEProblemBase::reinitElemPhys().

2171 {
2172  for (auto & sys : _solver_systems)
2173  sys->reinitElem(elem, tid);
2174  _aux->reinitElem(elem, tid);
2175 
2177  _displaced_problem->reinitElem(_displaced_mesh->elemPtr(elem->id()), tid);
2178 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemFace() [1/2]

void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
BoundaryID  ,
const THREAD_ID  tid 
)
inherited

◆ reinitElemFace() [2/2]

virtual void FEProblemBase::reinitElemFace ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitElemFaceRef()

void FEProblemBase::reinitElemFaceRef ( const Elem elem,
unsigned int  side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9100 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9106 {
9107  SubProblem::reinitElemFaceRef(elem, side, tolerance, pts, weights, tid);
9108 
9109  if (_displaced_problem)
9110  _displaced_problem->reinitElemFaceRef(
9111  _displaced_mesh->elemPtr(elem->id()), side, tolerance, pts, weights, tid);
9112 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
dof_id_type id() const
virtual void reinitElemFaceRef(const Elem *elem, unsigned int side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given element on a given side at a given set of reference points and the...
Definition: SubProblem.C:882
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitElemNeighborAndLowerD()

void FEProblemBase::reinitElemNeighborAndLowerD ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2356 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInternalSide(), and NonlinearThread::onInternalSide().

2359 {
2360  reinitNeighbor(elem, side, tid);
2361 
2362  const Elem * lower_d_elem = _mesh.getLowerDElem(elem, side);
2363  if (lower_d_elem && _mesh.interiorLowerDBlocks().count(lower_d_elem->subdomain_id()) > 0)
2364  reinitLowerDElem(lower_d_elem, tid);
2365  else
2366  {
2367  // with mesh refinement, lower-dimensional element might be defined on neighbor side
2368  auto & neighbor = _assembly[tid][0]->neighbor();
2369  auto & neighbor_side = _assembly[tid][0]->neighborSide();
2370  const Elem * lower_d_elem_neighbor = _mesh.getLowerDElem(neighbor, neighbor_side);
2371  if (lower_d_elem_neighbor &&
2372  _mesh.interiorLowerDBlocks().count(lower_d_elem_neighbor->subdomain_id()) > 0)
2373  {
2374  auto qps = _assembly[tid][0]->qPointsFaceNeighbor().stdVector();
2375  std::vector<Point> reference_points;
2376  FEMap::inverse_map(
2377  lower_d_elem_neighbor->dim(), lower_d_elem_neighbor, qps, reference_points);
2378  reinitLowerDElem(lower_d_elem_neighbor, tid, &reference_points);
2379  }
2380  }
2381 
2383  _displaced_problem->reinitElemNeighborAndLowerD(
2384  _displaced_mesh->elemPtr(elem->id()), side, tid);
2385 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1403
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
const Elem * getLowerDElem(const Elem *, unsigned short int) const
Returns a const pointer to a lower dimensional element that corresponds to a side of a higher dimensi...
Definition: MooseMesh.C:1701
dof_id_type id() const
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
virtual unsigned short dim() const=0
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void reinitNeighbor(const Elem *elem, unsigned int side, const THREAD_ID tid) override
MooseMesh * _displaced_mesh

◆ reinitElemPhys()

void FEProblemBase::reinitElemPhys ( const Elem elem,
const std::vector< Point > &  phys_points_in_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2181 of file FEProblemBase.C.

Referenced by MultiAppVariableValueSamplePostprocessorTransfer::execute().

2184 {
2185  mooseAssert(_mesh.queryElemPtr(elem->id()) == elem,
2186  "Are you calling this method with a displaced mesh element?");
2187 
2188  for (const auto i : index_range(_solver_systems))
2189  {
2190  _assembly[tid][i]->reinitAtPhysical(elem, phys_points_in_elem);
2191  _solver_systems[i]->prepare(tid);
2192  _assembly[tid][i]->prepare();
2194  _assembly[tid][i]->prepareNonlocal();
2195  }
2196  _aux->prepare(tid);
2197 
2198  reinitElem(elem, tid);
2199 }
bool _has_nonlocal_coupling
Indicates if nonlocal coupling is required/exists.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
virtual Elem * queryElemPtr(const dof_id_type i)
Definition: MooseMesh.C:3125
dof_id_type id() const
virtual void reinitElem(const Elem *elem, const THREAD_ID tid) override
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
MooseMesh & _mesh
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
auto index_range(const T &sizable)

◆ reinitFVFace()

void SubProblem::reinitFVFace ( const THREAD_ID  tid,
const FaceInfo fi 
)
inherited

reinitialize the finite volume assembly data for the provided face and thread

Definition at line 1284 of file SubProblem.C.

1285 {
1286  for (const auto nl : make_range(numNonlinearSystems()))
1287  assembly(tid, nl).reinitFVFace(fi);
1288 }
void reinitFVFace(const FaceInfo &fi)
Definition: Assembly.C:1855
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitLowerDElem()

void FEProblemBase::reinitLowerDElem ( const Elem lower_d_elem,
const THREAD_ID  tid,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 2229 of file FEProblemBase.C.

Referenced by ComputeUserObjectsThread::onBoundary(), NonlinearThread::prepareFace(), and FEProblemBase::reinitElemNeighborAndLowerD().

2233 {
2234  SubProblem::reinitLowerDElem(lower_d_elem, tid, pts, weights);
2235 
2237  _displaced_problem->reinitLowerDElem(
2238  _displaced_mesh->elemPtr(lower_d_elem->id()), tid, pts, weights);
2239 }
virtual void reinitLowerDElem(const Elem *lower_d_elem, const THREAD_ID tid, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr)
Definition: SubProblem.C:957
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitMaterials()

void FEProblemBase::reinitMaterials ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4072 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeDiracThread::onElement(), and ComputeUserObjectsThread::onElement().

4073 {
4074  if (hasActiveMaterialProperties(tid))
4075  {
4076  auto && elem = _assembly[tid][0]->elem();
4077  unsigned int n_points = _assembly[tid][0]->qRule()->n_points();
4078 
4079  auto & material_data = _material_props.getMaterialData(tid);
4080  material_data.resize(n_points);
4081 
4082  // Only swap if requested
4083  if (swap_stateful)
4084  material_data.swap(*elem);
4085 
4086  if (_discrete_materials.hasActiveBlockObjects(blk_id, tid))
4087  material_data.reset(_discrete_materials.getActiveBlockObjects(blk_id, tid));
4088 
4089  if (_materials.hasActiveBlockObjects(blk_id, tid))
4090  material_data.reinit(_materials.getActiveBlockObjects(blk_id, tid));
4091  }
4092 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsBoundary()

void FEProblemBase::reinitMaterialsBoundary ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on a boundary

Parameters
boundary_idThe boundary on which to reinit corresponding materials
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4165 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), and NonlinearThread::prepareFace().

4169 {
4170  if (hasActiveMaterialProperties(tid))
4171  {
4172  auto && elem = _assembly[tid][0]->elem();
4173  unsigned int side = _assembly[tid][0]->side();
4174  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4175 
4176  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4177  bnd_material_data.resize(n_points);
4178 
4179  if (swap_stateful && !bnd_material_data.isSwapped())
4180  bnd_material_data.swap(*elem, side);
4181 
4182  if (_discrete_materials.hasActiveBoundaryObjects(boundary_id, tid))
4183  bnd_material_data.reset(_discrete_materials.getActiveBoundaryObjects(boundary_id, tid));
4184 
4185  if (reinit_mats)
4186  bnd_material_data.reinit(*reinit_mats);
4187  else if (_materials.hasActiveBoundaryObjects(boundary_id, tid))
4188  bnd_material_data.reinit(_materials.getActiveBoundaryObjects(boundary_id, tid));
4189  }
4190 }
MaterialPropertyStorage & _bnd_material_props
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsFace()

void FEProblemBase::reinitMaterialsFace ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on element faces

Parameters
blk_idThe subdomain on which the element owning the face lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4095 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearThread::prepareFace().

4099 {
4100  if (hasActiveMaterialProperties(tid))
4101  {
4102  auto && elem = _assembly[tid][0]->elem();
4103  unsigned int side = _assembly[tid][0]->side();
4104  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4105 
4106  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4107  bnd_material_data.resize(n_points);
4108 
4109  if (swap_stateful && !bnd_material_data.isSwapped())
4110  bnd_material_data.swap(*elem, side);
4111 
4112  if (_discrete_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4113  bnd_material_data.reset(
4114  _discrete_materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4115 
4116  if (reinit_mats)
4117  bnd_material_data.reinit(*reinit_mats);
4118  else if (_materials[Moose::FACE_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4119  bnd_material_data.reinit(
4120  _materials[Moose::FACE_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4121  }
4122 }
MaterialPropertyStorage & _bnd_material_props
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMaterialsInterface()

void FEProblemBase::reinitMaterialsInterface ( BoundaryID  boundary_id,
const THREAD_ID  tid,
bool  swap_stateful = true 
)
inherited

Definition at line 4193 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), and ComputeUserObjectsThread::onInterface().

4196 {
4197  if (hasActiveMaterialProperties(tid))
4198  {
4199  const Elem * const & elem = _assembly[tid][0]->elem();
4200  unsigned int side = _assembly[tid][0]->side();
4201  unsigned int n_points = _assembly[tid][0]->qRuleFace()->n_points();
4202 
4203  auto & bnd_material_data = _bnd_material_props.getMaterialData(tid);
4204  bnd_material_data.resize(n_points);
4205 
4206  if (swap_stateful && !bnd_material_data.isSwapped())
4207  bnd_material_data.swap(*elem, side);
4208 
4209  if (_interface_materials.hasActiveBoundaryObjects(boundary_id, tid))
4210  bnd_material_data.reinit(_interface_materials.getActiveBoundaryObjects(boundary_id, tid));
4211  }
4212 }
MaterialPropertyStorage & _bnd_material_props
MaterialWarehouse _interface_materials
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ reinitMaterialsNeighbor()

void FEProblemBase::reinitMaterialsNeighbor ( SubdomainID  blk_id,
const THREAD_ID  tid,
bool  swap_stateful = true,
const std::deque< MaterialBase *> *  reinit_mats = nullptr 
)
inherited

reinit materials on the neighboring element face

Parameters
blk_idThe subdomain on which the neighbor element lives
tidThe thread id
swap_statefulWhether to swap stateful material properties between MaterialData and MaterialPropertyStorage
execute_statefulWhether to execute material objects that have stateful properties. This should be false when for example executing material objects for mortar contexts in which stateful properties don't make sense

Definition at line 4125 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and NonlinearSystemBase::reinitNodeFace().

4129 {
4130  if (hasActiveMaterialProperties(tid))
4131  {
4132  // NOTE: this will not work with h-adaptivity
4133  // lindsayad: why not?
4134 
4135  const Elem * neighbor = _assembly[tid][0]->neighbor();
4136  unsigned int neighbor_side = neighbor->which_neighbor_am_i(_assembly[tid][0]->elem());
4137 
4138  mooseAssert(neighbor, "neighbor should be non-null");
4139  mooseAssert(blk_id == neighbor->subdomain_id(),
4140  "The provided blk_id " << blk_id << " and neighbor subdomain ID "
4141  << neighbor->subdomain_id() << " do not match.");
4142 
4143  unsigned int n_points = _assembly[tid][0]->qRuleNeighbor()->n_points();
4144 
4145  auto & neighbor_material_data = _neighbor_material_props.getMaterialData(tid);
4146  neighbor_material_data.resize(n_points);
4147 
4148  // Only swap if requested
4149  if (swap_stateful)
4150  neighbor_material_data.swap(*neighbor, neighbor_side);
4151 
4152  if (_discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4153  neighbor_material_data.reset(
4154  _discrete_materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4155 
4156  if (reinit_mats)
4157  neighbor_material_data.reinit(*reinit_mats);
4158  else if (_materials[Moose::NEIGHBOR_MATERIAL_DATA].hasActiveBlockObjects(blk_id, tid))
4159  neighbor_material_data.reinit(
4160  _materials[Moose::NEIGHBOR_MATERIAL_DATA].getActiveBlockObjects(blk_id, tid));
4161  }
4162 }
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
MaterialWarehouse _discrete_materials
subdomain_id_type subdomain_id() const
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const
bool hasActiveMaterialProperties(const THREAD_ID tid) const
Method to check whether or not a list of active material roperties has been set.
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21
MaterialWarehouse _materials

◆ reinitMortarElem()

void SubProblem::reinitMortarElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

Reinit a mortar element to obtain a valid JxW.

Definition at line 994 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

995 {
996  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
997  assembly(tid, nl_sys_num).reinitMortarElem(elem);
998 }
void reinitMortarElem(const Elem *elem)
reinitialize a mortar segment mesh element in order to get a proper JxW
Definition: Assembly.C:2402
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitMortarUserObjects()

void FEProblemBase::reinitMortarUserObjects ( BoundaryID  primary_boundary_id,
BoundaryID  secondary_boundary_id,
bool  displaced 
)
inherited

Call reinit on mortar user objects with matching primary boundary ID, secondary boundary ID, and displacement characteristics.

Definition at line 9365 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9368 {
9369  const auto mortar_uos =
9370  getMortarUserObjects(primary_boundary_id, secondary_boundary_id, displaced);
9371  for (auto * const mortar_uo : mortar_uos)
9372  {
9373  mortar_uo->setNormals();
9374  mortar_uo->reinit();
9375  }
9376 }
std::vector< MortarUserObject * > getMortarUserObjects(BoundaryID primary_boundary_id, BoundaryID secondary_boundary_id, bool displaced, const std::vector< MortarUserObject *> &mortar_uo_superset)
Helper for getting mortar objects corresponding to primary boundary ID, secondary boundary ID...

◆ reinitNeighbor()

void FEProblemBase::reinitNeighbor ( const Elem elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2317 of file FEProblemBase.C.

Referenced by ComputeMaterialsObjectThread::onInterface(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and FEProblemBase::reinitElemNeighborAndLowerD().

2318 {
2319  setNeighborSubdomainID(elem, side, tid);
2320 
2321  const Elem * neighbor = elem->neighbor_ptr(side);
2322  unsigned int neighbor_side = neighbor->which_neighbor_am_i(elem);
2323 
2324  for (const auto i : index_range(_nl))
2325  {
2326  _assembly[tid][i]->reinitElemAndNeighbor(elem, side, neighbor, neighbor_side);
2327  _nl[i]->prepareNeighbor(tid);
2328  // Called during stateful material property evaluation outside of solve
2329  _assembly[tid][i]->prepareNeighbor();
2330  }
2331  _aux->prepareNeighbor(tid);
2332 
2333  for (auto & nl : _nl)
2334  {
2335  nl->reinitElemFace(elem, side, tid);
2336  nl->reinitNeighborFace(neighbor, neighbor_side, tid);
2337  }
2338  _aux->reinitElemFace(elem, side, tid);
2339  _aux->reinitNeighborFace(neighbor, neighbor_side, tid);
2340 
2342  {
2343  // There are cases like for cohesive zone modeling without significant sliding where we cannot
2344  // use FEInterface::inverse_map in Assembly::reinitElemAndNeighbor in the displaced problem
2345  // because the physical points coming from the element don't actually lie on the neighbor.
2346  // Moreover, what's the point of doing another physical point inversion in other cases? We only
2347  // care about the reference points which we can just take from the undisplaced computation
2348  const auto & displaced_ref_pts = _assembly[tid][0]->qRuleNeighbor()->get_points();
2349 
2350  _displaced_problem->reinitNeighbor(
2351  _displaced_mesh->elemPtr(elem->id()), side, tid, &displaced_ref_pts);
2352  }
2353 }
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
unsigned int which_neighbor_am_i(const Elem *e) const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const Elem * neighbor_ptr(unsigned int i) const
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNeighborFaceRef()

void FEProblemBase::reinitNeighborFaceRef ( const Elem neighbor_elem,
unsigned int  neighbor_side,
Real  tolerance,
const std::vector< Point > *const  pts,
const std::vector< Real > *const  weights = nullptr,
const THREAD_ID  tid = 0 
)
overridevirtualinherited

reinitialize FE objects on a given neighbor element on a given side at a given set of reference points and then compute variable data.

Note that this method makes no assumptions about what's been called beforehand, e.g. you don't have to call some prepare method before this one. This is an all-in-one reinit

Reimplemented from SubProblem.

Definition at line 9115 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

9121 {
9122  SubProblem::reinitNeighborFaceRef(neighbor_elem, neighbor_side, tolerance, pts, weights, tid);
9123 
9124  if (_displaced_problem)
9125  _displaced_problem->reinitNeighborFaceRef(
9126  _displaced_mesh->elemPtr(neighbor_elem->id()), neighbor_side, tolerance, pts, weights, tid);
9127 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
virtual void reinitNeighborFaceRef(const Elem *neighbor_elem, unsigned int neighbor_side, Real tolerance, const std::vector< Point > *const pts, const std::vector< Real > *const weights=nullptr, const THREAD_ID tid=0)
reinitialize FE objects on a given neighbor element on a given side at a given set of reference point...
Definition: SubProblem.C:921
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ reinitNeighborLowerDElem()

void SubProblem::reinitNeighborLowerDElem ( const Elem elem,
const THREAD_ID  tid = 0 
)
inherited

reinitialize a neighboring lower dimensional element

Definition at line 987 of file SubProblem.C.

Referenced by Moose::Mortar::loopOverMortarSegments().

988 {
989  for (const auto nl_sys_num : make_range(numNonlinearSystems()))
990  assembly(tid, nl_sys_num).reinitNeighborLowerDElem(elem);
991 }
void reinitNeighborLowerDElem(const Elem *elem)
reinitialize a neighboring lower dimensional element
Definition: Assembly.C:2381
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0

◆ reinitNeighborPhys() [1/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
unsigned int  neighbor_side,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ reinitNeighborPhys() [2/2]

virtual void FEProblemBase::reinitNeighborPhys ( const Elem *  neighbor,
const std::vector< Point > &  physical_points,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

◆ reinitNode()

void FEProblemBase::reinitNode ( const Node node,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2242 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), NonlinearSystemBase::computeResidualInternal(), ComputeNodalUserObjectsThread::onNode(), ComputeNodalDampingThread::onNode(), ComputeNodalKernelsThread::onNode(), and ComputeNodalKernelJacobiansThread::onNode().

2243 {
2245  _displaced_problem->reinitNode(&_displaced_mesh->nodeRef(node->id()), tid);
2246 
2247  for (const auto i : index_range(_nl))
2248  {
2249  _assembly[tid][i]->reinit(node);
2250  _nl[i]->reinitNode(node, tid);
2251  }
2252  _aux->reinitNode(node, tid);
2253 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:834
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodeFace()

void FEProblemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2256 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), ComputeNodalKernelBcsThread::onNode(), ComputeNodalKernelBCJacobiansThread::onNode(), NonlinearSystemBase::reinitNodeFace(), NonlinearSystemBase::setConstraintSecondaryValues(), and NonlinearSystemBase::setInitialSolution().

2257 {
2259  _displaced_problem->reinitNodeFace(&_displaced_mesh->nodeRef(node->id()), bnd_id, tid);
2260 
2261  for (const auto i : index_range(_nl))
2262  {
2263  _assembly[tid][i]->reinit(node);
2264  _nl[i]->reinitNodeFace(node, bnd_id, tid);
2265  }
2266  _aux->reinitNodeFace(node, bnd_id, tid);
2267 }
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:834
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
dof_id_type id() const
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)
MooseMesh * _displaced_mesh

◆ reinitNodes()

void FEProblemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2270 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2271 {
2273  _displaced_problem->reinitNodes(nodes, tid);
2274 
2275  for (auto & nl : _nl)
2276  nl->reinitNodes(nodes, tid);
2277  _aux->reinitNodes(nodes, tid);
2278 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitNodesNeighbor()

void FEProblemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 2281 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::enforceNodalConstraintsJacobian(), and NonlinearSystemBase::enforceNodalConstraintsResidual().

2282 {
2284  _displaced_problem->reinitNodesNeighbor(nodes, tid);
2285 
2286  for (auto & nl : _nl)
2287  nl->reinitNodesNeighbor(nodes, tid);
2288  _aux->reinitNodesNeighbor(nodes, tid);
2289 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitOffDiagScalars()

void FEProblemBase::reinitOffDiagScalars ( const THREAD_ID  tid)
overridevirtualinherited

Implements SubProblem.

Definition at line 2309 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeScalarKernelsJacobians(), NonlinearSystemBase::constraintJacobians(), and NonlinearThread::onElement().

2310 {
2311  _assembly[tid][_current_nl_sys->number()]->prepareOffDiagScalar();
2312  if (_displaced_problem)
2313  _displaced_problem->reinitOffDiagScalars(tid);
2314 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ reinitScalars()

void FEProblemBase::reinitScalars ( const THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
overridevirtualinherited

fills the VariableValue arrays for scalar variables from the solution vector

Parameters
tidThe thread id
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Implements SubProblem.

Definition at line 2292 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeResidualTags(), NonlinearSystemBase::computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), and FEProblemBase::initialSetup().

2293 {
2294  TIME_SECTION("reinitScalars", 3, "Reinitializing Scalar Variables");
2295 
2297  _displaced_problem->reinitScalars(tid, reinit_for_derivative_reordering);
2298 
2299  for (auto & nl : _nl)
2300  nl->reinitScalars(tid, reinit_for_derivative_reordering);
2301  _aux->reinitScalars(tid, reinit_for_derivative_reordering);
2302 
2303  // This is called outside of residual/Jacobian call-backs
2304  for (auto & assembly : _assembly[tid])
2306 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
void prepareScalar()
Definition: Assembly.C:2945
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ removeAlgebraicGhostingFunctor()

void SubProblem::removeAlgebraicGhostingFunctor ( libMesh::GhostingFunctor algebraic_gf)
inherited

Remove an algebraic ghosting functor from this problem's DofMaps.

Definition at line 1067 of file SubProblem.C.

1068 {
1069  EquationSystems & eq = es();
1070  const auto n_sys = eq.n_systems();
1071  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1072 
1073  const bool found_in_root_sys =
1074  std::find(nl_dof_map.algebraic_ghosting_functors_begin(),
1075  nl_dof_map.algebraic_ghosting_functors_end(),
1076  &algebraic_gf) != nl_dof_map.algebraic_ghosting_functors_end();
1077 
1078 #ifndef NDEBUG
1079  const bool found_in_our_map =
1080  _root_alg_gf_to_sys_clones.find(&algebraic_gf) != _root_alg_gf_to_sys_clones.end();
1081  mooseAssert(found_in_root_sys == found_in_our_map,
1082  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1083  "it in our gf to clones map");
1084 #endif
1085 
1086  if (found_in_root_sys) // libMesh yells if we try to remove
1087  // something that's not there
1088  nl_dof_map.remove_algebraic_ghosting_functor(algebraic_gf);
1089 
1090  auto it = _root_alg_gf_to_sys_clones.find(&algebraic_gf);
1091  if (it == _root_alg_gf_to_sys_clones.end())
1092  return;
1093 
1094  auto & clones_vec = it->second;
1095  mooseAssert((n_sys - 1) == clones_vec.size(),
1096  "The size of the gf clones vector doesn't match the number of systems minus one");
1097  if (clones_vec.empty())
1098  {
1099  mooseAssert(n_sys == 1, "The clones vector should only be empty if there is only one system");
1100  return;
1101  }
1102 
1103  for (const auto i : make_range(n_sys))
1104  eq.get_system(i + 1).get_dof_map().remove_algebraic_ghosting_functor(*clones_vec[i]);
1105 
1106  _root_alg_gf_to_sys_clones.erase(it->first);
1107 }
unsigned int n_systems() const
GhostingFunctorIterator algebraic_ghosting_functors_begin() const
GhostingFunctorIterator algebraic_ghosting_functors_end() const
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_alg_gf_to_sys_clones
A map from a root algebraic ghosting functor, e.g.
Definition: SubProblem.h:1192
IntRange< T > make_range(T beg, T end)
void remove_algebraic_ghosting_functor(GhostingFunctor &evaluable_functor)

◆ removeCouplingGhostingFunctor()

void SubProblem::removeCouplingGhostingFunctor ( libMesh::GhostingFunctor coupling_gf)
inherited

Remove a coupling ghosting functor from this problem's DofMaps.

Definition at line 1110 of file SubProblem.C.

1111 {
1112  EquationSystems & eq = es();
1113  const auto num_nl_sys = numNonlinearSystems();
1114  if (!num_nl_sys)
1115  return;
1116 
1117  DofMap & nl_dof_map = eq.get_system(0).get_dof_map();
1118  const bool found_in_root_sys = std::find(nl_dof_map.coupling_functors_begin(),
1119  nl_dof_map.coupling_functors_end(),
1120  &coupling_gf) != nl_dof_map.coupling_functors_end();
1121 
1122 #ifndef NDEBUG
1123  const bool found_in_our_map =
1125  mooseAssert(found_in_root_sys == found_in_our_map,
1126  "If the ghosting functor exists in the root DofMap, then we need to have a key for "
1127  "it in our gf to clones map");
1128 #endif
1129 
1130  if (found_in_root_sys) // libMesh yells if we try to remove
1131  // something that's not there
1132  nl_dof_map.remove_coupling_functor(coupling_gf);
1133 
1134  auto it = _root_coupling_gf_to_sys_clones.find(&coupling_gf);
1135  if (it == _root_coupling_gf_to_sys_clones.end())
1136  return;
1137 
1138  auto & clones_vec = it->second;
1139  mooseAssert((num_nl_sys - 1) == clones_vec.size(),
1140  "The size of the gf clones vector doesn't match the number of systems minus one");
1141  if (clones_vec.empty())
1142  {
1143  mooseAssert(num_nl_sys == 1,
1144  "The clones vector should only be empty if there is only one nonlinear system");
1145  return;
1146  }
1147 
1148  for (const auto i : make_range(num_nl_sys))
1149  eq.get_system(i + 1).get_dof_map().remove_coupling_functor(*clones_vec[i]);
1150 
1151  _root_coupling_gf_to_sys_clones.erase(it->first);
1152 }
std::unordered_map< libMesh::GhostingFunctor *, std::vector< std::shared_ptr< libMesh::GhostingFunctor > > > _root_coupling_gf_to_sys_clones
A map from a root coupling ghosting functor, e.g.
Definition: SubProblem.h:1199
const T_sys & get_system(std::string_view name) const
virtual libMesh::EquationSystems & es()=0
GhostingFunctorIterator coupling_functors_end() const
void remove_coupling_functor(GhostingFunctor &coupling_functor)
IntRange< T > make_range(T beg, T end)
virtual std::size_t numNonlinearSystems() const =0
GhostingFunctorIterator coupling_functors_begin() const

◆ reportMooseObjectDependency()

void FEProblemBase::reportMooseObjectDependency ( MooseObject a,
MooseObject b 
)
inherited

Register a MOOSE object dependency so we can either order operations properly or report when we cannot.

a -> b (a depends on b)

Definition at line 5190 of file FEProblemBase.C.

5191 {
5192  //<< "Object " << a->name() << " -> " << b->name() << std::endl;
5193 }

◆ resetFailNextNonlinearConvergenceCheck()

void FEProblemBase::resetFailNextNonlinearConvergenceCheck ( )
inlineinherited

Tell the problem that the nonlinear convergence check(s) may proceed as normal.

Definition at line 2453 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscNonlinearConverged().

void resetFailNextSystemConvergenceCheck()
Tell the problem that the system convergence check(s) may proceed as normal.

◆ resetFailNextSystemConvergenceCheck()

void FEProblemBase::resetFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system convergence check(s) may proceed as normal.

Definition at line 2455 of file FEProblemBase.h.

Referenced by Moose::PetscSupport::petscLinearConverged(), and FEProblemBase::resetFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ residualSetup()

void FEProblemBase::residualSetup ( )
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 9265 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::residualSetup().

9266 {
9268  // We need to setup all the nonlinear systems other than our current one which actually called
9269  // this method (so we have to make sure we don't go in a circle)
9270  for (const auto i : make_range(numNonlinearSystems()))
9271  if (i != currentNlSysNum())
9272  _nl[i]->residualSetup();
9273  // We don't setup the aux sys because that's been done elsewhere
9274  if (_displaced_problem)
9275  _displaced_problem->residualSetup();
9276 }
virtual std::size_t numNonlinearSystems() const override
virtual void residualSetup()
Definition: SubProblem.C:1201
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
virtual unsigned int currentNlSysNum() const override
IntRange< T > make_range(T beg, T end)
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ resizeMaterialData()

void FEProblemBase::resizeMaterialData ( Moose::MaterialDataType  data_type,
unsigned int  nqp,
const THREAD_ID  tid 
)
inherited

Resize material data.

Parameters
data_typeThe type of material data to resize
nqpThe number of quadrature points to resize for
tidThe thread ID

Definition at line 9186 of file FEProblemBase.C.

9189 {
9190  getMaterialData(data_type, tid).resize(nqp);
9191 }
MPI_Datatype data_type
MaterialData & getMaterialData(Moose::MaterialDataType type, const THREAD_ID tid=0) const
void resize(unsigned int n_qpoints)
Resize the data to hold properties for n_qpoints quadrature points.
Definition: MaterialData.C:21

◆ restartableName()

std::string Restartable::restartableName ( const std::string &  data_name) const
protectedinherited

Gets the name of a piece of restartable data given a data name, adding the system name and object name prefix.

This should only be used in this interface and in testing.

Definition at line 66 of file Restartable.C.

Referenced by Restartable::declareRecoverableData(), and Restartable::declareRestartableDataHelper().

67 {
68  return _restartable_system_name + "/" + _restartable_name + "/" + data_name;
69 }
std::string _restartable_name
The name of the object.
Definition: Restartable.h:243
const std::string _restartable_system_name
The system name this object is in.
Definition: Restartable.h:230

◆ restoreMultiApps()

void FEProblemBase::restoreMultiApps ( ExecFlagType  type,
bool  force = false 
)
inherited

Restore the MultiApps associated with the ExecFlagType.

Parameters
forceForce restoration because something went wrong with the solve

Definition at line 5625 of file FEProblemBase.C.

Referenced by TransientBase::incrementStepOrReject(), and FixedPointSolve::solve().

5626 {
5627  const auto & multi_apps = _multi_apps[type].getActiveObjects();
5628 
5629  if (multi_apps.size())
5630  {
5631  if (_verbose_multiapps)
5632  {
5633  if (force)
5634  _console << COLOR_CYAN << "\nRestoring Multiapps on " << type.name()
5635  << " because of solve failure!" << COLOR_DEFAULT << std::endl;
5636  else
5637  _console << COLOR_CYAN << "\nRestoring MultiApps on " << type.name() << COLOR_DEFAULT
5638  << std::endl;
5639  }
5640 
5641  for (const auto & multi_app : multi_apps)
5642  multi_app->restore(force);
5643 
5645 
5646  if (_verbose_multiapps)
5647  _console << COLOR_CYAN << "Finished Restoring MultiApps on " << type.name() << "\n"
5648  << COLOR_DEFAULT << std::endl;
5649  }
5650 }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.
const Parallel::Communicator & _communicator
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void parallelBarrierNotify(const libMesh::Parallel::Communicator &comm, bool messaging=true)
This function implements a parallel barrier function but writes progress to stdout.
Definition: MooseUtils.C:323
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
ExecuteMooseObjectWarehouse< MultiApp > _multi_apps
MultiApp Warehouse.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ restoreOldSolutions()

void FEProblemBase::restoreOldSolutions ( )
virtualinherited

Restore old solutions from the backup vectors and deallocate them.

Definition at line 6753 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6754 {
6755  TIME_SECTION("restoreOldSolutions", 5, "Restoring Old Solutions");
6756 
6757  for (auto & sys : _solver_systems)
6758  sys->restoreOldSolutions();
6759  _aux->restoreOldSolutions();
6760 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ restoreOriginalNonzeroPattern()

bool FEProblemBase::restoreOriginalNonzeroPattern ( ) const
inlineinherited
Returns
Whether the original matrix nonzero pattern is restored before each Jacobian assembly

Definition at line 1977 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal().

const bool _restore_original_nonzero_pattern
Whether we should restore the original nonzero pattern for every Jacobian evaluation.

◆ restoreSolutions()

void FEProblemBase::restoreSolutions ( )
virtualinherited

Definition at line 6715 of file FEProblemBase.C.

Referenced by ActivateElementsUserObjectBase::initSolutions(), TimeStepper::rejectStep(), and FEProblemBase::updateMeshXFEM().

6716 {
6717  TIME_SECTION("restoreSolutions", 5, "Restoring Solutions");
6718 
6719  if (!_not_zeroed_tagged_vectors.empty())
6720  paramError("not_zeroed_tag_vectors",
6721  "There is currently no way to restore not-zeroed vectors.");
6722 
6723  for (auto & sys : _solver_systems)
6724  {
6725  if (_verbose_restore)
6726  _console << "Restoring solutions on system " << sys->name() << "..." << std::endl;
6727  sys->restoreSolutions();
6728  }
6729 
6730  if (_verbose_restore)
6731  _console << "Restoring solutions on Auxiliary system..." << std::endl;
6732  _aux->restoreSolutions();
6733 
6734  if (_verbose_restore)
6735  _console << "Restoring postprocessor, vector-postprocessor, and reporter data..." << std::endl;
6737 
6738  if (_displaced_problem)
6739  _displaced_problem->updateMesh();
6740 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
ReporterData _reporter_data
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
std::shared_ptr< DisplacedProblem > _displaced_problem
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
void restoreState(bool verbose=false)
When a time step fails, this method is called to revert the current reporter values to their old stat...
Definition: ReporterData.C:24

◆ safeAccessTaggedMatrices()

virtual bool SubProblem::safeAccessTaggedMatrices ( ) const
inlinevirtualinherited

Is it safe to access the tagged matrices.

Reimplemented in DisplacedProblem.

Definition at line 731 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedMatrices().

bool _safe_access_tagged_matrices
Is it safe to retrieve data from tagged matrices.
Definition: SubProblem.h:1108

◆ safeAccessTaggedVectors()

virtual bool SubProblem::safeAccessTaggedVectors ( ) const
inlinevirtualinherited

Is it safe to access the tagged vectors.

Reimplemented in DisplacedProblem.

Definition at line 734 of file SubProblem.h.

Referenced by MooseVariableScalar::reinit(), and DisplacedProblem::safeAccessTaggedVectors().

734 { return _safe_access_tagged_vectors; }
bool _safe_access_tagged_vectors
Is it safe to retrieve data from tagged vectors.
Definition: SubProblem.h:1111

◆ saveOldSolutions()

void FEProblemBase::saveOldSolutions ( )
virtualinherited

Allocate vectors and save old solutions into them.

Definition at line 6743 of file FEProblemBase.C.

Referenced by EigenExecutionerBase::inversePowerIteration().

6744 {
6745  TIME_SECTION("saveOldSolutions", 5, "Saving Old Solutions");
6746 
6747  for (auto & sys : _solver_systems)
6748  sys->saveOldSolutions();
6749  _aux->saveOldSolutions();
6750 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ selectMatrixTagsFromSystem()

void SubProblem::selectMatrixTagsFromSystem ( const SystemBase system,
const std::map< TagName, TagID > &  input_matrix_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the matrix tags which belong to a specific system.

Parameters
systemReference to the system
input_matrix_tagsA map of matrix tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 300 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys().

303 {
304  selected_tags.clear();
305  for (const auto & matrix_tag_pair : input_matrix_tags)
306  if (system.hasMatrix(matrix_tag_pair.second))
307  selected_tags.insert(matrix_tag_pair.second);
308 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360

◆ selectVectorTagsFromSystem()

void SubProblem::selectVectorTagsFromSystem ( const SystemBase system,
const std::vector< VectorTag > &  input_vector_tags,
std::set< TagID > &  selected_tags 
)
staticinherited

Select the vector tags which belong to a specific system.

Parameters
systemReference to the system
input_vector_tagsA vector of vector tags
selected_tagsA set which gets populated by the tag-ids that belong to the system

Definition at line 289 of file SubProblem.C.

Referenced by FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), and ComputeResidualAndJacobianThread::determineObjectWarehouses().

292 {
293  selected_tags.clear();
294  for (const auto & vector_tag : input_vector_tags)
295  if (system.hasVector(vector_tag._id))
296  selected_tags.insert(vector_tag._id);
297 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:916

◆ setActiveElementalMooseVariables()

void FEProblemBase::setActiveElementalMooseVariables ( const std::set< MooseVariableFEBase *> &  moose_vars,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the MOOSE variables to be reinited on each element.

Parameters
moose_varsA set of variables that need to be reinited each time reinit() is called.
tidThe thread id

Reimplemented from SubProblem.

Definition at line 5906 of file FEProblemBase.C.

Referenced by FEProblemBase::prepareMaterials(), ComputeMarkerThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), and ComputeUserObjectsThread::subdomainChanged().

5908 {
5910 
5911  if (_displaced_problem)
5912  _displaced_problem->setActiveElementalMooseVariables(moose_vars, tid);
5913 }
virtual void setActiveElementalMooseVariables(const std::set< MooseVariableFieldBase *> &moose_vars, const THREAD_ID tid)
Set the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:443
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableMatrixTags()

void FEProblemBase::setActiveFEVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5868 of file FEProblemBase.C.

5869 {
5871 
5872  if (_displaced_problem)
5873  _displaced_problem->setActiveFEVariableCoupleableMatrixTags(mtags, tid);
5874 }
virtual void setActiveFEVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:363
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveFEVariableCoupleableVectorTags()

void FEProblemBase::setActiveFEVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setActiveMaterialProperties()

void FEProblemBase::setActiveMaterialProperties ( const std::unordered_set< unsigned int > &  mat_prop_ids,
const THREAD_ID  tid 
)
inherited

Record and set the material properties required by the current computing thread.

Parameters
mat_prop_idsThe set of material properties required by the current computing thread.
tidThe thread id

Definition at line 5961 of file FEProblemBase.C.

Referenced by Moose::Mortar::loopOverMortarSegments(), FEProblemBase::prepareMaterials(), NodalPatchRecovery::reinitPatch(), NonlinearSystemBase::setConstraintSecondaryValues(), and ComputeDiracThread::subdomainChanged().

5963 {
5964  // mark active properties in every material
5965  for (auto & mat : _all_materials.getObjects(tid))
5966  mat->setActiveProperties(mat_prop_ids);
5967  for (auto & mat : _all_materials[Moose::FACE_MATERIAL_DATA].getObjects(tid))
5968  mat->setActiveProperties(mat_prop_ids);
5969  for (auto & mat : _all_materials[Moose::NEIGHBOR_MATERIAL_DATA].getObjects(tid))
5970  mat->setActiveProperties(mat_prop_ids);
5971 
5972  _has_active_material_properties[tid] = !mat_prop_ids.empty();
5973 }
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
std::vector< unsigned char > _has_active_material_properties
Whether there are active material properties on each thread.
MaterialWarehouse _all_materials

◆ setActiveScalarVariableCoupleableMatrixTags()

void FEProblemBase::setActiveScalarVariableCoupleableMatrixTags ( std::set< TagID > &  mtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5886 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

5888 {
5890 
5891  if (_displaced_problem)
5892  _displaced_problem->setActiveScalarVariableCoupleableMatrixTags(mtags, tid);
5893 }
virtual void setActiveScalarVariableCoupleableMatrixTags(std::set< TagID > &mtags, const THREAD_ID tid)
Definition: SubProblem.C:402
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setActiveScalarVariableCoupleableVectorTags()

void FEProblemBase::setActiveScalarVariableCoupleableVectorTags ( std::set< TagID > &  vtags,
const THREAD_ID  tid 
)
overridevirtualinherited

Reimplemented from SubProblem.

Definition at line 5896 of file FEProblemBase.C.

Referenced by AuxiliarySystem::setScalarVariableCoupleableTags().

5898 {
5900 
5901  if (_displaced_problem)
5902  _displaced_problem->setActiveScalarVariableCoupleableVectorTags(vtags, tid);
5903 }
virtual void setActiveScalarVariableCoupleableVectorTags(std::set< TagID > &vtags, const THREAD_ID tid)
Definition: SubProblem.C:409
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setAxisymmetricCoordAxis()

void FEProblemBase::setAxisymmetricCoordAxis ( const MooseEnum rz_coord_axis)
inherited

Definition at line 825 of file FEProblemBase.C.

826 {
827  _mesh.setAxisymmetricCoordAxis(rz_coord_axis);
828 }
MooseMesh & _mesh
void setAxisymmetricCoordAxis(const MooseEnum &rz_coord_axis)
For axisymmetric simulations, set the symmetry coordinate axis.
Definition: MooseMesh.C:4213

◆ setConstJacobian()

void FEProblemBase::setConstJacobian ( bool  state)
inlineinherited

Set flag that Jacobian is constant (for optimization purposes)

Parameters
stateTrue if the Jacobian is constant, false otherwise

Definition at line 1856 of file FEProblemBase.h.

Referenced by ExplicitEuler::preSolve(), ExplicitTVDRK2::preSolve(), and ExplicitRK2::preSolve().

1856 { _const_jacobian = state; }
bool _const_jacobian
true if the Jacobian is constant

◆ setCoordSystem()

void FEProblemBase::setCoordSystem ( const std::vector< SubdomainName > &  blocks,
const MultiMooseEnum coord_sys 
)
inherited

Definition at line 817 of file FEProblemBase.C.

819 {
820  TIME_SECTION("setCoordSystem", 5, "Setting Coordinate System");
821  _mesh.setCoordSystem(blocks, coord_sys);
822 }
char ** blocks
MooseMesh & _mesh
void setCoordSystem(const std::vector< SubdomainName > &blocks, const MultiMooseEnum &coord_sys)
Set the coordinate system for the provided blocks to coord_sys.
Definition: MooseMesh.C:4081

◆ setCoupling()

void FEProblemBase::setCoupling ( Moose::CouplingType  type)
inherited

Set the coupling between variables TODO: allow user-defined coupling.

Parameters
typeType of coupling

Definition at line 6137 of file FEProblemBase.C.

Referenced by FEProblemBase::init(), FEProblemBase::setCouplingMatrix(), and Moose::SlepcSupport::setEigenProblemSolverParams().

6138 {
6140  {
6142  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6143  "haven't been provided a coupling matrix!");
6144 
6145  // We've been told to trust the user coupling matrix, so we're going to leave things alone
6146  return;
6147  }
6148 
6149  _coupling = type;
6150 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ setCouplingMatrix() [1/2]

void FEProblemBase::setCouplingMatrix ( std::unique_ptr< libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Set custom coupling matrix.

Parameters
cmcoupling matrix to be set
nl_sys_numwhich nonlinear system we are setting the coupling matrix for

Definition at line 6161 of file FEProblemBase.C.

Referenced by MoosePreconditioner::setCouplingMatrix().

6162 {
6164  _cm[i] = std::move(cm);
6165 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCouplingMatrix() [2/2]

void FEProblemBase::setCouplingMatrix ( libMesh::CouplingMatrix cm,
const unsigned int  nl_sys_num 
)
inherited

Definition at line 6153 of file FEProblemBase.C.

6154 {
6155  // TODO: Deprecate method
6157  _cm[i].reset(cm);
6158 }
void setCoupling(Moose::CouplingType type)
Set the coupling between variables TODO: allow user-defined coupling.
std::vector< std::unique_ptr< libMesh::CouplingMatrix > > _cm
Coupling matrix for variables.

◆ setCurrentAlgebraicBndNodeRange()

void FEProblemBase::setCurrentAlgebraicBndNodeRange ( ConstBndNodeRange range)
inherited

Definition at line 9482 of file FEProblemBase.C.

9483 {
9484  if (!range)
9485  {
9487  return;
9488  }
9489 
9490  _current_algebraic_bnd_node_range = std::make_unique<ConstBndNodeRange>(*range);
9491 }
std::unique_ptr< ConstBndNodeRange > _current_algebraic_bnd_node_range

◆ setCurrentAlgebraicElementRange()

void FEProblemBase::setCurrentAlgebraicElementRange ( libMesh::ConstElemRange range)
inherited

These functions allow setting custom ranges for the algebraic elements, nodes, and boundary nodes that contribute to the jacobian and residual for this local processor.

setCurrentAlgebraicElementRange() sets the element range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicNodeRange() sets the node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

setCurrentAlgebraicBndNodeRange() sets the boundary node range that contributes to the system. A nullptr will reset the range to use the mesh's range.

Parameters
rangeA pointer to the const range object representing the algebraic elements, nodes, or boundary nodes.

Definition at line 9460 of file FEProblemBase.C.

9461 {
9462  if (!range)
9463  {
9465  return;
9466  }
9467 
9468  _current_algebraic_elem_range = std::make_unique<ConstElemRange>(*range);
9469 }
std::unique_ptr< libMesh::ConstElemRange > _current_algebraic_elem_range

◆ setCurrentAlgebraicNodeRange()

void FEProblemBase::setCurrentAlgebraicNodeRange ( libMesh::ConstNodeRange range)
inherited

Definition at line 9471 of file FEProblemBase.C.

9472 {
9473  if (!range)
9474  {
9476  return;
9477  }
9478 
9479  _current_algebraic_node_range = std::make_unique<ConstNodeRange>(*range);
9480 }
std::unique_ptr< libMesh::ConstNodeRange > _current_algebraic_node_range

◆ setCurrentBoundaryID()

void FEProblemBase::setCurrentBoundaryID ( BoundaryID  bid,
const THREAD_ID  tid 
)
overridevirtualinherited

sets the current boundary ID in assembly

Reimplemented from SubProblem.

Definition at line 9396 of file FEProblemBase.C.

9397 {
9399  if (_displaced_problem)
9400  _displaced_problem->setCurrentBoundaryID(bid, tid);
9401 }
virtual void setCurrentBoundaryID(BoundaryID bid, const THREAD_ID tid)
sets the current boundary ID in assembly
Definition: SubProblem.C:789
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ setCurrentExecuteOnFlag()

void FEProblemBase::setCurrentExecuteOnFlag ( const ExecFlagType flag)
inherited

Definition at line 4645 of file FEProblemBase.C.

Referenced by FEProblemBase::execute(), FEProblemBase::initialSetup(), and FEProblemBase::outputStep().

4646 {
4647  _current_execute_on_flag = flag;
4648 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.

◆ setCurrentLinearSystem()

void FEProblemBase::setCurrentLinearSystem ( unsigned int  sys_num)
inherited

Set the current linear system pointer.

Parameters
sys_numThe number of linear system

Definition at line 9413 of file FEProblemBase.C.

Referenced by FEProblemBase::computeLinearSystemSys(), LinearSystem::computeLinearSystemTags(), and FEProblemBase::solveLinearSystem().

9414 {
9415  mooseAssert(sys_num < _linear_systems.size(),
9416  "System number greater than the number of linear systems");
9417  _current_linear_sys = _linear_systems[sys_num].get();
9419 }
LinearSystem * _current_linear_sys
The current linear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ setCurrentLowerDElem()

void FEProblemBase::setCurrentLowerDElem ( const Elem *const  lower_d_elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Set the current lower dimensional element.

This can be null

Reimplemented from SubProblem.

Definition at line 9387 of file FEProblemBase.C.

9388 {
9389  SubProblem::setCurrentLowerDElem(lower_d_elem, tid);
9390  if (_displaced_problem)
9391  _displaced_problem->setCurrentLowerDElem(
9392  lower_d_elem ? _displaced_mesh->elemPtr(lower_d_elem->id()) : nullptr, tid);
9393 }
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3113
virtual void setCurrentLowerDElem(const Elem *const lower_d_elem, const THREAD_ID tid)
Set the current lower dimensional element.
Definition: SubProblem.C:1380
dof_id_type id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
MooseMesh * _displaced_mesh

◆ setCurrentlyComputingJacobian()

void SubProblem::setCurrentlyComputingJacobian ( const bool  currently_computing_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 689 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

690  {
691  _currently_computing_jacobian = currently_computing_jacobian;
692  }
bool _currently_computing_jacobian
Flag to determine whether the problem is currently computing Jacobian.
Definition: SubProblem.h:1096

◆ setCurrentlyComputingResidual()

void FEProblemBase::setCurrentlyComputingResidual ( bool  currently_computing_residual)
finalvirtualinherited

Set whether or not the problem is in the process of computing the residual.

Reimplemented from SubProblem.

Definition at line 9067 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualTags(), and FEProblemBase::resetState().

9068 {
9069  if (_displaced_problem)
9070  _displaced_problem->setCurrentlyComputingResidual(currently_computing_residual);
9071  _currently_computing_residual = currently_computing_residual;
9072 }
std::shared_ptr< DisplacedProblem > _displaced_problem
bool _currently_computing_residual
Whether the residual is being evaluated.
Definition: SubProblem.h:1105

◆ setCurrentlyComputingResidualAndJacobian()

void SubProblem::setCurrentlyComputingResidualAndJacobian ( bool  currently_computing_residual_and_jacobian)
inlineinherited

Set whether or not the problem is in the process of computing the Jacobian.

Definition at line 1493 of file SubProblem.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), and FEProblemBase::resetState().

1495 {
1496  _currently_computing_residual_and_jacobian = currently_computing_residual_and_jacobian;
1497 }
bool _currently_computing_residual_and_jacobian
Flag to determine whether the problem is currently computing the residual and Jacobian.
Definition: SubProblem.h:1099

◆ setCurrentNonlinearSystem()

void FEProblemBase::setCurrentNonlinearSystem ( const unsigned int  nl_sys_num)
inherited

Definition at line 9404 of file FEProblemBase.C.

Referenced by FEProblemBase::computeJacobian(), EigenProblem::computeJacobianAB(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), EigenProblem::computeJacobianTag(), EigenProblem::computeMatricesTags(), EigenProblem::computeResidualTag(), NonlinearSystemBase::computeResidualTags(), FEProblem::FEProblem(), EigenProblem::solve(), and FEProblemBase::solve().

9405 {
9406  mooseAssert(nl_sys_num < _nl.size(),
9407  "System number greater than the number of nonlinear systems");
9408  _current_nl_sys = _nl[nl_sys_num].get();
9410 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
SolverSystem * _current_solver_sys
The current solver system.

◆ setCurrentResidualVectorTags()

void FEProblemBase::setCurrentResidualVectorTags ( const std::set< TagID > &  vector_tags)
inlineinherited

Set the current residual vector tag data structure based on the passed in tag IDs.

Definition at line 3331 of file FEProblemBase.h.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), and CrankNicolson::init().

3332 {
3334 }
std::vector< VectorTag > _current_residual_vector_tags
A data member to store the residual vector tag(s) passed into computeResidualTag(s).
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:172

◆ setCurrentSubdomainID()

void FEProblemBase::setCurrentSubdomainID ( const Elem elem,
const THREAD_ID  tid 
)
overridevirtualinherited

Implements SubProblem.

Definition at line 1772 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), ElementalVariableValue::execute(), and ComputeInitialConditionThread::operator()().

1773 {
1774  SubdomainID did = elem->subdomain_id();
1775  for (const auto i : index_range(_solver_systems))
1776  {
1777  _assembly[tid][i]->setCurrentSubdomainID(did);
1778  if (_displaced_problem &&
1780  _displaced_problem->assembly(tid, i).setCurrentSubdomainID(did);
1781  }
1782 }
bool _reinit_displaced_elem
Whether to call DisplacedProblem::reinitElem when this->reinitElem is called.
bool _reinit_displaced_neighbor
Whether to call DisplacedProblem::reinitNeighbor when this->reinitNeighbor is called.
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
bool _reinit_displaced_face
Whether to call DisplacedProblem::reinitElemFace when this->reinitElemFace is called.
subdomain_id_type subdomain_id() const
std::shared_ptr< DisplacedProblem > _displaced_problem
auto index_range(const T &sizable)

◆ setErrorOnJacobianNonzeroReallocation()

void FEProblemBase::setErrorOnJacobianNonzeroReallocation ( bool  state)
inlineinherited

Definition at line 1988 of file FEProblemBase.h.

1989  {
1991  }
bool _error_on_jacobian_nonzero_reallocation
Whether to error when the Jacobian is re-allocated, usually because the sparsity pattern changed...

◆ setException()

void FEProblemBase::setException ( const std::string &  message)
virtualinherited

Set an exception, which is stored at this point by toggling a member variable in this class, and which must be followed up with by a call to checkExceptionAndStopSolve().

Parameters
messageThe error message describing the exception, which will get printed when checkExceptionAndStopSolve() is called

Definition at line 6506 of file FEProblemBase.C.

Referenced by ComputeThreadedGeneralUserObjectsThread::caughtMooseException(), ThreadedNodeLoop< ConstBndNodeRange, ConstBndNodeRange::const_iterator >::caughtMooseException(), ThreadedFaceLoop< RangeType >::caughtMooseException(), NonlinearSystemBase::computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), AuxiliarySystem::computeMortarNodalVars(), FEProblemBase::handleException(), ComputeMortarFunctor::operator()(), and DisplacedProblem::updateMesh().

6507 {
6508  _has_exception = true;
6509  _exception_message = message;
6510 }
bool _has_exception
Whether or not an exception has occurred.
std::string _exception_message
The error message to go with an exception.

◆ setExecutionPrinting()

void FEProblemBase::setExecutionPrinting ( const ExecFlagEnum print_exec)
inlineinherited

Definition at line 2461 of file FEProblemBase.h.

2461 { _print_execution_on = print_exec; }
ExecFlagEnum _print_execution_on
When to print the execution of loops.

◆ setFailNextNonlinearConvergenceCheck()

void FEProblemBase::setFailNextNonlinearConvergenceCheck ( )
inlineinherited

Skip further residual evaluations and fail the next nonlinear convergence check(s)

Definition at line 2448 of file FEProblemBase.h.

Referenced by Terminator::execute().

void setFailNextSystemConvergenceCheck()
Tell the problem that the system(s) cannot be considered converged next time convergence is checked...

◆ setFailNextSystemConvergenceCheck()

void FEProblemBase::setFailNextSystemConvergenceCheck ( )
inlineinherited

Tell the problem that the system(s) cannot be considered converged next time convergence is checked.

Definition at line 2450 of file FEProblemBase.h.

Referenced by FEProblemBase::setFailNextNonlinearConvergenceCheck().

bool _fail_next_system_convergence_check

◆ setFunctorOutput()

void SubProblem::setFunctorOutput ( bool  set_output)
inlineinherited

Setter for debug functor output.

Definition at line 924 of file SubProblem.h.

924 { _output_functors = set_output; }
bool _output_functors
Whether to output a list of the functors used and requested (currently only at initialSetup) ...
Definition: SubProblem.h:1164

◆ setIgnoreZerosInJacobian()

void FEProblemBase::setIgnoreZerosInJacobian ( bool  state)
inlineinherited

Set whether the zeros in the Jacobian should be dropped from the sparsity pattern.

Definition at line 2011 of file FEProblemBase.h.

2011 { _ignore_zeros_in_jacobian = state; }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.

◆ setInputParametersFEProblem()

virtual void FEProblemBase::setInputParametersFEProblem ( InputParameters parameters)
inlinevirtualinherited

Reimplemented in FEProblem.

Definition at line 851 of file FEProblemBase.h.

Referenced by FEProblem::setInputParametersFEProblem().

852  {
853  parameters.set<FEProblemBase *>("_fe_problem_base") = this;
854  }
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.

◆ setKernelCoverageCheck() [1/2]

void FEProblemBase::setKernelCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1862 of file FEProblemBase.h.

1862 { _kernel_coverage_check = mode; }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setKernelCoverageCheck() [2/2]

void FEProblemBase::setKernelCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether kernel coverage checks should be performed.

This check makes sure that at least one kernel is active on all subdomains in the domain (default: true).

Definition at line 1868 of file FEProblemBase.h.

1869  {
1871  }
CoverageCheckMode _kernel_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active kernel...

◆ setLinearConvergenceNames()

void FEProblemBase::setLinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the linear convergence object name(s) if there is one.

Definition at line 9231 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9232 {
9233  if (convergence_names.size() != numLinearSystems())
9234  paramError("linear_convergence", "There must be one convergence object per linear system");
9235  _linear_convergence_names = convergence_names;
9236 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
std::optional< std::vector< ConvergenceName > > _linear_convergence_names
Linear system(s) convergence name(s) (if any)
virtual std::size_t numLinearSystems() const override

◆ setMaterialCoverageCheck() [1/2]

void FEProblemBase::setMaterialCoverageCheck ( CoverageCheckMode  mode)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1879 of file FEProblemBase.h.

1879 { _material_coverage_check = mode; }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMaterialCoverageCheck() [2/2]

void FEProblemBase::setMaterialCoverageCheck ( bool  flag)
inlineinherited

Set flag to indicate whether material coverage checks should be performed.

This check makes sure that at least one material is active on all subdomains in the domain if any material is supplied. If no materials are supplied anywhere, a simulation is still considered OK as long as no properties are being requested anywhere.

Definition at line 1887 of file FEProblemBase.h.

1888  {
1890  }
CoverageCheckMode _material_coverage_check
Determines whether and which subdomains are to be checked to ensure that they have an active material...

◆ setMultiAppFixedPointConvergenceName()

void FEProblemBase::setMultiAppFixedPointConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the MultiApp fixed point convergence object name if there is one.

Definition at line 9203 of file FEProblemBase.C.

Referenced by FixedPointSolve::FixedPointSolve().

9204 {
9205  _multiapp_fixed_point_convergence_name = convergence_name;
9206 }
std::optional< ConvergenceName > _multiapp_fixed_point_convergence_name
MultiApp fixed point convergence name.

◆ setNeedToAddDefaultMultiAppFixedPointConvergence()

void FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence ( )
inlineinherited

Sets _need_to_add_default_multiapp_fixed_point_convergence to true.

Definition at line 657 of file FEProblemBase.h.

Referenced by FixedPointSolve::FixedPointSolve().

658  {
660  }
bool _need_to_add_default_multiapp_fixed_point_convergence
Flag that the problem needs to add the default fixed point convergence.

◆ setNeedToAddDefaultNonlinearConvergence()

void FEProblemBase::setNeedToAddDefaultNonlinearConvergence ( )
inlineinherited

Sets _need_to_add_default_nonlinear_convergence to true.

Definition at line 652 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

653  {
655  }
bool _need_to_add_default_nonlinear_convergence
Flag that the problem needs to add the default nonlinear convergence.

◆ setNeedToAddDefaultSteadyStateConvergence()

void FEProblemBase::setNeedToAddDefaultSteadyStateConvergence ( )
inlineinherited

Sets _need_to_add_default_steady_state_convergence to true.

Definition at line 662 of file FEProblemBase.h.

Referenced by TransientBase::TransientBase().

663  {
665  }
bool _need_to_add_default_steady_state_convergence
Flag that the problem needs to add the default steady convergence.

◆ setNeighborSubdomainID() [1/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
unsigned int  side,
const THREAD_ID  tid 
)
overridevirtualinherited

◆ setNeighborSubdomainID() [2/2]

virtual void FEProblemBase::setNeighborSubdomainID ( const Elem *  elem,
const THREAD_ID  tid 
)
virtualinherited

◆ setNonlinearConvergenceNames()

void FEProblemBase::setNonlinearConvergenceNames ( const std::vector< ConvergenceName > &  convergence_names)
inherited

Sets the nonlinear convergence object name(s) if there is one.

Definition at line 9194 of file FEProblemBase.C.

Referenced by FEProblemSolve::FEProblemSolve().

9195 {
9196  if (convergence_names.size() != numNonlinearSystems())
9197  paramError("nonlinear_convergence",
9198  "There must be one convergence object per nonlinear system");
9199  _nonlinear_convergence_names = convergence_names;
9200 }
void paramError(const std::string &param, Args... args) const
Emits an error prefixed with the file and line number of the given param (from the input file) along ...
Definition: MooseBase.h:435
virtual std::size_t numNonlinearSystems() const override
std::optional< std::vector< ConvergenceName > > _nonlinear_convergence_names
Nonlinear system(s) convergence name(s)

◆ setNonlocalCouplingMatrix()

void FEProblemBase::setNonlocalCouplingMatrix ( )
inherited

Set custom coupling matrix for variables requiring nonlocal contribution.

Definition at line 6178 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup().

6179 {
6180  TIME_SECTION("setNonlocalCouplingMatrix", 5, "Setting Nonlocal Coupling Matrix");
6181 
6182  if (_nl.size() > 1)
6183  mooseError("Nonlocal kernels are weirdly stored on the FEProblem so we don't currently support "
6184  "multiple nonlinear systems with nonlocal kernels.");
6185 
6186  for (const auto nl_sys_num : index_range(_nl))
6187  {
6188  auto & nl = _nl[nl_sys_num];
6189  auto & nonlocal_cm = _nonlocal_cm[nl_sys_num];
6190  unsigned int n_vars = nl->nVariables();
6191  nonlocal_cm.resize(n_vars);
6192  const auto & vars = nl->getVariables(0);
6193  const auto & nonlocal_kernel = _nonlocal_kernels.getObjects();
6194  const auto & nonlocal_integrated_bc = _nonlocal_integrated_bcs.getObjects();
6195  for (const auto & ivar : vars)
6196  {
6197  for (const auto & kernel : nonlocal_kernel)
6198  {
6199  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6200  if (i == kernel->variable().number())
6201  for (const auto & jvar : vars)
6202  {
6203  const auto it = _var_dof_map.find(jvar->name());
6204  if (it != _var_dof_map.end())
6205  {
6206  unsigned int j = jvar->number();
6207  nonlocal_cm(i, j) = 1;
6208  }
6209  }
6210  }
6211  for (const auto & integrated_bc : nonlocal_integrated_bc)
6212  {
6213  for (unsigned int i = ivar->number(); i < ivar->number() + ivar->count(); ++i)
6214  if (i == integrated_bc->variable().number())
6215  for (const auto & jvar : vars)
6216  {
6217  const auto it = _var_dof_map.find(jvar->name());
6218  if (it != _var_dof_map.end())
6219  {
6220  unsigned int j = jvar->number();
6221  nonlocal_cm(i, j) = 1;
6222  }
6223  }
6224  }
6225  }
6226  }
6227 }
char ** vars
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
const std::vector< std::shared_ptr< T > > & getObjects(THREAD_ID tid=0) const
Retrieve complete vector to the all/block/boundary restricted objects for a given thread...
unsigned int n_vars
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
std::vector< libMesh::CouplingMatrix > _nonlocal_cm
nonlocal coupling matrix
auto index_range(const T &sizable)
MooseObjectWarehouse< IntegratedBCBase > _nonlocal_integrated_bcs
nonlocal integrated_bcs
MooseObjectWarehouse< KernelBase > _nonlocal_kernels
nonlocal kernels

◆ setParallelBarrierMessaging()

void FEProblemBase::setParallelBarrierMessaging ( bool  flag)
inlineinherited

Toggle parallel barrier messaging (defaults to on).

Definition at line 1895 of file FEProblemBase.h.

1895 { _parallel_barrier_messaging = flag; }
bool _parallel_barrier_messaging
Whether or not information about how many transfers have completed is printed.

◆ setPostprocessorValueByName()

void FEProblemBase::setPostprocessorValueByName ( const PostprocessorName &  name,
const PostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a PostprocessorValue.

Parameters
nameThe name of the post-processor
t_indexFlag for getting current (0), old (1), or older (2) values
Returns
The reference to the value at the given time index

Note: This method is only for setting values that already exist, the Postprocessor and PostprocessorInterface objects should be used rather than this method for creating and getting values within objects.

WARNING! This method should be used with caution. It exists to allow Transfers and other similar objects to modify Postprocessor values. It is not intended for general use.

Definition at line 4503 of file FEProblemBase.C.

Referenced by MultiAppPostprocessorTransfer::execute(), PIDTransientControl::execute(), FEProblemBase::joinAndFinalize(), SecantSolve::transformPostprocessors(), SteffensenSolve::transformPostprocessors(), and PicardSolve::transformPostprocessors().

4506 {
4508  PostprocessorReporterName(name), value, t_index);
4509 }
ReporterData _reporter_data
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real PostprocessorValue
various MOOSE typedefs
Definition: MooseTypes.h:202
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
A ReporterName that represents a Postprocessor.
Definition: ReporterName.h:143

◆ setPreserveMatrixSparsityPattern()

void FEProblemBase::setPreserveMatrixSparsityPattern ( bool  preserve)
inherited

Set whether the sparsity pattern of the matrices being formed during the solve (usually the Jacobian) should be preserved.

This global setting can be retrieved by kernels, notably those using AD, to decide whether to take additional care to preserve the sparsity pattern

Definition at line 3865 of file FEProblemBase.C.

3866 {
3867  if (_ignore_zeros_in_jacobian && preserve)
3868  paramWarning(
3869  "ignore_zeros_in_jacobian",
3870  "We likely cannot preserve the sparsity pattern if ignoring zeros in the Jacobian, which "
3871  "leads to removing those entries from the Jacobian sparsity pattern");
3873 }
bool _ignore_zeros_in_jacobian
Whether to ignore zeros in the Jacobian, thereby leading to a reduced sparsity pattern.
bool _preserve_matrix_sparsity_pattern
Whether to preserve the system matrix / Jacobian sparsity pattern, using 0-valued entries usually...
void paramWarning(const std::string &param, Args... args) const
Emits a warning prefixed with the file and line number of the given param (from the input file) along...
Definition: MooseBase.h:442

◆ setResidual() [1/2]

virtual void SubProblem::setResidual ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidual() [2/2]

void FEProblemBase::setResidual ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1906 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::constraintResiduals().

1907 {
1908  _assembly[tid][_current_nl_sys->number()]->setResidual(
1909  residual,
1911  getVectorTag(_nl[_current_nl_sys->number()]->residualVectorTag()));
1912  if (_displaced_problem)
1913  _displaced_problem->setResidual(residual, tid);
1914 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ setResidualNeighbor() [1/2]

virtual void SubProblem::setResidualNeighbor ( libMesh::NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
pure virtualinherited

◆ setResidualNeighbor() [2/2]

void FEProblemBase::setResidualNeighbor ( NumericVector< libMesh::Number > &  residual,
const THREAD_ID  tid 
)
overridevirtualinherited

Definition at line 1917 of file FEProblemBase.C.

1918 {
1919  _assembly[tid][_current_nl_sys->number()]->setResidualNeighbor(
1921  if (_displaced_problem)
1922  _displaced_problem->setResidualNeighbor(residual, tid);
1923 }
NonlinearSystemBase * _current_nl_sys
The current nonlinear system that we are solving.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1149
TagID residualVectorTag() const override
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
virtual const VectorTag & getVectorTag(const TagID tag_id) const
Get a VectorTag from a TagID.
Definition: SubProblem.C:161
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:805

◆ setRestartFile()

void FEProblemBase::setRestartFile ( const std::string &  file_name)
inherited

Communicate to the Resurector the name of the restart filer.

Parameters
file_nameThe file name for restarting from

Definition at line 8714 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and FEProblemBase::FEProblemBase().

8715 {
8716  if (_app.isRecovering())
8717  {
8718  mooseInfo("Restart file ", file_name, " is NOT being used since we are performing recovery.");
8719  }
8720  else
8721  {
8722  _app.setRestart(true);
8723  _app.setRestartRecoverFileBase(file_name);
8724  mooseInfo("Using ", file_name, " for restart.");
8725  }
8726 }
void mooseInfo(Args &&... args) const
Definition: MooseBase.h:317
void setRestartRecoverFileBase(const std::string &file_base)
mutator for recover_base (set by RecoverBaseAction)
Definition: MooseApp.h:499
void setRestart(bool value)
Sets the restart/recover flags.
Definition: MooseApp.C:2912
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
bool isRecovering() const
Whether or not this is a "recover" calculation.
Definition: MooseApp.C:1801

◆ setSNESMFReuseBase()

void FEProblemBase::setSNESMFReuseBase ( bool  reuse,
bool  set_by_user 
)
inlineinherited

If or not to reuse the base vector for matrix-free calculation.

Definition at line 2150 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2151  {
2152  _snesmf_reuse_base = reuse, _snesmf_reuse_base_set_by_user = set_by_user;
2153  }
bool _snesmf_reuse_base_set_by_user
If or not _snesmf_reuse_base is set by user.
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ setSteadyStateConvergenceName()

void FEProblemBase::setSteadyStateConvergenceName ( const ConvergenceName &  convergence_name)
inherited

Sets the steady-state detection convergence object name if there is one.

Definition at line 9209 of file FEProblemBase.C.

Referenced by TransientBase::TransientBase().

9210 {
9211  _steady_state_convergence_name = convergence_name;
9212 }
std::optional< ConvergenceName > _steady_state_convergence_name
Steady-state detection convergence name.

◆ setUDotDotOldRequested()

virtual void FEProblemBase::setUDotDotOldRequested ( const bool  u_dotdot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution second time derivative.

Definition at line 2198 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2199  {
2200  _u_dotdot_old_requested = u_dotdot_old_requested;
2201  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.

◆ setUDotDotRequested()

virtual void FEProblemBase::setUDotDotRequested ( const bool  u_dotdot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution second time derivative.

Definition at line 2186 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2187  {
2188  _u_dotdot_requested = u_dotdot_requested;
2189  }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ setUDotOldRequested()

virtual void FEProblemBase::setUDotOldRequested ( const bool  u_dot_old_requested)
inlinevirtualinherited

Set boolean flag to true to store old solution time derivative.

Definition at line 2192 of file FEProblemBase.h.

Referenced by CentralDifference::CentralDifference(), and NewmarkBeta::NewmarkBeta().

2193  {
2194  _u_dot_old_requested = u_dot_old_requested;
2195  }
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ setUDotRequested()

virtual void FEProblemBase::setUDotRequested ( const bool  u_dot_requested)
inlinevirtualinherited

Set boolean flag to true to store solution time derivative.

Definition at line 2183 of file FEProblemBase.h.

Referenced by TimeIntegrator::TimeIntegrator().

2183 { _u_dot_requested = u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ setupDampers()

void FEProblemBase::setupDampers ( )
inherited

Definition at line 5247 of file FEProblemBase.C.

5248 {
5249  for (auto & nl : _nl)
5250  nl->setupDampers();
5251 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ setVariableAllDoFMap()

void FEProblemBase::setVariableAllDoFMap ( const std::vector< const MooseVariableFEBase *> &  moose_vars)
inherited

Definition at line 1680 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

1681 {
1682  for (unsigned int i = 0; i < moose_vars.size(); ++i)
1683  {
1684  VariableName var_name = moose_vars[i]->name();
1685  auto & sys = _solver_systems[moose_vars[i]->sys().number()];
1686  sys->setVariableGlobalDoFs(var_name);
1687  _var_dof_map[var_name] = sys->getVariableGlobalDoFs();
1688  }
1689 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::map< std::string, std::vector< dof_id_type > > _var_dof_map
Definition: SubProblem.h:674

◆ setVectorPostprocessorValueByName()

void FEProblemBase::setVectorPostprocessorValueByName ( const std::string &  object_name,
const std::string &  vector_name,
const VectorPostprocessorValue value,
std::size_t  t_index = 0 
)
inherited

Set the value of a VectorPostprocessor vector.

Parameters
object_nameThe name of the VPP object
vector_nameThe name of the declared vector
valueThe data to apply to the vector
t_indexFlag for getting current (0), old (1), or older (2) values

Definition at line 4529 of file FEProblemBase.C.

4533 {
4535  VectorPostprocessorReporterName(object_name, vector_name), value, t_index);
4536 }
A ReporterName that represents a VectorPostprocessor.
Definition: ReporterName.h:152
ReporterData _reporter_data
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
void setReporterValue(const ReporterName &reporter_name, const T &value, const std::size_t time_index=0)
Method for setting Reporter values that already exist.
Definition: ReporterData.h:481
std::vector< Real > VectorPostprocessorValue
Definition: MooseTypes.h:203

◆ setVerboseProblem()

void FEProblemBase::setVerboseProblem ( bool  verbose)
inherited

Make the problem be verbose.

Definition at line 9379 of file FEProblemBase.C.

Referenced by Executioner::Executioner(), and PhysicsBase::initializePhysics().

9380 {
9381  _verbose_setup = verbose ? "true" : "false";
9382  _verbose_multiapps = verbose;
9383  _verbose_restore = verbose;
9384 }
bool _verbose_restore
Whether or not to be verbose on solution restoration post a failed time step.
MooseEnum _verbose_setup
Whether or not to be verbose during setup.
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ shouldPrintExecution()

bool FEProblemBase::shouldPrintExecution ( const THREAD_ID  tid) const
inherited

Check whether the problem should output execution orders at this time.

Definition at line 9321 of file FEProblemBase.C.

Referenced by FEProblemBase::joinAndFinalize(), ComputeMarkerThread::printBlockExecutionInformation(), ComputeDiracThread::printBlockExecutionInformation(), ComputeIndicatorThread::printBlockExecutionInformation(), ComputeUserObjectsThread::printBlockExecutionInformation(), ComputeLinearFVElementalThread::printBlockExecutionInformation(), ComputeLinearFVFaceThread::printBlockExecutionInformation(), NonlinearThread::printBlockExecutionInformation(), NonlinearThread::printBoundaryExecutionInformation(), ComputeFVInitialConditionThread::printGeneralExecutionInformation(), ComputeInitialConditionThread::printGeneralExecutionInformation(), ComputeNodalUserObjectsThread::printGeneralExecutionInformation(), ComputeNodalKernelBcsThread::printGeneralExecutionInformation(), ComputeNodalKernelsThread::printGeneralExecutionInformation(), ComputeElemDampingThread::printGeneralExecutionInformation(), ComputeNodalKernelBCJacobiansThread::printGeneralExecutionInformation(), ComputeNodalDampingThread::printGeneralExecutionInformation(), ComputeMarkerThread::printGeneralExecutionInformation(), ComputeDiracThread::printGeneralExecutionInformation(), ComputeIndicatorThread::printGeneralExecutionInformation(), ComputeNodalKernelJacobiansThread::printGeneralExecutionInformation(), ComputeThreadedGeneralUserObjectsThread::printGeneralExecutionInformation(), ComputeUserObjectsThread::printGeneralExecutionInformation(), ComputeLinearFVElementalThread::printGeneralExecutionInformation(), ComputeLinearFVFaceThread::printGeneralExecutionInformation(), and NonlinearThread::printGeneralExecutionInformation().

9322 {
9323  // For now, only support printing from thread 0
9324  if (tid != 0)
9325  return false;
9326 
9329  return true;
9330  else
9331  return false;
9332 }
ExecFlagType _current_execute_on_flag
Current execute_on flag.
const ExecFlagType EXEC_ALWAYS
Definition: Moose.C:51
ExecFlagEnum _print_execution_on
When to print the execution of loops.
bool isValueSet(const std::string &value) const
Methods for seeing if a value is set in the MultiMooseEnum.

◆ shouldSolve()

bool FEProblemBase::shouldSolve ( ) const
inlineinherited

Definition at line 2234 of file FEProblemBase.h.

Referenced by FEProblemSolve::solve(), MFEMProblemSolve::solve(), and TransientBase::TransientBase().

2234 { return _solve; }
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ shouldUpdateSolution()

bool FEProblemBase::shouldUpdateSolution ( )
virtualinherited

Check to see whether the problem should update the solution.

Returns
true if the problem should update the solution, false otherwise

Definition at line 7829 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck(), and NonlinearSystem::solve().

7830 {
7831  return false;
7832 }

◆ showInvalidSolutionConsole()

bool FEProblemBase::showInvalidSolutionConsole ( ) const
inlineinherited

Whether or not to print out the invalid solutions summary table in console.

Definition at line 2028 of file FEProblemBase.h.

Referenced by SolverSystem::checkInvalidSolution().

const bool _show_invalid_solution_console

◆ sizeZeroes()

void FEProblemBase::sizeZeroes ( unsigned int  size,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2108 of file FEProblemBase.C.

2109 {
2110  mooseDoOnce(mooseWarning(
2111  "This function is deprecated and no longer performs any function. Please do not call it."));
2112 }
void mooseWarning(Args &&... args) const
Emits a warning prefixed with object name and type.
Definition: MooseBase.h:295

◆ skipExceptionCheck()

void FEProblemBase::skipExceptionCheck ( bool  skip_exception_check)
inlineinherited

Set a flag that indicates if we want to skip exception and stop solve.

Definition at line 2163 of file FEProblemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

2164  {
2165  _skip_exception_check = skip_exception_check;
2166  }
bool _skip_exception_check
If or not skip &#39;exception and stop solve&#39;.

◆ solve()

virtual void DumpObjectsProblem::solve ( unsigned int  )
inlineoverridevirtual

output data in solve (if ever called)

Reimplemented from FEProblemBase.

Definition at line 52 of file DumpObjectsProblem.h.

52 {}

◆ solveLinearSystem()

virtual void DumpObjectsProblem::solveLinearSystem ( unsigned int  linear_sys_num,
const Moose::PetscSupport::PetscOptions po 
)
inlineoverridevirtual

Build and solve a linear system.

Parameters
linear_sys_numThe number of the linear system (1,..,num. of lin. systems)
poThe petsc options for the solve, if not supplied, the defaults are used

Reimplemented from FEProblemBase.

Definition at line 53 of file DumpObjectsProblem.h.

55  {
56  }

◆ solverParams() [1/2]

SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0)
inherited

Get the solver parameters.

Definition at line 8746 of file FEProblemBase.C.

Referenced by NonlinearEigenSystem::attachPreconditioner(), SolverSystem::compute(), SlepcEigenSolverConfiguration::configure_solver(), Eigenvalue::Eigenvalue(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), FEProblemSolve::FEProblemSolve(), EigenProblem::init(), ExplicitTimeIntegrator::init(), FEProblemBase::init(), EigenProblem::isNonlinearEigenvalueSolver(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), ConsoleUtils::outputExecutionInformation(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), Eigenvalue::prepareSolverOptions(), NonlinearSystem::residualAndJacobianTogether(), Moose::SlepcSupport::setEigenProblemSolverParams(), Moose::PetscSupport::setLineSearchFromParams(), Moose::PetscSupport::setMFFDTypeFromParams(), Moose::PetscSupport::setSinglePetscOption(), Moose::PetscSupport::setSolveTypeFromParams(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), EigenProblem::solve(), FEProblemBase::solverParams(), EigenProblem::solverTypeString(), FEProblemBase::solverTypeString(), and Moose::SlepcSupport::storeSolveType().

8747 {
8748  mooseAssert(solver_sys_num < numSolverSystems(),
8749  "Solver system number '" << solver_sys_num << "' is out of bounds. We have '"
8750  << numSolverSystems() << "' solver systems");
8751  return _solver_params[solver_sys_num];
8752 }
std::vector< SolverParams > _solver_params
virtual std::size_t numSolverSystems() const override

◆ solverParams() [2/2]

const SolverParams & FEProblemBase::solverParams ( unsigned int  solver_sys_num = 0) const
inherited

const version

Definition at line 8755 of file FEProblemBase.C.

8756 {
8757  return const_cast<FEProblemBase *>(this)->solverParams(solver_sys_num);
8758 }
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ solverSysNum()

unsigned int FEProblemBase::solverSysNum ( const SolverSystemName &  solver_sys_name) const
overridevirtualinherited
Returns
the solver system number corresponding to the provided solver_sys_name

Implements SubProblem.

Definition at line 6409 of file FEProblemBase.C.

Referenced by FEProblemBase::addVariable(), FEProblemBase::getSystemBase(), MultiSystemSolveObject::MultiSystemSolveObject(), and DisplacedProblem::solverSysNum().

6410 {
6411  std::istringstream ss(solver_sys_name);
6412  unsigned int solver_sys_num;
6413  if (!(ss >> solver_sys_num) || !ss.eof())
6414  {
6415  const auto & search = _solver_sys_name_to_num.find(solver_sys_name);
6416  if (search == _solver_sys_name_to_num.end())
6417  mooseError("The solver system number was requested for system '" + solver_sys_name,
6418  "' but this system does not exist in the Problem. Systems can be added to the "
6419  "problem using the 'nl_sys_names'/'linear_sys_names' parameter.\nSystems in the "
6420  "Problem: " +
6422  solver_sys_num = search->second;
6423  }
6424 
6425  return solver_sys_num;
6426 }
std::map< SolverSystemName, unsigned int > _solver_sys_name_to_num
Map connecting solver system names with their respective systems.
std::vector< SolverSystemName > _solver_sys_names
The union of nonlinear and linear system names.
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ solverSystemConverged()

bool FEProblemBase::solverSystemConverged ( const unsigned int  sys_num)
overridevirtualinherited
Returns
whether the given solver system sys_num is converged

Reimplemented from SubProblem.

Reimplemented in EigenProblem.

Definition at line 6642 of file FEProblemBase.C.

6643 {
6644  if (_solve)
6645  return _solver_systems[sys_num]->converged();
6646  else
6647  return true;
6648 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
const bool & _solve
Whether or not to actually solve the nonlinear system.

◆ solverTypeString()

std::string FEProblemBase::solverTypeString ( unsigned int  solver_sys_num = 0)
virtualinherited

Return solver type as a human readable string.

Reimplemented in MFEMProblem, and EigenProblem.

Definition at line 9500 of file FEProblemBase.C.

Referenced by ConsoleUtils::outputExecutionInformation().

9501 {
9502  return Moose::stringify(solverParams(solver_sys_num)._type);
9503 }
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
const std::string & _type
The type of this class.
Definition: MooseBase.h:356

◆ startedInitialSetup()

virtual bool FEProblemBase::startedInitialSetup ( )
inlinevirtualinherited

Returns true if we are in or beyond the initialSetup stage.

Definition at line 509 of file FEProblemBase.h.

Referenced by NEML2ModelExecutor::checkExecutionStage(), MaterialBase::checkExecutionStage(), and MaterialPropertyInterface::checkExecutionStage().

509 { return _started_initial_setup; }
bool _started_initial_setup
At or beyond initialSteup stage.

◆ storeBoundaryDelayedCheckMatProp()

void SubProblem::storeBoundaryDelayedCheckMatProp ( const std::string &  requestor,
BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties to validate.

Parameters
requestorThe MOOSE object name requesting the material property
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 615 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

618 {
619  _map_boundary_material_props_check[boundary_id].insert(std::make_pair(requestor, name));
620 }
std::map< BoundaryID, std::multimap< std::string, std::string > > _map_boundary_material_props_check
Definition: SubProblem.h:1071
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeBoundaryMatPropName()

void SubProblem::storeBoundaryMatPropName ( BoundaryID  boundary_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on boundary ids.

This is method is called from within the Material class when the property is first registered.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 589 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

590 {
591  _map_boundary_material_props[boundary_id].insert(name);
592 }
std::map< BoundaryID, std::set< std::string > > _map_boundary_material_props
Map for boundary material properties (boundary_id -> list of properties)
Definition: SubProblem.h:1055
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeBoundaryZeroMatProp()

void SubProblem::storeBoundaryZeroMatProp ( BoundaryID  boundary_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on boundary ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
boundary_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 601 of file SubProblem.C.

Referenced by MaterialBase::storeBoundaryZeroMatProp().

602 {
603  _zero_boundary_material_props[boundary_id].insert(name);
604 }
std::map< BoundaryID, std::set< MaterialPropertyName > > _zero_boundary_material_props
Definition: SubProblem.h:1059
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99

◆ storeSubdomainDelayedCheckMatProp()

void SubProblem::storeSubdomainDelayedCheckMatProp ( const std::string &  requestor,
SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds to a map based on block ids of material properties to validate.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 607 of file SubProblem.C.

Referenced by MaterialPropertyInterface::checkMaterialProperty().

610 {
611  _map_block_material_props_check[block_id].insert(std::make_pair(requestor, name));
612 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::multimap< std::string, std::string > > _map_block_material_props_check
Data structures of the requested material properties.
Definition: SubProblem.h:1070

◆ storeSubdomainMatPropName()

void SubProblem::storeSubdomainMatPropName ( SubdomainID  block_id,
const std::string &  name 
)
virtualinherited

Adds the given material property to a storage map based on block ids.

This is method is called from within the Material class when the property is first registered.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 583 of file SubProblem.C.

Referenced by MaterialBase::registerPropName().

584 {
585  _map_block_material_props[block_id].insert(name);
586 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::set< std::string > > _map_block_material_props
Map of material properties (block_id -> list of properties)
Definition: SubProblem.h:1052

◆ storeSubdomainZeroMatProp()

void SubProblem::storeSubdomainZeroMatProp ( SubdomainID  block_id,
const MaterialPropertyName &  name 
)
virtualinherited

Adds to a map based on block ids of material properties for which a zero value can be returned.

Thes properties are optional and will not trigger a missing material property error.

Parameters
block_idThe block id for the MaterialProperty
nameThe name of the property

Definition at line 595 of file SubProblem.C.

Referenced by MaterialBase::storeSubdomainZeroMatProp().

596 {
597  _zero_block_material_props[block_id].insert(name);
598 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
std::map< SubdomainID, std::set< MaterialPropertyName > > _zero_block_material_props
Set of properties returned as zero properties.
Definition: SubProblem.h:1058

◆ stringifyParameters()

std::map< std::string, std::string > DumpObjectsProblem::stringifyParameters ( const InputParameters parameters)
protected

create a string map form parameter names to stringified parameter values

Definition at line 221 of file DumpObjectsProblem.C.

Referenced by deduceNecessaryParameters().

222 {
223  std::map<std::string, std::string> parameter_map;
224 
225  std::string syntax;
226  if (parameters.isParamValid("parser_syntax"))
227  syntax = parameters.get<std::string>("parser_syntax");
228 
229  for (auto & value_pair : parameters)
230  {
231  // parameter name
232  const auto & param_name = value_pair.first;
233 
234  if (!parameters.isPrivate(param_name) && parameters.isParamValid(param_name))
235  {
236  if (param_name == "control_tags")
237  {
238  // deal with the control tags. The current parser_syntax is automatically added to this. So
239  // we can remove the parameter if that's all there is in it
240  }
241  else
242  {
243  // special treatment for some types
244 
245  // parameter value
246  std::string param_value;
247  if (parameters.have_parameter<bool>(param_name))
248  {
249  const bool & b = parameters.get<bool>(param_name);
250  param_value = b ? "true" : "false";
251  }
252  else
253  {
254  std::stringstream ss;
255  value_pair.second->print(ss);
256  param_value = ss.str();
257  }
258 
259  // delete trailing space
260  if (!param_value.empty() && param_value.back() == ' ')
261  param_value.pop_back();
262 
263  // add quotes if the parameter contains spaces or is empty
264  if (param_value.find_first_of(" ") != std::string::npos || param_value.length() == 0)
265  param_value = "'" + param_value + "'";
266 
267  parameter_map[param_name] = param_value;
268  }
269  }
270  }
271 
272  return parameter_map;
273 }
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:127
bool isPrivate(const std::string &name) const
Returns a Boolean indicating whether the specified parameter is private or not.
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ subdomainSetup()

void FEProblemBase::subdomainSetup ( SubdomainID  subdomain,
const THREAD_ID  tid 
)
virtualinherited

Definition at line 2471 of file FEProblemBase.C.

Referenced by ComputeMarkerThread::subdomainChanged(), ComputeIndicatorThread::subdomainChanged(), ComputeMaterialsObjectThread::subdomainChanged(), ComputeDiracThread::subdomainChanged(), NonlinearThread::subdomainChanged(), ComputeUserObjectsThread::subdomainChanged(), and ThreadedFaceLoop< RangeType >::subdomainChanged().

2472 {
2473  _all_materials.subdomainSetup(subdomain, tid);
2474  // Call the subdomain methods of the output system, these are not threaded so only call it once
2475  if (tid == 0)
2477 
2478  for (auto & nl : _nl)
2479  nl->subdomainSetup(subdomain, tid);
2480 
2481  // FIXME: call displaced_problem->subdomainSetup() ?
2482  // When adding possibility with materials being evaluated on displaced mesh
2483 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void subdomainSetup()
Calls the subdomainSetup function for each of the output objects.
virtual void subdomainSetup(THREAD_ID tid=0) const
MaterialWarehouse _all_materials
OutputWarehouse & getOutputWarehouse()
Get the OutputWarehouse objects.
Definition: MooseApp.C:2442

◆ subspaceDim()

unsigned int FEProblemBase::subspaceDim ( const std::string &  prefix) const
inlineinherited

Dimension of the subspace spanned by vectors with a given prefix.

Parameters
prefixPrefix of the vectors spanning the subspace.

Definition at line 1937 of file FEProblemBase.h.

Referenced by FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), and FEProblemBase::computeTransposeNullSpace().

1938  {
1939  if (_subspace_dim.count(prefix))
1940  return _subspace_dim.find(prefix)->second;
1941  else
1942  return 0;
1943  }
std::map< std::string, unsigned int > _subspace_dim
Dimension of the subspace spanned by the vectors with a given prefix.

◆ swapBackMaterials()

void FEProblemBase::swapBackMaterials ( const THREAD_ID  tid)
virtualinherited

Definition at line 4215 of file FEProblemBase.C.

Referenced by NodalPatchRecovery::compute(), LineMaterialSamplerBase< Real >::execute(), ComputeMarkerThread::onElement(), ComputeElemAuxVarsThread< AuxKernelType >::onElement(), ComputeIndicatorThread::onElement(), NonlinearThread::onElement(), and ComputeUserObjectsThread::onElement().

4216 {
4217  auto && elem = _assembly[tid][0]->elem();
4219 }
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const
MaterialPropertyStorage & _material_props

◆ swapBackMaterialsFace()

void FEProblemBase::swapBackMaterialsFace ( const THREAD_ID  tid)
virtualinherited

Definition at line 4222 of file FEProblemBase.C.

Referenced by NonlinearThread::onBoundary(), ComputeUserObjectsThread::onBoundary(), NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4223 {
4224  auto && elem = _assembly[tid][0]->elem();
4225  unsigned int side = _assembly[tid][0]->side();
4226  _bnd_material_props.getMaterialData(tid).swapBack(*elem, side);
4227 }
MaterialPropertyStorage & _bnd_material_props
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ swapBackMaterialsNeighbor()

void FEProblemBase::swapBackMaterialsNeighbor ( const THREAD_ID  tid)
virtualinherited

Definition at line 4230 of file FEProblemBase.C.

Referenced by NonlinearThread::onInterface(), ComputeUserObjectsThread::onInterface(), ComputeIndicatorThread::onInternalSide(), NonlinearThread::onInternalSide(), ComputeUserObjectsThread::onInternalSide(), and ComputeElemAuxBcsThread< AuxKernelType >::operator()().

4231 {
4232  // NOTE: this will not work with h-adaptivity
4233  const Elem * neighbor = _assembly[tid][0]->neighbor();
4234  unsigned int neighbor_side =
4235  neighbor ? neighbor->which_neighbor_am_i(_assembly[tid][0]->elem()) : libMesh::invalid_uint;
4236 
4237  if (!neighbor)
4238  {
4239  if (haveFV())
4240  {
4241  // If neighbor is null, then we're on the neighbor side of a mesh boundary, e.g. we're off
4242  // the mesh in ghost-land. If we're using the finite volume method, then variable values and
4243  // consequently material properties have well-defined values in this ghost region outside of
4244  // the mesh and we really do want to reinit our neighbor materials in this case. Since we're
4245  // off in ghost land it's safe to do swaps with `MaterialPropertyStorage` using the elem and
4246  // elem_side keys
4247  neighbor = _assembly[tid][0]->elem();
4248  neighbor_side = _assembly[tid][0]->side();
4249  mooseAssert(neighbor, "We should have an appropriate value for elem coming from Assembly");
4250  }
4251  else
4252  mooseError("neighbor is null in Assembly!");
4253  }
4254 
4255  _neighbor_material_props.getMaterialData(tid).swapBack(*neighbor, neighbor_side);
4256 }
const unsigned int invalid_uint
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void swapBack(const Elem &elem, unsigned int side=0)
material properties for given element (and possible side)
Definition: MaterialData.C:58
unsigned int which_neighbor_am_i(const Elem *e) const
std::vector< std::vector< std::unique_ptr< Assembly > > > _assembly
The Assembly objects.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
MaterialPropertyStorage & _neighbor_material_props
const MaterialData & getMaterialData(const THREAD_ID tid) const

◆ systemBaseAuxiliary() [1/2]

const SystemBase & FEProblemBase::systemBaseAuxiliary ( ) const
overridevirtualinherited

Return the auxiliary system object as a base class reference.

Implements SubProblem.

Definition at line 9045 of file FEProblemBase.C.

Referenced by PhysicsBase::copyVariablesFromMesh(), and MFEMProblem::getAuxVariableNames().

9046 {
9047  return *_aux;
9048 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseAuxiliary() [2/2]

SystemBase & FEProblemBase::systemBaseAuxiliary ( )
overridevirtualinherited

Implements SubProblem.

Definition at line 9051 of file FEProblemBase.C.

9052 {
9053  return *_aux;
9054 }
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.

◆ systemBaseLinear() [1/2]

const SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num) const
overridevirtualinherited

Get a constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 9013 of file FEProblemBase.C.

9014 {
9015  mooseAssert(sys_num < _linear_systems.size(),
9016  "System number greater than the number of linear systems");
9017  return *_linear_systems[sys_num];
9018 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseLinear() [2/2]

SystemBase & FEProblemBase::systemBaseLinear ( unsigned int  sys_num)
overridevirtualinherited

Get a non-constant base class reference to a linear system.

Parameters
sys_numThe number of the linear system

Implements SubProblem.

Definition at line 9021 of file FEProblemBase.C.

9022 {
9023  mooseAssert(sys_num < _linear_systems.size(),
9024  "System number greater than the number of linear systems");
9025  return *_linear_systems[sys_num];
9026 }
std::vector< std::shared_ptr< LinearSystem > > _linear_systems
The vector of linear systems.

◆ systemBaseNonlinear() [1/2]

const SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num) const
overridevirtualinherited

Return the nonlinear system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 8999 of file FEProblemBase.C.

9000 {
9001  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
9002  return *_nl[sys_num];
9003 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseNonlinear() [2/2]

SystemBase & FEProblemBase::systemBaseNonlinear ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 9006 of file FEProblemBase.C.

9007 {
9008  mooseAssert(sys_num < _nl.size(), "System number greater than the number of nonlinear systems");
9009  return *_nl[sys_num];
9010 }
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.

◆ systemBaseSolver() [1/2]

const SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num) const
overridevirtualinherited

Return the solver system object as a base class reference given the system number.

Implements SubProblem.

Definition at line 9029 of file FEProblemBase.C.

9030 {
9031  mooseAssert(sys_num < _solver_systems.size(),
9032  "System number greater than the number of solver systems");
9033  return *_solver_systems[sys_num];
9034 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemBaseSolver() [2/2]

SystemBase & FEProblemBase::systemBaseSolver ( const unsigned int  sys_num)
overridevirtualinherited

Implements SubProblem.

Definition at line 9037 of file FEProblemBase.C.

9038 {
9039  mooseAssert(sys_num < _solver_systems.size(),
9040  "System number greater than the number of solver systems");
9041  return *_solver_systems[sys_num];
9042 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.

◆ systemNumForVariable()

unsigned int FEProblemBase::systemNumForVariable ( const VariableName &  variable_name) const
inherited
Returns
the system number for the provided variable_name Can be nonlinear or auxiliary

Definition at line 6429 of file FEProblemBase.C.

Referenced by FEProblemBase::projectFunctionOnCustomRange(), and ElementSubdomainModifierBase::restoreOverriddenDofValues().

6430 {
6431  for (const auto & solver_sys : _solver_systems)
6432  if (solver_sys->hasVariable(variable_name))
6433  return solver_sys->number();
6434  mooseAssert(_aux, "Should have an auxiliary system");
6435  if (_aux->hasVariable(variable_name))
6436  return _aux->number();
6437 
6438  mooseError("Variable '",
6439  variable_name,
6440  "' was not found in any solver (nonlinear/linear) or auxiliary system");
6441 }
std::vector< std::shared_ptr< SolverSystem > > _solver_systems
Combined container to base pointer of every solver system.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ terminateSolve()

virtual void Problem::terminateSolve ( )
inlinevirtualinherited

Allow objects to request clean termination of the solve.

Definition at line 37 of file Problem.h.

Referenced by WebServerControl::execute(), Terminator::execute(), and TerminateChainControl::terminate().

37 { _termination_requested = true; };
bool _termination_requested
True if termination of the solve has been requested.
Definition: Problem.h:58

◆ theWarehouse()

TheWarehouse& FEProblemBase::theWarehouse ( ) const
inlineinherited

Definition at line 2145 of file FEProblemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), NonlinearSystemBase::addKernel(), NonlinearSystemBase::addNodalKernel(), FEProblemBase::addObject(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), FEProblemBase::addUserObject(), NonlinearSystemBase::checkKernelCoverage(), FEProblemBase::checkUserObjectJacobianRequirement(), FEProblemBase::checkUserObjects(), NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), LinearSystem::containsTimeKernel(), NonlinearSystemBase::customSetup(), FEProblemBase::customSetup(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), FEProblemBase::executeSamplers(), ComputeLinearFVElementalThread::fetchBlockSystemContributionObjects(), ComputeLinearFVFaceThread::fetchBlockSystemContributionObjects(), FEProblemBase::getDistribution(), FEProblemBase::getMortarUserObjects(), FEProblemBase::getPositionsObject(), FEProblemBase::getSampler(), CompositionDT::getTimeSteppers(), FEProblemBase::getUserObject(), FEProblemBase::getUserObjectBase(), FEProblemBase::hasUserObject(), SideFVFluxBCIntegral::initialSetup(), ExplicitTimeIntegrator::initialSetup(), LinearSystem::initialSetup(), NonlinearSystemBase::initialSetup(), FEProblemBase::initialSetup(), AdvancedOutput::initPostprocessorOrVectorPostprocessorLists(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needSubdomainMaterialOnSide(), JSONOutput::outputReporters(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), ComputeLinearFVElementalThread::setupSystemContributionObjects(), ComputeLinearFVFaceThread::setupSystemContributionObjects(), NonlinearThread::subdomainChanged(), NonlinearSystemBase::timestepSetup(), and FEProblemBase::timestepSetup().

2145 { return _app.theWarehouse(); }
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
TheWarehouse & theWarehouse()
Definition: MooseApp.h:130

◆ time()

virtual Real& FEProblemBase::time ( ) const
inlinevirtualinherited

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeOld()

virtual Real& FEProblemBase::timeOld ( ) const
inlinevirtualinherited

◆ timeStep()

virtual int& FEProblemBase::timeStep ( ) const
inlinevirtualinherited

◆ timestepSetup()

virtual void DumpObjectsProblem::timestepSetup ( )
inlineoverridevirtual

Reimplemented from SubProblem.

Definition at line 63 of file DumpObjectsProblem.h.

63 {}

◆ transient()

virtual void FEProblemBase::transient ( bool  trans)
inlinevirtualinherited

Definition at line 524 of file FEProblemBase.h.

Referenced by EigenExecutionerBase::EigenExecutionerBase(), and TransientBase::TransientBase().

524 { _transient = trans; }

◆ trustUserCouplingMatrix()

void FEProblemBase::trustUserCouplingMatrix ( )
inherited

Whether to trust the user coupling matrix even if we want to do things like be paranoid and create a full coupling matrix.

See https://github.com/idaholab/moose/issues/16395 for detailed background

Definition at line 6168 of file FEProblemBase.C.

Referenced by SingleMatrixPreconditioner::SingleMatrixPreconditioner().

6169 {
6171  mooseError("Someone told us (the FEProblemBase) to trust the user coupling matrix, but we "
6172  "haven't been provided a coupling matrix!");
6173 
6175 }
bool _trust_user_coupling_matrix
Whether to trust the user coupling matrix no matter what.
Moose::CouplingType _coupling
Type of variable coupling.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ type()

const std::string& MooseBase::type ( ) const
inlineinherited

Get the type of this class.

Returns
the name of the type of this class

Definition at line 89 of file MooseBase.h.

Referenced by CreateProblemDefaultAction::act(), SetupDebugAction::act(), MaterialDerivativeTestAction::act(), MaterialOutputAction::act(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addConvergence(), FEProblemBase::addDistribution(), MooseApp::addExecutor(), MooseApp::addExecutorParams(), MFEMProblem::addFunction(), FEProblemBase::addFunction(), FEProblemBase::addMeshDivision(), MooseApp::addMeshGenerator(), MeshGenerator::addMeshSubgenerator(), FEProblemBase::addObject(), MFEMProblem::addPostprocessor(), FEProblemBase::addPredictor(), CreateDisplacedProblemAction::addProxyRelationshipManagers(), FEProblemBase::addReporter(), FEProblemBase::addSampler(), FEProblemBase::addTimeIntegrator(), MooseServer::addValuesToList(), DisplacedProblem::addVectorTag(), SubProblem::addVectorTag(), FEProblemBase::advanceMultiApps(), MooseApp::appendMeshGenerator(), AuxKernelTempl< Real >::AuxKernelTempl(), FEProblemBase::backupMultiApps(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), BoundaryPreservedMarker::BoundaryPreservedMarker(), DistributedRectilinearMeshGenerator::buildCube(), MooseMesh::buildHRefinementAndCoarseningMaps(), MooseMesh::buildLowerDMesh(), MooseMesh::buildPRefinementAndCoarseningMaps(), PhysicsBase::checkComponentType(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), ActionComponent::checkRequiredTasks(), PhysicsBase::checkRequiredTasks(), ADDGKernel::computeElemNeighJacobian(), DGKernel::computeElemNeighJacobian(), ElemElemConstraint::computeElemNeighJacobian(), ArrayDGKernel::computeElemNeighJacobian(), ADDGKernel::computeElemNeighResidual(), DGKernel::computeElemNeighResidual(), ElemElemConstraint::computeElemNeighResidual(), ArrayDGKernel::computeElemNeighResidual(), LowerDIntegratedBC::computeLowerDJacobian(), ArrayLowerDIntegratedBC::computeLowerDJacobian(), DGLowerDKernel::computeLowerDJacobian(), ArrayDGLowerDKernel::computeLowerDJacobian(), LowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDOffDiagJacobian(), ArrayHFEMDirichletBC::computeLowerDQpJacobian(), ArrayHFEMDiffusion::computeLowerDQpJacobian(), HFEMDirichletBC::computeLowerDQpJacobian(), HFEMDiffusion::computeLowerDQpJacobian(), ArrayHFEMDirichletBC::computeLowerDQpOffDiagJacobian(), HFEMDirichletBC::computeLowerDQpOffDiagJacobian(), ArrayLowerDIntegratedBC::computeLowerDQpOffDiagJacobian(), ArrayDGLowerDKernel::computeLowerDQpOffDiagJacobian(), FEProblemBase::computeMultiAppsDT(), ADDGKernel::computeOffDiagElemNeighJacobian(), DGKernel::computeOffDiagElemNeighJacobian(), ArrayDGKernel::computeOffDiagElemNeighJacobian(), DGLowerDKernel::computeOffDiagLowerDJacobian(), ArrayDGLowerDKernel::computeOffDiagLowerDJacobian(), DGConvection::computeQpJacobian(), ScalarKernel::computeQpJacobian(), InterfaceDiffusion::computeQpJacobian(), InterfaceReaction::computeQpJacobian(), ArrayDGDiffusion::computeQpJacobian(), CoupledTiedValueConstraint::computeQpJacobian(), TiedValueConstraint::computeQpJacobian(), DGDiffusion::computeQpJacobian(), LinearNodalConstraint::computeQpJacobian(), EqualValueBoundaryConstraint::computeQpJacobian(), CoupledTiedValueConstraint::computeQpOffDiagJacobian(), HFEMTestJump::computeQpOffDiagJacobian(), HFEMTrialJump::computeQpOffDiagJacobian(), ArrayDGKernel::computeQpOffDiagJacobian(), ArrayHFEMDiffusion::computeQpResidual(), DGConvection::computeQpResidual(), HFEMDiffusion::computeQpResidual(), ScalarKernel::computeQpResidual(), InterfaceDiffusion::computeQpResidual(), ADMatInterfaceReaction::computeQpResidual(), InterfaceReaction::computeQpResidual(), ADDGAdvection::computeQpResidual(), ArrayDGDiffusion::computeQpResidual(), CoupledTiedValueConstraint::computeQpResidual(), TiedValueConstraint::computeQpResidual(), LinearNodalConstraint::computeQpResidual(), DGDiffusion::computeQpResidual(), ADDGDiffusion::computeQpResidual(), HFEMTestJump::computeQpResidual(), HFEMTrialJump::computeQpResidual(), EqualValueBoundaryConstraint::computeQpResidual(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectByName(), FEProblemBase::computeUserObjects(), FEProblemBase::computeUserObjectsInternal(), DisplacedProblem::createQRules(), FEProblemBase::createQRules(), MooseApp::createRecoverablePerfGraph(), deduceNecessaryParameters(), dumpObjectHelper(), FEProblemBase::duplicateVariableCheck(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), FEProblemBase::execTransfers(), WebServerControl::execute(), SteadyBase::execute(), ActionWarehouse::executeActionsWithAction(), FEProblemBase::finishMultiAppStep(), FVScalarLagrangeMultiplierInterface::FVScalarLagrangeMultiplierInterface(), MooseServer::gatherDocumentReferencesLocations(), Boundary2DDelaunayGenerator::General2DDelaunay(), LowerDBlockFromSidesetGenerator::generate(), SubdomainPerElementGenerator::generate(), Boundary2DDelaunayGenerator::generate(), PatternedMeshGenerator::generate(), MeshGenerator::generateInternal(), MultiAppTransfer::getAppInfo(), TransfiniteMeshGenerator::getEdge(), ElementGenerator::getElemType(), MooseServer::getInputLookupDefinitionNodes(), FEProblemBase::getMaterial(), FEProblemBase::getMaterialData(), MaterialOutputAction::getParams(), ReporterData::getReporterInfo(), FEProblemBase::getTransfers(), DisplacedProblem::getVectorTags(), SubProblem::getVectorTags(), CommonOutputAction::hasConsole(), FEProblemBase::hasMultiApps(), AdvancedOutput::hasOutput(), FEProblemBase::incrementMultiAppTStep(), AdvancedOutput::initAvailableLists(), FunctorPositions::initialize(), FunctorTimes::initialize(), MultiAppConservativeTransfer::initialSetup(), LinearFVAdvection::initialSetup(), LinearFVAnisotropicDiffusion::initialSetup(), LinearFVDiffusion::initialSetup(), ArrayDGDiffusion::initQpResidual(), AdvancedOutput::initShowHideLists(), RelationshipManager::isType(), FEProblemBase::logAdd(), MaterialFunctorConverterTempl< T >::MaterialFunctorConverterTempl(), MFEMProblem::mesh(), MooseObject::MooseObject(), MultiAppMFEMCopyTransfer::MultiAppMFEMCopyTransfer(), DisplacedProblem::numVectorTags(), SubProblem::numVectorTags(), Console::output(), AdvancedOutput::output(), ConsoleUtils::outputExecutionInformation(), SampledOutput::outputStep(), Output::outputStep(), FEProblemBase::outputStep(), MooseServer::parseDocumentForDiagnostics(), MooseMesh::prepare(), ProjectedStatefulMaterialStorageAction::processProperty(), MooseApp::recursivelyCreateExecutors(), SolutionInvalidInterface::registerInvalidSolutionInternal(), FEProblemBase::restoreMultiApps(), MeshRepairGenerator::separateSubdomainsByElementType(), FEProblemBase::setCoupling(), MooseApp::setupOptions(), ExplicitTVDRK2::solve(), ExplicitRK2::solve(), WebServerControl::startServer(), Reporter::store(), MooseBase::typeAndName(), ScalarKernelBase::uOld(), AuxScalarKernel::uOld(), DisplacedProblem::updateGeomSearch(), FEProblemBase::updateGeomSearch(), UserObjectInterface::userObjectType(), and AdvancedOutput::wantOutput().

90  {
91  mooseAssert(_type.size(), "Empty type");
92  return _type;
93  }
const std::string & _type
The type of this class.
Definition: MooseBase.h:356

◆ typeAndName()

std::string MooseBase::typeAndName ( ) const
inherited

Get the class's combined type and name; useful in error handling.

Returns
The type and name of this class in the form '<type()> "<name()>"'.

Definition at line 54 of file MooseBase.C.

Referenced by FEProblemBase::addPostprocessor(), MaterialPropertyStorage::addProperty(), FEProblemBase::addReporter(), FEProblemBase::addVectorPostprocessor(), MeshGeneratorSystem::dataDrivenError(), ReporterContext< std::vector< T > >::finalize(), and ReporterData::getReporterInfo().

55 {
56  return type() + std::string(" \"") + name() + std::string("\"");
57 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89

◆ uDotDotOldRequested()

virtual bool FEProblemBase::uDotDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution second time derivative needs to be stored.

Definition at line 2221 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2222  {
2224  mooseError("FEProblemBase: When requesting old second time derivative of solution, current "
2225  "second time derivation of solution should also be stored. Please set "
2226  "`u_dotdot_requested` to true using setUDotDotRequested.");
2227  return _u_dotdot_old_requested;
2228  }
bool _u_dotdot_old_requested
Whether old solution second time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotDotRequested()

virtual bool FEProblemBase::uDotDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution second time derivative needs to be stored.

Definition at line 2207 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors(), and FEProblemBase::addTimeIntegrator().

2207 { return _u_dotdot_requested; }
bool _u_dotdot_requested
Whether solution second time derivative needs to be stored.

◆ uDotOldRequested()

virtual bool FEProblemBase::uDotOldRequested ( )
inlinevirtualinherited

Get boolean flag to check whether old solution time derivative needs to be stored.

Definition at line 2210 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2211  {
2213  mooseError("FEProblemBase: When requesting old time derivative of solution, current time "
2214  "derivative of solution should also be stored. Please set `u_dot_requested` to "
2215  "true using setUDotRequested.");
2216 
2217  return _u_dot_old_requested;
2218  }
bool _u_dot_requested
Whether solution time derivative needs to be stored.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
bool _u_dot_old_requested
Whether old solution time derivative needs to be stored.

◆ uDotRequested()

virtual bool FEProblemBase::uDotRequested ( )
inlinevirtualinherited

Get boolean flag to check whether solution time derivative needs to be stored.

Definition at line 2204 of file FEProblemBase.h.

Referenced by SystemBase::addDotVectors().

2204 { return _u_dot_requested; }
bool _u_dot_requested
Whether solution time derivative needs to be stored.

◆ uniformRefine()

void FEProblemBase::uniformRefine ( )
inherited

uniformly refine the problem mesh(es).

This will also prolong the the solution, and in order for that to be safe, we can only perform one refinement at a time

Definition at line 9075 of file FEProblemBase.C.

Referenced by FEProblemSolve::solve().

9076 {
9077  // ResetDisplacedMeshThread::onNode looks up the reference mesh by ID, so we need to make sure
9078  // we undisplace before adapting the reference mesh
9079  if (_displaced_problem)
9080  _displaced_problem->undisplaceMesh();
9081 
9083  if (_displaced_problem)
9085 
9086  meshChanged(
9087  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/true);
9088 }
virtual void meshChanged()
Deprecated.
static void uniformRefine(MooseMesh *mesh, unsigned int level=libMesh::invalid_uint)
Performs uniform refinement of the passed Mesh object.
Definition: Adaptivity.C:274
MooseMesh & _mesh
std::shared_ptr< DisplacedProblem > _displaced_problem

◆ uniqueName()

MooseObjectName MooseBase::uniqueName ( ) const
inherited
Returns
The unique name for accessing input parameters of this object in the InputParameterWarehouse

Definition at line 66 of file MooseBase.C.

Referenced by MooseBase::connectControllableParams(), and Action::uniqueActionName().

67 {
68  if (!_pars.have_parameter<std::string>(unique_name_param))
69  mooseError("uniqueName(): Object does not have a unique name");
70  return MooseObjectName(_pars.get<std::string>(unique_name_param));
71 }
const InputParameters & _pars
The object&#39;s parameters.
Definition: MooseBase.h:362
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
static const std::string unique_name_param
The name of the parameter that contains the unique object name.
Definition: MooseBase.h:57
bool have_parameter(std::string_view name) const
A wrapper around the Parameters base class method.
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267
A class for storing the names of MooseObject by tag and object name.

◆ uniqueParameterName()

MooseObjectParameterName MooseBase::uniqueParameterName ( const std::string &  parameter_name) const
inherited
Returns
The unique parameter name of a valid parameter of this object for accessing parameter controls

Definition at line 60 of file MooseBase.C.

61 {
62  return MooseObjectParameterName(getBase(), name(), parameter_name);
63 }
const std::string & name() const
Get the name of the class.
Definition: MooseBase.h:99
A class for storing an input parameter name.
const std::string & getBase() const
Definition: MooseBase.h:143

◆ updateActiveObjects()

virtual void DumpObjectsProblem::updateActiveObjects ( )
inlineoverridevirtual

Update the active objects in the warehouses.

Reimplemented from FEProblemBase.

Definition at line 66 of file DumpObjectsProblem.h.

66 {}

◆ updateGeomSearch()

void FEProblemBase::updateGeomSearch ( GeometricSearchData::GeometricSearchType  type = GeometricSearchData::ALL)
overridevirtualinherited

Implements SubProblem.

Definition at line 7856 of file FEProblemBase.C.

Referenced by NonlinearSystemBase::augmentSparsity(), and FEProblemBase::initialSetup().

7857 {
7858  TIME_SECTION("updateGeometricSearch", 3, "Updating Geometric Search");
7859 
7861 
7862  if (_displaced_problem)
7863  _displaced_problem->updateGeomSearch(type);
7864 }
const std::string & type() const
Get the type of this class.
Definition: MooseBase.h:89
void update(GeometricSearchType type=ALL)
Update all of the search objects.
std::shared_ptr< DisplacedProblem > _displaced_problem
GeometricSearchData _geometric_search_data

◆ updateMeshXFEM()

bool FEProblemBase::updateMeshXFEM ( )
virtualinherited

Update the mesh due to changing XFEM cuts.

Definition at line 8123 of file FEProblemBase.C.

Referenced by FEProblemBase::initialSetup(), and FixedPointSolve::solveStep().

8124 {
8125  TIME_SECTION("updateMeshXFEM", 5, "Updating XFEM");
8126 
8127  bool updated = false;
8128  if (haveXFEM())
8129  {
8130  if (_xfem->updateHeal())
8131  // XFEM exodiff tests rely on a given numbering because they cannot use map = true due to
8132  // having coincident elements. While conceptually speaking we do not need to contract the
8133  // mesh, we need its call to renumber_nodes_and_elements in order to preserve these tests
8134  meshChanged(
8135  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8136 
8137  updated = _xfem->update(_time, _nl, *_aux);
8138  if (updated)
8139  {
8140  meshChanged(
8141  /*intermediate_change=*/false, /*contract_mesh=*/true, /*clean_refinement_flags=*/false);
8142  _xfem->initSolution(_nl, *_aux);
8143  restoreSolutions();
8144  }
8145  }
8146  return updated;
8147 }
virtual void meshChanged()
Deprecated.
bool haveXFEM()
Find out whether the current analysis is using XFEM.
std::vector< std::shared_ptr< NonlinearSystemBase > > _nl
The nonlinear systems.
std::shared_ptr< AuxiliarySystem > _aux
The auxiliary system.
virtual void restoreSolutions()
std::shared_ptr< XFEMInterface > _xfem
Pointer to XFEM controller.

◆ updateMortarMesh()

void FEProblemBase::updateMortarMesh ( )
virtualinherited

Definition at line 7867 of file FEProblemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::init(), FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

7868 {
7869  TIME_SECTION("updateMortarMesh", 5, "Updating Mortar Mesh");
7870 
7871  FloatingPointExceptionGuard fpe_guard(_app);
7872 
7873  _mortar_data.update();
7874 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MortarData _mortar_data
MooseApp & _app
The MOOSE application this is associated with.
Definition: MooseBase.h:353
void update()
Builds mortar segment meshes for each mortar interface.
Definition: MortarData.C:149

◆ updateSolution()

bool FEProblemBase::updateSolution ( NumericVector< libMesh::Number > &  vec_solution,
NumericVector< libMesh::Number > &  ghosted_solution 
)
virtualinherited

Update the solution.

Parameters
vec_solutionLocal solution vector that gets modified by this method
ghosted_solutionGhosted solution vector
Returns
true if the solution was modified, false otherwise

Definition at line 7835 of file FEProblemBase.C.

Referenced by FEProblemBase::computePostCheck().

7837 {
7838  return false;
7839 }

◆ useSNESMFReuseBase()

bool FEProblemBase::useSNESMFReuseBase ( )
inlineinherited

Return a flag that indicates if we are reusing the vector base.

Definition at line 2158 of file FEProblemBase.h.

Referenced by NonlinearSystem::potentiallySetupFiniteDifferencing().

2158 { return _snesmf_reuse_base; }
bool _snesmf_reuse_base
If or not to resuse the base vector for matrix-free calculation.

◆ validParams()

InputParameters DumpObjectsProblem::validParams ( )
static

Definition at line 29 of file DumpObjectsProblem.C.

30 {
32  params.addClassDescription("Single purpose problem object that does not run the given input but "
33  "allows deconstructing actions into their series of underlying Moose "
34  "objects and variables.");
35  params.addParam<std::string>(
36  "dump_path", "all", "Syntax path of the action of which to dump the generated syntax");
37  params.addParam<bool>(
38  "include_all_user_specified_params",
39  true,
40  "Whether to include all parameters that have been specified by a user in the dump, even if "
41  "they match the default value of the parameter in the Factory");
42 
43  // Change the default because any complex solve or executioners needs the problem to perform its
44  // setup duties (all the calls in initialSetup()) which are skipped by the DumpObjectsProblem
45  params.addParam<bool>(
46  "solve",
47  false,
48  "Whether to attempt to solve the Problem. This will only cause additional outputs of the "
49  "objects and their parameters. This is unlikely to succeed with more complex executioners.");
50  return params;
51 }
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
void addClassDescription(const std::string &doc_string)
This method adds a description of the class that will be displayed in the input file syntax dump...
void addParam(const std::string &name, const S &value, const std::string &doc_string)
These methods add an optional parameter and a documentation string to the InputParameters object...
static InputParameters validParams()

◆ vectorTagExists() [1/2]

virtual bool SubProblem::vectorTagExists ( const TagID  tag_id) const
inlinevirtualinherited

◆ vectorTagExists() [2/2]

bool SubProblem::vectorTagExists ( const TagName &  tag_name) const
virtualinherited

Check to see if a particular Tag exists by using Tag name.

Reimplemented in DisplacedProblem.

Definition at line 136 of file SubProblem.C.

137 {
138  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
139 
140  const auto tag_name_upper = MooseUtils::toUpper(tag_name);
141  for (const auto & vector_tag : _vector_tags)
142  if (vector_tag._name == tag_name_upper)
143  return true;
144 
145  return false;
146 }
std::string toUpper(const std::string &name)
Convert supplied string to upper case.
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241

◆ vectorTagName()

TagName SubProblem::vectorTagName ( const TagID  tag) const
virtualinherited

Retrieve the name associated with a TagID.

Reimplemented in DisplacedProblem.

Definition at line 221 of file SubProblem.C.

Referenced by SystemBase::closeTaggedVector(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), SystemBase::removeVector(), NonlinearSystemBase::residualGhosted(), DisplacedProblem::vectorTagName(), and SystemBase::zeroTaggedVector().

222 {
223  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
224  if (!vectorTagExists(tag_id))
225  mooseError("Vector tag with ID ", tag_id, " does not exist");
226 
227  return _vector_tags[tag_id]._name;
228 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ vectorTagNotZeroed()

bool SubProblem::vectorTagNotZeroed ( const TagID  tag) const
inherited

Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors are.

Parameters
tagthe TagID of the vector that is currently being checked
Returns
false if the tag is not within the set of vectors that are intended to not be zero or if the set is empty. returns true otherwise

Definition at line 155 of file SubProblem.C.

Referenced by SystemBase::zeroTaggedVector().

156 {
157  return _not_zeroed_tagged_vectors.count(tag);
158 }
std::unordered_set< TagID > _not_zeroed_tagged_vectors
the list of vector tags that will not be zeroed when all other tags are
Definition: SubProblem.h:1117

◆ vectorTagType()

Moose::VectorTagType SubProblem::vectorTagType ( const TagID  tag_id) const
virtualinherited

Reimplemented in DisplacedProblem.

Definition at line 231 of file SubProblem.C.

Referenced by MooseVariableScalar::reinit(), TaggingInterface::TaggingInterface(), and DisplacedProblem::vectorTagType().

232 {
233  mooseAssert(verifyVectorTags(), "Vector tag storage invalid");
234  if (!vectorTagExists(tag_id))
235  mooseError("Vector tag with ID ", tag_id, " does not exist");
236 
237  return _vector_tags[tag_id]._type;
238 }
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
bool verifyVectorTags() const
Verify the integrity of _vector_tags and _typed_vector_tags.
Definition: SubProblem.C:241
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

◆ verboseMultiApps()

bool FEProblemBase::verboseMultiApps ( ) const
inlineinherited

Whether or not to use verbose printing for MultiApps.

Definition at line 1903 of file FEProblemBase.h.

Referenced by MultiApp::backup(), MultiApp::createApp(), MultiApp::restore(), FullSolveMultiApp::showStatusMessage(), and TransientMultiApp::solveStep().

1903 { return _verbose_multiapps; }
bool _verbose_multiapps
Whether or not to be verbose with multiapps.

◆ verifyVectorTags()

bool SubProblem::verifyVectorTags ( ) const
protectedinherited

Verify the integrity of _vector_tags and _typed_vector_tags.

Definition at line 241 of file SubProblem.C.

Referenced by SubProblem::addVectorTag(), SubProblem::getVectorTag(), SubProblem::getVectorTagID(), SubProblem::getVectorTags(), SubProblem::numVectorTags(), SubProblem::vectorTagExists(), SubProblem::vectorTagName(), and SubProblem::vectorTagType().

242 {
243  for (TagID tag_id = 0; tag_id < _vector_tags.size(); ++tag_id)
244  {
245  const auto & vector_tag = _vector_tags[tag_id];
246 
247  if (vector_tag._id != tag_id)
248  mooseError("Vector tag ", vector_tag._id, " id mismatch in _vector_tags");
249  if (vector_tag._type == Moose::VECTOR_TAG_ANY)
250  mooseError("Vector tag '", vector_tag._name, "' has type VECTOR_TAG_ANY");
251 
252  const auto search = _vector_tags_name_map.find(vector_tag._name);
253  if (search == _vector_tags_name_map.end())
254  mooseError("Vector tag ", vector_tag._id, " is not in _vector_tags_name_map");
255  else if (search->second != tag_id)
256  mooseError("Vector tag ", vector_tag._id, " has incorrect id in _vector_tags_name_map");
257 
258  unsigned int found_in_type = 0;
259  for (TagTypeID tag_type_id = 0; tag_type_id < _typed_vector_tags[vector_tag._type].size();
260  ++tag_type_id)
261  {
262  const auto & vector_tag_type = _typed_vector_tags[vector_tag._type][tag_type_id];
263  if (vector_tag_type == vector_tag)
264  {
265  ++found_in_type;
266  if (vector_tag_type._type_id != tag_type_id)
267  mooseError("Type ID for Vector tag ", tag_id, " is incorrect");
268  }
269  }
270 
271  if (found_in_type == 0)
272  mooseError("Vector tag ", tag_id, " not found in _typed_vector_tags");
273  if (found_in_type > 1)
274  mooseError("Vector tag ", tag_id, " found multiple times in _typed_vector_tags");
275  }
276 
277  unsigned int num_typed_vector_tags = 0;
278  for (const auto & typed_vector_tags : _typed_vector_tags)
279  num_typed_vector_tags += typed_vector_tags.size();
280  if (num_typed_vector_tags != _vector_tags.size())
281  mooseError("Size mismatch between _vector_tags and _typed_vector_tags");
282  if (_vector_tags_name_map.size() != _vector_tags.size())
283  mooseError("Size mismatch between _vector_tags and _vector_tags_name_map");
284 
285  return true;
286 }
unsigned int TagTypeID
Definition: MooseTypes.h:211
unsigned int TagID
Definition: MooseTypes.h:210
std::vector< VectorTag > _vector_tags
The declared vector tags.
Definition: SubProblem.h:1167
std::map< TagName, TagID > _vector_tags_name_map
Map of vector tag TagName to TagID.
Definition: SubProblem.h:1177
std::vector< std::vector< VectorTag > > _typed_vector_tags
The vector tags associated with each VectorTagType This is kept separate from _vector_tags for quick ...
Definition: SubProblem.h:1174
void mooseError(Args &&... args) const
Emits an error prefixed with object name and type and optionally a file path to the top-level block p...
Definition: MooseBase.h:267

Member Data Documentation

◆ _action_factory

ActionFactory& ParallelParamObject::_action_factory
protectedinherited

◆ _active_elemental_moose_variables

std::vector<std::set<MooseVariableFieldBase *> > SubProblem::_active_elemental_moose_variables
protectedinherited

This is the set of MooseVariableFieldBase that will actually get reinited by a call to reinit(elem)

Definition at line 1075 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::getActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _active_fe_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_matrix_tags
protectedinherited

◆ _active_fe_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_fe_var_coupleable_vector_tags
protectedinherited

◆ _active_sc_var_coupleable_matrix_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_matrix_tags
protectedinherited

◆ _active_sc_var_coupleable_vector_tags

std::vector<std::set<TagID> > SubProblem::_active_sc_var_coupleable_vector_tags
protectedinherited

◆ _ad_grad_zero

std::vector<MooseArray<ADRealVectorValue> > FEProblemBase::_ad_grad_zero
inherited

◆ _ad_second_zero

std::vector<MooseArray<ADRealTensorValue> > FEProblemBase::_ad_second_zero
inherited

◆ _ad_zero

std::vector<MooseArray<ADReal> > FEProblemBase::_ad_zero
inherited

◆ _adaptivity

Adaptivity FEProblemBase::_adaptivity
protectedinherited

◆ _all_materials

MaterialWarehouse FEProblemBase::_all_materials
protectedinherited

◆ _all_user_objects

ExecuteMooseObjectWarehouse<UserObject> FEProblemBase::_all_user_objects
protectedinherited

◆ _app

MooseApp& MooseBase::_app
protectedinherited

The MOOSE application this is associated with.

Definition at line 353 of file MooseBase.h.

◆ _assembly

std::vector<std::vector<std::unique_ptr<Assembly> > > FEProblemBase::_assembly
protectedinherited

The Assembly objects.

The first index corresponds to the thread ID and the second index corresponds to the nonlinear system number

Definition at line 2695 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::assembly(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::couplingEntries(), FEProblemBase::createQRules(), FEProblemBase::init(), FEProblemBase::initElementStatefulProps(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::meshChanged(), FEProblemBase::newAssemblyArray(), FEProblemBase::nonlocalCouplingEntries(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitMaterials(), FEProblemBase::reinitMaterialsBoundary(), FEProblemBase::reinitMaterialsFace(), FEProblemBase::reinitMaterialsInterface(), FEProblemBase::reinitMaterialsNeighbor(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::swapBackMaterials(), FEProblemBase::swapBackMaterialsFace(), and FEProblemBase::swapBackMaterialsNeighbor().

◆ _aux

std::shared_ptr<AuxiliarySystem> FEProblemBase::_aux
protectedinherited

The auxiliary system.

Definition at line 2685 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addIndicator(), FEProblemBase::addMarker(), FEProblemBase::addMultiApp(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::advanceState(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeIndicators(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeMarkers(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeSystems(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::customSetup(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), FEProblemBase::execute(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getAuxiliarySystem(), FEProblemBase::getScalarVariable(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasVariable(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::systemBaseAuxiliary(), FEProblemBase::systemNumForVariable(), FEProblemBase::timestepSetup(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _aux_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_aux_evaluable_local_elem_range
protectedinherited

Definition at line 2965 of file FEProblemBase.h.

◆ _between_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_between_multi_app_transfers
protectedinherited

◆ _block_mat_side_cache

std::vector<std::unordered_map<SubdomainID, bool> > FEProblemBase::_block_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2772 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needSubdomainMaterialOnSide().

◆ _bnd_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_bnd_mat_side_cache
protectedinherited

Cache for calculating materials on side.

Definition at line 2775 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needBoundaryMaterialOnSide().

◆ _bnd_material_props

MaterialPropertyStorage& FEProblemBase::_bnd_material_props
protectedinherited

◆ _boundary_restricted_elem_integrity_check

const bool FEProblemBase::_boundary_restricted_elem_integrity_check
protectedinherited

whether to perform checking of boundary restricted elemental object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 2904 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _boundary_restricted_node_integrity_check

const bool FEProblemBase::_boundary_restricted_node_integrity_check
protectedinherited

whether to perform checking of boundary restricted nodal object variable dependencies, e.g.

whether the variable dependencies are defined on the selected boundaries

Definition at line 2900 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup().

◆ _calculate_jacobian_in_uo

bool FEProblemBase::_calculate_jacobian_in_uo
protectedinherited

◆ _cli_option_found

bool Problem::_cli_option_found
protectedinherited

True if the CLI option is found.

Definition at line 52 of file Problem.h.

Referenced by Problem::_setCLIOption().

◆ _cm

std::vector<std::unique_ptr<libMesh::CouplingMatrix> > FEProblemBase::_cm
protectedinherited

◆ _color_output

bool Problem::_color_output
protectedinherited

True if we're going to attempt to write color output.

Definition at line 55 of file Problem.h.

◆ _computing_nonlinear_residual

bool SubProblem::_computing_nonlinear_residual
protectedinherited

Whether the non-linear residual is being evaluated.

Definition at line 1102 of file SubProblem.h.

Referenced by SubProblem::computingNonlinearResid(), and FEProblemBase::computingNonlinearResid().

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), NonlinearSystemBase::computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), NonlinearSystemBase::computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), InversePowerMethod::init(), NonlinearEigen::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), NonlinearSystemBase::setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), NonlinearSystem::solve(), FixedPointSolve::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _const_jacobian

bool FEProblemBase::_const_jacobian
protectedinherited

true if the Jacobian is constant

Definition at line 2872 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::constJacobian(), and FEProblemBase::setConstJacobian().

◆ _control_warehouse

ExecuteMooseObjectWarehouse<Control> FEProblemBase::_control_warehouse
protectedinherited

The control logic warehouse.

Definition at line 2950 of file FEProblemBase.h.

Referenced by FEProblemBase::executeControls(), FEProblemBase::getControlWarehouse(), and FEProblemBase::updateActiveObjects().

◆ _convergences

MooseObjectWarehouse<Convergence> FEProblemBase::_convergences
protectedinherited

◆ _coupling

Moose::CouplingType FEProblemBase::_coupling
protectedinherited

◆ _current_algebraic_bnd_node_range

std::unique_ptr<ConstBndNodeRange> FEProblemBase::_current_algebraic_bnd_node_range
protectedinherited

◆ _current_algebraic_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_current_algebraic_elem_range
protectedinherited

◆ _current_algebraic_node_range

std::unique_ptr<libMesh::ConstNodeRange> FEProblemBase::_current_algebraic_node_range
protectedinherited

◆ _current_execute_on_flag

ExecFlagType FEProblemBase::_current_execute_on_flag
protectedinherited

◆ _current_ic_state

unsigned short FEProblemBase::_current_ic_state
protectedinherited

◆ _current_linear_sys

LinearSystem* FEProblemBase::_current_linear_sys
protectedinherited

◆ _current_nl_sys

NonlinearSystemBase* FEProblemBase::_current_nl_sys
protectedinherited

The current nonlinear system that we are solving.

Definition at line 2667 of file FEProblemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::computeBounds(), FEProblemBase::computeDamping(), FEProblemBase::computeJacobianBlock(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), FEProblemBase::computePostCheck(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualTags(), FEProblemBase::computeResidualType(), FEProblemBase::computeTransposeNullSpace(), FEProblemBase::currentNonlinearSystem(), EigenProblem::doFreeNonlinearPowerIterations(), EigenProblem::EigenProblem(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), EigenProblem::solve(), and FEProblemBase::solve().

◆ _current_solver_sys

SolverSystem* FEProblemBase::_current_solver_sys
protectedinherited

The current solver system.

Definition at line 2670 of file FEProblemBase.h.

Referenced by FEProblemBase::setCurrentLinearSystem(), and FEProblemBase::setCurrentNonlinearSystem().

◆ _currently_computing_jacobian

bool SubProblem::_currently_computing_jacobian
protectedinherited

◆ _currently_computing_residual

bool SubProblem::_currently_computing_residual
protectedinherited

◆ _currently_computing_residual_and_jacobian

bool SubProblem::_currently_computing_residual_and_jacobian
protectedinherited

Flag to determine whether the problem is currently computing the residual and Jacobian.

Definition at line 1099 of file SubProblem.h.

Referenced by SubProblem::currentlyComputingResidualAndJacobian(), and SubProblem::setCurrentlyComputingResidualAndJacobian().

◆ _cycles_completed

unsigned int FEProblemBase::_cycles_completed
protectedinherited

◆ _default_ghosting

bool SubProblem::_default_ghosting
protectedinherited

Whether or not to use default libMesh coupling.

Definition at line 1090 of file SubProblem.h.

Referenced by SubProblem::defaultGhosting().

◆ _dirac_kernel_info

DiracKernelInfo SubProblem::_dirac_kernel_info
protectedinherited

◆ _discrete_materials

MaterialWarehouse FEProblemBase::_discrete_materials
protectedinherited

◆ _displaced_mesh

MooseMesh* FEProblemBase::_displaced_mesh
protectedinherited

◆ _displaced_problem

std::shared_ptr<DisplacedProblem> FEProblemBase::_displaced_problem
protectedinherited

Definition at line 2839 of file FEProblemBase.h.

Referenced by FEProblemBase::adaptMesh(), FEProblemBase::addAnyRedistributers(), FEProblemBase::addAuxArrayVariable(), FEProblemBase::addAuxKernel(), FEProblemBase::addAuxScalarKernel(), FEProblemBase::addAuxScalarVariable(), FEProblemBase::addAuxVariable(), FEProblemBase::addCachedJacobian(), FEProblemBase::addCachedResidual(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addConstraint(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addDisplacedProblem(), FEProblemBase::addFunction(), FEProblemBase::addFunctorMaterial(), FEProblemBase::addFVKernel(), FEProblemBase::addGhostedBoundary(), FEProblemBase::addIndicator(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addMarker(), FEProblemBase::addMaterialHelper(), FEProblemBase::addMultiApp(), FEProblemBase::addNodalKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addTransfer(), FEProblemBase::addUserObject(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::automaticScaling(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::cacheJacobian(), FEProblemBase::cacheJacobianNeighbor(), FEProblemBase::cacheResidual(), FEProblemBase::cacheResidualNeighbor(), FEProblemBase::checkDisplacementOrders(), FEProblemBase::clearActiveElementalMooseVariables(), FEProblemBase::clearActiveFEVariableCoupleableMatrixTags(), FEProblemBase::clearActiveFEVariableCoupleableVectorTags(), FEProblemBase::clearActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::clearActiveScalarVariableCoupleableVectorTags(), FEProblemBase::clearDiracInfo(), EigenProblem::computeJacobianBlocks(), FEProblemBase::computeJacobianBlocks(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualTags(), FEProblemBase::computeUserObjectsInternal(), FEProblemBase::computingNonlinearResid(), FEProblemBase::createMortarInterface(), FEProblemBase::createQRules(), FEProblemBase::customSetup(), FEProblemBase::execute(), FEProblemBase::getDiracElements(), FEProblemBase::getDisplacedProblem(), FEProblemBase::getMortarUserObjects(), FEProblemBase::ghostGhostedBoundaries(), FEProblemBase::haveADObjects(), FEProblemBase::haveDisplaced(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::mesh(), FEProblemBase::meshChanged(), FEProblemBase::outputStep(), FEProblemBase::possiblyRebuildGeomSearchPatches(), FEProblemBase::prepareAssembly(), FEProblemBase::prepareFace(), FEProblemBase::reinitBecauseOfGhostingOrNewGeomObjects(), FEProblemBase::reinitDirac(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemFaceRef(), FEProblemBase::reinitElemNeighborAndLowerD(), FEProblemBase::reinitLowerDElem(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNeighborFaceRef(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitOffDiagScalars(), FEProblemBase::reinitScalars(), FEProblemBase::resetState(), FEProblemBase::residualSetup(), FEProblemBase::restoreSolutions(), FEProblemBase::setActiveElementalMooseVariables(), FEProblemBase::setActiveFEVariableCoupleableMatrixTags(), FEProblemBase::setActiveFEVariableCoupleableVectorTags(), FEProblemBase::setActiveScalarVariableCoupleableMatrixTags(), FEProblemBase::setActiveScalarVariableCoupleableVectorTags(), FEProblemBase::setCurrentBoundaryID(), FEProblemBase::setCurrentLowerDElem(), FEProblemBase::setCurrentlyComputingResidual(), FEProblemBase::setCurrentSubdomainID(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), FEProblemBase::setResidualObjectParamsAndLog(), EigenProblem::solve(), FEProblemBase::solve(), FEProblemBase::timestepSetup(), FEProblemBase::uniformRefine(), and FEProblemBase::updateGeomSearch().

◆ _dt

Real& FEProblemBase::_dt
protectedinherited

◆ _dt_old

Real& FEProblemBase::_dt_old
protectedinherited

Definition at line 2627 of file FEProblemBase.h.

Referenced by FEProblemBase::dtOld(), and FEProblemBase::FEProblemBase().

◆ _enabled

const bool& MooseObject::_enabled
protectedinherited

Reference to the "enable" InputParameters, used by Controls for toggling on/off MooseObjects.

Definition at line 50 of file MooseObject.h.

Referenced by MooseObject::enabled().

◆ _evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_evaluable_local_elem_range
protectedinherited

◆ _exception_message

std::string FEProblemBase::_exception_message
protectedinherited

The error message to go with an exception.

Definition at line 2944 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), and FEProblemBase::setException().

◆ _factory

Factory& SubProblem::_factory
protectedinherited

◆ _fe_matrix_tags

std::set<TagID> FEProblemBase::_fe_matrix_tags
protectedinherited

◆ _fe_vector_tags

std::set<TagID> FEProblemBase::_fe_vector_tags
protectedinherited

◆ _from_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_from_multi_app_transfers
protectedinherited

◆ _functions

MooseObjectWarehouse<Function> FEProblemBase::_functions
protectedinherited

◆ _fv_bcs_integrity_check

bool FEProblemBase::_fv_bcs_integrity_check
protectedinherited

Whether to check overlapping Dirichlet and Flux BCs and/or multiple DirichletBCs per sideset.

Definition at line 2911 of file FEProblemBase.h.

Referenced by FEProblemBase::fvBCsIntegrityCheck().

◆ _fv_ics

FVInitialConditionWarehouse FEProblemBase::_fv_ics
protectedinherited

◆ _generated_syntax

std::map<std::string, std::map<std::string, std::string> > DumpObjectsProblem::_generated_syntax
protected

store input syntax to build objects generated by a specific action

Definition at line 94 of file DumpObjectsProblem.h.

Referenced by dumpAllGeneratedSyntax(), dumpGeneratedSyntax(), dumpObjectHelper(), and dumpVariableHelper().

◆ _geometric_search_data

GeometricSearchData FEProblemBase::_geometric_search_data
protectedinherited

◆ _ghosted_elems

std::set<dof_id_type> SubProblem::_ghosted_elems
protectedinherited

◆ _grad_phi_zero

std::vector<VariablePhiGradient> FEProblemBase::_grad_phi_zero
inherited

◆ _grad_zero

std::vector<VariableGradient> FEProblemBase::_grad_zero
inherited

◆ _has_active_elemental_moose_variables

std::vector<unsigned int> SubProblem::_has_active_elemental_moose_variables
protectedinherited

Whether or not there is currently a list of active elemental moose variables.

Definition at line 1079 of file SubProblem.h.

Referenced by SubProblem::clearActiveElementalMooseVariables(), SubProblem::hasActiveElementalMooseVariables(), SubProblem::setActiveElementalMooseVariables(), and SubProblem::SubProblem().

◆ _has_active_material_properties

std::vector<unsigned char> FEProblemBase::_has_active_material_properties
protectedinherited

◆ _has_constraints

bool FEProblemBase::_has_constraints
protectedinherited

Whether or not this system has any Constraints.

Definition at line 2857 of file FEProblemBase.h.

Referenced by FEProblemBase::addConstraint(), NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

◆ _has_dampers

bool FEProblemBase::_has_dampers
protectedinherited

Whether or not this system has any Dampers associated with it.

Definition at line 2854 of file FEProblemBase.h.

Referenced by FEProblemBase::addDamper(), FEProblemBase::computeDamping(), FEProblemBase::computePostCheck(), and FEProblemBase::hasDampers().

◆ _has_exception

bool FEProblemBase::_has_exception
protectedinherited

Whether or not an exception has occurred.

Definition at line 2929 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::hasException(), and FEProblemBase::setException().

◆ _has_initialized_stateful

bool FEProblemBase::_has_initialized_stateful
protectedinherited

Whether nor not stateful materials have been initialized.

Definition at line 2869 of file FEProblemBase.h.

Referenced by FEProblemBase::initialSetup(), and FEProblemBase::meshChanged().

◆ _has_jacobian

bool FEProblemBase::_has_jacobian
protectedinherited

Indicates if the Jacobian was computed.

Definition at line 2875 of file FEProblemBase.h.

Referenced by FEProblemBase::computeJacobianTags(), FEProblemBase::hasJacobian(), and FEProblemBase::meshChanged().

◆ _has_nonlocal_coupling

bool FEProblemBase::_has_nonlocal_coupling
protectedinherited

◆ _has_time_integrator

bool FEProblemBase::_has_time_integrator
protectedinherited

Indicates whether or not this executioner has a time integrator (during setup)

Definition at line 2926 of file FEProblemBase.h.

Referenced by FEProblemBase::addTimeIntegrator(), and FEProblemBase::hasTimeIntegrator().

◆ _have_ad_objects

bool SubProblem::_have_ad_objects
protectedinherited

AD flag indicating whether any AD objects have been added.

Definition at line 1114 of file SubProblem.h.

Referenced by DisplacedProblem::haveADObjects(), SubProblem::haveADObjects(), and FEProblemBase::haveADObjects().

◆ _ics

InitialConditionWarehouse FEProblemBase::_ics
protectedinherited

◆ _include_all_user_specified_params

const bool DumpObjectsProblem::_include_all_user_specified_params
protected

Whether to include all user-specified parameters in the dump or only parameters that differ from the default value.

Definition at line 97 of file DumpObjectsProblem.h.

Referenced by deduceNecessaryParameters().

◆ _indicators

MooseObjectWarehouse<Indicator> FEProblemBase::_indicators
protectedinherited

◆ _initialized

bool FEProblemBase::_initialized
protectedinherited

Definition at line 2598 of file FEProblemBase.h.

Referenced by FEProblemBase::init().

◆ _input_file_saved

bool FEProblemBase::_input_file_saved
protectedinherited

whether input file has been written

Definition at line 2851 of file FEProblemBase.h.

◆ _interface_mat_side_cache

std::vector<std::unordered_map<BoundaryID, bool> > FEProblemBase::_interface_mat_side_cache
protectedinherited

Cache for calculating materials on interface.

Definition at line 2778 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::needInterfaceMaterialOnSide().

◆ _interface_materials

MaterialWarehouse FEProblemBase::_interface_materials
protectedinherited

◆ _internal_side_indicators

MooseObjectWarehouse<InternalSideIndicatorBase> FEProblemBase::_internal_side_indicators
protectedinherited

◆ _is_petsc_options_inserted

bool FEProblemBase::_is_petsc_options_inserted
protectedinherited

If or not PETSc options have been added to database.

Definition at line 2959 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), FEProblemBase::petscOptionsInserted(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _kernel_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_kernel_coverage_blocks
protectedinherited

◆ _kernel_coverage_check

CoverageCheckMode FEProblemBase::_kernel_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active kernel.

Definition at line 2895 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setKernelCoverageCheck().

◆ _line_search

std::shared_ptr<LineSearch> FEProblemBase::_line_search
protectedinherited

◆ _linear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_linear_convergence_names
protectedinherited

Linear system(s) convergence name(s) (if any)

Definition at line 2603 of file FEProblemBase.h.

Referenced by FEProblemBase::getLinearConvergenceNames(), FEProblemBase::hasLinearConvergenceObjects(), and FEProblemBase::setLinearConvergenceNames().

◆ _linear_matrix_tags

std::set<TagID> FEProblemBase::_linear_matrix_tags
protectedinherited

Temporary storage for filtered matrix tags for linear systems.

Definition at line 2617 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _linear_sys_name_to_num

std::map<LinearSystemName, unsigned int> FEProblemBase::_linear_sys_name_to_num
protectedinherited

Map from linear system name to number.

Definition at line 2646 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::linearSysNum().

◆ _linear_sys_names

const std::vector<LinearSystemName> FEProblemBase::_linear_sys_names
protectedinherited

◆ _linear_systems

std::vector<std::shared_ptr<LinearSystem> > FEProblemBase::_linear_systems
protectedinherited

◆ _linear_vector_tags

std::set<TagID> FEProblemBase::_linear_vector_tags
protectedinherited

Temporary storage for filtered vector tags for linear systems.

Definition at line 2614 of file FEProblemBase.h.

Referenced by FEProblemBase::computeLinearSystemSys().

◆ _map_block_material_props

std::map<SubdomainID, std::set<std::string> > SubProblem::_map_block_material_props
protectedinherited

Map of material properties (block_id -> list of properties)

Definition at line 1052 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), SubProblem::getMaterialPropertyBlocks(), SubProblem::hasBlockMaterialProperty(), and SubProblem::storeSubdomainMatPropName().

◆ _map_block_material_props_check

std::map<SubdomainID, std::multimap<std::string, std::string> > SubProblem::_map_block_material_props_check
protectedinherited

Data structures of the requested material properties.

We store them in a map from boundary/block id to multimap. Each of the multimaps is a list of requestor object names to material property names.

Definition at line 1070 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), and SubProblem::storeSubdomainDelayedCheckMatProp().

◆ _map_boundary_material_props

std::map<BoundaryID, std::set<std::string> > SubProblem::_map_boundary_material_props
protectedinherited

Map for boundary material properties (boundary_id -> list of properties)

Definition at line 1055 of file SubProblem.h.

Referenced by SubProblem::checkBoundaryMatProps(), SubProblem::getMaterialPropertyBoundaryIDs(), SubProblem::hasBoundaryMaterialProperty(), and SubProblem::storeBoundaryMatPropName().

◆ _map_boundary_material_props_check

std::map<BoundaryID, std::multimap<std::string, std::string> > SubProblem::_map_boundary_material_props_check
protectedinherited

◆ _markers

MooseObjectWarehouse<Marker> FEProblemBase::_markers
protectedinherited

◆ _material_coverage_blocks

std::vector<SubdomainName> FEProblemBase::_material_coverage_blocks
protectedinherited

◆ _material_coverage_check

CoverageCheckMode FEProblemBase::_material_coverage_check
protectedinherited

Determines whether and which subdomains are to be checked to ensure that they have an active material.

Definition at line 2907 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity(), FEProblemBase::FEProblemBase(), and FEProblemBase::setMaterialCoverageCheck().

◆ _material_dependency_check

const bool FEProblemBase::_material_dependency_check
protectedinherited

Determines whether a check to verify material dependencies on every subdomain.

Definition at line 2914 of file FEProblemBase.h.

Referenced by FEProblemBase::checkProblemIntegrity().

◆ _material_prop_registry

MaterialPropertyRegistry FEProblemBase::_material_prop_registry
protectedinherited

Definition at line 2722 of file FEProblemBase.h.

Referenced by FEProblemBase::getMaterialPropertyRegistry().

◆ _material_property_requested

std::set<std::string> SubProblem::_material_property_requested
protectedinherited

set containing all material property names that have been requested by getMaterialProperty*

Definition at line 1062 of file SubProblem.h.

Referenced by SubProblem::isMatPropRequested(), and SubProblem::markMatPropRequested().

◆ _material_props

MaterialPropertyStorage& FEProblemBase::_material_props
protectedinherited

◆ _materials

MaterialWarehouse FEProblemBase::_materials
protectedinherited

◆ _matrix_tag_id_to_tag_name

std::map<TagID, TagName> SubProblem::_matrix_tag_id_to_tag_name
protectedinherited

Reverse map.

Definition at line 1044 of file SubProblem.h.

Referenced by SubProblem::addMatrixTag(), SubProblem::matrixTagExists(), and SubProblem::matrixTagName().

◆ _matrix_tag_name_to_tag_id

std::map<TagName, TagID> SubProblem::_matrix_tag_name_to_tag_id
protectedinherited

◆ _max_qps

unsigned int FEProblemBase::_max_qps
protectedinherited

Maximum number of quadrature points used in the problem.

Definition at line 2920 of file FEProblemBase.h.

Referenced by FEProblemBase::getMaxQps(), FEProblemBase::reinitDirac(), and FEProblemBase::updateMaxQps().

◆ _max_scalar_order

libMesh::Order FEProblemBase::_max_scalar_order
protectedinherited

Maximum scalar variable order.

Definition at line 2923 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxScalarVariable(), and FEProblemBase::getMaxScalarOrder().

◆ _mesh

MooseMesh& FEProblemBase::_mesh
protectedinherited

◆ _mesh_divisions

MooseObjectWarehouse<MeshDivision> FEProblemBase::_mesh_divisions
protectedinherited

Warehouse to store mesh divisions NOTE: this could probably be moved to the MooseMesh instead of the Problem Time (and people's uses) will tell where this fits best.

Definition at line 2700 of file FEProblemBase.h.

Referenced by FEProblemBase::addMeshDivision(), and FEProblemBase::getMeshDivision().

◆ _mortar_data

MortarData FEProblemBase::_mortar_data
protectedinherited

◆ _multi_apps

ExecuteMooseObjectWarehouse<MultiApp> FEProblemBase::_multi_apps
protectedinherited

◆ _multiapp_fixed_point_convergence_name

std::optional<ConvergenceName> FEProblemBase::_multiapp_fixed_point_convergence_name
protectedinherited

◆ _name

const std::string& MooseBase::_name
protectedinherited

The name of this class.

Definition at line 359 of file MooseBase.h.

Referenced by AddBCAction::act(), AddConstraintAction::act(), PartitionerAction::act(), AddFVInterfaceKernelAction::act(), AddUserObjectAction::act(), AddFVInitialConditionAction::act(), AddMultiAppAction::act(), AddKernelAction::act(), AddInterfaceKernelAction::act(), AddMeshGeneratorAction::act(), AddVectorPostprocessorAction::act(), AddDGKernelAction::act(), AddMarkerAction::act(), AddNodalKernelAction::act(), AddInitialConditionAction::act(), AddIndicatorAction::act(), AddPostprocessorAction::act(), AddDamperAction::act(), AddMaterialAction::act(), AddScalarKernelAction::act(), AddTransferAction::act(), AddFunctorMaterialAction::act(), AddDiracKernelAction::act(), ReadExecutorParamsAction::act(), AddPositionsAction::act(), AddReporterAction::act(), AddTimesAction::act(), AddFieldSplitAction::act(), AddFVKernelAction::act(), AddFVBCAction::act(), AddFunctionAction::act(), AddConvergenceAction::act(), AddMeshDivisionAction::act(), AddHDGKernelAction::act(), AddTimeStepperAction::act(), AddDistributionAction::act(), SetupPreconditionerAction::act(), SetupTimeIntegratorAction::act(), AddOutputAction::act(), AddLinearFVBCAction::act(), AddLinearFVKernelAction::act(), AddMeshModifiersAction::act(), AddCorrectorAction::act(), AddSamplerAction::act(), AddControlAction::act(), AddMFEMFESpaceAction::act(), AddMFEMPreconditionerAction::act(), AddMFEMSolverAction::act(), AddMFEMSubMeshAction::act(), AddPeriodicBCAction::act(), ADPiecewiseLinearInterpolationMaterial::ADPiecewiseLinearInterpolationMaterial(), BatchMeshGeneratorAction::BatchMeshGeneratorAction(), PiecewiseTabularBase::buildFromFile(), PiecewiseTabularBase::buildFromXY(), PiecewiseLinearBase::buildInterpolation(), CombinerGenerator::CombinerGenerator(), Executor::Executor(), ExtraIDIntegralReporter::ExtraIDIntegralReporter(), QuadraturePointMultiApp::fillPositions(), CentroidMultiApp::fillPositions(), MultiApp::fillPositions(), FunctionDT::FunctionDT(), FillBetweenSidesetsGenerator::generate(), FillBetweenCurvesGenerator::generate(), FillBetweenPointVectorsGenerator::generate(), MooseBase::MooseBase(), NearestPointBase< LayeredSideDiffusiveFluxAverage, SideIntegralVariableUserObject >::name(), ParsedFunctorMaterialTempl< is_ad >::ParsedFunctorMaterialTempl(), PiecewiseBilinear::PiecewiseBilinear(), PiecewiseLinearInterpolationMaterial::PiecewiseLinearInterpolationMaterial(), PiecewiseBase::setData(), and AddVariableAction::varName().

◆ _need_to_add_default_multiapp_fixed_point_convergence

bool FEProblemBase::_need_to_add_default_multiapp_fixed_point_convergence
protectedinherited

Flag that the problem needs to add the default fixed point convergence.

Definition at line 2632 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultMultiAppFixedPointConvergence(), and FEProblemBase::setNeedToAddDefaultMultiAppFixedPointConvergence().

◆ _need_to_add_default_nonlinear_convergence

bool FEProblemBase::_need_to_add_default_nonlinear_convergence
protectedinherited

Flag that the problem needs to add the default nonlinear convergence.

Definition at line 2630 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultNonlinearConvergence(), and FEProblemBase::setNeedToAddDefaultNonlinearConvergence().

◆ _need_to_add_default_steady_state_convergence

bool FEProblemBase::_need_to_add_default_steady_state_convergence
protectedinherited

Flag that the problem needs to add the default steady convergence.

Definition at line 2634 of file FEProblemBase.h.

Referenced by FEProblemBase::needToAddDefaultSteadyStateConvergence(), and FEProblemBase::setNeedToAddDefaultSteadyStateConvergence().

◆ _needs_old_newton_iter

bool FEProblemBase::_needs_old_newton_iter
protectedinherited

Indicates that we need to compute variable values for previous Newton iteration.

Definition at line 2878 of file FEProblemBase.h.

◆ _neighbor_material_props

MaterialPropertyStorage& FEProblemBase::_neighbor_material_props
protectedinherited

◆ _nl

std::vector<std::shared_ptr<NonlinearSystemBase> > FEProblemBase::_nl
protectedinherited

The nonlinear systems.

Definition at line 2661 of file FEProblemBase.h.

Referenced by FEProblemBase::addBoundaryCondition(), FEProblemBase::addConstraint(), FEProblemBase::addDamper(), FEProblemBase::addDGKernel(), FEProblemBase::addDiracKernel(), FEProblemBase::addHDGKernel(), FEProblemBase::addInterfaceKernel(), FEProblemBase::addKernel(), FEProblemBase::addNodalKernel(), FEProblemBase::addPredictor(), FEProblemBase::addScalarKernel(), FEProblemBase::addTimeIntegrator(), FEProblemBase::bumpAllQRuleOrder(), FEProblemBase::bumpVolumeQRuleOrder(), FEProblemBase::checkNonlocalCoupling(), FEProblemBase::checkProblemIntegrity(), FEProblemBase::computeResidualL2Norm(), FEProblemBase::computingPreSMOResidual(), FEProblemBase::currentNlSysNum(), FEProblemBase::customSetup(), DumpObjectsProblem(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::finalNonlinearResidual(), FEProblemBase::getNonlinearEvaluableElementRange(), FEProblemBase::getNonlinearSystem(), FEProblemBase::getNonlinearSystemBase(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::initXFEM(), FEProblemBase::jacobianSetup(), FEProblemBase::meshChanged(), FEProblemBase::needBoundaryMaterialOnSide(), FEProblemBase::needInterfaceMaterialOnSide(), FEProblemBase::needSubdomainMaterialOnSide(), FEProblemBase::nLinearIterations(), FEProblemBase::nNonlinearIterations(), FEProblemBase::onTimestepBegin(), FEProblemBase::prepareFace(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), FEProblemBase::reinitDirac(), FEProblemBase::reinitNeighbor(), FEProblemBase::reinitNode(), FEProblemBase::reinitNodeFace(), FEProblemBase::reinitNodes(), FEProblemBase::reinitNodesNeighbor(), FEProblemBase::reinitScalars(), FEProblemBase::residualSetup(), FEProblemBase::setCurrentNonlinearSystem(), FEProblemBase::setNonlocalCouplingMatrix(), FEProblemBase::setResidual(), FEProblemBase::setResidualObjectParamsAndLog(), FEProblemBase::setupDampers(), FEProblemBase::subdomainSetup(), FEProblemBase::systemBaseNonlinear(), FEProblemBase::updateActiveObjects(), and FEProblemBase::updateMeshXFEM().

◆ _nl_evaluable_local_elem_range

std::unique_ptr<libMesh::ConstElemRange> FEProblemBase::_nl_evaluable_local_elem_range
protectedinherited

◆ _nl_sys_name_to_num

std::map<NonlinearSystemName, unsigned int> FEProblemBase::_nl_sys_name_to_num
protectedinherited

Map from nonlinear system name to number.

Definition at line 2664 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::nlSysNum().

◆ _nl_sys_names

const std::vector<NonlinearSystemName> FEProblemBase::_nl_sys_names
protectedinherited

◆ _nonlinear_convergence_names

std::optional<std::vector<ConvergenceName> > FEProblemBase::_nonlinear_convergence_names
protectedinherited

Nonlinear system(s) convergence name(s)

Definition at line 2601 of file FEProblemBase.h.

Referenced by FEProblemBase::getNonlinearConvergenceNames(), and FEProblemBase::setNonlinearConvergenceNames().

◆ _nonlocal_integrated_bcs

MooseObjectWarehouse<IntegratedBCBase> FEProblemBase::_nonlocal_integrated_bcs
protectedinherited

◆ _nonlocal_kernels

MooseObjectWarehouse<KernelBase> FEProblemBase::_nonlocal_kernels
protectedinherited

◆ _not_zeroed_tagged_vectors

std::unordered_set<TagID> SubProblem::_not_zeroed_tagged_vectors
protectedinherited

the list of vector tags that will not be zeroed when all other tags are

Definition at line 1117 of file SubProblem.h.

Referenced by SubProblem::addNotZeroedVectorTag(), FEProblemBase::restoreSolutions(), and SubProblem::vectorTagNotZeroed().

◆ _notify_when_mesh_changes

std::vector<MeshChangedInterface *> FEProblemBase::_notify_when_mesh_changes
protectedinherited

Objects to be notified when the mesh changes.

Definition at line 2781 of file FEProblemBase.h.

Referenced by FEProblemBase::meshChanged(), and FEProblemBase::notifyWhenMeshChanges().

◆ _notify_when_mesh_displaces

std::vector<MeshDisplacedInterface *> FEProblemBase::_notify_when_mesh_displaces
protectedinherited

Objects to be notified when the mesh displaces.

Definition at line 2784 of file FEProblemBase.h.

Referenced by FEProblemBase::meshDisplaced(), and FEProblemBase::notifyWhenMeshDisplaces().

◆ _num_linear_sys

const std::size_t FEProblemBase::_num_linear_sys
protectedinherited

◆ _num_nl_sys

const std::size_t FEProblemBase::_num_nl_sys
protectedinherited

◆ _parallel_barrier_messaging

bool FEProblemBase::_parallel_barrier_messaging
protectedinherited

◆ _pars

const InputParameters& MooseBase::_pars
protectedinherited

The object's parameters.

Definition at line 362 of file MooseBase.h.

Referenced by AddFVICAction::act(), AddICAction::act(), CreateProblemDefaultAction::act(), CreateProblemAction::act(), SetupMeshAction::act(), ComposeTimeStepperAction::act(), SetupDebugAction::act(), AddAuxKernelAction::act(), AddPeriodicBCAction::act(), CommonOutputAction::act(), FunctorMaterial::addFunctorPropertyByBlocks(), BreakMeshByBlockGeneratorBase::BreakMeshByBlockGeneratorBase(), PiecewiseTabularBase::buildFromFile(), PNGOutput::calculateRescalingValues(), MooseBase::callMooseError(), MooseBase::connectControllableParams(), Console::Console(), MooseApp::copyInputs(), MaterialBase::declareADProperty(), MaterialBase::declareProperty(), FEProblemSolve::FEProblemSolve(), FunctionMaterialBase< is_ad >::FunctionMaterialBase(), FileMeshGenerator::generate(), MooseBase::getBase(), MooseBase::getCheckedPointerParam(), MaterialBase::getGenericZeroMaterialProperty(), MooseBase::getHitNode(), MeshGenerator::getMeshGeneratorNameFromParam(), MeshGenerator::getMeshGeneratorNamesFromParam(), MooseBase::getParam(), MooseBase::hasBase(), MeshGenerator::hasGenerateData(), AddVariableAction::init(), AdvancedOutput::initExecutionTypes(), Console::initialSetup(), MooseBase::isParamSetByUser(), MooseBase::isParamValid(), MultiApp::keepSolutionDuringRestore(), MooseBase::messagePrefix(), MooseBase::MooseBase(), MooseApp::outputMachineReadableData(), MooseBase::paramError(), GlobalParamsAction::parameters(), MooseBase::parameters(), MooseBase::paramInfo(), MooseBase::paramWarning(), MooseMesh::prepare(), Eigenvalue::prepareSolverOptions(), MooseMesh::setCoordSystem(), MooseMesh::setPartitionerHelper(), SetupMeshAction::setupMesh(), TransientBase::setupTimeIntegrator(), MooseApp::showInputs(), and MooseBase::uniqueName().

◆ _petsc_option_data_base

PetscOptions FEProblemBase::_petsc_option_data_base
protectedinherited

◆ _petsc_options

Moose::PetscSupport::PetscOptions FEProblemBase::_petsc_options
protectedinherited

PETSc option storage.

Definition at line 2953 of file FEProblemBase.h.

Referenced by FEProblemBase::getPetscOptions(), FEProblemBase::solve(), and FEProblemBase::solveLinearSystem().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _phi_zero

std::vector<VariablePhiValue> FEProblemBase::_phi_zero
inherited

◆ _point_zero

std::vector<Point> FEProblemBase::_point_zero
inherited

Definition at line 2095 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _previous_nl_solution_required

bool FEProblemBase::_previous_nl_solution_required
protectedinherited

Indicates we need to save the previous NL iteration variable values.

Definition at line 2881 of file FEProblemBase.h.

Referenced by FEProblemBase::createTagSolutions().

◆ _random_data_objects

std::map<std::string, std::unique_ptr<RandomData> > FEProblemBase::_random_data_objects
protectedinherited

◆ _real_zero

std::vector<Real> FEProblemBase::_real_zero
inherited

Convenience zeros.

Definition at line 2084 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase().

◆ _reinit_displaced_elem

bool FEProblemBase::_reinit_displaced_elem
protectedinherited

◆ _reinit_displaced_face

bool FEProblemBase::_reinit_displaced_face
protectedinherited

◆ _reinit_displaced_neighbor

bool FEProblemBase::_reinit_displaced_neighbor
protectedinherited

◆ _reporter_data

ReporterData FEProblemBase::_reporter_data
protectedinherited

◆ _restartable_app

MooseApp& Restartable::_restartable_app
protectedinherited

Reference to the application.

Definition at line 227 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp(), and Restartable::registerRestartableNameWithFilterOnApp().

◆ _restartable_read_only

const bool Restartable::_restartable_read_only
protectedinherited

Flag for toggling read only status (see ReporterData)

Definition at line 236 of file Restartable.h.

Referenced by Restartable::registerRestartableDataOnApp().

◆ _restartable_system_name

const std::string Restartable::_restartable_system_name
protectedinherited

The system name this object is in.

Definition at line 230 of file Restartable.h.

Referenced by Restartable::restartableName().

◆ _restartable_tid

const THREAD_ID Restartable::_restartable_tid
protectedinherited

The thread ID for this object.

Definition at line 233 of file Restartable.h.

Referenced by Restartable::declareRestartableDataHelper().

◆ _safe_access_tagged_matrices

bool SubProblem::_safe_access_tagged_matrices
protectedinherited

◆ _safe_access_tagged_vectors

bool SubProblem::_safe_access_tagged_vectors
protectedinherited

◆ _scalar_ics

ScalarInitialConditionWarehouse FEProblemBase::_scalar_ics
protectedinherited

◆ _scalar_zero

std::vector<VariableValue> FEProblemBase::_scalar_zero
inherited

◆ _second_phi_zero

std::vector<VariablePhiSecond> FEProblemBase::_second_phi_zero
inherited

◆ _second_zero

std::vector<VariableSecond> FEProblemBase::_second_zero
inherited

◆ _skip_exception_check

bool FEProblemBase::_skip_exception_check
protectedinherited

If or not skip 'exception and stop solve'.

Definition at line 2863 of file FEProblemBase.h.

Referenced by FEProblemBase::checkExceptionAndStopSolve(), FEProblemBase::initialSetup(), and FEProblemBase::skipExceptionCheck().

◆ _snesmf_reuse_base

bool FEProblemBase::_snesmf_reuse_base
protectedinherited

If or not to resuse the base vector for matrix-free calculation.

Definition at line 2860 of file FEProblemBase.h.

Referenced by FEProblemBase::setSNESMFReuseBase(), and FEProblemBase::useSNESMFReuseBase().

◆ _snesmf_reuse_base_set_by_user

bool FEProblemBase::_snesmf_reuse_base_set_by_user
protectedinherited

If or not _snesmf_reuse_base is set by user.

Definition at line 2866 of file FEProblemBase.h.

Referenced by FEProblemBase::isSNESMFReuseBaseSetbyUser(), and FEProblemBase::setSNESMFReuseBase().

◆ _solve

const bool& FEProblemBase::_solve
protectedinherited

◆ _solver_params

std::vector<SolverParams> FEProblemBase::_solver_params
protectedinherited

◆ _solver_sys_name_to_num

std::map<SolverSystemName, unsigned int> FEProblemBase::_solver_sys_name_to_num
protectedinherited

Map connecting solver system names with their respective systems.

Definition at line 2679 of file FEProblemBase.h.

Referenced by FEProblemBase::FEProblemBase(), and FEProblemBase::solverSysNum().

◆ _solver_sys_names

std::vector<SolverSystemName> FEProblemBase::_solver_sys_names
protectedinherited

◆ _solver_systems

std::vector<std::shared_ptr<SolverSystem> > FEProblemBase::_solver_systems
protectedinherited

Combined container to base pointer of every solver system.

Definition at line 2673 of file FEProblemBase.h.

Referenced by FEProblemBase::addAuxKernel(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addTimeIntegrator(), FEProblemBase::addVariable(), FEProblemBase::advanceState(), FEProblemBase::computeSystems(), FEProblemBase::copySolutionsBackwards(), FEProblemBase::createQRules(), FEProblemBase::createTagMatrices(), FEProblemBase::createTagSolutions(), FEProblemBase::createTagVectors(), FEProblemBase::determineSolverSystem(), DumpObjectsProblem(), FEProblemBase::duplicateVariableCheck(), EigenProblem::EigenProblem(), ExternalProblem::ExternalProblem(), FEProblem::FEProblem(), FEProblemBase::getActualFieldVariable(), FEProblemBase::getArrayVariable(), FEProblemBase::getScalarVariable(), FEProblemBase::getSolverSystem(), FEProblemBase::getStandardVariable(), FEProblemBase::getSystem(), FEProblemBase::getSystemBase(), FEProblemBase::getVariable(), FEProblemBase::getVariableNames(), FEProblemBase::getVectorVariable(), FEProblemBase::hasScalarVariable(), FEProblemBase::hasSolverVariable(), FEProblemBase::hasVariable(), FEProblem::init(), FEProblemBase::init(), FEProblemBase::initialSetup(), FEProblemBase::meshChanged(), FEProblemBase::needSolutionState(), FEProblemBase::outputStep(), FEProblemBase::projectSolution(), FEProblemBase::reinitElem(), FEProblemBase::reinitElemPhys(), FEProblemBase::restoreOldSolutions(), FEProblemBase::restoreSolutions(), FEProblemBase::saveOldSolutions(), FEProblemBase::setCurrentSubdomainID(), Moose::PetscSupport::setSinglePetscOption(), FEProblemBase::setVariableAllDoFMap(), FEProblemBase::solverSystemConverged(), FEProblemBase::systemBaseSolver(), FEProblemBase::systemNumForVariable(), and FEProblemBase::timestepSetup().

◆ _solver_var_to_sys_num

std::map<SolverVariableName, unsigned int> FEProblemBase::_solver_var_to_sys_num
protectedinherited

Map connecting variable names with their respective solver systems.

Definition at line 2676 of file FEProblemBase.h.

Referenced by FEProblemBase::addVariable(), and FEProblemBase::determineSolverSystem().

◆ _steady_state_convergence_name

std::optional<ConvergenceName> FEProblemBase::_steady_state_convergence_name
protectedinherited

◆ _subspace_dim

std::map<std::string, unsigned int> FEProblemBase::_subspace_dim
protectedinherited

Dimension of the subspace spanned by the vectors with a given prefix.

Definition at line 2691 of file FEProblemBase.h.

Referenced by FEProblemBase::initNullSpaceVectors(), and FEProblemBase::subspaceDim().

◆ _t_step

int& FEProblemBase::_t_step
protectedinherited

◆ _termination_requested

bool Problem::_termination_requested
protectedinherited

True if termination of the solve has been requested.

Definition at line 58 of file Problem.h.

Referenced by Problem::isSolveTerminationRequested(), and Problem::terminateSolve().

◆ _time

Real& FEProblemBase::_time
protectedinherited

◆ _time_old

Real& FEProblemBase::_time_old
protectedinherited

◆ _to_multi_app_transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_to_multi_app_transfers
protectedinherited

◆ _transfers

ExecuteMooseObjectWarehouse<Transfer> FEProblemBase::_transfers
protectedinherited

◆ _transient

bool FEProblemBase::_transient
protectedinherited

Definition at line 2622 of file FEProblemBase.h.

Referenced by FEProblemBase::isTransient(), and FEProblemBase::transient().

◆ _transient_multi_apps

ExecuteMooseObjectWarehouse<TransientMultiApp> FEProblemBase::_transient_multi_apps
protectedinherited

Storage for TransientMultiApps (only needed for calling 'computeDT')

Definition at line 2754 of file FEProblemBase.h.

Referenced by FEProblemBase::addMultiApp(), FEProblemBase::computeMultiAppsDT(), and FEProblemBase::updateActiveObjects().

◆ _type

const std::string& MooseBase::_type
protectedinherited

◆ _uo_aux_state_check

const bool FEProblemBase::_uo_aux_state_check
protectedinherited

Whether or not checking the state of uo/aux evaluation.

Definition at line 2917 of file FEProblemBase.h.

Referenced by FEProblemBase::execute(), and FEProblemBase::hasUOAuxStateCheck().

◆ _uo_jacobian_moose_vars

std::vector<std::vector<const MooseVariableFEBase *> > FEProblemBase::_uo_jacobian_moose_vars
protectedinherited

◆ _use_hash_table_matrix_assembly

const bool FEProblemBase::_use_hash_table_matrix_assembly
protectedinherited

Whether to assemble matrices using hash tables instead of preallocating matrix memory.

This can be a good option if the sparsity pattern changes throughout the course of the simulation

Definition at line 2980 of file FEProblemBase.h.

Referenced by EigenProblem::EigenProblem(), and FEProblem::FEProblem().

◆ _using_ad_mat_props

bool FEProblemBase::_using_ad_mat_props
protectedinherited

Automatic differentiaion (AD) flag which indicates whether any consumer has requested an AD material property or whether any suppier has declared an AD material property.

Definition at line 2973 of file FEProblemBase.h.

◆ _using_default_nl

const bool FEProblemBase::_using_default_nl
protectedinherited

Boolean to check if we have the default nonlinear system.

Definition at line 2652 of file FEProblemBase.h.

◆ _var_dof_map

std::map<std::string, std::vector<dof_id_type> > SubProblem::_var_dof_map
inherited

◆ _vector_curl_zero

std::vector<VectorVariableCurl> FEProblemBase::_vector_curl_zero
inherited

◆ _vector_zero

std::vector<VectorVariableValue> FEProblemBase::_vector_zero
inherited

◆ _verbose_multiapps

bool FEProblemBase::_verbose_multiapps
protectedinherited

◆ _verbose_restore

bool FEProblemBase::_verbose_restore
protectedinherited

Whether or not to be verbose on solution restoration post a failed time step.

Definition at line 2941 of file FEProblemBase.h.

Referenced by FEProblemBase::restoreSolutions(), and FEProblemBase::setVerboseProblem().

◆ _verbose_setup

MooseEnum FEProblemBase::_verbose_setup
protectedinherited

Whether or not to be verbose during setup.

Definition at line 2935 of file FEProblemBase.h.

Referenced by FEProblemBase::logAdd(), and FEProblemBase::setVerboseProblem().

◆ _xfem

std::shared_ptr<XFEMInterface> FEProblemBase::_xfem
protectedinherited

Pointer to XFEM controller.

Definition at line 2835 of file FEProblemBase.h.

Referenced by FEProblemBase::getXFEM(), FEProblemBase::haveXFEM(), FEProblemBase::initXFEM(), and FEProblemBase::updateMeshXFEM().

◆ _zero

std::vector<VariableValue> FEProblemBase::_zero
inherited

◆ _zero_block_material_props

std::map<SubdomainID, std::set<MaterialPropertyName> > SubProblem::_zero_block_material_props
protectedinherited

Set of properties returned as zero properties.

Definition at line 1058 of file SubProblem.h.

Referenced by SubProblem::checkBlockMatProps(), FEProblemBase::checkDependMaterialsHelper(), and SubProblem::storeSubdomainZeroMatProp().

◆ _zero_boundary_material_props

std::map<BoundaryID, std::set<MaterialPropertyName> > SubProblem::_zero_boundary_material_props
protectedinherited

◆ app_param

const std::string MooseBase::app_param = "_moose_app"
staticinherited

◆ moose_base_param

const std::string MooseBase::moose_base_param = "_moose_base"
staticinherited

The name of the parameter that contains the moose system base.

Definition at line 61 of file MooseBase.h.

Referenced by InputParameters::getBase(), InputParameters::hasBase(), and InputParameters::registerBase().

◆ name_param

const std::string MooseBase::name_param = "_object_name"
staticinherited

◆ type_param

const std::string MooseBase::type_param = "_type"
staticinherited

◆ unique_name_param

const std::string MooseBase::unique_name_param = "_unique_name"
staticinherited

The name of the parameter that contains the unique object name.

Definition at line 57 of file MooseBase.h.

Referenced by InputParameterWarehouse::addInputParameters(), AppFactory::create(), InputParameterWarehouse::removeInputParameters(), MooseBase::uniqueName(), and MooseBase::validParams().


The documentation for this class was generated from the following files: