https://mooseframework.inl.gov
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
DumpObjectsNonlinearSystem Class Reference

Nonlinear system for dumping objects. More...

#include <DumpObjectsNonlinearSystem.h>

Inheritance diagram for DumpObjectsNonlinearSystem:
[legend]

Public Member Functions

 DumpObjectsNonlinearSystem (FEProblemBase &problem, const std::string &name)
 
virtual libMesh::NonlinearSolver< Number > * nonlinearSolver () override
 
virtual void solve () override
 Solve the system (using libMesh magic) More...
 
virtual void stopSolve (const ExecFlagType &, const std::set< TagID > &) override
 Quit the current solve as soon as possible. More...
 
virtual bool converged () override
 Returns the convergence state. More...
 
virtual NumericVector< Number > & RHS () override
 
virtual SNES getSNES () override
 
virtual unsigned int getCurrentNonlinearIterationNumber () override
 
virtual void setupFiniteDifferencedPreconditioner () override
 
virtual void attachPreconditioner (libMesh::Preconditioner< Number > *) override
 Attach a customized preconditioner that requires physics knowledge. More...
 
void residualAndJacobianTogether () override
 Call this method if you want the residual and Jacobian to be computed simultaneously. More...
 
virtual void preInit () override
 This is called prior to the libMesh system has been init'd. More...
 
void reinitMortarFunctors ()
 Update the mortar functors if the mesh has changed. More...
 
bool computedScalingJacobian () const
 
virtual void turnOffJacobian ()
 Turn off the Jacobian (must be called before equation system initialization) More...
 
bool computingPreSMOResidual ()
 Returns true if this system is currently computing the pre-SMO residual for a solve. More...
 
virtual void initialSetup () override
 Setup Functions. More...
 
virtual void timestepSetup () override
 
virtual void customSetup (const ExecFlagType &exec_type) override
 
virtual void residualSetup () override
 
virtual void jacobianSetup () override
 
bool haveFiniteDifferencedPreconditioner () const
 
bool haveFieldSplitPreconditioner () const
 
virtual void addKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a kernel. More...
 
virtual void addHDGKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a hybridized discontinuous Galerkin (HDG) kernel. More...
 
virtual void addNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a NodalKernel. More...
 
void addScalarKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a scalar kernel. More...
 
void addBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 Adds a boundary condition. More...
 
virtual void addKokkosKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos kernel. More...
 
virtual void addKokkosNodalKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos nodal kernel. More...
 
void addKokkosBoundaryCondition (const std::string &bc_name, const std::string &name, InputParameters &parameters)
 Adds a Kokkos boundary condition. More...
 
void addConstraint (const std::string &c_name, const std::string &name, InputParameters &parameters)
 Adds a Constraint. More...
 
void addDiracKernel (const std::string &kernel_name, const std::string &name, InputParameters &parameters)
 Adds a Dirac kernel. More...
 
void addDGKernel (std::string dg_kernel_name, const std::string &name, InputParameters &parameters)
 Adds a DG kernel. More...
 
void addInterfaceKernel (std::string interface_kernel_name, const std::string &name, InputParameters &parameters)
 Adds an interface kernel. More...
 
void addDamper (const std::string &damper_name, const std::string &name, InputParameters &parameters)
 Adds a damper. More...
 
void addSplit (const std::string &split_name, const std::string &name, InputParameters &parameters)
 Adds a split. More...
 
std::shared_ptr< SplitgetSplit (const std::string &name)
 Retrieves a split by name. More...
 
MooseObjectWarehouseBase< Split > & getSplits ()
 Retrieves all splits. More...
 
bool shouldEvaluatePreSMOResidual () const
 We offer the option to check convergence against the pre-SMO residual. More...
 
void setPreSMOResidual (bool use)
 Set whether to evaluate the pre-SMO residual and use it in the subsequent relative convergence checks. More...
 
const bool & usePreSMOResidual () const
 Whether we are using pre-SMO residual in relative convergence checks. More...
 
Real referenceResidual () const
 The reference residual used in relative convergence check. More...
 
Real preSMOResidual () const
 The pre-SMO residual. More...
 
Real initialResidual () const
 The initial residual. More...
 
void setInitialResidual (Real r)
 Record the initial residual (for later relative convergence check) More...
 
void zeroVectorForResidual (const std::string &vector_name)
 
void setInitialSolution ()
 
void setKokkosInitialSolution ()
 
void setConstraintSecondaryValues (NumericVector< Number > &solution, bool displaced)
 Sets the value of constrained variables in the solution vector. More...
 
void constraintResiduals (NumericVector< Number > &residual, bool displaced)
 Add residual contributions from Constraints. More...
 
void computeResidualTag (NumericVector< Number > &residual, TagID tag_id)
 Computes residual for a given tag. More...
 
void computeResidualTags (const std::set< TagID > &tags)
 Form multiple tag-associated residual vectors for all the given tags. More...
 
void computeResidualAndJacobianTags (const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Form possibly multiple tag-associated vectors and matrices. More...
 
void computeResidualAndJacobianInternal (const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary conditions. More...
 
void computeResidual (NumericVector< Number > &residual, TagID tag_id)
 Form a residual vector for a given tag. More...
 
void addImplicitGeometricCouplingEntries (GeometricSearchData &geom_search_data)
 Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled that are related geometrically (i.e. More...
 
void constraintJacobians (const SparseMatrix< Number > &jacobian_to_view, bool displaced)
 Add jacobian contributions from Constraints. More...
 
void computeJacobianTags (const std::set< TagID > &tags)
 Computes multiple (tag associated) Jacobian matricese. More...
 
bool computeScaling ()
 Method used to obtain scaling factors for variables. More...
 
void computeJacobian (libMesh::SparseMatrix< Number > &jacobian, const std::set< TagID > &tags)
 Associate jacobian to systemMatrixTag, and then form a matrix for all the tags. More...
 
void computeJacobian (libMesh::SparseMatrix< Number > &jacobian)
 Take all tags in the system, and form a matrix for all tags in the system. More...
 
void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks)
 Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices. More...
 
void computeJacobianBlocks (std::vector< JacobianBlock *> &blocks, const std::set< TagID > &tags)
 
Real computeDamping (const NumericVector< Number > &solution, const NumericVector< Number > &update)
 Compute damping. More...
 
void onTimestepBegin ()
 Called at the beginning of the time step. More...
 
virtual void subdomainSetup (SubdomainID subdomain, THREAD_ID tid)
 Called from assembling when we hit a new subdomain. More...
 
virtual void subdomainSetup ()
 
virtual void subdomainSetup ()
 
void overwriteNodeFace (NumericVector< Number > &soln)
 Called from explicit time stepping to overwrite boundary positions (explicit dynamics). More...
 
void updateActive (THREAD_ID tid)
 Update active objects of Warehouses owned by NonlinearSystemBase. More...
 
virtual void setSolutionUDot (const NumericVector< Number > &udot)
 Set transient term used by residual and Jacobian evaluation. More...
 
virtual void setSolutionUDotDot (const NumericVector< Number > &udotdot)
 Set transient term used by residual and Jacobian evaluation. More...
 
NumericVector< Number > & getResidualTimeVector ()
 Return a numeric vector that is associated with the time tag. More...
 
NumericVector< Number > & getResidualNonTimeVector ()
 Return a numeric vector that is associated with the nontime tag. More...
 
NumericVector< Number > & residualVector (TagID tag)
 Return a residual vector that is associated with the residual tag. More...
 
virtual NumericVector< Number > & residualCopy () override
 
virtual NumericVector< Number > & residualGhosted () override
 
virtual void augmentSparsity (libMesh::SparsityPattern::Graph &sparsity, std::vector< dof_id_type > &n_nz, std::vector< dof_id_type > &n_oz) override
 Will modify the sparsity pattern to add logical geometric connections. More...
 
void setPreconditioner (std::shared_ptr< MoosePreconditioner > pc)
 Sets a preconditioner. More...
 
MoosePreconditioner const * getPreconditioner () const
 
void useFiniteDifferencedPreconditioner (bool use=true)
 If called with true this system will use a finite differenced form of the Jacobian as the preconditioner. More...
 
void useFieldSplitPreconditioner (FieldSplitPreconditionerBase *fsp)
 If called with a non-null object true this system will use a field split preconditioner matrix. More...
 
FieldSplitPreconditionerBasegetFieldSplitPreconditioner ()
 
void addImplicitGeometricCouplingEntriesToJacobian (bool add=true)
 If called with true this will add entries into the jacobian to link together degrees of freedom that are found to be related through the geometric search system. More...
 
void assembleConstraintsSeparately (bool separately=true)
 Indicates whether to assemble residual and Jacobian after each constraint application. More...
 
void setupDampers ()
 Setup damping stuff (called before we actually start) More...
 
void reinitIncrementAtQpsForDampers (THREAD_ID tid, const std::set< MooseVariable *> &damped_vars)
 Compute the incremental change in variables at QPs for dampers. More...
 
void reinitIncrementAtNodeForDampers (THREAD_ID tid, const std::set< MooseVariable *> &damped_vars)
 Compute the incremental change in variables at nodes for dampers. More...
 
unsigned int nNonlinearIterations () const
 Return the number of non-linear iterations. More...
 
unsigned int nLinearIterations () const
 Return the number of linear iterations. More...
 
unsigned int nResidualEvaluations () const
 Return the total number of residual evaluations done so far in this calculation. More...
 
Real finalNonlinearResidual () const
 Return the final nonlinear residual. More...
 
Real nonlinearNorm () const
 Return the last nonlinear norm. More...
 
void printAllVariableNorms (bool state)
 Force the printing of all variable norms after each solve. More...
 
void debuggingResiduals (bool state)
 
void setPredictor (std::shared_ptr< Predictor > predictor)
 
PredictorgetPredictor ()
 
bool needBoundaryMaterialOnSide (BoundaryID bnd_id, THREAD_ID tid) const
 Indicated whether this system needs material properties on boundaries. More...
 
bool needInterfaceMaterialOnSide (BoundaryID bnd_id, THREAD_ID tid) const
 Indicated whether this system needs material properties on interfaces. More...
 
bool needInternalNeighborSideMaterial (SubdomainID subdomain_id, THREAD_ID tid) const
 Indicates whether this system needs material properties on internal sides. More...
 
bool doingDG () const
 Getter for _doing_dg. More...
 
bool hasSaveIn () const
 Weather or not the nonlinear system has save-ins. More...
 
bool hasDiagSaveIn () const
 Weather or not the nonlinear system has diagonal Jacobian save-ins. More...
 
virtual libMesh::Systemsystem () override
 Get the reference to the libMesh system. More...
 
virtual const libMesh::Systemsystem () const override
 
virtual void setSolutionUDotOld (const NumericVector< Number > &u_dot_old)
 
virtual void setSolutionUDotDotOld (const NumericVector< Number > &u_dotdot_old)
 
virtual void setPreviousNewtonSolution (const NumericVector< Number > &soln)
 
TagID timeVectorTag () const override
 Ideally, we should not need this API. More...
 
TagID nonTimeVectorTag () const override
 
TagID residualVectorTag () const override
 
TagID systemMatrixTag () const override
 Return the Matrix Tag ID for System. More...
 
bool computeScalingOnce () const
 
void computeScalingOnce (bool compute_scaling_once)
 
void autoScalingParam (Real resid_vs_jac_scaling_param)
 Sets the param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters. More...
 
void scalingGroupVariables (const std::vector< std::vector< std::string >> &scaling_group_variables)
 
void ignoreVariablesForAutoscaling (const std::vector< std::string > &ignore_variables_for_autoscaling)
 
bool offDiagonalsInAutoScaling () const
 
void offDiagonalsInAutoScaling (bool off_diagonals_in_auto_scaling)
 
void setupDM ()
 Setup the PETSc DM object (when appropriate) More...
 
virtual void potentiallySetupFiniteDifferencing ()
 Create finite differencing contexts for assembly of the Jacobian and/or approximating the action of the Jacobian on vectors (e.g. More...
 
void destroyColoring ()
 Destroy the coloring object if it exists. More...
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, THREAD_ID tid)
 Reinit nodal assembly info on a face. More...
 
virtual void reinitNodeFace (const Node *node, BoundaryID bnd_id, THREAD_ID tid)
 Reinit nodal assembly info on a face. More...
 
virtual void restoreSolutions () override final
 Restore current solutions (call after your solve failed) More...
 
void serializeSolution ()
 
void setSolution (const NumericVector< Number > &soln)
 Set the solution to a given vector. More...
 
void setPCSide (MooseEnum pcs)
 Set the side on which the preconditioner is applied to. More...
 
Moose::PCSideType getPCSide ()
 Get the current preconditioner side. More...
 
void setMooseKSPNormType (MooseEnum kspnorm)
 Set the norm in which the linear convergence will be measured. More...
 
Moose::MooseKSPNormType getMooseKSPNormType ()
 Get the norm in which the linear convergence is measured. More...
 
virtual const NumericVector< Number > *const & currentSolution () const override final
 The solution vector that is currently being operated on. More...
 
virtual void compute (ExecFlagType type) override
 Compute time derivatives, auxiliary variables, etc. More...
 
unsigned int number () const
 Gets the number of this system. More...
 
MooseMeshmesh ()
 
const MooseMeshmesh () const
 
SubProblemsubproblem ()
 
const SubProblemsubproblem () const
 
FEProblemBasefeProblem ()
 
const FEProblemBasefeProblem () const
 
void applyScalingFactors (const std::vector< Real > &inverse_scaling_factors)
 Applies scaling factors to the system's variables. More...
 
bool computingScalingJacobian () const
 Whether we are computing an initial Jacobian for automatic variable scaling. More...
 
bool automaticScaling () const
 Getter for whether we are performing automatic scaling. More...
 
void automaticScaling (bool automatic_scaling)
 Setter for whether we are performing automatic scaling. More...
 
void setVerboseFlag (const bool &verbose)
 Sets the verbose flag. More...
 
virtual libMesh::DofMapdofMap ()
 Gets writeable reference to the dof map. More...
 
virtual const libMesh::DofMapdofMap () const
 Gets const reference to the dof map. More...
 
virtual void postInit ()
 
virtual void reinit ()
 Reinitialize the system when the degrees of freedom in this system have changed. More...
 
virtual void initializeObjects ()
 Called only once, just before the solve begins so objects can do some precalculations. More...
 
void update ()
 Update the system (doing libMesh magic) More...
 
virtual void copyOldSolutions ()
 Shifts the solutions backwards in time. More...
 
virtual void copyPreviousNonlinearSolutions ()
 Shifts the solutions backwards in nonlinear iteration history. More...
 
virtual void copyPreviousFixedPointSolutions ()
 
NumericVector< Number > & solution ()
 
const NumericVector< Number > & solution () const
 
NumericVector< Number > & solutionOld ()
 
const NumericVector< Number > & solutionOld () const
 
NumericVector< Number > & solutionOlder ()
 
const NumericVector< Number > & solutionOlder () const
 
virtual const NumericVector< Number > * solutionPreviousNewton () const
 
virtual NumericVector< Number > * solutionPreviousNewton ()
 
virtual void initSolutionState ()
 Initializes the solution state. More...
 
virtual NumericVector< Number > & solutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
 Get a state of the solution (0 = current, 1 = old, 2 = older, etc). More...
 
virtual const NumericVector< Number > & solutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
 Get a state of the solution (0 = current, 1 = old, 2 = older, etc). More...
 
libMesh::ParallelType solutionStateParallelType (const unsigned int state, const Moose::SolutionIterationType iteration_type) const
 Returns the parallel type of the given solution state. More...
 
virtual void needSolutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
 Registers that the solution state state is needed. More...
 
virtual bool hasSolutionState (const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
 Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc). More...
 
virtual void addDotVectors ()
 Add u_dot, u_dotdot, u_dot_old and u_dotdot_old vectors if requested by the time integrator. More...
 
virtual std::vector< Number > & duDotDus ()
 
virtual NumberduDotDotDu ()
 
virtual const NumberduDotDotDu () const
 
virtual const NumberduDotDu (unsigned int var_num=0) const
 
virtual NumericVector< Number > * solutionUDot ()
 
virtual const NumericVector< Number > * solutionUDot () const
 
virtual NumericVector< Number > * solutionUDotDot ()
 
virtual const NumericVector< Number > * solutionUDotDot () const
 
virtual NumericVector< Number > * solutionUDotOld ()
 
virtual const NumericVector< Number > * solutionUDotOld () const
 
virtual NumericVector< Number > * solutionUDotDotOld ()
 
virtual const NumericVector< Number > * solutionUDotDotOld () const
 
virtual void saveOldSolutions ()
 Save the old and older solutions. More...
 
virtual void restoreOldSolutions ()
 Restore the old and older solutions when the saved solutions present. More...
 
bool hasVector (const std::string &tag_name) const
 Check if the named vector exists in the system. More...
 
virtual bool hasVector (TagID tag_id) const
 Check if the tagged vector exists in the system. More...
 
virtual std::set< TagIDdefaultVectorTags () const
 Get the default vector tags associated with this system. More...
 
virtual std::set< TagIDdefaultMatrixTags () const
 Get the default matrix tags associted with this system. More...
 
virtual void associateVectorToTag (NumericVector< Number > &vec, TagID tag)
 Associate a vector for a given tag. More...
 
virtual void disassociateVectorFromTag (NumericVector< Number > &vec, TagID tag)
 Disassociate a given vector from a given tag. More...
 
virtual void disassociateVectorFromTag (TagID tag)
 Disassociate any vector that is associated with a given tag. More...
 
virtual void disassociateDefaultVectorTags ()
 Disassociate the vectors associated with the default vector tags of this system. More...
 
virtual bool hasMatrix (TagID tag) const
 Check if the tagged matrix exists in the system. More...
 
virtual libMesh::SparseMatrix< Number > & getMatrix (TagID tag)
 Get a raw SparseMatrix. More...
 
virtual const libMesh::SparseMatrix< Number > & getMatrix (TagID tag) const
 Get a raw SparseMatrix. More...
 
virtual void activateAllMatrixTags ()
 Make all existing matrices active. More...
 
virtual bool matrixTagActive (TagID tag) const
 If or not a matrix tag is active. More...
 
virtual void deactivateAllMatrixTags ()
 Make matrices inactive. More...
 
void closeTaggedMatrices (const std::set< TagID > &tags)
 Close all matrices associated the tags. More...
 
void flushTaggedMatrices (const std::set< TagID > &tags)
 flushes all matrices associated to tags. More...
 
virtual void associateMatrixToTag (libMesh::SparseMatrix< Number > &matrix, TagID tag)
 Associate a matrix to a tag. More...
 
virtual void disassociateMatrixFromTag (libMesh::SparseMatrix< Number > &matrix, TagID tag)
 Disassociate a matrix from a tag. More...
 
virtual void disassociateMatrixFromTag (TagID tag)
 Disassociate any matrix that is associated with a given tag. More...
 
virtual void disassociateDefaultMatrixTags ()
 Disassociate the matrices associated with the default matrix tags of this system. More...
 
virtual NumericVector< Number > & serializedSolution ()
 Returns a reference to a serialized version of the solution vector for this subproblem. More...
 
virtual void augmentSendList (std::vector< dof_id_type > &send_list)
 Will modify the send_list to add all of the extra ghosted dofs for this system. More...
 
virtual void addVariable (const std::string &var_type, const std::string &var_name, InputParameters &parameters)
 Canonical method for adding a variable. More...
 
virtual bool isArrayVariable (const std::string &var_name) const
 If a variable is an array variable. More...
 
virtual bool isScalarVariable (unsigned int var_name) const
 
MooseVariableFieldBasegetVariable (THREAD_ID tid, const std::string &var_name) const
 Gets a reference to a variable of with specified name. More...
 
MooseVariableFieldBasegetVariable (THREAD_ID tid, unsigned int var_number) const
 Gets a reference to a variable with specified number. More...
 
template<typename T >
MooseVariableFE< T > & getFieldVariable (THREAD_ID tid, const std::string &var_name)
 Gets a reference to a variable of with specified name. More...
 
template<typename T >
MooseVariableFE< T > & getFieldVariable (THREAD_ID tid, unsigned int var_number)
 Gets a reference to a variable with specified number. More...
 
template<typename T >
MooseVariableField< T > & getActualFieldVariable (THREAD_ID tid, const std::string &var_name)
 Returns a field variable pointer - this includes finite volume variables. More...
 
template<typename T >
MooseVariableField< T > & getActualFieldVariable (THREAD_ID tid, unsigned int var_number)
 Returns a field variable pointer - this includes finite volume variables. More...
 
template<typename T >
MooseVariableFV< T > & getFVVariable (THREAD_ID tid, const std::string &var_name)
 Return a finite volume variable. More...
 
virtual MooseVariableScalargetScalarVariable (THREAD_ID tid, const std::string &var_name) const
 Gets a reference to a scalar variable with specified number. More...
 
virtual MooseVariableScalargetScalarVariable (THREAD_ID tid, unsigned int var_number) const
 Gets a reference to a variable with specified number. More...
 
virtual const std::set< SubdomainID > * getVariableBlocks (unsigned int var_number)
 Get the block where a variable of this system is defined. More...
 
virtual unsigned int nVariables () const
 Get the number of variables in this system. More...
 
unsigned int nFieldVariables () const
 Get the number of field variables in this system. More...
 
unsigned int nFVVariables () const
 Get the number of finite volume variables in this system. More...
 
std::size_t getMaxVarNDofsPerElem () const
 Gets the maximum number of dofs used by any one variable on any one element. More...
 
std::size_t getMaxVarNDofsPerNode () const
 Gets the maximum number of dofs used by any one variable on any one node. More...
 
void assignMaxVarNDofsPerElem (std::size_t max_dofs)
 assign the maximum element dofs More...
 
void assignMaxVarNDofsPerNode (std::size_t max_dofs)
 assign the maximum node dofs More...
 
virtual void addVariableToZeroOnResidual (std::string var_name)
 Adds this variable to the list of variables to be zeroed during each residual evaluation. More...
 
virtual void addVariableToZeroOnJacobian (std::string var_name)
 Adds this variable to the list of variables to be zeroed during each Jacobian evaluation. More...
 
virtual void zeroVariables (std::vector< std::string > &vars_to_be_zeroed)
 Zero out the solution for the list of variables passed in. More...
 
virtual void zeroVariablesForResidual ()
 Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on residual evaluation by a call to addVariableToZeroOnResidual() More...
 
virtual void zeroVariablesForJacobian ()
 Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on Jacobian evaluation by a call to addVariableToZeroOnResidual() More...
 
virtual libMesh::Order getMinQuadratureOrder ()
 Get minimal quadrature order needed for integrating variables in this system. More...
 
virtual void prepare (THREAD_ID tid)
 Prepare the system for use. More...
 
virtual void prepareFace (THREAD_ID tid, bool resize_data)
 Prepare the system for use on sides. More...
 
virtual void prepareNeighbor (THREAD_ID tid)
 Prepare the system for use. More...
 
virtual void prepareLowerD (THREAD_ID tid)
 Prepare the system for use for lower dimensional elements. More...
 
virtual void reinitElem (const Elem *elem, THREAD_ID tid)
 Reinit an element assembly info. More...
 
virtual void reinitElemFace (const Elem *elem, unsigned int side, THREAD_ID tid)
 Reinit assembly info for a side of an element. More...
 
virtual void reinitNeighborFace (const Elem *elem, unsigned int side, THREAD_ID tid)
 Compute the values of the variables at all the current points. More...
 
virtual void reinitNeighbor (const Elem *elem, THREAD_ID tid)
 Compute the values of the variables at all the current points. More...
 
virtual void reinitLowerD (THREAD_ID tid)
 Compute the values of the variables on the lower dimensional element. More...
 
virtual void reinitNode (const Node *node, THREAD_ID tid)
 Reinit nodal assembly info. More...
 
virtual void reinitNodes (const std::vector< dof_id_type > &nodes, THREAD_ID tid)
 Reinit variables at a set of nodes. More...
 
virtual void reinitNodesNeighbor (const std::vector< dof_id_type > &nodes, THREAD_ID tid)
 Reinit variables at a set of neighbor nodes. More...
 
virtual void reinitScalars (THREAD_ID tid, bool reinit_for_derivative_reordering=false)
 Reinit scalar varaibles. More...
 
virtual void addVariableToCopy (const std::string &dest_name, const std::string &source_name, const std::string &timestep)
 Add info about variable that will be copied. More...
 
const std::vector< MooseVariableFieldBase * > & getVariables (THREAD_ID tid)
 
const std::vector< MooseVariableScalar * > & getScalarVariables (THREAD_ID tid)
 
const std::set< SubdomainID > & getSubdomainsForVar (unsigned int var_number) const
 
const std::set< SubdomainID > & getSubdomainsForVar (const std::string &var_name) const
 Get the block where a variable of this system is defined. More...
 
void removeVector (const std::string &name)
 Remove a vector from the system with the given name. More...
 
void removeVector (TagID tag_id)
 Remove a solution length vector from the system with the specified TagID. More...
 
NumericVector< Number > & addVector (const std::string &vector_name, const bool project, const libMesh::ParallelType type)
 Adds a solution length vector to the system. More...
 
NumericVector< Number > & addVector (TagID tag, const bool project, const libMesh::ParallelType type)
 Adds a solution length vector to the system with the specified TagID. More...
 
void closeTaggedVector (const TagID tag)
 Close vector with the given tag. More...
 
void closeTaggedVectors (const std::set< TagID > &tags)
 Close all vectors for given tags. More...
 
void zeroTaggedVector (const TagID tag)
 Zero vector with the given tag. More...
 
void zeroTaggedVectors (const std::set< TagID > &tags)
 Zero all vectors for given tags. More...
 
void setVariableGlobalDoFs (const std::string &var_name)
 set all the global dof indices for a variable More...
 
const std::vector< dof_id_type > & getVariableGlobalDoFs ()
 Get the global dof indices of a variable, this needs to be called after the indices have been set by setVariableGlobalDoFs More...
 
libMesh::SparseMatrix< Number > & addMatrix (TagID tag)
 Adds a matrix with a given tag. More...
 
void removeMatrix (TagID tag)
 Removes a matrix with a given tag. More...
 
virtual const std::string & name () const
 
const std::vector< VariableName > & getVariableNames () const
 
void getStandardFieldVariableNames (std::vector< VariableName > &std_field_variables) const
 
unsigned int getMaxVariableNumber () const
 Returns the maximum number of all variables on the system. More...
 
virtual void computeVariables (const NumericVector< Number > &)
 
void copyVars (libMesh::ExodusII_IO &io)
 
virtual void copySolutionsBackwards ()
 Copy current solution into old and older. More...
 
void addTimeIntegrator (const std::string &type, const std::string &name, InputParameters &parameters)
 
bool hasVarCopy () const
 Whether or not there are variables to be restarted from an Exodus mesh file. More...
 
void addScalingVector ()
 Add the scaling factor vector to the system. More...
 
bool solutionStatesInitialized () const
 Whether or not the solution states have been initialized via initSolutionState() More...
 
void clearAllDofIndices ()
 Clear all dof indices from moose variables. More...
 
void setActiveVariableCoupleableVectorTags (const std::set< TagID > &vtags, THREAD_ID tid)
 Set the active vector tags for the variables. More...
 
void setActiveScalarVariableCoupleableVectorTags (const std::set< TagID > &vtags, THREAD_ID tid)
 Set the active vector tags for the scalar variables. More...
 
Moose::VarKindType varKind () const
 
const std::vector< std::unique_ptr< NumericVector< Number > > > & gradientContainer () const
 Reference to the container vector which hold gradients at dofs (if it can be interpreted). More...
 
void copyTimeIntegrators (const SystemBase &other_sys)
 Copy time integrators from another system. More...
 
const TimeIntegratorgetTimeIntegrator (const unsigned int var_num) const
 Retrieve the time integrator that integrates the given variable's equation. More...
 
const TimeIntegratorqueryTimeIntegrator (const unsigned int var_num) const
 Retrieve the time integrator that integrates the given variable's equation. More...
 
const std::vector< std::shared_ptr< TimeIntegrator > > & getTimeIntegrators ()
 
std::string prefix () const
 
void sizeVariableMatrixData ()
 size the matrix data for each variable for the number of matrix tags we have More...
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
PerfGraphperfGraph ()
 Get the PerfGraph. More...
 
void checkKernelCoverage (const std::set< SubdomainID > &mesh_subdomains) const
 
virtual bool containsTimeKernel () override
 If the system has a kernel that corresponds to a time derivative. More...
 
virtual std::vector< std::string > timeKernelVariableNames () override
 Returns the names of the variables that have time derivative kernels in the system. More...
 
MooseObjectTagWarehouse< KernelBase > & getKernelWarehouse ()
 Access functions to Warehouses from outside NonlinearSystemBase. More...
 
const MooseObjectTagWarehouse< KernelBase > & getKernelWarehouse () const
 
MooseObjectTagWarehouse< DGKernelBase > & getDGKernelWarehouse ()
 
MooseObjectTagWarehouse< InterfaceKernelBase > & getInterfaceKernelWarehouse ()
 
MooseObjectTagWarehouse< DiracKernelBase > & getDiracKernelWarehouse ()
 
MooseObjectTagWarehouse< IntegratedBCBase > & getIntegratedBCWarehouse ()
 
const MooseObjectTagWarehouse< IntegratedBCBase > & getIntegratedBCWarehouse () const
 Return the IntegratedBCBase warehouse. More...
 
const MooseObjectTagWarehouse< ScalarKernelBase > & getScalarKernelWarehouse () const
 
const MooseObjectTagWarehouse< NodalKernelBase > & getNodalKernelWarehouse () const
 
MooseObjectTagWarehouse< HDGKernel > & getHDGKernelWarehouse ()
 
const MooseObjectWarehouse< ElementDamper > & getElementDamperWarehouse () const
 
const MooseObjectWarehouse< NodalDamper > & getNodalDamperWarehouse () const
 
const ConstraintWarehousegetConstraintWarehouse () const
 
const MooseObjectTagWarehouse< NodalBCBase > & getNodalBCWarehouse () const
 Return the NodalBCBase warehouse. More...
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosKernelWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosNodalKernelWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosNodalBCWarehouse ()
 
MooseObjectTagWarehouse< ResidualObject > & getKokkosIntegratedBCWarehouse ()
 
virtual NumericVector< Number > & getVector (const std::string &name)
 Get a raw NumericVector by name. More...
 
virtual const NumericVector< Number > & getVector (const std::string &name) const
 
virtual NumericVector< Number > & getVector (TagID tag)
 Get a raw NumericVector by tag. More...
 
virtual const NumericVector< Number > & getVector (TagID tag) const
 
virtual bool hasVariable (const std::string &var_name) const
 Query a system for a variable. More...
 
virtual bool hasScalarVariable (const std::string &var_name) const
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

unsigned int _num_residual_evaluations
 
libMesh::System_sys
 
Real _last_nl_rnorm
 
std::vector< unsigned int_current_l_its
 
unsigned int _current_nl_its
 
const ConsoleStream _console
 An instance of helper class to write streams to the Console objects. More...
 

Protected Member Functions

void computeScalingJacobian () override
 Compute a "Jacobian" for automatic scaling purposes. More...
 
void computeScalingResidual () override
 Compute a "residual" for automatic scaling purposes. More...
 
void computeResidualInternal (const std::set< TagID > &tags)
 Compute the residual for a given tag. More...
 
void computeKokkosResidual (const std::set< TagID > &tags)
 Compute residual with Kokkos objects. More...
 
void computeNodalBCs (NumericVector< Number > &residual)
 Enforces nodal boundary conditions. More...
 
void computeNodalBCs (NumericVector< Number > &residual, const std::set< TagID > &tags)
 Form a residual for BCs that at least has one of the given tags. More...
 
void computeNodalBCs (const std::set< TagID > &tags)
 Form multiple tag-associated residual vectors for the given tags. More...
 
void computeNodalBCsResidualAndJacobian ()
 compute the residual and Jacobian for nodal boundary conditions More...
 
void computeJacobianInternal (const std::set< TagID > &tags)
 Form multiple matrices for all the tags. More...
 
void computeKokkosJacobian (const std::set< TagID > &tags)
 Compute Jacobian with Kokkos objects. More...
 
void computeDiracContributions (const std::set< TagID > &tags, bool is_jacobian)
 
void computeScalarKernelsJacobians (const std::set< TagID > &tags)
 
void enforceNodalConstraintsResidual (NumericVector< Number > &residual)
 Enforce nodal constraints. More...
 
bool enforceNodalConstraintsJacobian (const SparseMatrix< Number > &jacobian)
 Enforce nodal constraints in the Jacobian. More...
 
void mortarConstraints (Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
 Do mortar constraint residual/jacobian computations. More...
 
void assembleScalingVector ()
 Assemble the numeric vector of scaling factors such that it can be used during assembly of the system matrix. More...
 
virtual void postAddResidualObject (ResidualObject &)
 Called after any ResidualObject-derived objects are added to the system. More...
 
void reinitNodeFace (const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
 Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints. More...
 
bool preSolve ()
 Perform some steps to get ready for the solver. More...
 
void getNodeDofs (dof_id_type node_id, std::vector< dof_id_type > &dofs)
 
void checkInvalidSolution ()
 
virtual NumericVector< Number > & solutionInternal () const override final
 Internal getter for solution owned by libMesh. More...
 
virtual bool matrixFromColoring () const
 Whether a system matrix is formed from coloring. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 Call to register a named section for timing. More...
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 Call to register a named section for timing. More...
 
std::string timedSectionName (const std::string &section_name) const
 

Protected Attributes

NumericVector< Number > * _dummy
 
NumericVector< Number > * _residual_ghosted
 ghosted form of the residual More...
 
std::unique_ptr< NumericVector< Number > > _residual_copy
 Copy of the residual vector, or nullptr if a copy is not needed. More...
 
Number _du_dot_du
 \( {du^dot}\over{du} \) More...
 
Number _du_dotdot_du
 \( {du^dotdot}\over{du} \) More...
 
TagID _Re_time_tag
 Tag for time contribution residual. More...
 
std::set< TagID_nl_vector_tags
 Vector tags to temporarily store all tags associated with the current system. More...
 
std::set< TagID_nl_matrix_tags
 Matrix tags to temporarily store all tags associated with the current system. More...
 
NumericVector< Number > * _Re_time
 residual vector for time contributions More...
 
TagID _Re_non_time_tag
 Tag for non-time contribution residual. More...
 
NumericVector< Number > * _Re_non_time
 residual vector for non-time contributions More...
 
TagID _Re_tag
 Used for the residual vector from PETSc. More...
 
TagID _Ke_non_time_tag
 Tag for non-time contribution Jacobian. More...
 
TagID _Ke_system_tag
 Tag for system contribution Jacobian. More...
 
MooseObjectTagWarehouse< DiracKernelBase_dirac_kernels
 Dirac Kernel storage for each thread. More...
 
MooseObjectWarehouse< ElementDamper_element_dampers
 Element Dampers for each thread. More...
 
MooseObjectWarehouse< NodalDamper_nodal_dampers
 Nodal Dampers for each thread. More...
 
MooseObjectWarehouse< GeneralDamper_general_dampers
 General Dampers. More...
 
MooseObjectTagWarehouse< NodalKernelBase_nodal_kernels
 NodalKernels for each thread. More...
 
MooseObjectWarehouseBase< Split_splits
 Decomposition splits. More...
 
ConstraintWarehouse _constraints
 Constraints storage object. More...
 
NumericVector< Number > * _increment_vec
 increment vector More...
 
std::shared_ptr< MoosePreconditioner_preconditioner
 Preconditioner. More...
 
bool _use_finite_differenced_preconditioner
 Whether or not to use a finite differenced preconditioner. More...
 
MatFDColoring _fdcoloring
 
FieldSplitPreconditionerBase_fsp
 The field split preconditioner if this sytem is using one. More...
 
bool _add_implicit_geometric_coupling_entries_to_jacobian
 Whether or not to add implicit geometric couplings to the Jacobian for FDP. More...
 
bool _assemble_constraints_separately
 Whether or not to assemble the residual and Jacobian after the application of each constraint. More...
 
bool _need_residual_ghosted
 Whether or not a ghosted copy of the residual needs to be made. More...
 
bool _debugging_residuals
 true if debugging residuals More...
 
bool _doing_dg
 true if DG is active (optimization reasons) More...
 
std::vector< std::string > _vecs_to_zero_for_residual
 vectors that will be zeroed before a residual computation More...
 
unsigned int _n_iters
 
unsigned int _n_linear_iters
 
unsigned int _n_residual_evaluations
 Total number of residual evaluations that have been performed. More...
 
Real _final_residual
 
std::shared_ptr< Predictor_predictor
 If predictor is active, this is non-NULL. More...
 
bool _computing_pre_smo_residual
 
Real _pre_smo_residual
 The pre-SMO residual, see setPreSMOResidual for a detailed explanation. More...
 
Real _initial_residual
 The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanation. More...
 
bool _use_pre_smo_residual
 Whether to use the pre-SMO initial residual in the relative convergence check. More...
 
bool _print_all_var_norms
 
bool _has_save_in
 If there is any Kernel or IntegratedBC having save_in. More...
 
bool _has_diag_save_in
 If there is any Kernel or IntegratedBC having diag_save_in. More...
 
bool _has_nodalbc_save_in
 If there is a nodal BC having save_in. More...
 
bool _has_nodalbc_diag_save_in
 If there is a nodal BC having diag_save_in. More...
 
bool _computed_scaling
 Flag used to indicate whether we have already computed the scaling Jacobian. More...
 
bool _compute_scaling_once
 Whether the scaling factors should only be computed once at the beginning of the simulation through an extra Jacobian evaluation. More...
 
Real _resid_vs_jac_scaling_param
 The param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters. More...
 
std::vector< std::vector< std::string > > _scaling_group_variables
 A container of variable groupings that can be used in scaling calculations. More...
 
std::vector< bool > _variable_autoscaled
 Container to hold flag if variable is to participate in autoscaling. More...
 
std::vector< std::string > _ignore_variables_for_autoscaling
 A container for variables that do not partipate in autoscaling. More...
 
bool _off_diagonals_in_auto_scaling
 Whether to include off diagonals when determining automatic scaling factors. More...
 
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
 A diagonal matrix used for computing scaling. More...
 
const NumericVector< Number > * _current_solution
 solution vector from solver More...
 
Moose::PCSideType _pc_side
 Preconditioning side. More...
 
Moose::MooseKSPNormType _ksp_norm
 KSP norm type. More...
 
bool _solution_is_invalid
 Boolean to see if solution is invalid. More...
 
SubProblem_subproblem
 The subproblem for whom this class holds variable data, etc; this can either be the governing finite element/volume problem or a subjugate displaced problem. More...
 
FEProblemBase_fe_problem
 the governing finite element/volume problem More...
 
MooseApp_app
 
Factory_factory
 
MooseMesh_mesh
 
std::string _name
 The name of this system. More...
 
std::vector< VariableWarehouse_vars
 Variable warehouses (one for each thread) More...
 
std::map< unsigned int, std::set< SubdomainID > > _var_map
 Map of variables (variable id -> array of subdomains where it lives) More...
 
unsigned int _max_var_number
 Maximum variable number. More...
 
std::vector< std::string > _vars_to_be_zeroed_on_residual
 
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
 
NumericVector< Number > * _u_dot
 solution vector for u^dot More...
 
NumericVector< Number > * _u_dotdot
 solution vector for u^dotdot More...
 
NumericVector< Number > * _u_dot_old
 old solution vector for u^dot More...
 
NumericVector< Number > * _u_dotdot_old
 old solution vector for u^dotdot More...
 
std::vector< NumericVector< Number > * > _tagged_vectors
 Tagged vectors (pointer) More...
 
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
 Tagged matrices (pointer) More...
 
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
 Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map. We use a map instead of a vector so that users can easily add and remove to this container with calls to (de)activateMatrixTag. More...
 
std::vector< bool > _matrix_tag_active_flags
 Active flags for tagged matrices. More...
 
NumericVector< Real > * _saved_old
 
NumericVector< Real > * _saved_older
 
NumericVector< Real > * _saved_dot_old
 
NumericVector< Real > * _saved_dotdot_old
 
Moose::VarKindType _var_kind
 default kind of variables in this system More...
 
std::vector< VarCopyInfo_var_to_copy
 
size_t _max_var_n_dofs_per_elem
 Maximum number of dofs for any one variable on any one element. More...
 
size_t _max_var_n_dofs_per_node
 Maximum number of dofs for any one variable on any one node. More...
 
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
 Time integrator. More...
 
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
 Map variable number to its pointer. More...
 
bool _automatic_scaling
 Whether to automatically scale the variables. More...
 
bool _verbose
 True if printing out additional information. More...
 
bool _solution_states_initialized
 Whether or not the solution states have been initialized. More...
 
std::vector< dof_id_type_var_all_dof_indices
 Container for the dof indices of a given variable. More...
 
std::unique_ptr< NumericVector< Number > > _serialized_solution
 Serialized version of the solution vector, or nullptr if a serialized solution is not needed. More...
 
std::vector< std::unique_ptr< NumericVector< Number > > > _raw_grad_container
 A cache for storing gradients at dof locations. More...
 
const Parallel::Communicator_communicator
 
MooseApp_pg_moose_app
 The MooseApp that owns the PerfGraph. More...
 
const std::string _prefix
 A prefix to use for all sections. More...
 
MooseObjectTagWarehouse< KernelBase_kernels
 
MooseObjectTagWarehouse< HDGKernel_hybridized_kernels
 
MooseObjectTagWarehouse< ScalarKernelBase_scalar_kernels
 
MooseObjectTagWarehouse< DGKernelBase_dg_kernels
 
MooseObjectTagWarehouse< InterfaceKernelBase_interface_kernels
 
MooseObjectTagWarehouse< IntegratedBCBase_integrated_bcs
 
MooseObjectTagWarehouse< NodalBCBase_nodal_bcs
 
MooseObjectWarehouse< DirichletBCBase_preset_nodal_bcs
 
MooseObjectWarehouse< ADDirichletBCBase_ad_preset_nodal_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_kernels
 
MooseObjectTagWarehouse< ResidualObject_kokkos_integrated_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_nodal_bcs
 
MooseObjectWarehouse< ResidualObject_kokkos_preset_nodal_bcs
 
MooseObjectTagWarehouse< ResidualObject_kokkos_nodal_kernels
 

Detailed Description

Nonlinear system for dumping objects.

Definition at line 24 of file DumpObjectsNonlinearSystem.h.

Constructor & Destructor Documentation

◆ DumpObjectsNonlinearSystem()

DumpObjectsNonlinearSystem::DumpObjectsNonlinearSystem ( FEProblemBase problem,
const std::string &  name 
)

Definition at line 13 of file DumpObjectsNonlinearSystem.C.

17  _dummy(nullptr)
18 {
19 }
NumericVector< Number > * _dummy
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual libMesh::EquationSystems & es() override
NonlinearSystemBase(FEProblemBase &problem, libMesh::System &sys, const std::string &name)
virtual System & add_system(std::string_view system_type, std::string_view name)

Member Function Documentation

◆ activateAllMatrixTags()

void SystemBase::activateAllMatrixTags ( )
virtualinherited

Make all existing matrices active.

Definition at line 1131 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::computeResidualTags().

1132 {
1133  auto num_matrix_tags = _subproblem.numMatrixTags();
1134 
1135  _matrix_tag_active_flags.resize(num_matrix_tags);
1136  _active_tagged_matrices.clear();
1137 
1138  for (const auto tag : make_range(num_matrix_tags))
1139  if (hasMatrix(tag))
1140  {
1141  _matrix_tag_active_flags[tag] = true;
1142  _active_tagged_matrices.emplace(tag, &getMatrix(tag));
1143  }
1144  else
1145  _matrix_tag_active_flags[tag] = false;
1146 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
IntRange< T > make_range(T beg, T end)

◆ addBoundaryCondition()

void NonlinearSystemBase::addBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a boundary condition.

Parameters
bc_nameThe type of the boundary condition
nameThe name of the boundary condition
parametersBoundary condition parameters

Definition at line 546 of file NonlinearSystemBase.C.

549 {
550  // ThreadID
551  THREAD_ID tid = 0;
552 
553  // Create the object
554  std::shared_ptr<BoundaryCondition> bc =
555  _factory.create<BoundaryCondition>(bc_name, name, parameters, tid);
557 
558  // Active BoundaryIDs for the object
559  const std::set<BoundaryID> & boundary_ids = bc->boundaryIDs();
560  auto bc_var = dynamic_cast<const MooseVariableFieldBase *>(&bc->variable());
561  _vars[tid].addBoundaryVar(boundary_ids, bc_var);
562 
563  // Cast to the various types of BCs
564  std::shared_ptr<NodalBCBase> nbc = std::dynamic_pointer_cast<NodalBCBase>(bc);
565  std::shared_ptr<IntegratedBCBase> ibc = std::dynamic_pointer_cast<IntegratedBCBase>(bc);
566 
567  // NodalBCBase
568  if (nbc)
569  {
570  if (nbc->checkNodalVar() && !nbc->variable().isNodal())
571  mooseError("Trying to use nodal boundary condition '",
572  nbc->name(),
573  "' on a non-nodal variable '",
574  nbc->variable().name(),
575  "'.");
576 
577  _nodal_bcs.addObject(nbc);
578  // Add to theWarehouse, a centralized storage for all moose objects
580  _vars[tid].addBoundaryVars(boundary_ids, nbc->getCoupledVars());
581 
582  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
583  _has_nodalbc_save_in = true;
584  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
586 
587  // DirichletBCs that are preset
588  std::shared_ptr<DirichletBCBase> dbc = std::dynamic_pointer_cast<DirichletBCBase>(bc);
589  if (dbc && dbc->preset())
591 
592  std::shared_ptr<ADDirichletBCBase> addbc = std::dynamic_pointer_cast<ADDirichletBCBase>(bc);
593  if (addbc && addbc->preset())
595  }
596 
597  // IntegratedBCBase
598  else if (ibc)
599  {
600  _integrated_bcs.addObject(ibc, tid);
601  // Add to theWarehouse, a centralized storage for all moose objects
603  _vars[tid].addBoundaryVars(boundary_ids, ibc->getCoupledVars());
604 
605  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
606  _has_save_in = true;
607  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
608  _has_diag_save_in = true;
609 
610  for (tid = 1; tid < libMesh::n_threads(); tid++)
611  {
612  // Create the object
613  bc = _factory.create<BoundaryCondition>(bc_name, name, parameters, tid);
614 
615  // Give users opportunity to set some parameters
617 
618  // Active BoundaryIDs for the object
619  const std::set<BoundaryID> & boundary_ids = bc->boundaryIDs();
620  _vars[tid].addBoundaryVar(boundary_ids, bc_var);
621 
622  ibc = std::static_pointer_cast<IntegratedBCBase>(bc);
623 
624  _integrated_bcs.addObject(ibc, tid);
625  _vars[tid].addBoundaryVars(boundary_ids, ibc->getCoupledVars());
626  }
627  }
628 
629  else
630  mooseError("Unknown BoundaryCondition type for object named ", bc->name());
631 }
unsigned int n_threads()
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
Base class for automatic differentiation Dirichlet BCs.
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Base boundary condition of a Dirichlet type.
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
Factory & _factory
Definition: SystemBase.h:989
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
This class provides an interface for common operations on field variables of both FE and FV types wit...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
Base class for deriving any boundary condition that works at nodes.
Definition: NodalBCBase.h:26
Base class for creating new types of boundary conditions.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
Base class for deriving any boundary condition of a integrated type.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ addConstraint()

void NonlinearSystemBase::addConstraint ( const std::string &  c_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a Constraint.

Parameters
c_nameThe type of the constraint
nameThe name of the constraint
parametersConstraint parameters

Definition at line 634 of file NonlinearSystemBase.C.

637 {
638  std::shared_ptr<Constraint> constraint = _factory.create<Constraint>(c_name, name, parameters);
639  _constraints.addObject(constraint);
640  postAddResidualObject(*constraint);
641 
642  if (constraint && constraint->addCouplingEntriesToJacobian())
644 }
void addImplicitGeometricCouplingEntriesToJacobian(bool add=true)
If called with true this will add entries into the jacobian to link together degrees of freedom that ...
Base class for all Constraint types.
Definition: Constraint.h:19
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
ConstraintWarehouse _constraints
Constraints storage object.
void addObject(std::shared_ptr< Constraint > object, THREAD_ID tid=0, bool recurse=true) override
Add Constraint object to the warehouse.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.

◆ addDamper()

void NonlinearSystemBase::addDamper ( const std::string &  damper_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a damper.

Parameters
damper_nameThe type of the damper
nameThe name of the damper
parametersDamper parameters

Definition at line 707 of file NonlinearSystemBase.C.

710 {
711  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
712  {
713  std::shared_ptr<Damper> damper = _factory.create<Damper>(damper_name, name, parameters, tid);
714 
715  // Attempt to cast to the damper types
716  std::shared_ptr<ElementDamper> ed = std::dynamic_pointer_cast<ElementDamper>(damper);
717  std::shared_ptr<NodalDamper> nd = std::dynamic_pointer_cast<NodalDamper>(damper);
718  std::shared_ptr<GeneralDamper> gd = std::dynamic_pointer_cast<GeneralDamper>(damper);
719 
720  if (gd)
721  {
723  break; // not threaded
724  }
725  else if (ed)
726  _element_dampers.addObject(ed, tid);
727  else if (nd)
728  _nodal_dampers.addObject(nd, tid);
729  else
730  mooseError("Invalid damper type");
731  }
732 }
Base class for deriving general dampers.
Definition: GeneralDamper.h:21
unsigned int n_threads()
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Factory & _factory
Definition: SystemBase.h:989
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
std::unique_ptr< T_DEST, T_DELETER > dynamic_pointer_cast(std::unique_ptr< T_SRC, T_DELETER > &src)
These are reworked from https://stackoverflow.com/a/11003103.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
Base class for deriving nodal dampers.
Definition: NodalDamper.h:27
Base class for deriving element dampers.
Definition: ElementDamper.h:33
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Base class for deriving dampers.
Definition: Damper.h:24
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addDGKernel()

void NonlinearSystemBase::addDGKernel ( std::string  dg_kernel_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a DG kernel.

Parameters
dg_kernel_nameThe type of the DG kernel
nameThe name of the DG kernel
parametersDG kernel parameters

Definition at line 663 of file NonlinearSystemBase.C.

666 {
667  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
668  {
669  auto dg_kernel = _factory.create<DGKernelBase>(dg_kernel_name, name, parameters, tid);
670  _dg_kernels.addObject(dg_kernel, tid);
671  // Add to theWarehouse, a centralized storage for all moose objects
672  _fe_problem.theWarehouse().add(dg_kernel);
673  postAddResidualObject(*dg_kernel);
674  }
675 
676  _doing_dg = true;
677 
678  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
679  _has_save_in = true;
680  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
681  _has_diag_save_in = true;
682 }
unsigned int n_threads()
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
Serves as a base class for DGKernel and ADDGKernel.
Definition: DGKernelBase.h:32
virtual const std::string & name() const
Definition: SystemBase.C:1340
bool _doing_dg
true if DG is active (optimization reasons)
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addDiracKernel()

void NonlinearSystemBase::addDiracKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a Dirac kernel.

Parameters
kernel_nameThe type of the dirac kernel
nameThe name of the Dirac kernel
parametersDirac kernel parameters

Definition at line 647 of file NonlinearSystemBase.C.

650 {
651  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
652  {
653  std::shared_ptr<DiracKernelBase> kernel =
654  _factory.create<DiracKernelBase>(kernel_name, name, parameters, tid);
655  postAddResidualObject(*kernel);
656  _dirac_kernels.addObject(kernel, tid);
657  // Add to theWarehouse, a centralized storage for all moose objects
658  _fe_problem.theWarehouse().add(kernel);
659  }
660 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
DiracKernelBase is the base class for all DiracKernel type classes.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addDotVectors()

void SystemBase::addDotVectors ( )
virtualinherited

Add u_dot, u_dotdot, u_dot_old and u_dotdot_old vectors if requested by the time integrator.

Reimplemented in DisplacedSystem.

Definition at line 1633 of file SystemBase.C.

Referenced by DisplacedSystem::addDotVectors().

1634 {
1635  if (_fe_problem.uDotRequested())
1636  _u_dot = &addVector("u_dot", true, GHOSTED);
1638  _u_dot_old = &addVector("u_dot_old", true, GHOSTED);
1640  _u_dotdot = &addVector("u_dotdot", true, GHOSTED);
1642  _u_dotdot_old = &addVector("u_dotdot_old", true, GHOSTED);
1643 }
virtual bool uDotDotOldRequested()
Get boolean flag to check whether old solution second time derivative needs to be stored...
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011
virtual bool uDotRequested()
Get boolean flag to check whether solution time derivative needs to be stored.
virtual bool uDotDotRequested()
Get boolean flag to check whether solution second time derivative needs to be stored.
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
virtual bool uDotOldRequested()
Get boolean flag to check whether old solution time derivative needs to be stored.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ addHDGKernel()

void NonlinearSystemBase::addHDGKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a hybridized discontinuous Galerkin (HDG) kernel.

Parameters
kernel_nameThe type of the hybridized kernel
nameThe name of the hybridized kernel
parametersHDG kernel parameters

Definition at line 492 of file NonlinearSystemBase.C.

495 {
496  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
497  {
498  // Create the kernel object via the factory and add to warehouse
499  auto kernel = _factory.create<HDGKernel>(kernel_name, name, parameters, tid);
500  _kernels.addObject(kernel, tid);
501  _hybridized_kernels.addObject(kernel, tid);
502  // Add to theWarehouse, a centralized storage for all moose objects
503  _fe_problem.theWarehouse().add(kernel);
504  postAddResidualObject(*kernel);
505  }
506 }
A kernel for hybridized finite element formulations.
Definition: HDGKernel.h:17
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
MooseObjectTagWarehouse< HDGKernel > _hybridized_kernels
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addImplicitGeometricCouplingEntries()

void NonlinearSystemBase::addImplicitGeometricCouplingEntries ( GeometricSearchData geom_search_data)
inherited

Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled that are related geometrically (i.e.

near each other across a gap).

Definition at line 2329 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal().

2330 {
2331  if (!hasMatrix(systemMatrixTag()))
2332  mooseError("Need a system matrix ");
2333 
2334  // At this point, have no idea how to make
2335  // this work with tag system
2336  auto & jacobian = getMatrix(systemMatrixTag());
2337 
2338  std::unordered_map<dof_id_type, std::vector<dof_id_type>> graph;
2339 
2340  findImplicitGeometricCouplingEntries(geom_search_data, graph);
2341 
2342  for (const auto & it : graph)
2343  {
2344  dof_id_type dof = it.first;
2345  const auto & row = it.second;
2346 
2347  for (const auto & coupled_dof : row)
2348  jacobian.add(dof, coupled_dof, 0);
2349  }
2350 }
void findImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
Finds the implicit sparsity graph between geometrically related dofs.
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
uint8_t dof_id_type

◆ addImplicitGeometricCouplingEntriesToJacobian()

void NonlinearSystemBase::addImplicitGeometricCouplingEntriesToJacobian ( bool  add = true)
inlineinherited

If called with true this will add entries into the jacobian to link together degrees of freedom that are found to be related through the geometric search system.

These entries are really only used by the Finite Difference Preconditioner and the constraint system right now.

Definition at line 510 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::addConstraint(), and FiniteDifferencePreconditioner::FiniteDifferencePreconditioner().

511  {
513  }
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.

◆ addInterfaceKernel()

void NonlinearSystemBase::addInterfaceKernel ( std::string  interface_kernel_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds an interface kernel.

Parameters
interface_kernel_nameThe type of the interface kernel
nameThe name of the interface kernel
parametersinterface kernel parameters

Definition at line 685 of file NonlinearSystemBase.C.

688 {
689  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
690  {
691  std::shared_ptr<InterfaceKernelBase> interface_kernel =
692  _factory.create<InterfaceKernelBase>(interface_kernel_name, name, parameters, tid);
693  postAddResidualObject(*interface_kernel);
694 
695  const std::set<BoundaryID> & boundary_ids = interface_kernel->boundaryIDs();
696  auto ik_var = dynamic_cast<const MooseVariableFieldBase *>(&interface_kernel->variable());
697  _vars[tid].addBoundaryVar(boundary_ids, ik_var);
698 
699  _interface_kernels.addObject(interface_kernel, tid);
700  // Add to theWarehouse, a centralized storage for all moose objects
701  _fe_problem.theWarehouse().add(interface_kernel);
702  _vars[tid].addBoundaryVars(boundary_ids, interface_kernel->getCoupledVars());
703  }
704 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
This class provides an interface for common operations on field variables of both FE and FV types wit...
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
InterfaceKernelBase is the base class for all InterfaceKernel type classes.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addKernel()

void NonlinearSystemBase::addKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

Reimplemented in MooseEigenSystem.

Definition at line 470 of file NonlinearSystemBase.C.

473 {
474  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
475  {
476  // Create the kernel object via the factory and add to warehouse
477  std::shared_ptr<KernelBase> kernel =
478  _factory.create<KernelBase>(kernel_name, name, parameters, tid);
479  _kernels.addObject(kernel, tid);
480  postAddResidualObject(*kernel);
481  // Add to theWarehouse, a centralized storage for all moose objects
482  _fe_problem.theWarehouse().add(kernel);
483  }
484 
485  if (parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
486  _has_save_in = true;
487  if (parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
488  _has_diag_save_in = true;
489 }
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
This is the common base class for the three main kernel types implemented in MOOSE, Kernel, VectorKernel and ArrayKernel.
Definition: KernelBase.h:23
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addKokkosBoundaryCondition()

void NonlinearSystemBase::addKokkosBoundaryCondition ( const std::string &  bc_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a Kokkos boundary condition.

Parameters
bc_nameThe type of the boundary condition
nameThe name of the boundary condition
parametersBoundary condition parameters

◆ addKokkosKernel()

virtual void NonlinearSystemBase::addKokkosKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a Kokkos kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

◆ addKokkosNodalKernel()

virtual void NonlinearSystemBase::addKokkosNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a Kokkos nodal kernel.

Parameters
kernel_nameThe type of the nodal kernel
nameThe name of the kernel
parametersKernel parameters

◆ addMatrix()

SparseMatrix< Number > & SystemBase::addMatrix ( TagID  tag)
inherited

Adds a matrix with a given tag.

Parameters
tag_nameThe name of the tag

Definition at line 570 of file SystemBase.C.

571 {
572  if (!_subproblem.matrixTagExists(tag))
573  mooseError("Cannot add tagged matrix with TagID ",
574  tag,
575  " in system '",
576  name(),
577  "' because the tag does not exist in the problem");
578 
579  if (hasMatrix(tag))
580  return getMatrix(tag);
581 
582  const auto matrix_name = _subproblem.matrixTagName(tag);
583  SparseMatrix<Number> & mat = system().add_matrix(matrix_name);
584  associateMatrixToTag(mat, tag);
585 
586  return mat;
587 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329
virtual TagName matrixTagName(TagID tag)
Retrieve the name associated with a TagID.
Definition: SubProblem.C:358

◆ addNodalKernel()

void NonlinearSystemBase::addNodalKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
virtualinherited

Adds a NodalKernel.

Parameters
kernel_nameThe type of the nodal kernel
nameThe name of the kernel
parametersKernel parameters

Definition at line 509 of file NonlinearSystemBase.C.

512 {
513  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
514  {
515  // Create the kernel object via the factory and add to the warehouse
516  std::shared_ptr<NodalKernelBase> kernel =
517  _factory.create<NodalKernelBase>(kernel_name, name, parameters, tid);
518  _nodal_kernels.addObject(kernel, tid);
519  // Add to theWarehouse, a centralized storage for all moose objects
520  _fe_problem.theWarehouse().add(kernel);
521  postAddResidualObject(*kernel);
522  }
523 
524  if (parameters.have_parameter<std::vector<AuxVariableName>>("save_in") &&
525  parameters.get<std::vector<AuxVariableName>>("save_in").size() > 0)
526  _has_save_in = true;
527  if (parameters.have_parameter<std::vector<AuxVariableName>>("save_in") &&
528  parameters.get<std::vector<AuxVariableName>>("diag_save_in").size() > 0)
529  _has_diag_save_in = true;
530 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
unsigned int n_threads()
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
Base class for creating new types of nodal kernels.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ addScalarKernel()

void NonlinearSystemBase::addScalarKernel ( const std::string &  kernel_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a scalar kernel.

Parameters
kernel_nameThe type of the kernel
nameThe name of the kernel
parametersKernel parameters

Definition at line 533 of file NonlinearSystemBase.C.

536 {
537  std::shared_ptr<ScalarKernelBase> kernel =
538  _factory.create<ScalarKernelBase>(kernel_name, name, parameters);
539  postAddResidualObject(*kernel);
540  // Add to theWarehouse, a centralized storage for all moose objects
541  _fe_problem.theWarehouse().add(kernel);
542  _scalar_kernels.addObject(kernel);
543 }
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Base class shared by AD and non-AD scalar kernels.
virtual void postAddResidualObject(ResidualObject &)
Called after any ResidualObject-derived objects are added to the system.
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true) override
Adds an object to the storage structure.
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ addScalingVector()

void SystemBase::addScalingVector ( )
inherited

Add the scaling factor vector to the system.

Definition at line 1545 of file SystemBase.C.

Referenced by MooseVariableBase::initialSetup().

1546 {
1547  addVector("scaling_factors", /*project=*/false, libMesh::ParallelType::GHOSTED);
1549 }
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
void hasScalingVector(const unsigned int nl_sys_num)
Tells this problem that the assembly associated with the given nonlinear system number involves a sca...
Definition: SubProblem.C:1171
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157

◆ addSplit()

void NonlinearSystemBase::addSplit ( const std::string &  split_name,
const std::string &  name,
InputParameters parameters 
)
inherited

Adds a split.

Parameters
split_nameThe type of the split
nameThe name of the split
parametersSplit parameters

Definition at line 735 of file NonlinearSystemBase.C.

738 {
739  std::shared_ptr<Split> split = _factory.create<Split>(split_name, name, parameters);
741  // Add to theWarehouse, a centralized storage for all moose objects
743 }
Base class for split-based preconditioners.
Definition: Split.h:25
void add(std::shared_ptr< MooseObject > obj)
add adds a new object to the warehouse and stores attributes/metadata about it for running queries/fi...
Definition: TheWarehouse.C:116
Factory & _factory
Definition: SystemBase.h:989
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
TheWarehouse & theWarehouse() const
tbb::split split
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void addObject(std::shared_ptr< T > object, THREAD_ID tid=0, bool recurse=true)
Adds an object to the storage structure.

◆ addTimeIntegrator()

void SystemBase::addTimeIntegrator ( const std::string &  type,
const std::string &  name,
InputParameters parameters 
)
inherited

Definition at line 1658 of file SystemBase.C.

1661 {
1662  parameters.set<SystemBase *>("_sys") = this;
1663  _time_integrators.push_back(_factory.create<TimeIntegrator>(type, name, parameters));
1664 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
Factory & _factory
Definition: SystemBase.h:989
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual std::unique_ptr< Base > create()=0
Base class for time integrators.

◆ addVariable()

void SystemBase::addVariable ( const std::string &  var_type,
const std::string &  var_name,
InputParameters parameters 
)
virtualinherited

Canonical method for adding a variable.

Parameters
var_typethe type of the variable, e.g. MooseVariableScalar
var_namethe variable name, e.g. 'u'
paramsthe InputParameters from which to construct the variable

Reimplemented in AuxiliarySystem.

Definition at line 718 of file SystemBase.C.

Referenced by AuxiliarySystem::addVariable().

721 {
723 
724  const auto components = parameters.get<unsigned int>("components");
725 
726  // Convert the std::vector parameter provided by the user into a std::set for use by libMesh's
727  // System::add_variable method
728  std::set<SubdomainID> blocks;
729  const auto & block_param = parameters.get<std::vector<SubdomainName>>("block");
730  for (const auto & subdomain_name : block_param)
731  {
732  SubdomainID blk_id = _mesh.getSubdomainID(subdomain_name);
733  blocks.insert(blk_id);
734  }
735 
736  const auto fe_type =
737  FEType(Utility::string_to_enum<Order>(parameters.get<MooseEnum>("order")),
738  Utility::string_to_enum<FEFamily>(parameters.get<MooseEnum>("family")));
739  const auto fe_field_type = FEInterface::field_type(fe_type);
740 
741  unsigned int var_num;
742 
743  if (var_type == "ArrayMooseVariable")
744  {
745  if (fe_field_type == TYPE_VECTOR)
746  mooseError("Vector family type cannot be used in an array variable");
747 
748  std::vector<std::string> array_var_component_names;
749  const bool has_array_names = parameters.isParamValid("array_var_component_names");
750  if (has_array_names)
751  {
752  array_var_component_names =
753  parameters.get<std::vector<std::string>>("array_var_component_names");
754  if (array_var_component_names.size() != components)
755  parameters.paramError("array_var_component_names",
756  "Must be the same size as 'components' (size ",
757  components,
758  ") for array variable '",
759  name,
760  "'");
761  }
762 
763  // Build up the variable names
764  std::vector<std::string> var_names;
765  for (unsigned int i = 0; i < components; i++)
766  {
767  if (!has_array_names)
768  array_var_component_names.push_back(std::to_string(i));
769  var_names.push_back(name + "_" + array_var_component_names[i]);
770  }
771 
772  // makes sure there is always a name, either the provided one or '1 2 3 ...'
773  parameters.set<std::vector<std::string>>("array_var_component_names") =
774  array_var_component_names;
775 
776  // The number returned by libMesh is the _last_ variable number... we want to hold onto the
777  // _first_
778  var_num = system().add_variable_array(var_names, fe_type, &blocks) - (components - 1);
779 
780  // Set as array variable
781  if (parameters.isParamSetByUser("array") && !parameters.get<bool>("array"))
782  parameters.paramError("array",
783  "Must be set to true for variable '",
784  name,
785  "' because 'components' > 1 (is an array variable)");
786  parameters.set<bool>("array") = true;
787  }
788  else
789  {
790  if (parameters.isParamSetByUser("array_var_component_names"))
791  parameters.paramError("array_var_component_names",
792  "Should not be set because this variable (",
793  name,
794  ") is a non-array variable");
795  var_num = system().add_variable(name, fe_type, &blocks);
796  }
797 
798  parameters.set<unsigned int>("_var_num") = var_num;
799  parameters.set<SystemBase *>("_system_base") = this;
800 
801  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
802  {
803  parameters.set<THREAD_ID>("tid") = tid;
804  std::shared_ptr<MooseVariableBase> var =
805  _factory.create<MooseVariableBase>(var_type, name, parameters, tid);
806 
807  _vars[tid].add(name, var);
808 
809  if (auto fe_var = dynamic_cast<MooseVariableFieldBase *>(var.get()))
810  {
811  auto required_size = var_num + components;
812  if (required_size > _numbered_vars[tid].size())
813  _numbered_vars[tid].resize(required_size);
814  for (MooseIndex(components) component = 0; component < components; ++component)
815  _numbered_vars[tid][var_num + component] = fe_var;
816 
817  if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADReal> *>(fe_var))
818  _subproblem.addFunctor(name, *functor, tid);
819  else if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADRealVectorValue> *>(fe_var))
820  _subproblem.addFunctor(name, *functor, tid);
821  else if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADRealEigenVector> *>(fe_var))
822  _subproblem.addFunctor(name, *functor, tid);
823  else
824  mooseError("This should be a functor");
825  }
826 
827  if (auto scalar_var = dynamic_cast<MooseVariableScalar *>(var.get()))
828  {
829  if (auto * const functor = dynamic_cast<Moose::FunctorBase<ADReal> *>(scalar_var))
830  _subproblem.addFunctor(name, *functor, tid);
831  else
832  mooseError("Scalar variables should be functors");
833  }
834 
835  if (var->blockRestricted())
836  for (const SubdomainID & id : var->blockIDs())
837  for (MooseIndex(components) component = 0; component < components; ++component)
838  _var_map[var_num + component].insert(id);
839  else
840  for (MooseIndex(components) component = 0; component < components; ++component)
841  _var_map[var_num + component] = std::set<SubdomainID>();
842  }
843 
844  // getMaxVariableNumber is an API method used in Rattlesnake
845  if (var_num > _max_var_number)
846  _max_var_number = var_num;
847  _du_dot_du.resize(var_num + 1);
848 }
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
Map variable number to its pointer.
Definition: SystemBase.h:1052
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017
unsigned int n_threads()
char ** blocks
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
T & set(const std::string &name, bool quiet_mode=false)
Returns a writable reference to the named parameters.
unsigned int add_variable_array(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
void addFunctor(const std::string &name, const Moose::FunctorBase< T > &functor, const THREAD_ID tid)
add a functor to the problem functor container
Definition: SubProblem.h:1380
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
Factory & _factory
Definition: SystemBase.h:989
Base class for a system (of equations)
Definition: SystemBase.h:84
virtual const std::string & name() const
Definition: SystemBase.C:1340
void paramError(const std::string &param, Args... args) const
Emits a parameter error prefixed with the parameter location and object information if available...
virtual std::unique_ptr< Base > create()=0
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
This is a "smart" enum class intended to replace many of the shortcomings in the C++ enum type It sho...
Definition: MooseEnum.h:33
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998
bool isParamSetByUser(const std::string &name) const
Method returns true if the parameter was set by the user.
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
MooseMesh & _mesh
Definition: SystemBase.h:991
unsigned int _max_var_number
Maximum variable number.
Definition: SystemBase.h:1000
Base variable class.
unsigned int THREAD_ID
Definition: MooseTypes.h:237
SubdomainID getSubdomainID(const SubdomainName &subdomain_name) const
Get the associated subdomain ID for the subdomain name.
Definition: MooseMesh.C:1781
bool isParamValid(const std::string &name) const
This method returns parameters that have been initialized in one fashion or another, i.e.

◆ addVariableToCopy()

void SystemBase::addVariableToCopy ( const std::string &  dest_name,
const std::string &  source_name,
const std::string &  timestep 
)
virtualinherited

Add info about variable that will be copied.

Parameters
dest_nameName of the nodal variable being used for copying into (name is from the exodusII file)
source_nameName of the nodal variable being used for copying from (name is from the exodusII file)
timestepTimestep in the file being used

Definition at line 1175 of file SystemBase.C.

Referenced by CopyNodalVarsAction::act(), and PhysicsBase::copyVariablesFromMesh().

1178 {
1179  _var_to_copy.push_back(VarCopyInfo(dest_name, source_name, timestep));
1180 }
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040
Information about variables that will be copied.
Definition: SystemBase.h:66

◆ addVariableToZeroOnJacobian()

void SystemBase::addVariableToZeroOnJacobian ( std::string  var_name)
virtualinherited

Adds this variable to the list of variables to be zeroed during each Jacobian evaluation.

Parameters
var_nameThe name of the variable to be zeroed.

Reimplemented in DisplacedSystem.

Definition at line 180 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), DisplacedSystem::addVariableToZeroOnJacobian(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ArrayDGKernel::ArrayDGKernel(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), DGKernel::DGKernel(), IntegratedBC::IntegratedBC(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), Kernel::Kernel(), NodalBC::NodalBC(), and NodalKernel::NodalKernel().

181 {
182  _vars_to_be_zeroed_on_jacobian.push_back(var_name);
183 }
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
Definition: SystemBase.h:1003

◆ addVariableToZeroOnResidual()

void SystemBase::addVariableToZeroOnResidual ( std::string  var_name)
virtualinherited

Adds this variable to the list of variables to be zeroed during each residual evaluation.

Parameters
var_nameThe name of the variable to be zeroed.

Reimplemented in DisplacedSystem.

Definition at line 174 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), DisplacedSystem::addVariableToZeroOnResidual(), ADIntegratedBCTempl< T >::ADIntegratedBCTempl(), ADKernelTempl< T >::ADKernelTempl(), ArrayDGKernel::ArrayDGKernel(), ArrayIntegratedBC::ArrayIntegratedBC(), ArrayKernel::ArrayKernel(), DGKernel::DGKernel(), IntegratedBC::IntegratedBC(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), Kernel::Kernel(), NodalBC::NodalBC(), and NodalKernel::NodalKernel().

175 {
176  _vars_to_be_zeroed_on_residual.push_back(var_name);
177 }
std::vector< std::string > _vars_to_be_zeroed_on_residual
Definition: SystemBase.h:1002

◆ addVector() [1/2]

NumericVector<Number>& SystemBase::addVector ( const std::string &  vector_name,
const bool  project,
const libMesh::ParallelType  type 
)
inherited

Adds a solution length vector to the system.

Parameters
vector_nameThe name of the vector.
projectWhether or not to project this vector when doing mesh refinement. If the vector is just going to be recomputed then there is no need to project it.
typeWhat type of parallel vector. This is usually either PARALLEL or GHOSTED. GHOSTED is needed if you are going to be accessing off-processor entries. The ghosting pattern is the same as the solution vector.

Referenced by SystemBase::addDotVectors(), SystemBase::addScalingVector(), NonlinearTimeIntegratorInterface::addVector(), SecantSolve::allocateStorage(), SteffensenSolve::allocateStorage(), PicardSolve::allocateStorage(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), CentralDifference::initialSetup(), SystemBase::needSolutionState(), NonlinearSystemBase::residualGhosted(), and SystemBase::saveOldSolutions().

◆ addVector() [2/2]

NumericVector<Number>& SystemBase::addVector ( TagID  tag,
const bool  project,
const libMesh::ParallelType  type 
)
inherited

Adds a solution length vector to the system with the specified TagID.

Parameters
tag_nameThe name of the tag
projectWhether or not to project this vector when doing mesh refinement. If the vector is just going to be recomputed then there is no need to project it.
typeWhat type of parallel vector. This is usually either PARALLEL or GHOSTED. GHOSTED is needed if you are going to be accessing off-processor entries. The ghosting pattern is the same as the solution vector.

◆ applyScalingFactors()

void SystemBase::applyScalingFactors ( const std::vector< Real > &  inverse_scaling_factors)
inherited

Applies scaling factors to the system's variables.

Parameters
inverse_scaling_factorsA vector containing the inverse of each variable's scaling factor, e.g. 1 / scaling_factor

Definition at line 1495 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeScaling().

1496 {
1497  for (MooseIndex(_vars) thread = 0; thread < _vars.size(); ++thread)
1498  {
1499  auto & field_variables = _vars[thread].fieldVariables();
1500  for (MooseIndex(field_variables) i = 0, p = 0; i < field_variables.size(); ++i)
1501  {
1502  auto factors = field_variables[i]->arrayScalingFactor();
1503  for (unsigned int j = 0; j < field_variables[i]->count(); ++j, ++p)
1504  factors[j] /= inverse_scaling_factors[p];
1505 
1506  field_variables[i]->scalingFactor(factors);
1507  }
1508 
1509  auto offset = field_variables.size();
1510 
1511  auto & scalar_variables = _vars[thread].scalars();
1512  for (MooseIndex(scalar_variables) i = 0; i < scalar_variables.size(); ++i)
1513  scalar_variables[i]->scalingFactor(
1514  {1. / inverse_scaling_factors[offset + i] * scalar_variables[i]->scalingFactor()});
1515 
1516  if (thread == 0 && _verbose)
1517  {
1518  _console << "Automatic scaling factors:\n";
1519  auto original_flags = _console.flags();
1520  auto original_precision = _console.precision();
1521  _console.unsetf(std::ios_base::floatfield);
1522  _console.precision(6);
1523 
1524  for (const auto & field_variable : field_variables)
1525  {
1526  const auto & factors = field_variable->arrayScalingFactor();
1527  _console << " " << field_variable->name() << ":";
1528  for (const auto i : make_range(field_variable->count()))
1529  _console << " " << factors[i];
1530  _console << "\n";
1531  }
1532  for (const auto & scalar_variable : scalar_variables)
1533  _console << " " << scalar_variable->name() << ": " << scalar_variable->scalingFactor()
1534  << "\n";
1535  _console << "\n" << std::endl;
1536 
1537  // restore state
1538  _console.flags(original_flags);
1539  _console.precision(original_precision);
1540  }
1541  }
1542 }
std::ios_base::fmtflags flags() const
Return the current flags.
Definition: ConsoleStream.C:56
void unsetf(std::ios_base::fmtflags mask) const
Unset format flags.
Definition: ConsoleStream.C:38
std::streamsize precision() const
Return the current precision.
Definition: ConsoleStream.C:44
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
bool _verbose
True if printing out additional information.
Definition: SystemBase.h:1058
IntRange< T > make_range(T beg, T end)
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ assembleConstraintsSeparately()

void NonlinearSystemBase::assembleConstraintsSeparately ( bool  separately = true)
inlineinherited

Indicates whether to assemble residual and Jacobian after each constraint application.

When true, enables "transitive" constraint application: subsequent constraints can use prior constraints' results.

Definition at line 520 of file NonlinearSystemBase.h.

521  {
523  }
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...

◆ assembleScalingVector()

void NonlinearSystemBase::assembleScalingVector ( )
protectedinherited

Assemble the numeric vector of scaling factors such that it can be used during assembly of the system matrix.

Definition at line 4184 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeScaling(), and NonlinearSystemBase::preSolve().

4185 {
4186  if (!hasVector("scaling_factors"))
4187  // No variables have indicated they need scaling
4188  return;
4189 
4190  auto & scaling_vector = getVector("scaling_factors");
4191 
4192  const auto & lm_mesh = _mesh.getMesh();
4193  const auto & dof_map = dofMap();
4194 
4195  const auto & field_variables = _vars[0].fieldVariables();
4196  const auto & scalar_variables = _vars[0].scalars();
4197 
4198  std::vector<dof_id_type> dof_indices;
4199 
4200  for (const Elem * const elem :
4201  as_range(lm_mesh.active_local_elements_begin(), lm_mesh.active_local_elements_end()))
4202  for (const auto * const field_var : field_variables)
4203  {
4204  const auto & factors = field_var->arrayScalingFactor();
4205  for (const auto i : make_range(field_var->count()))
4206  {
4207  dof_map.dof_indices(elem, dof_indices, field_var->number() + i);
4208  for (const auto dof : dof_indices)
4209  scaling_vector.set(dof, factors[i]);
4210  }
4211  }
4212 
4213  for (const auto * const scalar_var : scalar_variables)
4214  {
4215  mooseAssert(scalar_var->count() == 1,
4216  "Scalar variables should always have only one component.");
4217  dof_map.SCALAR_dof_indices(dof_indices, scalar_var->number());
4218  for (const auto dof : dof_indices)
4219  scaling_vector.set(dof, scalar_var->scalingFactor());
4220  }
4221 
4222  // Parallel assemble
4223  scaling_vector.close();
4224 
4225  if (auto * displaced_problem = _fe_problem.getDisplacedProblem().get())
4226  // copy into the corresponding displaced system vector because they should be the exact same
4227  displaced_problem->systemBaseNonlinear(number()).getVector("scaling_factors") = scaling_vector;
4228 }
std::shared_ptr< DisplacedProblem > displaced_problem
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3528
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
MooseMesh & _mesh
Definition: SystemBase.h:991
IntRange< T > make_range(T beg, T end)
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ assignMaxVarNDofsPerElem()

void SystemBase::assignMaxVarNDofsPerElem ( std::size_t  max_dofs)
inlineinherited

assign the maximum element dofs

Definition at line 597 of file SystemBase.h.

597 { _max_var_n_dofs_per_elem = max_dofs; }
size_t _max_var_n_dofs_per_elem
Maximum number of dofs for any one variable on any one element.
Definition: SystemBase.h:1043

◆ assignMaxVarNDofsPerNode()

void SystemBase::assignMaxVarNDofsPerNode ( std::size_t  max_dofs)
inlineinherited

assign the maximum node dofs

Definition at line 602 of file SystemBase.h.

602 { _max_var_n_dofs_per_node = max_dofs; }
size_t _max_var_n_dofs_per_node
Maximum number of dofs for any one variable on any one node.
Definition: SystemBase.h:1046

◆ associateMatrixToTag()

void SystemBase::associateMatrixToTag ( libMesh::SparseMatrix< Number > &  matrix,
TagID  tag 
)
virtualinherited

Associate a matrix to a tag.

Reimplemented in DisplacedSystem.

Definition at line 1076 of file SystemBase.C.

Referenced by SystemBase::addMatrix(), DisplacedSystem::associateMatrixToTag(), NonlinearSystemBase::computeJacobian(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), and FEProblemBase::computeResidualAndJacobian().

1077 {
1078  if (!_subproblem.matrixTagExists(tag))
1079  mooseError("Cannot associate matrix to tag ", tag, " because that tag does not exist");
1080 
1081  if (_tagged_matrices.size() < tag + 1)
1082  _tagged_matrices.resize(tag + 1);
1083 
1084  _tagged_matrices[tag] = &matrix;
1085 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ associateVectorToTag()

void SystemBase::associateVectorToTag ( NumericVector< Number > &  vec,
TagID  tag 
)
virtualinherited

Associate a vector for a given tag.

Reimplemented in DisplacedSystem.

Definition at line 981 of file SystemBase.C.

Referenced by DisplacedSystem::associateVectorToTag(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTag(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualType(), LinearSystem::LinearSystem(), and SolverSystem::setSolution().

982 {
983  if (!_subproblem.vectorTagExists(tag))
984  mooseError("Cannot associate vector to tag ", tag, " because that tag does not exist");
985 
986  if (_tagged_vectors.size() < tag + 1)
987  _tagged_vectors.resize(tag + 1);
988 
989  _tagged_vectors[tag] = &vec;
990 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ attachPreconditioner()

virtual void DumpObjectsNonlinearSystem::attachPreconditioner ( libMesh::Preconditioner< Number > *  preconditioner)
inlineoverridevirtual

Attach a customized preconditioner that requires physics knowledge.

Generic preconditioners should be implemented in PETSc, instead.

Implements NonlinearSystemBase.

Definition at line 38 of file DumpObjectsNonlinearSystem.h.

39  {
40  }

◆ augmentSendList()

void SystemBase::augmentSendList ( std::vector< dof_id_type > &  send_list)
virtualinherited

Will modify the send_list to add all of the extra ghosted dofs for this system.

Reimplemented in DisplacedSystem.

Definition at line 452 of file SystemBase.C.

Referenced by DisplacedSystem::augmentSendList(), and extraSendList().

453 {
454  std::set<dof_id_type> & ghosted_elems = _subproblem.ghostedElems();
455 
456  DofMap & dof_map = dofMap();
457 
458  std::vector<dof_id_type> dof_indices;
459 
460  System & sys = system();
461 
462  unsigned int sys_num = sys.number();
463 
464  unsigned int n_vars = sys.n_vars();
465 
466  for (const auto & elem_id : ghosted_elems)
467  {
468  Elem * elem = _mesh.elemPtr(elem_id);
469 
470  if (elem->active())
471  {
472  dof_map.dof_indices(elem, dof_indices);
473 
474  // Only need to ghost it if it's actually not on this processor
475  for (const auto & dof : dof_indices)
476  if (dof < dof_map.first_dof() || dof >= dof_map.end_dof())
477  send_list.push_back(dof);
478 
479  // Now add the DoFs from all of the nodes. This is necessary because of block
480  // restricted variables. A variable might not live _on_ this element but it
481  // might live on nodes connected to this element.
482  for (unsigned int n = 0; n < elem->n_nodes(); n++)
483  {
484  Node * node = elem->node_ptr(n);
485 
486  // Have to get each variable's dofs
487  for (unsigned int v = 0; v < n_vars; v++)
488  {
489  const Variable & var = sys.variable(v);
490  unsigned int var_num = var.number();
491  unsigned int n_comp = var.n_components();
492 
493  // See if this variable has any dofs at this node
494  if (node->n_dofs(sys_num, var_num) > 0)
495  {
496  // Loop over components of the variable
497  for (unsigned int c = 0; c < n_comp; c++)
498  send_list.push_back(node->dof_number(sys_num, var_num, c));
499  }
500  }
501  }
502  }
503  }
504 }
dof_id_type end_dof(const processor_id_type proc) const
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
const Variable & variable(unsigned int var) const
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3193
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
unsigned int n_dofs(const unsigned int s, const unsigned int var=libMesh::invalid_uint) const
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
unsigned int number() const
unsigned int n_vars
virtual unsigned int n_nodes() const=0
unsigned int n_components() const
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual std::set< dof_id_type > & ghostedElems()
Return the list of elements that should have their DoFs ghosted to this processor.
Definition: SubProblem.h:672
MooseMesh & _mesh
Definition: SystemBase.h:991
const Node * node_ptr(const unsigned int i) const
dof_id_type first_dof(const processor_id_type proc) const
unsigned int number() const
unsigned int n_vars() const
bool active() const

◆ augmentSparsity()

void NonlinearSystemBase::augmentSparsity ( libMesh::SparsityPattern::Graph sparsity,
std::vector< dof_id_type > &  n_nz,
std::vector< dof_id_type > &  n_oz 
)
overridevirtualinherited

Will modify the sparsity pattern to add logical geometric connections.

Implements SystemBase.

Definition at line 3564 of file NonlinearSystemBase.C.

3567 {
3569  {
3571 
3572  std::unordered_map<dof_id_type, std::vector<dof_id_type>> graph;
3573 
3575 
3578  graph);
3579 
3580  const dof_id_type first_dof_on_proc = dofMap().first_dof(processor_id());
3581  const dof_id_type end_dof_on_proc = dofMap().end_dof(processor_id());
3582 
3583  // The total number of dofs on and off processor
3584  const dof_id_type n_dofs_on_proc = dofMap().n_local_dofs();
3585  const dof_id_type n_dofs_not_on_proc = dofMap().n_dofs() - dofMap().n_local_dofs();
3586 
3587  for (const auto & git : graph)
3588  {
3589  dof_id_type dof = git.first;
3590  dof_id_type local_dof = dof - first_dof_on_proc;
3591 
3592  if (dof < first_dof_on_proc || dof >= end_dof_on_proc)
3593  continue;
3594 
3595  const auto & row = git.second;
3596 
3597  SparsityPattern::Row & sparsity_row = sparsity[local_dof];
3598 
3599  unsigned int original_row_length = sparsity_row.size();
3600 
3601  sparsity_row.insert(sparsity_row.end(), row.begin(), row.end());
3602 
3604  sparsity_row.begin(), sparsity_row.begin() + original_row_length, sparsity_row.end());
3605 
3606  // Fix up nonzero arrays
3607  for (const auto & coupled_dof : row)
3608  {
3609  if (coupled_dof < first_dof_on_proc || coupled_dof >= end_dof_on_proc)
3610  {
3611  if (n_oz[local_dof] < n_dofs_not_on_proc)
3612  n_oz[local_dof]++;
3613  }
3614  else
3615  {
3616  if (n_nz[local_dof] < n_dofs_on_proc)
3617  n_nz[local_dof]++;
3618  }
3619  }
3620  }
3621  }
3622 }
dof_id_type end_dof(const processor_id_type proc) const
void findImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data, std::unordered_map< dof_id_type, std::vector< dof_id_type >> &graph)
Finds the implicit sparsity graph between geometrically related dofs.
dof_id_type n_dofs(const unsigned int vn) const
dof_id_type n_local_dofs(const unsigned int vn) const
virtual GeometricSearchData & geomSearchData() override
std::vector< dof_id_type, Threads::scalable_allocator< dof_id_type > > Row
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
virtual void updateGeomSearch(GeometricSearchData::GeometricSearchType type=GeometricSearchData::ALL) override
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
dof_id_type first_dof(const processor_id_type proc) const
processor_id_type processor_id() const
uint8_t dof_id_type
static void sort_row(const BidirectionalIterator begin, BidirectionalIterator middle, const BidirectionalIterator end)

◆ automaticScaling() [1/2]

bool SystemBase::automaticScaling ( ) const
inlineinherited

Getter for whether we are performing automatic scaling.

Returns
whether we are performing automatic scaling

Definition at line 122 of file SystemBase.h.

Referenced by SubProblem::automaticScaling().

122 { return _automatic_scaling; }
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055

◆ automaticScaling() [2/2]

void SystemBase::automaticScaling ( bool  automatic_scaling)
inlineinherited

Setter for whether we are performing automatic scaling.

Parameters
automatic_scalingA boolean representing whether we are performing automatic scaling

Definition at line 128 of file SystemBase.h.

128 { _automatic_scaling = automatic_scaling; }
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055

◆ autoScalingParam()

void NonlinearSystemBase::autoScalingParam ( Real  resid_vs_jac_scaling_param)
inlineinherited

Sets the param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters.

A value of 1 indicates pure residual-based scaling. A value of 0 indicates pure Jacobian-based scaling

Definition at line 725 of file NonlinearSystemBase.h.

726  {
727  _resid_vs_jac_scaling_param = resid_vs_jac_scaling_param;
728  }
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...

◆ checkInvalidSolution()

void SolverSystem::checkInvalidSolution ( )
protectedinherited

Definition at line 111 of file SolverSystem.C.

Referenced by NonlinearSystem::solve(), and LinearSystem::solve().

112 {
113  auto & solution_invalidity = _app.solutionInvalidity();
114 
115  // sync all solution invalid counts to rank 0 process
116  solution_invalidity.syncIteration();
117 
118  if (solution_invalidity.hasInvalidSolution())
119  {
122  solution_invalidity.print(_console);
123  else
124  mooseWarning("The Solution Invalidity warnings are detected but silenced! "
125  "Use Problem/show_invalid_solution_console=true to show solution counts");
126  else
127  // output the occurrence of solution invalid in a summary table
129  solution_invalidity.print(_console);
130  }
131 }
void mooseWarning(Args &&... args)
Emit a warning message with the given stringified, concatenated args.
Definition: MooseError.h:357
void syncIteration()
Sync iteration counts to main processor.
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
bool showInvalidSolutionConsole() const
Whether or not to print out the invalid solutions summary table in console.
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool acceptInvalidSolution() const
Whether or not to accept the solution based on its invalidity.
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.

◆ checkKernelCoverage()

void NonlinearSystemBase::checkKernelCoverage ( const std::set< SubdomainID > &  mesh_subdomains) const
inherited

System Integrity Checks

Definition at line 3686 of file NonlinearSystemBase.C.

3687 {
3688  // Obtain all blocks and variables covered by all kernels
3689  std::set<SubdomainID> input_subdomains;
3690  std::set<std::string> kernel_variables;
3691 
3692  bool global_kernels_exist = false;
3693  global_kernels_exist |= _scalar_kernels.hasActiveObjects();
3694  global_kernels_exist |= _nodal_kernels.hasActiveObjects();
3695 
3696  _kernels.subdomainsCovered(input_subdomains, kernel_variables);
3697  _dg_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3698  _nodal_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3699  _scalar_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3700  _constraints.subdomainsCovered(input_subdomains, kernel_variables);
3701 
3702 #ifdef MOOSE_KOKKOS_ENABLED
3703  _kokkos_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3704  _kokkos_nodal_kernels.subdomainsCovered(input_subdomains, kernel_variables);
3705 #endif
3706 
3707  if (_fe_problem.haveFV())
3708  {
3709  std::vector<FVElementalKernel *> fv_elemental_kernels;
3711  .query()
3712  .template condition<AttribSystem>("FVElementalKernel")
3713  .queryInto(fv_elemental_kernels);
3714 
3715  for (auto fv_kernel : fv_elemental_kernels)
3716  {
3717  if (fv_kernel->blockRestricted())
3718  for (auto block_id : fv_kernel->blockIDs())
3719  input_subdomains.insert(block_id);
3720  else
3721  global_kernels_exist = true;
3722  kernel_variables.insert(fv_kernel->variable().name());
3723 
3724  // Check for lagrange multiplier
3725  if (dynamic_cast<FVScalarLagrangeMultiplierConstraint *>(fv_kernel))
3726  kernel_variables.insert(dynamic_cast<FVScalarLagrangeMultiplierConstraint *>(fv_kernel)
3727  ->lambdaVariable()
3728  .name());
3729  }
3730 
3731  std::vector<FVFluxKernel *> fv_flux_kernels;
3733  .query()
3734  .template condition<AttribSystem>("FVFluxKernel")
3735  .queryInto(fv_flux_kernels);
3736 
3737  for (auto fv_kernel : fv_flux_kernels)
3738  {
3739  if (fv_kernel->blockRestricted())
3740  for (auto block_id : fv_kernel->blockIDs())
3741  input_subdomains.insert(block_id);
3742  else
3743  global_kernels_exist = true;
3744  kernel_variables.insert(fv_kernel->variable().name());
3745  }
3746 
3747  std::vector<FVInterfaceKernel *> fv_interface_kernels;
3749  .query()
3750  .template condition<AttribSystem>("FVInterfaceKernel")
3751  .queryInto(fv_interface_kernels);
3752 
3753  for (auto fvik : fv_interface_kernels)
3754  if (auto scalar_fvik = dynamic_cast<FVScalarLagrangeMultiplierInterface *>(fvik))
3755  kernel_variables.insert(scalar_fvik->lambdaVariable().name());
3756 
3757  std::vector<FVFluxBC *> fv_flux_bcs;
3759  .query()
3760  .template condition<AttribSystem>("FVFluxBC")
3761  .queryInto(fv_flux_bcs);
3762 
3763  for (auto fvbc : fv_flux_bcs)
3764  if (auto scalar_fvbc = dynamic_cast<FVBoundaryScalarLagrangeMultiplierConstraint *>(fvbc))
3765  kernel_variables.insert(scalar_fvbc->lambdaVariable().name());
3766  }
3767 
3768  // Check kernel coverage of subdomains (blocks) in your mesh
3769  if (!global_kernels_exist)
3770  {
3771  std::set<SubdomainID> difference;
3772  std::set_difference(mesh_subdomains.begin(),
3773  mesh_subdomains.end(),
3774  input_subdomains.begin(),
3775  input_subdomains.end(),
3776  std::inserter(difference, difference.end()));
3777 
3778  // there supposed to be no kernels on this lower-dimensional subdomain
3779  for (const auto & id : _mesh.interiorLowerDBlocks())
3780  difference.erase(id);
3781  for (const auto & id : _mesh.boundaryLowerDBlocks())
3782  difference.erase(id);
3783 
3784  if (!difference.empty())
3785  {
3786  std::vector<SubdomainID> difference_vec =
3787  std::vector<SubdomainID>(difference.begin(), difference.end());
3788  std::vector<SubdomainName> difference_names = _mesh.getSubdomainNames(difference_vec);
3789  std::stringstream missing_block_names;
3790  std::copy(difference_names.begin(),
3791  difference_names.end(),
3792  std::ostream_iterator<std::string>(missing_block_names, " "));
3793  std::stringstream missing_block_ids;
3794  std::copy(difference.begin(),
3795  difference.end(),
3796  std::ostream_iterator<unsigned int>(missing_block_ids, " "));
3797 
3798  mooseError("Each subdomain must contain at least one Kernel.\nThe following block(s) lack an "
3799  "active kernel: " +
3800  missing_block_names.str(),
3801  " (ids: ",
3802  missing_block_ids.str(),
3803  ")");
3804  }
3805  }
3806 
3807  // Check kernel use of variables
3808  std::set<VariableName> variables(getVariableNames().begin(), getVariableNames().end());
3809 
3810  std::set<VariableName> difference;
3811  std::set_difference(variables.begin(),
3812  variables.end(),
3813  kernel_variables.begin(),
3814  kernel_variables.end(),
3815  std::inserter(difference, difference.end()));
3816 
3817  // skip checks for varaibles defined on lower-dimensional subdomain
3818  std::set<VariableName> vars(difference);
3819  for (auto & var_name : vars)
3820  {
3821  auto blks = getSubdomainsForVar(var_name);
3822  for (const auto & id : blks)
3823  if (_mesh.interiorLowerDBlocks().count(id) > 0 || _mesh.boundaryLowerDBlocks().count(id) > 0)
3824  difference.erase(var_name);
3825  }
3826 
3827  if (!difference.empty())
3828  {
3829  std::stringstream missing_kernel_vars;
3830  std::copy(difference.begin(),
3831  difference.end(),
3832  std::ostream_iterator<std::string>(missing_kernel_vars, " "));
3833  mooseError("Each variable must be referenced by at least one active Kernel.\nThe following "
3834  "variable(s) lack an active kernel: " +
3835  missing_kernel_vars.str());
3836  }
3837 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
const std::set< SubdomainID > & interiorLowerDBlocks() const
Definition: MooseMesh.h:1421
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
char ** vars
TheWarehouse & theWarehouse() const
void subdomainsCovered(std::set< SubdomainID > &subdomains_covered, std::set< std::string > &unique_variables, THREAD_ID tid=0) const
Populates a set of covered subdomains and the associated variable names.
MooseObjectTagWarehouse< KernelBase > _kernels
const std::set< SubdomainID > & boundaryLowerDBlocks() const
Definition: MooseMesh.h:1425
std::vector< SubdomainName > getSubdomainNames(const std::vector< SubdomainID > &subdomain_ids) const
Get the associated subdomainNames for the subdomain ids that are passed in.
Definition: MooseMesh.C:1819
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseMesh & _mesh
Definition: SystemBase.h:991
bool hasActiveObjects(THREAD_ID tid=0) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860
const std::set< SubdomainID > & getSubdomainsForVar(unsigned int var_number) const
Definition: SystemBase.h:761
void subdomainsCovered(std::set< SubdomainID > &subdomains_covered, std::set< std::string > &unique_variables, THREAD_ID tid=0) const
Update supplied subdomain and variable coverate containters.
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ clearAllDofIndices()

void SystemBase::clearAllDofIndices ( )
inherited

Clear all dof indices from moose variables.

Definition at line 1613 of file SystemBase.C.

Referenced by SubProblem::clearAllDofIndices().

1614 {
1615  for (auto & var_warehouse : _vars)
1616  var_warehouse.clearAllDofIndices();
1617 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ closeTaggedMatrices()

void SystemBase::closeTaggedMatrices ( const std::set< TagID > &  tags)
inherited

Close all matrices associated the tags.

Definition at line 1060 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), and NonlinearSystemBase::computeResidualAndJacobianTags().

1061 {
1062  for (auto tag : tags)
1063  if (hasMatrix(tag))
1064  getMatrix(tag).close();
1065 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void close()=0
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024

◆ closeTaggedVector()

void SystemBase::closeTaggedVector ( const TagID  tag)
inherited

Close vector with the given tag.

Definition at line 649 of file SystemBase.C.

Referenced by SystemBase::closeTaggedVectors().

650 {
651  if (!_subproblem.vectorTagExists(tag))
652  mooseError("Cannot close vector with TagID ",
653  tag,
654  " in system '",
655  name(),
656  "' because that tag does not exist in the problem");
657  else if (!hasVector(tag))
658  mooseError("Cannot close vector tag with name '",
660  "' in system '",
661  name(),
662  "' because there is no vector associated with that tag");
663  getVector(tag).close();
664 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual void close()=0
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ closeTaggedVectors()

void SystemBase::closeTaggedVectors ( const std::set< TagID > &  tags)
inherited

Close all vectors for given tags.

Definition at line 667 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeResidualAndJacobianTags(), NonlinearSystemBase::computeResidualTags(), NonlinearSystem::stopSolve(), and LinearSystem::stopSolve().

668 {
669  for (const auto tag : tags)
670  closeTaggedVector(tag);
671 }
void closeTaggedVector(const TagID tag)
Close vector with the given tag.
Definition: SystemBase.C:649

◆ compute()

void SolverSystem::compute ( ExecFlagType  type)
overridevirtualinherited

Compute time derivatives, auxiliary variables, etc.

Parameters
typeOur current execution stage

Implements SystemBase.

Reimplemented in LinearSystem.

Definition at line 134 of file SolverSystem.C.

135 {
136  // Let's try not to overcompute
137  bool compute_tds = false;
138  if (type == EXEC_LINEAR)
139  compute_tds = true;
140  else if (type == EXEC_NONLINEAR)
141  {
143  compute_tds = true;
144  }
145  else if ((type == EXEC_TIMESTEP_END) || (type == EXEC_FINAL))
146  {
148  // We likely don't have a final residual evaluation upon which we compute the time derivatives
149  // so we need to do so now
150  compute_tds = true;
151  }
152 
153  if (compute_tds && _fe_problem.dt() > 0.)
154  for (auto & ti : _time_integrators)
155  {
156  // avoid division by dt which might be zero.
157  ti->preStep();
158  ti->computeTimeDerivatives();
159  }
160 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
Solving a linear problem.
Definition: MooseTypes.h:897
const ExecFlagType EXEC_TIMESTEP_END
Definition: Moose.C:36
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
virtual bool matrixFromColoring() const
Whether a system matrix is formed from coloring.
Definition: SolverSystem.h:102
Moose::SolveType _type
Definition: SolverParams.h:19
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const ExecFlagType EXEC_LINEAR
Definition: Moose.C:31
const ExecFlagType EXEC_NONLINEAR
Definition: Moose.C:33
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.
virtual Real & dt() const
const ExecFlagType EXEC_FINAL
Definition: Moose.C:46

◆ computeDamping()

Real NonlinearSystemBase::computeDamping ( const NumericVector< Number > &  solution,
const NumericVector< Number > &  update 
)
inherited

Compute damping.

Parameters
solutionThe trail solution vector
updateThe incremental update to the solution vector
Returns
returns The damping factor

Definition at line 3401 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computeDamping().

3403 {
3404  // Default to no damping
3405  Real damping = 1.0;
3406  bool has_active_dampers = false;
3407 
3408  try
3409  {
3411  {
3412  PARALLEL_TRY
3413  {
3414  TIME_SECTION("computeDampers", 3, "Computing Dampers");
3415  has_active_dampers = true;
3419  damping = std::min(cid.damping(), damping);
3420  }
3421  PARALLEL_CATCH;
3422  }
3423 
3425  {
3426  PARALLEL_TRY
3427  {
3428  TIME_SECTION("computeDamping::element", 3, "Computing Element Damping");
3429 
3430  has_active_dampers = true;
3434  damping = std::min(cndt.damping(), damping);
3435  }
3436  PARALLEL_CATCH;
3437  }
3438 
3440  {
3441  PARALLEL_TRY
3442  {
3443  TIME_SECTION("computeDamping::general", 3, "Computing General Damping");
3444 
3445  has_active_dampers = true;
3446  const auto & gdampers = _general_dampers.getActiveObjects();
3447  for (const auto & damper : gdampers)
3448  {
3449  Real gd_damping = damper->computeDamping(solution, update);
3450  try
3451  {
3452  damper->checkMinDamping(gd_damping);
3453  }
3454  catch (MooseException & e)
3455  {
3457  }
3458  damping = std::min(gd_damping, damping);
3459  }
3460  }
3461  PARALLEL_CATCH;
3462  }
3463  }
3464  catch (MooseException & e)
3465  {
3466  // The buck stops here, we have already handled the exception by
3467  // calling stopSolve(), it is now up to PETSc to return a
3468  // "diverged" reason during the next solve.
3469  }
3470  catch (std::exception & e)
3471  {
3472  // Allow the libmesh error/exception on negative jacobian
3473  const std::string & message = e.what();
3474  if (message.find("Jacobian") == std::string::npos)
3475  throw;
3476  }
3477 
3478  _communicator.min(damping);
3479 
3480  if (has_active_dampers && damping < 1.0)
3481  _console << " Damping factor: " << damping << std::endl;
3482 
3483  return damping;
3484 }
virtual const char * what() const
Get out the error message.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual void setException(const std::string &message)
Set an exception, which is stored at this point by toggling a member variable in this class...
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
const Parallel::Communicator & _communicator
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void min(const T &r, T &o, Request &req) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Provides a way for users to bail out of the current solve.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
NumericVector< Number > * _increment_vec
increment vector
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
auto min(const L &left, const R &right)

◆ computeDiracContributions()

void NonlinearSystemBase::computeDiracContributions ( const std::set< TagID > &  tags,
bool  is_jacobian 
)
protectedinherited

Definition at line 3487 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

3488 {
3490 
3491  std::set<const Elem *> dirac_elements;
3492 
3494  {
3495  TIME_SECTION("computeDirac", 3, "Computing DiracKernels");
3496 
3497  // TODO: Need a threading fix... but it's complicated!
3498  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); ++tid)
3499  {
3500  const auto & dkernels = _dirac_kernels.getActiveObjects(tid);
3501  for (const auto & dkernel : dkernels)
3502  {
3503  dkernel->clearPoints();
3504  dkernel->addPoints();
3505  }
3506  }
3507 
3508  ComputeDiracThread cd(_fe_problem, tags, is_jacobian);
3509 
3510  _fe_problem.getDiracElements(dirac_elements);
3511 
3512  DistElemRange range(dirac_elements.begin(), dirac_elements.end(), 1);
3513  // TODO: Make Dirac work thread!
3514  // Threads::parallel_reduce(range, cd);
3515 
3516  cd(range);
3517 
3518  if (is_jacobian)
3519  for (const auto tid : make_range(libMesh::n_threads()))
3521  }
3522 }
unsigned int n_threads()
virtual void getDiracElements(std::set< const Elem *> &elems) override
Fills "elems" with the elements that should be looped over for Dirac Kernels.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
virtual void clearDiracInfo() override
Gets called before Dirac Kernels are asked to add the points they are supposed to be evaluated in...
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool hasActiveObjects(THREAD_ID tid=0) const
IntRange< T > make_range(T beg, T end)
unsigned int THREAD_ID
Definition: MooseTypes.h:237
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ computedScalingJacobian()

bool NonlinearSystemBase::computedScalingJacobian ( ) const
inlineinherited

Definition at line 78 of file NonlinearSystemBase.h.

78 { return _computed_scaling; }
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.

◆ computeJacobian() [1/2]

void NonlinearSystemBase::computeJacobian ( libMesh::SparseMatrix< Number > &  jacobian,
const std::set< TagID > &  tags 
)
inherited

Associate jacobian to systemMatrixTag, and then form a matrix for all the tags.

Definition at line 3241 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobian().

3242 {
3244 
3245  computeJacobianTags(tags);
3246 
3248 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
virtual void associateMatrixToTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Associate a matrix to a tag.
Definition: SystemBase.C:1076
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
void computeJacobianTags(const std::set< TagID > &tags)
Computes multiple (tag associated) Jacobian matricese.

◆ computeJacobian() [2/2]

void NonlinearSystemBase::computeJacobian ( libMesh::SparseMatrix< Number > &  jacobian)
inherited

Take all tags in the system, and form a matrix for all tags in the system.

Definition at line 3228 of file NonlinearSystemBase.C.

3229 {
3230  _nl_matrix_tags.clear();
3231 
3232  auto & tags = _fe_problem.getMatrixTags();
3233 
3234  for (auto & tag : tags)
3235  _nl_matrix_tags.insert(tag.second);
3236 
3237  computeJacobian(jacobian, _nl_matrix_tags);
3238 }
void computeJacobian(libMesh::SparseMatrix< Number > &jacobian, const std::set< TagID > &tags)
Associate jacobian to systemMatrixTag, and then form a matrix for all the tags.
std::set< TagID > _nl_matrix_tags
Matrix tags to temporarily store all tags associated with the current system.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ computeJacobianBlocks() [1/2]

void NonlinearSystemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks)
inherited

Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditioning matrices.

Used by Physics-based preconditioning

Parameters
blocksThe blocks to fill in (JacobianBlock is defined in ComputeJacobianBlocksThread)

Definition at line 3270 of file NonlinearSystemBase.C.

Referenced by EigenProblem::computeJacobianBlocks(), and FEProblemBase::computeJacobianBlocks().

3271 {
3272  _nl_matrix_tags.clear();
3273 
3274  auto & tags = _fe_problem.getMatrixTags();
3275  for (auto & tag : tags)
3276  _nl_matrix_tags.insert(tag.second);
3277 
3279 }
void computeJacobianBlocks(std::vector< JacobianBlock *> &blocks)
Computes several Jacobian blocks simultaneously, summing their contributions into smaller preconditio...
char ** blocks
std::set< TagID > _nl_matrix_tags
Matrix tags to temporarily store all tags associated with the current system.
virtual std::map< TagName, TagID > & getMatrixTags()
Return all matrix tags in the system, where a tag is represented by a map from name to ID...
Definition: SubProblem.h:253
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ computeJacobianBlocks() [2/2]

void NonlinearSystemBase::computeJacobianBlocks ( std::vector< JacobianBlock *> &  blocks,
const std::set< TagID > &  tags 
)
inherited

Definition at line 3282 of file NonlinearSystemBase.C.

3284 {
3285  TIME_SECTION("computeJacobianBlocks", 3);
3286  FloatingPointExceptionGuard fpe_guard(_app);
3287 
3288  for (unsigned int i = 0; i < blocks.size(); i++)
3289  {
3290  SparseMatrix<Number> & jacobian = blocks[i]->_jacobian;
3291 
3292  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
3293  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
3294  PETSC_TRUE));
3296  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
3297  MAT_NEW_NONZERO_ALLOCATION_ERR,
3298  PETSC_TRUE));
3299 
3300  jacobian.zero();
3301  }
3302 
3303  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
3305 
3306  PARALLEL_TRY
3307  {
3310  Threads::parallel_reduce(elem_range, cjb);
3311  }
3312  PARALLEL_CATCH;
3313 
3314  for (unsigned int i = 0; i < blocks.size(); i++)
3315  blocks[i]->_jacobian.close();
3316 
3317  for (unsigned int i = 0; i < blocks.size(); i++)
3318  {
3319  libMesh::System & precond_system = blocks[i]->_precond_system;
3320  SparseMatrix<Number> & jacobian = blocks[i]->_jacobian;
3321 
3322  unsigned int ivar = blocks[i]->_ivar;
3323  unsigned int jvar = blocks[i]->_jvar;
3324 
3325  // Dirichlet BCs
3326  std::vector<numeric_index_type> zero_rows;
3327  PARALLEL_TRY
3328  {
3330  for (const auto & bnode : bnd_nodes)
3331  {
3332  BoundaryID boundary_id = bnode->_bnd_id;
3333  Node * node = bnode->_node;
3334 
3335  if (_nodal_bcs.hasActiveBoundaryObjects(boundary_id))
3336  {
3337  const auto & bcs = _nodal_bcs.getActiveBoundaryObjects(boundary_id);
3338 
3339  if (node->processor_id() == processor_id())
3340  {
3341  _fe_problem.reinitNodeFace(node, boundary_id, 0);
3342 
3343  for (const auto & bc : bcs)
3344  if (bc->variable().number() == ivar && bc->shouldApply())
3345  {
3346  // The first zero is for the variable number... there is only one variable in
3347  // each mini-system The second zero only works with Lagrange elements!
3348  zero_rows.push_back(node->dof_number(precond_system.number(), 0, 0));
3349  }
3350  }
3351  }
3352  }
3353  }
3354  PARALLEL_CATCH;
3355 
3356  jacobian.close();
3357 
3358  // This zeroes the rows corresponding to Dirichlet BCs and puts a 1.0 on the diagonal
3359  if (ivar == jvar)
3360  jacobian.zero_rows(zero_rows, 1.0);
3361  else
3362  jacobian.zero_rows(zero_rows, 0.0);
3363 
3364  jacobian.close();
3365  }
3366 }
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
unsigned int n_threads()
char ** blocks
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
Scope guard for starting and stopping Floating Point Exception Trapping.
Specialization for filling multiple "small" preconditioning matrices simulatenously.
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
unsigned int number() const
virtual void zero()=0
boundary_id_type BoundaryID
virtual void zero_rows(std::vector< numeric_index_type > &rows, T diag_value=0.0)
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void close()=0
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const

◆ computeJacobianInternal()

void NonlinearSystemBase::computeJacobianInternal ( const std::set< TagID > &  tags)
protectedinherited

Form multiple matrices for all the tags.

Users should not call this func directly.

Definition at line 2850 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianTags().

2851 {
2852  TIME_SECTION("computeJacobianInternal", 3);
2853 
2855 
2856  // Make matrix ready to use
2858 
2859  for (auto tag : tags)
2860  {
2861  if (!hasMatrix(tag))
2862  continue;
2863 
2864  auto & jacobian = getMatrix(tag);
2865  // Necessary for speed
2866  if (auto petsc_matrix = dynamic_cast<PetscMatrix<Number> *>(&jacobian))
2867  {
2868  LibmeshPetscCall(MatSetOption(petsc_matrix->mat(),
2869  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2870  PETSC_TRUE));
2872  LibmeshPetscCall(
2873  MatSetOption(petsc_matrix->mat(), MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));
2875  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2876  MAT_IGNORE_ZERO_ENTRIES,
2877  PETSC_TRUE));
2878  }
2879  }
2880 
2881  jacobianSetup();
2882 
2883 #ifdef MOOSE_KOKKOS_ENABLED
2885  computeKokkosJacobian(tags);
2886 #endif
2887 
2888  // Jacobian contributions from UOs - for now this is used for ray tracing
2889  // and ray kernels that contribute to the Jacobian (think line sources)
2890  std::vector<UserObject *> uos;
2892  .query()
2893  .condition<AttribSystem>("UserObject")
2894  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
2895  .queryInto(uos);
2896  for (auto & uo : uos)
2897  uo->jacobianSetup();
2898  for (auto & uo : uos)
2899  {
2900  uo->initialize();
2901  uo->execute();
2902  uo->finalize();
2903  }
2904 
2905  // reinit scalar variables
2906  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
2908 
2909  PARALLEL_TRY
2910  {
2911  // We would like to compute ScalarKernels, block NodalKernels, FVFluxKernels, and mortar objects
2912  // up front because we want these included whether we are computing an ordinary Jacobian or a
2913  // Jacobian for determining variable scaling factors
2915 
2916  // Block restricted Nodal Kernels
2918  {
2921  Threads::parallel_reduce(range, cnkjt);
2922 
2923  unsigned int n_threads = libMesh::n_threads();
2924  for (unsigned int i = 0; i < n_threads;
2925  i++) // Add any cached jacobians that might be hanging around
2927  }
2928 
2930  if (_fe_problem.haveFV())
2931  {
2932  // the same loop works for both residual and jacobians because it keys
2933  // off of FEProblem's _currently_computing_jacobian parameter
2935  _fe_problem, this->number(), tags, /*on_displaced=*/false);
2937  Threads::parallel_reduce(faces, fvj);
2938  }
2940  displaced_problem && displaced_problem->haveFV())
2941  {
2943  _fe_problem, this->number(), tags, /*on_displaced=*/true);
2944  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
2945  displaced_problem->mesh().ownedFaceInfoEnd());
2946  Threads::parallel_reduce(faces, fvr);
2947  }
2948 
2950 
2951  // Get our element range for looping over
2953 
2955  {
2956  // Only compute Jacobians corresponding to the diagonals of volumetric compute objects
2957  // because this typically gives us a good representation of the physics. NodalBCs and
2958  // Constraints can introduce dramatically different scales (often order unity).
2959  // IntegratedBCs and/or InterfaceKernels may use penalty factors. DGKernels may be ok, but
2960  // they are almost always used in conjunction with Kernels
2962  Threads::parallel_reduce(elem_range, cj);
2963  unsigned int n_threads = libMesh::n_threads();
2964  for (unsigned int i = 0; i < n_threads;
2965  i++) // Add any Jacobian contributions still hanging around
2967 
2968  // Check whether any exceptions were thrown and propagate this information for parallel
2969  // consistency before
2970  // 1) we do parallel communication when closing tagged matrices
2971  // 2) early returning before reaching our PARALLEL_CATCH below
2973 
2974  closeTaggedMatrices(tags);
2975 
2976  return;
2977  }
2978 
2979  switch (_fe_problem.coupling())
2980  {
2981  case Moose::COUPLING_DIAG:
2982  {
2984  Threads::parallel_reduce(elem_range, cj);
2985 
2986  unsigned int n_threads = libMesh::n_threads();
2987  for (unsigned int i = 0; i < n_threads;
2988  i++) // Add any Jacobian contributions still hanging around
2990 
2991  // Boundary restricted Nodal Kernels
2993  {
2996 
2997  Threads::parallel_reduce(bnd_range, cnkjt);
2998  unsigned int n_threads = libMesh::n_threads();
2999  for (unsigned int i = 0; i < n_threads;
3000  i++) // Add any cached jacobians that might be hanging around
3002  }
3003  }
3004  break;
3005 
3006  default:
3008  {
3010  Threads::parallel_reduce(elem_range, cj);
3011  unsigned int n_threads = libMesh::n_threads();
3012 
3013  for (unsigned int i = 0; i < n_threads; i++)
3015 
3016  // Boundary restricted Nodal Kernels
3018  {
3021 
3022  Threads::parallel_reduce(bnd_range, cnkjt);
3023  unsigned int n_threads = libMesh::n_threads();
3024  for (unsigned int i = 0; i < n_threads;
3025  i++) // Add any cached jacobians that might be hanging around
3027  }
3028  }
3029  break;
3030  }
3031 
3032  computeDiracContributions(tags, true);
3033 
3034  static bool first = true;
3035 
3036  // This adds zeroes into geometric coupling entries to ensure they stay in the matrix
3037  if ((_fe_problem.restoreOriginalNonzeroPattern() || first) &&
3039  {
3040  first = false;
3042 
3045  }
3046  }
3047  PARALLEL_CATCH;
3048 
3049  // Have no idea how to have constraints work
3050  // with the tag system
3051  PARALLEL_TRY
3052  {
3053  // Add in Jacobian contributions from other Constraints
3054  if (_fe_problem._has_constraints && tags.count(systemMatrixTag()))
3055  {
3056  // Some constraints need to be able to read values from the Jacobian, which requires that it
3057  // be closed/assembled
3058  auto & system_matrix = getMatrix(systemMatrixTag());
3059  std::unique_ptr<SparseMatrix<Number>> hash_copy;
3060  const SparseMatrix<Number> * view_jac_ptr;
3061  auto make_readable_jacobian = [&]()
3062  {
3063 #if PETSC_RELEASE_GREATER_EQUALS(3, 23, 0)
3064  if (system_matrix.use_hash_table())
3065  {
3066  hash_copy = libMesh::cast_ref<PetscMatrix<Number> &>(system_matrix).copy_from_hash();
3067  view_jac_ptr = hash_copy.get();
3068  }
3069  else
3070  view_jac_ptr = &system_matrix;
3071 #else
3072  view_jac_ptr = &system_matrix;
3073 #endif
3074  if (view_jac_ptr == &system_matrix)
3075  system_matrix.close();
3076  };
3077 
3078  make_readable_jacobian();
3079 
3080  // Nodal Constraints
3081  const bool had_nodal_constraints = enforceNodalConstraintsJacobian(*view_jac_ptr);
3082  if (had_nodal_constraints)
3083  // We have to make a new readable Jacobian
3084  make_readable_jacobian();
3085 
3086  // Undisplaced Constraints
3087  constraintJacobians(*view_jac_ptr, false);
3088 
3089  // Displaced Constraints
3091  constraintJacobians(*view_jac_ptr, true);
3092  }
3093  }
3094  PARALLEL_CATCH;
3095 
3096  // We need to close the save_in variables on the aux system before NodalBCBases clear the dofs
3097  // on boundary nodes
3098  if (_has_diag_save_in)
3100 
3101  PARALLEL_TRY
3102  {
3103  MooseObjectWarehouse<NodalBCBase> * nbc_warehouse;
3104  // Select nodal kernels
3105  if (tags.size() == _fe_problem.numMatrixTags() || !tags.size())
3106  nbc_warehouse = &_nodal_bcs;
3107  else if (tags.size() == 1)
3108  nbc_warehouse = &(_nodal_bcs.getMatrixTagObjectWarehouse(*(tags.begin()), 0));
3109  else
3110  nbc_warehouse = &(_nodal_bcs.getMatrixTagsObjectWarehouse(tags, 0));
3111 
3112  if (nbc_warehouse->hasActiveObjects())
3113  {
3114  // We may be switching from add to set. Moreover, we rely on a call to MatZeroRows to enforce
3115  // the nodal boundary condition constraints which requires that the matrix be truly assembled
3116  // as opposed to just flushed. Consequently we can't do the following despite any desire to
3117  // keep our initial sparsity pattern honored (see https://gitlab.com/petsc/petsc/-/issues/852)
3118  //
3119  // flushTaggedMatrices(tags);
3120  closeTaggedMatrices(tags);
3121 
3122  // Cache the information about which BCs are coupled to which
3123  // variables, so we don't have to figure it out for each node.
3124  std::map<std::string, std::set<unsigned int>> bc_involved_vars;
3125  const std::set<BoundaryID> & all_boundary_ids = _mesh.getBoundaryIDs();
3126  for (const auto & bid : all_boundary_ids)
3127  {
3128  // Get reference to all the NodalBCs for this ID. This is only
3129  // safe if there are NodalBCBases there to be gotten...
3130  if (nbc_warehouse->hasActiveBoundaryObjects(bid))
3131  {
3132  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(bid);
3133  for (const auto & bc : bcs)
3134  {
3135  const std::vector<MooseVariableFEBase *> & coupled_moose_vars =
3136  bc->getCoupledMooseVars();
3137 
3138  // Create the set of "involved" MOOSE nonlinear vars, which includes all coupled vars
3139  // and the BC's own variable
3140  std::set<unsigned int> & var_set = bc_involved_vars[bc->name()];
3141  for (const auto & coupled_var : coupled_moose_vars)
3142  if (coupled_var->kind() == Moose::VAR_SOLVER)
3143  var_set.insert(coupled_var->number());
3144 
3145  var_set.insert(bc->variable().number());
3146  }
3147  }
3148  }
3149 
3150  // reinit scalar variables again. This reinit does not re-fill any of the scalar variable
3151  // solution arrays because that was done above. It only will reorder the derivative
3152  // information for AD calculations to be suitable for NodalBC calculations
3153  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
3154  _fe_problem.reinitScalars(tid, true);
3155 
3156  // Get variable coupling list. We do all the NodalBCBase stuff on
3157  // thread 0... The couplingEntries() data structure determines
3158  // which variables are "coupled" as far as the preconditioner is
3159  // concerned, not what variables a boundary condition specifically
3160  // depends on.
3161  auto & coupling_entries = _fe_problem.couplingEntries(/*_tid=*/0, this->number());
3162 
3163  // Compute Jacobians for NodalBCBases
3165  for (const auto & bnode : bnd_nodes)
3166  {
3167  BoundaryID boundary_id = bnode->_bnd_id;
3168  Node * node = bnode->_node;
3169 
3170  if (nbc_warehouse->hasActiveBoundaryObjects(boundary_id) &&
3171  node->processor_id() == processor_id())
3172  {
3173  _fe_problem.reinitNodeFace(node, boundary_id, 0);
3174 
3175  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(boundary_id);
3176  for (const auto & bc : bcs)
3177  {
3178  // Get the set of involved MOOSE vars for this BC
3179  std::set<unsigned int> & var_set = bc_involved_vars[bc->name()];
3180 
3181  // Loop over all the variables whose Jacobian blocks are
3182  // actually being computed, call computeOffDiagJacobian()
3183  // for each one which is actually coupled (otherwise the
3184  // value is zero.)
3185  for (const auto & it : coupling_entries)
3186  {
3187  unsigned int ivar = it.first->number(), jvar = it.second->number();
3188 
3189  // We are only going to call computeOffDiagJacobian() if:
3190  // 1.) the BC's variable is ivar
3191  // 2.) jvar is "involved" with the BC (including jvar==ivar), and
3192  // 3.) the BC should apply.
3193  if ((bc->variable().number() == ivar) && var_set.count(jvar) && bc->shouldApply())
3194  bc->computeOffDiagJacobian(jvar);
3195  }
3196 
3197  const auto & coupled_scalar_vars = bc->getCoupledMooseScalarVars();
3198  for (const auto & jvariable : coupled_scalar_vars)
3199  if (hasScalarVariable(jvariable->name()))
3200  bc->computeOffDiagJacobianScalar(jvariable->number());
3201  }
3202  }
3203  } // end loop over boundary nodes
3204 
3205  // Set the cached NodalBCBase values in the Jacobian matrix
3207  }
3208  }
3209  PARALLEL_CATCH;
3210 
3211  closeTaggedMatrices(tags);
3212 
3213  // We need to close the save_in variables on the aux system before NodalBCBases clear the dofs
3214  // on boundary nodes
3217 
3218  if (hasDiagSaveIn())
3220 
3221  // Accumulate the occurrence of solution invalid warnings for the current iteration cumulative
3222  // counters
3225 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
std::vector< std::pair< MooseVariableFEBase *, MooseVariableFEBase * > > & couplingEntries(const THREAD_ID tid, const unsigned int nl_sys_num)
unsigned int n_threads()
bool hasActiveBlockObjects(THREAD_ID tid=0) const
std::shared_ptr< DisplacedProblem > displaced_problem
virtual void checkExceptionAndStopSolve(bool print_message=true)
Check to see if an exception has occurred on any processor and, if possible, force the solve to fail...
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1560
bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
bool hasDiagSaveIn() const
Weather or not the nonlinear system has diagonal Jacobian save-ins.
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
virtual GeometricSearchData & geomSearchData() override
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
void closeTaggedMatrices(const std::set< TagID > &tags)
Close all matrices associated the tags.
Definition: SystemBase.C:1060
void solutionInvalidAccumulation()
Pass the number of solution invalid occurrences from current iteration to cumulative counters...
void syncIteration()
Sync iteration counts to main processor.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void computeDiracContributions(const std::set< TagID > &tags, bool is_jacobian)
TheWarehouse & theWarehouse() const
bool enforceNodalConstraintsJacobian(const SparseMatrix< Number > &jacobian)
Enforce nodal constraints in the Jacobian.
boundary_id_type BoundaryID
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
void addImplicitGeometricCouplingEntries(GeometricSearchData &geom_search_data)
Adds entries to the Jacobian in the correct positions for couplings coming from dofs being coupled th...
MooseObjectWarehouse< T > & getMatrixTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given matrix tag...
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
Moose::CouplingType coupling() const
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
AuxiliarySystem & getAuxiliarySystem()
virtual void close()=0
void computeKokkosJacobian(const std::set< TagID > &tags)
Compute Jacobian with Kokkos objects.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool _add_implicit_geometric_coupling_entries_to_jacobian
Whether or not to add implicit geometric couplings to the Jacobian for FDP.
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void close()=0
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
MooseMesh & _mesh
Definition: SystemBase.h:991
bool hasActiveObjects(THREAD_ID tid=0) const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
bool hasKokkosResidualObjects() const
MooseObjectWarehouse< T > & getMatrixTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has one of the given matrix tags...
void computeScalarKernelsJacobians(const std::set< TagID > &tags)
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual MooseMesh & mesh() override
void setCachedJacobian(GlobalDataKey)
Sets previously-cached Jacobian values via SparseMatrix::set() calls.
Definition: Assembly.C:4468
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
bool restoreOriginalNonzeroPattern() const
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1569
void constraintJacobians(const SparseMatrix< Number > &jacobian_to_view, bool displaced)
Add jacobian contributions from Constraints.
std::vector< BoundaryID > getBoundaryIDs(const Elem *const elem, const unsigned short int side) const
Returns a vector of boundary IDs for the requested element on the requested side. ...
bool _has_constraints
Whether or not this system has any Constraints.
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876
processor_id_type processor_id() const
void addCachedJacobian(GlobalDataKey)
Adds the values that have been cached by calling cacheJacobian() and or cacheJacobianNeighbor() to th...
Definition: Assembly.C:3791
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void jacobianSetup() override
virtual void addCachedJacobian(const THREAD_ID tid) override
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ computeJacobianTags()

void NonlinearSystemBase::computeJacobianTags ( const std::set< TagID > &  tags)
inherited

Computes multiple (tag associated) Jacobian matricese.

Definition at line 3251 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobian(), and FEProblemBase::computeJacobianTags().

3252 {
3253  TIME_SECTION("computeJacobianTags", 5);
3254 
3255  FloatingPointExceptionGuard fpe_guard(_app);
3256 
3257  try
3258  {
3260  }
3261  catch (MooseException & e)
3262  {
3263  // The buck stops here, we have already handled the exception by
3264  // calling stopSolve(), it is now up to PETSc to return a
3265  // "diverged" reason during the next solve.
3266  }
3267 }
Scope guard for starting and stopping Floating Point Exception Trapping.
MooseApp & _app
Definition: SystemBase.h:988
Provides a way for users to bail out of the current solve.
void computeJacobianInternal(const std::set< TagID > &tags)
Form multiple matrices for all the tags.

◆ computeKokkosJacobian()

void NonlinearSystemBase::computeKokkosJacobian ( const std::set< TagID > &  tags)
protectedinherited

Compute Jacobian with Kokkos objects.

Referenced by NonlinearSystemBase::computeJacobianInternal().

◆ computeKokkosResidual()

void NonlinearSystemBase::computeKokkosResidual ( const std::set< TagID > &  tags)
protectedinherited

Compute residual with Kokkos objects.

Referenced by NonlinearSystemBase::computeResidualInternal().

◆ computeNodalBCs() [1/3]

void NonlinearSystemBase::computeNodalBCs ( NumericVector< Number > &  residual)
protectedinherited

Enforces nodal boundary conditions.

The boundary condition will be implemented in the residual using all the tags in the system.

Referenced by NonlinearSystemBase::computeResidualTags().

◆ computeNodalBCs() [2/3]

void NonlinearSystemBase::computeNodalBCs ( NumericVector< Number > &  residual,
const std::set< TagID > &  tags 
)
protectedinherited

Form a residual for BCs that at least has one of the given tags.

◆ computeNodalBCs() [3/3]

void NonlinearSystemBase::computeNodalBCs ( const std::set< TagID > &  tags)
protectedinherited

Form multiple tag-associated residual vectors for the given tags.

Definition at line 2114 of file NonlinearSystemBase.C.

2115 {
2116  // We need to close the diag_save_in variables on the aux system before NodalBCBases clear the
2117  // dofs on boundary nodes
2118  if (_has_save_in)
2120 
2121  // Select nodal kernels
2122  MooseObjectWarehouse<NodalBCBase> * nbc_warehouse;
2123 
2124  if (tags.size() == _fe_problem.numVectorTags(Moose::VECTOR_TAG_RESIDUAL) || !tags.size())
2125  nbc_warehouse = &_nodal_bcs;
2126  else if (tags.size() == 1)
2127  nbc_warehouse = &(_nodal_bcs.getVectorTagObjectWarehouse(*(tags.begin()), 0));
2128  else
2129  nbc_warehouse = &(_nodal_bcs.getVectorTagsObjectWarehouse(tags, 0));
2130 
2131  // Return early if there is no nodal kernel
2132  if (!nbc_warehouse->size())
2133  return;
2134 
2135  PARALLEL_TRY
2136  {
2138 
2139  if (!bnd_nodes.empty())
2140  {
2141  TIME_SECTION("NodalBCs", 3 /*, "Computing NodalBCs"*/);
2142 
2143  for (const auto & bnode : bnd_nodes)
2144  {
2145  BoundaryID boundary_id = bnode->_bnd_id;
2146  Node * node = bnode->_node;
2147 
2148  if (node->processor_id() == processor_id() &&
2149  nbc_warehouse->hasActiveBoundaryObjects(boundary_id))
2150  {
2151  // reinit variables in nodes
2152  _fe_problem.reinitNodeFace(node, boundary_id, 0);
2153 
2154  const auto & bcs = nbc_warehouse->getActiveBoundaryObjects(boundary_id);
2155  for (const auto & nbc : bcs)
2156  if (nbc->shouldApply())
2157  nbc->computeResidual();
2158  }
2159  }
2160  }
2161  }
2162  PARALLEL_CATCH;
2163 
2164  if (_Re_time)
2165  _Re_time->close();
2166  _Re_non_time->close();
2167 }
NumericVector< Number > * _Re_time
residual vector for time contributions
unsigned int size(THREAD_ID tid=0) const
Return how many kernels we store in the current warehouse.
bool empty() const
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & solution()
Definition: SystemBase.h:196
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< T > & getVectorTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object at least has one of the given vector ta...
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
boundary_id_type BoundaryID
AuxiliarySystem & getAuxiliarySystem()
virtual void close()=0
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual unsigned int numVectorTags(const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
The total number of tags, which can be limited to the tag type.
Definition: SubProblem.C:196
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const

◆ computeNodalBCsResidualAndJacobian()

void NonlinearSystemBase::computeNodalBCsResidualAndJacobian ( )
protectedinherited

compute the residual and Jacobian for nodal boundary conditions

Definition at line 2170 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualAndJacobianTags().

2171 {
2172  PARALLEL_TRY
2173  {
2175 
2176  if (!bnd_nodes.empty())
2177  {
2178  TIME_SECTION("NodalBCs", 3 /*, "Computing NodalBCs"*/);
2179 
2180  for (const auto & bnode : bnd_nodes)
2181  {
2182  BoundaryID boundary_id = bnode->_bnd_id;
2183  Node * node = bnode->_node;
2184 
2185  if (node->processor_id() == processor_id())
2186  {
2187  // reinit variables in nodes
2188  _fe_problem.reinitNodeFace(node, boundary_id, 0);
2189  if (_nodal_bcs.hasActiveBoundaryObjects(boundary_id))
2190  {
2191  const auto & bcs = _nodal_bcs.getActiveBoundaryObjects(boundary_id);
2192  for (const auto & nbc : bcs)
2193  if (nbc->shouldApply())
2194  nbc->computeResidualAndJacobian();
2195  }
2196  }
2197  }
2198  }
2199  }
2200  PARALLEL_CATCH;
2201 
2202  // Set the cached NodalBCBase values in the Jacobian matrix
2204 }
bool empty() const
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
boundary_id_type BoundaryID
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
void setCachedJacobian(GlobalDataKey)
Sets previously-cached Jacobian values via SparseMatrix::set() calls.
Definition: Assembly.C:4468
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
Key structure for APIs manipulating global vectors/matrices.
Definition: Assembly.h:844

◆ computeResidual()

void NonlinearSystemBase::computeResidual ( NumericVector< Number > &  residual,
TagID  tag_id 
)
inherited

Form a residual vector for a given tag.

Definition at line 821 of file NonlinearSystemBase.C.

822 {
823  mooseDeprecated(" Please use computeResidualTag");
824 
825  computeResidualTag(residual, tag_id);
826 }
void mooseDeprecated(Args &&... args)
Emit a deprecated code/feature message with the given stringified, concatenated args.
Definition: MooseError.h:374
void computeResidualTag(NumericVector< Number > &residual, TagID tag_id)
Computes residual for a given tag.

◆ computeResidualAndJacobianInternal()

void NonlinearSystemBase::computeResidualAndJacobianInternal ( const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)
inherited

Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary conditions.

Definition at line 1995 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualAndJacobianTags().

1997 {
1998  TIME_SECTION("computeResidualAndJacobianInternal", 3);
1999 
2000  // Make matrix ready to use
2002 
2003  for (auto tag : matrix_tags)
2004  {
2005  if (!hasMatrix(tag))
2006  continue;
2007 
2008  auto & jacobian = getMatrix(tag);
2009  // Necessary for speed
2010  if (auto petsc_matrix = dynamic_cast<PetscMatrix<Number> *>(&jacobian))
2011  {
2012  LibmeshPetscCall(MatSetOption(petsc_matrix->mat(),
2013  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2014  PETSC_TRUE));
2016  LibmeshPetscCall(
2017  MatSetOption(petsc_matrix->mat(), MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));
2019  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2020  MAT_IGNORE_ZERO_ENTRIES,
2021  PETSC_TRUE));
2022  }
2023  }
2024 
2025  residualSetup();
2026 
2027  // Residual contributions from UOs - for now this is used for ray tracing
2028  // and ray kernels that contribute to the residual (think line sources)
2029  std::vector<UserObject *> uos;
2031  .query()
2032  .condition<AttribSystem>("UserObject")
2033  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
2034  .queryInto(uos);
2035  for (auto & uo : uos)
2036  uo->residualSetup();
2037  for (auto & uo : uos)
2038  {
2039  uo->initialize();
2040  uo->execute();
2041  uo->finalize();
2042  }
2043 
2044  // reinit scalar variables
2045  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
2047 
2048  // residual contributions from the domain
2049  PARALLEL_TRY
2050  {
2051  TIME_SECTION("Kernels", 3 /*, "Computing Kernels"*/);
2052 
2054 
2055  ComputeResidualAndJacobianThread crj(_fe_problem, vector_tags, matrix_tags);
2056  Threads::parallel_reduce(elem_range, crj);
2057 
2059  if (_fe_problem.haveFV())
2060  {
2062  _fe_problem, this->number(), vector_tags, matrix_tags, /*on_displaced=*/false);
2064  Threads::parallel_reduce(faces, fvrj);
2065  }
2067  displaced_problem && displaced_problem->haveFV())
2068  {
2070  _fe_problem, this->number(), vector_tags, matrix_tags, /*on_displaced=*/true);
2071  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
2072  displaced_problem->mesh().ownedFaceInfoEnd());
2073  Threads::parallel_reduce(faces, fvr);
2074  }
2075 
2077 
2078  unsigned int n_threads = libMesh::n_threads();
2079  for (unsigned int i = 0; i < n_threads;
2080  i++) // Add any cached residuals that might be hanging around
2081  {
2084  }
2085  }
2086  PARALLEL_CATCH;
2087 }
unsigned int n_threads()
std::shared_ptr< DisplacedProblem > displaced_problem
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1560
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
TheWarehouse & theWarehouse() const
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual MooseMesh & mesh() override
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1569
virtual void addCachedResidual(const THREAD_ID tid) override
virtual void addCachedJacobian(const THREAD_ID tid) override
virtual void residualSetup() override

◆ computeResidualAndJacobianTags()

void NonlinearSystemBase::computeResidualAndJacobianTags ( const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)
inherited

Form possibly multiple tag-associated vectors and matrices.

Definition at line 909 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computeResidualAndJacobian().

911 {
912  const bool required_residual =
913  vector_tags.find(residualVectorTag()) == vector_tags.end() ? false : true;
914 
915  try
916  {
917  zeroTaggedVectors(vector_tags);
918  computeResidualAndJacobianInternal(vector_tags, matrix_tags);
919  closeTaggedVectors(vector_tags);
920  closeTaggedMatrices(matrix_tags);
921 
922  if (required_residual)
923  {
924  auto & residual = getVector(residualVectorTag());
925  if (!_time_integrators.empty())
926  {
927  for (auto & ti : _time_integrators)
928  ti->postResidual(residual);
929  }
930  else
931  residual += *_Re_non_time;
932  residual.close();
933  }
934 
936  closeTaggedVectors(vector_tags);
937  closeTaggedMatrices(matrix_tags);
938  }
939  catch (MooseException & e)
940  {
941  // The buck stops here, we have already handled the exception by
942  // calling stopSolve(), it is now up to PETSc to return a
943  // "diverged" reason during the next solve.
944  }
945 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
void zeroTaggedVectors(const std::set< TagID > &tags)
Zero all vectors for given tags.
Definition: SystemBase.C:693
void computeNodalBCsResidualAndJacobian()
compute the residual and Jacobian for nodal boundary conditions
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
void computeResidualAndJacobianInternal(const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Compute residual and Jacobian from contributions not related to constraints, such as nodal boundary c...
void closeTaggedMatrices(const std::set< TagID > &tags)
Close all matrices associated the tags.
Definition: SystemBase.C:1060
void closeTaggedVectors(const std::set< TagID > &tags)
Close all vectors for given tags.
Definition: SystemBase.C:667
virtual void close()=0
TagID residualVectorTag() const override
Provides a way for users to bail out of the current solve.
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeResidualInternal()

void NonlinearSystemBase::computeResidualInternal ( const std::set< TagID > &  tags)
protectedinherited

Compute the residual for a given tag.

Parameters
tagsThe tags of kernels for which the residual is to be computed.

Definition at line 1770 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualTags().

1771 {
1772  parallel_object_only();
1773 
1774  TIME_SECTION("computeResidualInternal", 3);
1775 
1776  residualSetup();
1777 
1778 #ifdef MOOSE_KOKKOS_ENABLED
1780  computeKokkosResidual(tags);
1781 #endif
1782 
1783  const auto vector_tag_data = _fe_problem.getVectorTags(tags);
1784 
1785  // Residual contributions from UOs - for now this is used for ray tracing
1786  // and ray kernels that contribute to the residual (think line sources)
1787  std::vector<UserObject *> uos;
1789  .query()
1790  .condition<AttribSystem>("UserObject")
1791  .condition<AttribExecOns>(EXEC_PRE_KERNELS)
1792  .queryInto(uos);
1793  for (auto & uo : uos)
1794  uo->residualSetup();
1795  for (auto & uo : uos)
1796  {
1797  uo->initialize();
1798  uo->execute();
1799  uo->finalize();
1800  }
1801 
1802  // reinit scalar variables
1803  for (unsigned int tid = 0; tid < libMesh::n_threads(); tid++)
1805 
1806  // residual contributions from the domain
1807  PARALLEL_TRY
1808  {
1809  TIME_SECTION("Kernels", 3 /*, "Computing Kernels"*/);
1810 
1812 
1814  Threads::parallel_reduce(elem_range, cr);
1815 
1816  // We pass face information directly to FV residual objects for their evaluation. Consequently
1817  // we must make sure to do separate threaded loops for 1) undisplaced face information objects
1818  // and undisplaced residual objects and 2) displaced face information objects and displaced
1819  // residual objects
1821  if (_fe_problem.haveFV())
1822  {
1824  _fe_problem, this->number(), tags, /*on_displaced=*/false);
1826  Threads::parallel_reduce(faces, fvr);
1827  }
1829  displaced_problem && displaced_problem->haveFV())
1830  {
1832  _fe_problem, this->number(), tags, /*on_displaced=*/true);
1833  FVRange faces(displaced_problem->mesh().ownedFaceInfoBegin(),
1834  displaced_problem->mesh().ownedFaceInfoEnd());
1835  Threads::parallel_reduce(faces, fvr);
1836  }
1837 
1838  unsigned int n_threads = libMesh::n_threads();
1839  for (unsigned int i = 0; i < n_threads;
1840  i++) // Add any cached residuals that might be hanging around
1842  }
1843  PARALLEL_CATCH;
1844 
1845  // residual contributions from the scalar kernels
1846  PARALLEL_TRY
1847  {
1848  // do scalar kernels (not sure how to thread this)
1850  {
1851  TIME_SECTION("ScalarKernels", 3 /*, "Computing ScalarKernels"*/);
1852 
1853  MooseObjectWarehouse<ScalarKernelBase> * scalar_kernel_warehouse;
1854  // This code should be refactored once we can do tags for scalar
1855  // kernels
1856  // Should redo this based on Warehouse
1857  if (!tags.size() || tags.size() == _fe_problem.numVectorTags(Moose::VECTOR_TAG_RESIDUAL))
1858  scalar_kernel_warehouse = &_scalar_kernels;
1859  else if (tags.size() == 1)
1860  scalar_kernel_warehouse =
1861  &(_scalar_kernels.getVectorTagObjectWarehouse(*(tags.begin()), 0));
1862  else
1863  // scalar_kernels is not threading
1864  scalar_kernel_warehouse = &(_scalar_kernels.getVectorTagsObjectWarehouse(tags, 0));
1865 
1866  bool have_scalar_contributions = false;
1867  const auto & scalars = scalar_kernel_warehouse->getActiveObjects();
1868  for (const auto & scalar_kernel : scalars)
1869  {
1870  scalar_kernel->reinit();
1871  const std::vector<dof_id_type> & dof_indices = scalar_kernel->variable().dofIndices();
1872  const DofMap & dof_map = scalar_kernel->variable().dofMap();
1873  const dof_id_type first_dof = dof_map.first_dof();
1874  const dof_id_type end_dof = dof_map.end_dof();
1875  for (dof_id_type dof : dof_indices)
1876  {
1877  if (dof >= first_dof && dof < end_dof)
1878  {
1879  scalar_kernel->computeResidual();
1880  have_scalar_contributions = true;
1881  break;
1882  }
1883  }
1884  }
1885  if (have_scalar_contributions)
1887  }
1888  }
1889  PARALLEL_CATCH;
1890 
1891  // residual contributions from Block NodalKernels
1892  PARALLEL_TRY
1893  {
1895  {
1896  TIME_SECTION("NodalKernels", 3 /*, "Computing NodalKernels"*/);
1897 
1899 
1901 
1902  if (range.begin() != range.end())
1903  {
1904  _fe_problem.reinitNode(*range.begin(), 0);
1905 
1906  Threads::parallel_reduce(range, cnk);
1907 
1908  unsigned int n_threads = libMesh::n_threads();
1909  for (unsigned int i = 0; i < n_threads;
1910  i++) // Add any cached residuals that might be hanging around
1912  }
1913  }
1914  }
1915  PARALLEL_CATCH;
1916 
1918  // We computed the volumetric objects. We can return now before we get into
1919  // any strongly enforced constraint conditions or penalty-type objects
1920  // (DGKernels, IntegratedBCs, InterfaceKernels, Constraints)
1921  return;
1922 
1923  // residual contributions from boundary NodalKernels
1924  PARALLEL_TRY
1925  {
1927  {
1928  TIME_SECTION("NodalKernelBCs", 3 /*, "Computing NodalKernelBCs"*/);
1929 
1931 
1933 
1934  Threads::parallel_reduce(bnd_node_range, cnk);
1935 
1936  unsigned int n_threads = libMesh::n_threads();
1937  for (unsigned int i = 0; i < n_threads;
1938  i++) // Add any cached residuals that might be hanging around
1940  }
1941  }
1942  PARALLEL_CATCH;
1943 
1945 
1946  if (_residual_copy.get())
1947  {
1948  _Re_non_time->close();
1950  }
1951 
1953  {
1954  _Re_non_time->close();
1957  }
1958 
1959  PARALLEL_TRY { computeDiracContributions(tags, false); }
1960  PARALLEL_CATCH;
1961 
1963  {
1964  PARALLEL_TRY { enforceNodalConstraintsResidual(*_Re_non_time); }
1965  PARALLEL_CATCH;
1966  _Re_non_time->close();
1967  }
1968 
1969  // Add in Residual contributions from other Constraints
1971  {
1972  PARALLEL_TRY
1973  {
1974  // Undisplaced Constraints
1976 
1977  // Displaced Constraints
1980 
1983  }
1984  PARALLEL_CATCH;
1985  _Re_non_time->close();
1986  }
1987 
1988  // Accumulate the occurrence of solution invalid warnings for the current iteration cumulative
1989  // counters
1992 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
dof_id_type end_dof(const processor_id_type proc) const
unsigned int n_threads()
bool hasActiveBlockObjects(THREAD_ID tid=0) const
std::shared_ptr< DisplacedProblem > displaced_problem
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
virtual void reinitNode(const Node *node, const THREAD_ID tid) override
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
face_info_iterator ownedFaceInfoBegin()
Iterators to owned faceInfo objects.
Definition: MooseMesh.C:1560
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
MooseObjectWarehouse< T > & getVectorTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object at least has one of the given vector ta...
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
const libMesh::ConstNodeRange & getCurrentAlgebraicNodeRange()
void constraintResiduals(NumericVector< Number > &residual, bool displaced)
Add residual contributions from Constraints.
const Variable & variable(const unsigned int c) const override
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
void solutionInvalidAccumulation()
Pass the number of solution invalid occurrences from current iteration to cumulative counters...
void syncIteration()
Sync iteration counts to main processor.
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
void computeDiracContributions(const std::set< TagID > &tags, bool is_jacobian)
TheWarehouse & theWarehouse() const
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
std::vector< VectorTag > getVectorTags(const std::set< TagID > &tag_ids) const
Definition: SubProblem.C:173
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
void computingNonlinearResid(bool computing_nonlinear_residual) final
Set whether or not the problem is in the process of computing the nonlinear residual.
const_iterator end() const
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.
bool hasActiveObjects(THREAD_ID tid=0) const
bool hasKokkosResidualObjects() const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
const_iterator begin() const
void computeKokkosResidual(const std::set< TagID > &tags)
Compute residual with Kokkos objects.
virtual MooseMesh & mesh() override
virtual unsigned int numVectorTags(const Moose::VectorTagType type=Moose::VECTOR_TAG_ANY) const
The total number of tags, which can be limited to the tag type.
Definition: SubProblem.C:196
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...
const ExecFlagType EXEC_PRE_KERNELS
Definition: Moose.C:56
void mortarConstraints(Moose::ComputeType compute_type, const std::set< TagID > &vector_tags, const std::set< TagID > &matrix_tags)
Do mortar constraint residual/jacobian computations.
QueryCache & condition(Args &&... args)
Adds a new condition to the query.
Definition: TheWarehouse.h:284
face_info_iterator ownedFaceInfoEnd()
Definition: MooseMesh.C:1569
bool _has_constraints
Whether or not this system has any Constraints.
dof_id_type first_dof(const processor_id_type proc) const
void enforceNodalConstraintsResidual(NumericVector< Number > &residual)
Enforce nodal constraints.
virtual void addResidualScalar(const THREAD_ID tid=0)
virtual void addCachedResidual(const THREAD_ID tid) override
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
virtual void residualEnd(THREAD_ID tid=0) const
uint8_t dof_id_type
virtual void residualSetup() override
virtual void localize(std::vector< T > &v_local) const=0

◆ computeResidualTag()

void NonlinearSystemBase::computeResidualTag ( NumericVector< Number > &  residual,
TagID  tag_id 
)
inherited

Computes residual for a given tag.

Parameters
residualResidual is formed in here
thetag of kernels for which the residual is to be computed.

Definition at line 807 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidual(), and CrankNicolson::init().

808 {
809  _nl_vector_tags.clear();
810  _nl_vector_tags.insert(tag_id);
812 
814 
816 
818 }
std::set< TagID > _nl_vector_tags
Vector tags to temporarily store all tags associated with the current system.
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void computeResidualTags(const std::set< TagID > &tags)
Form multiple tag-associated residual vectors for all the given tags.
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
TagID residualVectorTag() const override

◆ computeResidualTags()

void NonlinearSystemBase::computeResidualTags ( const std::set< TagID > &  tags)
inherited

Form multiple tag-associated residual vectors for all the given tags.

Definition at line 829 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualTag(), and FEProblemBase::computeResidualTags().

830 {
831  parallel_object_only();
832 
833  TIME_SECTION("nl::computeResidualTags", 5);
834 
837 
838  bool required_residual = tags.find(residualVectorTag()) == tags.end() ? false : true;
839 
841 
842  // not suppose to do anythin on matrix
844 
846 
847  for (const auto & numeric_vec : _vecs_to_zero_for_residual)
848  if (hasVector(numeric_vec))
849  {
850  NumericVector<Number> & vec = getVector(numeric_vec);
851  vec.close();
852  vec.zero();
853  }
854 
855  try
856  {
857  zeroTaggedVectors(tags);
859  closeTaggedVectors(tags);
860 
861  if (required_residual)
862  {
863  auto & residual = getVector(residualVectorTag());
864  if (!_time_integrators.empty())
865  {
866  for (auto & ti : _time_integrators)
867  ti->postResidual(residual);
868  }
869  else
870  residual += *_Re_non_time;
871  residual.close();
872  }
874  // We don't want to do nodal bcs or anything else
875  return;
876 
877  computeNodalBCs(tags);
878  closeTaggedVectors(tags);
879 
880  // If we are debugging residuals we need one more assignment to have the ghosted copy up to
881  // date
882  if (_need_residual_ghosted && _debugging_residuals && required_residual)
883  {
884  auto & residual = getVector(residualVectorTag());
885 
886  *_residual_ghosted = residual;
888  }
889  // Need to close and update the aux system in case residuals were saved to it.
892  if (hasSaveIn())
894  }
895  catch (MooseException & e)
896  {
897  // The buck stops here, we have already handled the exception by
898  // calling stopSolve(), it is now up to PETSc to return a
899  // "diverged" reason during the next solve.
900  }
901 
902  // not supposed to do anything on matrix
904 
906 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
void zeroTaggedVectors(const std::set< TagID > &tags)
Zero all vectors for given tags.
Definition: SystemBase.C:693
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
bool _debugging_residuals
true if debugging residuals
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void setCurrentlyComputingResidual(bool currently_computing_residual) final
Set whether or not the problem is in the process of computing the residual.
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
Scope guard for starting and stopping Floating Point Exception Trapping.
virtual void zero()=0
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
virtual void activateAllMatrixTags()
Make all existing matrices active.
Definition: SystemBase.C:1131
virtual void deactivateAllMatrixTags()
Make matrices inactive.
Definition: SystemBase.C:1119
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
std::vector< std::string > _vecs_to_zero_for_residual
vectors that will be zeroed before a residual computation
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
AuxiliarySystem & getAuxiliarySystem()
void closeTaggedVectors(const std::set< TagID > &tags)
Close all vectors for given tags.
Definition: SystemBase.C:667
void computeResidualInternal(const std::set< TagID > &tags)
Compute the residual for a given tag.
virtual void close()=0
TagID residualVectorTag() const override
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
Provides a way for users to bail out of the current solve.
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.
bool hasSaveIn() const
Weather or not the nonlinear system has save-ins.
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
void computeNodalBCs(NumericVector< Number > &residual)
Enforces nodal boundary conditions.
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ computeScalarKernelsJacobians()

void NonlinearSystemBase::computeScalarKernelsJacobians ( const std::set< TagID > &  tags)
protectedinherited

Definition at line 2764 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal().

2765 {
2766  MooseObjectWarehouse<ScalarKernelBase> * scalar_kernel_warehouse;
2767 
2768  if (!tags.size() || tags.size() == _fe_problem.numMatrixTags())
2769  scalar_kernel_warehouse = &_scalar_kernels;
2770  else if (tags.size() == 1)
2771  scalar_kernel_warehouse = &(_scalar_kernels.getMatrixTagObjectWarehouse(*(tags.begin()), 0));
2772  else
2773  scalar_kernel_warehouse = &(_scalar_kernels.getMatrixTagsObjectWarehouse(tags, 0));
2774 
2775  // Compute the diagonal block for scalar variables
2776  if (scalar_kernel_warehouse->hasActiveObjects())
2777  {
2778  const auto & scalars = scalar_kernel_warehouse->getActiveObjects();
2779 
2780  _fe_problem.reinitScalars(/*tid=*/0);
2781 
2782  _fe_problem.reinitOffDiagScalars(/*_tid*/ 0);
2783 
2784  bool have_scalar_contributions = false;
2785  for (const auto & kernel : scalars)
2786  {
2787  if (!kernel->computesJacobian())
2788  continue;
2789 
2790  kernel->reinit();
2791  const std::vector<dof_id_type> & dof_indices = kernel->variable().dofIndices();
2792  const DofMap & dof_map = kernel->variable().dofMap();
2793  const dof_id_type first_dof = dof_map.first_dof();
2794  const dof_id_type end_dof = dof_map.end_dof();
2795  for (dof_id_type dof : dof_indices)
2796  {
2797  if (dof >= first_dof && dof < end_dof)
2798  {
2799  kernel->computeJacobian();
2800  _fe_problem.addJacobianOffDiagScalar(kernel->variable().number());
2801  have_scalar_contributions = true;
2802  break;
2803  }
2804  }
2805  }
2806 
2807  if (have_scalar_contributions)
2809  }
2810 }
dof_id_type end_dof(const processor_id_type proc) const
virtual void reinitScalars(const THREAD_ID tid, bool reinit_for_derivative_reordering=false) override
fills the VariableValue arrays for scalar variables from the solution vector
virtual void addJacobianOffDiagScalar(unsigned int ivar, const THREAD_ID tid=0)
const Variable & variable(const unsigned int c) const override
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
MooseObjectWarehouse< T > & getMatrixTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given matrix tag...
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< T > & getMatrixTagsObjectWarehouse(const std::set< TagID > &tags, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has one of the given matrix tags...
dof_id_type first_dof(const processor_id_type proc) const
virtual void reinitOffDiagScalars(const THREAD_ID tid) override
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
uint8_t dof_id_type
virtual void addJacobianScalar(const THREAD_ID tid=0)

◆ computeScaling()

bool NonlinearSystemBase::computeScaling ( )
inherited

Method used to obtain scaling factors for variables.

Returns
whether this method ran without exceptions

Definition at line 4023 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::preSolve().

4024 {
4026  return true;
4027 
4028  _console << "\nPerforming automatic scaling calculation\n" << std::endl;
4029 
4030  TIME_SECTION("computeScaling", 3, "Computing Automatic Scaling");
4031 
4032  // It's funny but we need to assemble our vector of scaling factors here otherwise we will be
4033  // applying scaling factors of 0 during Assembly of our scaling Jacobian
4035 
4036  // container for repeated access of element global dof indices
4037  std::vector<dof_id_type> dof_indices;
4038 
4039  if (!_auto_scaling_initd)
4040  setupScalingData();
4041 
4042  std::vector<Real> inverse_scaling_factors(_num_scaling_groups, 0);
4043  std::vector<Real> resid_inverse_scaling_factors(_num_scaling_groups, 0);
4044  std::vector<Real> jac_inverse_scaling_factors(_num_scaling_groups, 0);
4045  auto & dof_map = dofMap();
4046 
4047  // what types of scaling do we want?
4048  bool jac_scaling = _resid_vs_jac_scaling_param < 1. - TOLERANCE;
4049  bool resid_scaling = _resid_vs_jac_scaling_param > TOLERANCE;
4050 
4051  const NumericVector<Number> & scaling_residual = RHS();
4052 
4053  if (jac_scaling)
4054  {
4055  // if (!_auto_scaling_initd)
4056  // We need to reinit this when the number of dofs changes
4057  // but there is no good way to track that
4058  // In theory, it is the job of libmesh system to track this,
4059  // but this special matrix is not owned by libMesh system
4060  // Let us reinit eveytime since it is not expensive
4061  {
4062  auto init_vector = NumericVector<Number>::build(this->comm());
4063  init_vector->init(system().n_dofs(), system().n_local_dofs(), /*fast=*/false, PARALLEL);
4064 
4065  _scaling_matrix->clear();
4066  _scaling_matrix->init(*init_vector);
4067  }
4068 
4070  // Dispatch to derived classes to ensure that we use the correct matrix tag
4073  }
4074 
4075  if (resid_scaling)
4076  {
4079  // Dispatch to derived classes to ensure that we use the correct vector tag
4083  }
4084 
4085  // Did something bad happen during residual/Jacobian scaling computation?
4087  return false;
4088 
4089  auto examine_dof_indices = [this,
4090  jac_scaling,
4091  resid_scaling,
4092  &dof_map,
4093  &jac_inverse_scaling_factors,
4094  &resid_inverse_scaling_factors,
4095  &scaling_residual](const auto & dof_indices, const auto var_number)
4096  {
4097  for (auto dof_index : dof_indices)
4098  if (dof_map.local_index(dof_index))
4099  {
4100  if (jac_scaling)
4101  {
4102  // For now we will use the diagonal for determining scaling
4103  auto mat_value = (*_scaling_matrix)(dof_index, dof_index);
4104  auto & factor = jac_inverse_scaling_factors[_var_to_group_var[var_number]];
4105  factor = std::max(factor, std::abs(mat_value));
4106  }
4107  if (resid_scaling)
4108  {
4109  auto vec_value = scaling_residual(dof_index);
4110  auto & factor = resid_inverse_scaling_factors[_var_to_group_var[var_number]];
4111  factor = std::max(factor, std::abs(vec_value));
4112  }
4113  }
4114  };
4115 
4116  // Compute our scaling factors for the spatial field variables
4117  for (const auto & elem : _fe_problem.getCurrentAlgebraicElementRange())
4118  for (const auto i : make_range(system().n_vars()))
4120  {
4121  dof_map.dof_indices(elem, dof_indices, i);
4122  examine_dof_indices(dof_indices, i);
4123  }
4124 
4125  for (const auto i : make_range(system().n_vars()))
4126  if (_variable_autoscaled[i] && system().variable_type(i).family == SCALAR)
4127  {
4128  dof_map.SCALAR_dof_indices(dof_indices, i);
4129  examine_dof_indices(dof_indices, i);
4130  }
4131 
4132  if (resid_scaling)
4133  _communicator.max(resid_inverse_scaling_factors);
4134  if (jac_scaling)
4135  _communicator.max(jac_inverse_scaling_factors);
4136 
4137  if (jac_scaling && resid_scaling)
4138  for (MooseIndex(inverse_scaling_factors) i = 0; i < inverse_scaling_factors.size(); ++i)
4139  {
4140  // Be careful not to take log(0)
4141  if (!resid_inverse_scaling_factors[i])
4142  {
4143  if (!jac_inverse_scaling_factors[i])
4144  inverse_scaling_factors[i] = 1;
4145  else
4146  inverse_scaling_factors[i] = jac_inverse_scaling_factors[i];
4147  }
4148  else if (!jac_inverse_scaling_factors[i])
4149  // We know the resid is not zero
4150  inverse_scaling_factors[i] = resid_inverse_scaling_factors[i];
4151  else
4152  inverse_scaling_factors[i] =
4153  std::exp(_resid_vs_jac_scaling_param * std::log(resid_inverse_scaling_factors[i]) +
4154  (1 - _resid_vs_jac_scaling_param) * std::log(jac_inverse_scaling_factors[i]));
4155  }
4156  else if (jac_scaling)
4157  inverse_scaling_factors = jac_inverse_scaling_factors;
4158  else if (resid_scaling)
4159  inverse_scaling_factors = resid_inverse_scaling_factors;
4160  else
4161  mooseError("We shouldn't be calling this routine if we're not performing any scaling");
4162 
4163  // We have to make sure that our scaling values are not zero
4164  for (auto & scaling_factor : inverse_scaling_factors)
4165  if (scaling_factor == 0)
4166  scaling_factor = 1;
4167 
4168  // Now flatten the group scaling factors to the individual variable scaling factors
4169  std::vector<Real> flattened_inverse_scaling_factors(system().n_vars());
4170  for (const auto i : index_range(flattened_inverse_scaling_factors))
4171  flattened_inverse_scaling_factors[i] = inverse_scaling_factors[_var_to_group_var[i]];
4172 
4173  // Now set the scaling factors for the variables
4174  applyScalingFactors(flattened_inverse_scaling_factors);
4176  displaced_problem->systemBaseNonlinear(number()).applyScalingFactors(
4177  flattened_inverse_scaling_factors);
4178 
4179  _computed_scaling = true;
4180  return true;
4181 }
MetaPhysicL::DualNumber< V, D, asd > abs(const MetaPhysicL::DualNumber< V, D, asd > &a)
Definition: EigenADReal.h:50
std::vector< bool > _variable_autoscaled
Container to hold flag if variable is to participate in autoscaling.
std::shared_ptr< DisplacedProblem > displaced_problem
void applyScalingFactors(const std::vector< Real > &inverse_scaling_factors)
Applies scaling factors to the system&#39;s variables.
Definition: SystemBase.C:1495
SCALAR
auto exp(const T &)
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const Parallel::Communicator & comm() const
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
A diagonal matrix used for computing scaling.
const Parallel::Communicator & _communicator
const libMesh::ConstElemRange & getCurrentAlgebraicElementRange()
These are the element and nodes that contribute to the jacobian and residual for this local processor...
std::size_t _num_scaling_groups
The number of scaling groups.
void computingScalingJacobian(bool computing_scaling_jacobian)
Setter for whether we&#39;re computing the scaling jacobian.
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...
auto max(const L &left, const R &right)
Real _resid_vs_jac_scaling_param
The param that indicates the weighting of the residual vs the Jacobian in determining variable scalin...
bool _auto_scaling_initd
Whether we&#39;ve initialized the automatic scaling data structures.
virtual void computeScalingResidual()=0
Compute a "residual" for automatic scaling purposes.
virtual libMesh::DofMap & dofMap()
Gets writeable reference to the dof map.
Definition: SystemBase.C:1163
std::unordered_map< unsigned int, unsigned int > _var_to_group_var
A map from variable index to group variable index and it&#39;s associated (inverse) scaling factor...
unsigned int n_vars
void computingScalingResidual(bool computing_scaling_residual)
Setter for whether we&#39;re computing the scaling residual.
virtual void computeScalingJacobian()=0
Compute a "Jacobian" for automatic scaling purposes.
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
void setupScalingData()
Setup group scaling containers.
auto log(const T &)
void computingNonlinearResid(bool computing_nonlinear_residual) final
Set whether or not the problem is in the process of computing the nonlinear residual.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual NumericVector< Number > & RHS()=0
const FEType & variable_type(const unsigned int i) const
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
void max(const T &r, T &o, Request &req) const
bool getFailNextNonlinearConvergenceCheck() const
Whether it will skip further residual evaluations and fail the next nonlinear convergence check(s) ...
IntRange< T > make_range(T beg, T end)
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
bool _computed_scaling
Flag used to indicate whether we have already computed the scaling Jacobian.
auto index_range(const T &sizable)
void assembleScalingVector()
Assemble the numeric vector of scaling factors such that it can be used during assembly of the system...
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ computeScalingJacobian()

void DumpObjectsNonlinearSystem::computeScalingJacobian ( )
inlineoverrideprotectedvirtual

Compute a "Jacobian" for automatic scaling purposes.

Implements NonlinearSystemBase.

Definition at line 44 of file DumpObjectsNonlinearSystem.h.

44 {}

◆ computeScalingOnce() [1/2]

bool NonlinearSystemBase::computeScalingOnce ( ) const
inlineinherited

Definition at line 714 of file NonlinearSystemBase.h.

714 { return _compute_scaling_once; }
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...

◆ computeScalingOnce() [2/2]

void NonlinearSystemBase::computeScalingOnce ( bool  compute_scaling_once)
inlineinherited

Definition at line 715 of file NonlinearSystemBase.h.

716  {
717  _compute_scaling_once = compute_scaling_once;
718  }
bool _compute_scaling_once
Whether the scaling factors should only be computed once at the beginning of the simulation through a...

◆ computeScalingResidual()

void DumpObjectsNonlinearSystem::computeScalingResidual ( )
inlineoverrideprotectedvirtual

Compute a "residual" for automatic scaling purposes.

Implements NonlinearSystemBase.

Definition at line 45 of file DumpObjectsNonlinearSystem.h.

45 {}

◆ computeVariables()

virtual void SystemBase::computeVariables ( const NumericVector< Number > &  )
inlinevirtualinherited

Definition at line 869 of file SystemBase.h.

869 {}

◆ computingPreSMOResidual()

bool NonlinearSystemBase::computingPreSMOResidual ( )
inlineinherited

Returns true if this system is currently computing the pre-SMO residual for a solve.

Returns
Whether or not we are currently computing the pre-SMO residual.

Definition at line 97 of file NonlinearSystemBase.h.

◆ computingScalingJacobian()

bool SystemBase::computingScalingJacobian ( ) const
inherited

Whether we are computing an initial Jacobian for automatic variable scaling.

Definition at line 1552 of file SystemBase.C.

Referenced by Assembly::addJacobianBlock(), Assembly::addJacobianBlockNonlocal(), Kernel::computeJacobian(), VectorKernel::computeJacobian(), EigenKernel::computeJacobian(), and FEProblemBase::computeJacobianTags().

1553 {
1555 }
virtual bool computingScalingJacobian() const =0
Getter for whether we&#39;re computing the scaling jacobian.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983

◆ constraintJacobians()

void NonlinearSystemBase::constraintJacobians ( const SparseMatrix< Number > &  jacobian_to_view,
bool  displaced 
)
inherited

Add jacobian contributions from Constraints.

Parameters
jacobianreference to a read-only view of the Jacobian matrix
displacedControls whether to do the displaced Constraints or non-displaced

Definition at line 2353 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal().

2355 {
2356  if (!hasMatrix(systemMatrixTag()))
2357  mooseError("A system matrix is required");
2358 
2359  auto & jacobian = getMatrix(systemMatrixTag());
2360 
2362  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2363  MAT_NEW_NONZERO_ALLOCATION_ERR,
2364  PETSC_FALSE));
2366  LibmeshPetscCall(MatSetOption(
2367  static_cast<PetscMatrix<Number> &>(jacobian).mat(), MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2368 
2369  std::vector<numeric_index_type> zero_rows;
2370 
2371  if (displaced)
2372  mooseAssert(_fe_problem.getDisplacedProblem(),
2373  "If we're calling this method with displaced = true, then we better well have a "
2374  "displaced problem");
2375  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
2376  : static_cast<SubProblem &>(_fe_problem);
2377  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
2378 
2379  bool constraints_applied;
2381  constraints_applied = false;
2382  for (const auto & it : penetration_locators)
2383  {
2385  {
2386  // Reset the constraint_applied flag before each new constraint, as they need to be
2387  // assembled separately
2388  constraints_applied = false;
2389  }
2390  PenetrationLocator & pen_loc = *(it.second);
2391 
2392  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
2393 
2394  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
2395  BoundaryID primary_boundary = pen_loc._primary_boundary;
2396 
2397  zero_rows.clear();
2398  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
2399  {
2400  const auto & constraints =
2401  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
2402 
2403  for (const auto & secondary_node_num : secondary_nodes)
2404  {
2405  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
2406 
2407  if (secondary_node.processor_id() == processor_id())
2408  {
2409  if (pen_loc._penetration_info[secondary_node_num])
2410  {
2411  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
2412 
2413  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
2415 
2416  for (const auto & nfc : constraints)
2417  {
2418  if (nfc->isExplicitConstraint())
2419  continue;
2420  // Return if this constraint does not correspond to the primary-secondary pair
2421  // prepared by the outer loops.
2422  // This continue statement is required when, e.g. one secondary surface constrains
2423  // more than one primary surface.
2424  if (nfc->secondaryBoundary() != secondary_boundary ||
2425  nfc->primaryBoundary() != primary_boundary)
2426  continue;
2427 
2428  nfc->_jacobian = &jacobian_to_view;
2429 
2430  if (nfc->shouldApply())
2431  {
2432  constraints_applied = true;
2433 
2434  nfc->prepareShapes(nfc->variable().number());
2435  nfc->prepareNeighborShapes(nfc->variable().number());
2436 
2437  nfc->computeJacobian();
2438 
2439  if (nfc->overwriteSecondaryJacobian())
2440  {
2441  // Add this variable's dof's row to be zeroed
2442  zero_rows.push_back(nfc->variable().nodalDofIndex());
2443  }
2444 
2445  std::vector<dof_id_type> secondary_dofs(1, nfc->variable().nodalDofIndex());
2446 
2447  // Assume that if the user is overwriting the secondary Jacobian, then they are
2448  // supplying Jacobians that do not correspond to their other physics
2449  // (e.g. Kernels), hence we should not apply a scalingFactor that is normally
2450  // based on the order of their other physics (e.g. Kernels)
2451  Real scaling_factor =
2452  nfc->overwriteSecondaryJacobian() ? 1. : nfc->variable().scalingFactor();
2453 
2454  // Cache the jacobian block for the secondary side
2455  nfc->addJacobian(_fe_problem.assembly(0, number()),
2456  nfc->_Kee,
2457  secondary_dofs,
2458  nfc->_connected_dof_indices,
2459  scaling_factor);
2460 
2461  // Cache Ken, Kne, Knn
2462  if (nfc->addCouplingEntriesToJacobian())
2463  {
2464  // Make sure we use a proper scaling factor (e.g. don't use an interior scaling
2465  // factor when we're overwriting secondary stuff)
2466  nfc->addJacobian(_fe_problem.assembly(0, number()),
2467  nfc->_Ken,
2468  secondary_dofs,
2469  nfc->primaryVariable().dofIndicesNeighbor(),
2470  scaling_factor);
2471 
2472  // Use _connected_dof_indices to get all the correct columns
2473  nfc->addJacobian(_fe_problem.assembly(0, number()),
2474  nfc->_Kne,
2475  nfc->primaryVariable().dofIndicesNeighbor(),
2476  nfc->_connected_dof_indices,
2477  nfc->primaryVariable().scalingFactor());
2478 
2479  // We've handled Ken and Kne, finally handle Knn
2481  }
2482 
2483  // Do the off-diagonals next
2484  const std::vector<MooseVariableFEBase *> coupled_vars = nfc->getCoupledMooseVars();
2485  for (const auto & jvar : coupled_vars)
2486  {
2487  // Only compute jacobians for nonlinear variables
2488  if (jvar->kind() != Moose::VAR_SOLVER)
2489  continue;
2490 
2491  // Only compute Jacobian entries if this coupling is being used by the
2492  // preconditioner
2493  if (nfc->variable().number() == jvar->number() ||
2495  nfc->variable().number(), jvar->number(), this->number()))
2496  continue;
2497 
2498  // Need to zero out the matrices first
2500 
2501  nfc->prepareShapes(nfc->variable().number());
2502  nfc->prepareNeighborShapes(jvar->number());
2503 
2504  nfc->computeOffDiagJacobian(jvar->number());
2505 
2506  // Cache the jacobian block for the secondary side
2507  nfc->addJacobian(_fe_problem.assembly(0, number()),
2508  nfc->_Kee,
2509  secondary_dofs,
2510  nfc->_connected_dof_indices,
2511  scaling_factor);
2512 
2513  // Cache Ken, Kne, Knn
2514  if (nfc->addCouplingEntriesToJacobian())
2515  {
2516  // Make sure we use a proper scaling factor (e.g. don't use an interior scaling
2517  // factor when we're overwriting secondary stuff)
2518  nfc->addJacobian(_fe_problem.assembly(0, number()),
2519  nfc->_Ken,
2520  secondary_dofs,
2521  jvar->dofIndicesNeighbor(),
2522  scaling_factor);
2523 
2524  // Use _connected_dof_indices to get all the correct columns
2525  nfc->addJacobian(_fe_problem.assembly(0, number()),
2526  nfc->_Kne,
2527  nfc->variable().dofIndicesNeighbor(),
2528  nfc->_connected_dof_indices,
2529  nfc->variable().scalingFactor());
2530 
2531  // We've handled Ken and Kne, finally handle Knn
2533  }
2534  }
2535  }
2536  }
2537  }
2538  }
2539  }
2540  }
2542  {
2543  // See if constraints were applied anywhere
2544  _communicator.max(constraints_applied);
2545 
2546  if (constraints_applied)
2547  {
2548  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2549  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2550  PETSC_TRUE));
2551 
2552  jacobian.close();
2553  jacobian.zero_rows(zero_rows, 0.0);
2554  jacobian.close();
2556  jacobian.close();
2557  }
2558  }
2559  }
2561  {
2562  // See if constraints were applied anywhere
2563  _communicator.max(constraints_applied);
2564 
2565  if (constraints_applied)
2566  {
2567  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2568  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2569  PETSC_TRUE));
2570 
2571  jacobian.close();
2572  jacobian.zero_rows(zero_rows, 0.0);
2573  jacobian.close();
2575  jacobian.close();
2576  }
2577  }
2578 
2579  THREAD_ID tid = 0;
2580  // go over element-element constraint interface
2581  const auto & element_pair_locators = subproblem.geomSearchData()._element_pair_locators;
2582  for (const auto & it : element_pair_locators)
2583  {
2584  ElementPairLocator & elem_pair_loc = *(it.second);
2585 
2586  if (_constraints.hasActiveElemElemConstraints(it.first, displaced))
2587  {
2588  // ElemElemConstraint objects
2589  const auto & element_constraints =
2590  _constraints.getActiveElemElemConstraints(it.first, displaced);
2591 
2592  // go over pair elements
2593  const std::list<std::pair<const Elem *, const Elem *>> & elem_pairs =
2594  elem_pair_loc.getElemPairs();
2595  for (const auto & pr : elem_pairs)
2596  {
2597  const Elem * elem1 = pr.first;
2598  const Elem * elem2 = pr.second;
2599 
2600  if (elem1->processor_id() != processor_id())
2601  continue;
2602 
2603  const ElementPairInfo & info = elem_pair_loc.getElemPairInfo(pr);
2604 
2605  // for each element process constraints on the
2606  for (const auto & ec : element_constraints)
2607  {
2608  _fe_problem.setCurrentSubdomainID(elem1, tid);
2609  subproblem.reinitElemPhys(elem1, info._elem1_constraint_q_point, tid);
2610  _fe_problem.setNeighborSubdomainID(elem2, tid);
2611  subproblem.reinitNeighborPhys(elem2, info._elem2_constraint_q_point, tid);
2612 
2613  ec->prepareShapes(ec->variable().number());
2614  ec->prepareNeighborShapes(ec->variable().number());
2615 
2616  ec->reinit(info);
2617  ec->computeJacobian();
2620  }
2622  }
2623  }
2624  }
2625 
2626  // go over NodeElemConstraints
2627  std::set<dof_id_type> unique_secondary_node_ids;
2628  constraints_applied = false;
2629  for (const auto & secondary_id : _mesh.meshSubdomains())
2630  {
2631  for (const auto & primary_id : _mesh.meshSubdomains())
2632  {
2633  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
2634  {
2635  const auto & constraints =
2636  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
2637 
2638  // get unique set of ids of all nodes on current block
2639  unique_secondary_node_ids.clear();
2640  const MeshBase & meshhelper = _mesh.getMesh();
2641  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
2642  meshhelper.active_subdomain_elements_end(secondary_id)))
2643  {
2644  for (auto & n : elem->node_ref_range())
2645  unique_secondary_node_ids.insert(n.id());
2646  }
2647 
2648  for (auto secondary_node_id : unique_secondary_node_ids)
2649  {
2650  const Node & secondary_node = _mesh.nodeRef(secondary_node_id);
2651  // check if secondary node is on current processor
2652  if (secondary_node.processor_id() == processor_id())
2653  {
2654  // This reinits the variables that exist on the secondary node
2655  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
2656 
2657  // This will set aside residual and jacobian space for the variables that have dofs
2658  // on the secondary node
2661 
2662  for (const auto & nec : constraints)
2663  {
2664  if (nec->shouldApply())
2665  {
2666  constraints_applied = true;
2667 
2668  nec->_jacobian = &jacobian_to_view;
2669  nec->prepareShapes(nec->variable().number());
2670  nec->prepareNeighborShapes(nec->variable().number());
2671 
2672  nec->computeJacobian();
2673 
2674  if (nec->overwriteSecondaryJacobian())
2675  {
2676  // Add this variable's dof's row to be zeroed
2677  zero_rows.push_back(nec->variable().nodalDofIndex());
2678  }
2679 
2680  std::vector<dof_id_type> secondary_dofs(1, nec->variable().nodalDofIndex());
2681 
2682  // Cache the jacobian block for the secondary side
2683  nec->addJacobian(_fe_problem.assembly(0, number()),
2684  nec->_Kee,
2685  secondary_dofs,
2686  nec->_connected_dof_indices,
2687  nec->variable().scalingFactor());
2688 
2689  // Cache the jacobian block for the primary side
2690  nec->addJacobian(_fe_problem.assembly(0, number()),
2691  nec->_Kne,
2692  nec->primaryVariable().dofIndicesNeighbor(),
2693  nec->_connected_dof_indices,
2694  nec->primaryVariable().scalingFactor());
2695 
2698 
2699  // Do the off-diagonals next
2700  const std::vector<MooseVariableFEBase *> coupled_vars = nec->getCoupledMooseVars();
2701  for (const auto & jvar : coupled_vars)
2702  {
2703  // Only compute jacobians for nonlinear variables
2704  if (jvar->kind() != Moose::VAR_SOLVER)
2705  continue;
2706 
2707  // Only compute Jacobian entries if this coupling is being used by the
2708  // preconditioner
2709  if (nec->variable().number() == jvar->number() ||
2711  nec->variable().number(), jvar->number(), this->number()))
2712  continue;
2713 
2714  // Need to zero out the matrices first
2716 
2717  nec->prepareShapes(nec->variable().number());
2718  nec->prepareNeighborShapes(jvar->number());
2719 
2720  nec->computeOffDiagJacobian(jvar->number());
2721 
2722  // Cache the jacobian block for the secondary side
2723  nec->addJacobian(_fe_problem.assembly(0, number()),
2724  nec->_Kee,
2725  secondary_dofs,
2726  nec->_connected_dof_indices,
2727  nec->variable().scalingFactor());
2728 
2729  // Cache the jacobian block for the primary side
2730  nec->addJacobian(_fe_problem.assembly(0, number()),
2731  nec->_Kne,
2732  nec->variable().dofIndicesNeighbor(),
2733  nec->_connected_dof_indices,
2734  nec->variable().scalingFactor());
2735 
2738  }
2739  }
2740  }
2741  }
2742  }
2743  }
2744  }
2745  }
2746  // See if constraints were applied anywhere
2747  _communicator.max(constraints_applied);
2748 
2749  if (constraints_applied)
2750  {
2751  LibmeshPetscCall(MatSetOption(static_cast<PetscMatrix<Number> &>(jacobian).mat(),
2752  MAT_KEEP_NONZERO_PATTERN, // This is changed in 3.1
2753  PETSC_TRUE));
2754 
2755  jacobian.close();
2756  jacobian.zero_rows(zero_rows, 0.0);
2757  jacobian.close();
2759  jacobian.close();
2760  }
2761 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
MPI_Info info
bool areCoupled(const unsigned int ivar, const unsigned int jvar, const unsigned int nl_sys_num) const
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const ElementPairInfo & getElemPairInfo(std::pair< const Elem *, const Elem *> elem_pair) const
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual void cacheJacobianNeighbor(const THREAD_ID tid) override
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:861
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num) override
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3528
const ElementPairList & getElemPairs() const
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
bool errorOnJacobianNonzeroReallocation() const
Will return True if the user wants to get an error when a nonzero is reallocated in the Jacobian by P...
This is the ElementPairLocator class.
This is the ElementPairInfo class.
std::map< BoundaryID, std::shared_ptr< ElementPairLocator > > _element_pair_locators
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual GeometricSearchData & geomSearchData()=0
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void setCurrentSubdomainID(const Elem *elem, const THREAD_ID tid) override
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void reinitElemPhys(const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid)=0
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
bool hasActiveElemElemConstraints(const InterfaceID interface_id, bool displaced) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
bool ignoreZerosInJacobian() const
Will return true if zeros in the Jacobian are to be dropped from the sparsity pattern.
processor_id_type processor_id() const
const std::vector< std::shared_ptr< ElemElemConstraint > > & getActiveElemElemConstraints(InterfaceID interface_id, bool displaced) const
virtual void cacheJacobian(const THREAD_ID tid) override
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
virtual void reinitOffDiagScalars(const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
BoundaryID _primary_boundary
unsigned int THREAD_ID
Definition: MooseTypes.h:237
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3251
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ constraintResiduals()

void NonlinearSystemBase::constraintResiduals ( NumericVector< Number > &  residual,
bool  displaced 
)
inherited

Add residual contributions from Constraints.

Parameters
residual- reference to the residual vector where constraint contributions will be computed
displacedControls whether to do the displaced Constraints or non-displaced

Definition at line 1366 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1367 {
1368  // Make sure the residual is in a good state
1369  residual.close();
1370 
1371  if (displaced)
1372  mooseAssert(_fe_problem.getDisplacedProblem(),
1373  "If we're calling this method with displaced = true, then we better well have a "
1374  "displaced problem");
1375  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1376  : static_cast<SubProblem &>(_fe_problem);
1377  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1378 
1379  bool constraints_applied;
1380  bool residual_has_inserted_values = false;
1382  constraints_applied = false;
1383  for (const auto & it : penetration_locators)
1384  {
1386  {
1387  // Reset the constraint_applied flag before each new constraint, as they need to be
1388  // assembled separately
1389  constraints_applied = false;
1390  }
1391  PenetrationLocator & pen_loc = *(it.second);
1392 
1393  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1394 
1395  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1396  BoundaryID primary_boundary = pen_loc._primary_boundary;
1397 
1398  bool has_writable_variables(false);
1399 
1400  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
1401  {
1402  const auto & constraints =
1403  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
1404 
1405  for (unsigned int i = 0; i < secondary_nodes.size(); i++)
1406  {
1407  dof_id_type secondary_node_num = secondary_nodes[i];
1408  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1409 
1410  if (secondary_node.processor_id() == processor_id())
1411  {
1412  if (pen_loc._penetration_info[secondary_node_num])
1413  {
1414  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
1415 
1416  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
1417 
1418  for (const auto & nfc : constraints)
1419  {
1420  // Return if this constraint does not correspond to the primary-secondary pair
1421  // prepared by the outer loops.
1422  // This continue statement is required when, e.g. one secondary surface constrains
1423  // more than one primary surface.
1424  if (nfc->secondaryBoundary() != secondary_boundary ||
1425  nfc->primaryBoundary() != primary_boundary)
1426  continue;
1427 
1428  if (nfc->shouldApply())
1429  {
1430  constraints_applied = true;
1431  nfc->computeResidual();
1432 
1433  if (nfc->overwriteSecondaryResidual())
1434  {
1435  // The below will actually overwrite the residual for every single dof that
1436  // lives on the node. We definitely don't want to do that!
1437  // _fe_problem.setResidual(residual, 0);
1438 
1439  const auto & secondary_var = nfc->variable();
1440  const auto & secondary_dofs = secondary_var.dofIndices();
1441  mooseAssert(secondary_dofs.size() == secondary_var.count(),
1442  "We are on a node so there should only be one dof per variable (for "
1443  "an ArrayVariable we should have a number of dofs equal to the "
1444  "number of components");
1445 
1446  // Assume that if the user is overwriting the secondary residual, then they are
1447  // supplying residuals that do not correspond to their other physics
1448  // (e.g. Kernels), hence we should not apply a scalingFactor that is normally
1449  // based on the order of their other physics (e.g. Kernels)
1450  std::vector<Number> values = {nfc->secondaryResidual()};
1451  residual.insert(values, secondary_dofs);
1452  residual_has_inserted_values = true;
1453  }
1454  else
1457  }
1458  if (nfc->hasWritableCoupledVariables())
1459  {
1460  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1461  has_writable_variables = true;
1462  for (auto * var : nfc->getWritableCoupledVariables())
1463  {
1464  if (var->isNodalDefined())
1465  var->insert(_fe_problem.getAuxiliarySystem().solution());
1466  }
1467  }
1468  }
1469  }
1470  }
1471  }
1472  }
1473  _communicator.max(has_writable_variables);
1474 
1475  if (has_writable_variables)
1476  {
1477  // Explicit contact dynamic constraints write to auxiliary variables and update the old
1478  // displacement solution on the constraint boundaries. Close solutions and update system
1479  // accordingly.
1482  solutionOld().close();
1483  }
1484 
1486  {
1487  // Make sure that secondary contribution to primary are assembled, and ghosts have been
1488  // exchanged, as current primaries might become secondaries on next iteration and will need to
1489  // contribute their former secondaries' contributions to the future primaries. See if
1490  // constraints were applied anywhere
1491  _communicator.max(constraints_applied);
1492 
1493  if (constraints_applied)
1494  {
1495  // If any of the above constraints inserted values in the residual, it needs to be
1496  // assembled before adding the cached residuals below.
1497  _communicator.max(residual_has_inserted_values);
1498  if (residual_has_inserted_values)
1499  {
1500  residual.close();
1501  residual_has_inserted_values = false;
1502  }
1504  residual.close();
1505 
1507  *_residual_ghosted = residual;
1508  }
1509  }
1510  }
1512  {
1513  _communicator.max(constraints_applied);
1514 
1515  if (constraints_applied)
1516  {
1517  // If any of the above constraints inserted values in the residual, it needs to be assembled
1518  // before adding the cached residuals below.
1519  _communicator.max(residual_has_inserted_values);
1520  if (residual_has_inserted_values)
1521  residual.close();
1522 
1524  residual.close();
1525 
1527  *_residual_ghosted = residual;
1528  }
1529  }
1530 
1531  // go over element-element constraint interface
1532  THREAD_ID tid = 0;
1533  const auto & element_pair_locators = subproblem.geomSearchData()._element_pair_locators;
1534  for (const auto & it : element_pair_locators)
1535  {
1536  ElementPairLocator & elem_pair_loc = *(it.second);
1537 
1538  if (_constraints.hasActiveElemElemConstraints(it.first, displaced))
1539  {
1540  // ElemElemConstraint objects
1541  const auto & element_constraints =
1542  _constraints.getActiveElemElemConstraints(it.first, displaced);
1543 
1544  // go over pair elements
1545  const std::list<std::pair<const Elem *, const Elem *>> & elem_pairs =
1546  elem_pair_loc.getElemPairs();
1547  for (const auto & pr : elem_pairs)
1548  {
1549  const Elem * elem1 = pr.first;
1550  const Elem * elem2 = pr.second;
1551 
1552  if (elem1->processor_id() != processor_id())
1553  continue;
1554 
1555  const ElementPairInfo & info = elem_pair_loc.getElemPairInfo(pr);
1556 
1557  // for each element process constraints on the
1558  for (const auto & ec : element_constraints)
1559  {
1560  _fe_problem.setCurrentSubdomainID(elem1, tid);
1561  subproblem.reinitElemPhys(elem1, info._elem1_constraint_q_point, tid);
1562  _fe_problem.setNeighborSubdomainID(elem2, tid);
1563  subproblem.reinitNeighborPhys(elem2, info._elem2_constraint_q_point, tid);
1564 
1565  ec->prepareShapes(ec->variable().number());
1566  ec->prepareNeighborShapes(ec->variable().number());
1567 
1568  ec->reinit(info);
1569  ec->computeResidual();
1572  }
1574  }
1575  }
1576  }
1577 
1578  // go over NodeElemConstraints
1579  std::set<dof_id_type> unique_secondary_node_ids;
1580 
1581  constraints_applied = false;
1582  residual_has_inserted_values = false;
1583  bool has_writable_variables = false;
1584  for (const auto & secondary_id : _mesh.meshSubdomains())
1585  {
1586  for (const auto & primary_id : _mesh.meshSubdomains())
1587  {
1588  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
1589  {
1590  const auto & constraints =
1591  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
1592 
1593  // get unique set of ids of all nodes on current block
1594  unique_secondary_node_ids.clear();
1595  const MeshBase & meshhelper = _mesh.getMesh();
1596  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
1597  meshhelper.active_subdomain_elements_end(secondary_id)))
1598  {
1599  for (auto & n : elem->node_ref_range())
1600  unique_secondary_node_ids.insert(n.id());
1601  }
1602 
1603  for (auto secondary_node_id : unique_secondary_node_ids)
1604  {
1605  Node & secondary_node = _mesh.nodeRef(secondary_node_id);
1606  // check if secondary node is on current processor
1607  if (secondary_node.processor_id() == processor_id())
1608  {
1609  // This reinits the variables that exist on the secondary node
1610  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
1611 
1612  // This will set aside residual and jacobian space for the variables that have dofs
1613  // on the secondary node
1615 
1616  for (const auto & nec : constraints)
1617  {
1618  if (nec->shouldApply())
1619  {
1620  constraints_applied = true;
1621  nec->computeResidual();
1622 
1623  if (nec->overwriteSecondaryResidual())
1624  {
1625  _fe_problem.setResidual(residual, 0);
1626  residual_has_inserted_values = true;
1627  }
1628  else
1631  }
1632  if (nec->hasWritableCoupledVariables())
1633  {
1634  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1635  has_writable_variables = true;
1636  for (auto * var : nec->getWritableCoupledVariables())
1637  {
1638  if (var->isNodalDefined())
1639  var->insert(_fe_problem.getAuxiliarySystem().solution());
1640  }
1641  }
1642  }
1644  }
1645  }
1646  }
1647  }
1648  }
1649  _communicator.max(constraints_applied);
1650 
1651  if (constraints_applied)
1652  {
1653  // If any of the above constraints inserted values in the residual, it needs to be assembled
1654  // before adding the cached residuals below.
1655  _communicator.max(residual_has_inserted_values);
1656  if (residual_has_inserted_values)
1657  residual.close();
1658 
1660  residual.close();
1661 
1663  *_residual_ghosted = residual;
1664  }
1665  _communicator.max(has_writable_variables);
1666 
1667  if (has_writable_variables)
1668  {
1669  // Explicit contact dynamic constraints write to auxiliary variables and update the old
1670  // displacement solution on the constraint boundaries. Close solutions and update system
1671  // accordingly.
1674  solutionOld().close();
1675  }
1676 
1677  // We may have additional tagged vectors that also need to be accumulated
1679 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
virtual void insert(const T *v, const std::vector< numeric_index_type > &dof_indices)
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
virtual void cacheResidualNeighbor(const THREAD_ID tid) override
BoundaryID _secondary_boundary
bool _assemble_constraints_separately
Whether or not to assemble the residual and Jacobian after the application of each constraint...
MPI_Info info
NumericVector< Number > & solution()
Definition: SystemBase.h:196
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const ElementPairInfo & getElemPairInfo(std::pair< const Elem *, const Elem *> elem_pair) const
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:861
virtual void setResidual(NumericVector< libMesh::Number > &residual, const THREAD_ID tid) override
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
virtual void addCachedResidualDirectly(NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
Allows for all the residual contributions that are currently cached to be added directly into the vec...
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3528
const ElementPairList & getElemPairs() const
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual void cacheResidual(const THREAD_ID tid) override
This is the ElementPairLocator class.
This is the ElementPairInfo class.
std::map< BoundaryID, std::shared_ptr< ElementPairLocator > > _element_pair_locators
virtual GeometricSearchData & geomSearchData()=0
AuxiliarySystem & getAuxiliarySystem()
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void setCurrentSubdomainID(const Elem *elem, const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual void reinitElemPhys(const Elem *elem, const std::vector< Point > &phys_points_in_elem, const THREAD_ID tid)=0
virtual void update()
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
bool hasActiveElemElemConstraints(const InterfaceID interface_id, bool displaced) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
virtual libMesh::System & system() override
Get the reference to the libMesh system.
NumericVector< Number > & solutionOld()
Definition: SystemBase.h:197
processor_id_type processor_id() const
const std::vector< std::shared_ptr< ElemElemConstraint > > & getActiveElemElemConstraints(InterfaceID interface_id, bool displaced) const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override
virtual void addCachedResidual(const THREAD_ID tid) override
BoundaryID _primary_boundary
unsigned int THREAD_ID
Definition: MooseTypes.h:237
uint8_t dof_id_type
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3251

◆ containsTimeKernel()

bool NonlinearSystemBase::containsTimeKernel ( )
overridevirtualinherited

If the system has a kernel that corresponds to a time derivative.

Implements SolverSystem.

Definition at line 3840 of file NonlinearSystemBase.C.

Referenced by EigenExecutionerBase::checkIntegrity(), and Eigenvalue::checkIntegrity().

3841 {
3842  auto & time_kernels = _kernels.getVectorTagObjectWarehouse(timeVectorTag(), 0);
3843 
3844  return time_kernels.hasActiveObjects();
3845 }
MooseObjectTagWarehouse< KernelBase > _kernels
TagID timeVectorTag() const override
Ideally, we should not need this API.
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...

◆ converged()

virtual bool DumpObjectsNonlinearSystem::converged ( )
inlineoverridevirtual

Returns the convergence state.

Returns
true if converged, otherwise false

Implements SolverSystem.

Definition at line 32 of file DumpObjectsNonlinearSystem.h.

32 { return true; }

◆ copyOldSolutions()

void SystemBase::copyOldSolutions ( )
virtualinherited

Shifts the solutions backwards in time.

Definition at line 1286 of file SystemBase.C.

Referenced by SystemBase::copySolutionsBackwards(), and EigenExecutionerBase::inversePowerIteration().

1287 {
1288  // copy the solutions backward: current->old, old->older
1289  const auto states =
1290  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
1291  if (states > 1)
1292  for (unsigned int i = states - 1; i > 0; --i)
1293  solutionState(i) = solutionState(i - 1);
1294 
1295  if (solutionUDotOld())
1296  *solutionUDotOld() = *solutionUDot();
1297  if (solutionUDotDotOld())
1299 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
virtual NumericVector< Number > * solutionUDot()
Definition: SystemBase.h:261
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > * solutionUDotDot()
Definition: SystemBase.h:262

◆ copyPreviousFixedPointSolutions()

void SystemBase::copyPreviousFixedPointSolutions ( )
virtualinherited

Definition at line 1302 of file SystemBase.C.

Referenced by FixedPointSolve::solveStep().

1303 {
1304  const auto n_states =
1305  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::FixedPoint)]
1306  .size();
1307  if (n_states > 1)
1308  for (unsigned int i = n_states - 1; i > 0; --i)
1311 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ copyPreviousNonlinearSolutions()

void SystemBase::copyPreviousNonlinearSolutions ( )
virtualinherited

Shifts the solutions backwards in nonlinear iteration history.

Definition at line 1269 of file SystemBase.C.

Referenced by SystemBase::copySolutionsBackwards().

1270 {
1271  const auto states =
1272  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Nonlinear)].size();
1273  if (states > 1)
1274  for (unsigned int i = states - 1; i > 0; --i)
1277 
1278  if (solutionPreviousNewton())
1280 }
virtual const NumericVector< Number > *const & currentSolution() const =0
The solution vector that is currently being operated on.
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual const NumericVector< Number > * solutionPreviousNewton() const
Definition: SystemBase.C:1355

◆ copySolutionsBackwards()

void SystemBase::copySolutionsBackwards ( )
virtualinherited

Copy current solution into old and older.

Definition at line 1258 of file SystemBase.C.

1259 {
1260  system().update();
1261  copyOldSolutions();
1263 }
virtual void copyOldSolutions()
Shifts the solutions backwards in time.
Definition: SystemBase.C:1286
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual void copyPreviousNonlinearSolutions()
Shifts the solutions backwards in nonlinear iteration history.
Definition: SystemBase.C:1269
virtual void update()

◆ copyTimeIntegrators()

void SystemBase::copyTimeIntegrators ( const SystemBase other_sys)
inherited

Copy time integrators from another system.

Definition at line 1667 of file SystemBase.C.

1668 {
1670 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ copyVars()

void SystemBase::copyVars ( libMesh::ExodusII_IO io)
inherited

Definition at line 1183 of file SystemBase.C.

1184 {
1185  int n_steps = io.get_num_time_steps();
1186 
1187  bool did_copy = false;
1188  for (const auto & vci : _var_to_copy)
1189  {
1190  int timestep = -1;
1191 
1192  if (vci._timestep == "LATEST")
1193  // Use the last time step in the file from which to retrieve the solution
1194  timestep = n_steps;
1195  else
1196  {
1197  timestep = MooseUtils::convert<int>(vci._timestep);
1198  if (timestep > n_steps)
1199  mooseError("Invalid value passed as \"initial_from_file_timestep\". Expected \"LATEST\" or "
1200  "a valid integer between 1 and ",
1201  n_steps,
1202  " inclusive, received ",
1203  vci._timestep);
1204  }
1205 
1206  did_copy = true;
1207 
1208  if (hasVariable(vci._dest_name))
1209  {
1210  const auto & var = getVariable(0, vci._dest_name);
1211  if (var.isArray())
1212  {
1213  const auto & array_var = getFieldVariable<RealEigenVector>(0, vci._dest_name);
1214  for (MooseIndex(var.count()) i = 0; i < var.count(); ++i)
1215  {
1216  const auto & exodus_var = var.arrayVariableComponent(i);
1217  const auto & system_var = array_var.componentName(i);
1218  if (var.isNodal())
1219  io.copy_nodal_solution(system(), exodus_var, system_var, timestep);
1220  else
1221  io.copy_elemental_solution(system(), exodus_var, system_var, timestep);
1222  }
1223  }
1224  else
1225  {
1226  if (var.isNodal())
1227  io.copy_nodal_solution(system(), vci._dest_name, vci._source_name, timestep);
1228  else
1229  io.copy_elemental_solution(system(), vci._dest_name, vci._source_name, timestep);
1230  }
1231  }
1232  else if (hasScalarVariable(vci._dest_name))
1233  io.copy_scalar_solution(system(), {vci._dest_name}, {vci._source_name}, timestep);
1234  else
1235  mooseError("Unrecognized variable ", vci._dest_name, " in variables to copy.");
1236  }
1237 
1238  if (did_copy)
1239  solution().close();
1240 }
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040
void copy_nodal_solution(System &system, std::string system_var_name, std::string exodus_var_name, unsigned int timestep=1)
void copy_elemental_solution(System &system, std::string system_var_name, std::string exodus_var_name, unsigned int timestep=1)
virtual bool hasVariable(const std::string &var_name) const
Query a system for a variable.
Definition: SystemBase.C:851
virtual void close()=0
void copy_scalar_solution(System &system, std::vector< std::string > system_var_names, std::vector< std::string > exodus_var_names, unsigned int timestep=1)
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90
virtual bool hasScalarVariable(const std::string &var_name) const
Definition: SystemBase.C:876

◆ currentSolution()

const NumericVector< Number > *const & SolverSystem::currentSolution ( ) const
inlinefinaloverridevirtualinherited

The solution vector that is currently being operated on.

This is typically a ghosted vector that comes in from the Nonlinear solver.

Implements SystemBase.

Definition at line 117 of file SolverSystem.h.

Referenced by FEProblemBase::computeDamping(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualL2Norm(), and AB2PredictorCorrector::step().

118 {
119  return _current_solution;
120 }
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105

◆ customSetup()

void NonlinearSystemBase::customSetup ( const ExecFlagType exec_type)
overridevirtualinherited

Reimplemented from SystemBase.

Definition at line 400 of file NonlinearSystemBase.C.

401 {
402  SolverSystem::customSetup(exec_type);
403 
404  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
405  {
406  _kernels.customSetup(exec_type, tid);
407  _nodal_kernels.customSetup(exec_type, tid);
408  _dirac_kernels.customSetup(exec_type, tid);
409  if (_doing_dg)
410  _dg_kernels.customSetup(exec_type, tid);
411  _interface_kernels.customSetup(exec_type, tid);
412  _element_dampers.customSetup(exec_type, tid);
413  _nodal_dampers.customSetup(exec_type, tid);
414  _integrated_bcs.customSetup(exec_type, tid);
415 
416  if (_fe_problem.haveFV())
417  {
418  std::vector<FVFluxBC *> bcs;
420  .query()
421  .template condition<AttribSystem>("FVFluxBC")
422  .template condition<AttribThread>(tid)
423  .queryInto(bcs);
424 
425  std::vector<FVInterfaceKernel *> iks;
427  .query()
428  .template condition<AttribSystem>("FVInterfaceKernel")
429  .template condition<AttribThread>(tid)
430  .queryInto(iks);
431 
432  std::vector<FVFluxKernel *> kernels;
434  .query()
435  .template condition<AttribSystem>("FVFluxKernel")
436  .template condition<AttribThread>(tid)
437  .queryInto(kernels);
438 
439  for (auto * bc : bcs)
440  bc->customSetup(exec_type);
441  for (auto * ik : iks)
442  ik->customSetup(exec_type);
443  for (auto * kernel : kernels)
444  kernel->customSetup(exec_type);
445  }
446  }
447  _scalar_kernels.customSetup(exec_type);
448  _constraints.customSetup(exec_type);
449  _general_dampers.customSetup(exec_type);
450  _nodal_bcs.customSetup(exec_type);
451  _preset_nodal_bcs.customSetup(exec_type);
453 
454 #ifdef MOOSE_KOKKOS_ENABLED
455  _kokkos_kernels.customSetup(exec_type);
458  _kokkos_nodal_bcs.customSetup(exec_type);
459 #endif
460 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
virtual void customSetup(const ExecFlagType &exec_type, THREAD_ID tid=0) const
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
TheWarehouse & theWarehouse() const
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual void customSetup(const ExecFlagType &exec_type)
Definition: SystemBase.C:1585
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:237
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ deactivateAllMatrixTags()

void SystemBase::deactivateAllMatrixTags ( )
virtualinherited

Make matrices inactive.

Definition at line 1119 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeResidualTags(), and NonlinearSystemBase::setInitialSolution().

1120 {
1121  auto num_matrix_tags = _subproblem.numMatrixTags();
1122 
1123  _matrix_tag_active_flags.resize(num_matrix_tags);
1124 
1125  for (decltype(num_matrix_tags) tag = 0; tag < num_matrix_tags; tag++)
1126  _matrix_tag_active_flags[tag] = false;
1127  _active_tagged_matrices.clear();
1128 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual unsigned int numMatrixTags() const
The total number of tags.
Definition: SubProblem.h:248

◆ debuggingResiduals()

void NonlinearSystemBase::debuggingResiduals ( bool  state)
inlineinherited

Definition at line 589 of file NonlinearSystemBase.h.

589 { _debugging_residuals = state; }
bool _debugging_residuals
true if debugging residuals

◆ defaultMatrixTags()

virtual std::set<TagID> SystemBase::defaultMatrixTags ( ) const
inlinevirtualinherited

Get the default matrix tags associted with this system.

Reimplemented in NonlinearEigenSystem, and DisplacedSystem.

Definition at line 319 of file SystemBase.h.

Referenced by DisplacedSystem::defaultMatrixTags(), NonlinearEigenSystem::defaultMatrixTags(), and SystemBase::disassociateDefaultMatrixTags().

319 { return {systemMatrixTag()}; }
virtual TagID systemMatrixTag() const
Return the Matrix Tag ID for System.
Definition: SystemBase.h:297

◆ defaultVectorTags()

virtual std::set<TagID> SystemBase::defaultVectorTags ( ) const
inlinevirtualinherited

Get the default vector tags associated with this system.

Reimplemented in NonlinearEigenSystem, and DisplacedSystem.

Definition at line 312 of file SystemBase.h.

Referenced by DisplacedSystem::defaultVectorTags(), NonlinearEigenSystem::defaultVectorTags(), and SystemBase::disassociateDefaultVectorTags().

313  {
315  }
virtual TagID timeVectorTag() const
Ideally, we should not need this API.
Definition: SystemBase.h:292
virtual TagID nonTimeVectorTag() const
Definition: SystemBase.h:302
virtual TagID residualVectorTag() const
Definition: SystemBase.h:307

◆ destroyColoring()

void NonlinearSystemBase::destroyColoring ( )
inherited

Destroy the coloring object if it exists.

Definition at line 4257 of file NonlinearSystemBase.C.

Referenced by LStableDirk2::solve(), LStableDirk3::solve(), and LStableDirk4::solve().

4258 {
4259  if (matrixFromColoring())
4260  LibmeshPetscCall(MatFDColoringDestroy(&_fdcoloring));
4261 }
virtual bool matrixFromColoring() const
Whether a system matrix is formed from coloring.
Definition: SolverSystem.h:102

◆ disassociateDefaultMatrixTags()

void SystemBase::disassociateDefaultMatrixTags ( )
virtualinherited

Disassociate the matrices associated with the default matrix tags of this system.

Reimplemented in DisplacedSystem.

Definition at line 1110 of file SystemBase.C.

Referenced by DisplacedSystem::disassociateDefaultMatrixTags().

1111 {
1112  const auto tags = defaultMatrixTags();
1113  for (const auto tag : tags)
1114  if (_subproblem.matrixTagExists(tag))
1116 }
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual std::set< TagID > defaultMatrixTags() const
Get the default matrix tags associted with this system.
Definition: SystemBase.h:319
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ disassociateDefaultVectorTags()

void SystemBase::disassociateDefaultVectorTags ( )
virtualinherited

Disassociate the vectors associated with the default vector tags of this system.

Reimplemented in DisplacedSystem.

Definition at line 1015 of file SystemBase.C.

Referenced by DisplacedSystem::disassociateDefaultVectorTags().

1016 {
1017  const auto tags = defaultVectorTags();
1018  for (const auto tag : tags)
1019  if (_subproblem.vectorTagExists(tag))
1021 }
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual void disassociateVectorFromTag(NumericVector< Number > &vec, TagID tag)
Disassociate a given vector from a given tag.
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual std::set< TagID > defaultVectorTags() const
Get the default vector tags associated with this system.
Definition: SystemBase.h:312

◆ disassociateMatrixFromTag() [1/2]

void SystemBase::disassociateMatrixFromTag ( libMesh::SparseMatrix< Number > &  matrix,
TagID  tag 
)
virtualinherited

Disassociate a matrix from a tag.

Reimplemented in DisplacedSystem.

Definition at line 1088 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeJacobian(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemSys(), FEProblemBase::computeResidualAndJacobian(), SystemBase::disassociateDefaultMatrixTags(), and DisplacedSystem::disassociateMatrixFromTag().

1089 {
1090  if (!_subproblem.matrixTagExists(tag))
1091  mooseError("Cannot disassociate matrix from tag ", tag, " because that tag does not exist");
1092  if (hasMatrix(tag) && &getMatrix(tag) != &matrix)
1093  mooseError("You can not disassociate a matrix from a tag which it was not associated to");
1094 
1096 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void disassociateMatrixFromTag(libMesh::SparseMatrix< Number > &matrix, TagID tag)
Disassociate a matrix from a tag.
Definition: SystemBase.C:1088
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ disassociateMatrixFromTag() [2/2]

void SystemBase::disassociateMatrixFromTag ( TagID  tag)
virtualinherited

Disassociate any matrix that is associated with a given tag.

Reimplemented in DisplacedSystem.

Definition at line 1099 of file SystemBase.C.

1100 {
1101  if (!_subproblem.matrixTagExists(tag))
1102  mooseError("Cannot disassociate matrix from tag ", tag, " because that tag does not exist");
1103 
1104  if (_tagged_matrices.size() < tag + 1)
1105  _tagged_matrices.resize(tag + 1);
1106  _tagged_matrices[tag] = nullptr;
1107 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ disassociateVectorFromTag() [1/2]

virtual void SystemBase::disassociateVectorFromTag ( NumericVector< Number > &  vec,
TagID  tag 
)
virtualinherited

◆ disassociateVectorFromTag() [2/2]

void SystemBase::disassociateVectorFromTag ( TagID  tag)
virtualinherited

Disassociate any vector that is associated with a given tag.

Reimplemented in DisplacedSystem.

Definition at line 1004 of file SystemBase.C.

1005 {
1006  if (!_subproblem.vectorTagExists(tag))
1007  mooseError("Cannot disassociate vector from tag ", tag, " because that tag does not exist");
1008 
1009  if (_tagged_vectors.size() < tag + 1)
1010  _tagged_vectors.resize(tag + 1);
1011  _tagged_vectors[tag] = nullptr;
1012 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ dofMap() [1/2]

DofMap & SystemBase::dofMap ( )
virtualinherited

◆ dofMap() [2/2]

const DofMap & SystemBase::dofMap ( ) const
virtualinherited

Gets const reference to the dof map.

Definition at line 1169 of file SystemBase.C.

1170 {
1171  return system().get_dof_map();
1172 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const DofMap & get_dof_map() const

◆ doingDG()

bool NonlinearSystemBase::doingDG ( ) const
inherited

Getter for _doing_dg.

Definition at line 3915 of file NonlinearSystemBase.C.

3916 {
3917  return _doing_dg;
3918 }
bool _doing_dg
true if DG is active (optimization reasons)

◆ duDotDotDu() [1/2]

virtual Number& SystemBase::duDotDotDu ( )
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 257 of file SystemBase.h.

Referenced by DisplacedSystem::duDotDotDu(), and MooseVariableScalar::reinit().

257 { return _du_dotdot_du; }
Real _du_dotdot_du
Definition: SystemBase.h:1018

◆ duDotDotDu() [2/2]

virtual const Number& SystemBase::duDotDotDu ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 259 of file SystemBase.h.

259 { return _du_dotdot_du; }
Real _du_dotdot_du
Definition: SystemBase.h:1018

◆ duDotDu()

const Number & SystemBase::duDotDu ( unsigned int  var_num = 0) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1701 of file SystemBase.C.

Referenced by DisplacedSystem::duDotDu(), and MooseVariableScalar::reinit().

1702 {
1703  return _du_dot_du[var_num];
1704 }
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017

◆ duDotDus()

virtual std::vector<Number>& SystemBase::duDotDus ( )
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 256 of file SystemBase.h.

Referenced by DisplacedSystem::duDotDus().

256 { return _du_dot_du; }
std::vector< Real > _du_dot_du
Derivative of time derivative of u with respect to uj.
Definition: SystemBase.h:1017

◆ enforceNodalConstraintsJacobian()

bool NonlinearSystemBase::enforceNodalConstraintsJacobian ( const SparseMatrix< Number > &  jacobian)
protectedinherited

Enforce nodal constraints in the Jacobian.

Parameters
jacobianThe Jacobian to read from while constructing the Jacobians corresponding to the nodal constraints
Returns
Whether there were active nodal constraints

Definition at line 1131 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal().

1132 {
1133  if (!hasMatrix(systemMatrixTag()))
1134  mooseError(" A system matrix is required");
1135 
1136  THREAD_ID tid = 0; // constraints are going to be done single-threaded
1137 
1139  {
1140  const auto & ncs = _constraints.getActiveNodalConstraints();
1141  for (const auto & nc : ncs)
1142  {
1143  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
1144  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
1145 
1146  if ((secondary_node_ids.size() > 0) && (primary_node_ids.size() > 0))
1147  {
1148  _fe_problem.reinitNodes(primary_node_ids, tid);
1149  _fe_problem.reinitNodesNeighbor(secondary_node_ids, tid);
1150  nc->computeJacobian(jacobian_to_view);
1151  }
1152  }
1154 
1155  return true;
1156  }
1157  else
1158  return false;
1159 }
TagID systemMatrixTag() const override
Return the Matrix Tag ID for System.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
virtual void reinitNodes(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
bool hasActiveNodalConstraints() const
Deterimine if active objects exist.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void reinitNodesNeighbor(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
unsigned int THREAD_ID
Definition: MooseTypes.h:237
virtual void addCachedJacobian(const THREAD_ID tid) override

◆ enforceNodalConstraintsResidual()

void NonlinearSystemBase::enforceNodalConstraintsResidual ( NumericVector< Number > &  residual)
protectedinherited

Enforce nodal constraints.

Definition at line 1106 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualInternal().

1107 {
1108  THREAD_ID tid = 0; // constraints are going to be done single-threaded
1109  residual.close();
1111  {
1112  const auto & ncs = _constraints.getActiveNodalConstraints();
1113  for (const auto & nc : ncs)
1114  {
1115  std::vector<dof_id_type> & secondary_node_ids = nc->getSecondaryNodeId();
1116  std::vector<dof_id_type> & primary_node_ids = nc->getPrimaryNodeId();
1117 
1118  if ((secondary_node_ids.size() > 0) && (primary_node_ids.size() > 0))
1119  {
1120  _fe_problem.reinitNodes(primary_node_ids, tid);
1121  _fe_problem.reinitNodesNeighbor(secondary_node_ids, tid);
1122  nc->computeResidual(residual);
1123  }
1124  }
1125  _fe_problem.addCachedResidualDirectly(residual, tid);
1126  residual.close();
1127  }
1128 }
const std::vector< std::shared_ptr< NodalConstraint > > & getActiveNodalConstraints() const
Access methods for active objects.
virtual void reinitNodes(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
bool hasActiveNodalConstraints() const
Deterimine if active objects exist.
virtual void addCachedResidualDirectly(NumericVector< libMesh::Number > &residual, const THREAD_ID tid)
Allows for all the residual contributions that are currently cached to be added directly into the vec...
virtual void reinitNodesNeighbor(const std::vector< dof_id_type > &nodes, const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ feProblem() [1/2]

FEProblemBase& SystemBase::feProblem ( )
inlineinherited

Definition at line 103 of file SystemBase.h.

Referenced by DMMooseGetEmbedding_Private(), and DMSetUp_Moose_Pre().

103 { return _fe_problem; }
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ feProblem() [2/2]

const FEProblemBase& SystemBase::feProblem ( ) const
inlineinherited

Definition at line 104 of file SystemBase.h.

104 { return _fe_problem; }
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986

◆ finalNonlinearResidual()

Real NonlinearSystemBase::finalNonlinearResidual ( ) const
inlineinherited

Return the final nonlinear residual.

Definition at line 575 of file NonlinearSystemBase.h.

◆ flushTaggedMatrices()

void SystemBase::flushTaggedMatrices ( const std::set< TagID > &  tags)
inherited

flushes all matrices associated to tags.

Flush assembles the matrix but doesn't shrink memory allocation

Definition at line 1068 of file SystemBase.C.

1069 {
1070  for (auto tag : tags)
1071  if (hasMatrix(tag))
1072  getMatrix(tag).flush();
1073 }
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual void flush()
virtual libMesh::SparseMatrix< Number > & getMatrix(TagID tag)
Get a raw SparseMatrix.
Definition: SystemBase.C:1024

◆ getActualFieldVariable() [1/2]

template<typename T >
MooseVariableField< T > & SystemBase::getActualFieldVariable ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Returns a field variable pointer - this includes finite volume variables.

Definition at line 118 of file SystemBase.C.

Referenced by BoundsBase::BoundsBase(), Assembly::copyFaceShapes(), Assembly::copyNeighborShapes(), and Assembly::copyShapes().

119 {
120  return *_vars[tid].getActualFieldVariable<T>(var_name);
121 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getActualFieldVariable() [2/2]

template<typename T >
MooseVariableField< T > & SystemBase::getActualFieldVariable ( THREAD_ID  tid,
unsigned int  var_number 
)
inherited

Returns a field variable pointer - this includes finite volume variables.

Definition at line 139 of file SystemBase.C.

140 {
141  return *_vars[tid].getActualFieldVariable<T>(var_number);
142 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getConstraintWarehouse()

const ConstraintWarehouse& NonlinearSystemBase::getConstraintWarehouse ( ) const
inlineinherited

Definition at line 649 of file NonlinearSystemBase.h.

649 { return _constraints; }
ConstraintWarehouse _constraints
Constraints storage object.

◆ getCurrentNonlinearIterationNumber()

virtual unsigned int DumpObjectsNonlinearSystem::getCurrentNonlinearIterationNumber ( )
inlineoverridevirtual

Implements NonlinearSystemBase.

Definition at line 36 of file DumpObjectsNonlinearSystem.h.

36 { return 0; }

◆ getDGKernelWarehouse()

MooseObjectTagWarehouse<DGKernelBase>& NonlinearSystemBase::getDGKernelWarehouse ( )
inlineinherited

Definition at line 625 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

625 { return _dg_kernels; }
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels

◆ getDiracKernelWarehouse()

MooseObjectTagWarehouse<DiracKernelBase>& NonlinearSystemBase::getDiracKernelWarehouse ( )
inlineinherited

Definition at line 630 of file NonlinearSystemBase.h.

630 { return _dirac_kernels; }
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.

◆ getElementDamperWarehouse()

const MooseObjectWarehouse<ElementDamper>& NonlinearSystemBase::getElementDamperWarehouse ( ) const
inlineinherited

Definition at line 641 of file NonlinearSystemBase.h.

Referenced by ComputeElemDampingThread::onElement(), and ComputeElemDampingThread::printGeneralExecutionInformation().

642  {
643  return _element_dampers;
644  }
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.

◆ getFieldSplitPreconditioner()

FieldSplitPreconditionerBase & NonlinearSystemBase::getFieldSplitPreconditioner ( )
inherited
Returns
A field split preconditioner. This will error if there is no field split preconditioner

Definition at line 4264 of file NonlinearSystemBase.C.

4265 {
4266  if (!_fsp)
4267  mooseError("No field split preconditioner is present for this system");
4268 
4269  return *_fsp;
4270 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ getFieldVariable() [1/2]

template<typename T >
MooseVariableFE< T > & SystemBase::getFieldVariable ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Gets a reference to a variable of with specified name.

This excludes and cannot return finite volume variables.

Parameters
tidThread id
var_namevariable name
Returns
reference the variable (class)

Definition at line 111 of file SystemBase.C.

Referenced by Marker::getMarkerValue().

112 {
113  return *_vars[tid].getFieldVariable<T>(var_name);
114 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getFieldVariable() [2/2]

template<typename T >
MooseVariableFE< T > & SystemBase::getFieldVariable ( THREAD_ID  tid,
unsigned int  var_number 
)
inherited

Gets a reference to a variable with specified number.

This excludes and cannot return finite volume variables.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 132 of file SystemBase.C.

133 {
134  return *_vars[tid].getFieldVariable<T>(var_number);
135 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getFVVariable()

template<typename T >
template MooseVariableFV< Real > & SystemBase::getFVVariable< Real > ( THREAD_ID  tid,
const std::string &  var_name 
)
inherited

Return a finite volume variable.

Definition at line 125 of file SystemBase.C.

126 {
127  return *_vars[tid].getFVVariable<T>(var_name);
128 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getHDGKernelWarehouse()

MooseObjectTagWarehouse<HDGKernel>& NonlinearSystemBase::getHDGKernelWarehouse ( )
inlineinherited

Definition at line 640 of file NonlinearSystemBase.h.

640 { return _hybridized_kernels; }
MooseObjectTagWarehouse< HDGKernel > _hybridized_kernels

◆ getIntegratedBCWarehouse() [1/2]

MooseObjectTagWarehouse<IntegratedBCBase>& NonlinearSystemBase::getIntegratedBCWarehouse ( )
inlineinherited

Definition at line 631 of file NonlinearSystemBase.h.

Referenced by BoundaryElemIntegrityCheckThread::operator()().

631 { return _integrated_bcs; }
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ getIntegratedBCWarehouse() [2/2]

const MooseObjectTagWarehouse<IntegratedBCBase>& NonlinearSystemBase::getIntegratedBCWarehouse ( ) const
inlineinherited

Return the IntegratedBCBase warehouse.

Definition at line 659 of file NonlinearSystemBase.h.

660  {
661  return _integrated_bcs;
662  }
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ getInterfaceKernelWarehouse()

MooseObjectTagWarehouse<InterfaceKernelBase>& NonlinearSystemBase::getInterfaceKernelWarehouse ( )
inlineinherited

Definition at line 626 of file NonlinearSystemBase.h.

627  {
628  return _interface_kernels;
629  }
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels

◆ getKernelWarehouse() [1/2]

MooseObjectTagWarehouse<KernelBase>& NonlinearSystemBase::getKernelWarehouse ( )
inlineinherited

Access functions to Warehouses from outside NonlinearSystemBase.

Definition at line 623 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup(), DOFMapOutput::output(), and BlockRestrictionDebugOutput::printBlockRestrictionMap().

623 { return _kernels; }
MooseObjectTagWarehouse< KernelBase > _kernels

◆ getKernelWarehouse() [2/2]

const MooseObjectTagWarehouse<KernelBase>& NonlinearSystemBase::getKernelWarehouse ( ) const
inlineinherited

Definition at line 624 of file NonlinearSystemBase.h.

624 { return _kernels; }
MooseObjectTagWarehouse< KernelBase > _kernels

◆ getKokkosIntegratedBCWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosIntegratedBCWarehouse ( )
inlineinherited

Definition at line 676 of file NonlinearSystemBase.h.

677  {
678  return _kokkos_integrated_bcs;
679  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs

◆ getKokkosKernelWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosKernelWarehouse ( )
inlineinherited

Return the Kokkos residual object warehouses

Definition at line 667 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

667 { return _kokkos_kernels; }
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels

◆ getKokkosNodalBCWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosNodalBCWarehouse ( )
inlineinherited

Definition at line 672 of file NonlinearSystemBase.h.

673  {
674  return _kokkos_nodal_bcs;
675  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs

◆ getKokkosNodalKernelWarehouse()

MooseObjectTagWarehouse<ResidualObject>& NonlinearSystemBase::getKokkosNodalKernelWarehouse ( )
inlineinherited

Definition at line 668 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

669  {
670  return _kokkos_nodal_kernels;
671  }
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels

◆ getMatrix() [1/2]

SparseMatrix< Number > & SystemBase::getMatrix ( TagID  tag)
virtualinherited

Get a raw SparseMatrix.

Reimplemented in DisplacedSystem.

Definition at line 1024 of file SystemBase.C.

Referenced by SystemBase::activateAllMatrixTags(), Assembly::addCachedJacobian(), NonlinearSystemBase::addImplicitGeometricCouplingEntries(), Assembly::addJacobianCoupledVarPair(), Assembly::addJacobianLowerD(), Assembly::addJacobianNeighbor(), Assembly::addJacobianNeighborLowerD(), Assembly::addJacobianNonlocal(), SystemBase::addMatrix(), SystemBase::closeTaggedMatrices(), NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTags(), LinearSystem::computeLinearSystemInternal(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::constraintJacobians(), SystemBase::disassociateMatrixFromTag(), SystemBase::flushTaggedMatrices(), DisplacedSystem::getMatrix(), LinearSystemContributionObject::linkTaggedVectorsAndMatrices(), MooseVariableScalar::reinit(), Assembly::setCachedJacobian(), and Assembly::zeroCachedJacobian().

1025 {
1026  if (!hasMatrix(tag))
1027  {
1028  if (!_subproblem.matrixTagExists(tag))
1029  mooseError("Cannot retreive matrix with tag ", tag, " because that tag does not exist");
1030  else
1031  mooseError("Cannot retreive matrix with tag ",
1032  tag,
1033  " in system '",
1034  name(),
1035  "'\nbecause a matrix has not been associated with that tag.");
1036  }
1037 
1038  return *_tagged_matrices[tag];
1039 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ getMatrix() [2/2]

const SparseMatrix< Number > & SystemBase::getMatrix ( TagID  tag) const
virtualinherited

Get a raw SparseMatrix.

Reimplemented in DisplacedSystem.

Definition at line 1042 of file SystemBase.C.

1043 {
1044  if (!hasMatrix(tag))
1045  {
1046  if (!_subproblem.matrixTagExists(tag))
1047  mooseError("Cannot retreive matrix with tag ", tag, " because that tag does not exist");
1048  else
1049  mooseError("Cannot retreive matrix with tag ",
1050  tag,
1051  " in system '",
1052  name(),
1053  "'\nbecause a matrix has not been associated with that tag.");
1054  }
1055 
1056  return *_tagged_matrices[tag];
1057 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ getMaxVariableNumber()

unsigned int SystemBase::getMaxVariableNumber ( ) const
inlineinherited

Returns the maximum number of all variables on the system.

Definition at line 867 of file SystemBase.h.

867 { return _max_var_number; }
unsigned int _max_var_number
Maximum variable number.
Definition: SystemBase.h:1000

◆ getMaxVarNDofsPerElem()

std::size_t SystemBase::getMaxVarNDofsPerElem ( ) const
inlineinherited

Gets the maximum number of dofs used by any one variable on any one element.

Returns
The max

Definition at line 585 of file SystemBase.h.

Referenced by Moose::globalDofIndexToDerivative().

585 { return _max_var_n_dofs_per_elem; }
size_t _max_var_n_dofs_per_elem
Maximum number of dofs for any one variable on any one element.
Definition: SystemBase.h:1043

◆ getMaxVarNDofsPerNode()

std::size_t SystemBase::getMaxVarNDofsPerNode ( ) const
inlineinherited

Gets the maximum number of dofs used by any one variable on any one node.

Returns
The max

Definition at line 592 of file SystemBase.h.

592 { return _max_var_n_dofs_per_node; }
size_t _max_var_n_dofs_per_node
Maximum number of dofs for any one variable on any one node.
Definition: SystemBase.h:1046

◆ getMinQuadratureOrder()

Order SystemBase::getMinQuadratureOrder ( )
virtualinherited

Get minimal quadrature order needed for integrating variables in this system.

Returns
The minimal order of quadrature

Reimplemented in AuxiliarySystem.

Definition at line 241 of file SystemBase.C.

242 {
243  Order order = CONSTANT;
244  const std::vector<MooseVariableFieldBase *> & vars = _vars[0].fieldVariables();
245  for (const auto & var : vars)
246  {
247  FEType fe_type = var->feType();
248  if (fe_type.default_quadrature_order() > order)
249  order = fe_type.default_quadrature_order();
250  }
251 
252  return order;
253 }
Order
char ** vars
Order default_quadrature_order() const
CONSTANT
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getMooseKSPNormType()

Moose::MooseKSPNormType SolverSystem::getMooseKSPNormType ( )
inlineinherited

Get the norm in which the linear convergence is measured.

Definition at line 87 of file SolverSystem.h.

Referenced by Moose::PetscSupport::petscSetDefaultKSPNormType().

87 { return _ksp_norm; }
Moose::MooseKSPNormType _ksp_norm
KSP norm type.
Definition: SolverSystem.h:110

◆ getNodalBCWarehouse()

const MooseObjectTagWarehouse<NodalBCBase>& NonlinearSystemBase::getNodalBCWarehouse ( ) const
inlineinherited

Return the NodalBCBase warehouse.

Definition at line 654 of file NonlinearSystemBase.h.

654 { return _nodal_bcs; }
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs

◆ getNodalDamperWarehouse()

const MooseObjectWarehouse<NodalDamper>& NonlinearSystemBase::getNodalDamperWarehouse ( ) const
inlineinherited

Definition at line 645 of file NonlinearSystemBase.h.

Referenced by ComputeNodalDampingThread::onNode(), and ComputeNodalDampingThread::printGeneralExecutionInformation().

646  {
647  return _nodal_dampers;
648  }
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.

◆ getNodalKernelWarehouse()

const MooseObjectTagWarehouse<NodalKernelBase>& NonlinearSystemBase::getNodalKernelWarehouse ( ) const
inlineinherited

Definition at line 636 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

637  {
638  return _nodal_kernels;
639  }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.

◆ getNodeDofs()

void NonlinearSystemBase::getNodeDofs ( dof_id_type  node_id,
std::vector< dof_id_type > &  dofs 
)
protectedinherited

Definition at line 2207 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::findImplicitGeometricCouplingEntries().

2208 {
2209  const Node & node = _mesh.nodeRef(node_id);
2210  unsigned int s = number();
2211  if (node.has_dofs(s))
2212  {
2213  for (unsigned int v = 0; v < nVariables(); v++)
2214  for (unsigned int c = 0; c < node.n_comp(s, v); c++)
2215  dofs.push_back(node.dof_number(s, v, c));
2216  }
2217 }
dof_id_type dof_number(const unsigned int s, const unsigned int var, const unsigned int comp) const
unsigned int n_comp(const unsigned int s, const unsigned int var) const
bool has_dofs(const unsigned int s=libMesh::invalid_uint) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:861
virtual unsigned int nVariables() const
Get the number of variables in this system.
Definition: SystemBase.C:891
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ getPCSide()

Moose::PCSideType SolverSystem::getPCSide ( )
inlineinherited

Get the current preconditioner side.

Definition at line 76 of file SolverSystem.h.

Referenced by Moose::PetscSupport::petscSetDefaultPCSide().

76 { return _pc_side; }
Moose::PCSideType _pc_side
Preconditioning side.
Definition: SolverSystem.h:108

◆ getPreconditioner()

MoosePreconditioner const * NonlinearSystemBase::getPreconditioner ( ) const
inherited

Definition at line 3658 of file NonlinearSystemBase.C.

Referenced by ConsoleUtils::outputExecutionInformation().

3659 {
3660  return _preconditioner.get();
3661 }
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.

◆ getPredictor()

Predictor* NonlinearSystemBase::getPredictor ( )
inlineinherited

Definition at line 594 of file NonlinearSystemBase.h.

Referenced by AB2PredictorCorrector::estimateTimeError().

594 { return _predictor.get(); }
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ getResidualNonTimeVector()

NumericVector< Number > & NonlinearSystemBase::getResidualNonTimeVector ( )
inherited

Return a numeric vector that is associated with the nontime tag.

Definition at line 1066 of file NonlinearSystemBase.C.

Referenced by PseudoTimestep::currentResidualNorm(), NonlinearSystemBase::NonlinearSystemBase(), and NonlinearSystemBase::residualVector().

1067 {
1068  if (!_Re_non_time)
1069  {
1071 
1072  // Most applications don't need the expense of ghosting
1074  _Re_non_time = &addVector(_Re_non_time_tag, false, ptype);
1075  }
1077  {
1078  const auto vector_name = _subproblem.vectorTagName(_Re_non_time_tag);
1079 
1080  // If an application changes its mind, the libMesh API lets us
1081  // change the vector.
1082  _Re_non_time = &system().add_vector(vector_name, false, GHOSTED);
1083  }
1084 
1085  return *_Re_non_time;
1086 }
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
PARALLEL
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
TagID _Re_non_time_tag
Tag for non-time contribution residual.
GHOSTED
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
ParallelType type() const
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
ParallelType
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ getResidualTimeVector()

NumericVector< Number > & NonlinearSystemBase::getResidualTimeVector ( )
inherited

Return a numeric vector that is associated with the time tag.

Definition at line 1043 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::residualVector().

1044 {
1045  if (!_Re_time)
1046  {
1048 
1049  // Most applications don't need the expense of ghosting
1051  _Re_time = &addVector(_Re_time_tag, false, ptype);
1052  }
1053  else if (_need_residual_ghosted && _Re_time->type() == PARALLEL)
1054  {
1055  const auto vector_name = _subproblem.vectorTagName(_Re_time_tag);
1056 
1057  // If an application changes its mind, the libMesh API lets us
1058  // change the vector.
1059  _Re_time = &system().add_vector(vector_name, false, GHOSTED);
1060  }
1061 
1062  return *_Re_time;
1063 }
NumericVector< Number > * _Re_time
residual vector for time contributions
TagID _Re_time_tag
Tag for time contribution residual.
PARALLEL
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
GHOSTED
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
ParallelType type() const
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
ParallelType
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ getScalarKernelWarehouse()

const MooseObjectTagWarehouse<ScalarKernelBase>& NonlinearSystemBase::getScalarKernelWarehouse ( ) const
inlineinherited

Definition at line 632 of file NonlinearSystemBase.h.

Referenced by ExplicitTimeIntegrator::initialSetup().

633  {
634  return _scalar_kernels;
635  }
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels

◆ getScalarVariable() [1/2]

MooseVariableScalar & SystemBase::getScalarVariable ( THREAD_ID  tid,
const std::string &  var_name 
) const
virtualinherited

Gets a reference to a scalar variable with specified number.

Parameters
tidThread id
var_nameA string which is the name of the variable to get.
Returns
reference the variable (class)

Definition at line 145 of file SystemBase.C.

Referenced by Assembly::addJacobianOffDiagScalar(), ODEKernel::computeOffDiagJacobianScalar(), VectorKernel::computeOffDiagJacobianScalar(), ArrayKernel::computeOffDiagJacobianScalar(), IntegratedBC::computeOffDiagJacobianScalar(), VectorIntegratedBC::computeOffDiagJacobianScalar(), ArrayIntegratedBC::computeOffDiagJacobianScalar(), Kernel::computeOffDiagJacobianScalar(), ScalarLagrangeMultiplier::computeOffDiagJacobianScalar(), MortarScalarBase::computeOffDiagJacobianScalar(), KernelScalarBase::computeOffDiagJacobianScalarLocal(), KernelScalarBase::computeScalarOffDiagJacobianScalar(), MortarScalarBase::computeScalarOffDiagJacobianScalar(), DMMooseSetVariables(), Assembly::init(), ReferenceResidualConvergence::initialSetup(), and NonlinearSystemBase::setupScalingData().

146 {
147  MooseVariableScalar * var = dynamic_cast<MooseVariableScalar *>(_vars[tid].getVariable(var_name));
148  if (!var)
149  mooseError("Scalar variable '" + var_name + "' does not exist in this system");
150  return *var;
151 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
Class for scalar variables (they are different).

◆ getScalarVariable() [2/2]

MooseVariableScalar & SystemBase::getScalarVariable ( THREAD_ID  tid,
unsigned int  var_number 
) const
virtualinherited

Gets a reference to a variable with specified number.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 154 of file SystemBase.C.

155 {
156  MooseVariableScalar * var =
157  dynamic_cast<MooseVariableScalar *>(_vars[tid].getVariable(var_number));
158  if (!var)
159  mooseError("variable #" + Moose::stringify(var_number) + " does not exist in this system");
160  return *var;
161 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
Class for scalar variables (they are different).

◆ getScalarVariables()

const std::vector<MooseVariableScalar *>& SystemBase::getScalarVariables ( THREAD_ID  tid)
inlineinherited

◆ getSNES()

virtual SNES DumpObjectsNonlinearSystem::getSNES ( )
inlineoverridevirtual

Implements NonlinearSystemBase.

Definition at line 34 of file DumpObjectsNonlinearSystem.h.

34 { return nullptr; }

◆ getSplit()

std::shared_ptr< Split > NonlinearSystemBase::getSplit ( const std::string &  name)
inherited

Retrieves a split by name.

Parameters
nameThe name of the split

Definition at line 746 of file NonlinearSystemBase.C.

Referenced by FieldSplitPreconditioner::FieldSplitPreconditioner(), Split::setup(), and StaticCondensationFieldSplitPreconditioner::StaticCondensationFieldSplitPreconditioner().

747 {
748  return _splits.getActiveObject(name);
749 }
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
virtual const std::string & name() const
Definition: SystemBase.C:1340
std::shared_ptr< T > getActiveObject(const std::string &name, THREAD_ID tid=0) const

◆ getSplits()

MooseObjectWarehouseBase<Split>& NonlinearSystemBase::getSplits ( )
inlineinherited

Retrieves all splits.

Definition at line 262 of file NonlinearSystemBase.h.

Referenced by ConsoleUtils::outputExecutionInformation().

262 { return _splits; }
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.

◆ getStandardFieldVariableNames()

void SystemBase::getStandardFieldVariableNames ( std::vector< VariableName > &  std_field_variables) const
inherited

◆ getSubdomainsForVar() [1/2]

const std::set<SubdomainID>& SystemBase::getSubdomainsForVar ( unsigned int  var_number) const
inlineinherited

Definition at line 761 of file SystemBase.h.

Referenced by NonlinearSystemBase::checkKernelCoverage(), and SystemBase::getSubdomainsForVar().

762  {
763  return _var_map.at(var_number);
764  }
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998

◆ getSubdomainsForVar() [2/2]

const std::set< SubdomainID > & SystemBase::getSubdomainsForVar ( const std::string &  var_name) const
inherited

Get the block where a variable of this system is defined.

Parameters
var_nameThe name of the variable
Returns
the set of subdomain ids where the variable is active (defined)

Definition at line 1707 of file SystemBase.C.

1708 {
1709  return getSubdomainsForVar(getVariable(0, var_name).number());
1710 }
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
const std::set< SubdomainID > & getSubdomainsForVar(unsigned int var_number) const
Definition: SystemBase.h:761
MooseVariableFieldBase & getVariable(THREAD_ID tid, const std::string &var_name) const
Gets a reference to a variable of with specified name.
Definition: SystemBase.C:90

◆ getTimeIntegrator()

const TimeIntegrator & SystemBase::getTimeIntegrator ( const unsigned int  var_num) const
inherited

Retrieve the time integrator that integrates the given variable's equation.

Definition at line 1683 of file SystemBase.C.

Referenced by AB2PredictorCorrector::estimateTimeError().

1684 {
1685  const auto * const ti = queryTimeIntegrator(var_num);
1686 
1687  if (ti)
1688  return *ti;
1689  else
1690  mooseError("No time integrator found that integrates variable number ",
1691  std::to_string(var_num));
1692 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
const TimeIntegrator * queryTimeIntegrator(const unsigned int var_num) const
Retrieve the time integrator that integrates the given variable&#39;s equation.
Definition: SystemBase.C:1673

◆ getTimeIntegrators()

const std::vector< std::shared_ptr< TimeIntegrator > > & SystemBase::getTimeIntegrators ( )
inherited
Returns
All the time integrators owned by this system

Definition at line 1695 of file SystemBase.C.

1696 {
1697  return _time_integrators;
1698 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ getVariable() [1/2]

MooseVariableFieldBase & SystemBase::getVariable ( THREAD_ID  tid,
const std::string &  var_name 
) const
inherited

Gets a reference to a variable of with specified name.

Parameters
tidThread id
var_namevariable name
Returns
reference the variable (class)

Definition at line 90 of file SystemBase.C.

Referenced by AdaptivityAction::act(), Assembly::addJacobianBlockNonlocal(), FEProblemBase::addJacobianBlockTags(), NonlocalKernel::computeNonlocalOffDiagJacobian(), NonlocalIntegratedBC::computeNonlocalOffDiagJacobian(), Assembly::copyFaceShapes(), Assembly::copyNeighborShapes(), Assembly::copyShapes(), SystemBase::copyVars(), DMMooseSetVariables(), FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NodeElemConstraint::getConnectedDofIndices(), NodeFaceConstraint::getConnectedDofIndices(), SystemBase::getSubdomainsForVar(), ResidualObject::getVariable(), SubProblem::getVariableHelper(), Assembly::init(), NodalNormalsPreprocessor::initialize(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), LinearSystem::initialSetup(), Assembly::initNonlocalCoupling(), PNGOutput::makeMeshFunc(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), UpdateErrorVectorsThread::onElement(), Assembly::prepareBlock(), Assembly::prepareBlockNonlocal(), AddPeriodicBCAction::setPeriodicVars(), NonlinearSystemBase::setupScalingData(), and VariableCondensationPreconditioner::VariableCondensationPreconditioner().

91 {
93  dynamic_cast<MooseVariableFieldBase *>(_vars[tid].getVariable(var_name));
94  if (!var)
95  mooseError("Variable '", var_name, "' does not exist in this system");
96  return *var;
97 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
This class provides an interface for common operations on field variables of both FE and FV types wit...
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ getVariable() [2/2]

MooseVariableFieldBase & SystemBase::getVariable ( THREAD_ID  tid,
unsigned int  var_number 
) const
inherited

Gets a reference to a variable with specified number.

Parameters
tidThread id
var_numberlibMesh variable number
Returns
reference the variable (class)

Definition at line 100 of file SystemBase.C.

101 {
102  if (var_number < _numbered_vars[tid].size())
103  if (_numbered_vars[tid][var_number])
104  return *_numbered_vars[tid][var_number];
105 
106  mooseError("Variable #", Moose::stringify(var_number), " does not exist in this system");
107 }
std::vector< std::vector< MooseVariableFieldBase * > > _numbered_vars
Map variable number to its pointer.
Definition: SystemBase.h:1052
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64

◆ getVariableBlocks()

const std::set< SubdomainID > * SystemBase::getVariableBlocks ( unsigned int  var_number)
virtualinherited

Get the block where a variable of this system is defined.

Parameters
var_numberThe number of the variable
Returns
the set of subdomain ids where the variable is active (defined)

Definition at line 164 of file SystemBase.C.

Referenced by PhysicsBasedPreconditioner::addSystem().

165 {
166  mooseAssert(_var_map.find(var_number) != _var_map.end(), "Variable does not exist.");
167  if (_var_map[var_number].empty())
168  return nullptr;
169  else
170  return &_var_map[var_number];
171 }
std::map< unsigned int, std::set< SubdomainID > > _var_map
Map of variables (variable id -> array of subdomains where it lives)
Definition: SystemBase.h:998

◆ getVariableGlobalDoFs()

const std::vector<dof_id_type>& SystemBase::getVariableGlobalDoFs ( )
inlineinherited

Get the global dof indices of a variable, this needs to be called after the indices have been set by setVariableGlobalDoFs

Definition at line 842 of file SystemBase.h.

842 { return _var_all_dof_indices; }
std::vector< dof_id_type > _var_all_dof_indices
Container for the dof indices of a given variable.
Definition: SystemBase.h:1064

◆ getVariableNames()

const std::vector<VariableName>& SystemBase::getVariableNames ( ) const
inlineinherited

◆ getVariables()

const std::vector<MooseVariableFieldBase *>& SystemBase::getVariables ( THREAD_ID  tid)
inlineinherited

◆ getVector() [1/4]

NumericVector< Number > & SystemBase::getVector ( const std::string &  name)
virtualinherited

Get a raw NumericVector by name.

Get a raw NumericVector with the given name.

Reimplemented in DisplacedSystem.

Definition at line 933 of file SystemBase.C.

Referenced by Assembly::addCachedResiduals(), Assembly::addResidual(), Assembly::addResidualLower(), Assembly::addResidualNeighbor(), Assembly::addResidualScalar(), NonlinearSystemBase::assembleScalingVector(), SystemBase::closeTaggedVector(), FEProblemBase::computeBounds(), FEProblemBase::computeNearNullSpace(), FEProblemBase::computeNullSpace(), NonlinearSystemBase::computeResidualAndJacobianTags(), NonlinearSystemBase::computeResidualTags(), CentralDifference::computeTimeDerivatives(), FEProblemBase::computeTransposeNullSpace(), DisplacedSystem::getVector(), Assembly::hasScalingVector(), LinearSystemContributionObject::linkTaggedVectorsAndMatrices(), SystemBase::needSolutionState(), ReferenceResidualConvergence::ReferenceResidualConvergence(), MooseVariableScalar::reinit(), SecantSolve::saveVariableValues(), SteffensenSolve::saveVariableValues(), PicardSolve::saveVariableValues(), NonlinearSystemBase::setPreviousNewtonSolution(), TaggingInterface::setResidual(), SystemBase::solutionPreviousNewton(), SystemBase::solutionState(), MultiAppDofCopyTransfer::transfer(), SecantSolve::transformVariables(), SteffensenSolve::transformVariables(), PicardSolve::transformVariables(), and SystemBase::zeroTaggedVector().

934 {
935  return system().get_vector(name);
936 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
const NumericVector< Number > & get_vector(std::string_view vec_name) const

◆ getVector() [2/4]

const NumericVector< Number > & SystemBase::getVector ( const std::string &  name) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 939 of file SystemBase.C.

940 {
941  return system().get_vector(name);
942 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
const NumericVector< Number > & get_vector(std::string_view vec_name) const

◆ getVector() [3/4]

NumericVector< Number > & SystemBase::getVector ( TagID  tag)
virtualinherited

Get a raw NumericVector by tag.

Reimplemented in DisplacedSystem.

Definition at line 945 of file SystemBase.C.

946 {
947  if (!hasVector(tag))
948  {
949  if (!_subproblem.vectorTagExists(tag))
950  mooseError("Cannot retreive vector with tag ", tag, " because that tag does not exist");
951  else
952  mooseError("Cannot retreive vector with tag ",
953  tag,
954  " in system '",
955  name(),
956  "'\nbecause a vector has not been associated with that tag.");
957  }
958 
959  return *_tagged_vectors[tag];
960 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ getVector() [4/4]

const NumericVector< Number > & SystemBase::getVector ( TagID  tag) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 963 of file SystemBase.C.

964 {
965  if (!hasVector(tag))
966  {
967  if (!_subproblem.vectorTagExists(tag))
968  mooseError("Cannot retreive vector with tag ", tag, " because that tag does not exist");
969  else
970  mooseError("Cannot retreive vector with tag ",
971  tag,
972  " in system '",
973  name(),
974  "'\nbecause a vector has not been associated with that tag.");
975  }
976 
977  return *_tagged_vectors[tag];
978 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ gradientContainer()

const std::vector<std::unique_ptr<NumericVector<Number> > >& SystemBase::gradientContainer ( ) const
inlineinherited

Reference to the container vector which hold gradients at dofs (if it can be interpreted).

Mainly used for finite volume systems.

Definition at line 930 of file SystemBase.h.

931  {
932  return _raw_grad_container;
933  }
std::vector< std::unique_ptr< NumericVector< Number > > > _raw_grad_container
A cache for storing gradients at dof locations.
Definition: SystemBase.h:1073

◆ hasDiagSaveIn()

bool NonlinearSystemBase::hasDiagSaveIn ( ) const
inlineinherited

Weather or not the nonlinear system has diagonal Jacobian save-ins.

Definition at line 693 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeJacobianInternal().

bool _has_nodalbc_diag_save_in
If there is a nodal BC having diag_save_in.
bool _has_diag_save_in
If there is any Kernel or IntegratedBC having diag_save_in.

◆ hasMatrix()

virtual bool SystemBase::hasMatrix ( TagID  tag) const
inlinevirtualinherited

Check if the tagged matrix exists in the system.

Reimplemented in DisplacedSystem.

Definition at line 360 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), Assembly::addCachedJacobian(), NonlinearSystemBase::addImplicitGeometricCouplingEntries(), Assembly::addJacobianCoupledVarPair(), Assembly::addJacobianLowerD(), Assembly::addJacobianNeighbor(), Assembly::addJacobianNeighborLowerD(), Assembly::addJacobianNonlocal(), SystemBase::addMatrix(), Assembly::cacheJacobian(), Assembly::cacheJacobianBlockNonzero(), Assembly::cacheJacobianCoupledVarPair(), Assembly::cacheJacobianMortar(), Assembly::cacheJacobianNeighbor(), Assembly::cacheJacobianNonlocal(), SystemBase::closeTaggedMatrices(), NonlinearSystemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::constraintJacobians(), SystemBase::disassociateMatrixFromTag(), NonlinearSystemBase::enforceNodalConstraintsJacobian(), SystemBase::flushTaggedMatrices(), SystemBase::getMatrix(), DisplacedSystem::hasMatrix(), MooseVariableScalar::reinit(), SystemBase::removeMatrix(), SubProblem::selectMatrixTagsFromSystem(), Assembly::setCachedJacobian(), and Assembly::zeroCachedJacobian().

361  {
362  return tag < _tagged_matrices.size() && _tagged_matrices[tag];
363  }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023

◆ hasSaveIn()

bool NonlinearSystemBase::hasSaveIn ( ) const
inlineinherited

Weather or not the nonlinear system has save-ins.

Definition at line 688 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeResidualTags().

688 { return _has_save_in || _has_nodalbc_save_in; }
bool _has_nodalbc_save_in
If there is a nodal BC having save_in.
bool _has_save_in
If there is any Kernel or IntegratedBC having save_in.

◆ hasScalarVariable()

bool SystemBase::hasScalarVariable ( const std::string &  var_name) const
virtualinherited

Definition at line 876 of file SystemBase.C.

Referenced by MortarScalarBase::computeJacobian(), NonlinearSystemBase::computeJacobianInternal(), ComputeFullJacobianThread::computeOnBoundary(), ComputeFullJacobianThread::computeOnElement(), SystemBase::copyVars(), ExplicitTimeIntegrator::initialSetup(), NonlinearEigenSystem::postAddResidualObject(), AddPeriodicBCAction::setPeriodicVars(), and NonlinearSystemBase::setupScalingData().

877 {
878  if (system().has_variable(var_name))
879  return system().variable_type(var_name).family == SCALAR;
880  else
881  return false;
882 }
SCALAR
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const FEType & variable_type(const unsigned int i) const

◆ hasSolutionState()

bool SystemBase::hasSolutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
) const
inlinevirtualinherited

Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).

Reimplemented in DisplacedSystem.

Definition at line 1090 of file SystemBase.h.

Referenced by PointwiseRenormalizeVector::execute(), PointwiseRenormalizeVector::finalize(), DisplacedSystem::hasSolutionState(), SystemBase::needSolutionState(), SystemBase::restoreSolutions(), ElementSubdomainModifierBase::setOldAndOlderSolutions(), SystemBase::solutionState(), and SystemBase::solutionStateParallelType().

1092 {
1093  return _solution_states[static_cast<unsigned short>(iteration_type)].size() > state;
1094 }
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ hasVarCopy()

bool SystemBase::hasVarCopy ( ) const
inlineinherited

Whether or not there are variables to be restarted from an Exodus mesh file.

Definition at line 883 of file SystemBase.h.

883 { return _var_to_copy.size() > 0; }
std::vector< VarCopyInfo > _var_to_copy
Definition: SystemBase.h:1040

◆ hasVariable()

bool SystemBase::hasVariable ( const std::string &  var_name) const
virtualinherited

Query a system for a variable.

Parameters
var_namename of the variable
Returns
true if the variable exists

Definition at line 851 of file SystemBase.C.

Referenced by ADDGKernel::ADDGKernel(), ArrayDGKernel::ArrayDGKernel(), SystemBase::copyVars(), DGKernel::DGKernel(), DMMooseSetVariables(), FEProblemBase::duplicateVariableCheck(), SubProblem::getVariableHelper(), SubProblem::hasAuxiliaryVariable(), ExplicitTimeIntegrator::initialSetup(), ElementSubdomainModifierBase::initialSetup(), InterfaceKernelTempl< T >::InterfaceKernelTempl(), PNGOutput::makeMeshFunc(), MultiAppVariableValueSamplePostprocessorTransfer::MultiAppVariableValueSamplePostprocessorTransfer(), NonlinearSystemBase::setupScalingData(), and Coupleable::writableCoupledValue().

852 {
853  auto & names = getVariableNames();
854  if (system().has_variable(var_name))
855  return system().variable_type(var_name).family != SCALAR;
856  if (std::find(names.begin(), names.end(), var_name) != names.end())
857  // array variable
858  return true;
859  else
860  return false;
861 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:42
SCALAR
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const FEType & variable_type(const unsigned int i) const
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ hasVector() [1/2]

bool SystemBase::hasVector ( const std::string &  tag_name) const
inherited

◆ hasVector() [2/2]

virtual bool SystemBase::hasVector ( TagID  tag_id) const
inlinevirtualinherited

Check if the tagged vector exists in the system.

Reimplemented in DisplacedSystem.

Definition at line 281 of file SystemBase.h.

282  {
283  return tag_id < _tagged_vectors.size() && _tagged_vectors[tag_id];
284  }
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ haveFieldSplitPreconditioner()

bool NonlinearSystemBase::haveFieldSplitPreconditioner ( ) const
inlineinherited

Definition at line 112 of file NonlinearSystemBase.h.

112 { return _fsp; }
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ haveFiniteDifferencedPreconditioner()

bool NonlinearSystemBase::haveFiniteDifferencedPreconditioner ( ) const
inlineinherited

Definition at line 108 of file NonlinearSystemBase.h.

109  {
111  }
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.

◆ ignoreVariablesForAutoscaling()

void NonlinearSystemBase::ignoreVariablesForAutoscaling ( const std::vector< std::string > &  ignore_variables_for_autoscaling)
inlineinherited

Definition at line 736 of file NonlinearSystemBase.h.

737  {
738  _ignore_variables_for_autoscaling = ignore_variables_for_autoscaling;
739  }
std::vector< std::string > _ignore_variables_for_autoscaling
A container for variables that do not partipate in autoscaling.

◆ initializeObjects()

virtual void SystemBase::initializeObjects ( )
inlinevirtualinherited

Called only once, just before the solve begins so objects can do some precalculations.

Definition at line 173 of file SystemBase.h.

173 {}

◆ initialResidual()

Real NonlinearSystemBase::initialResidual ( ) const
inherited

The initial residual.

Definition at line 785 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::referenceResidual().

786 {
787  return _initial_residual;
788 }
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...

◆ initialSetup()

void NonlinearSystemBase::initialSetup ( )
overridevirtualinherited

Setup Functions.

Reimplemented from SystemBase.

Definition at line 226 of file NonlinearSystemBase.C.

227 {
228  TIME_SECTION("nlInitialSetup", 2, "Setting Up Nonlinear System");
229 
231 
232  {
233  TIME_SECTION("kernelsInitialSetup", 2, "Setting Up Kernels/BCs/Constraints");
234 
235  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
236  {
237  _kernels.initialSetup(tid);
240  if (_doing_dg)
243 
247 
248  if (_fe_problem.haveFV())
249  {
250  std::vector<FVElementalKernel *> fv_elemental_kernels;
252  .query()
253  .template condition<AttribSystem>("FVElementalKernel")
254  .template condition<AttribThread>(tid)
255  .queryInto(fv_elemental_kernels);
256 
257  for (auto * fv_kernel : fv_elemental_kernels)
258  fv_kernel->initialSetup();
259 
260  std::vector<FVFluxKernel *> fv_flux_kernels;
262  .query()
263  .template condition<AttribSystem>("FVFluxKernel")
264  .template condition<AttribThread>(tid)
265  .queryInto(fv_flux_kernels);
266 
267  for (auto * fv_kernel : fv_flux_kernels)
268  fv_kernel->initialSetup();
269  }
270  }
271 
278 
279 #ifdef MOOSE_KOKKOS_ENABLED
284 #endif
285  }
286 
287  {
288  TIME_SECTION("mortarSetup", 2, "Initializing Mortar Interfaces");
289 
290  auto create_mortar_functors = [this](const bool displaced)
291  {
292  // go over mortar interfaces and construct functors
293  const auto & mortar_interfaces = _fe_problem.getMortarInterfaces(displaced);
294  for (const auto & [primary_secondary_boundary_pair, mortar_generation_ptr] :
295  mortar_interfaces)
296  {
297  if (!_constraints.hasActiveMortarConstraints(primary_secondary_boundary_pair, displaced))
298  continue;
299 
300  auto & mortar_constraints =
301  _constraints.getActiveMortarConstraints(primary_secondary_boundary_pair, displaced);
302 
303  auto & subproblem = displaced
304  ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
305  : static_cast<SubProblem &>(_fe_problem);
306 
307  auto & mortar_functors =
309 
310  mortar_functors.emplace(primary_secondary_boundary_pair,
311  ComputeMortarFunctor(mortar_constraints,
312  *mortar_generation_ptr,
313  subproblem,
314  _fe_problem,
315  displaced,
316  subproblem.assembly(0, number())));
317  }
318  };
319 
320  create_mortar_functors(false);
321  create_mortar_functors(true);
322  }
323 
324  if (_automatic_scaling)
325  {
327  _scaling_matrix = std::make_unique<OffDiagonalScalingMatrix<Number>>(_communicator);
328  else
329  _scaling_matrix = std::make_unique<DiagonalMatrix<Number>>(_communicator);
330  }
331 
332  if (_preconditioner)
333  _preconditioner->initialSetup();
334 }
virtual void residualSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
bool hasActiveMortarConstraints(const std::pair< BoundaryID, BoundaryID > &mortar_interface_key, bool displaced) const
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
std::unique_ptr< libMesh::DiagonalMatrix< Number > > _scaling_matrix
A diagonal matrix used for computing scaling.
const Parallel::Communicator & _communicator
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
TheWarehouse & theWarehouse() const
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.
const std::unordered_map< std::pair< BoundaryID, BoundaryID >, std::unique_ptr< AutomaticMortarGeneration > > & getMortarInterfaces(bool on_displaced) const
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.
SubProblem & subproblem()
Definition: SystemBase.h:101
MooseObjectTagWarehouse< KernelBase > _kernels
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
virtual void initialSetup(THREAD_ID tid=0) const
Convenience methods for calling object setup methods.
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
const std::vector< std::shared_ptr< MortarConstraintBase > > & getActiveMortarConstraints(const std::pair< BoundaryID, BoundaryID > &mortar_interface_key, bool displaced) const
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
virtual void initialSetup()
Setup Functions.
Definition: SystemBase.C:1558
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:237
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ initSolutionState()

void SystemBase::initSolutionState ( )
virtualinherited

Initializes the solution state.

Reimplemented in DisplacedSystem.

Definition at line 1364 of file SystemBase.C.

Referenced by DisplacedSystem::initSolutionState().

1365 {
1366  // Default is the current solution
1367  unsigned int state = 0;
1368 
1369  // Add additional states as required by the variable states requested
1370  for (const auto & var : getVariables(/* tid = */ 0))
1371  state = std::max(state, var->oldestSolutionStateRequested());
1372  for (const auto & var : getScalarVariables(/* tid = */ 0))
1373  state = std::max(state, var->oldestSolutionStateRequested());
1374 
1376 
1378 }
const std::vector< MooseVariableFieldBase * > & getVariables(THREAD_ID tid)
Definition: SystemBase.h:751
const std::vector< MooseVariableScalar * > & getScalarVariables(THREAD_ID tid)
Definition: SystemBase.h:756
bool _solution_states_initialized
Whether or not the solution states have been initialized.
Definition: SystemBase.h:1061
auto max(const L &left, const R &right)
virtual void needSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
Registers that the solution state state is needed.
Definition: SystemBase.C:1450

◆ isArrayVariable()

bool SystemBase::isArrayVariable ( const std::string &  var_name) const
virtualinherited

If a variable is an array variable.

Definition at line 864 of file SystemBase.C.

865 {
866  auto & names = getVariableNames();
867  if (!system().has_variable(var_name) &&
868  std::find(names.begin(), names.end(), var_name) != names.end())
869  // array variable
870  return true;
871  else
872  return false;
873 }
KOKKOS_INLINE_FUNCTION const T * find(const T &target, const T *const begin, const T *const end)
Find a value in an array.
Definition: KokkosUtils.h:42
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const std::vector< VariableName > & getVariableNames() const
Definition: SystemBase.h:860

◆ isScalarVariable()

bool SystemBase::isScalarVariable ( unsigned int  var_name) const
virtualinherited

Definition at line 885 of file SystemBase.C.

Referenced by Assembly::init(), ReferenceResidualConvergence::initialSetup(), and Assembly::initNonlocalCoupling().

886 {
887  return (system().variable(var_num).type().family == SCALAR);
888 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.

◆ jacobianSetup()

void NonlinearSystemBase::jacobianSetup ( )
overridevirtualinherited

Reimplemented from SystemBase.

Definition at line 2813 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal().

2814 {
2816 
2817  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
2818  {
2819  _kernels.jacobianSetup(tid);
2822  if (_doing_dg)
2828  }
2835 
2836 #ifdef MOOSE_KOKKOS_ENABLED
2841 #endif
2842 
2843  // Avoid recursion
2844  if (this == &_fe_problem.currentNonlinearSystem())
2847 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
virtual void jacobianSetup()
Definition: SystemBase.C:1606
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
NonlinearSystemBase & currentNonlinearSystem()
MooseObjectTagWarehouse< KernelBase > _kernels
virtual void jacobianSetup(THREAD_ID tid=0) const
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
void resetSolutionInvalidCurrentIteration()
Reset the number of solution invalid occurrences back to zero.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
void jacobianSetup() override
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:237
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ matrixFromColoring()

virtual bool SolverSystem::matrixFromColoring ( ) const
inlineprotectedvirtualinherited

Whether a system matrix is formed from coloring.

This influences things like when to compute time derivatives

Reimplemented in NonlinearSystem.

Definition at line 102 of file SolverSystem.h.

Referenced by SolverSystem::compute(), and NonlinearSystemBase::destroyColoring().

102 { return false; }

◆ matrixTagActive()

bool SystemBase::matrixTagActive ( TagID  tag) const
virtualinherited

If or not a matrix tag is active.

Definition at line 1149 of file SystemBase.C.

1150 {
1151  mooseAssert(_subproblem.matrixTagExists(tag), "Matrix tag " << tag << " does not exist");
1152 
1153  return tag < _matrix_tag_active_flags.size() && _matrix_tag_active_flags[tag];
1154 }
std::vector< bool > _matrix_tag_active_flags
Active flags for tagged matrices.
Definition: SystemBase.h:1027
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329

◆ mesh() [1/2]

MooseMesh& SystemBase::mesh ( )
inlineinherited

◆ mesh() [2/2]

const MooseMesh& SystemBase::mesh ( ) const
inlineinherited

Definition at line 100 of file SystemBase.h.

100 { return _mesh; }
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ mortarConstraints()

void NonlinearSystemBase::mortarConstraints ( Moose::ComputeType  compute_type,
const std::set< TagID > &  vector_tags,
const std::set< TagID > &  matrix_tags 
)
protectedinherited

Do mortar constraint residual/jacobian computations.

Definition at line 3928 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeJacobianInternal(), NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

3931 {
3932  parallel_object_only();
3933 
3934  try
3935  {
3936  for (auto & map_pr : _undisplaced_mortar_functors)
3937  map_pr.second(compute_type, vector_tags, matrix_tags);
3938 
3939  for (auto & map_pr : _displaced_mortar_functors)
3940  map_pr.second(compute_type, vector_tags, matrix_tags);
3941  }
3942  catch (MetaPhysicL::LogicError &)
3943  {
3944  mooseError(
3945  "We caught a MetaPhysicL error in NonlinearSystemBase::mortarConstraints. This is very "
3946  "likely due to AD not having a sufficiently large derivative container size. Please run "
3947  "MOOSE configure with the '--with-derivative-size=<n>' option");
3948  }
3949 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.

◆ name()

const std::string & SystemBase::name ( ) const
virtualinherited

Definition at line 1340 of file SystemBase.C.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addConstraint(), NonlinearSystemBase::addDamper(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), MooseEigenSystem::addKernel(), AuxiliarySystem::addKernel(), NonlinearSystemBase::addKernel(), SystemBase::addMatrix(), NonlinearSystemBase::addNodalKernel(), AuxiliarySystem::addScalarKernel(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), SystemBase::addTimeIntegrator(), AuxiliarySystem::addVariable(), SystemBase::addVariable(), DiffusionLHDGAssemblyHelper::checkCoupling(), SystemBase::closeTaggedVector(), LinearSystem::computeGradients(), LinearSystem::computeLinearSystemTags(), DisplacedProblem::DisplacedProblem(), SystemBase::getMatrix(), NonlinearSystemBase::getSplit(), DisplacedSystem::getVector(), SystemBase::getVector(), SystemBase::hasVector(), LinearSystem::initialSetup(), Moose::PetscSupport::petscSetDefaults(), NonlinearEigenSystem::postAddResidualObject(), MooseStaticCondensationPreconditioner::prefix(), SystemBase::removeMatrix(), SystemBase::removeVector(), SystemBase::solutionState(), LinearSystem::solve(), LinearTimeIntegratorInterface::timeDerivativeMatrixContribution(), LinearTimeIntegratorInterface::timeDerivativeRHSContribution(), and SystemBase::zeroTaggedVector().

1341 {
1342  return system().name();
1343 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const std::string & name() const

◆ needBoundaryMaterialOnSide()

bool NonlinearSystemBase::needBoundaryMaterialOnSide ( BoundaryID  bnd_id,
THREAD_ID  tid 
) const
inherited

Indicated whether this system needs material properties on boundaries.

Returns
Boolean if IntegratedBCs are active

Definition at line 3860 of file NonlinearSystemBase.C.

3861 {
3862  // IntegratedBCs are for now the only objects we consider to be consuming
3863  // matprops on boundaries.
3864  if (_integrated_bcs.hasActiveBoundaryObjects(bnd_id, tid))
3865  for (const auto & bc : _integrated_bcs.getActiveBoundaryObjects(bnd_id, tid))
3866  if (std::static_pointer_cast<MaterialPropertyInterface>(bc)->getMaterialPropertyCalled())
3867  return true;
3868 
3869  // Thin layer heat transfer in the heat_transfer module is being used on a boundary even though
3870  // it's an interface kernel. That boundary is external, on both sides of a gap in a mesh
3872  for (const auto & ik : _interface_kernels.getActiveBoundaryObjects(bnd_id, tid))
3873  if (std::static_pointer_cast<MaterialPropertyInterface>(ik)->getMaterialPropertyCalled())
3874  return true;
3875 
3876  // Because MortarConstraints do not inherit from BoundaryRestrictable, they are not sorted
3877  // by boundary in the MooseObjectWarehouse. So for now, we return true for all boundaries
3878  // Note: constraints are not threaded at this time
3879  if (_constraints.hasActiveObjects(/*tid*/ 0))
3880  for (const auto & ct : _constraints.getActiveObjects(/*tid*/ 0))
3881  if (auto mpi = std::dynamic_pointer_cast<MaterialPropertyInterface>(ct);
3882  mpi && mpi->getMaterialPropertyCalled())
3883  return true;
3884  return false;
3885 }
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const std::vector< std::shared_ptr< T > > & getActiveObjects(THREAD_ID tid=0) const
Retrieve complete vector to the active all/block/boundary restricted objects for a given thread...
ConstraintWarehouse _constraints
Constraints storage object.
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
bool hasActiveObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs

◆ needInterfaceMaterialOnSide()

bool NonlinearSystemBase::needInterfaceMaterialOnSide ( BoundaryID  bnd_id,
THREAD_ID  tid 
) const
inherited

Indicated whether this system needs material properties on interfaces.

Returns
Boolean if IntegratedBCs are active

Definition at line 3888 of file NonlinearSystemBase.C.

3889 {
3890  // InterfaceKernels are for now the only objects we consider to be consuming matprops on internal
3891  // boundaries.
3893  for (const auto & ik : _interface_kernels.getActiveBoundaryObjects(bnd_id, tid))
3894  if (std::static_pointer_cast<MaterialPropertyInterface>(ik)->getMaterialPropertyCalled())
3895  return true;
3896  return false;
3897 }
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels

◆ needInternalNeighborSideMaterial()

bool NonlinearSystemBase::needInternalNeighborSideMaterial ( SubdomainID  subdomain_id,
THREAD_ID  tid 
) const
inherited

Indicates whether this system needs material properties on internal sides.

Returns
Boolean if DGKernels are active

Definition at line 3900 of file NonlinearSystemBase.C.

3901 {
3902  // DGKernels are for now the only objects we consider to be consuming matprops on
3903  // internal sides.
3904  if (_dg_kernels.hasActiveBlockObjects(subdomain_id, tid))
3905  for (const auto & dg : _dg_kernels.getActiveBlockObjects(subdomain_id, tid))
3906  if (std::static_pointer_cast<MaterialPropertyInterface>(dg)->getMaterialPropertyCalled())
3907  return true;
3908  // NOTE:
3909  // HDG kernels do not require face material properties on internal sides at this time.
3910  // The idea is to have element locality of HDG for hybridization
3911  return false;
3912 }
bool hasActiveBlockObjects(THREAD_ID tid=0) const
const std::map< SubdomainID, std::vector< std::shared_ptr< T > > > & getActiveBlockObjects(THREAD_ID tid=0) const
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels

◆ needSolutionState()

void SystemBase::needSolutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time,
libMesh::ParallelType  parallel_type = GHOSTED 
)
virtualinherited

Registers that the solution state state is needed.

Reimplemented in DisplacedSystem.

Definition at line 1450 of file SystemBase.C.

Referenced by SecantSolve::allocateStorage(), PicardSolve::allocateStorage(), EigenExecutionerBase::EigenExecutionerBase(), SystemBase::initSolutionState(), DisplacedSystem::needSolutionState(), and SystemBase::solutionState().

1453 {
1454  libmesh_parallel_only(this->comm());
1455  mooseAssert(!Threads::in_threads,
1456  "This routine is not thread-safe. Request the solution state before using it in "
1457  "a threaded region.");
1458 
1459  if (hasSolutionState(state, iteration_type))
1460  return;
1461 
1462  auto & solution_states = _solution_states[static_cast<unsigned short>(iteration_type)];
1463  solution_states.resize(state + 1);
1464 
1465  // The 0-th (current) solution state is owned by libMesh
1466  if (!solution_states[0])
1467  solution_states[0] = &solutionInternal();
1468  else
1469  mooseAssert(solution_states[0] == &solutionInternal(), "Inconsistent current solution");
1470 
1471  // We will manually add all states past current
1472  for (unsigned int i = 1; i <= state; ++i)
1473  if (!solution_states[i])
1474  {
1475  auto tag = _subproblem.addVectorTag(oldSolutionStateVectorName(i, iteration_type),
1477  solution_states[i] = &addVector(tag, true, parallel_type);
1478  }
1479  else
1480  {
1481  // If the existing parallel type is PARALLEL and GHOSTED is now requested,
1482  // this would require an upgrade, which is risky if anybody has already
1483  // stored a pointer to the existing vector, since the upgrade would create
1484  // a new vector and make that pointer null. If the existing parallel type
1485  // is GHOSTED and PARALLEL is now requested, we don't need to do anything.
1486  if (parallel_type == GHOSTED && solutionStateParallelType(i, iteration_type) == PARALLEL)
1487  mooseError("The solution state has already been declared as PARALLEL");
1488 
1489  mooseAssert(solution_states[i] == &getVector(oldSolutionStateVectorName(i, iteration_type)),
1490  "Inconsistent solution state");
1491  }
1492 }
virtual NumericVector< Number > & solutionInternal() const =0
Internal getter for solution owned by libMesh.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
Create a Tag.
Definition: SubProblem.C:93
const Parallel::Communicator & comm() const
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
TagName oldSolutionStateVectorName(const unsigned int, Moose::SolutionIterationType iteration_type) const
Gets the vector name used for an old (not current) solution state.
Definition: SystemBase.C:1381
libMesh::ParallelType solutionStateParallelType(const unsigned int state, const Moose::SolutionIterationType iteration_type) const
Returns the parallel type of the given solution state.
Definition: SystemBase.C:1440
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ nFieldVariables()

unsigned int SystemBase::nFieldVariables ( ) const
inherited

Get the number of field variables in this system.

Returns
the number of field variables

Definition at line 900 of file SystemBase.C.

Referenced by SystemBase::nVariables().

901 {
902  unsigned int n = 0;
903  for (auto & var : _vars[0].fieldVariables())
904  n += var->count();
905 
906  return n;
907 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ nFVVariables()

unsigned int SystemBase::nFVVariables ( ) const
inherited

Get the number of finite volume variables in this system.

Returns
the number of finite volume variables

Definition at line 910 of file SystemBase.C.

911 {
912  unsigned int n = 0;
913  for (auto & var : _vars[0].fieldVariables())
914  if (var->isFV())
915  n += var->count();
916 
917  return n;
918 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ nLinearIterations()

unsigned int NonlinearSystemBase::nLinearIterations ( ) const
inlineinherited

Return the number of linear iterations.

Definition at line 565 of file NonlinearSystemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

565 { return _n_linear_iters; }

◆ nNonlinearIterations()

unsigned int NonlinearSystemBase::nNonlinearIterations ( ) const
inlineinherited

Return the number of non-linear iterations.

Definition at line 560 of file NonlinearSystemBase.h.

Referenced by IterationAdaptiveDT::acceptStep().

560 { return _n_iters; }

◆ nonlinearNorm()

Real NonlinearSystemBase::nonlinearNorm ( ) const
inlineinherited

Return the last nonlinear norm.

Returns
A Real containing the last computed residual norm

Definition at line 581 of file NonlinearSystemBase.h.

Referenced by Console::writeVariableNorms().

581 { return _last_nl_rnorm; }

◆ nonlinearSolver()

virtual libMesh::NonlinearSolver<Number>* DumpObjectsNonlinearSystem::nonlinearSolver ( )
inlineoverridevirtual

Implements NonlinearSystemBase.

Definition at line 29 of file DumpObjectsNonlinearSystem.h.

29 { return NULL; }

◆ nonTimeVectorTag()

TagID NonlinearSystemBase::nonTimeVectorTag ( ) const
inlineoverridevirtualinherited

Reimplemented from SystemBase.

Definition at line 705 of file NonlinearSystemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), and CrankNicolson::init().

705 { return _Re_non_time_tag; }
TagID _Re_non_time_tag
Tag for non-time contribution residual.

◆ nResidualEvaluations()

unsigned int NonlinearSystemBase::nResidualEvaluations ( ) const
inlineinherited

Return the total number of residual evaluations done so far in this calculation.

Definition at line 570 of file NonlinearSystemBase.h.

570 { return _n_residual_evaluations; }
unsigned int _n_residual_evaluations
Total number of residual evaluations that have been performed.

◆ number()

unsigned int SystemBase::number ( ) const
inherited

Gets the number of this system.

Returns
The number of this system

Definition at line 1157 of file SystemBase.C.

Referenced by SetupResidualDebugAction::act(), FEProblemBase::addCachedResidualDirectly(), FEProblemBase::addJacobian(), FEProblemBase::addJacobianBlockTags(), FEProblemBase::addJacobianLowerD(), FEProblemBase::addJacobianNeighbor(), FEProblemBase::addJacobianNeighborLowerD(), FEProblemBase::addJacobianOffDiagScalar(), FEProblemBase::addJacobianScalar(), FEProblemBase::addObjectParamsHelper(), FEProblemBase::addResidual(), FEProblemBase::addResidualLower(), FEProblemBase::addResidualNeighbor(), FEProblemBase::addResidualScalar(), SystemBase::addScalingVector(), ADKernelTempl< T >::ADKernelTempl(), ElementSubdomainModifierBase::applyIC(), ArrayKernel::ArrayKernel(), NonlinearSystemBase::assembleScalingVector(), NonlinearEigenSystem::attachPreconditioner(), DiffusionLHDGAssemblyHelper::checkCoupling(), SolverSystem::compute(), MooseVariableScalar::computeAD(), FEProblemBase::computeBounds(), Assembly::computeFaceMap(), InternalSideIndicatorBase::computeIndicator(), VectorNodalBC::computeJacobian(), ArrayNodalBC::computeJacobian(), NodalBC::computeJacobian(), FVBoundaryScalarLagrangeMultiplierConstraint::computeJacobian(), FVFluxBC::computeJacobian(), FVFluxKernel::computeJacobian(), FVInterfaceKernel::computeJacobian(), FEProblemBase::computeJacobianBlock(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), FEProblemBase::computeNearNullSpace(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), FEProblemBase::computeNullSpace(), ArrayNodalBC::computeOffDiagJacobian(), VectorNodalBC::computeOffDiagJacobian(), NodalBC::computeOffDiagJacobian(), NodalKernel::computeOffDiagJacobian(), ComputeFullJacobianThread::computeOnBoundary(), ComputeFullJacobianThread::computeOnElement(), ComputeFullJacobianThread::computeOnInterface(), ComputeFullJacobianThread::computeOnInternalFace(), FEProblemBase::computePostCheck(), FVBoundaryScalarLagrangeMultiplierConstraint::computeResidual(), FVFluxKernel::computeResidual(), FVInterfaceKernel::computeResidual(), Kernel::computeResidualAndJacobian(), NodalBC::computeResidualAndJacobian(), IntegratedBC::computeResidualAndJacobian(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), FEProblemBase::computeResidualL2Norm(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScaling(), Assembly::computeSinglePointMapAD(), FEProblemBase::computeTransposeNullSpace(), DebugResidualAux::computeValue(), NearestNodeValueAux::computeValue(), SlepcEigenSolverConfiguration::configure_solver(), NonlinearSystemBase::constraintJacobians(), LinearSystem::containsTimeKernel(), Coupleable::coupled(), FEProblemBase::currentLinearSysNum(), FEProblemBase::currentNlSysNum(), PseudoTimestep::currentResidualNorm(), ComputeResidualThread::determineObjectWarehouses(), ComputeResidualAndJacobianThread::determineObjectWarehouses(), Moose::doDerivatives(), VariableResidual::execute(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), GreaterThanLessThanPostprocessor::execute(), NodalNormalsPreprocessor::execute(), ExplicitTimeIntegrator::ExplicitTimeIntegrator(), InternalSideIndicatorBase::finalize(), NumNonlinearIterations::finalize(), BoundsBase::getDoFIndex(), NonlinearSystemBase::getNodeDofs(), NonlinearEigenSystem::getSNES(), SystemBase::getSubdomainsForVar(), NumLinearIterations::getValue(), NumResidualEvaluations::getValue(), Residual::getValue(), Moose::globalDofIndexToDerivative(), FVBoundaryCondition::hasFaceSide(), ExplicitTimeIntegrator::init(), ExplicitTimeIntegrator::initialSetup(), NonlinearSystemBase::initialSetup(), ActivateElementsUserObjectBase::initSolutions(), EigenExecutionerBase::inversePowerIteration(), Kernel::Kernel(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionA(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionAB(), Moose::SlepcSupport::mooseSlepcEigenFormFunctionB(), Moose::SlepcSupport::mooseSlepcEigenFormJacobianA(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), MooseVariableInterface< Real >::MooseVariableInterface(), EigenExecutionerBase::nonlinearSolve(), ComputeDiracThread::onElement(), ComputeNodalKernelBCJacobiansThread::onNode(), ComputeNodalKernelJacobiansThread::onNode(), VariableResidualNormsDebugOutput::output(), Moose::PetscSupport::petscLinearConverged(), Moose::PetscSupport::petscNonlinearConverged(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), PointwiseRenormalizeVector::PointwiseRenormalizeVector(), FEProblemBase::prepareAssembly(), SystemBase::prepareFace(), FEProblemBase::prepareFaceShapes(), FEProblemBase::prepareNeighborShapes(), FEProblemBase::prepareShapes(), FEProblemBase::reinitDirac(), FEProblemBase::reinitOffDiagScalars(), NonlinearSystem::residualAndJacobianTogether(), FEProblemBase::setResidual(), FEProblemBase::setResidualNeighbor(), PhysicsBasedPreconditioner::setup(), FVInterfaceKernel::setupData(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), ActuallyExplicitEuler::solve(), NonlinearEigenSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), ExplicitSSPRungeKutta::solveStage(), NonlinearThread::subdomainChanged(), UserObject::systemNumber(), MultiAppDofCopyTransfer::transferDofObject(), FVFluxBC::uOnGhost(), FVFluxBC::uOnUSub(), FVFluxBC::updateCurrentFace(), and MortarConstraintBase::zeroInactiveLMDofs().

1158 {
1159  return system().number();
1160 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
unsigned int number() const

◆ nVariables()

unsigned int SystemBase::nVariables ( ) const
virtualinherited

Get the number of variables in this system.

Returns
the number of variables

Definition at line 891 of file SystemBase.C.

Referenced by AdaptivityAction::act(), FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl(), FiniteDifferencePreconditioner::FiniteDifferencePreconditioner(), NonlinearSystemBase::getNodeDofs(), Assembly::init(), ExplicitTimeIntegrator::initialSetup(), MaxVarNDofsPerElem::onElement(), MaxVarNDofsPerNode::onNode(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), and AuxiliarySystem::variableWiseRelativeSolutionDifferenceNorm().

892 {
893  unsigned int n = nFieldVariables();
894  n += _vars[0].scalars().size();
895 
896  return n;
897 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
unsigned int nFieldVariables() const
Get the number of field variables in this system.
Definition: SystemBase.C:900

◆ offDiagonalsInAutoScaling() [1/2]

bool NonlinearSystemBase::offDiagonalsInAutoScaling ( ) const
inlineinherited

Definition at line 741 of file NonlinearSystemBase.h.

Referenced by ComputeJacobianForScalingThread::computeOnElement().

bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.

◆ offDiagonalsInAutoScaling() [2/2]

void NonlinearSystemBase::offDiagonalsInAutoScaling ( bool  off_diagonals_in_auto_scaling)
inlineinherited

Definition at line 742 of file NonlinearSystemBase.h.

743  {
744  _off_diagonals_in_auto_scaling = off_diagonals_in_auto_scaling;
745  }
bool _off_diagonals_in_auto_scaling
Whether to include off diagonals when determining automatic scaling factors.

◆ onTimestepBegin()

void NonlinearSystemBase::onTimestepBegin ( )
inherited

Called at the beginning of the time step.

Definition at line 948 of file NonlinearSystemBase.C.

949 {
950  for (auto & ti : _time_integrators)
951  ti->preSolve();
952  if (_predictor.get())
953  _predictor->timestepSetup();
954 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ overwriteNodeFace()

void NonlinearSystemBase::overwriteNodeFace ( NumericVector< Number > &  soln)
inherited

Called from explicit time stepping to overwrite boundary positions (explicit dynamics).

This will close/assemble the passed-in soln after overwrite

Definition at line 1682 of file NonlinearSystemBase.C.

Referenced by ActuallyExplicitEuler::solve().

1683 {
1684  // Overwrite results from integrator in case we have explicit dynamics contact constraints
1686  ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1687  : static_cast<SubProblem &>(_fe_problem);
1688  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1689 
1690  for (const auto & it : penetration_locators)
1691  {
1692  PenetrationLocator & pen_loc = *(it.second);
1693 
1694  const auto & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1695  const BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1696  const BoundaryID primary_boundary = pen_loc._primary_boundary;
1697 
1698  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, true))
1699  {
1700  const auto & constraints =
1701  _constraints.getActiveNodeFaceConstraints(secondary_boundary, true);
1702  for (const auto i : index_range(secondary_nodes))
1703  {
1704  const auto secondary_node_num = secondary_nodes[i];
1705  const Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1706 
1707  if (secondary_node.processor_id() == processor_id())
1708  if (pen_loc._penetration_info[secondary_node_num])
1709  for (const auto & nfc : constraints)
1710  {
1711  if (!nfc->isExplicitConstraint())
1712  continue;
1713 
1714  // Return if this constraint does not correspond to the primary-secondary pair
1715  // prepared by the outer loops.
1716  // This continue statement is required when, e.g. one secondary surface constrains
1717  // more than one primary surface.
1718  if (nfc->secondaryBoundary() != secondary_boundary ||
1719  nfc->primaryBoundary() != primary_boundary)
1720  continue;
1721 
1722  nfc->overwriteBoundaryVariables(soln, secondary_node);
1723  }
1724  }
1725  }
1726  }
1727  soln.close();
1728 }
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:861
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
boundary_id_type BoundaryID
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual GeometricSearchData & geomSearchData()=0
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
processor_id_type processor_id() const
processor_id_type processor_id() const
auto index_range(const T &sizable)
BoundaryID _primary_boundary
NearestNodeLocator & _nearest_node

◆ perfGraph()

PerfGraph & PerfGraphInterface::perfGraph ( )
inherited

Get the PerfGraph.

Definition at line 78 of file PerfGraphInterface.C.

Referenced by CommonOutputAction::act(), PerfGraphData::finalize(), and PerfGraphOutput::output().

79 {
80  return _pg_moose_app.perfGraph();
81 }
MooseApp & _pg_moose_app
The MooseApp that owns the PerfGraph.
PerfGraph & perfGraph()
Get the PerfGraph for this app.
Definition: MooseApp.h:173

◆ postAddResidualObject()

virtual void NonlinearSystemBase::postAddResidualObject ( ResidualObject )
inlineprotectedvirtualinherited

◆ postInit()

virtual void SystemBase::postInit ( )
inlinevirtualinherited

Reimplemented in NonlinearEigenSystem.

Definition at line 162 of file SystemBase.h.

Referenced by NonlinearEigenSystem::postInit().

162 {}

◆ potentiallySetupFiniteDifferencing()

virtual void NonlinearSystemBase::potentiallySetupFiniteDifferencing ( )
inlinevirtualinherited

Create finite differencing contexts for assembly of the Jacobian and/or approximating the action of the Jacobian on vectors (e.g.

FD and/or MFFD respectively)

Reimplemented in NonlinearSystem.

Definition at line 764 of file NonlinearSystemBase.h.

Referenced by LStableDirk2::solve(), LStableDirk3::solve(), and LStableDirk4::solve().

764 {}

◆ prefix()

std::string SystemBase::prefix ( ) const
inherited
Returns
The prefix used for this system for solver settings for PETSc. This prefix is used to prevent collision of solver settings for different systems. Note that this prefix does not have a leading dash so it's appropriate for passage straight to PETSc APIs

Definition at line 1713 of file SystemBase.C.

Referenced by FieldSplitPreconditioner::FieldSplitPreconditioner(), MoosePreconditioner::initialSetup(), and FieldSplitPreconditioner::prefix().

1714 {
1715  return system().prefix_with_name() ? system().prefix() : "";
1716 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::string prefix() const
void prefix_with_name(bool value)

◆ preInit()

void NonlinearSystemBase::preInit ( )
overridevirtualinherited

This is called prior to the libMesh system has been init'd.

MOOSE system wrappers can use this method to add vectors and matrices to the libMesh system

Reimplemented from SolverSystem.

Definition at line 191 of file NonlinearSystemBase.C.

192 {
194 
195  if (_fe_problem.hasDampers())
196  setupDampers();
197 
198  if (_residual_copy.get())
199  _residual_copy->init(_sys.n_dofs(), false, SERIAL);
200 
201 #ifdef MOOSE_KOKKOS_ENABLED
204 #endif
205 }
void setupDampers()
Setup damping stuff (called before we actually start)
bool hasDampers()
Whether or not this system has dampers.
dof_id_type n_dofs() const
SERIAL
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.
virtual void preInit() override
This is called prior to the libMesh system has been init&#39;d.
Definition: SolverSystem.C:32
libMesh::System & _sys
bool hasKokkosObjects() const
void full_sparsity_pattern_needed()
const DofMap & get_dof_map() const

◆ prepare()

void SystemBase::prepare ( THREAD_ID  tid)
virtualinherited

Prepare the system for use.

Parameters
tidID of the thread

Definition at line 256 of file SystemBase.C.

Referenced by SubProblem::reinitElemFaceRef().

257 {
259  {
260  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
262  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
263  for (const auto & var : vars)
264  var->clearDofIndices();
265 
266  for (const auto & var : active_elemental_moose_variables)
267  if (&(var->sys()) == this)
268  var->prepare();
269  }
270  else
271  {
272  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
273  for (const auto & var : vars)
274  var->prepare();
275  }
276 }
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:461

◆ prepareFace()

void SystemBase::prepareFace ( THREAD_ID  tid,
bool  resize_data 
)
virtualinherited

Prepare the system for use on sides.

This will try to reuse the preparation done on the element.

Parameters
tidID of the thread
resize_dataPass True if this system needs to resize residual and jacobian datastructures based on preparing this face

Definition at line 279 of file SystemBase.C.

280 {
281  // We only need to do something if the element prepare was restricted
283  {
284  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
286 
287  std::vector<MooseVariableFieldBase *> newly_prepared_vars;
288 
289  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
290  for (const auto & var : vars)
291  {
292  mooseAssert(&var->sys() == this,
293  "I will cry if we store variables in our warehouse that don't belong to us");
294 
295  // If it wasn't in the active list, we need to prepare it. This has the potential to duplicate
296  // prepare if we have these conditions:
297  //
298  // 1. We have a displaced problem
299  // 2. We are using AD
300  // 3. We are not using global AD indexing
301  //
302  // But I think I would rather risk duplicate prepare than introduce an additional member set
303  // variable for tracking prepared variables. Set insertion is slow and some simulations have a
304  // ton of variables
305  if (!active_elemental_moose_variables.count(var))
306  {
307  var->prepare();
308  newly_prepared_vars.push_back(var);
309  }
310  }
311 
312  // Make sure to resize the residual and jacobian datastructures for all the new variables
313  if (resize_data)
314  for (const auto var_ptr : newly_prepared_vars)
315  {
316  _subproblem.assembly(tid, number()).prepareVariable(var_ptr);
319  }
320  }
321 }
virtual bool checkNonlocalCouplingRequirement() const =0
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
void prepareVariableNonlocal(MooseVariableFieldBase *var)
Definition: Assembly.C:2780
virtual Assembly & assembly(const THREAD_ID tid, const unsigned int sys_num)=0
void prepareVariable(MooseVariableFieldBase *var)
Used for preparing the dense residual and jacobian blocks for one particular variable.
Definition: Assembly.C:2750
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:461

◆ prepareLowerD()

void SystemBase::prepareLowerD ( THREAD_ID  tid)
virtualinherited

Prepare the system for use for lower dimensional elements.

Parameters
tidID of the thread

Definition at line 332 of file SystemBase.C.

Referenced by SubProblem::reinitLowerDElem().

333 {
334  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
335  for (const auto & var : vars)
336  var->prepareLowerD();
337 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ prepareNeighbor()

void SystemBase::prepareNeighbor ( THREAD_ID  tid)
virtualinherited

Prepare the system for use.

Parameters
tidID of the thread

Definition at line 324 of file SystemBase.C.

Referenced by SubProblem::reinitNeighborFaceRef().

325 {
326  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
327  for (const auto & var : vars)
328  var->prepareNeighbor();
329 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ preSMOResidual()

Real NonlinearSystemBase::preSMOResidual ( ) const
inherited

The pre-SMO residual.

Definition at line 776 of file NonlinearSystemBase.C.

Referenced by Residual::getValue(), and NonlinearSystemBase::referenceResidual().

777 {
779  mooseError("pre-SMO residual is requested but not evaluated.");
780 
781  return _pre_smo_residual;
782 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Real _pre_smo_residual
The pre-SMO residual, see setPreSMOResidual for a detailed explanation.
bool shouldEvaluatePreSMOResidual() const
We offer the option to check convergence against the pre-SMO residual.

◆ preSolve()

bool NonlinearSystemBase::preSolve ( )
protectedinherited

Perform some steps to get ready for the solver.

These include

  • zeroing iteration counters
  • setting initial solutions
  • possibly performing automatic scaling
  • forming a scaling vector which, at least at some point, was required when AD objects were used with non-unity scaling factors for nonlinear variables
    Returns
    Whether any exceptions were raised while running this method

Definition at line 4231 of file NonlinearSystemBase.C.

Referenced by NonlinearSystem::solve(), and NonlinearEigenSystem::solve().

4232 {
4233  // Clear the iteration counters
4234  _current_l_its.clear();
4235  _current_nl_its = 0;
4236 
4237  // Initialize the solution vector using a predictor and known values from nodal bcs
4239 
4240  // Now that the initial solution has ben set, potentially perform a residual/Jacobian evaluation
4241  // to determine variable scaling factors
4242  if (_automatic_scaling)
4243  {
4244  const bool scaling_succeeded = computeScaling();
4245  if (!scaling_succeeded)
4246  return false;
4247  }
4248 
4249  // We do not know a priori what variable a global degree of freedom corresponds to, so we need a
4250  // map from global dof to scaling factor. We just use a ghosted NumericVector for that mapping
4252 
4253  return true;
4254 }
std::vector< unsigned int > _current_l_its
bool _automatic_scaling
Whether to automatically scale the variables.
Definition: SystemBase.h:1055
bool computeScaling()
Method used to obtain scaling factors for variables.
void assembleScalingVector()
Assemble the numeric vector of scaling factors such that it can be used during assembly of the system...

◆ printAllVariableNorms()

void NonlinearSystemBase::printAllVariableNorms ( bool  state)
inlineinherited

Force the printing of all variable norms after each solve.

Todo:
{Remove after output update

Definition at line 587 of file NonlinearSystemBase.h.

◆ queryTimeIntegrator()

const TimeIntegrator * SystemBase::queryTimeIntegrator ( const unsigned int  var_num) const
inherited

Retrieve the time integrator that integrates the given variable's equation.

If no suitable time integrator is found (this could happen for instance if we're solving a non-transient problem), then a nullptr will be returned

Definition at line 1673 of file SystemBase.C.

Referenced by SystemBase::getTimeIntegrator(), HDGKernel::HDGKernel(), and MooseVariableData< OutputType >::MooseVariableData().

1674 {
1675  for (auto & ti : _time_integrators)
1676  if (ti->integratesVar(var_num))
1677  return ti.get();
1678 
1679  return nullptr;
1680 }
std::vector< std::shared_ptr< TimeIntegrator > > _time_integrators
Time integrator.
Definition: SystemBase.h:1049

◆ referenceResidual()

Real NonlinearSystemBase::referenceResidual ( ) const
inherited

The reference residual used in relative convergence check.

Definition at line 770 of file NonlinearSystemBase.C.

Referenced by DefaultNonlinearConvergence::checkConvergence(), and EigenExecutionerBase::inversePowerIteration().

771 {
773 }
Real preSMOResidual() const
The pre-SMO residual.
Real initialResidual() const
The initial residual.
const bool & usePreSMOResidual() const
Whether we are using pre-SMO residual in relative convergence checks.

◆ registerTimedSection() [1/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
Returns
The ID of the section - use when starting timing

Definition at line 53 of file PerfGraphInterface.C.

55 {
56  const auto timed_section_name = timedSectionName(section_name);
57  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
58  return moose::internal::getPerfGraphRegistry().registerSection(timed_section_name, level);
59  else
60  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
61 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ registerTimedSection() [2/2]

PerfID PerfGraphInterface::registerTimedSection ( const std::string &  section_name,
const unsigned int  level,
const std::string &  live_message,
const bool  print_dots = true 
) const
protectedinherited

Call to register a named section for timing.

Parameters
section_nameThe name of the code section to be timed
levelThe importance of the timer - lower is more important (0 will always come out)
live_messageThe message to be printed to the screen during execution
print_dotsWhether or not progress dots should be printed for this section
Returns
The ID of the section - use when starting timing

Definition at line 64 of file PerfGraphInterface.C.

68 {
69  const auto timed_section_name = timedSectionName(section_name);
70  if (!moose::internal::getPerfGraphRegistry().sectionExists(timed_section_name))
72  timedSectionName(section_name), level, live_message, print_dots);
73  else
74  return moose::internal::getPerfGraphRegistry().sectionID(timed_section_name);
75 }
PerfID registerSection(const std::string &section_name, const unsigned int level)
Call to register a named section for timing.
std::string timedSectionName(const std::string &section_name) const
PerfID sectionID(const std::string &section_name) const
Given a name return the PerfID The name of the section.
PerfGraphRegistry & getPerfGraphRegistry()
Get the global PerfGraphRegistry singleton.

◆ reinit()

virtual void SystemBase::reinit ( )
inlinevirtualinherited

Reinitialize the system when the degrees of freedom in this system have changed.

This is called after the libMesh system has been reinit'd

Reimplemented in NonlinearEigenSystem.

Definition at line 168 of file SystemBase.h.

Referenced by NonlinearEigenSystem::reinit().

168 {}

◆ reinitElem()

void SystemBase::reinitElem ( const Elem elem,
THREAD_ID  tid 
)
virtualinherited

Reinit an element assembly info.

Parameters
elemWhich element we are reinitializing for
tidID of the thread

Reimplemented in AuxiliarySystem.

Definition at line 340 of file SystemBase.C.

341 {
343  {
344  const std::set<MooseVariableFieldBase *> & active_elemental_moose_variables =
346  for (const auto & var : active_elemental_moose_variables)
347  if (&(var->sys()) == this)
348  var->computeElemValues();
349  }
350  else
351  {
352  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
353  for (const auto & var : vars)
354  var->computeElemValues();
355  }
356 
357  if (system().has_static_condensation())
358  for (auto & [tag, matrix] : _active_tagged_matrices)
359  {
360  libmesh_ignore(tag);
361  cast_ptr<StaticCondensation *>(matrix)->set_current_elem(*elem);
362  }
363 }
std::unordered_map< TagID, libMesh::SparseMatrix< Number > * > _active_tagged_matrices
Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map...
Definition: SystemBase.h:1025
char ** vars
virtual const std::set< MooseVariableFieldBase * > & getActiveElementalMooseVariables(const THREAD_ID tid) const
Get the MOOSE variables to be reinited on each element.
Definition: SubProblem.C:455
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
void libmesh_ignore(const Args &...)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual bool hasActiveElementalMooseVariables(const THREAD_ID tid) const
Whether or not a list of active elemental moose variables has been set.
Definition: SubProblem.C:461

◆ reinitElemFace()

void SystemBase::reinitElemFace ( const Elem elem,
unsigned int  side,
THREAD_ID  tid 
)
virtualinherited

Reinit assembly info for a side of an element.

Parameters
elemThe element
sideSide of of the element
tidThread ID

Reimplemented in AuxiliarySystem.

Definition at line 366 of file SystemBase.C.

Referenced by SubProblem::reinitElemFaceRef().

367 {
368  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
369  for (const auto & var : vars)
370  var->computeElemValuesFace();
371 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitIncrementAtNodeForDampers()

void NonlinearSystemBase::reinitIncrementAtNodeForDampers ( THREAD_ID  tid,
const std::set< MooseVariable *> &  damped_vars 
)
inherited

Compute the incremental change in variables at nodes for dampers.

Called before we use damping

Parameters
tidThread ID
damped_varsSet of variables for which increment is to be computed

Definition at line 3678 of file NonlinearSystemBase.C.

Referenced by ComputeNodalDampingThread::onNode().

3680 {
3681  for (const auto & var : damped_vars)
3682  var->computeIncrementAtNode(*_increment_vec);
3683 }
NumericVector< Number > * _increment_vec
increment vector

◆ reinitIncrementAtQpsForDampers()

void NonlinearSystemBase::reinitIncrementAtQpsForDampers ( THREAD_ID  tid,
const std::set< MooseVariable *> &  damped_vars 
)
inherited

Compute the incremental change in variables at QPs for dampers.

Called before we use damping

Parameters
tidThread ID
damped_varsSet of variables for which increment is to be computed

Definition at line 3670 of file NonlinearSystemBase.C.

Referenced by ComputeElemDampingThread::onElement().

3672 {
3673  for (const auto & var : damped_vars)
3674  var->computeIncrementAtQps(*_increment_vec);
3675 }
NumericVector< Number > * _increment_vec
increment vector

◆ reinitLowerD()

void SystemBase::reinitLowerD ( THREAD_ID  tid)
virtualinherited

Compute the values of the variables on the lower dimensional element.

Definition at line 390 of file SystemBase.C.

Referenced by SubProblem::reinitLowerDElem().

391 {
392  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
393  for (const auto & var : vars)
394  var->computeLowerDValues();
395 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitMortarFunctors()

void NonlinearSystemBase::reinitMortarFunctors ( )
inherited

Update the mortar functors if the mesh has changed.

Definition at line 208 of file NonlinearSystemBase.C.

209 {
210  // reinit is called on meshChanged() in FEProblemBase. We could implement meshChanged() instead.
211  // Subdomains might have changed
212  for (auto & functor : _displaced_mortar_functors)
213  functor.second.setupMortarMaterials();
214  for (auto & functor : _undisplaced_mortar_functors)
215  functor.second.setupMortarMaterials();
216 }
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _undisplaced_mortar_functors
Functors for computing undisplaced mortar constraints.
std::unordered_map< std::pair< BoundaryID, BoundaryID >, ComputeMortarFunctor > _displaced_mortar_functors
Functors for computing displaced mortar constraints.

◆ reinitNeighbor()

void SystemBase::reinitNeighbor ( const Elem elem,
THREAD_ID  tid 
)
virtualinherited

Compute the values of the variables at all the current points.

Definition at line 382 of file SystemBase.C.

383 {
384  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
385  for (const auto & var : vars)
386  var->computeNeighborValues();
387 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNeighborFace()

void SystemBase::reinitNeighborFace ( const Elem elem,
unsigned int  side,
THREAD_ID  tid 
)
virtualinherited

Compute the values of the variables at all the current points.

Definition at line 374 of file SystemBase.C.

Referenced by SubProblem::reinitNeighborFaceRef().

375 {
376  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
377  for (const auto & var : vars)
378  var->computeNeighborValuesFace();
379 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNode()

void SystemBase::reinitNode ( const Node node,
THREAD_ID  tid 
)
virtualinherited

Reinit nodal assembly info.

Parameters
nodeNode to reinit for
tidThread ID

Definition at line 398 of file SystemBase.C.

399 {
400  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
401  for (const auto & var : vars)
402  {
403  var->reinitNode();
404  if (var->isNodalDefined())
405  var->computeNodalValues();
406  }
407 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [1/3]

void SystemBase::reinitNodeFace ( const Node node,
BoundaryID  bnd_id,
THREAD_ID  tid 
)
virtualinherited

Reinit nodal assembly info on a face.

Parameters
nodeNode to reinit
bnd_idBoundary ID
tidThread ID

Definition at line 410 of file SystemBase.C.

411 {
412  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
413  for (const auto & var : vars)
414  {
415  var->reinitNode();
416  if (var->isNodalDefined())
417  var->computeNodalValues();
418  }
419 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [2/3]

void SystemBase::reinitNodeFace
inherited

Reinit nodal assembly info on a face.

Parameters
nodeNode to reinit
bnd_idBoundary ID
tidThread ID

Definition at line 410 of file SystemBase.C.

411 {
412  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
413  for (const auto & var : vars)
414  {
415  var->reinitNode();
416  if (var->isNodalDefined())
417  var->computeNodalValues();
418  }
419 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodeFace() [3/3]

void NonlinearSystemBase::reinitNodeFace ( const Node secondary_node,
const BoundaryID  secondary_boundary,
const PenetrationInfo info,
const bool  displaced 
)
protectedinherited

Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints.

Definition at line 1162 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), and NonlinearSystemBase::setConstraintSecondaryValues().

1166 {
1167  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1168  : static_cast<SubProblem &>(_fe_problem);
1169 
1170  const Elem * primary_elem = info._elem;
1171  unsigned int primary_side = info._side_num;
1172  std::vector<Point> points;
1173  points.push_back(info._closest_point);
1174 
1175  // *These next steps MUST be done in this order!*
1176  // ADL: This is a Chesterton's fence situation. I don't know which calls exactly the above comment
1177  // is referring to. If I had to guess I would guess just the reinitNodeFace and prepareAssembly
1178  // calls since the former will size the variable's dof indices and then the latter will resize the
1179  // residual/Jacobian based off the variable's cached dof indices size
1180 
1181  // This reinits the variables that exist on the secondary node
1182  _fe_problem.reinitNodeFace(&secondary_node, secondary_boundary, 0);
1183 
1184  // This will set aside residual and jacobian space for the variables that have dofs on
1185  // the secondary node
1187 
1188  _fe_problem.setNeighborSubdomainID(primary_elem, 0);
1189 
1190  //
1191  // Reinit material on undisplaced mesh
1192  //
1193 
1194  const Elem * const undisplaced_primary_elem =
1195  displaced ? _mesh.elemPtr(primary_elem->id()) : primary_elem;
1196  const Point undisplaced_primary_physical_point =
1197  [&points, displaced, primary_elem, undisplaced_primary_elem]()
1198  {
1199  if (displaced)
1200  {
1201  const Point reference_point =
1202  FEMap::inverse_map(primary_elem->dim(), primary_elem, points[0]);
1203  return FEMap::map(primary_elem->dim(), undisplaced_primary_elem, reference_point);
1204  }
1205  else
1206  // If our penetration locator is on the reference mesh, then our undisplaced
1207  // physical point is simply the point coming from the penetration locator
1208  return points[0];
1209  }();
1210 
1212  undisplaced_primary_elem, primary_side, {undisplaced_primary_physical_point}, 0);
1213  // Stateful material properties are only initialized for neighbor material data for internal faces
1214  // for discontinuous Galerkin methods or for conforming interfaces for interface kernels. We don't
1215  // have either of those use cases here where we likely have disconnected meshes
1216  _fe_problem.reinitMaterialsNeighbor(primary_elem->subdomain_id(), 0, /*swap_stateful=*/false);
1217 
1218  // Reinit points for constraint enforcement
1219  if (displaced)
1220  subproblem.reinitNeighborPhys(primary_elem, primary_side, points, 0);
1221 }
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid)=0
virtual Elem * elemPtr(const dof_id_type i)
Definition: MooseMesh.C:3193
MPI_Info info
virtual void reinitNeighborPhys(const Elem *neighbor, unsigned int neighbor_side, const std::vector< Point > &physical_points, const THREAD_ID tid) override
dof_id_type id() const
void reinitMaterialsNeighbor(SubdomainID blk_id, const THREAD_ID tid, bool swap_stateful=true, const std::deque< MaterialBase *> *reinit_mats=nullptr)
reinit materials on the neighboring element face
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual void prepareAssembly(const THREAD_ID tid) override
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
virtual void setNeighborSubdomainID(const Elem *elem, unsigned int side, const THREAD_ID tid) override

◆ reinitNodes()

void SystemBase::reinitNodes ( const std::vector< dof_id_type > &  nodes,
THREAD_ID  tid 
)
virtualinherited

Reinit variables at a set of nodes.

Parameters
nodesList of node ids to reinit
tidThread ID

Definition at line 422 of file SystemBase.C.

423 {
424  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
425  for (const auto & var : vars)
426  {
427  var->reinitNodes(nodes);
428  var->computeNodalValues();
429  }
430 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitNodesNeighbor()

void SystemBase::reinitNodesNeighbor ( const std::vector< dof_id_type > &  nodes,
THREAD_ID  tid 
)
virtualinherited

Reinit variables at a set of neighbor nodes.

Parameters
nodesList of node ids to reinit
tidThread ID

Definition at line 433 of file SystemBase.C.

434 {
435  const std::vector<MooseVariableFieldBase *> & vars = _vars[tid].fieldVariables();
436  for (const auto & var : vars)
437  {
438  var->reinitNodesNeighbor(nodes);
439  var->computeNodalNeighborValues();
440  }
441 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ reinitScalars()

void SystemBase::reinitScalars ( THREAD_ID  tid,
bool  reinit_for_derivative_reordering = false 
)
virtualinherited

Reinit scalar varaibles.

Parameters
tidThread ID
reinit_for_derivative_reorderingA flag indicating whether we are reinitializing for the purpose of re-ordering derivative information for ADNodalBCs

Definition at line 444 of file SystemBase.C.

445 {
446  const std::vector<MooseVariableScalar *> & vars = _vars[tid].scalars();
447  for (const auto & var : vars)
448  var->reinit(reinit_for_derivative_reordering);
449 }
char ** vars
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ removeMatrix()

void SystemBase::removeMatrix ( TagID  tag)
inherited

Removes a matrix with a given tag.

Parameters
tag_nameThe name of the tag

Definition at line 590 of file SystemBase.C.

591 {
592  if (!_subproblem.matrixTagExists(tag_id))
593  mooseError("Cannot remove the matrix with TagID ",
594  tag_id,
595  "\nin system '",
596  name(),
597  "', because that tag does not exist in the problem");
598 
599  if (hasMatrix(tag_id))
600  {
601  const auto matrix_name = _subproblem.matrixTagName(tag_id);
602  system().remove_matrix(matrix_name);
603  _tagged_matrices[tag_id] = nullptr;
604  }
605 }
std::vector< libMesh::SparseMatrix< Number > * > _tagged_matrices
Tagged matrices (pointer)
Definition: SystemBase.h:1023
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual bool hasMatrix(TagID tag) const
Check if the tagged matrix exists in the system.
Definition: SystemBase.h:360
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_matrix(std::string_view mat_name)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool matrixTagExists(const TagName &tag_name) const
Check to see if a particular Tag exists.
Definition: SubProblem.C:329
virtual TagName matrixTagName(TagID tag)
Retrieve the name associated with a TagID.
Definition: SubProblem.C:358

◆ removeVector() [1/2]

void SystemBase::removeVector ( const std::string &  name)
inherited

Remove a vector from the system with the given name.

Definition at line 1334 of file SystemBase.C.

Referenced by SystemBase::restoreOldSolutions().

1335 {
1337 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_vector(std::string_view vec_name)

◆ removeVector() [2/2]

void SystemBase::removeVector ( TagID  tag_id)
inherited

Remove a solution length vector from the system with the specified TagID.

Parameters
tag_idTag ID

Definition at line 700 of file SystemBase.C.

701 {
702  if (!_subproblem.vectorTagExists(tag_id))
703  mooseError("Cannot remove the vector with TagID ",
704  tag_id,
705  "\nin system '",
706  name(),
707  "', because that tag does not exist in the problem");
708 
709  if (hasVector(tag_id))
710  {
711  auto vector_name = _subproblem.vectorTagName(tag_id);
712  system().remove_vector(vector_name);
713  _tagged_vectors[tag_id] = nullptr;
714  }
715 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
virtual const std::string & name() const
Definition: SystemBase.C:1340
void remove_vector(std::string_view vec_name)
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
std::vector< NumericVector< Number > * > _tagged_vectors
Tagged vectors (pointer)
Definition: SystemBase.h:1021

◆ residualAndJacobianTogether()

void DumpObjectsNonlinearSystem::residualAndJacobianTogether ( )
inlineoverridevirtual

Call this method if you want the residual and Jacobian to be computed simultaneously.

Implements NonlinearSystemBase.

Definition at line 41 of file DumpObjectsNonlinearSystem.h.

41 {}

◆ residualCopy()

NumericVector< Number > & NonlinearSystemBase::residualCopy ( )
overridevirtualinherited

Reimplemented from SystemBase.

Definition at line 3525 of file NonlinearSystemBase.C.

3526 {
3527  if (!_residual_copy.get())
3529 
3530  return *_residual_copy;
3531 }
const Parallel::Communicator & _communicator
std::unique_ptr< NumericVector< Number > > _residual_copy
Copy of the residual vector, or nullptr if a copy is not needed.

◆ residualGhosted()

NumericVector< Number > & NonlinearSystemBase::residualGhosted ( )
overridevirtualinherited

Reimplemented from SystemBase.

Definition at line 3534 of file NonlinearSystemBase.C.

3535 {
3536  _need_residual_ghosted = true;
3537  if (!_residual_ghosted)
3538  {
3539  // The first time we realize we need a ghosted residual vector,
3540  // we add it.
3541  _residual_ghosted = &addVector("residual_ghosted", false, GHOSTED);
3542 
3543  // If we've already realized we need time and/or non-time
3544  // residual vectors, but we haven't yet realized they need to be
3545  // ghosted, fix that now.
3546  //
3547  // If an application changes its mind, the libMesh API lets us
3548  // change the vector.
3549  if (_Re_time)
3550  {
3551  const auto vector_name = _subproblem.vectorTagName(_Re_time_tag);
3552  _Re_time = &system().add_vector(vector_name, false, GHOSTED);
3553  }
3554  if (_Re_non_time)
3555  {
3556  const auto vector_name = _subproblem.vectorTagName(_Re_non_time_tag);
3557  _Re_non_time = &system().add_vector(vector_name, false, GHOSTED);
3558  }
3559  }
3560  return *_residual_ghosted;
3561 }
NumericVector< Number > * _Re_time
residual vector for time contributions
TagID _Re_time_tag
Tag for time contribution residual.
NumericVector< Number > * _Re_non_time
residual vector for non-time contributions
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
bool _need_residual_ghosted
Whether or not a ghosted copy of the residual needs to be made.
TagID _Re_non_time_tag
Tag for non-time contribution residual.
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
NumericVector< Number > * _residual_ghosted
ghosted form of the residual
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ residualSetup()

void NonlinearSystemBase::residualSetup ( )
overridevirtualinherited

Reimplemented from SystemBase.

Definition at line 1731 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::computeResidualAndJacobianInternal(), and NonlinearSystemBase::computeResidualInternal().

1732 {
1733  TIME_SECTION("residualSetup", 3);
1734 
1736 
1737  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1738  {
1739  _kernels.residualSetup(tid);
1742  if (_doing_dg)
1748  }
1755 
1756 #ifdef MOOSE_KOKKOS_ENABLED
1761 #endif
1762 
1763  // Avoid recursion
1764  if (this == &_fe_problem.currentNonlinearSystem())
1767 }
virtual void residualSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
void residualSetup() override
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
SolutionInvalidity & solutionInvalidity()
Get the SolutionInvalidity for this app.
Definition: MooseApp.h:179
NonlinearSystemBase & currentNonlinearSystem()
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
void resetSolutionInvalidCurrentIteration()
Reset the number of solution invalid occurrences back to zero.
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void residualSetup()
Definition: SystemBase.C:1599
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:237
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ residualVector()

NumericVector< Number > & NonlinearSystemBase::residualVector ( TagID  tag)
inherited

Return a residual vector that is associated with the residual tag.

Definition at line 1089 of file NonlinearSystemBase.C.

1090 {
1091  mooseDeprecated("Please use getVector()");
1092  switch (tag)
1093  {
1094  case 0:
1095  return getResidualNonTimeVector();
1096 
1097  case 1:
1098  return getResidualTimeVector();
1099 
1100  default:
1101  mooseError("The required residual vector is not available");
1102  }
1103 }
NumericVector< Number > & getResidualTimeVector()
Return a numeric vector that is associated with the time tag.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
void mooseDeprecated(Args &&... args)
Emit a deprecated code/feature message with the given stringified, concatenated args.
Definition: MooseError.h:374
NumericVector< Number > & getResidualNonTimeVector()
Return a numeric vector that is associated with the nontime tag.

◆ residualVectorTag()

TagID NonlinearSystemBase::residualVectorTag ( ) const
inlineoverridevirtualinherited

◆ restoreOldSolutions()

void SystemBase::restoreOldSolutions ( )
virtualinherited

Restore the old and older solutions when the saved solutions present.

Definition at line 542 of file SystemBase.C.

543 {
544  const auto states =
545  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
546  if (states > 1)
547  for (unsigned int i = 1; i <= states - 1; ++i)
548  if (_saved_solution_states[i])
549  {
551  removeVector("save_solution_state_" + std::to_string(i));
552  _saved_solution_states[i] = nullptr;
553  }
554 
556  {
558  removeVector("save_solution_dot_old");
559  _saved_dot_old = nullptr;
560  }
562  {
564  removeVector("save_solution_dotdot_old");
565  _saved_dotdot_old = nullptr;
566  }
567 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
NumericVector< Real > * _saved_dot_old
Definition: SystemBase.h:1034
void removeVector(const std::string &name)
Remove a vector from the system with the given name.
Definition: SystemBase.C:1334
NumericVector< Real > * _saved_dotdot_old
Definition: SystemBase.h:1035
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
std::vector< NumericVector< Number > * > _saved_solution_states
The saved solution states (0 = current, 1 = old, 2 = older, etc)
Definition: SystemBase.h:1086

◆ restoreSolutions()

void SolverSystem::restoreSolutions ( )
finaloverridevirtualinherited

Restore current solutions (call after your solve failed)

Reimplemented from SystemBase.

Definition at line 43 of file SolverSystem.C.

44 {
45  // call parent
47  // and update _current_solution
49 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual void restoreSolutions()
Restore current solutions (call after your solve failed)
Definition: SystemBase.C:1317

◆ RHS()

virtual NumericVector<Number>& DumpObjectsNonlinearSystem::RHS ( )
inlineoverridevirtual

Implements NonlinearSystemBase.

Definition at line 33 of file DumpObjectsNonlinearSystem.h.

33 { return *_dummy; }
NumericVector< Number > * _dummy

◆ saveOldSolutions()

void SystemBase::saveOldSolutions ( )
virtualinherited

Save the old and older solutions.

Definition at line 510 of file SystemBase.C.

511 {
512  const auto states =
513  _solution_states[static_cast<unsigned short>(Moose::SolutionIterationType::Time)].size();
514  if (states > 1)
515  {
516  _saved_solution_states.resize(states);
517  for (unsigned int i = 1; i <= states - 1; ++i)
518  if (!_saved_solution_states[i])
520  &addVector("save_solution_state_" + std::to_string(i), false, PARALLEL);
521 
522  for (unsigned int i = 1; i <= states - 1; ++i)
524  }
525 
527  _saved_dot_old = &addVector("save_solution_dot_old", false, PARALLEL);
529  _saved_dotdot_old = &addVector("save_solution_dotdot_old", false, PARALLEL);
530 
531  if (solutionUDotOld())
533 
534  if (solutionUDotDotOld())
536 }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431
virtual NumericVector< Number > * solutionUDotDotOld()
Definition: SystemBase.h:264
NumericVector< Number > & addVector(const std::string &vector_name, const bool project, const libMesh::ParallelType type)
Adds a solution length vector to the system.
virtual NumericVector< Number > * solutionUDotOld()
Definition: SystemBase.h:263
NumericVector< Real > * _saved_dot_old
Definition: SystemBase.h:1034
NumericVector< Real > * _saved_dotdot_old
Definition: SystemBase.h:1035
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
std::vector< NumericVector< Number > * > _saved_solution_states
The saved solution states (0 = current, 1 = old, 2 = older, etc)
Definition: SystemBase.h:1086

◆ scalingGroupVariables()

void NonlinearSystemBase::scalingGroupVariables ( const std::vector< std::vector< std::string >> &  scaling_group_variables)
inlineinherited

Definition at line 730 of file NonlinearSystemBase.h.

731  {
732  _scaling_group_variables = scaling_group_variables;
733  }
std::vector< std::vector< std::string > > _scaling_group_variables
A container of variable groupings that can be used in scaling calculations.

◆ serializedSolution()

NumericVector< Number > & SystemBase::serializedSolution ( )
virtualinherited

Returns a reference to a serialized version of the solution vector for this subproblem.

Reimplemented in DisplacedSystem.

Definition at line 1646 of file SystemBase.C.

Referenced by PNGOutput::calculateRescalingValues(), PNGOutput::makeMeshFunc(), and DisplacedSystem::serializedSolution().

1647 {
1648  if (!_serialized_solution.get())
1649  {
1651  _serialized_solution->init(system().n_dofs(), false, SERIAL);
1652  }
1653 
1654  return *_serialized_solution;
1655 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
const Parallel::Communicator & _communicator
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068

◆ serializeSolution()

void SolverSystem::serializeSolution ( )
inherited

Definition at line 52 of file SolverSystem.C.

Referenced by SolverSystem::setSolution().

53 {
54  if (_serialized_solution.get())
55  {
56  if (!_serialized_solution->initialized() || _serialized_solution->size() != system().n_dofs())
57  {
58  _serialized_solution->clear();
59  _serialized_solution->init(system().n_dofs(), false, SERIAL);
60  }
61 
63  }
64 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068
dof_id_type n_dofs() const
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
virtual void localize(std::vector< T > &v_local) const=0

◆ setActiveScalarVariableCoupleableVectorTags()

void SystemBase::setActiveScalarVariableCoupleableVectorTags ( const std::set< TagID > &  vtags,
THREAD_ID  tid 
)
inherited

Set the active vector tags for the scalar variables.

Definition at line 1626 of file SystemBase.C.

Referenced by SubProblem::setActiveScalarVariableCoupleableVectorTags().

1628 {
1629  _vars[tid].setActiveScalarVariableCoupleableVectorTags(vtags);
1630 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ setActiveVariableCoupleableVectorTags()

void SystemBase::setActiveVariableCoupleableVectorTags ( const std::set< TagID > &  vtags,
THREAD_ID  tid 
)
inherited

Set the active vector tags for the variables.

Definition at line 1620 of file SystemBase.C.

Referenced by SubProblem::setActiveFEVariableCoupleableVectorTags().

1621 {
1622  _vars[tid].setActiveVariableCoupleableVectorTags(vtags);
1623 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ setConstraintSecondaryValues()

void NonlinearSystemBase::setConstraintSecondaryValues ( NumericVector< Number > &  solution,
bool  displaced 
)
inherited

Sets the value of constrained variables in the solution vector.

Definition at line 1224 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::setInitialSolution().

1225 {
1226 
1227  if (displaced)
1228  mooseAssert(_fe_problem.getDisplacedProblem(),
1229  "If we're calling this method with displaced = true, then we better well have a "
1230  "displaced problem");
1231  auto & subproblem = displaced ? static_cast<SubProblem &>(*_fe_problem.getDisplacedProblem())
1232  : static_cast<SubProblem &>(_fe_problem);
1233  const auto & penetration_locators = subproblem.geomSearchData()._penetration_locators;
1234 
1235  bool constraints_applied = false;
1236 
1237  for (const auto & it : penetration_locators)
1238  {
1239  PenetrationLocator & pen_loc = *(it.second);
1240 
1241  std::vector<dof_id_type> & secondary_nodes = pen_loc._nearest_node._secondary_nodes;
1242 
1243  BoundaryID secondary_boundary = pen_loc._secondary_boundary;
1244  BoundaryID primary_boundary = pen_loc._primary_boundary;
1245 
1246  if (_constraints.hasActiveNodeFaceConstraints(secondary_boundary, displaced))
1247  {
1248  const auto & constraints =
1249  _constraints.getActiveNodeFaceConstraints(secondary_boundary, displaced);
1250  std::unordered_set<unsigned int> needed_mat_props;
1251  for (const auto & constraint : constraints)
1252  {
1253  const auto & mp_deps = constraint->getMatPropDependencies();
1254  needed_mat_props.insert(mp_deps.begin(), mp_deps.end());
1255  }
1256  _fe_problem.setActiveMaterialProperties(needed_mat_props, /*tid=*/0);
1257 
1258  for (unsigned int i = 0; i < secondary_nodes.size(); i++)
1259  {
1260  dof_id_type secondary_node_num = secondary_nodes[i];
1261  Node & secondary_node = _mesh.nodeRef(secondary_node_num);
1262 
1263  if (secondary_node.processor_id() == processor_id())
1264  {
1265  if (pen_loc._penetration_info[secondary_node_num])
1266  {
1267  PenetrationInfo & info = *pen_loc._penetration_info[secondary_node_num];
1268 
1269  reinitNodeFace(secondary_node, secondary_boundary, info, displaced);
1270 
1271  for (const auto & nfc : constraints)
1272  {
1273  if (nfc->isExplicitConstraint())
1274  continue;
1275  // Return if this constraint does not correspond to the primary-secondary pair
1276  // prepared by the outer loops.
1277  // This continue statement is required when, e.g. one secondary surface constrains
1278  // more than one primary surface.
1279  if (nfc->secondaryBoundary() != secondary_boundary ||
1280  nfc->primaryBoundary() != primary_boundary)
1281  continue;
1282 
1283  if (nfc->shouldApply())
1284  {
1285  constraints_applied = true;
1286  nfc->computeSecondaryValue(solution);
1287  }
1288 
1289  if (nfc->hasWritableCoupledVariables())
1290  {
1291  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
1292  for (auto * var : nfc->getWritableCoupledVariables())
1293  {
1294  if (var->isNodalDefined())
1295  var->insert(_fe_problem.getAuxiliarySystem().solution());
1296  }
1297  }
1298  }
1299  }
1300  }
1301  }
1302  }
1303  }
1304 
1305  // go over NodeELemConstraints
1306  std::set<dof_id_type> unique_secondary_node_ids;
1307 
1308  for (const auto & secondary_id : _mesh.meshSubdomains())
1309  {
1310  for (const auto & primary_id : _mesh.meshSubdomains())
1311  {
1312  if (_constraints.hasActiveNodeElemConstraints(secondary_id, primary_id, displaced))
1313  {
1314  const auto & constraints =
1315  _constraints.getActiveNodeElemConstraints(secondary_id, primary_id, displaced);
1316 
1317  // get unique set of ids of all nodes on current block
1318  unique_secondary_node_ids.clear();
1319  const MeshBase & meshhelper = _mesh.getMesh();
1320  for (const auto & elem : as_range(meshhelper.active_subdomain_elements_begin(secondary_id),
1321  meshhelper.active_subdomain_elements_end(secondary_id)))
1322  {
1323  for (auto & n : elem->node_ref_range())
1324  unique_secondary_node_ids.insert(n.id());
1325  }
1326 
1327  for (auto secondary_node_id : unique_secondary_node_ids)
1328  {
1329  Node & secondary_node = _mesh.nodeRef(secondary_node_id);
1330 
1331  // check if secondary node is on current processor
1332  if (secondary_node.processor_id() == processor_id())
1333  {
1334  // This reinits the variables that exist on the secondary node
1335  _fe_problem.reinitNodeFace(&secondary_node, secondary_id, 0);
1336 
1337  // This will set aside residual and jacobian space for the variables that have dofs
1338  // on the secondary node
1340 
1341  for (const auto & nec : constraints)
1342  {
1343  if (nec->shouldApply())
1344  {
1345  constraints_applied = true;
1346  nec->computeSecondaryValue(solution);
1347  }
1348  }
1349  }
1350  }
1351  }
1352  }
1353  }
1354 
1355  // See if constraints were applied anywhere
1356  _communicator.max(constraints_applied);
1357 
1358  if (constraints_applied)
1359  {
1360  solution.close();
1361  update();
1362  }
1363 }
void setActiveMaterialProperties(const std::unordered_set< unsigned int > &mat_prop_ids, const THREAD_ID tid)
Record and set the material properties required by the current computing thread.
std::map< std::pair< BoundaryID, BoundaryID >, PenetrationLocator * > _penetration_locators
BoundaryID _secondary_boundary
MPI_Info info
NumericVector< Number > & solution()
Definition: SystemBase.h:196
Data structure used to hold penetration information.
const std::vector< std::shared_ptr< NodeFaceConstraint > > & getActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
const Parallel::Communicator & _communicator
std::map< dof_id_type, PenetrationInfo * > & _penetration_info
Data structure of nodes and their associated penetration information.
bool hasActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
const std::vector< std::shared_ptr< NodeElemConstraintBase > > & getActiveNodeElemConstraints(SubdomainID secondary_id, SubdomainID primary_id, bool displaced) const
virtual const Node & nodeRef(const dof_id_type i) const
Definition: MooseMesh.C:861
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool hasActiveNodeFaceConstraints(BoundaryID boundary_id, bool displaced) const
std::vector< dof_id_type > _secondary_nodes
MeshBase & getMesh()
Accessor for the underlying libMesh Mesh object.
Definition: MooseMesh.C:3528
boundary_id_type BoundaryID
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
SubProblem & subproblem()
Definition: SystemBase.h:101
virtual GeometricSearchData & geomSearchData()=0
AuxiliarySystem & getAuxiliarySystem()
virtual void prepareAssembly(const THREAD_ID tid) override
virtual void close()=0
ConstraintWarehouse _constraints
Constraints storage object.
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
Generic class for solving transient nonlinear problems.
Definition: SubProblem.h:78
MooseMesh & _mesh
Definition: SystemBase.h:991
void max(const T &r, T &o, Request &req) const
void reinitNodeFace(const Node &secondary_node, const BoundaryID secondary_boundary, const PenetrationInfo &info, const bool displaced)
Reinitialize quantities such as variables, residuals, Jacobians, materials for node-face constraints...
processor_id_type processor_id() const
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
BoundaryID _primary_boundary
uint8_t dof_id_type
NearestNodeLocator & _nearest_node
const std::set< SubdomainID > & meshSubdomains() const
Returns a read-only reference to the set of subdomains currently present in the Mesh.
Definition: MooseMesh.C:3251

◆ setInitialResidual()

void NonlinearSystemBase::setInitialResidual ( Real  r)
inherited

Record the initial residual (for later relative convergence check)

Definition at line 791 of file NonlinearSystemBase.C.

Referenced by DefaultNonlinearConvergence::checkConvergence().

792 {
793  _initial_residual = r;
794 }
Real _initial_residual
The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanatio...

◆ setInitialSolution()

void NonlinearSystemBase::setInitialSolution ( )
inherited

Definition at line 957 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::preSolve().

958 {
960 
961  NumericVector<Number> & initial_solution(solution());
962  if (_predictor.get())
963  {
964  if (_predictor->shouldApply())
965  {
966  TIME_SECTION("applyPredictor", 2, "Applying Predictor");
967 
968  _predictor->apply(initial_solution);
969  _fe_problem.predictorCleanup(initial_solution);
970  }
971  else
972  _console << " Skipping predictor this step" << std::endl;
973  }
974 
975  // do nodal BC
976  {
977  TIME_SECTION("initialBCs", 2, "Applying BCs To Initial Condition");
978 
980  for (const auto & bnode : bnd_nodes)
981  {
982  BoundaryID boundary_id = bnode->_bnd_id;
983  Node * node = bnode->_node;
984 
985  if (node->processor_id() == processor_id())
986  {
987  bool has_preset_nodal_bcs = _preset_nodal_bcs.hasActiveBoundaryObjects(boundary_id);
988  bool has_ad_preset_nodal_bcs = _ad_preset_nodal_bcs.hasActiveBoundaryObjects(boundary_id);
989 
990  // reinit variables in nodes
991  if (has_preset_nodal_bcs || has_ad_preset_nodal_bcs)
992  _fe_problem.reinitNodeFace(node, boundary_id, 0);
993 
994  if (has_preset_nodal_bcs)
995  {
996  const auto & preset_bcs = _preset_nodal_bcs.getActiveBoundaryObjects(boundary_id);
997  for (const auto & preset_bc : preset_bcs)
998  preset_bc->computeValue(initial_solution);
999  }
1000  if (has_ad_preset_nodal_bcs)
1001  {
1002  const auto & preset_bcs_res = _ad_preset_nodal_bcs.getActiveBoundaryObjects(boundary_id);
1003  for (const auto & preset_bc : preset_bcs_res)
1004  preset_bc->computeValue(initial_solution);
1005  }
1006  }
1007  }
1008  }
1009 
1010 #ifdef MOOSE_KOKKOS_ENABLED
1013 #endif
1014 
1015  _sys.solution->close();
1016  update();
1017 
1018  // Set constraint secondary values
1019  setConstraintSecondaryValues(initial_solution, false);
1020 
1022  setConstraintSecondaryValues(initial_solution, true);
1023 }
virtual void predictorCleanup(NumericVector< libMesh::Number > &ghosted_solution)
Perform cleanup tasks after application of predictor to solution vector.
NumericVector< Number > & solution()
Definition: SystemBase.h:196
bool hasObjects(THREAD_ID tid=0) const
Convenience functions for determining if objects exist.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
void update()
Update the system (doing libMesh magic)
Definition: SystemBase.C:1243
bool hasActiveBoundaryObjects(THREAD_ID tid=0) const
const ConstBndNodeRange & getCurrentAlgebraicBndNodeRange()
virtual void deactivateAllMatrixTags()
Make matrices inactive.
Definition: SystemBase.C:1119
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
boundary_id_type BoundaryID
std::unique_ptr< NumericVector< Number > > solution
const std::map< BoundaryID, std::vector< std::shared_ptr< T > > > & getActiveBoundaryObjects(THREAD_ID tid=0) const
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
virtual std::shared_ptr< const DisplacedProblem > getDisplacedProblem() const
libMesh::System & _sys
const ConsoleStream _console
An instance of helper class to write streams to the Console objects.
processor_id_type processor_id() const
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.
void setKokkosInitialSolution()
virtual void reinitNodeFace(const Node *node, BoundaryID bnd_id, const THREAD_ID tid) override
processor_id_type processor_id() const
void setConstraintSecondaryValues(NumericVector< Number > &solution, bool displaced)
Sets the value of constrained variables in the solution vector.
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ setKokkosInitialSolution()

void NonlinearSystemBase::setKokkosInitialSolution ( )
inherited

◆ setMooseKSPNormType()

void SolverSystem::setMooseKSPNormType ( MooseEnum  kspnorm)
inherited

Set the norm in which the linear convergence will be measured.

Parameters
kspnormThe required norm

Definition at line 94 of file SolverSystem.C.

Referenced by MoosePreconditioner::MoosePreconditioner().

95 {
96  if (kspnorm == "none")
98  else if (kspnorm == "preconditioned")
100  else if (kspnorm == "unpreconditioned")
102  else if (kspnorm == "natural")
104  else if (kspnorm == "default")
106  else
107  mooseError("Unknown ksp norm type specified.");
108 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Use whatever we have in PETSc.
Definition: MooseTypes.h:885
Moose::MooseKSPNormType _ksp_norm
KSP norm type.
Definition: SolverSystem.h:110

◆ setPCSide()

void SolverSystem::setPCSide ( MooseEnum  pcs)
inherited

Set the side on which the preconditioner is applied to.

Parameters
pcsThe required preconditioning side

Definition at line 79 of file SolverSystem.C.

Referenced by MoosePreconditioner::MoosePreconditioner().

80 {
81  if (pcs == "left")
83  else if (pcs == "right")
85  else if (pcs == "symmetric")
87  else if (pcs == "default")
89  else
90  mooseError("Unknown PC side specified.");
91 }
Moose::PCSideType _pc_side
Preconditioning side.
Definition: SolverSystem.h:108
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
Use whatever we have in PETSc.
Definition: MooseTypes.h:873

◆ setPreconditioner()

void NonlinearSystemBase::setPreconditioner ( std::shared_ptr< MoosePreconditioner pc)
inherited

Sets a preconditioner.

Parameters
pcThe preconditioner to be set

Definition at line 3649 of file NonlinearSystemBase.C.

Referenced by SetupPreconditionerAction::act().

3650 {
3651  if (_preconditioner.get() != nullptr)
3652  mooseError("More than one active Preconditioner detected");
3653 
3654  _preconditioner = pc;
3655 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
std::shared_ptr< MoosePreconditioner > _preconditioner
Preconditioner.

◆ setPredictor()

void NonlinearSystemBase::setPredictor ( std::shared_ptr< Predictor predictor)
inherited

Definition at line 1026 of file NonlinearSystemBase.C.

Referenced by SetupPredictorAction::act().

1027 {
1028  _predictor = predictor;
1029 }
std::shared_ptr< Predictor > _predictor
If predictor is active, this is non-NULL.

◆ setPreSMOResidual()

void NonlinearSystemBase::setPreSMOResidual ( bool  use)
inlineinherited

Set whether to evaluate the pre-SMO residual and use it in the subsequent relative convergence checks.

If set to true, an additional residual evaluation is performed before any solution-modifying object is executed, and before the initial (0-th nonlinear iteration) residual evaluation. Such residual is referred to as the pre-SMO residual. If the pre-SMO residual is evaluated, it is used in the subsequent relative convergence checks.

If set to false, no residual evaluation takes place before the initial residual evaluation, and the initial residual is used in the subsequent relative convergence checks. This mode is recommended for performance-critical code as it avoids the additional pre-SMO residual evaluation.

Definition at line 286 of file NonlinearSystemBase.h.

Referenced by FEProblemSolve::FEProblemSolve().

286 { _use_pre_smo_residual = use; }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.

◆ setPreviousNewtonSolution()

void NonlinearSystemBase::setPreviousNewtonSolution ( const NumericVector< Number > &  soln)
virtualinherited

Definition at line 3921 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::computePostCheck().

3922 {
3925 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ setSolution()

void SolverSystem::setSolution ( const NumericVector< Number > &  soln)
inherited

Set the solution to a given vector.

Parameters
solnThe vector which should be treated as the solution.

Definition at line 67 of file SolverSystem.C.

Referenced by FEProblemBase::computeDamping(), FEProblemBase::computeJacobianInternal(), FEProblemBase::computeJacobianTag(), FEProblemBase::computeLinearSystemTags(), FEProblemBase::computeResidualAndJacobian(), FEProblemBase::computeResidualInternal(), FEProblemBase::computeResidualTag(), FEProblemBase::computeResidualType(), ActuallyExplicitEuler::solve(), and ExplicitSSPRungeKutta::solveStage().

68 {
69  _current_solution = &soln;
70 
72  associateVectorToTag(const_cast<NumericVector<Number> &>(soln), tag);
73 
74  if (_serialized_solution.get())
76 }
virtual TagID getVectorTagID(const TagName &tag_name) const
Get a TagID from a TagName.
Definition: SubProblem.C:204
virtual void associateVectorToTag(NumericVector< Number > &vec, TagID tag)
Associate a vector for a given tag.
Definition: SystemBase.C:981
void serializeSolution()
Definition: SolverSystem.C:52
std::unique_ptr< NumericVector< Number > > _serialized_solution
Serialized version of the solution vector, or nullptr if a serialized solution is not needed...
Definition: SystemBase.h:1068
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
const NumericVector< Number > * _current_solution
solution vector from solver
Definition: SolverSystem.h:105
const TagName SOLUTION_TAG
Definition: MooseTypes.C:25

◆ setSolutionUDot()

void NonlinearSystemBase::setSolutionUDot ( const NumericVector< Number > &  udot)
virtualinherited

Set transient term used by residual and Jacobian evaluation.

Parameters
udottransient term
Note
If the calling sequence for residual evaluation was changed, this could become an explicit argument.

Definition at line 3625 of file NonlinearSystemBase.C.

3626 {
3627  *_u_dot = u_dot;
3628 }
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006

◆ setSolutionUDotDot()

void NonlinearSystemBase::setSolutionUDotDot ( const NumericVector< Number > &  udotdot)
virtualinherited

Set transient term used by residual and Jacobian evaluation.

Parameters
udotdottransient term
Note
If the calling sequence for residual evaluation was changed, this could become an explicit argument.

Definition at line 3631 of file NonlinearSystemBase.C.

3632 {
3633  *_u_dotdot = u_dotdot;
3634 }
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008

◆ setSolutionUDotDotOld()

void NonlinearSystemBase::setSolutionUDotDotOld ( const NumericVector< Number > &  u_dotdot_old)
virtualinherited

Definition at line 3643 of file NonlinearSystemBase.C.

3644 {
3645  *_u_dotdot_old = u_dotdot_old;
3646 }
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ setSolutionUDotOld()

void NonlinearSystemBase::setSolutionUDotOld ( const NumericVector< Number > &  u_dot_old)
virtualinherited

Definition at line 3637 of file NonlinearSystemBase.C.

3638 {
3639  *_u_dot_old = u_dot_old;
3640 }
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011

◆ setupDampers()

void NonlinearSystemBase::setupDampers ( )
inherited

Setup damping stuff (called before we actually start)

Definition at line 3664 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::preInit().

3665 {
3666  _increment_vec = &_sys.add_vector("u_increment", true, GHOSTED);
3667 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
libMesh::System & _sys
NumericVector< Number > * _increment_vec
increment vector

◆ setupDM()

void NonlinearSystemBase::setupDM ( )
inherited

Setup the PETSc DM object (when appropriate)

Definition at line 463 of file NonlinearSystemBase.C.

Referenced by FEProblemBase::solve().

464 {
465  if (_fsp)
466  _fsp->setupDM();
467 }
virtual void setupDM()=0
setup the data management data structure that manages the field split
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ setupFiniteDifferencedPreconditioner()

virtual void DumpObjectsNonlinearSystem::setupFiniteDifferencedPreconditioner ( )
inlineoverridevirtual

Implements NonlinearSystemBase.

Definition at line 37 of file DumpObjectsNonlinearSystem.h.

37 {}

◆ setVariableGlobalDoFs()

void SystemBase::setVariableGlobalDoFs ( const std::string &  var_name)
inherited

set all the global dof indices for a variable

Parameters
var_nameThe name of the variable

Definition at line 186 of file SystemBase.C.

187 {
188  AllLocalDofIndicesThread aldit(_subproblem, {var_name});
190  Threads::parallel_reduce(elem_range, aldit);
191 
192  // Gather the dof indices across procs to get all the dof indices for var_name
193  aldit.dofIndicesSetUnion();
194 
195  const auto & all_dof_indices = aldit.getDofIndices();
196  _var_all_dof_indices.assign(all_dof_indices.begin(), all_dof_indices.end());
197 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1288
std::vector< dof_id_type > _var_all_dof_indices
Container for the dof indices of a given variable.
Definition: SystemBase.h:1064
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
Grab all the (possibly semi)local dof indices for the variables passed in, in the system passed in...
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
MooseMesh & _mesh
Definition: SystemBase.h:991

◆ setVerboseFlag()

void SystemBase::setVerboseFlag ( const bool &  verbose)
inlineinherited

Sets the verbose flag.

Parameters
[in]verboseVerbose flag

Definition at line 134 of file SystemBase.h.

Referenced by Executioner::Executioner().

134 { _verbose = verbose; }
bool _verbose
True if printing out additional information.
Definition: SystemBase.h:1058

◆ shouldEvaluatePreSMOResidual()

bool NonlinearSystemBase::shouldEvaluatePreSMOResidual ( ) const
inherited

We offer the option to check convergence against the pre-SMO residual.

This method handles the logic as to whether we should perform such residual evaluation.

Returns
A boolean indicating whether we should evaluate the pre-SMO residual.

Definition at line 752 of file NonlinearSystemBase.C.

Referenced by NonlinearSystemBase::preSMOResidual(), and NonlinearSystem::solve().

753 {
755  return false;
756 
757  // The legacy behavior (#10464) _always_ performs the pre-SMO residual evaluation
758  // regardless of whether it is needed.
759  //
760  // This is not ideal and has been fixed by #23472. This legacy option ensures a smooth transition
761  // to the new behavior. Modules and Apps that want to migrate to the new behavior should set this
762  // parameter to false.
763  if (_app.parameters().get<bool>("use_legacy_initial_residual_evaluation_behavior"))
764  return true;
765 
766  return _use_pre_smo_residual;
767 }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
Combine two vector parameters into a single vector of pairs.
const InputParameters & parameters() const
Get the parameters of the object.
Definition: MooseBase.h:131
Solving a linear problem.
Definition: MooseTypes.h:897
Moose::SolveType _type
Definition: SolverParams.h:19
unsigned int number() const
Gets the number of this system.
Definition: SystemBase.C:1157
MooseApp & _app
Definition: SystemBase.h:988
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
SolverParams & solverParams(unsigned int solver_sys_num=0)
Get the solver parameters.

◆ sizeVariableMatrixData()

void SystemBase::sizeVariableMatrixData ( )
inherited

size the matrix data for each variable for the number of matrix tags we have

Definition at line 1719 of file SystemBase.C.

1720 {
1721  for (const auto & warehouse : _vars)
1722  for (const auto & [var_num, var_ptr] : warehouse.numberToVariableMap())
1723  var_ptr->sizeMatrixTagData();
1724 }
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996

◆ solution() [1/2]

NumericVector<Number>& SystemBase::solution ( )
inlineinherited

Definition at line 196 of file SystemBase.h.

Referenced by Adaptivity::adaptMesh(), TransientMultiApp::appTransferVector(), MooseEigenSystem::combineSystemSolution(), NonlinearSystemBase::computeDamping(), AuxiliarySystem::computeElementalVarsHelper(), NonlinearSystemBase::computeJacobianInternal(), AuxiliarySystem::computeMortarNodalVars(), NonlinearSystemBase::computeNodalBCs(), AuxiliarySystem::computeNodalVarsHelper(), NonlinearSystemBase::computeResidualTags(), AuxiliarySystem::computeScalarVars(), NonlinearSystemBase::constraintResiduals(), SystemBase::copyVars(), MultiAppPostprocessorToAuxScalarTransfer::execute(), MultiAppScalarToAuxScalarTransfer::execute(), NodalNormalsCorner::execute(), NodalNormalsEvaluator::execute(), MultiAppVariableValueSamplePostprocessorTransfer::execute(), NodalNormalsPreprocessor::execute(), NodalNormalsCorner::finalize(), NodalNormalsEvaluator::finalize(), NodalNormalsPreprocessor::finalize(), NodalNormalsCorner::initialize(), NodalNormalsEvaluator::initialize(), NodalNormalsPreprocessor::initialize(), MooseEigenSystem::initSystemSolution(), ComputeMarkerThread::onElement(), ComputeIndicatorThread::onElement(), ComputeUserObjectsThread::onElement(), ComputeNodalUserObjectsThread::onNode(), FEProblemBase::projectInitialConditionOnCustomRange(), FEProblemBase::projectSolution(), Transient::relativeSolutionDifferenceNorm(), MultiApp::restore(), ElementSubdomainModifierBase::restoreOverriddenDofValues(), SystemBase::restoreSolutions(), SecantSolve::saveVariableValues(), SteffensenSolve::saveVariableValues(), PicardSolve::saveVariableValues(), MooseEigenSystem::scaleSystemSolution(), AuxiliarySystem::serializeSolution(), NonlinearSystemBase::setConstraintSecondaryValues(), NonlinearSystemBase::setInitialSolution(), DisplacedSystem::solutionInternal(), NonlinearEigenSystem::solve(), MultiAppDofCopyTransfer::transfer(), SecantSolve::transformVariables(), SteffensenSolve::transformVariables(), PicardSolve::transformVariables(), AuxiliarySystem::variableWiseRelativeSolutionDifferenceNorm(), and SystemBase::zeroVariables().

196 { return solutionState(0); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solution() [2/2]

const NumericVector<Number>& SystemBase::solution ( ) const
inlineinherited

Definition at line 199 of file SystemBase.h.

199 { return solutionState(0); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionInternal()

NumericVector< Number > & SolverSystem::solutionInternal ( ) const
inlinefinaloverrideprotectedvirtualinherited

Internal getter for solution owned by libMesh.

Implements SystemBase.

Definition at line 123 of file SolverSystem.h.

124 {
125  return *system().solution;
126 }
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
std::unique_ptr< NumericVector< Number > > solution

◆ solutionOld() [1/2]

NumericVector<Number>& SystemBase::solutionOld ( )
inlineinherited

◆ solutionOld() [2/2]

const NumericVector<Number>& SystemBase::solutionOld ( ) const
inlineinherited

Definition at line 200 of file SystemBase.h.

200 { return solutionState(1); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionOlder() [1/2]

NumericVector<Number>& SystemBase::solutionOlder ( )
inlineinherited

Definition at line 198 of file SystemBase.h.

Referenced by MooseEigenSystem::combineSystemSolution(), CentralDifference::computeTimeDerivatives(), ActivateElementsUserObjectBase::initSolutions(), MooseVariableScalar::reinit(), and ElementSubdomainModifierBase::setOldAndOlderSolutions().

198 { return solutionState(2); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionOlder() [2/2]

const NumericVector<Number>& SystemBase::solutionOlder ( ) const
inlineinherited

Definition at line 201 of file SystemBase.h.

201 { return solutionState(2); }
virtual NumericVector< Number > & solutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time)
Get a state of the solution (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.C:1431

◆ solutionPreviousNewton() [1/2]

const NumericVector< Number > * SystemBase::solutionPreviousNewton ( ) const
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1355 of file SystemBase.C.

Referenced by AuxiliarySystem::copyCurrentIntoPreviousNL(), SystemBase::copyPreviousNonlinearSolutions(), and SystemBase::restoreSolutions().

1356 {
1359  else
1360  return nullptr;
1361 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionPreviousNewton() [2/2]

NumericVector< Number > * SystemBase::solutionPreviousNewton ( )
virtualinherited

Reimplemented in DisplacedSystem.

Definition at line 1346 of file SystemBase.C.

1347 {
1350  else
1351  return nullptr;
1352 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
const TagName PREVIOUS_NL_SOLUTION_TAG
Definition: MooseTypes.C:28
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionState() [1/2]

NumericVector< Number > & SystemBase::solutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
)
virtualinherited

Get a state of the solution (0 = current, 1 = old, 2 = older, etc).

If the state does not exist, it will be initialized in addition to any newer states before it that have not been initialized.

Reimplemented in DisplacedSystem.

Definition at line 1431 of file SystemBase.C.

Referenced by SystemBase::copyOldSolutions(), SystemBase::copyPreviousFixedPointSolutions(), SystemBase::copyPreviousNonlinearSolutions(), PointwiseRenormalizeVector::execute(), PointwiseRenormalizeVector::finalize(), MooseVariableBase::getSolution(), SystemBase::restoreOldSolutions(), SystemBase::saveOldSolutions(), SystemBase::solution(), SystemBase::solutionOld(), SystemBase::solutionOlder(), and DisplacedSystem::solutionState().

1433 {
1434  if (!hasSolutionState(state, iteration_type))
1435  needSolutionState(state, iteration_type);
1436  return *_solution_states[static_cast<unsigned short>(iteration_type)][state];
1437 }
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
virtual void needSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time, libMesh::ParallelType parallel_type=GHOSTED)
Registers that the solution state state is needed.
Definition: SystemBase.C:1450
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ solutionState() [2/2]

const NumericVector< Number > & SystemBase::solutionState ( const unsigned int  state,
Moose::SolutionIterationType  iteration_type = Moose::SolutionIterationType::Time 
) const
virtualinherited

Get a state of the solution (0 = current, 1 = old, 2 = older, etc).

Reimplemented in DisplacedSystem.

Definition at line 1402 of file SystemBase.C.

1404 {
1405  if (!hasSolutionState(state, iteration_type))
1406  mooseError("For iteration type '",
1407  Moose::stringify(iteration_type),
1408  "': solution state ",
1409  state,
1410  " was requested in ",
1411  name(),
1412  " but only up to state ",
1413  (_solution_states[static_cast<unsigned short>(iteration_type)].size() == 0)
1414  ? 0
1415  : _solution_states[static_cast<unsigned short>(iteration_type)].size() - 1,
1416  " is available.");
1417 
1418  const auto & solution_states = _solution_states[static_cast<unsigned short>(iteration_type)];
1419 
1420  if (state == 0)
1421  mooseAssert(solution_states[0] == &solutionInternal(), "Inconsistent current solution");
1422  else
1423  mooseAssert(solution_states[state] ==
1424  &getVector(oldSolutionStateVectorName(state, iteration_type)),
1425  "Inconsistent solution state");
1426 
1427  return *solution_states[state];
1428 }
virtual NumericVector< Number > & solutionInternal() const =0
Internal getter for solution owned by libMesh.
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual const std::string & name() const
Definition: SystemBase.C:1340
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
std::string stringify(const T &t)
conversion to string
Definition: Conversion.h:64
TagName oldSolutionStateVectorName(const unsigned int, Moose::SolutionIterationType iteration_type) const
Gets the vector name used for an old (not current) solution state.
Definition: SystemBase.C:1381
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ solutionStateParallelType()

libMesh::ParallelType SystemBase::solutionStateParallelType ( const unsigned int  state,
const Moose::SolutionIterationType  iteration_type 
) const
inherited

Returns the parallel type of the given solution state.

Definition at line 1440 of file SystemBase.C.

Referenced by SystemBase::needSolutionState().

1442 {
1443  if (!hasSolutionState(state, iteration_type))
1444  mooseError("solutionStateParallelType() may only be called if the solution state exists.");
1445 
1446  return _solution_states[static_cast<unsigned short>(iteration_type)][state]->type();
1447 }
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
virtual bool hasSolutionState(const unsigned int state, Moose::SolutionIterationType iteration_type=Moose::SolutionIterationType::Time) const
Whether or not the system has the solution state (0 = current, 1 = old, 2 = older, etc).
Definition: SystemBase.h:1090
std::array< std::vector< NumericVector< Number > * >, 3 > _solution_states
2D array of solution state vector pointers; first index corresponds to SolutionIterationType, second index corresponds to state index (0=current, 1=old, 2=older)
Definition: SystemBase.h:1084

◆ solutionStatesInitialized()

bool SystemBase::solutionStatesInitialized ( ) const
inlineinherited

Whether or not the solution states have been initialized via initSolutionState()

After the solution states have been initialized, additional solution states cannot be added.

Definition at line 896 of file SystemBase.h.

Referenced by ScalarKernelBase::uOld(), and AuxScalarKernel::uOld().

bool _solution_states_initialized
Whether or not the solution states have been initialized.
Definition: SystemBase.h:1061

◆ solutionUDot() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDot ( )
inlinevirtualinherited

◆ solutionUDot() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDot ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 265 of file SystemBase.h.

265 { return _u_dot; }
NumericVector< Number > * _u_dot
solution vector for u^dot
Definition: SystemBase.h:1006

◆ solutionUDotDot() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotDot ( )
inlinevirtualinherited

◆ solutionUDotDot() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotDot ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 266 of file SystemBase.h.

266 { return _u_dotdot; }
NumericVector< Number > * _u_dotdot
solution vector for u^dotdot
Definition: SystemBase.h:1008

◆ solutionUDotDotOld() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotDotOld ( )
inlinevirtualinherited

◆ solutionUDotDotOld() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotDotOld ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 268 of file SystemBase.h.

268 { return _u_dotdot_old; }
NumericVector< Number > * _u_dotdot_old
old solution vector for u^dotdot
Definition: SystemBase.h:1013

◆ solutionUDotOld() [1/2]

virtual NumericVector<Number>* SystemBase::solutionUDotOld ( )
inlinevirtualinherited

◆ solutionUDotOld() [2/2]

virtual const NumericVector<Number>* SystemBase::solutionUDotOld ( ) const
inlinevirtualinherited

Reimplemented in DisplacedSystem.

Definition at line 267 of file SystemBase.h.

267 { return _u_dot_old; }
NumericVector< Number > * _u_dot_old
old solution vector for u^dot
Definition: SystemBase.h:1011

◆ solve()

virtual void DumpObjectsNonlinearSystem::solve ( )
inlineoverridevirtual

Solve the system (using libMesh magic)

Implements NonlinearSystemBase.

Definition at line 30 of file DumpObjectsNonlinearSystem.h.

30 {}

◆ stopSolve()

virtual void DumpObjectsNonlinearSystem::stopSolve ( const ExecFlagType exec_flag,
const std::set< TagID > &  vector_tags_to_close 
)
inlineoverridevirtual

Quit the current solve as soon as possible.

Implements SolverSystem.

Definition at line 31 of file DumpObjectsNonlinearSystem.h.

31 {}

◆ subdomainSetup() [1/3]

void SystemBase::subdomainSetup
inherited

Definition at line 1592 of file SystemBase.C.

1593 {
1594  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1595  _vars[tid].subdomainSetup();
1596 }
unsigned int n_threads()
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void subdomainSetup()
Definition: SystemBase.C:1592
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ subdomainSetup() [2/3]

void NonlinearSystemBase::subdomainSetup ( SubdomainID  subdomain,
THREAD_ID  tid 
)
virtualinherited

Called from assembling when we hit a new subdomain.

Parameters
subdomainID of the new subdomain
tidThread ID

Definition at line 1032 of file NonlinearSystemBase.C.

1033 {
1035 
1036  _kernels.subdomainSetup(subdomain, tid);
1037  _nodal_kernels.subdomainSetup(subdomain, tid);
1038  _element_dampers.subdomainSetup(subdomain, tid);
1039  _nodal_dampers.subdomainSetup(subdomain, tid);
1040 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< KernelBase > _kernels
virtual void subdomainSetup()
Definition: SystemBase.C:1592
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
virtual void subdomainSetup(THREAD_ID tid=0) const

◆ subdomainSetup() [3/3]

void SystemBase::subdomainSetup ( )
virtualinherited

Reimplemented in AuxiliarySystem.

Definition at line 1592 of file SystemBase.C.

Referenced by AuxiliarySystem::subdomainSetup(), and NonlinearSystemBase::subdomainSetup().

1593 {
1594  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
1595  _vars[tid].subdomainSetup();
1596 }
unsigned int n_threads()
std::vector< VariableWarehouse > _vars
Variable warehouses (one for each thread)
Definition: SystemBase.h:996
virtual void subdomainSetup()
Definition: SystemBase.C:1592
unsigned int THREAD_ID
Definition: MooseTypes.h:237

◆ subproblem() [1/2]

SubProblem& SystemBase::subproblem ( )
inlineinherited

◆ subproblem() [2/2]

const SubProblem& SystemBase::subproblem ( ) const
inlineinherited

Definition at line 102 of file SystemBase.h.

102 { return _subproblem; }
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983

◆ system() [1/2]

virtual libMesh::System& NonlinearSystemBase::system ( )
inlineoverridevirtualinherited

Get the reference to the libMesh system.

Implements SystemBase.

Definition at line 695 of file NonlinearSystemBase.h.

Referenced by Adaptivity::adaptMesh(), PhysicsBasedPreconditioner::addSystem(), PhysicsBasedPreconditioner::apply(), FEProblemBase::computeJacobianTags(), FEProblemBase::computeResidualAndJacobian(), NonlinearSystemBase::computeScaling(), PseudoTimestep::currentResidualNorm(), DMMooseFunction(), DMMooseJacobian(), VariableResidual::execute(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), NonlinearSystem::getSNES(), ExplicitTimeIntegrator::initialSetup(), ReferenceResidualConvergence::initialSetup(), MooseStaticCondensationPreconditioner::MooseStaticCondensationPreconditioner(), Moose::PetscSupport::petscSetDefaults(), PhysicsBasedPreconditioner::PhysicsBasedPreconditioner(), ComputeJacobianThread::postElement(), NonlinearSystemBase::residualGhosted(), Moose::PetscSupport::setLineSearchFromParams(), PhysicsBasedPreconditioner::setup(), NonlinearSystemBase::setupScalingData(), SingleMatrixPreconditioner::SingleMatrixPreconditioner(), NonlinearSystem::solve(), NonlinearEigenSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), LStableDirk4::solve(), AStableDirk4::solve(), ExplicitRK2::solve(), FieldSplitPreconditioner::system(), NonlinearSystemBase::turnOffJacobian(), ReferenceResidualConvergence::updateReferenceResidual(), VariableCondensationPreconditioner::VariableCondensationPreconditioner(), and Console::writeVariableNorms().

695 { return _sys; }
libMesh::System & _sys

◆ system() [2/2]

virtual const libMesh::System& NonlinearSystemBase::system ( ) const
inlineoverridevirtualinherited

Implements SystemBase.

Definition at line 696 of file NonlinearSystemBase.h.

696 { return _sys; }
libMesh::System & _sys

◆ systemMatrixTag()

TagID NonlinearSystemBase::systemMatrixTag ( ) const
inlineoverridevirtualinherited

◆ timedSectionName()

std::string PerfGraphInterface::timedSectionName ( const std::string &  section_name) const
protectedinherited
Returns
The name of the timed section with the name section_name.

Optionally adds a prefix if one is defined.

Definition at line 47 of file PerfGraphInterface.C.

Referenced by PerfGraphInterface::registerTimedSection().

48 {
49  return _prefix.empty() ? "" : (_prefix + "::") + section_name;
50 }
const std::string _prefix
A prefix to use for all sections.

◆ timeKernelVariableNames()

std::vector< std::string > NonlinearSystemBase::timeKernelVariableNames ( )
overridevirtualinherited

Returns the names of the variables that have time derivative kernels in the system.

Implements SolverSystem.

Definition at line 3848 of file NonlinearSystemBase.C.

3849 {
3850  std::vector<std::string> variable_names;
3851  const auto & time_kernels = _kernels.getVectorTagObjectWarehouse(timeVectorTag(), 0);
3852  if (time_kernels.hasActiveObjects())
3853  for (const auto & kernel : time_kernels.getObjects())
3854  variable_names.push_back(kernel->variable().name());
3855 
3856  return variable_names;
3857 }
MooseObjectTagWarehouse< KernelBase > _kernels
TagID timeVectorTag() const override
Ideally, we should not need this API.
MooseObjectWarehouse< T > & getVectorTagObjectWarehouse(TagID tag_id, THREAD_ID tid)
Retrieve a moose object warehouse in which every moose object has the given vector tag...

◆ timestepSetup()

void NonlinearSystemBase::timestepSetup ( )
overridevirtualinherited

Reimplemented from SystemBase.

Definition at line 337 of file NonlinearSystemBase.C.

338 {
340 
341  for (THREAD_ID tid = 0; tid < libMesh::n_threads(); tid++)
342  {
343  _kernels.timestepSetup(tid);
346  if (_doing_dg)
352 
353  if (_fe_problem.haveFV())
354  {
355  std::vector<FVFluxBC *> bcs;
357  .query()
358  .template condition<AttribSystem>("FVFluxBC")
359  .template condition<AttribThread>(tid)
360  .queryInto(bcs);
361 
362  std::vector<FVInterfaceKernel *> iks;
364  .query()
365  .template condition<AttribSystem>("FVInterfaceKernel")
366  .template condition<AttribThread>(tid)
367  .queryInto(iks);
368 
369  std::vector<FVFluxKernel *> kernels;
371  .query()
372  .template condition<AttribSystem>("FVFluxKernel")
373  .template condition<AttribThread>(tid)
374  .queryInto(kernels);
375 
376  for (auto * bc : bcs)
377  bc->timestepSetup();
378  for (auto * ik : iks)
379  ik->timestepSetup();
380  for (auto * kernel : kernels)
381  kernel->timestepSetup();
382  }
383  }
390 
391 #ifdef MOOSE_KOKKOS_ENABLED
396 #endif
397 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
unsigned int n_threads()
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
virtual bool haveFV() const override
returns true if this problem includes/needs finite volume functionality.
std::vector< T * > & queryInto(std::vector< T *> &results, Args &&... args)
queryInto executes the query and stores the results in the given vector.
Definition: TheWarehouse.h:311
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
bool _doing_dg
true if DG is active (optimization reasons)
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
TheWarehouse & theWarehouse() const
virtual void timestepSetup(THREAD_ID tid=0) const
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
FEProblemBase & _fe_problem
the governing finite element/volume problem
Definition: SystemBase.h:986
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
Query query()
query creates and returns an initialized a query object for querying objects from the warehouse...
Definition: TheWarehouse.h:466
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
unsigned int THREAD_ID
Definition: MooseTypes.h:237
virtual void timestepSetup()
Definition: SystemBase.C:1578
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ timeVectorTag()

TagID NonlinearSystemBase::timeVectorTag ( ) const
inlineoverridevirtualinherited

Ideally, we should not need this API.

There exists a really bad API "addCachedResidualDirectly " in FEProblem and DisplacedProblem This API should go away once addCachedResidualDirectly is removed in the future Return Tag ID for Time

Reimplemented from SystemBase.

Definition at line 704 of file NonlinearSystemBase.h.

Referenced by FEProblemBase::addCachedResidualDirectly(), NonlinearSystemBase::containsTimeKernel(), and NonlinearSystemBase::timeKernelVariableNames().

704 { return _Re_time_tag; }
TagID _Re_time_tag
Tag for time contribution residual.

◆ turnOffJacobian()

void NonlinearSystemBase::turnOffJacobian ( )
virtualinherited

Turn off the Jacobian (must be called before equation system initialization)

Reimplemented in NonlinearEigenSystem.

Definition at line 219 of file NonlinearSystemBase.C.

220 {
222  nonlinearSolver()->jacobian = NULL;
223 }
virtual libMesh::NonlinearSolver< Number > * nonlinearSolver()=0
void set_basic_system_only()
virtual libMesh::System & system() override
Get the reference to the libMesh system.

◆ update()

void SystemBase::update ( )
inherited

◆ updateActive()

void NonlinearSystemBase::updateActive ( THREAD_ID  tid)
inherited

Update active objects of Warehouses owned by NonlinearSystemBase.

Definition at line 3369 of file NonlinearSystemBase.C.

3370 {
3377  _kernels.updateActive(tid);
3379 
3380  if (tid == 0)
3381  {
3389 
3390 #ifdef MOOSE_KOKKOS_ENABLED
3396 #endif
3397  }
3398 }
MooseObjectTagWarehouse< NodalKernelBase > _nodal_kernels
NodalKernels for each thread.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_kernels
MooseObjectTagWarehouse< ResidualObject > _kokkos_kernels
MooseObjectTagWarehouse< DGKernelBase > _dg_kernels
MooseObjectTagWarehouse< NodalBCBase > _nodal_bcs
MooseObjectWarehouseBase< Split > _splits
Decomposition splits.
MooseObjectWarehouse< NodalDamper > _nodal_dampers
Nodal Dampers for each thread.
void updateActive(THREAD_ID tid=0) override
Update the various active lists.
MooseObjectWarehouse< ResidualObject > _kokkos_preset_nodal_bcs
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
MooseObjectTagWarehouse< DiracKernelBase > _dirac_kernels
Dirac Kernel storage for each thread.
MooseObjectWarehouse< DirichletBCBase > _preset_nodal_bcs
MooseObjectTagWarehouse< KernelBase > _kernels
ConstraintWarehouse _constraints
Constraints storage object.
MooseObjectTagWarehouse< ResidualObject > _kokkos_integrated_bcs
MooseObjectWarehouse< ElementDamper > _element_dampers
Element Dampers for each thread.
virtual void updateActive(THREAD_ID tid=0) override
Update the active status of Kernels.
MooseObjectTagWarehouse< InterfaceKernelBase > _interface_kernels
MooseObjectWarehouse< GeneralDamper > _general_dampers
General Dampers.
MooseObjectTagWarehouse< IntegratedBCBase > _integrated_bcs
virtual void updateActive(THREAD_ID tid=0)
Updates the active objects storage.
MooseObjectTagWarehouse< ResidualObject > _kokkos_nodal_bcs
MooseObjectTagWarehouse< ScalarKernelBase > _scalar_kernels
MooseObjectWarehouse< ADDirichletBCBase > _ad_preset_nodal_bcs

◆ useFieldSplitPreconditioner()

void NonlinearSystemBase::useFieldSplitPreconditioner ( FieldSplitPreconditionerBase fsp)
inlineinherited

If called with a non-null object true this system will use a field split preconditioner matrix.

Definition at line 494 of file NonlinearSystemBase.h.

Referenced by FieldSplitPreconditionerTempl< MoosePreconditioner >::FieldSplitPreconditionerTempl().

494 { _fsp = fsp; }
FieldSplitPreconditionerBase * _fsp
The field split preconditioner if this sytem is using one.

◆ useFiniteDifferencedPreconditioner()

void NonlinearSystemBase::useFiniteDifferencedPreconditioner ( bool  use = true)
inlineinherited

If called with true this system will use a finite differenced form of the Jacobian as the preconditioner.

Definition at line 486 of file NonlinearSystemBase.h.

Referenced by FiniteDifferencePreconditioner::FiniteDifferencePreconditioner().

487  {
489  }
bool _use_finite_differenced_preconditioner
Whether or not to use a finite differenced preconditioner.

◆ usePreSMOResidual()

const bool& NonlinearSystemBase::usePreSMOResidual ( ) const
inlineinherited

Whether we are using pre-SMO residual in relative convergence checks.

Definition at line 289 of file NonlinearSystemBase.h.

Referenced by Console::outputSystemInformation(), and NonlinearSystemBase::referenceResidual().

289 { return _use_pre_smo_residual; }
bool _use_pre_smo_residual
Whether to use the pre-SMO initial residual in the relative convergence check.

◆ validParams()

InputParameters PerfGraphInterface::validParams ( )
staticinherited

Definition at line 16 of file PerfGraphInterface.C.

Referenced by Convergence::validParams().

17 {
19  return params;
20 }
The main MOOSE class responsible for handling user-defined parameters in almost every MOOSE system...
InputParameters emptyInputParameters()

◆ varKind()

Moose::VarKindType SystemBase::varKind ( ) const
inlineinherited
Returns
the type of variables this system holds, e.g. nonlinear or auxiliary

Definition at line 924 of file SystemBase.h.

Referenced by Coupleable::coupled().

924 { return _var_kind; }
Moose::VarKindType _var_kind
default kind of variables in this system
Definition: SystemBase.h:1038

◆ zeroTaggedVector()

void SystemBase::zeroTaggedVector ( const TagID  tag)
inherited

Zero vector with the given tag.

Definition at line 674 of file SystemBase.C.

Referenced by SystemBase::zeroTaggedVectors().

675 {
676  if (!_subproblem.vectorTagExists(tag))
677  mooseError("Cannot zero vector with TagID ",
678  tag,
679  " in system '",
680  name(),
681  "' because that tag does not exist in the problem");
682  else if (!hasVector(tag))
683  mooseError("Cannot zero vector tag with name '",
685  "' in system '",
686  name(),
687  "' because there is no vector associated with that tag");
689  getVector(tag).zero();
690 }
bool hasVector(const std::string &tag_name) const
Check if the named vector exists in the system.
Definition: SystemBase.C:924
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
bool vectorTagNotZeroed(const TagID tag) const
Checks if a vector tag is in the list of vectors that will not be zeroed when other tagged vectors ar...
Definition: SubProblem.C:156
virtual void zero()=0
virtual const std::string & name() const
Definition: SystemBase.C:1340
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual bool vectorTagExists(const TagID tag_id) const
Check to see if a particular Tag exists.
Definition: SubProblem.h:201
virtual TagName vectorTagName(const TagID tag) const
Retrieve the name associated with a TagID.
Definition: SubProblem.C:222
virtual NumericVector< Number > & getVector(const std::string &name)
Get a raw NumericVector by name.
Definition: SystemBase.C:933

◆ zeroTaggedVectors()

void SystemBase::zeroTaggedVectors ( const std::set< TagID > &  tags)
inherited

Zero all vectors for given tags.

Definition at line 693 of file SystemBase.C.

Referenced by NonlinearSystemBase::computeResidualAndJacobianTags(), and NonlinearSystemBase::computeResidualTags().

694 {
695  for (const auto tag : tags)
696  zeroTaggedVector(tag);
697 }
void zeroTaggedVector(const TagID tag)
Zero vector with the given tag.
Definition: SystemBase.C:674

◆ zeroVariables()

void SystemBase::zeroVariables ( std::vector< std::string > &  vars_to_be_zeroed)
virtualinherited

Zero out the solution for the list of variables passed in.

@ param vars_to_be_zeroed The variable names in this vector will have their solutions set to zero after this call

Reimplemented in DisplacedSystem.

Definition at line 200 of file SystemBase.C.

Referenced by DisplacedSystem::zeroVariables(), SystemBase::zeroVariablesForJacobian(), and SystemBase::zeroVariablesForResidual().

201 {
202  if (vars_to_be_zeroed.size() > 0)
203  {
205 
206  auto problem = dynamic_cast<FEProblemBase *>(&_subproblem);
207  if (!problem)
208  mooseError("System needs to be registered in FEProblemBase for using zeroVariables.");
209 
210  AllLocalDofIndicesThread aldit(*problem, vars_to_be_zeroed, true);
212  Threads::parallel_reduce(elem_range, aldit);
213 
214  const auto & dof_indices_to_zero = aldit.getDofIndices();
215 
216  solution.close();
217 
218  for (const auto & dof : dof_indices_to_zero)
219  solution.set(dof, 0);
220 
221  solution.close();
222 
223  // Call update to update the current_local_solution for this system
224  system().update();
225  }
226 }
libMesh::ConstElemRange * getActiveLocalElementRange()
Return pointers to range objects for various types of ranges (local nodes, boundary elems...
Definition: MooseMesh.C:1288
NumericVector< Number > & solution()
Definition: SystemBase.h:196
void mooseError(Args &&... args)
Emit an error message with the given stringified, concatenated args and terminate the application...
Definition: MooseError.h:323
void parallel_reduce(const Range &range, Body &body, const Partitioner &)
virtual libMesh::System & system()=0
Get the reference to the libMesh system.
Specialization of SubProblem for solving nonlinear equations plus auxiliary equations.
Grab all the (possibly semi)local dof indices for the variables passed in, in the system passed in...
SubProblem & _subproblem
The subproblem for whom this class holds variable data, etc; this can either be the governing finite ...
Definition: SystemBase.h:983
virtual void close()=0
virtual void update()
MooseMesh & _mesh
Definition: SystemBase.h:991
virtual void set(const numeric_index_type i, const T value)=0

◆ zeroVariablesForJacobian()

void SystemBase::zeroVariablesForJacobian ( )
virtualinherited

Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on Jacobian evaluation by a call to addVariableToZeroOnResidual()

Definition at line 235 of file SystemBase.C.

236 {
238 }
std::vector< std::string > _vars_to_be_zeroed_on_jacobian
Definition: SystemBase.h:1003
virtual void zeroVariables(std::vector< std::string > &vars_to_be_zeroed)
Zero out the solution for the list of variables passed in.
Definition: SystemBase.C:200

◆ zeroVariablesForResidual()

void SystemBase::zeroVariablesForResidual ( )
virtualinherited

Zero out the solution for the variables that were registered as needing to have their solutions zeroed on out on residual evaluation by a call to addVariableToZeroOnResidual()

Definition at line 229 of file SystemBase.C.

230 {
232 }
std::vector< std::string > _vars_to_be_zeroed_on_residual
Definition: SystemBase.h:1002
virtual void zeroVariables(std::vector< std::string > &vars_to_be_zeroed)
Zero out the solution for the list of variables passed in.
Definition: SystemBase.C:200

◆ zeroVectorForResidual()

void NonlinearSystemBase::zeroVectorForResidual ( const std::string &  vector_name)
inherited

Definition at line 797 of file NonlinearSystemBase.C.

798 {
799  for (unsigned int i = 0; i < _vecs_to_zero_for_residual.size(); ++i)
800  if (vector_name == _vecs_to_zero_for_residual[i])
801  return;
802 
803  _vecs_to_zero_for_residual.push_back(vector_name);
804 }
std::vector< std::string > _vecs_to_zero_for_residual
vectors that will be zeroed before a residual computation

Member Data Documentation

◆ _active_tagged_matrices

std::unordered_map<TagID, libMesh::SparseMatrix<Number> *> SystemBase::_active_tagged_matrices
protectedinherited

Active tagged matrices. A matrix is active if its tag-matrix pair is present in the map. We use a map instead of a vector so that users can easily add and remove to this container with calls to (de)activateMatrixTag.

Definition at line 1025 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), SystemBase::deactivateAllMatrixTags(), and SystemBase::reinitElem().

◆ _ad_preset_nodal_bcs

MooseObjectWarehouse<ADDirichletBCBase> NonlinearSystemBase::_ad_preset_nodal_bcs
protectedinherited

◆ _add_implicit_geometric_coupling_entries_to_jacobian

bool NonlinearSystemBase::_add_implicit_geometric_coupling_entries_to_jacobian
protectedinherited

Whether or not to add implicit geometric couplings to the Jacobian for FDP.

Definition at line 984 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::addImplicitGeometricCouplingEntriesToJacobian(), NonlinearSystemBase::augmentSparsity(), and NonlinearSystemBase::computeJacobianInternal().

◆ _app

MooseApp& SystemBase::_app
protectedinherited

◆ _assemble_constraints_separately

bool NonlinearSystemBase::_assemble_constraints_separately
protectedinherited

Whether or not to assemble the residual and Jacobian after the application of each constraint.

Definition at line 987 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::assembleConstraintsSeparately(), NonlinearSystemBase::constraintJacobians(), and NonlinearSystemBase::constraintResiduals().

◆ _automatic_scaling

bool SystemBase::_automatic_scaling
protectedinherited

Whether to automatically scale the variables.

Definition at line 1055 of file SystemBase.h.

Referenced by SystemBase::automaticScaling(), NonlinearSystemBase::initialSetup(), and NonlinearSystemBase::preSolve().

◆ _compute_scaling_once

bool NonlinearSystemBase::_compute_scaling_once
protectedinherited

Whether the scaling factors should only be computed once at the beginning of the simulation through an extra Jacobian evaluation.

If this is set to false, then the scaling factors will be computed during an extra Jacobian evaluation at the beginning of every time step.

Definition at line 1042 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), and NonlinearSystemBase::computeScalingOnce().

◆ _computed_scaling

bool NonlinearSystemBase::_computed_scaling
protectedinherited

Flag used to indicate whether we have already computed the scaling Jacobian.

Definition at line 1037 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computedScalingJacobian(), and NonlinearSystemBase::computeScaling().

◆ _computing_pre_smo_residual

bool NonlinearSystemBase::_computing_pre_smo_residual
protectedinherited

◆ _console

const ConsoleStream ConsoleStreamInterface::_console
inherited

An instance of helper class to write streams to the Console objects.

Definition at line 31 of file ConsoleStreamInterface.h.

Referenced by IterationAdaptiveDT::acceptStep(), MeshOnlyAction::act(), SetupDebugAction::act(), MaterialOutputAction::act(), Adaptivity::adaptMesh(), FEProblemBase::adaptMesh(), PerfGraph::addToExecutionList(), SimplePredictor::apply(), SystemBase::applyScalingFactors(), MultiApp::backup(), FEProblemBase::backupMultiApps(), CoarsenedPiecewiseLinear::buildCoarsenedGrid(), DefaultSteadyStateConvergence::checkConvergence(), MeshDiagnosticsGenerator::checkElementOverlap(), MeshDiagnosticsGenerator::checkElementTypes(), MeshDiagnosticsGenerator::checkElementVolumes(), FEProblemBase::checkExceptionAndStopSolve(), SolverSystem::checkInvalidSolution(), MeshDiagnosticsGenerator::checkLocalJacobians(), MeshDiagnosticsGenerator::checkNonConformalMesh(), MeshDiagnosticsGenerator::checkNonConformalMeshFromAdaptivity(), MeshDiagnosticsGenerator::checkNonMatchingEdges(), MeshDiagnosticsGenerator::checkNonPlanarSides(), FEProblemBase::checkProblemIntegrity(), ReferenceResidualConvergence::checkRelativeConvergence(), MeshDiagnosticsGenerator::checkSidesetsOrientation(), MeshDiagnosticsGenerator::checkWatertightNodesets(), MeshDiagnosticsGenerator::checkWatertightSidesets(), IterationAdaptiveDT::computeAdaptiveDT(), TransientBase::computeConstrainedDT(), DefaultMultiAppFixedPointConvergence::computeCustomConvergencePostprocessor(), NonlinearSystemBase::computeDamping(), FixedPointIterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeDT(), IterationAdaptiveDT::computeFailedDT(), IterationAdaptiveDT::computeInitialDT(), IterationAdaptiveDT::computeInterpolationDT(), LinearSystem::computeLinearSystemTags(), FEProblemBase::computeLinearSystemTags(), NonlinearSystemBase::computeScaling(), Problem::console(), IterationAdaptiveDT::constrainStep(), TimeStepper::constrainStep(), MultiApp::createApp(), FEProblemBase::execMultiApps(), FEProblemBase::execMultiAppTransfers(), MFEMSteady::execute(), MessageFromInput::execute(), SteadyBase::execute(), Eigenvalue::execute(), ActionWarehouse::executeActionsWithAction(), ActionWarehouse::executeAllActions(), MeshGeneratorSystem::executeMeshGenerators(), ElementQualityChecker::finalize(), SidesetAroundSubdomainUpdater::finalize(), FEProblemBase::finishMultiAppStep(), MeshRepairGenerator::fixOverlappingNodes(), CoarsenBlockGenerator::generate(), MeshGenerator::generateInternal(), VariableCondensationPreconditioner::getDofToCondense(), NonlinearEigen::init(), InversePowerMethod::init(), FEProblemBase::initialAdaptMesh(), DefaultMultiAppFixedPointConvergence::initialize(), SubProblem::initialSetup(), EigenExecutionerBase::inversePowerIteration(), FEProblemBase::joinAndFinalize(), TransientBase::keepGoing(), IterationAdaptiveDT::limitDTByFunction(), IterationAdaptiveDT::limitDTToPostprocessorValue(), FEProblemBase::logAdd(), EigenExecutionerBase::makeBXConsistent(), Console::meshChanged(), MooseBase::mooseDeprecated(), MooseBase::mooseInfo(), MooseBase::mooseWarning(), MooseBase::mooseWarningNonPrefixed(), ReferenceResidualConvergence::nonlinearConvergenceSetup(), ReporterDebugOutput::output(), PerfGraphOutput::output(), SolutionInvalidityOutput::output(), MaterialPropertyDebugOutput::output(), DOFMapOutput::output(), VariableResidualNormsDebugOutput::output(), Console::output(), ControlOutput::outputActiveObjects(), ControlOutput::outputChangedControls(), ControlOutput::outputControls(), Console::outputInput(), WebServerControl::outputMessage(), Console::outputPostprocessors(), PseudoTimestep::outputPseudoTimestep(), Console::outputReporters(), DefaultMultiAppFixedPointConvergence::outputResidualNorm(), Console::outputScalarVariables(), Console::outputSystemInformation(), FEProblemBase::possiblyRebuildGeomSearchPatches(), EigenExecutionerBase::postExecute(), AB2PredictorCorrector::postSolve(), ActionWarehouse::printActionDependencySets(), BlockRestrictionDebugOutput::printBlockRestrictionMap(), SolutionInvalidity::printDebug(), EigenExecutionerBase::printEigenvalue(), SecantSolve::printFixedPointConvergenceHistory(), SteffensenSolve::printFixedPointConvergenceHistory(), PicardSolve::printFixedPointConvergenceHistory(), FixedPointSolve::printFixedPointConvergenceReason(), PerfGraphLivePrint::printLiveMessage(), MaterialPropertyDebugOutput::printMaterialMap(), PerfGraphLivePrint::printStats(), NEML2Action::printSummary(), AutomaticMortarGeneration::projectPrimaryNodesSinglePair(), AutomaticMortarGeneration::projectSecondaryNodesSinglePair(), CoarsenBlockGenerator::recursiveCoarsen(), SolutionTimeAdaptiveDT::rejectStep(), MultiApp::restore(), FEProblemBase::restoreMultiApps(), FEProblemBase::restoreSolutions(), NonlinearSystemBase::setInitialSolution(), MooseApp::setupOptions(), Checkpoint::shouldOutput(), SubProblem::showFunctorRequestors(), SubProblem::showFunctors(), FullSolveMultiApp::showStatusMessage(), EigenProblem::solve(), FEProblemSolve::solve(), NonlinearSystem::solve(), FixedPointSolve::solve(), LinearSystem::solve(), LStableDirk2::solve(), LStableDirk3::solve(), ImplicitMidpoint::solve(), ExplicitTVDRK2::solve(), AStableDirk4::solve(), LStableDirk4::solve(), ExplicitRK2::solve(), TransientMultiApp::solveStep(), FixedPointSolve::solveStep(), PerfGraphLivePrint::start(), WebServerControl::startServer(), AB2PredictorCorrector::step(), NonlinearEigen::takeStep(), MFEMTransient::takeStep(), TransientBase::takeStep(), TerminateChainControl::terminate(), SubProblem::timestepSetup(), FEProblemBase::updateMeshXFEM(), Convergence::verboseOutput(), Console::writeTimestepInformation(), Console::writeVariableNorms(), and FEProblemBase::~FEProblemBase().

◆ _constraints

ConstraintWarehouse NonlinearSystemBase::_constraints
protectedinherited

◆ _current_l_its

std::vector<unsigned int> NonlinearSystemBase::_current_l_its
inherited

◆ _current_nl_its

unsigned int NonlinearSystemBase::_current_nl_its
inherited

◆ _current_solution

const NumericVector<Number>* SolverSystem::_current_solution
protectedinherited

◆ _debugging_residuals

bool NonlinearSystemBase::_debugging_residuals
protectedinherited

true if debugging residuals

Definition at line 992 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeResidualTags(), and NonlinearSystemBase::debuggingResiduals().

◆ _dg_kernels

MooseObjectTagWarehouse<DGKernelBase> NonlinearSystemBase::_dg_kernels
protectedinherited

◆ _dirac_kernels

MooseObjectTagWarehouse<DiracKernelBase> NonlinearSystemBase::_dirac_kernels
protectedinherited

◆ _doing_dg

bool NonlinearSystemBase::_doing_dg
protectedinherited

◆ _du_dot_du

Number NonlinearSystemBase::_du_dot_du
protectedinherited

\( {du^dot}\over{du} \)

Definition at line 891 of file NonlinearSystemBase.h.

◆ _du_dotdot_du

Number NonlinearSystemBase::_du_dotdot_du
protectedinherited

\( {du^dotdot}\over{du} \)

Definition at line 893 of file NonlinearSystemBase.h.

◆ _dummy

NumericVector<Number>* DumpObjectsNonlinearSystem::_dummy
protected

Definition at line 47 of file DumpObjectsNonlinearSystem.h.

Referenced by RHS().

◆ _element_dampers

MooseObjectWarehouse<ElementDamper> NonlinearSystemBase::_element_dampers
protectedinherited

◆ _factory

Factory& SystemBase::_factory
protectedinherited

◆ _fdcoloring

MatFDColoring NonlinearSystemBase::_fdcoloring
protectedinherited

◆ _fe_problem

FEProblemBase& SystemBase::_fe_problem
protectedinherited

the governing finite element/volume problem

Definition at line 986 of file SystemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addDGKernel(), NonlinearSystemBase::addDiracKernel(), SystemBase::addDotVectors(), NonlinearSystemBase::addHDGKernel(), NonlinearSystemBase::addInterfaceKernel(), NonlinearSystemBase::addKernel(), NonlinearSystemBase::addNodalKernel(), NonlinearSystemBase::addScalarKernel(), NonlinearSystemBase::addSplit(), NonlinearSystemBase::assembleScalingVector(), NonlinearSystemBase::augmentSparsity(), SolverSystem::checkInvalidSolution(), NonlinearSystemBase::checkKernelCoverage(), AuxiliarySystem::clearScalarVariableCoupleableTags(), SolverSystem::compute(), AuxiliarySystem::compute(), NonlinearSystemBase::computeDamping(), NonlinearSystemBase::computeDiracContributions(), AuxiliarySystem::computeElementalVarsHelper(), LinearSystem::computeGradients(), NonlinearSystemBase::computeJacobian(), NonlinearSystemBase::computeJacobianBlocks(), NonlinearSystemBase::computeJacobianInternal(), LinearSystem::computeLinearSystemInternal(), LinearSystem::computeLinearSystemTags(), AuxiliarySystem::computeMortarNodalVars(), NonlinearSystemBase::computeNodalBCs(), NonlinearSystemBase::computeNodalBCsResidualAndJacobian(), AuxiliarySystem::computeNodalVarsHelper(), NonlinearSystemBase::computeResidualAndJacobianInternal(), NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::computeResidualTags(), NonlinearSystemBase::computeScalarKernelsJacobians(), AuxiliarySystem::computeScalarVars(), NonlinearSystemBase::computeScaling(), NonlinearSystem::computeScalingJacobian(), NonlinearSystem::computeScalingResidual(), NonlinearSystemBase::constraintJacobians(), NonlinearSystemBase::constraintResiduals(), LinearSystem::containsTimeKernel(), NonlinearSystem::converged(), NonlinearSystemBase::customSetup(), MooseEigenSystem::eigenKernelOnCurrent(), MooseEigenSystem::eigenKernelOnOld(), NonlinearSystemBase::enforceNodalConstraintsJacobian(), NonlinearSystemBase::enforceNodalConstraintsResidual(), SystemBase::feProblem(), NonlinearSystemBase::getResidualNonTimeVector(), NonlinearSystemBase::getResidualTimeVector(), LinearSystem::initialSetup(), NonlinearSystemBase::initialSetup(), NonlinearSystemBase::jacobianSetup(), LinearSystem::LinearSystem(), NonlinearSystemBase::NonlinearSystemBase(), NonlinearSystemBase::overwriteNodeFace(), NonlinearSystem::potentiallySetupFiniteDifferencing(), NonlinearSystemBase::preInit(), NonlinearSystemBase::reinitNodeFace(), NonlinearSystem::residualAndJacobianTogether(), NonlinearSystemBase::residualSetup(), NonlinearSystemBase::setConstraintSecondaryValues(), NonlinearSystemBase::setInitialSolution(), AuxiliarySystem::setScalarVariableCoupleableTags(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), NonlinearSystem::solve(), and NonlinearSystemBase::timestepSetup().

◆ _final_residual

Real NonlinearSystemBase::_final_residual
protectedinherited

◆ _fsp

FieldSplitPreconditionerBase* NonlinearSystemBase::_fsp
protectedinherited

◆ _general_dampers

MooseObjectWarehouse<GeneralDamper> NonlinearSystemBase::_general_dampers
protectedinherited

◆ _has_diag_save_in

bool NonlinearSystemBase::_has_diag_save_in
protectedinherited

◆ _has_nodalbc_diag_save_in

bool NonlinearSystemBase::_has_nodalbc_diag_save_in
protectedinherited

◆ _has_nodalbc_save_in

bool NonlinearSystemBase::_has_nodalbc_save_in
protectedinherited

◆ _has_save_in

bool NonlinearSystemBase::_has_save_in
protectedinherited

◆ _hybridized_kernels

MooseObjectTagWarehouse<HDGKernel> NonlinearSystemBase::_hybridized_kernels
protectedinherited

◆ _ignore_variables_for_autoscaling

std::vector<std::string> NonlinearSystemBase::_ignore_variables_for_autoscaling
protectedinherited

A container for variables that do not partipate in autoscaling.

Definition at line 1058 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::ignoreVariablesForAutoscaling(), and NonlinearSystemBase::setupScalingData().

◆ _increment_vec

NumericVector<Number>* NonlinearSystemBase::_increment_vec
protectedinherited

◆ _initial_residual

Real NonlinearSystemBase::_initial_residual
protectedinherited

The initial (i.e., 0th nonlinear iteration) residual, see setPreSMOResidual for a detailed explanation.

Definition at line 1016 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::initialResidual(), and NonlinearSystemBase::setInitialResidual().

◆ _integrated_bcs

MooseObjectTagWarehouse<IntegratedBCBase> NonlinearSystemBase::_integrated_bcs
protectedinherited

◆ _interface_kernels

MooseObjectTagWarehouse<InterfaceKernelBase> NonlinearSystemBase::_interface_kernels
protectedinherited

◆ _Ke_non_time_tag

TagID NonlinearSystemBase::_Ke_non_time_tag
protectedinherited

Tag for non-time contribution Jacobian.

Definition at line 916 of file NonlinearSystemBase.h.

◆ _Ke_system_tag

TagID NonlinearSystemBase::_Ke_system_tag
protectedinherited

Tag for system contribution Jacobian.

Definition at line 919 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase(), and NonlinearSystemBase::systemMatrixTag().

◆ _kernels

MooseObjectTagWarehouse<KernelBase> NonlinearSystemBase::_kernels
protectedinherited

◆ _kokkos_integrated_bcs

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_integrated_bcs
protectedinherited

◆ _kokkos_kernels

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_kernels
protectedinherited

◆ _kokkos_nodal_bcs

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_nodal_bcs
protectedinherited

◆ _kokkos_nodal_kernels

MooseObjectTagWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_nodal_kernels
protectedinherited

◆ _kokkos_preset_nodal_bcs

MooseObjectWarehouse<ResidualObject> NonlinearSystemBase::_kokkos_preset_nodal_bcs
protectedinherited

◆ _ksp_norm

Moose::MooseKSPNormType SolverSystem::_ksp_norm
protectedinherited

KSP norm type.

Definition at line 110 of file SolverSystem.h.

Referenced by SolverSystem::getMooseKSPNormType(), and SolverSystem::setMooseKSPNormType().

◆ _last_nl_rnorm

Real NonlinearSystemBase::_last_nl_rnorm
inherited

◆ _matrix_tag_active_flags

std::vector<bool> SystemBase::_matrix_tag_active_flags
protectedinherited

Active flags for tagged matrices.

Definition at line 1027 of file SystemBase.h.

Referenced by SystemBase::activateAllMatrixTags(), SystemBase::deactivateAllMatrixTags(), and SystemBase::matrixTagActive().

◆ _max_var_n_dofs_per_elem

size_t SystemBase::_max_var_n_dofs_per_elem
protectedinherited

Maximum number of dofs for any one variable on any one element.

Definition at line 1043 of file SystemBase.h.

Referenced by SystemBase::assignMaxVarNDofsPerElem(), and SystemBase::getMaxVarNDofsPerElem().

◆ _max_var_n_dofs_per_node

size_t SystemBase::_max_var_n_dofs_per_node
protectedinherited

Maximum number of dofs for any one variable on any one node.

Definition at line 1046 of file SystemBase.h.

Referenced by SystemBase::assignMaxVarNDofsPerNode(), and SystemBase::getMaxVarNDofsPerNode().

◆ _max_var_number

unsigned int SystemBase::_max_var_number
protectedinherited

Maximum variable number.

Definition at line 1000 of file SystemBase.h.

Referenced by SystemBase::addVariable(), and SystemBase::getMaxVariableNumber().

◆ _mesh

MooseMesh& SystemBase::_mesh
protectedinherited

◆ _n_iters

unsigned int NonlinearSystemBase::_n_iters
protectedinherited

◆ _n_linear_iters

unsigned int NonlinearSystemBase::_n_linear_iters
protectedinherited

◆ _n_residual_evaluations

unsigned int NonlinearSystemBase::_n_residual_evaluations
protectedinherited

Total number of residual evaluations that have been performed.

Definition at line 1004 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeResidualTags(), and NonlinearSystemBase::nResidualEvaluations().

◆ _name

std::string SystemBase::_name
protectedinherited

The name of this system.

Definition at line 993 of file SystemBase.h.

◆ _need_residual_ghosted

bool NonlinearSystemBase::_need_residual_ghosted
protectedinherited

◆ _nl_matrix_tags

std::set<TagID> NonlinearSystemBase::_nl_matrix_tags
protectedinherited

Matrix tags to temporarily store all tags associated with the current system.

Definition at line 902 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeJacobian(), and NonlinearSystemBase::computeJacobianBlocks().

◆ _nl_vector_tags

std::set<TagID> NonlinearSystemBase::_nl_vector_tags
protectedinherited

Vector tags to temporarily store all tags associated with the current system.

Definition at line 899 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeResidualTag().

◆ _nodal_bcs

MooseObjectTagWarehouse<NodalBCBase> NonlinearSystemBase::_nodal_bcs
protectedinherited

◆ _nodal_dampers

MooseObjectWarehouse<NodalDamper> NonlinearSystemBase::_nodal_dampers
protectedinherited

◆ _nodal_kernels

MooseObjectTagWarehouse<NodalKernelBase> NonlinearSystemBase::_nodal_kernels
protectedinherited

◆ _num_residual_evaluations

unsigned int NonlinearSystemBase::_num_residual_evaluations
inherited

Definition at line 591 of file NonlinearSystemBase.h.

◆ _numbered_vars

std::vector<std::vector<MooseVariableFieldBase *> > SystemBase::_numbered_vars
protectedinherited

Map variable number to its pointer.

Definition at line 1052 of file SystemBase.h.

Referenced by SystemBase::addVariable(), and SystemBase::getVariable().

◆ _off_diagonals_in_auto_scaling

bool NonlinearSystemBase::_off_diagonals_in_auto_scaling
protectedinherited

Whether to include off diagonals when determining automatic scaling factors.

Definition at line 1061 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::initialSetup(), and NonlinearSystemBase::offDiagonalsInAutoScaling().

◆ _pc_side

Moose::PCSideType SolverSystem::_pc_side
protectedinherited

Preconditioning side.

Definition at line 108 of file SolverSystem.h.

Referenced by SolverSystem::getPCSide(), and SolverSystem::setPCSide().

◆ _pg_moose_app

MooseApp& PerfGraphInterface::_pg_moose_app
protectedinherited

The MooseApp that owns the PerfGraph.

Definition at line 124 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::perfGraph().

◆ _pre_smo_residual

Real NonlinearSystemBase::_pre_smo_residual
protectedinherited

The pre-SMO residual, see setPreSMOResidual for a detailed explanation.

Definition at line 1014 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::preSMOResidual(), and NonlinearSystem::solve().

◆ _preconditioner

std::shared_ptr<MoosePreconditioner> NonlinearSystemBase::_preconditioner
protectedinherited

◆ _predictor

std::shared_ptr<Predictor> NonlinearSystemBase::_predictor
protectedinherited

◆ _prefix

const std::string PerfGraphInterface::_prefix
protectedinherited

A prefix to use for all sections.

Definition at line 127 of file PerfGraphInterface.h.

Referenced by PerfGraphInterface::timedSectionName().

◆ _preset_nodal_bcs

MooseObjectWarehouse<DirichletBCBase> NonlinearSystemBase::_preset_nodal_bcs
protectedinherited

◆ _print_all_var_norms

bool NonlinearSystemBase::_print_all_var_norms
protectedinherited

Definition at line 1020 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::printAllVariableNorms().

◆ _raw_grad_container

std::vector<std::unique_ptr<NumericVector<Number> > > SystemBase::_raw_grad_container
protectedinherited

A cache for storing gradients at dof locations.

We store it on the system because we create copies of variables on each thread and that would lead to increased data duplication when using threading-based parallelism.

Definition at line 1073 of file SystemBase.h.

Referenced by LinearSystem::computeGradients(), SystemBase::gradientContainer(), and SystemBase::initialSetup().

◆ _Re_non_time

NumericVector<Number>* NonlinearSystemBase::_Re_non_time
protectedinherited

◆ _Re_non_time_tag

TagID NonlinearSystemBase::_Re_non_time_tag
protectedinherited

◆ _Re_tag

TagID NonlinearSystemBase::_Re_tag
protectedinherited

Used for the residual vector from PETSc.

Definition at line 913 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::NonlinearSystemBase(), and NonlinearSystemBase::residualVectorTag().

◆ _Re_time

NumericVector<Number>* NonlinearSystemBase::_Re_time
protectedinherited

◆ _Re_time_tag

TagID NonlinearSystemBase::_Re_time_tag
protectedinherited

◆ _resid_vs_jac_scaling_param

Real NonlinearSystemBase::_resid_vs_jac_scaling_param
protectedinherited

The param that indicates the weighting of the residual vs the Jacobian in determining variable scaling parameters.

A value of 1 indicates pure residual-based scaling. A value of 0 indicates pure Jacobian-based scaling

Definition at line 1047 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::autoScalingParam(), and NonlinearSystemBase::computeScaling().

◆ _residual_copy

std::unique_ptr<NumericVector<Number> > NonlinearSystemBase::_residual_copy
protectedinherited

Copy of the residual vector, or nullptr if a copy is not needed.

Definition at line 888 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeResidualInternal(), NonlinearSystemBase::preInit(), and NonlinearSystemBase::residualCopy().

◆ _residual_ghosted

NumericVector<Number>* NonlinearSystemBase::_residual_ghosted
protectedinherited

◆ _saved_dot_old

NumericVector<Real>* SystemBase::_saved_dot_old
protectedinherited

Definition at line 1034 of file SystemBase.h.

Referenced by SystemBase::restoreOldSolutions(), and SystemBase::saveOldSolutions().

◆ _saved_dotdot_old

NumericVector<Real>* SystemBase::_saved_dotdot_old
protectedinherited

Definition at line 1035 of file SystemBase.h.

Referenced by SystemBase::restoreOldSolutions(), and SystemBase::saveOldSolutions().

◆ _saved_old

NumericVector<Real>* SystemBase::_saved_old
protectedinherited

Definition at line 1030 of file SystemBase.h.

◆ _saved_older

NumericVector<Real>* SystemBase::_saved_older
protectedinherited

Definition at line 1031 of file SystemBase.h.

◆ _scalar_kernels

MooseObjectTagWarehouse<ScalarKernelBase> NonlinearSystemBase::_scalar_kernels
protectedinherited

◆ _scaling_group_variables

std::vector<std::vector<std::string> > NonlinearSystemBase::_scaling_group_variables
protectedinherited

A container of variable groupings that can be used in scaling calculations.

This can be useful for simulations in which vector-like variables are split into invidual scalar-field components like for solid/fluid mechanics

Definition at line 1052 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::scalingGroupVariables(), and NonlinearSystemBase::setupScalingData().

◆ _scaling_matrix

std::unique_ptr<libMesh::DiagonalMatrix<Number> > NonlinearSystemBase::_scaling_matrix
protectedinherited

◆ _serialized_solution

std::unique_ptr<NumericVector<Number> > SystemBase::_serialized_solution
protectedinherited

Serialized version of the solution vector, or nullptr if a serialized solution is not needed.

Definition at line 1068 of file SystemBase.h.

Referenced by AuxiliarySystem::compute(), SolverSystem::preInit(), SystemBase::serializedSolution(), SolverSystem::serializeSolution(), AuxiliarySystem::serializeSolution(), and SolverSystem::setSolution().

◆ _solution_is_invalid

bool SolverSystem::_solution_is_invalid
protectedinherited

Boolean to see if solution is invalid.

Definition at line 113 of file SolverSystem.h.

◆ _solution_states_initialized

bool SystemBase::_solution_states_initialized
protectedinherited

Whether or not the solution states have been initialized.

Definition at line 1061 of file SystemBase.h.

Referenced by SystemBase::initSolutionState(), and SystemBase::solutionStatesInitialized().

◆ _splits

MooseObjectWarehouseBase<Split> NonlinearSystemBase::_splits
protectedinherited

◆ _subproblem

SubProblem& SystemBase::_subproblem
protectedinherited

◆ _sys

libMesh::System& NonlinearSystemBase::_sys
inherited

◆ _tagged_matrices

std::vector<libMesh::SparseMatrix<Number> *> SystemBase::_tagged_matrices
protectedinherited

◆ _tagged_vectors

std::vector<NumericVector<Number> *> SystemBase::_tagged_vectors
protectedinherited

◆ _time_integrators

std::vector<std::shared_ptr<TimeIntegrator> > SystemBase::_time_integrators
protectedinherited

◆ _u_dot

NumericVector<Number>* SystemBase::_u_dot
protectedinherited

solution vector for u^dot

Definition at line 1006 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), NonlinearSystemBase::setSolutionUDot(), and SystemBase::solutionUDot().

◆ _u_dot_old

NumericVector<Number>* SystemBase::_u_dot_old
protectedinherited

old solution vector for u^dot

Definition at line 1011 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), NonlinearSystemBase::setSolutionUDotOld(), and SystemBase::solutionUDotOld().

◆ _u_dotdot

NumericVector<Number>* SystemBase::_u_dotdot
protectedinherited

solution vector for u^dotdot

Definition at line 1008 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), NonlinearSystemBase::setSolutionUDotDot(), and SystemBase::solutionUDotDot().

◆ _u_dotdot_old

NumericVector<Number>* SystemBase::_u_dotdot_old
protectedinherited

old solution vector for u^dotdot

Definition at line 1013 of file SystemBase.h.

Referenced by SystemBase::addDotVectors(), NonlinearSystemBase::setSolutionUDotDotOld(), and SystemBase::solutionUDotDotOld().

◆ _use_finite_differenced_preconditioner

bool NonlinearSystemBase::_use_finite_differenced_preconditioner
protectedinherited

◆ _use_pre_smo_residual

bool NonlinearSystemBase::_use_pre_smo_residual
protectedinherited

Whether to use the pre-SMO initial residual in the relative convergence check.

Definition at line 1018 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::setPreSMOResidual(), NonlinearSystemBase::shouldEvaluatePreSMOResidual(), and NonlinearSystemBase::usePreSMOResidual().

◆ _var_all_dof_indices

std::vector<dof_id_type> SystemBase::_var_all_dof_indices
protectedinherited

Container for the dof indices of a given variable.

Definition at line 1064 of file SystemBase.h.

Referenced by SystemBase::getVariableGlobalDoFs(), and SystemBase::setVariableGlobalDoFs().

◆ _var_kind

Moose::VarKindType SystemBase::_var_kind
protectedinherited

default kind of variables in this system

Definition at line 1038 of file SystemBase.h.

Referenced by SystemBase::varKind().

◆ _var_map

std::map<unsigned int, std::set<SubdomainID> > SystemBase::_var_map
protectedinherited

Map of variables (variable id -> array of subdomains where it lives)

Definition at line 998 of file SystemBase.h.

Referenced by SystemBase::addVariable(), SystemBase::getSubdomainsForVar(), and SystemBase::getVariableBlocks().

◆ _var_to_copy

std::vector<VarCopyInfo> SystemBase::_var_to_copy
protectedinherited

◆ _variable_autoscaled

std::vector<bool> NonlinearSystemBase::_variable_autoscaled
protectedinherited

Container to hold flag if variable is to participate in autoscaling.

Definition at line 1055 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeScaling(), and NonlinearSystemBase::setupScalingData().

◆ _vars

std::vector<VariableWarehouse> SystemBase::_vars
protectedinherited

Variable warehouses (one for each thread)

Definition at line 996 of file SystemBase.h.

Referenced by NonlinearSystemBase::addBoundaryCondition(), NonlinearSystemBase::addInterfaceKernel(), AuxiliarySystem::addVariable(), SystemBase::addVariable(), SystemBase::applyScalingFactors(), NonlinearSystemBase::assembleScalingVector(), SystemBase::clearAllDofIndices(), AuxiliarySystem::compute(), SystemBase::customSetup(), SystemBase::getActualFieldVariable(), SystemBase::getFieldVariable(), SystemBase::getFVVariable(), AuxiliarySystem::getMinQuadratureOrder(), SystemBase::getMinQuadratureOrder(), SystemBase::getScalarVariable(), SystemBase::getScalarVariables(), SystemBase::getVariable(), SystemBase::getVariableNames(), SystemBase::getVariables(), LinearSystem::initialSetup(), SystemBase::initialSetup(), SystemBase::jacobianSetup(), SystemBase::nFieldVariables(), SystemBase::nFVVariables(), SystemBase::nVariables(), SystemBase::prepare(), SystemBase::prepareFace(), SystemBase::prepareLowerD(), SystemBase::prepareNeighbor(), SystemBase::reinitElem(), SystemBase::reinitElemFace(), SystemBase::reinitLowerD(), SystemBase::reinitNeighbor(), SystemBase::reinitNeighborFace(), SystemBase::reinitNode(), SystemBase::reinitNodeFace(), SystemBase::reinitNodes(), SystemBase::reinitNodesNeighbor(), SystemBase::reinitScalars(), SystemBase::residualSetup(), SystemBase::setActiveScalarVariableCoupleableVectorTags(), SystemBase::setActiveVariableCoupleableVectorTags(), NonlinearSystemBase::setupScalingData(), SystemBase::sizeVariableMatrixData(), SystemBase::subdomainSetup(), and SystemBase::timestepSetup().

◆ _vars_to_be_zeroed_on_jacobian

std::vector<std::string> SystemBase::_vars_to_be_zeroed_on_jacobian
protectedinherited

◆ _vars_to_be_zeroed_on_residual

std::vector<std::string> SystemBase::_vars_to_be_zeroed_on_residual
protectedinherited

◆ _vecs_to_zero_for_residual

std::vector<std::string> NonlinearSystemBase::_vecs_to_zero_for_residual
protectedinherited

vectors that will be zeroed before a residual computation

Definition at line 998 of file NonlinearSystemBase.h.

Referenced by NonlinearSystemBase::computeResidualTags(), and NonlinearSystemBase::zeroVectorForResidual().

◆ _verbose

bool SystemBase::_verbose
protectedinherited

True if printing out additional information.

Definition at line 1058 of file SystemBase.h.

Referenced by SystemBase::applyScalingFactors(), and SystemBase::setVerboseFlag().


The documentation for this class was generated from the following files: